Sample records for sulfate sodium sulfite

  1. Quaternary liquid/liquid equilibria of sodium sulfate, sodium sulfite and water with two solvents: Acetone and 2-propanol

    SciTech Connect

    Schiozer, A.L.

    1994-03-01

    Aqueous solutions of sodium sulfate and sodium sulfite are produced from sodium carbonate in flue-gas scrubbers; recovery of these salts often requires multi-effect evaporators; however, a new energy-efficient unit operation called extractive crystallization has been shown to have reduced energy costs. In this process, an organic solvent is added to the aqueous salt solution to precipitate salt. Acetone is a suitable solvent for this process, better than 2-propanol. Liquid/liquid/solid equilibria for ternary systems containing a salt, water, and an organic solvent were measured. Systems investigated were sodium sulfite/water/acetone and sodium sulfite/water/2-propanol. Experiments were conducted at salt saturation covering a temperature range between the lower consolute temperature and 48.6{degrees}C. In the attempt to improve the extractive crystallization process for recovery of sodium sulfate from flue-gas scrubbers, attention was given to a feed containing a mixture of sodium sulfite and sodium sulfate. Liquid-liquid equilibria for quaternary systems containing two salts, water, and an organic solvent were experimentally determined at 35{degrees}C. The systems investigated were sodium sulfate/sodium sulfite/water/acetone and sodium sulfate/sodium sulfite/water/2propanol. The systems were studied at three salt ratios. For each salt ratio, experiments were conducted starting at saturation, water was then added until the one-phase region was reached. Mixtures of the two salts proved to have a small disadvantage relative to the 100 % sulfate feed process. Therefore, a sulfate-based extractive crystallization process is recommended.

  2. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 582.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) [Reserved] (c) Limitations,...

  3. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 582.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) [Reserved] (c) Limitations,...

  4. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 582.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) [Reserved] (c) Limitations,...

  5. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 582.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) [Reserved] (c) Limitations,...

  6. Sulfite-sulfide-sulfate-carbonate equilibria with applications to Mars

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Kargel, J. S.; Crowley, J. K.; Catling, D. C.

    2013-07-01

    Mars volcanic SO2 and H2S gas emissions are likely the dominant source of martian sulfate, and the source of sulfuric acid. Until this work, the FREZCHEM model lacked SO2 and H2S gases and associated sulfite and sulfide minerals. The specific objectives of this paper were to add these components and associated sulfite and sulfide minerals and phases into FREZCHEM, and to explore some possible roles of these chemistries on Mars. New solid phases added included the sulfites: Na2SO3·7H2O, K2SO3, (NH4)2SO3·H2O, MgSO3·6H2O, CaSO3·0.5H2O, and FeSO3·1.5H2O, and the sulfide: FeS2. The lowest eutectic of these minerals was K2SO3 (= 6.57 m) at 228 K. Because sulfurous acid is stronger than carbonic acid, this causes a much larger fraction of S(IV) to exist as sulfite (SO32-) at acidic to mildly alkaline pH, whereas almost none of the C is present as carbonate anion. Model calculations show that small quantities of SO2 in an early CO2-rich martian atmosphere suppressed formation of carbonates because SO2 is much more water soluble than CO2 and a stronger acid, which may be a major reason why sulfates are much more common than carbonates on Mars. Also, perhaps equally important are low temperatures that favor sulfite mineral precipitation, the oxidation of which leads to sulfate minerals. Another potentially important factor that favors sulfite/sulfide mineral formation is low pH values that cannot allow carbonate minerals, but can allow sulfide minerals such as pyrite (FeS2). The presence of pyrite, highly insoluble, would lead to sulfate minerals when oxygen becomes available in acidic environments. Major cations for both sulfites (or sulfates) and carbonates (Ca and Mg) can limit carbonates. Sulfite-sulfide volcanism on a cold, lower pH, Mars are the primary causes of high sulfate minerals (e.g., Ca and Mg sulfates), compared to volcanism on a warm, higher pH, Earth that led to more abundant carbonate minerals (e.g., Ca and Mg carbonates).

  7. Nitrogen dioxide absorption in aqueous sodium sulfite

    NASA Astrophysics Data System (ADS)

    Shen, Chen Hua

    The Clean Air Act of 1990 requires additional reduction of acid gases, sulfur dioxide, and nitrogen oxides released into the atmosphere from coal-fired electric power plants. In the case of older existing power plants, a possible retrofit strategy is to oxidize nitric oxide (NO, the major constituent of NOsbX in flue gas) to nitrogen dioxide (NOsb2) by the addition of methanol or other hydrocarbons into the duct at an optimum temperature regime. NOsb2 can then be removed by either modifying existing SOsb2 control equipment or by adding a limestone (CaCOsb3) slurry scrubbing process. Limestone reacts with SOsb2 to from CaSOsb3, and the free sulfite (SO{sb3sp{=}}) in the solution is reactive toward NOsb2. The focus of this research is to study the reaction between NOsb2 and aqueous sulfite at elevated temperature and in the presence of gas phase Osb2. The removal of NOsb2 by limestone slurry scrubbing involves the reaction between NOsb2 and SO{sb3sp{=}}, bisulfite (HSO{sb3sp{-}}) and water. The reactions between NOsb2 and SO{sb3sp{=}}/HSO{sb3sp{-}} are first order in both reactants, while the NOsb2-water reaction is second order in NOsb2 concentration. The rate constants of the above reactions and the NOsb2-thiosulfate (Ssb2O{sb3sp{=}}) reaction were determined at 55sp°C. SO{sb3sp{=}} was found to be the most reactive toward NOsb2, while the contribution of chemical reaction still dominated in the absorption of NOsb2 into water. The effect of gas phase SOsb2 and Osb2, and liquid phase additives such as Ssb2O{sb3sp{=}}, Casp{++}, Mgsp{++}, and Clsp{-} on NOsb2 absorption was also investigated. The absorption of NOsb2 catalyzes free radical reactions that lead to sulfite oxidation. A semi-empirical model was proposed to relate the rate of sulfite oxidation to the rate of NOsb2 absorption. Thiosulfate inhibits sulfite oxidation by providing an alternative route for the termination of the free radical reactions, and a fundamental model was derived to quantify the effect of Ssb2O{sb3sp{=}} on sulfite oxidation. The absorption of NOsb2 into aqueous bisulfide (HSsp{-}) was studied in an attempt to discover alternative scrubbing technologies. The reaction between NOsb2 and HSsp{-} is twice as fast as the NOsb2-SO{sb3sp{=}} reaction at 55sp°C. A semi-empirical model was proposed to relate NOsb2 absorption to HSsp{-} oxidation. This study has shown that acceptable level of NOsb2 removal by a conventional limestone slurry scrubber is not probable. However, aqueous scrubbing of NOsb2 by Nasb2SOsb3 and Nasb2S solutions are viable options. Furthermore, significant reduction in hold tank liquid depth and/or oxidizing air stoichiometry is possible by NOsb2 injection.

  8. Removal of sulfide, sulfate and sulfite ions by electro coagulation.

    PubMed

    Murugananthan, M; Raju, G Bhaskar; Prabhakar, S

    2004-06-18

    The removal of various species of sulfur from beamhouse of tannery wastewater and also from synthetic samples was studied by electro-flotation technique. Consumable anodes of iron and aluminum and insoluble anode of titanium were tested as anodes. It was found that iron and aluminum anodes were effective for the removal of suspended solids, sulfide, sulfite and sulfate. Progress of simultaneous coagulation of suspended solids during electro-flotation was measured using particle size analysis. Coagulation was found to be essential for effective flotation of suspended solids. Metal ions generated in situ by electrolytic oxidation of anode were found to react with dissolved sulfide ions. Metal sulfides thus formed as colloidal suspension were coagulated and floated simultaneously by hydrogen bubbles generated from cathode. Simultaneous occurrence of precipitation, coagulation and flotation was observed during electro-flotation. X-ray diffraction studies were conducted to identify the nature of sulfide phase formed during electrolytic precipitation. The effect of pH, current density and initial concentration of pollutants was studied and the results are discussed. The removal of sulfite and sulfate ions is explained by zeta-potential measurements. PMID:15177743

  9. Method of manufacturing aluminum sulfate from flue gas

    Microsoft Academic Search

    Hauser

    1981-01-01

    A continuous process for removing sulfur dioxide from flue gas is described. Sodium aluminate solution is reacted with sulfur dioxide to form sodium sulfite and aluminum hydroxy sulfite. These are separated and the aluminum hydroxy sulfite oxidized to aluminum sulfate.

  10. Desulfurization of flue gases with complete sulfite oxidation

    Microsoft Academic Search

    1981-01-01

    Flue gas containing sulfur dioxide is purified (and the sulfur content thereof is recovered in elemental form) by scrubbing the gas with aqueous sodium aluminate-sodium hydroxide solution thereby forming an underflow suspension consisting essentially of sodium and aluminum sulfites and sulfates and fly ash; oxidizing the sulfites to sulfates; evaporating the free water present; reducing the resulting apparently dry mixture

  11. Desulfurization of flue gases with complete sulfite oxidation

    Microsoft Academic Search

    1983-01-01

    Flue gas containing sulfur dioxide is purified (And the sulfur content thereof is recovered in elemental form) by scrubbing the gas with aqueous sodium aluminate-sodium hydroxide solution thereby forming an underflow suspension consisting essentially of sodium and aluminum sulfites and sulfates and fly ash; oxidizing the sulfites to sulfates; evaporating the free water present; reducing the resulting apparently dry mixture

  12. The influence of oxygen exchange between sulfite and water on the oxygen isotope composition of sulfate

    NASA Astrophysics Data System (ADS)

    Müller, I. A.; Brunner, B.

    2012-12-01

    Sulfate does not exchange oxygen with the water under most environmental conditions. Therefore, its oxygen isotope composition serves as an archive of past oxidative sulfur cycling. Studies on the oxygen isotope signature of sulfate produced from reduced sulfur compounds show varying relative contributions of two possible oxygen sources; molecular oxygen and water, and variable isotope fractionations relative to these two compounds. These discrepancies could be due to differences in the production and consumption of sulfuroxy intermediates which exchange oxygen with water. Thereby, the rate of oxygen exchange as well as the rate of oxidation depends on the pH. Studies on the oxygen isotope exchange effects between sulfuroxy intermediates and water and on the oxygen isotope effects during the oxidation of sulfuroxy intermediates are scarce, severely limiting the interpretability of oxygen isotope signatures in sulfate. Sulfite is often considered to be the last/final sulfuroxy intermediate in the oxidation of reduced sulfur compounds to sulfate and may, therefore, be pivotal in shaping the oxygen isotope signature of sulfate. We determined the oxygen isotope equilibrium fractionation between sulfite and water and used the obtained equilibrium value to determine the oxygen isotope effects in abiotic sulfite oxidation experiments. Our results demonstrate that natural variations in the oxygen isotope composition of sulfate produced by oxidative processes can be explained by differences in the interplay of the sulfite oxidation rate and oxygen isotope exchange rate between sulfite and water which both depend on pH conditions and availability of oxidizing agents (e.g. molecular oxygen or ferric iron). Our findings contribute to a more detailed mechanistic understanding of the oxidation of reduced sulfur compounds and underline the importance of sulfite as the final sulfuroxy intermediate in oxidative sulfur cycling.

  13. Methanol as electron donor for thermophilic biological sulfate and sulfite reduction

    Microsoft Academic Search

    J. Weijma

    2000-01-01

    Sulfur oxyanions (e.g. sulfate, sulfite) can be removed from aqueous waste- and process streams by biological reduction with a suitable electron donor to sulfide, followed by partial chemical or biological oxidation of sulfide to elemental sulfur. The aim of the research described in this thesis was to make this biological process more broadly applicable for desulfurization of flue-gases and ground-

  14. Diversity and Composition of Sulfate and Sulfite-Reducing Prokaryotes as Affected by Marine-Freshwater Gradient and Sulfate Availability

    Microsoft Academic Search

    Lan-Feng Fan; Sen-Lin Tang; Chang-Po Chen; Hwey-Lian Hsieh

    Sulfate- and sulfite-reducing prokaryotes (SSRP) communities play a key role in both sulfur and carbon cycles. In estuarine\\u000a ecosystems, sulfate concentrations change with tides and could be limited in tidal freshwater reach or deep sediments. In\\u000a a subtropical estuary of northern Taiwan in December 2007, we examined the compositional changes of SSRP communities. We examined\\u000a three sites: from the lower

  15. Sulfite exchange dominates oxygen isotope compositions of sulfate produced from abiotic pyrite oxidation

    NASA Astrophysics Data System (ADS)

    Kohl, I. E.; Bao, H.

    2009-12-01

    The oxidation of reduced sulfur compounds (solid, liquid and gas phase) is of primary importance when attempting to understand the global sulfur and oxygen cycles as preserved in sulfate minerals. It has long been known that O2, H2O, and Fe3+ all play an important role during this oxidation process, especially during the oxidation of sulfide minerals. The exact role of each oxidant and/or oxygen source has yet to be experimentally determined for oxidation in aqueous solutions over a range of pH values. In addition, the reported air O2 signal being incorporated in product sulfate appears to be highly variable (9-60%), which could be due to the presence of multiple oxidation pathways or the inability of the traditional ?18O label to differentiate kinetic effects on the degree of oxygen exchange. Here we test the affect of pH dependent sulfite-water oxygen exchange rate and precipitation of ferric hydroxides on the produced sulfate’s O2/H2O ratio. Our experiments utilize a ?17O isotope label in the solutions, enabling a quantitative determination of oxygen source ratios (O2 vs. H2O) in the produced sulfate. We oxidized crushed pyrite grains aerobically in sterile, buffered solutions at pH=2,7,9,10, and 11. A duplicate set was spiked with Fe3+. The results from the reactors indicate that despite the pH dependency of sulfite-water exchange rate, fast at low pH and slow at high pH, the stability of intermediates, thiosulfate and especially sulfite, in alkaline solutions allows the exchange to proceed to equilibrium. This resulted in sulfate produced above pH=9 to contain 21-24% air O2 signal, indicating the last oxidation step, producing sulfate from sulfite, proceeded with direct incorporation of dissolved air O2 as represented by equation (1). The role of Fe3+ under alkaline conditions was observed to be negligible. SO32- + 1/2O2 ? SO42- (1) In the pH=2 reactor, the O2% in the produced sulfate was 21% with the addition of Fe3+, but was 28-29% without the Fe3+ addition. A similar ~25% O2 signal is measured for sulfate produced in circum-neutral solutions. These results indicate that sulfite-water oxygen exchange determines the O2 signal in sulfate produced from oxidation of pyrite for all pH conditions examined. In alkaline conditions, although the exchange rate of sulfur-oxyanion species with water is slow, their stability in solution offsets the low exchange rate. The final oxidation of sulfite to sulfate as depicted by reaction (1) results in a consistent O2% (21-29) incorporation in sulfate. Our results suggest that abiotic oxidative weathering of pyrite produces sulfate with 25±4% air O2 oxygen, a much smaller range than previously proposed with the use of ?18O labels. This provides important constraints on pyrite oxidation mechanisms and interpreting the anomalous 17O signals found in Marinoan barite (BaSO4) deposits, which are believed to come from atmospheric O2 at a time when global glaciation resulted in unique atmospheric conditions.

  16. Diversity and composition of sulfate- and sulfite-reducing prokaryotes as affected by marine-freshwater gradient and sulfate availability.

    PubMed

    Fan, Lan-Feng; Tang, Sen-Lin; Chen, Chang-Po; Hsieh, Hwey-Lian

    2012-01-01

    Sulfate- and sulfite-reducing prokaryotes (SSRP) communities play a key role in both sulfur and carbon cycles. In estuarine ecosystems, sulfate concentrations change with tides and could be limited in tidal freshwater reach or deep sediments. In a subtropical estuary of northern Taiwan in December 2007, we examined the compositional changes of SSRP communities. We examined three sites: from the lower estuarine brackish-water reach (site GR and mangrove vegetation site, GM) to the upper estuarine tidal freshwater reach (site HR), as well as from surface to a 50-cm depth. The partial sequence of sulfite reductase (dsrB) genes was used as a molecular marker of SSRP, linked to polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE) techniques. SSRP communities of the DGGE profiles varied with sites according to one-way analyses of similarities (Global R?=?0.69, P?=?0.001). Using cluster analysis, the DGGE profile was found to show site-specific clusters and a distinct depth zonation (five, six, and two SSRP communities at the GM, GR, and HR sites, respectively). SSRP composition was highly correlated to the combination of salinity, reduced sulfur, and total organic carbon contents (BIO-ENV analysis, r ( s )?=?0.56). After analyzing a total of 35 dsrB sequences in the DGGE gel, six groups with 15 phylotypes were found, which were closely related to marine-freshwater gradient. Moreover, sequences neighboring sulfite-reducing prokaryotes were observed, in addition to those affiliated to sulfate-reducing prokaryotes. Four phylotypes harvested in HR resembled the genus Desulfitobacterium, a sulfite-reducing prokaryote, which failed to use sulfate as an electron acceptor and were active in freshwater and sulfate-limited habitat. The other five phylotypes in the HR reach belonged to the sulfate-reducing prokaryotes of the genera Desulfatiferula, Desulfosarcina, Desulfovibrio, and Desulfotomaculum, which appeared to tolerate low salinity and low sulfate supply. SSRP phylotypes at the mangrove-vegetated GM site (five phylotypes in two groups) were phylogenetically less diverse, when compared with those at the non-mangrove-vegetated GR site (three phylotypes in three groups) and the tidally influenced freshwater HR site (nine phylotypes in five groups). Phylotypes found at GR and GM were all affiliated to marine sulfate-reducing prokaryote strains of the genera Desulfofaba, Desulfobotulus, Desulfatiferula, Desulfosarcina, and Desulfotomaculum. Notably, a phylotype recorded in the surface sediment at GR resembled the genus Desulfobulbus, which was recorded from freshwater environment consisting of the freshwater input at GR during ebb tides. PMID:21785985

  17. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Aluminum sodium sulfate. 582.1131 Section 582...General Purpose Food Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  18. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Aluminum sodium sulfate. 182.1131 Section 182...Purpose GRAS Food Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  19. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Aluminum sodium sulfate. 182.1131 Section 182...Purpose GRAS Food Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  20. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Aluminum sodium sulfate. 582.1131 Section 582...General Purpose Food Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  1. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Aluminum sodium sulfate. 582.1131 Section 582...General Purpose Food Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  2. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Aluminum sodium sulfate. 182.1131 Section 182...Purpose GRAS Food Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  3. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 2010-04-01 2009-04-01 true Aluminum sodium sulfate. 182.1131 Section 182...Purpose GRAS Food Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  4. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Aluminum sodium sulfate. 582.1131 Section 582...General Purpose Food Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  5. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Aluminum sodium sulfate. 182.1131 Section 182...Purpose GRAS Food Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  6. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Aluminum sodium sulfate. 582.1131 Section 582...General Purpose Food Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  7. Multiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20

    PubMed Central

    Leavitt, William D.; Cummins, Renata; Schmidt, Marian L.; Sim, Min S.; Ono, Shuhei; Bradley, Alexander S.; Johnston, David T.

    2014-01-01

    Dissimilatory sulfate reduction serves as a key metabolic carbon remineralization process in anoxic marine environments. Sulfate reducing microorganisms can impart a wide range in mass-dependent sulfur isotopic fractionation. As such, the presence and relative activity of these organisms is identifiable from geological materials. By extension, sulfur isotope records are used to infer the redox balance of marine sedimentary environments, and the oxidation state of Earth's oceans and atmosphere. However, recent work suggests that our understanding of microbial sulfate reduction (MSRs) may be missing complexity associated with the presence and role of key chemical intermediates in the reductive process. This study provides a test of proposed metabolic models of sulfate reduction by growing an axenic culture of the well-studied MSRs, Desulfovibrio alaskensis strain G20, under electron donor limited conditions on the terminal electron acceptors sulfate, sulfite or thiosulfate, and tracking the multiple S isotopic consequences of each condition set. The dissimilatory reduction of thiosulfate and sulfite produce unique minor isotope effects, as compared to the reduction of sulfate. Further, these experiments reveal a complex biochemistry associated with sulfite reduction. That is, under high sulfite concentrations, sulfur is shuttled to an intermediate pool of thiosulfate. Site-specific isotope fractionation (within thiosulfate) is very large (34? ~ 30‰) while terminal product sulfide carries only a small fractionation from the initial sulfite (34? < 10‰): a signature similar in magnitude to sulfate and thiosulfate reduction. Together these findings show that microbial sulfate reduction (MSR) is highly sensitive to the concentration of environmentally important sulfur-cycle intermediates (sulfite and thiosulfate), especially when thiosulfate and the large site-specific isotope effects are involved. PMID:25505449

  8. Acid/Base Recovery From Sodium Sulfate 

    E-print Network

    Niksa, M. J.

    1992-01-01

    Large amounts of sodium sulfate are produced as a by-product of many diverse industries. Some of this material is recycled internally. Some is upgraded and sold as a product. Most is disposed of as waste in landfills, or discharged to deep...

  9. Sodium metabisulfite and citric acid induce bronchoconstriction via a sulfite-sensitive pathway in the isolated guinea pig lung.

    PubMed

    Atzori, L; Bannenberg, G; Corriga, A M; Congiu, L; Lundberg, J M; Moldèus, P; Ryrfeldt, A

    1997-01-01

    Inhalation of sodium metabisulfite (MBS; 80 mM; pH 2.9 +/- 0.1) or citric acid (CA; 0.4 M; pH 2.0 +/- 0.1) aerosols induced a reduction in compliance and conductance in the isolated perfused and ventilated guinea pig lung without affecting perfusion flow. The effect was dependent on the pH of the nebulized solution since inhalation of 80 mM MBS aerosols at pH 7.4 did not induce any effect on bronchial tone. Concomitantly to the bronchoconstriction induced by MBS or CA an increased level of calcitonin gene-related peptide (CGRP-LI) in the effluent perfusate was observed, indicating activation of sensory nerves. Sodium sulfite, a dissolution product of MBS, has previously been shown by our studies to reduce bronchoconstriction induced by inhalation of sulfur dioxide, in the isolated perfused and ventilated guinea pig lung. In the present study perfusion of the lung with sodium sulfite (3 mM) before and during exposure to aerosols with either MBS or CA attenuated the bronchoconstriction induced by the acidic solutions. The release of CGRP-LI induced by MBS or CA was not affected by sodium sulfite. Sulfite treatment did not modify perfused guinea pig lung reactivity towards acetylcholine (4 nmol), bradykinin (100 pmol), histamine (10 nmol), serotonin (500 pmol) and substance P fragment 5-11, a substance P analogue resistant to degrading enzyme (500 pmol). However, an inhibitory effect by sodium sulfite was observed on bronchoconstriction induced by the NK-2 agonist neurokinin A fragment 4-10 (NKA 4-10, 25 pmol). These results indicate that MBS- or CA-induced bronchoconstriction was dependent on the low pH of the aerosol solution and coincided with activation of sensory nerves. Sulfite modulation of the bronchoconstricting action of inhaled MBS and CA is suggested to be related to a sulfite-sensitive step in the signal transduction of the neuropeptide NKA. PMID:9097350

  10. Mechanism of cemented soil destruction under sodium sulfate solution

    Microsoft Academic Search

    Han Peng-ju; Bai Xiao-hong

    2010-01-01

    The sodium sulfate in the surrounding environment of cemented soil may affect its mechanical property, which may cause some serious damage to structures. In order to study the erosion effect mechanism, a series of tests were conducted on the cemented soil blocks which were cured in the sodium sulfate solutions with various concentrations and ages. The testing results show that

  11. Dissociation and reduction of covalent ?-lactoglobulin-quinone adducts by dithiothreitol, tris(2-carboxyethyl)phosphine, or sodium sulfite.

    PubMed

    Jongberg, Sisse; Lund, Marianne N; Otte, Jeanette

    2015-06-01

    Covalent protein-phenol adducts, generated by reaction of protein nucleophiles with quinones, have recently attracted increased attention because the interactions change the functionality and physicochemical properties of proteins in biological and food systems. The formation of such covalent adducts between ?-lactoglobulin (?-LG) and the quinone of 4-methylcatechol, 4-methylbenzoquinone (4MBQ), and subsequent reduction by dithiothreitol (DTT), tris(2-carboxyethyl)phosphine (TCEP), or sodium sulfite was investigated by mass spectrometry. The results showed that 19.0 ± 8.8% of ?-LG reacted with 4MBQ when present in equimolar ratio at 20°C (pH 8.0) to yield the protein-phenol adduct (?-LG-Q). Following treatment with sulfite, DTT, or TCEP, 75, 68, or 36%, respectively, of the formed ?-LG-Q adduct dissociated. Different reaction mechanisms were proposed for the reduction of ?-LG and ?-LG-Q by each of the reducing agents. These results show that on reductive sample preparation for analysis of protein samples, not only are protein polymers formed through oxidative disulfide bonds reduced into the individual protein constituents but also a large part of any protein-phenol adducts present will dissociate and, thus, give a false picture of the level of protein-protein interactions that have occurred in the sample. PMID:25700864

  12. Fluorescence Probe Studies of Gelatin-Sodium Dodecyl Sulfate Interactions

    E-print Network

    Bales, Barney

    Fluorescence Probe Studies of Gelatin-Sodium Dodecyl Sulfate Interactions P. C. Griffiths* and J. A dodecyl sulfate (SDS) micelles bound to gelatin have been studied by fluorescence using 8-anilino-1-naphththalene sulfonic acid (ANS) as probe. Like gelatin, ANS binds in the region of the micelle occupied

  13. Effects of Arsenite, Sulfite, and Sulfate on Photosynthetic Carbon Metabolism in Isolated Pea (Pisum sativum L., cv Little Marvel) Chloroplasts 1

    PubMed Central

    Marques, Ivano A.; Anderson, Louise E.

    1986-01-01

    Photosynthetic CO2-fixation in isolated pea (Pisum sativum L., cv Little Marvel) chloroplasts during induction is markedly inhibited by 0.4 millimolar sulfite. Sulfate at the same concentration has almost no effect. The 14CO2-fixation pattern indicates that the primary effect of sulfite is inhibition of the reaction catalyzed by ribulose bisphosphate carboxylase and a stimulation of export of intermediates out of the chloroplasts. Inhibition of light modulation of stromal enzyme activity does not appear to account for the toxicity of SO2 in this Pisum variety. Arsenite at 0.2 millimolar concentrations inhibits light activation and inhibits photosynthetic CO2 fixation. The 14CO2-fixation pattern indicates that the primary effect of arsenite is inhibition of light activation of reductive pentose phosphate pathway enzyme activity. PMID:16665056

  14. Synthesis and solid state properties of the 4-naphthyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane, cyclic sulfate not available through sulfite oxidation procedure

    NASA Astrophysics Data System (ADS)

    Bredikhina, Zemfira A.; Gubaidullin, Aidar T.; Bredikhin, Alexander A.

    2010-12-01

    The chiral adrenoblocker propranolol precursor 4-naphthyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane, 2, was obtained in racemic and scalemic form. It was found that sulfates 2 are practically unavailable through the standard Ru-catalyzed sulfite oxidation procedure, but could be obtained by the direct action of SO 2Cl 2 on the corresponding vicinal diols 3. The published properties of the sulfate were corrected. Thermodynamic characteristics and binary melting phase diagram were evaluated for compound 2 by DSC. The crystal structure of rac- and scal- 2 was established by single crystal X-ray analysis and the absolute configuration of scal- 2 was established by the Flack method. The flexible nature of the sulfur-containing cycle, and the sensitivity of the compound conformation to homo- and heterochiral crystal environment was demonstrated.

  15. Adsorption and reaction of sulfur dioxide on alumina and sodium-impregnated alumina

    SciTech Connect

    Mitchell, M.B.; Sheinker, V.N. [Clark Atlanta Univ., GA (United States)] [Clark Atlanta Univ., GA (United States); White, M.G. [Georgia Inst. of Technology, Atlanta, GA (United States)] [Georgia Inst. of Technology, Atlanta, GA (United States)

    1996-05-02

    The adsorption and oxidation of SO{sub 2} on alumina and sodium-impregnated alumina has been examined using thermogravimetric analysis and diffuse reflectance infrared Fourier transform spectroscopy. Sulfur dioxide chemisorbs initially at basic sites to form an adsorbed sulfite, which is quantitatively converted to sulfate on oxidation. It has been observed that at low coverages, nearly 2.6 {mu}mol/m{sup 2}, sodium acts as a promoter for the formation of an adsorbed sulfite and sulfate which have structures similar to those of aluminum sulfite and sulfate, respectively. At higher sodium loadings, a second type of adsorbed SO{sub 2} is formed, similar to sodium sulfite and sulfate. The species with the aluminum sulfate structure appears to be more easily decomposed than does the sodium sulfate species and accounts for the regenerable adsorption capacity. Formation of the sodium sulfate species appears to account for the loss of adsorption capacity as the number of adsorption/regeneration cycles increases. Oxidation of the sulfite form to the sulfate form can occur in the absence of added oxygen, but it is an activated process and begins to occur in measurable amounts at temperatures between 150 and 300{degree}C. Partitioning of adsorbed SO{sub 2} between aluminum and sodium forms is not a function of temperature and depends on only sodium loading. 32 refs., 14 figs., 1 tab.

  16. Solubilities and vapour pressures of saturated aqueous solutions of sodium tetraborate, sodium carbonate, and magnesium sulfate and freezing-temperature lowerings of sodium tetraborate and sodium carbonate solutions

    Microsoft Academic Search

    Alexander Apelblat; Emanuel Manzurola

    2003-01-01

    Solubilities and vapour pressures of water over saturated solutions of sodium tetraborate, sodium carbonate, and magnesium sulfate and freezing-temperature lowerings of sodium tetraborate and sodium carbonate solutions were determined and compared with the literature data. These results permitted the evaluation of osmotic and activity coefficients and molar enthalpies of vaporization.

  17. Acid/Base Recovery From Sodium Sulfate

    E-print Network

    Niksa, M. J.

    -s~e costs can be Inslgn~lcant but outside and fill expense is rising exponentially as our landfills run out of room. Even "no-eost" disposal represems a waste of purchased resources. Current chemical costs (caustic soda and sulfuric acid) to make... that future sales will decline due to reduced consumption in both the detergent and pulp markets. Transportation costs of hazardous materials is also rising exponentially with some chemicals banned completely from conveyance in urban areas. If sodium...

  18. Sulfite suppresses the mutagenic property of coffee.

    PubMed

    Suwa, Y; Nagao, M; Kosugi, A; Sugimura, T

    1982-12-01

    The mutagenicity of instant and freshly brewed coffee on Salmonella typhimurium TA100 and TA98 without S9 mix was inactivated by sodium sulfite. Sulfite ion at a dose of 200 ppm almost completely inactivated the mutagenicity of coffee made in the ordinary way (5-15 mg dry weight/ml). Sodium bisulfite and potassium metabisulfite had similar effects. On the contrary, L-ascorbic acid enhanced the mutagenicity of coffee. Sodium sulfite also inactivated the phage-inducing activity of coffee in inductest III. Sodium sulfite completely suppressed the mutagenicities of 1,2-dicarbonyls, namely diacetyl and glyoxal. Diacetyl is present in coffee, beer, butter and other foods and drinks. Because sodium sulfite, sodium bisulfite and potassium metabisulfite are widely used as food additives, they should be useful in reducing the levels of mutagens in foods. PMID:6217422

  19. Physicochemical effects on sulfite transformation in a lipid-rich Chlorella sp. strain

    NASA Astrophysics Data System (ADS)

    Liang, Fang; Wen, Xiaobin; Luo, Liming; Geng, Yahong; Li, Yeguang

    2014-11-01

    SO2 is very rapidly hydrated to sulfurous acid in water solution at pH value above 6.0, whereby sulfite is yielded from the disassociation of protons. We aimed to improve the sulfite transformation efficiency and provide a basis for the direct utilization of SO2 from flue gas by a microalgal suspension. Chlorella sp. XQ-20044 was cultured in a medium with 20 mmol/L sodium sulfite under different physicochemical conditions. Under light conditions, sulfite concentration in the algal suspension reduced linearly over time, and was completely converted into sulfate within 8 h. The highest sulfite transformation rate (3.25 mmol/(L·h)) was obtained under the following conditions: 35°C, light intensity of 300 ?mol/(m2·s), NaHCO3 concentration of 6 g/L, initial cell density (OD540) of 0.8 and pH of 9-10. There was a positive correlation between sulfite transformation rate and the growth of Chlorella, with the conditions favorable to algal growth giving better sulfite transformation. Although oxygen in the air plays a role in the transformation of SO2- 3 to SO2- 4, the transformation is mainly dependent on the metabolic activity of algal cells. Chlorella sp. XQ-20044 is capable of tolerating high sulfite concentration, and can utilize sulfite as the sole sulfur source for maintaining healthy growth. We found that sulfite ?20 mmol/L had no obvious effect on the total lipid content and fatty acid profiles of the algae. Thus, the results suggest it is feasible to use flue gas for the mass production of feedstock for biodiesel using Chlorella sp. XQ-20044, without preliminary removal of SO2, assuming there is adequate control of the pH.

  20. Sodium sulfate - Deposition and dissolution of silica

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1989-01-01

    The hot-corrosion process for SiO2-protected materials involves deposition of Na2SO4 and dissolution of the protective SiO2 scale. Dew points for Na2SO4 deposition are calculated as a function of pressure, sodium content, and sulfur content. Expected dissolution regimes for SiO2 are calculated as a function of Na2SO4 basicity. Controlled-condition burner-rig tests on quartz verify some of these predicted dissolution regimes. The basicity of Na2SO4 is not always a simple function of P(SO3). Electrochemical measurements of an (Na2O) show that carbon creates basic conditions in Na2SO4, which explains the extensive corrosion of SiO2-protected materials containing carbon, such as SiC.

  1. Raman spectra study of iron phosphate glasses with sodium sulfate

    NASA Astrophysics Data System (ADS)

    Lai, Y. M.; Liang, X. F.; Yang, S. Y.; Wang, J. X.; Zhang, B. T.

    2012-04-01

    Glasses with nominal molar composition of xNa2SO4-(1 - x)(0.4Fe2O3-0.6P2O5) (0 ? x ? 0.45) were prepared, and the structure of the glasses was investigated by Raman spectroscopy. No crystalline phases were detected by XRD in all samples. From the sodium sulfate-free iron phosphate glass, Q0 (in the Qn terminology, n represents the number of bridging oxygens (BO) per PO4 tetrahedron), Q1 and Q2 groups were observed. But the Raman spectra imply that Q1 groups are the predominant structural units. Addition Na2SO4 content result in the conversion of Q1 to Q0 groups, indicating that depolymerization of the phosphate network with the addition of Na2SO4 content. The bands of sulfate vibrational modes increase with addition higher Na2SO4 content, indicating that sulfate is incorporated into the glass matrix.

  2. Thermal energy storage using sodium sulfate decahydrate and water

    Microsoft Academic Search

    D BISWAS

    1977-01-01

    It appears that the major problem preventing use of sodium sulfate decahydrate for thermal energy storage can be avoided by using the composition which is at or slightly to the water-rich side of the invariant point in the phase diagram. A mixture of 68.2 w\\/o NaâSOâ x 10HâO and 31.8 w\\/o HâO is suggested for a TES material. (WDM)

  3. Corrosion of 5083 aluminum by aqueous sodium sulfate

    Microsoft Academic Search

    C. Chen; J. J. Truhan

    1983-01-01

    Electrochemical techniques were used to determine the corrosion rate of 5083 aluminum in sodium sulfate solution, and correlated the results with findings from standard metallographic examination. The corrosion rate measured by linear polarization was low: less than 1 mil\\/y for temperatures ranging from 23 to 70°C and deaerated concentrations from 1 to 30 g\\/l. The corrosion current varied over these

  4. Simultaneous detection of selenium by atomic fluorescence and sulfur by molecular emission by flow-injection hydride generation with on-line reduction for the determination of selenate, sulfate and sulfite.

    PubMed

    Tyson, J F; Palmer, C D

    2009-10-12

    An inductively coupled plasma atomic fluorescence spectrometry (ICP-AFS) instrument, was modified so that it was capable of monitoring transient chromatographic or flow-injection profiles and that sulfur molecular emission and selenium atomic fluorescence could be monitored simultaneously in an argon-hydrogen diffusion flame on a glass burner. The analytes were introduced as hydrogen selenide and hydrogen sulfide, generated on a flow-injection manifold. Selenate was reduced to hydride-forming selenite by microwave-assisted on-line reaction with hydrochloric acid, and sulfate, or sulfite, was reduced to hydride-forming sulfide by a mixture of hydriodic acid, acetic acid and sodium hypophosphite. The effects of the nature of reducing agent, flow rate, microwave power and coil length were studied. The limit of detection (3s) for selenium was 10microgL(-1), and for sulfide was 70microgL(-1) (200-microL injection volume). The calibration was linear for selenium up to 2mgL(-1) and to 10mgL(-1) for sulfide. The throughput was 180h(-1). The three sulfur species could be differentiated on the basis of reactivity at various microwave powers. PMID:19786189

  5. Destabilization of yttria-stabilized zirconia induced by molten sodium vanadate-sodium sulfate melts

    NASA Technical Reports Server (NTRS)

    Nagelberg, A. S.; Hamilton, J. C.

    1985-01-01

    The extent of surface destabilization of ZrO2 - 8 wt percent Y2O3 ceramic disks was determined after exposure to molten salt mixtures of sodium sulfate containing up to 15 mole percent sodium metavanadate (NaVO3) at 1173 K. The ceramic surface was observed to transform from the cubic/tetragonal to monoclinic phase, concurrent with chemical changes in the molten salt layer in contact with the ceramic. Significant attack rates were observed in both pure sulfate and metavanadate sulfate melts. The rate of attack was found to be quite sensitive to the mole fraction of vanadate in the molten salt solution and the partial pressure of sulfur trioxide in equilibrium with the salt melt. The observed parabolic rate of attack is interpreted to be caused by a reaction controlled by diffusion in the salt that penetrates into the porous layer formed by the destabilization. The parabolic rate constant in mixed sodium metavanadate - sodium sulfate melts was found to be proportional to the SO3 partial pressure and the square of the metavanadate concentration. In-situ Raman spectroscopic measurements allowed simultaneous observations of the ceramic phases and salt chemistry during the attack process.

  6. Purification of Xanthine Dehydrogenase and Sulfite Oxidase from Chicken Liver

    Microsoft Academic Search

    Kapila Ratnam; Michael S. Brody; Russ Hille

    1996-01-01

    Xanthine dehydrogenase and sulfite oxidase from chicken liver are oxomolybdenum enzymes which catalyze the oxidation of xanthine to uric acid and sulfite to sulfate, respectively. Independent purification protocols have been previously described for both enzymes. Here we describe a procedure by which xanthine dehydrogenase and sulfite oxidase are purified simultaneously from the same batch of fresh chicken liver. Also, unlike

  7. Gas evolution during vitrification of sodium sulfate and silica

    SciTech Connect

    Ebert, W.L.; Bakel, A.J. [Argonne National Lab., IL (United States). Chemical Technology Div.; Rosine, S.D. [Argonne National Lab., IL (United States). Chemical Technology Div.]|[Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1997-08-01

    This paper describes the operation of an apparatus designed to identify species evolved during vitrification of hazardous waste materials and to measure the temperatures at which they are evolved. To demonstrate the utility of the apparatus for designing off-gas systems, the authors present the results of heating various sulfates alone and in the presence of silica. During vitrification, the decomposition behavior of some waste components will be affected by the chemical composition of the melt. For example, they found that when silica is present during heating, SO{sub x} gases are evolved at lower temperatures than when pure sodium sulfate is heated. Such analyses will be important in the design of off-gas units for waste vitrification systems.

  8. On the Effect of Sodium Chloride and Sodium Sulfate on Cold Denaturation

    PubMed Central

    Pica, Andrea; Graziano, Giuseppe

    2015-01-01

    Both sodium chloride and sodium sulfate are able to stabilize yeast frataxin, causing an overall increase of its thermodynamic stability curve, with a decrease in the cold denaturation temperature and an increase in the hot denaturation one. The influence of low concentrations of these two salts on yeast frataxin stability can be assessed by the application of a theoretical model based on scaled particle theory. First developed to figure out the mechanism underlying cold denaturation in water, this model is able to predict the stabilization of globular proteins provided by these two salts. The densities of the salt solutions and their temperature dependence play a fundamental role. PMID:26197394

  9. Hydrodynamic and Electrokinetic Properties of Decane Droplets in Aqueous Sodium Dodecyl Sulfate Solutions

    E-print Network

    Chan, Derek Y C

    Hydrodynamic and Electrokinetic Properties of Decane Droplets in Aqueous Sodium Dodecyl Sulfate, 2001 Electrophoretic mobilities of sodium dodecyl sulfate (SDS)-stabilized decane droplets of solid particles in terms of particle surface charge, surface potential, and double-layer thickness has

  10. Growth of Enterobacter cloacae in the presence of 25% sodium dodecyl sulfate.

    PubMed Central

    Kramer, V C; Calabrese, D M; Nickerson, K W

    1980-01-01

    The growth of Enterobacter cloacae in 25% sodium dodecyl sulfate is described. The bacteria appeared to tolerate sodium dodecyl sulfate rather than metabolize it. The process was energy dependent, and cell lysis occurred during stationary phase. Extreme detergent resistance may be characteristic of the genus Enterobacter. PMID:7447446

  11. Sulfite Reductase Protects Plants against Sulfite Toxicity1[W][OA

    PubMed Central

    Yarmolinsky, Dmitry; Brychkova, Galina; Fluhr, Robert; Sagi, Moshe

    2013-01-01

    Plant sulfite reductase (SiR; Enzyme Commission 1.8.7.1) catalyzes the reduction of sulfite to sulfide in the reductive sulfate assimilation pathway. Comparison of SiR expression in tomato (Solanum lycopersicum ‘Rheinlands Ruhm’) and Arabidopsis (Arabidopsis thaliana) plants revealed that SiR is expressed in a different tissue-dependent manner that likely reflects dissimilarity in sulfur metabolism between the plant species. Using Arabidopsis and tomato SiR mutants with modified SiR expression, we show here that resistance to ectopically applied sulfur dioxide/sulfite is a function of SiR expression levels and that plants with reduced SiR expression exhibit higher sensitivity than the wild type, as manifested in pronounced leaf necrosis and chlorophyll bleaching. The sulfite-sensitive mutants accumulate applied sulfite and show a decline in glutathione levels. In contrast, mutants that overexpress SiR are more tolerant to sulfite toxicity, exhibiting little or no damage. Resistance to high sulfite application is manifested by fast sulfite disappearance and an increase in glutathione levels. The notion that SiR plays a role in the protection of plants against sulfite is supported by the rapid up-regulation of SiR transcript and activity within 30 min of sulfite injection into Arabidopsis and tomato leaves. Peroxisomal sulfite oxidase transcripts and activity levels are likewise promoted by sulfite application as compared with water injection controls. These results indicate that, in addition to participating in the sulfate assimilation reductive pathway, SiR also plays a role in protecting leaves against the toxicity of sulfite accumulation. PMID:23221833

  12. Detergent (sodium dodecyl sulfate) shock proteins in Escherichia coli

    SciTech Connect

    Adamowicz, M.; Kelley, P.M.; Nickerson, K.W. (Univ. of Nebraska, Lincoln (USA))

    1991-01-01

    The protein composition of Escherichia coli W3110 grown in the presence and absence of 5% sodium dodecyl sulfate (SDS) was examined by two-dimensional gel electrophoresis. In SDS-grown cells, at least 4 proteins were turned on, 13 were turned off, 15 were elevated, and 15 were depressed. The 19 unique and elevated SDS-induced spots constituted 7.91% of the total 35S-labeled protein. There was no apparent overlap between these 19 detergent (SDS) stress proteins and those of other known bacterial stress responses. The detergent stress stimulon is a distinct and independent stimulon. Its physiological relevance probably derives from the presence of bile salts in animal gastrointestinal tracts.

  13. An alternative route for fondaparinux sodium synthesis via selective hydrogenations and sulfation of appropriate pentasaccharides.

    PubMed

    Manikowski, Andrzej; Kozio?, Anna; Czajkowska-Wojciechowska, Ewa

    2012-11-01

    A new approach for the synthesis of fondaparinux sodium starting from an appropriate protected pentasaccharide is presented. In this procedure, instead of the common last steps: sulfation-hydrogenation-sulfation, reverse ones: hydrogenation-sulfation-hydrogenation, are applied. Fondaparinux is afforded in a satisfactory yield and purity after the selective hydrogenation of the starting pentasaccharide using a continuous flow reactor and one-pot sulfation reaction followed by hydrogenation under catalytic hydrogen transfer conditions. PMID:23023042

  14. Structural Insights into Sulfite Oxidase Deficiency

    SciTech Connect

    Karakas,E.; Wilson, H.; Graf, T.; Xiang, S.; Jaramillo-Busquets, S.; Rajagopalan, K.; Kisker, C.

    2005-01-01

    Sulfite oxidase deficiency is a lethal genetic disease that results from defects either in the genes encoding proteins involved in molybdenum cofactor biosynthesis or in the sulfite oxidase gene itself. Several point mutations in the sulfite oxidase gene have been identified from patients suffering from this disease worldwide. Although detailed biochemical analyses have been carried out on these mutations, no structural data could be obtained because of problems in crystallizing recombinant human and rat sulfite oxidases and the failure to clone the chicken sulfite oxidase gene. We synthesized the gene for chicken sulfite oxidase de novo, working backward from the amino acid sequence of the native chicken liver enzyme by PCR amplification of a series of 72 overlapping primers. The recombinant protein displayed the characteristic absorption spectrum of sulfite oxidase and exhibited steady state and rapid kinetic parameters comparable with those of the tissue-derived enzyme. We solved the crystal structures of the wild type and the sulfite oxidase deficiency-causing R138Q (R160Q in humans) variant of recombinant chicken sulfite oxidase in the resting and sulfate-bound forms. Significant alterations in the substrate-binding pocket were detected in the structure of the mutant, and a comparison between the wild type and mutant protein revealed that the active site residue Arg-450 adopts different conformations in the presence and absence of bound sulfate. The size of the binding pocket is thereby considerably reduced, and its position relative to the cofactor is shifted, causing an increase in the distance of the sulfur atom of the bound sulfate to the molybdenum.

  15. Solubility and solubility constant of barium sulfate in aqueous sodium sulfate solutions between 0 and 80°C

    Microsoft Academic Search

    Chengfa Jiang

    1996-01-01

    The solubilities of barium sulfate in aqueous solutions of sodium sulfate were studied at ionic strengths from 0.0005 to 0.02 mol-kg-1 and at 0, 20, 40, 60, and 80°C. The solubility data were used to calculate the solubility constants using an extrapolation method. The solubility constant obtained were in good agreement with literature data. The mean activity coefficients of barium

  16. Time courses of equilibration for ammonium sulfate, sodium chloride and magnesium sulfate heptahydrate in the Z/3 crystallization plate.

    PubMed

    Arakali, S V; Easley, S; Luft, J R; DeTitta, G T

    1994-07-01

    Time courses of equilibration for three salts, sodium chloride, ammonium sulfate and magnesium sulfate heptahydrate have been measured in the Z/3 crystallization plate. It is shown that by varying both the diffusant and the reservoir depth the time taken to equilibrate can be as short as 200 or as long as 1400 h. Thus, the present design of the plate should accommodate a wide variety of desired crystallization kinetics. PMID:15299405

  17. Benzalkonium chloride neutralizes the irritant effect of sodium dodecyl sulfate.

    PubMed

    McFadden, J P; Holloway, D B; Whittle, E G; Basketter, D A

    2000-11-01

    When benzalkonium chloride (BKC), a cationic surfactant, is added to sodium dodecyl sulfate (SDS), an anionic surfactant, and used in patch testing, on the basis of their known physicochemical interaction, it is possible to predict that there will be a tendency towards a reduction in the expected irritant response when compared to SDS alone. The aim of this study was to investigate whether BKC could reduce the irritant response to SDS when applied after the SDS exposure. 54 non-atopic adult volunteers were recruited for the study. 20% SDS was applied for 2 h under occlusion. 1% BKC was then applied to the same site. Various controls, including SDS application followed by water for 2 h, were included. The irritant reaction was assessed at 24 h and 48 h. 40 of the 54 subjects had some reaction when SDS was applied for 2 h followed by either benzalkonium chloride or water control under occlusion. In comparison to water control, where BKC was applied after SDS, 20 of the 40 responders had a weaker reaction but only 4 had a stronger response. This study shows that BKC applied to skin exposed to SDS attenuates the resulting irritant reaction. PMID:11016666

  18. Alloferon Alleviates Dextran Sulfate Sodium-induced Colitis

    PubMed Central

    Kim, Hyemin; Im, Jong Pil; Kim, Joo Sung; Lee, Wang Jae

    2015-01-01

    Dysfunction of gut immune regulation is involved in mucosal damage in inflammatory bowel disease (IBD). However, there is still no efficacious immune-regulator for the treatment of IBD. Alloferon is a novel immune-modulatory peptide that was originally isolated from infected insects. It shows anti-inflammatory effects by the regulation of cytokine production by immune cells and their activities. Therefore, we investigated the effect of alloferon in a mouse model of colitis using dextran sulfate sodium (DSS). Colitis was induced by administration of DSS in drinking water for 7 consecutive days. It was confirmed by the presence of weight loss, diarrhea, hematochezia, and colon contraction. Alloferon was injected 4 days after DSS administration. We found that alloferon improved the pathogenesis of IBD based on the reduced disease activity index (DAI) and colon contraction. Edema, epithelial erosion, and immune cell infiltration were found in mice administered DSS, but the phenomena were reduced following alloferon treatment. The plasma level of IL-6, a classical pro-inflammatory cytokine in colitis, was also decreased by alloferon. Moreover, alloferon inhibited the TNF-?-induced degradation and phosphorylation of I?B in Colo205 colon cancer cells. Taken together, these results show that alloferon has anti-inflammatory effects and attenuates DSS-induced colitis. PMID:26140045

  19. Sodium dodecyl sulfate-induced rapid gelation of silk fibroin.

    PubMed

    Wu, Xilong; Hou, Jing; Li, Mingzhong; Wang, Jiangnan; Kaplan, David L; Lu, Shenzhou

    2012-07-01

    The in situ formation of injectable silk fibroin (SF) hydrogels have potential advantages over various other biomaterials due to the minimal invasiveness during application. Biomaterials need to gel rapidly under physiological conditions after injection. In the current paper, a novel way to accelerate SF gelation using an anionic surfactant, sodium dodecyl sulfate (SDS), as a gelling agent is reported. The mechanism of SDS-induced rapid gelation was determined. At low surfactant concentrations, hydrophobic interactions among the SF chains played a dominant role in the association, leading to decreased gelation time. At higher concentrations of surfactant, electrostatic repulsive forces among micellar aggregates gradually became dominant and gelation was hindered. Gel formation involves the connection of clusters formed by the accumulation of nanoparticles. This process is accompanied by the rapid formation of ?-sheet structures due to hydrophobic and electrostatic interactions. It is expected that the silk hydrogel with short gelation time will be used as an injectable hydrogel in drug delivery or cartilage tissue engineering. PMID:22406911

  20. Thermodynamics of Lipid Membrane Solubilization by Sodium Dodecyl Sulfate

    PubMed Central

    Keller, Sandro; Heerklotz, Heiko; Jahnke, Nadin; Blume, Alfred

    2006-01-01

    We provide a comprehensive thermodynamic description of lipid membrane dissolution by a charged detergent. To this end, we have studied the interactions between the anionic detergent sodium dodecyl sulfate (SDS) and the zwitterionic phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in dilute aqueous solution (10 mM phosphate buffer, 154 mM NaCl, pH 7.4). Thermodynamic parameters of vesicle solubilization and reconstitution, membrane partitioning, and micelle formation were assessed by right-angle light scattering and isothermal titration calorimetry. Membrane translocation and dissolution proceed very slowly at 25°C but are considerably accelerated at 65°C. At this temperature, a simple SDS/POPC phase diagram (comprising vesicular, coexistence, and micellar ranges) and a complete set of partition coefficients and transfer enthalpies were obtained. Electrostatic repulsion effects at the membrane surface were implemented by combining Gouy-Chapman theory with a Langmuir adsorption isotherm to account for Na+ binding to membrane-incorporated DS?. This approach offered a quantitative understanding of solubilization and reconstitution processes, which were interpreted in terms of partition equilibria between and ideal mixing in all phases. More than any other property, the transbilayer flip-flop rate under given experimental conditions hence appears to dictate a detergent's suitability for thermodynamically controlled lipid membrane solubilization and reconstitution. PMID:16581838

  1. Sodium sulfate heptahydrate: a synchrotron energy-dispersive diffraction study of an elusive metastable hydrated salt 

    E-print Network

    Hamilton, Andrea; Hall, Christopher

    2008-01-01

    We describe an unusual application of synchrotron energy-dispersive diffraction with hard X-rays to obtain structural information on metastable sodium sulfate heptahydrate. This hydrate was often mentioned in nineteenth ...

  2. Sodium sulfate heptahydrate: direct observation of crystallization in a porous material 

    E-print Network

    Hamilton, Andrea; Hall, Christopher; Pel, Leo

    2008-10-15

    It is well known that sodium sulfate causes salt crystallization damage in building materials and rocks. However since the early 1900s the existence of the metastable heptahydrate has been largely forgotten and almost entirely overlooked...

  3. Sodium-Copper Exchange on Wyoming Montmorillonite in Chloride, Perchlorate, Nitrate, and Sulfate Solutions

    E-print Network

    Sparks, Donald L.

    Sodium-Copper Exchange on Wyoming Montmorillonite in Chloride, Perchlorate, Nitrate, and Sulfate. The copper exchange capacity (CuEC) and Na-Cu exchange reactions on Wyoming montmo- rillonite were studied

  4. The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates

    Microsoft Academic Search

    E. Ruiz-Agudo; F. Mees; P. Jacobs; C. Rodriguez-Navarro

    2007-01-01

    Saline solution properties, viscosity in particular, are shown to be critical in salt weathering associated with sodium and\\u000a magnesium sulfate crystallization in porous limestone. The crystallization of sodium and magnesium sulfate within a porous\\u000a limestone has been studied at a macro- and microscale using different techniques, including mercury intrusion porosimetry,\\u000a environmental scanning microscopy and X-ray computed tomography. Such analysis enabled

  5. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    PubMed

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and effective for the determination of high levels of sulfites in dried fruits. PMID:24282955

  6. Kinetics of Sodium Dodecyl Sulfate Solubilization of Mycoplasma laidlawii Plasma Membranes

    PubMed Central

    Auborn, James J.; Eyring, Edward M.; Choules, G. Lew

    1971-01-01

    The kinetics of sodium dodecyl sulfate solubilization of aqueous suspensions of Mycoplasma laidlawii membranes have been investigated by light scattering in a stopped-flow apparatus. There was evidence of direct interaction between the membranes and sodium dodecyl sulfate micelles above the critical micelle concentration, although of lower order kinetically than with monomeric dodecyl sulfate anions below the critical micelle concentration. The activation energy remained the same in either case, about 10 kcal/mol. Static light-scattering studies at higher resolution showed that the solubilized membranes are in the form of small aggregates. PMID:5289357

  7. Effects of increasing concentrations of sodium sulfite on deoxynivalenol and deoxynivalenol sulfonate concentrations of maize kernels and maize meal preserved at various moisture content.

    PubMed

    Paulick, Marleen; Rempe, Inga; Kersten, Susanne; Schatzmayr, Dian; Schwartz-Zimmermann, Heidi Elisabeth; Dänicke, Sven

    2015-03-01

    Under moderate climatic conditions, deoxynivalenol (DON) contamination occurs frequently on cereals. Detoxification measures are required to avoid adverse effects on farm animals. In the present study, a wet preservation method with sodium sulfite (Na2SO3) and propionic acid was tested to titrate the optimum Na2SO3-dose for maximum DON reduction of contaminated maize kernels and meal and to examine the interaction between dose and moisture content in dependence on the preservation duration. The DON concentration decreased with increasing amounts of supplemented Na2SO3 and with increasing duration of the preservation period in a bi-exponential fashion. Additionally, the feed structure and moisture content had a significant influence on the decontaminating effect. Variants with 30% moisture content favored higher DON reduction rates compared to 14% moisture, but especially at low moisture contents, DON reduction was more pronounced in maize kernels than in maize meal. In addition to the decrease of DON, a concomitant formation of three different DON sulfonates was observed which differed in their formation pattern over the time course of preservation. The overall results and statistical analysis clarified that Na2SO3 addition of 10 g/kg maize at 30% moisture for eight days was necessary to obtain a complete DON reduction. PMID:25760079

  8. Effects of Increasing Concentrations of Sodium Sulfite on Deoxynivalenol and Deoxynivalenol Sulfonate Concentrations of Maize Kernels and Maize Meal Preserved at Various Moisture Content

    PubMed Central

    Paulick, Marleen; Rempe, Inga; Kersten, Susanne; Schatzmayr, Dian; Schwartz-Zimmermann, Heidi Elisabeth; Dänicke, Sven

    2015-01-01

    Under moderate climatic conditions, deoxynivalenol (DON) contamination occurs frequently on cereals. Detoxification measures are required to avoid adverse effects on farm animals. In the present study, a wet preservation method with sodium sulfite (Na2SO3) and propionic acid was tested to titrate the optimum Na2SO3-dose for maximum DON reduction of contaminated maize kernels and meal and to examine the interaction between dose and moisture content in dependence on the preservation duration. The DON concentration decreased with increasing amounts of supplemented Na2SO3 and with increasing duration of the preservation period in a bi-exponential fashion. Additionally, the feed structure and moisture content had a significant influence on the decontaminating effect. Variants with 30% moisture content favored higher DON reduction rates compared to 14% moisture, but especially at low moisture contents, DON reduction was more pronounced in maize kernels than in maize meal. In addition to the decrease of DON, a concomitant formation of three different DON sulfonates was observed which differed in their formation pattern over the time course of preservation. The overall results and statistical analysis clarified that Na2SO3 addition of 10 g/kg maize at 30% moisture for eight days was necessary to obtain a complete DON reduction. PMID:25760079

  9. Surfactant-and Salt-Induced Growth of Normal Sodium Alkyl Sulfate Micelles Well above Their Critical Micelle Concentrations

    E-print Network

    Bales, Barney

    uses of micelles occur at finite micelle concentrations. For sodium dodecyl sulfate, S12S, Quina et al measured using time-resolved fluorescence quenching (TRFQ) methods for the various members of the sodiumSurfactant- and Salt-Induced Growth of Normal Sodium Alkyl Sulfate Micelles Well above

  10. Structure-Based Alteration of Substrate Specificity and Catalytic Activity of Sulfite Oxidase from Sulfite Oxidation to Nitrate Reduction

    SciTech Connect

    Qiu, James A.; Wilson, Heather L.; Rajagopalan, K.V. (Duke)

    2012-04-18

    Eukaryotic sulfite oxidase is a dimeric protein that contains the molybdenum cofactor and catalyzes the metabolically essential conversion of sulfite to sulfate as the terminal step in the metabolism of cysteine and methionine. Nitrate reductase is an evolutionarily related molybdoprotein in lower organisms that is essential for growth on nitrate. In this study, we describe human and chicken sulfite oxidase variants in which the active site has been modified to alter substrate specificity and activity from sulfite oxidation to nitrate reduction. On the basis of sequence alignments and the known crystal structure of chicken sulfite oxidase, two residues are conserved in nitrate reductases that align with residues in the active site of sulfite oxidase. On the basis of the crystal structure of yeast nitrate reductase, both positions were mutated in human sulfite oxidase and chicken sulfite oxidase. The resulting double-mutant variants demonstrated a marked decrease in sulfite oxidase activity but gained nitrate reductase activity. An additional methionine residue in the active site was proposed to be important in nitrate catalysis, and therefore, the triple variant was also produced. The nitrate reducing ability of the human sulfite oxidase triple mutant was nearly 3-fold greater than that of the double mutant. To obtain detailed structural data for the active site of these variants, we introduced the analogous mutations into chicken sulfite oxidase to perform crystallographic analysis. The crystal structures of the Mo domains of the double and triple mutants were determined to 2.4 and 2.1 {angstrom} resolution, respectively.

  11. In Vitro and In Vivo Evaluations of Sodium Lauryl Sulfate and Dextran Sulfate as Microbicides against Herpes Simplex and Human Immunodeficiency Viruses

    Microsoft Academic Search

    JOCELYNE PIRET; JULIE LAMONTAGNE; JULIE BESTMAN-SMITH; SYLVIE ROY; PIERRETTE GOURDE; RABEEA F. OMAR; JULIANNA JUHASZ; MICHEL G. BERGERON

    The efficacy of sodium lauryl sulfate (SLS), a sulfated anionic chaotropic surfactant, and dextran sulfate (DS), a polysulfated carbohydrate, against herpes simplex virus (HSV) and human immunodeficiency virus (HIV) infections was evaluated in cultured cells and in different murine models of HSV infection. Results showed that both SLS and DS were potent inhibitors of the infectivities of various HSV-1 and

  12. Weak bases and formation of a less soluble lauryl sulfate salt/complex in sodium lauryl sulfate (SLS) containing media.

    PubMed

    Bhattachar, Shobha N; Risley, Donald S; Werawatganone, Pornpen; Aburub, Aktham

    2011-06-30

    This work reports on the solubility of two weakly basic model compounds in media containing sodium lauryl sulfate (SLS). Results clearly show that the presence of SLS in the media (e.g. simulated gastric fluid or dissolution media) can result in an underestimation of solubility of some weak bases. We systematically study this phenomenon and provide evidence (chromatography and pXRD) for the first time that the decrease in solubility is likely due to formation of a less soluble salt/complex between the protonated form of the weak base and lauryl sulfate anion. PMID:21527324

  13. Characterization of a Thermolabile Sulfite Reductase from Salmonella pullorum1

    PubMed Central

    Hoeksema, Walter D.; Schoenhard, Delbert E.

    1971-01-01

    The biochemical basis for sulfite accumulation by sulfate-using revertants of Salmonella pullorum was determined. All of the sulfate-using mutants isolated from wild-type S. pullorum accumulated sulfite when grown at 37 but not at 25 C. The specific activity of reduced nicotinamide adenine dinucleotide (NADPH)-dependent sulfite reductase (H 2S-NADP oxidoreductase, EC 1.8.1.2) and of reduced methyl viologen (MVH)-dependent sulfite reductase (H 2S-MV oxidoreductase), in extracts prepared from cells incubated at 37 C, declined as the incubation period lengthened. However, the specific activity of both reductases from cells incubated at 25 C did not decline. Thermolability of cell-free NADPH-dependent sulfite reductase from cells of S. pullorum incubated at 37 C was greater than the lability of this enzyme either from cells of S. typhimurium incubated at 37 C or from cells of S. pullorum incubated at 25 C. Cells cultured at 37 C continued to accumulate sulfite when the incubation temperature was shifted to 25 C; cells cultured at 25 C and shifted to 37 C accumulated no sulfite, whereas these cells shifted to 41 C accumulated sulfite. It was concluded that the configuration of the sulfite reductase of S. pullorum strain 6–18 is a function of the incubation temperature at which synthesis occurs. PMID:5122801

  14. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate

    SciTech Connect

    Ward, R.L. (Sandia Labs., Albuquerque, NM); Ashley, C.S.

    1980-06-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties of rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.

  15. Dissimilatory Sulfite Reductase (Desulfoviridin) of the Taurine-Degrading, Non-Sulfate-Reducing Bacterium Bilophila wadsworthia RZATAU Contains a Fused DsrB-DsrD Subunit

    PubMed Central

    Laue, Heike; Friedrich, Michael; Ruff, Jürgen; Cook, Alasdair M.

    2001-01-01

    A dissimilatory sulfite reductase (DSR) was purified from the anaerobic, taurine-degrading bacterium Bilophila wadsworthia RZATAU to apparent homogeneity. The enzyme is involved in energy conservation by reducing sulfite, which is formed during the degradation of taurine as an electron acceptor, to sulfide. According to its UV-visible absorption spectrum with maxima at 392, 410, 583, and 630 nm, the enzyme belongs to the desulfoviridin type of DSRs. The sulfite reductase was isolated as an ?2?2?n (n ? 2) multimer with a native size of 285 kDa as determined by gel filtration. We have sequenced the genes encoding the ? and ? subunits (dsrA and dsrB, respectively), which probably constitute one operon. dsrA and dsrB encode polypeptides of 49 (?) and 54 kDa (?) which show significant similarities to the homologous subunits of other DSRs. The dsrB gene product of B. wadsworthia is apparently a fusion protein of dsrB and dsrD. This indicates a possible functional role of DsrD in DSR function because of its presence as a fusion protein as an integral part of the DSR holoenzyme in B. wadsworthia. A phylogenetic analysis using the available Dsr sequences revealed that B. wadsworthia grouped with its closest 16S rDNA relative Desulfovibrio desulfuricans Essex 6. PMID:11160104

  16. Sodium sulfate impacts feeding, specific dynamic action, and growth rate in the freshwater bivalve Corbicula fluminea.

    PubMed

    Soucek, David John

    2007-08-01

    Sodium sulfate is a ubiquitous salt that reaches toxic concentrations due to mining and other industrial activities, yet is currently unregulated at the Federal level in the United States. Previous studies have documented reduced growth of clams downstream of sulfate-dominated effluents, altered bioenergetics in filter-feeding invertebrates, and interactions between sulfate and other toxicants. Therefore, the purpose of this study was to determine if sodium sulfate affects the bioenergetics of the filter-feeding, freshwater bivalve, Corbicula fluminea, and the mechanism by which the effects are elicited. In addition to measuring effects on feeding, respiration and growth rates, I evaluated the relative sensitivity of a green algae consumed by clams to determine if top-down or bottom-up effects might be exhibited under field conditions. This study demonstrated that sodium sulfate had no effect on basal metabolic rates, but significantly reduced the feeding, post-feeding metabolic, and growth rates of C. fluminea. The proposed mechanism for these impacts is that filtering rates are reduced upon exposure, resulting in reduced food consumption and therefore, preventing increased metabolic rates normally associated with post-feeding specific dynamic action (SDA). In the field, these effects may cause changes in whole stream respiration rates and organic matter dynamics, as well as alter uptake rates of other food-associated contaminants like selenium, the toxicity of which is known to be antagonized by sulfate, in filter-feeding bivalves. PMID:17590452

  17. Prevention of sodium lauryl sulfate irritant contact dermatitis by Pro-Q aerosol foam skin protectant.

    PubMed

    Patterson, S E; Williams, J V; Marks, J G

    1999-05-01

    Eczematous skin disease is a serious work-related illness. Since 1995, reimbursement by insurance companies for treatment of skin diseases has become the largest cost source in some countries. This study was a randomized controlled trial (N = 20) of the efficacy of Pro-Q, a skin protectant product, in the prevention of contact dermatitis from sodium lauryl sulfate and urushiol, the resinous sap of poison ivy and poison oak. Pro-Q was significantly effective in reducing the irritation from sodium lauryl sulfate but did not prevent the allergic reaction to urushiol. PMID:10321615

  18. Thermodynamics of aqueous sodium sulfate from the temperatures 273 K to 373 K and mixtures of aqueous sodium sulfate and sulfuric acid at 298.15 K

    SciTech Connect

    Hovey, J.K.; Pitzer, K.S. [Lawrence Berkeley Lab., CA (United States); Rard, J.A. [Lawrence Livermore National Lab., CA (United States)

    1991-07-01

    New isopiestic vapor-pressure measurements on the aqueous system {l_brace}(1{minus}y)H{sub 2}SO{sub 4}+yNA{sub 2}SO{sub 4}{r_brace} along with earlier experimental investigations that span the range from y=0 to y=1 and infinitely dilute to supersaturated molalities have been analyzed in terms of the Pitzer ion-interaction model. Refined ion-interaction parameters for aqueous sodium sulfate valid over the temperature range 273 K to 373 K have been calculated and used for analyzing results for mixtures containing sulfuric acid and sodium sulfate at 298.15 K. Analysis of experimental results for these aqueous mixtures required explicit consideration of the dissociation reaction of bisulfate ion. Previous treatments of aqueous sulfuric acid and subsequently the bisulfate dissociation equilibrium valid in the range 273 K to 343 K were employed as a first approximation in representing the mixed solutions. Two sets of Pitzer ion-interaction parameters are presented for (sodium sulfate + sulfuric acid). The validity of the first set is limited in ionic strength and molality to saturated solutions of pure aqueous sodium sulfate (4 mol{center_dot}kg{sup {minus}1}). The second set of parameters corresponds to a slightly less precise representation but is valid over the entire range of experimental results considered. Both sets of parameters provide a more complete description of pure sulfuric acid solutions because of the removal of various redundancies of ion-interaction parameters. The specific ion-interaction terms used and the overall fitting procedure are described as well as selected examples of relevant thermodynamic calculations in the mixed system Na{sub 2}SO{sub 4}-H{sub 2}SO{sub 4}-H{sub 2}O. 33 refs., 6 figs., 5 tabs.

  19. Thermodynamics of aqueous sodium sulfate from the temperatures 273 K to 373 K and mixtures of aqueous sodium sulfate and sulfuric acid at 298. 15 K

    SciTech Connect

    Hovey, J.K.; Pitzer, K.S. (Lawrence Berkeley Lab., CA (United States)); Rard, J.A. (Lawrence Livermore National Lab., CA (United States))

    1991-07-01

    New isopiestic vapor-pressure measurements on the aqueous system {l brace}(1{minus}y)H{sub 2}SO{sub 4}+yNA{sub 2}SO{sub 4}{r brace} along with earlier experimental investigations that span the range from y=0 to y=1 and infinitely dilute to supersaturated molalities have been analyzed in terms of the Pitzer ion-interaction model. Refined ion-interaction parameters for aqueous sodium sulfate valid over the temperature range 273 K to 373 K have been calculated and used for analyzing results for mixtures containing sulfuric acid and sodium sulfate at 298.15 K. Analysis of experimental results for these aqueous mixtures required explicit consideration of the dissociation reaction of bisulfate ion. Previous treatments of aqueous sulfuric acid and subsequently the bisulfate dissociation equilibrium valid in the range 273 K to 343 K were employed as a first approximation in representing the mixed solutions. Two sets of Pitzer ion-interaction parameters are presented for (sodium sulfate + sulfuric acid). The validity of the first set is limited in ionic strength and molality to saturated solutions of pure aqueous sodium sulfate (4 mol{center dot}kg{sup {minus}1}). The second set of parameters corresponds to a slightly less precise representation but is valid over the entire range of experimental results considered. Both sets of parameters provide a more complete description of pure sulfuric acid solutions because of the removal of various redundancies of ion-interaction parameters. The specific ion-interaction terms used and the overall fitting procedure are described as well as selected examples of relevant thermodynamic calculations in the mixed system Na{sub 2}SO{sub 4}-H{sub 2}SO{sub 4}-H{sub 2}O. 33 refs., 6 figs., 5 tabs.

  20. Flotation of polycyclic aromatic hydrocarbons coprecipitated with aluminum hydroxide containing sodium dodecyl sulfate and magnesium

    Microsoft Academic Search

    Tohru Saitoh; Seiichi Matsushima; Masataka Hiraide

    2007-01-01

    A simple and efficient method for concentrating polycyclic aromatic hydrocarbons (PAHs) in water was developed. Al(III) and an anionic surfactant, sodium dodecyl sulfate (SDS), were added into the aqueous sample solution. Subsequently, the solution pH was adjusted to 7 by adding 2 and 0.1mol\\/L sodium hydroxide solutions to form aluminum hydroxide precipitaties. Hydrophobic PAHs were well incorporated into the hydrophobic

  1. Double decomposition reaction of sodium salt of phenylhydroxysilane with aluminum sulfate

    Microsoft Academic Search

    K. A. Andrianov; V. M. Mazaev; L. M. Khananashvili

    1976-01-01

    A study was made of the double decomposition reaction of the sodium salt of phenylhydroxysilane with aluminum sulfate and it was shown that insoluble polyaluminophenylsiloxanes are obtained in water-toluene medium, while soluble polyaluminophenylsiloxanes are obtained in water-toluene-acetone medium.

  2. Calorimetric studies of the association of chitin and chitosan with sodium dodecyl sulfate

    Microsoft Academic Search

    Alexandre G. S Prado; Julio L Macedo; S??lvia C. L Dias; José A Dias

    2004-01-01

    The interaction of hydrophobic chitin and chitosan with sodium dodecyl sulfate (SDS) has been studied by titration calorimetry at 298.15K. The nature of interaction of the surfactant and biopolymers was followed by enthalpy interaction profiles. The mixing enthalpy curves were determined by mixing SDS solutions above their critical micelle concentration with chitin and chitosan suspensions in different concentrations. The Gibbs

  3. Heterogeneous freezing of ammonium sulfate and sodium chloride solutions by long chain alcohols

    Microsoft Academic Search

    Will Cantrell; Carly Robinson

    2006-01-01

    High molecular weight organic compounds emitted during biomass burning can be transported to high altitudes where they may affect ice processes through heterogeneous nucleation. We show that freezing of solutions of ammonium sulfate and sodium chloride catalyzed by long chain alcohols is roughly consistent with the hypothesis that the water activity at the mean freezing temperature is a constant offset

  4. NUCLATION PAR LE BORAX DU SULFATE DE SODIUM DISPERS. APPLICATION POSSIBLE AU STOCKAGE THERMIQUE

    E-print Network

    Boyer, Edmond

    L-359 NUCLÉATION PAR LE BORAX DU SULFATE DE SODIUM DISPERSÉ. APPLICATION POSSIBLE AU STOCKAGE'absence de borax. Entre le premier et trentième cycle de refroidissement-réchauffement on observe une of crystallization are observed at + 7 °C and - 2.5 °C (without borax, the crystallization occurs around 2014 41 °C

  5. Mechanism and kinetics of sulfite-thiosulfate dissolution of gold

    Microsoft Academic Search

    A. S. Gudkov; I. A. Zhuchkov; G. G. Mineev

    2010-01-01

    Dissolution mechanisms of noble metals in aqueous solutions of sodium thiosulfate, sodium sulfite, and their mixture under\\u000a standard conditions (without heating the medium) in alkali and acidic media are described. The conditions of intensifying\\u000a the dissolution process are evaluated. The reaction rates are investigated. Based on the obtained data, it is concluded that\\u000a it is rational to apply the sulfite-thiosulfate

  6. Interactive effects of sodium chloride, sodium sulfate, calcium sulfate, and calcium chloride on snapbean growth, photosynthesis, and ion uptake

    Microsoft Academic Search

    S. Awada; W. F. Campbell; L. M. Dudley; J. J. Jurinak; M. A. Khan

    1995-01-01

    Excessive sodium (Na) accumulation in soil, which can be a problem for production agriculture in arid and semiarid regions, may be ameliorated by calcium (Ca). The mechanisms of Ca amelioration of Na stress in plants have received much more attention than has the effect of the anion of the Ca salt. Our objective was to determine the relative effects of

  7. The hydration of interstitial Portland cement phases in sodium hydroxide and magnesium sulfate solutions

    NASA Astrophysics Data System (ADS)

    Clark, Boyd Arthur

    Formation of sulfoaluminate compounds was investigated by isothermal calorimetry and X-ray diffraction (XRD). Tricalcium aluminate/gypsum mixtures with a molar ratio of 1:1 sulfate-to-aluminate were hydrated at constant temperatures from 30 to 90°C; in de-ionized water, in 200mM and in 500mM sodium hydroxide (NaOH) solutions. Hydration in de-ionized water produced ettringite and monosulfate as the dominant crystalline phases, regardless of temperature. Complex assemblages of phases formed in 200mM and 500mM sodium hydroxide including ettringite, monosulfate and U-phase, at all temperatures. Hydration of monosulfate and gypsum was also carried out at constant temperatures from 30° to 80°C using de-ionized water and 0.2M, 0.5M, and 1.0M sodium hydroxide (NaOH) solutions. Ettringite was found to be the dominant crystalline phase over the entire temperature range and at all sodium hydroxide concentrations. A sodium-substituted monosulfate phase was formed as a hydration product in the 1.0M sodium hydroxide solution regardless of temperature. Sulfoaluminate compounds formed by tricalcium aluminate hydration in magnesium sulfate solution were investigated by isothermal calorimetry, XRD, and scanning electron microscopy (SEM). Hydration was carried out in 0.5, 1.0 and 3.0M magnesium sulfate solutions and isothermally at temperatures from 30 to 80°C. Monosulfate, ettringite, gypsum and a hydrogarnet phase (Ca3Al2O6·6H2O) were all observed as hydration products. Monosulfate and hydrogarnet were the only phases observed for hydration in 0.5 and 1.0M magnesium sulfate solutions. Ettringite was the dominant crystalline phase after hydration in 3.0M solution, regardless of temperature. To investigate the rate of hydration, reactions at 60°C in 3.0M magnesium sulfate solution were quenched after 26 minutes, 73 minutes, 2.5 hours and 12 hours to establish the evolution of hydrated phases. Depending on hydration times ettringite, monosulfate, gypsum, hydrogarnet and residual tricalcium aluminate were observed. No crystalline magnesium-rich phases were detected by XRD. The products formed by hydration of tetracalcium aluminoferrite (Ca 2AlFeO5) and magnesium sulfate solutions were investigated by isothermal calorimetry, XRD and SEM analyses. Hydration reactions were carried out isothermally at temperatures from 25 to 80°C in 0.25M, 0.5M, 1.0M, 2.0M, and 3.0M magnesium sulfate solutions. Gypsum was the initial hydration product in all magnesium sulfate concentrations and was the only crystalline hydration product in 2.0M and 3.0M magnesium sulfate solutions. Monosulfate was the dominant crystalline phase produced over the entire temperature range when hydration was carried out in magnesium sulfate concentrations between 0.25M and 1.0M. No crystalline phases incorporating iron were observed regardless of magnesium sulfate concentration or temperature. Hydration in 1.0M MgSO 4 solution was more extensively investigated at 50°C. SEM observations indicated gypsum formed initially, consisting of fine particles (<5 mum). Complex phase assemblages including gypsum, ettringite, and monosulfate were present at intermediate times. Monosulfate was the final crystalline hydration product. Amorphous solids produced include a calcium/iron-rich gel and a magnesium/aluminum/sulfate-rich phase. The calcium/iron-rich gel is the only iron-rich phase observed in the hydrated phase assemblage.

  8. Reactions in microemulsion formed by sodium dodecyl sulfate, water, and hexanol

    SciTech Connect

    Valaulikar, B.S. (Bhabha Atomic Research Centre, Bombay (India). Chemistry Div.)

    1993-11-01

    The reactions, oxidation of iodide by persulfate and basic hydrolysis of crystal violet, were investigated in the w/o microemulsion formed by sodium dodecyl sulfate, water, and hexanol. The second order rate constants were measured as a function of emulsion formed by sodium dodecyl sulfate, water, and hexanol. The second order rate constants were measured as a function of water to surfactant molar ratio and hexanol content. The increased rates were attributed to the smaller droplet size of the water pools. The rates are shown to be controlled by the water content as well as the hexanol content. It is shown that the manner in which the rate is affected applies to the catalyzed as well as the retarded reactions. This system is shown to be more effective than the AOT/water/decane system.

  9. Microstructural and microanalytical studies of sulfate attack. 3: Sulfate-resisting Portland cement -- Reactions with sodium and magnesium sulfate solutions

    SciTech Connect

    Gollop, R.S.; Taylor, H.F.W. [Blue Circle Industries PLC, Kent (United Kingdom)] [Blue Circle Industries PLC, Kent (United Kingdom)

    1995-10-01

    Cubes of a sulfate-resisting Portland cement (SRPC) paste that had been stored for 6 months in solutions of Na{sub 2}SO{sub 4} or MgSO{sub 4} were examined by scanning electron microscopy using backscattered electron imaging and X-ray microanalysis. The changes observed were broadly similar to those which the authors have found with a normal Portland cement (PC), but cracking and loss of material were less marked, less ettringite was formed, and decalcification of the C-S-H was much reduced. At with the PC gypsum was formed, both in veins and mixed with the C-S-H. The differences are attributed to the low content of Al{sub 2}O{sub 3} in the hydration products of the SRPC, and to the fact that some of the Al{sub 2}O{sub 3} is already present as ettringite. The decreased formation of ettringite and decreased decalcification of the C-S-H in the SRPC together explain the superior resistance to sulfate attack.

  10. Effect of sodium sulfate on the alkali activation of fly ash

    Microsoft Academic Search

    M. Criado; A. Fernández Jiménez; A. Palomo

    2010-01-01

    This paper discusses the effect of the presence of a small amount of SO42- (a 16 group oxyanion) on the nature and chemical composition of the resulting N–A–S–H gel and zeolites (main reaction products from the alkaline activation of fly ashes). To this end, fly ash was activated with different alkaline solutions containing 2.5% by weight of sodium sulfate. The

  11. Metachromatic behavior: Influence of the molecular weights of chitosan in thionine-sodium dodecyl sulfate system

    Microsoft Academic Search

    Sung-Hyun Kim

    2009-01-01

    Chitosans having three molecular weights (4.0×104, 8.0×104, and 16.0×104Da) were isolated by an ultrasonic degradation of chitin obtained from crab shell wastes and used to determine a metachromic behavior from the effect of aggregation characteristics. The metachromatic behaviors of thionine (Th)-sodium dodecyl sulfate (SDS), Th-SDS-chitosan system were investigated by the absorption and fluorescence spectroscopy.For SDS\\/Th<40, the order of decrease of

  12. Effects of Proteoglycan on Dextran Sulfate Sodium-Induced Experimental Colitis in Rats

    Microsoft Academic Search

    Sakae Ota; Shuichi Yoshihara; Keinosuke Ishido; Masanori Tanaka; Keiichi Takagaki; Mutsuo Sasaki

    2008-01-01

    Proteoglycans (PG) are macromolecules composed of glycosaminoglycan chains covalently attached to a protein core. In this\\u000a study, we examined the effects of PG on dextran sulfate sodium (DSS)-induced experimental colitis in rats. First, to examine\\u000a whether PG may ameliorate acute established DSS colitis, PG was administered orally for 5 days to the model animals. We evaluated\\u000a the effects of PG on

  13. Sodium dodecyl sulfate-agarose gel electrophoresis of urinary proteins: application to multiple myeloma

    Microsoft Academic Search

    Thierry Le Bricon; Danielle Erlich; Djaouida Bengoufa; Michelle Dussaucy; Jean-Pierre Garnier; Bernard Bousquet

    We evaluated a new sodium dodecyl sulfate-agarose gel electrophoresis (SDS-AGE) for urinary protein analysis in patients with multiple myeloma (MM; n 5 47; ages, 62 6 2 years, mean 6 SE). Abnormal proteinuria (mean 5 1872 6 360 mg\\/24 h) was present in 95% of the samples; 75% of the patients had some sign of renal dysfunction (glomerular and\\/or tubular)

  14. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome

    Microsoft Academic Search

    Christian Bauer; Peter Duewell; Christine Mayer; Hans Anton Lehr; Katherine A Fitzgerald; Marc Dauer; Jurg Tschopp; Stefan Endres; Eicke Latz; Max Schnurr

    2010-01-01

    BackgroundThe proinflammatory cytokines interleukin 1? (IL-1?) and IL-18 are central players in the pathogenesis of inflammatory bowel disease (IBD). In response to a variety of microbial components and crystalline substances, both cytokines are processed via the caspase-1-activating multiprotein complex, the NLRP3 inflammasome. Here, the role of the NLRP3 inflammasome in experimental colitis induced by dextran sodium sulfate (DSS) was examined.MethodsIL-1?

  15. The hydration of interstitial Portland cement phases in sodium hydroxide and magnesium sulfate solutions

    Microsoft Academic Search

    Boyd Arthur Clark

    2001-01-01

    Formation of sulfoaluminate compounds was investigated by isothermal calorimetry and X-ray diffraction (XRD). Tricalcium aluminate\\/gypsum mixtures with a molar ratio of 1:1 sulfate-to-aluminate were hydrated at constant temperatures from 30 to 90°C; in de-ionized water, in 200mM and in 500mM sodium hydroxide (NaOH) solutions. Hydration in de-ionized water produced ettringite and monosulfate as the dominant crystalline phases, regardless of temperature.

  16. Membrane-derived oligosaccharides (MDOs) are essential for sodium dodecyl sulfate resistance in Escherichia coli

    Microsoft Academic Search

    Soumitra Rajagopal; Nicole Eis; Meenakshi Bhattacharya; Kenneth W Nickerson

    2003-01-01

    We studied the role of membrane-derived oligosaccharides (MDOs) in sodium dodecyl sulfate (SDS) resistance by Escherichia coli. MDOs are also known as osmoregulated periplasmic glucans. Wild-type E. coli MC4100 grew in the presence of 10% SDS whereas isogenic mdoA and mdoB mutants could not grow above 0.5% SDS. Similarly, E. coli DF214, a mutant (pgi, zwf) unable to grow on

  17. ETTRINGITE FORMATION IN LOW C 3A PORTLAND CEMENT EXPOSED TO SODIUM SULFATE SOLUTION

    Microsoft Academic Search

    M. A. González; E. F. Irassar

    1997-01-01

    Four low-C3A Portland cements with different C3S content (40 to 74%) were stored for two years in sodium sulfate solution. Expansion and flexural strength were monitored as mechanical properties, while the microstructural changes were studied by X-ray diffraction and scanning electron microscopy using X-ray microanalysis. For this cement type, the alteration processes can be described by three stages: induction, gypsum

  18. Plant-Derived Polysaccharide Supplements Inhibit Dextran Sulfate Sodium-Induced Colitis in the Rat

    PubMed Central

    Koetzner, Lee; Grover, Gary; Boulet, Jamie

    2009-01-01

    Several plant-derived polysaccharides have been shown to have anti-inflammatory activity in animal models. Ambrotose complex and Advanced Ambrotose are dietary supplements that include aloe vera gel, arabinogalactan, fucoidan, and rice starch, all of which have shown such activity. This study was designed to evaluate these formulations against dextran sulfate sodium (DSS)-induced colitis in rats and to confirm their short-term safety after 14 days of daily dosing. Rats were dosed daily orally with vehicle, Ambrotose or Advanced Ambrotose. On day six groups of rats received tap water or 5% Dextran Sulfate sodium. Ambrotose and Advanced Ambrotose significantly lowered the disease scores and partially prevented the shortening of colon length. An increase in monocyte count was induced by dextran sulfate sodium and inhibited by Ambrotose and Advanced Ambrotose. There were no observable adverse effects after 14-day daily doses. The mechanism of action of the formulations against DSS-induced colitis may be related to its effect on monocyte count. PMID:19513840

  19. Stopped-flow kinetic studies of sphere-to-rod transitions of sodium alkyl sulfate micelles induced by hydrotropic salt

    Microsoft Academic Search

    Jingyan Zhang; Zhishen Ge; Xiaoze Jiang; P. A. Hassan; Shiyong Liu

    2007-01-01

    The kinetics and mechanism of sphere-to-rod transitions of sodium alkyl sulfate micelles induced by hydrotropic salt, p-toluidine hydrochloride (PTHC), were investigated by stopped-flow with light scattering detection. Spherical sodium dodecyl sulfate (SDS) micelles transform into short ellipsoidal shapes at low salt concentrations ([PTHC]\\/[SDS], ?PTHC=0.3 and 0.4). Upon stopped-flow mixing aqueous solutions of spherical SDS micelles with PTHC, the scattered light

  20. 17028 J. Phys. Chem. 1995, 99, 17028-17031 Growth of Sodium Dodecyl Sulfate Micelles with Detergent Concentration

    E-print Network

    Bales, Barney

    17028 J. Phys. Chem. 1995, 99, 17028-17031 Growth of Sodium Dodecyl Sulfate Micelles with Detergent by changing the concentrations of the detergent, the added counterion salt, or both. Values of ~2 and y' that sodiumdodecyl sulfate (SDS) micelles grow slowly as a function of the detergent concentration. This growth has

  1. Inactivation of HIV-1 in breast milk by treatment with the alkyl sulfate microbicide sodium dodecyl sulfate (SDS)

    PubMed Central

    Urdaneta, Sandra; Wigdahl, Brian; Neely, Elizabeth B; Berlin, Cheston M; Schengrund, Cara-Lynne; Lin, Hung-Mo; Howett, Mary K

    2005-01-01

    Background Reducing transmission of HIV-1 through breast milk is needed to help decrease the burden of pediatric HIV/AIDS in society. We have previously reported that alkyl sulfates (i.e., sodium dodecyl sulfate, SDS) are microbicidal against HIV-1 at low concentrations, are biodegradable, have little/no toxicity and are inexpensive. Therefore, they may be used for treatment of HIV-1 infected breast milk. In this report, human milk was artificially infected by adding to it HIV-1 (cell-free or cell-associated) and treated with ?1% SDS (?10 mg/ml). Microbicidal treatment was at 37°C or room temperature for 10 min. SDS removal was performed with a commercially available resin. Infectivity of HIV-1 and HIV-1 load in breast milk were determined after treatment. Results SDS (?0.1%) was virucidal against cell-free and cell-associated HIV-1 in breast milk. SDS could be substantially removed from breast milk, without recovery of viral infectivity. Viral load in artificially infected milk was reduced to undetectable levels after treatment with 0.1% SDS. SDS was virucidal against HIV-1 in human milk and could be removed from breast milk if necessary. Milk was not infectious after SDS removal. Conclusion The proposed treatment concentrations are within reported safe limits for ingestion of SDS by children of 1 g/kg/day. Therefore, use of alkyl sulfate microbicides, such as SDS, to treat HIV1-infected breast milk may be a novel alternative to help prevent/reduce transmission of HIV-1 through breastfeeding. PMID:15888210

  2. Single and multiple daily dose toxicokinetics of fluoride after oral administration of sodium fluoride along with aluminum sulfate in goats

    Microsoft Academic Search

    Vinay Kant; A. K. Srivastava; P. K. Verma; Rajinder Raina

    2010-01-01

    Our previous study suggested that toxicokinetic parameters of fluoride were significantly changed on the 30th day as compared with 1st day, after repeated oral administration of sodium fluoride alone for 30 days in goats. The purpose of this study was to investigate whether aluminum sulfate has ameliorative effect on the toxicokinetics of fluoride. For this, sodium fluoride (20 mg kg

  3. Polioencephalomalacia in cattle consuming water with elevated sodium sulfate levels: A herd investigation

    PubMed Central

    Hamlen, Heidi; Clark, Edward; Janzen, Eugene

    1993-01-01

    Polioencephalomalacia (PEM), hereafter used to refer to the specific lesion of cerebrocortical necrosis, developed in 11 of 110 mature cattle on pasture in central Saskatchewan. The primary water source contained a markedly elevated level of sodium sulfate (7200 ppm). The significant clinical findings of the herd investigation included depression, ataxia, cortical blindness, dysphagia, and death. Diagnosis of PEM was confirmed by histopathological evidence of cerebrocortical and subcortical necrosis with microvascular fibrinoid necrosis predominantly in the thalamic region of three affected cattle. The histopathology of sulfate-associated PEM observed in this herd appears to be unique and its features are presented and discussed. Mean levels for serum transketolase, copper, red blood cell transketolase activity, and thiamine (vitamin B1) in all exposed young (n = 100) and mature (n = 99) animals did not reveal evidence of deficiencies. Although the blood thiamine status of the seven surviving, affected animals was not evaluated before treatment with exogenous thiamine, 199 members of the herd had blood thiamine levels within the reference range at the time of the outbreak. The outbreak resolved after cattle were moved to a water source containing acceptable levels of sodium sulfate. ImagesFigure 1. PMID:17424182

  4. Adsorption and reaction of sulfur dioxide on alumina and sodium-impregnated alumina

    Microsoft Academic Search

    Mark B. Mitchell; Viktor N. Sheinker; Mark G. White

    1996-01-01

    The adsorption and oxidation of SOâ on alumina and sodium-impregnated alumina has been examined using thermogravimetric analysis and diffuse reflectance infrared Fourier transform spectroscopy. Sulfur dioxide chemisorbs initially at basic sites to form an adsorbed sulfite, which is quantitatively converted to sulfate on oxidation. It has been observed that at low coverages, nearly 2.6 μmol\\/m², sodium acts as a promoter

  5. X-ray absorption spectroscopy of chicken sulfite oxidase crystals

    SciTech Connect

    George, G.N.; Pickering, I.J. [Stanford Univ., CA (United States). Stanford Synchrotron Radiation Lab.] [Stanford Univ., CA (United States). Stanford Synchrotron Radiation Lab.; Kisker, C. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Pharmacological Sciences] [State Univ. of New York, Stony Brook, NY (United States). Dept. of Pharmacological Sciences

    1999-05-17

    Sulfite oxidase catalyzes the physiologically vital oxidation of sulfite to sulfate. Recently, the crystal structure of chicken sulfite oxidase has been reported at 1.9 {angstrom} resolution. In contrast to the information available from previous X-ray absorption spectroscopic studies, the active site indicated by crystallography was a mono-oxo species. Because of this the possibility that the crystals did in fact contain a reduced molybdenum species was considered in the crystallographic work. The authors report herein an X-ray absorption spectroscopic study of polycrystalline sulfite oxidase prepared in the same manner as the previous single-crystal samples, and compare this with data for frozen solutions of oxidized and reduced enzyme.

  6. A novel model of inflammatory pain in human skin involving topical application of sodium lauryl sulfate

    Microsoft Academic Search

    L. J. Petersen; A. M. Lyngholm; L. Arendt-Nielsen

    2010-01-01

    Objective and design  Sodium lauryl sulfate (SLS) is a known irritant. It releases pro-inflammatory mediators considered pivotal in inflammatory\\u000a pain. The sensory effects of SLS in the skin remain largely unexplored. In this study, SLS was evaluated for its effect on\\u000a skin sensory functions.\\u000a \\u000a \\u000a \\u000a \\u000a Subjects  Eight healthy subjects were recruited for this study.\\u000a \\u000a \\u000a \\u000a Treatment  Skin sites were randomized to topical SLS 0.25, 0.5,

  7. Rhodamine-123: a p-glycoprotein marker complex with sodium lauryl sulfate.

    PubMed

    Al-Mohizea, Abdullah M; Al-Jenoobi, Fahad Ibrahim; Alam, Mohd Aftab

    2015-03-01

    Aim of this study was to investigate the role of sodium lauryl sulfate (SLS) as P-glycoprotein inhibitor. The everted rat gut sac model was used to study in-vitro mucosal to serosal transport of Rhodamine-123 (Rho-123). Surprisingly, SLS decreases the serosal absorption of Rho-123 at all investigated concentrations. Investigation reveals complex formation between Rhodamine-123 and sodium lauryl sulfate. Interaction profile of SLS & Rho-123 was studied at variable SLS concentrations. The SLS concentration higher than critical micelle concentration (CMC) increases the solubility of Rho-123 but could not help in serosal absorption, on the contrary the absorption of Rho-123 decreased. Rho-123 and SLS form pink color complex at sub-CMC. The SLS concentrations below CMC decrease the solubility of Rho-123. For further studies, Rho-123 & SLS complex was prepared by using solvent evaporation technique and characterized by using differential scanning calorimeter (DSC). Thermal analysis also proved the formation of complex between SLS & Rho-123. The P values were found to be significant (<0.05) except group comprising 0.0001% SLS, and that is because 0.0001% SLS is seems to be very low to affect the solubility or complexation of Rho-123. PMID:25730814

  8. Hot Corrosion of NickelChromium and Nickel Chromium-Aluminum Thermal-Spray Coatings by Sodium Sulfate-Sodium Metavanadate Salt

    Microsoft Academic Search

    Y. Longa-Nava; Y. S. Zhang; M. Takemoto; R. A. Rapp

    1996-01-01

    The hot corrosion behavior of low-pressure plasma-sprayed (LPPS) 80 wt% Ni-20 wt% Cr and flame-sprayed (FS) 75 wt% Ni-20 wt% Cr-4.0 wt% Al coatings on type 304 stainless steel by thin fused films of sodium sulfate and 0.7 mol fraction NaâSOâ-0.3 mol fraction sodium metavanadate at 900 C in a 1% sulfur dioxide-oxygen atmosphere was studied using an electrochemical method.

  9. Full-scale implementation of the sodium sulfide/ferrous sulfate treatment process. Final report, October 1987-March 1989

    SciTech Connect

    Beller, J.M.; Carpenter, G.S.; McAtee, R.E.; Pryfogle, P.A.; Suciu, D.F.

    1989-09-01

    In Phase I, jar and dynamic testing showed that the sodium sulfide/ferrous sulfate process was a viable method for reducing hexavalent chromium and removing heavy metals from the Tinker AFB industrial wastewater with a significant decrease in sludge production and treatment costs. In Phase II pilot-plant field verification studies were conducted to evaluate the chemical and physical parameters of the chromium reduction process, the precipitation and clarification process, and the activated sludge system. Sludge production was evaluated and compared to the sulfuric acid/sulfur dioxide/lime process. The impact of and procedure for change-over to the sodium sulfide/ferrous sulfate process were also investigated.

  10. Aggregation Number-Based Degrees of Counterion Dissociation in Sodium n-Alkyl Sulfate Nataly V. Lebedeva,*,, Antoine Shahine, and Barney L. Bales

    E-print Network

    Bales, Barney

    Aggregation Number-Based Degrees of Counterion Dissociation in Sodium n-Alkyl Sulfate Micelles dissociation, R, for sodium n-alkyl sulfate micelles, denoted by SNcS, where Nc is the number of carbon atoms spin probes, 16- and 5-doxylstearic acid methyl ester (16DSE and 5DSE, respectively), are employed

  11. Location of Spectroscopic Probes in Self-Aggregating Assemblies. II. The Location of Pyrene and Other Probes in Sodium Dodecyl Sulfate Micelles

    E-print Network

    Bales, Barney

    and Other Probes in Sodium Dodecyl Sulfate Micelles Nataly Lebedeva, Radha Ranganathan, and Barney L. Bales The location of pyrene in sodium dodecyl sulfate (SDS) micelles is determined as a function of the aggregation is found to diffuse through a zone 67% of which lies within the Stern layer and 33% in the core

  12. An essential role for tomato sulfite oxidase and enzymes of the sulfite network in maintaining leaf sulfite homeostasis.

    PubMed

    Brychkova, Galina; Grishkevich, Vladislav; Fluhr, Robert; Sagi, Moshe

    2013-01-01

    Little is known about the homeostasis of sulfite levels, a cytotoxic by-product of plant sulfur turnover. By employing extended dark to induce catabolic pathways, we followed key elements of the sulfite network enzymes that include adenosine-5'-phosphosulfate reductase and the sulfite scavengers sulfite oxidase (SO), sulfite reductase, UDP-sulfoquinovose synthase, and ?-mercaptopyruvate sulfurtransferases. During extended dark, SO was enhanced in tomato (Solanum lycopersicum) wild-type leaves, while the other sulfite network components were down-regulated. SO RNA interference plants lacking SO activity accumulated sulfite, resulting in leaf damage and mortality. Exogenous sulfite application induced up-regulation of the sulfite scavenger activities in dark-stressed or unstressed wild-type plants, while expression of the sulfite producer, adenosine-5'-phosphosulfate reductase, was down-regulated. Unstressed or dark-stressed wild-type plants were resistant to sulfite applications, but SO RNA interference plants showed sensitivity and overaccumulation of sulfite. Hence, under extended dark stress, SO activity is necessary to cope with rising endogenous sulfite levels. However, under nonstressed conditions, the sulfite network can control sulfite levels in the absence of SO activity. The novel evidence provided by the synchronous dark-induced turnover of sulfur-containing compounds, augmented by exogenous sulfite applications, underlines the role of SO and other sulfite network components in maintaining sulfite homeostasis, where sulfite appears to act as an orchestrating signal molecule. PMID:23148079

  13. Sodium Sulfate Separation from Aqueous Alkaline Solutions via Crystalline Urea-Functionalized Capsules: Thermodynamics and Kinetics of Crystallization

    SciTech Connect

    Custelcean, Radu [ORNL; Sloop Jr, Frederick {Fred} V [ORNL; Rajbanshi, Arbin [ORNL; Wan, Shun [ORNL; Moyer, Bruce A [ORNL

    2015-01-01

    ABSTRACT: The thermodynamics and kinetics of crystallization of sodium sulfate with a tripodal tris-urea receptor (L1) from aqueous alkaline solutions have been measured in the 15 55 C temperature range, with the goal of identifying the optimal conditions for efficient and quick sulfate removal from nuclear wastes. The use of radiolabeled Na235SO4 provided a practical way to monitor the sulfate concentration in solution by liquid scintillation counting. Our results are consistent with a two-step crystallization mechanism, involving relatively quick dissolution of crystalline L1 followed by the rate-limiting crystallization of the Na2SO4(L1)2(H2O)4 capsules. We found that temperature exerted relatively little influence over the equilibrium sulfate concentration, which ranged between 0.004 and 0.011 M. This corresponds to 77 91% removal of sulfate from a solution containing 0.0475 M initial sulfate concentration, as found in a typical Hanford waste tank. The apparent pseudo-first-order rate constant for sulfate removal increased 20-fold from 15 to 55 C, corresponding to an activation energy of 14.1 kcal/mol. At the highest measured temperature of 55 C, 63% and 75% of sulfate was removed from solution within 8 h and 24 h, respectively.

  14. Adsorption of Sodium Dodecyl Sulfate on Ge Substrate: The Effect of a Low-Polarity Solvent

    PubMed Central

    Viana, Rommel B.; da Silva, Albérico B. F.; Pimentel, André S.

    2012-01-01

    This paper describes the adsorption of sodium dodecyl sulfate (SDS) molecules in a low polar solvent on Ge substrate by using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and atomic force microscopy (AFM). The maximum SDS amount adsorbed is (5.0 ± 0.3) × 1014 molecules cm?2 in CHCl3, while with the use of CCl4 as subphase the ability of SDS adsorbed is 48% lower. AFM images show that depositions are highly disordered over the interface, and it was possible to establish that the size of the SDS deposition is around 30–40 nm over the Ge surface. A complete description of the infrared spectroscopic bands for the head and tail groups in the SDS molecule is also provided. PMID:22942685

  15. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate

    SciTech Connect

    Lacks, S.A.; Springhorn, S.S.

    1980-08-10

    A number of enzymes, including amylases, dehydrogenases, and proteases, were shown to be renaturable after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Enzyme activity was detected in situ by action on substrates introduced into the gel and subsequent staining of either the product or unreacted substrate. Enzymes appeared to recover activity as soon as the detergent diffused out of the gel. Renatured enzymes were retained in gels after electrophoresis longer than native enzymes which had been subjected to electrophoresis in the absence of detergent. Re-electrophoresis of the renatured enzymes showed that part of the retained activity was physically anchored to the gel, possibly by the folding of polypeptides around the gel matrix as the enzymes were renatured.

  16. Quantification of sodium dodecyl sulfate in microliter biochemical samples by gas chromatography.

    PubMed

    Campbell, Reika; Winkler, Martin A; Wu, Huaiqin

    2004-12-01

    A novel gas chromatography (GC) method has been developed to accurately quantitate sodium dodecyl sulfate (SDS) in aqueous biochemical samples. This method is based on the quantitative conversion of SDS to 1-dodecanol in the GC injection port at elevated temperature, and the thermal degradation product 1-dodecanol was analyzed to determine SDS concentration. It was found that the addition of guanidinium chloride (GnHCl) to SDS samples (via direct dilution with GnHCl/MeOH solution) is necessary to ensure accurate quantitation. The presence of GnHCl enables quantitative conversion of SDS to 1-dodecanol, improves sensitivity, and virtually eliminates interference from proteins and other chemicals commonly present in biochemical samples. The method features direct analysis of diluted SDS samples, is free from interference, and is capable of quantifying less than 1 ng SDS in biochemical samples. It is also suitable for samples with limited volume, with as little as 1 microl sample being sufficient for quantitation. PMID:15519576

  17. Quantitative immunoelectrophoretic assay for murine oncornavirus p30: noncovalent facilitation by sodium dodecyl sulfate.

    PubMed Central

    Robinson, O R; Shibley, G P; Sevoian, M

    1977-01-01

    Treatment of Rauscher murine leukemia virus lysates with the anionic detergent sodium dodecyl sulfate (SDS) at concentrations between 0.2 to 2.0% SDS per mg of viral protein greatly increased the anodal electrophoretic mobility of p30, the major internal polypeptide. SDS treatment did not reduce p30 antigenicity or cause nonspecific precipitation of normal serum proteins during subsequent immunoanalysis. The increased anodal electrophoretic mobility allowed assay of Rauscher murine leukemia virus p30 by Laurell rocket immunoelectrophoresis. An SDS-facilitated rocket immunoelectrophoresis assay is described that was highly reproducible (coefficient of variability, less than 3.0%) and capable of detecting 125 ng of viral protein. To our knowledge, this is the first report of a quantitative immunoelectrophoretic assay for an oncornavirus antigen. Since SDS binding is a general property of proteins, this method of noncovalently altering electrophoretic mobility appears to be applicable to other antigen-antibody systems. Images PMID:908622

  18. Sodium dodecyl sulfate-poly(amidoamine) interactions studied by AFM imaging, conductivity, and Krafft temperature measurements.

    PubMed

    Bakshi, Mandeep Singh; Kaura, Aman; Miller, J D; Paruchuri, V K

    2004-10-15

    The conductivity, kappa, and Krafft temperature, TK, of sodium dodecyl sulfate (SDS) with poly(amidoamine) dendrimers (PAMAM) of 0.0, 0.5, and 1.0 generations (G) have been determined at different surfactant as well as PAMAM concentrations. The critical micelle concentration of SDS increases with the increase in the amount of each generation and the additive effect of 0.5G is maximum. TK of SDS shows a systematic decrease with maximum reduction in the presence of 0.5G. Atomic force microscopy (AFM) captures a layered pattern of 1.0G in the form of nanorods and no AFM images are detected for 1.0G in the presence of SDS. All results demonstrate that SDS has favorable interactions with ester-terminated 0.5G PAMAM rather than amine-terminated 0.0G and 1.0G. PMID:15450469

  19. Immunological reactivity of antisera to sodium dodecyl sulfate-derived polypeptides of polyoma virions.

    PubMed Central

    McMillen, J; Consigli, R A

    1977-01-01

    A study was undertaken to produce antisera to sodium dodecyl sulfate-derived polyoma virion polypeptides. With the use of this antisera, it was possible to detect, by immunofluorescence, cytoplasmic synthesis of V1, V2, and V3 polypeptides at 18 h postinfection and subsequent transport to the nucleus by 22 h postinfection. Anti-V1, anti-V2, and anti-V3 sera did not react with intact virions in an immunodiffusion assay, nor did they possess hemagglutination inhibition or viral neutralization activity. Antiserum produced against the four host histone polypeptides (V4 through V7) demonstrated immunofluorescence when reacted with polyoma-infected cells but not with uninfected cells. Antihistone serum was also capable of neutralizing viral infectivity, inhibiting hemagglutination and reacting with whole virions in an immunodiffusion assay. Images PMID:191638

  20. Sand sorption process for the removal of sodium dodecyl sulfate (anionic surfactant) from water.

    PubMed

    Khan, M Nasiruddin; Zareen, Uzma

    2006-05-20

    Granite sand was used to adsorb anionic surfactant, sodium dodecyl sulfate (SDS) from water at natural pH 6.25. The effect of adsorbent size, pH, temperature and amount of adsorbent has been examined. The results indicate that the Langmuir model provides the best correlation of experimental data. Thermodynamic parameters like entropy, enthalpy and free energy of adsorption were evaluated. Decreasing the temperature accelerates the adsorption of SDS onto sand surface. The kinetic data were analyzed by using pseudo-first order Lagergren equation. Adsorption of SDS was exothermic and dominated by physisorption with activation energy (Ea) 33.65 kJ mol(-1). In addition, regeneration of granite sand by washing with Fenton likes reagent was examined. The results suggested that granite sand is suitable as a sorbent material for recovery and adsorption of SDS from aqueous solutions in view of its effectiveness and cheaper cost. PMID:16298043

  1. Corrosion of NiCoCrAlY Coatings and TBC Systems Subjected to Water Vapor and Sodium Sulfate

    NASA Astrophysics Data System (ADS)

    Eriksson, Robert; Yuan, Kang; Li, Xin-Hai; Lin Peng, Ru

    2015-05-01

    Thermal barrier coating (TBC) systems are commonly used in gas turbines for protection against high-temperature degradation. Penetration of the ceramic top coat by corrosive species may cause corrosion damage on the underlying NiCoCrAlY bond coat and cause failure of the TBC system. In the current study, four oxidation/corrosion conditions were tried: (i) lab air, (ii) water vapor, (iii) sodium sulfate deposited on the specimens, and (iv) water vapor + sodium sulfate. The test was done at 750 °C in a cyclic test rig with 48 h cycles. The corrosion damage was studied on NiCoCrAlY-coated specimens, thin APS TBC specimens, and thick APS TBC specimens. Water vapor was found to have very minor influence on the oxidation, while sodium sulfate increased the TGO thickness both for NiCoCrAlY specimens and TBC-coated specimens; the influence of the TBC thickness was found to be very small. Sodium sulfate promoted thicker TGO; more Cr-rich TGO; the formation of Y oxides, and internally, Y sulfides; pore formation in the coating as well as in the substrate; and the formation of a Cr-depleted zone in the substrate.

  2. Thermoreversible Gel Formulations Containing Sodium Lauryl Sulfate or n-Lauroylsarcosine as Potential Topical Microbicides against Sexually Transmitted Diseases

    Microsoft Academic Search

    SYLVIE ROY; PIERRETTE GOURDE; JOCELYNE PIRET; A. Desormeaux; J. Lamontagne; C. Haineault; R. F. Omar; M. G. Bergeron

    2001-01-01

    The microbicidal efficacies of two anionic surfactants, sodium lauryl sulfate (SLS) and n-lauroylsarcosine (LS), were evaluated in cultured cells and in a murine model of herpes simplex type 2 (HSV-2) intravaginal infection. In vitro studies showed that SLS and LS were potent inhibitors of the infectivity of HSV-2 strain 333. The concentrations of SLS which inhibit viral infectivity by 50%

  3. Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt

    Microsoft Academic Search

    P. A Hassan; Gerhard Fritz; Eric W Kaler

    2003-01-01

    The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the

  4. NMR study about solubilization of phenyl alkyl alcohol in sodium dodecyl sulfate micelle and in BRIJ 35 micelle

    SciTech Connect

    Miyagishi, S.; Nishida, M.

    1980-11-01

    This work examines the NMR spectra of surfactant solutions solubilizing phenyl alkyl alcohols and the effect of holmium ion on them. More detailed information was obtained about the solubilization site. In addition, it was found that the solubilization in BRIJ 35 micelle was different from that in sodium dodecyl sulfate micelle. 16 references.

  5. Adiabatic polymerization of acrylamide in water under the effect of the potassium persulfate-sodium metabisulfite-copper sulfate system

    Microsoft Academic Search

    V. F. Kurenkov; T. A. Baiburdov; L. L. Stupenkova

    1988-01-01

    Since adiabatic polymerization of acrylamide (AA) has been studied very little and the information on the effect of copper ions on polymerization of AA prepared in dilute aqueous solutions is very limited, the features of adiabatic polymerization of AA in concentrated aqueous solutions in the presence of the potassium persulfate-sodium metabisulfite-copper sulfate redox initiating system were investigated in this study.

  6. Toxicity detection of sodium nitrite, borax and aluminum potassium sulfate using electrochemical method.

    PubMed

    Yu, Dengbin; Yong, Daming; Dong, Shaojun

    2013-04-01

    Based on the inhibition effect on the respiratory chain activity of microorganisms by toxicants, an electrochemical method has been developed to measure the current variation of a mediator in the presence of microorganisms contacted with a toxicant. Microelectrode arrays were adopted in this study, which can accelerate the mass transfer rate of an analyte to the electrode and also increase the total current signal, resulting in an improvement in detection sensitivity. We selected Escherichia coli as the testee and the standard glucose-glutamic acid as an exogenous material. Under oxygen restriction, the experiments in the presence of toxicant were performed at optimum conditions (solution pH 7.0, 37 degrees C and reaction for 3 hr). The resulting solution was then separated from the suspended microorganisms and was measured by an electrochemical method, using ferricyanide as a mediator. The current signal obtained represents the reoxidation of ferrocyanide, which was transformed to inhibiting efficiency, IC50, as a quantitative measure of toxicity. The IC50 values measured were 410, 570 and 830 mg/L for sodium nitrite, borax and aluminum potassium sulfate, respectively. The results show that the toxicity sequence for these three food additives is consistent with the value reported by other methods. Furthermore, the order of damage degree to the microorganism was also observed to be: sodium nitrite > borax > aluminum potassium sulfate > blank, according to the atomic force microscopy images of E. coli after being incubated for 3 hr with the toxic compound in buffer solutions. The electrochemical method is expected to be a sensitive and simple alternative to toxicity screening for chemical food additives. PMID:23923788

  7. Effects of organics on efflorescence relative humidity of ammonium sulfate or sodium chloride particles

    NASA Astrophysics Data System (ADS)

    Gao, Yonggang; Yu, Liya E.; Chen, Shing Bor

    The effect of a water-soluble organics on efflorescence relative humidity (ERH) of ammonium sulfate or sodium chloride particles is theoretically investigated on the basis of a previously developed model for ERH of single-component particles [Gao et al., 2006. Efflorescence relative humidity for ammonium sulfate particles Journal of Physical Chemistry A 110, 7602-7608]. The central assumption made is that one species nucleates much faster than the other, and the critical nuclei formation of the former controls the rate of efflorescence. The water-soluble organics (WSOs) appeared to suppress the ERH of salt particles; the decrease in ERH can be more than 30% RH when the mole fraction of WSO is larger than 0.5. The developed model satisfactorily makes quantitative prediction only for the ERH of mixed particles containing WSO with low-surface active nature (glycerol, levoglucosan, and malonic acid). For mixed particles having more surface-active WSO (glutaric and maleic acid), the inaccurate prediction is attributable to the negligence of interactions between solutes and the estimation of interfacial tension between nuclei and the mixed solution.

  8. Use of sodium dodecyl sulfate and zinc sulfate as reference substances for toxicity tests with the mussel Perna perna (Linnaeus, 1758) (Mollusca: Bivalvia).

    PubMed

    Jorge, R A D L V C; Moreira, G S

    2005-06-01

    Effects of anthropogenic pollution have been observed at different trophic levels in the oceans, and toxicity tests constitute one way of monitoring these alterations. The present assay proposes the use of two reference substances, sodium dodecyl sulfate (SDS) and zinc sulfate, for Perna perna larvae. This common mussel on the Brazilian coast is used as a bioindicator and is of economic interest. The chronic static embryo-larval test of short duration (48 h) was employed to determine the NOEC, LOEC, and IC50 for SDS and zinc sulfate, as well as the coefficient of variation. Salinity, pH and un-ionized ammonia (NH3) and dissolved oxygen (DO) concentrations were measured to monitor water quality. The results demonstrated that the main alterations in veliger larvae are the development of only one shell, protruded mantle, malformed shell, formation of only part of a valve, clipped edges, uneven sizes and presence of a concave or convex hinge. NOEC values were lower than 0.25 mg L(-1) for zinc sulfate and 0.68 mg L(-1) for SDS. The coefficient of variation was 17.63% and 2.50% for zinc sulfate and SDS, respectively. PMID:15883100

  9. Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency.

    PubMed

    Belaidi, Abdel A; Röper, Juliane; Arjune, Sita; Krizowski, Sabina; Trifunovic, Aleksandra; Schwarz, Guenter

    2015-07-15

    Mammalian sulfite oxidase (SO) is a dimeric enzyme consisting of a molybdenum cofactor- (Moco) and haem-containing domain and catalyses the oxidation of toxic sulfite to sulfate. Following sulfite oxidation, electrons are passed from Moco via the haem cofactor to cytochrome c, the terminal electron acceptor. In contrast, plant SO (PSO) lacks the haem domain and electrons shuttle from Moco to molecular oxygen. Given the high similarity between plant and mammalian SO Moco domains, factors that determine the reactivity of PSO towards oxygen, remained unknown. In the present study, we generated mammalian haem-deficient and truncated SO variants and demonstrated their oxygen reactivity by hydrogen peroxide formation and oxygen-consumption studies. We found that intramolecular electron transfer between Moco and haem showed an inverse correlation to SO oxygen reactivity. Haem-deficient SO variants exhibited oxygen-dependent sulfite oxidation similar to PSO, which was confirmed further using haem-deficient human SO in a cell-based assay. This finding suggests the possibility to use oxygen-reactive SO variants in sulfite detoxification, as the loss of SO activity is causing severe neurodegeneration. Therefore we evaluated the potential use of PEG attachment (PEGylation) as a modification method for future enzyme substitution therapies using oxygen-reactive SO variants, which might use blood-dissolved oxygen as the electron acceptor. PEGylation has been shown to increase the half-life of other therapeutic proteins. PEGylation resulted in the modification of up to eight surface-exposed lysine residues of SO, an increased conformational stability and similar kinetic properties compared with wild-type SO. PMID:26171830

  10. Time-Resolved Fluorescence Quenching Measurements of the Aggregation Numbers of Normal Sodium Alkyl Sulfate Micelles Well above the Critical Micelle Concentrations

    E-print Network

    Bales, Barney

    , because most of the interesting uses of micelles occur at finite micelle concentrations. For sodiumTime-Resolved Fluorescence Quenching Measurements of the Aggregation Numbers of Normal Sodium Alkyl, 1998 The aggregation numbers, NA, of normal sodium alkyl sulfate micelles were measured by time

  11. Biotechnological Treatment of Sulfate-Rich Wastewaters

    Microsoft Academic Search

    P. N. L. Lens; A. Visser; A. J. H. Janssen; L. W. Hulshoff Pol; G. Lettinga

    1998-01-01

    Sulfate-rich wastewaters are generated by many industrial processes that use sulfuric acid or sulfate-rich feed stocks (e.g., fermentation or sea food processing industry). Also, the use of reduced sulfur compounds in industry, that is, sulfide (tanneries, kraft pulping), sulfite (sulfite pulping), or thiosulfate (pulp bleaching, fixing of photographs), contaminates wastewaters with sulfate. A major problem for the biological treatment of

  12. Anti-Inflammatory Effects of Inonotus obliquus in Colitis Induced by Dextran Sodium Sulfate

    PubMed Central

    Choi, Se Young; Hur, Sun Jin; An, Chi Sun; Jeon, Yun Hui; Jeoung, Young Jun; Bak, Jong Phil; Lim, Beong Ou

    2010-01-01

    A total of 28 male BALB/c mice (average weight 20.7?±?1.6?g) were divided into 4 treatment groups and fed a commercial diet (A), a commercial diet + induced colitis by dextran sodium sulfate (DSS) (B), Inonotus obliquus (IO) administration (C), and IO administration + induced colitis by DSS (D). IO treatment (C, D) decreased the expression of tumor necrosis factor (TNF)-? and signal transducers and activators of transcription (STAT)1 compared to those of the colitis induced group (B). The expressions of IL-4 and STAT6 were decreased in group D compared to the colitis induced group (B). The serum immunoglobulin (Ig)E level decreased in IO treatment groups (C, D) compared to no IO treatment groups (A and B) although there was no significant difference between the IO treatment groups. Extract from IO itself had a weak cytotoxic effect on murine macrophage cell line (RAW264.7 cells). Extract from IO inhibited lipopolysaccharide- (LPS-) induced, TNF-?, STAT1, pSTAT1, STAT6, and pSTAT6 production in RAW264.7 cells. PMID:20300439

  13. Electrochemistry of Cytochrome P450 BM3 in Sodium Dodecyl Sulfate Films

    PubMed Central

    Udit, Andrew K.; Hill, Michael G.; Gray, Harry B.

    2008-01-01

    Direct electrochemistry of the cytochrome P450 BM3 heme domain (BM3) was achieved by confining the protein within sodium dodecyl sulfate (SDS) films on the surface of basal-plane graphite (BPG) electrodes. Cyclic voltammetry revealed the heme FeIII/II redox couple at ?330 mV (vs. Ag/AgCl, pH 7.4). Up to 10 V/s, the peak current was linear with scan rate, allowing us to treat the system as surface-confined within this regime. The standard heterogeneous rate constant determined at 10 V/s was estimated to be 10 s?1. Voltammograms obtained for the BM3-SDS-BPG system in the presence of dioxygen exhibited catalytic waves at the onset of FeIII reduction. The altered heme reduction potential of the BM3-SDS-graphite system indicates that SDS is likely bound in the enzyme active-site region. Compared to other P450-surfactant systems, we find redox potentials and electron transfer rates that differ by ~ 100 mV and > 10-fold, respectively, indicating that the nature of the surfactant environment has a significant effect on the observed heme redox properties. PMID:17129070

  14. Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles.

    PubMed

    Townsley, L E; Tucker, W A; Sham, S; Hinton, J F

    2001-10-01

    Gramicidins A, B, and C are the three most abundant, naturally occurring analogues of this family of channel-forming antibiotic. GB and GC differ from the parent pentadecapeptide, GA, by single residue mutations, W11F and W11Y, respectively. Although these mutations occur in the cation binding region of the channel, they do not affect monovalent cation specificity, but are known to alter cation-binding affinities, thermodynamic parameters of cation binding, conductance and the activation energy for ion transport. The structures of all three analogues incorporated into deuterated sodium dodecyl sulfate micelles have been obtained using solution state 2D-NMR spectroscopy and molecular modeling. For the first time, a rigorous comparison of the 3D structures of these analogues reveals that the amino acid substitutions do not have a significant effect on backbone conformation, thus eliminating channel differences as the cause of variations in transport properties. Variable positions of methyl groups in valine and leucine residues have been linked to molecular motions and are not likely to affect ion flow through the channel. Thus, it is concluded that changes in the magnitude and orientation of the dipole moment at residue 11 are responsible for altering monovalent cation transport. PMID:11570868

  15. Microangiopathy triggers, and inducible nitric oxide synthase exacerbates dextran sulfate sodium-induced colitis.

    PubMed

    Saijo, Hiroki; Tatsumi, Norifumi; Arihiro, Seiji; Kato, Tomohiro; Okabe, Masataka; Tajiri, Hisao; Hashimoto, Hisashi

    2015-07-01

    Ulcerative colitis (UC) is a representative clinical manifestation of inflammatory bowel disease that causes chronic gastrointestinal tract inflammation. Dextran sulfate sodium (DSS)-induced colitis mice have been used to investigate UC pathogenesis, and in this UC model, disturbance and impairment of the mucosal epithelium have been reported to cause colitis. However, how DSS sporadically breaks down the epithelium remains unclear. In this study, we focused on the colonic microcirculation and myenteric neurons of DSS-induced colitis. Moreover, we examined the potential of myenteric neurons as a target to prevent exacerbation of colitis. Fluorescent angiographic and histopathological studies revealed that DSS administration elicited blood vessel disruption before epithelial disorders appeared. Ischemic conditions in the lamina propria induced inducible nitric oxide synthase (iNOS) expression in myenteric neurons as colitis aggravated. When neuronal activity was inhibited with butylscopolamine, neuronal iNOS expression decreased, and the exacerbation of colitis was prevented. These results suggested that DSS-induced colitis was triggered by microcirculatory disturbance in the mucosa, and that excessive neuronal excitation aggravated colitis. During remission periods of human UC, endoscopic inspection of the colonic microcirculation may enable the early detection of disease recurrence, and inhibition of neuronal iNOS expression may prevent the disease from worsening. PMID:25938626

  16. Association between branched poly(ethyleneimine) and sodium dodecyl sulfate in the presence of neutral polymers.

    PubMed

    Pojják, Katalin; Mészáros, Róbert

    2011-03-15

    In the present paper, the effect of different neutral polymers on the self-assemblies of hyperbranched poly(ethyleneimine) (PEI) and sodium dodecyl sulfate (SDS) has been investigated at different ionization degrees of the polyelectrolyte molecules. The investigated uncharged polymers were poly(ethyleneoxide), poly(vinylpyrrolidone) and dextran samples of different molecular mass. Dynamic light scattering and electrophoretic mobility measurements demonstrate that the high molecular mass PEO or PVP molecules adsorb considerably onto the surface of the PEI/SDS nanoparticles. At appropriate concentrations of PVP or PEO, sterically stabilized colloidal dispersions of the polyelectrolyte/surfactant nanoparticles with hydrophobic core and hydrophilic corona can be prepared. These dispersions have considerable kinetic stability at high ionic strengths where the accelerated coagulation of the PEI/SDS nanoparticles results in precipitation in the absence of the neutral polymers. In contrast, the addition of dextran does not affect considerably the kinetic stability of PEI/SDS mixtures because of its low adsorption affinity towards the surface of the polyelectrolyte/surfactant nanoparticles. PMID:21227445

  17. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    SciTech Connect

    Kanbe, Takamasa [Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago 683-8504 (Japan)]|[Department of Internal Medicine, San-in Rosai Hospital, Yonago (Japan); Murai, Rie [Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago 683-8504 (Japan); Mukoyama, Tomoyuki [Department of Internal Medicine, San-in Rosai Hospital, Yonago (Japan); Murawaki, Yoshiyuki [Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago 683-8504 (Japan)]|[Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Tottori University (Japan); Hashiguchi, Ko-ichi; Yoshida, Yoko; Tsuchiya, Hiroyuki; Kurimasa, Akihiro [Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago 683-8504 (Japan); Harada, Ken-ichi; Yashima, Kazuo [Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Tottori University (Japan); Nishimuki, Eiji; Shabana, Noriko; Kishimoto, Yukihiro; Kojyo, Haruhiko; Miura, Kunihiko; Kawasaki, Hironaka [Department of Internal Medicine, San-in Rosai Hospital, Yonago (Japan); Murawaki, Yoshikazu [Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Tottori University (Japan); Shiota, Goshi [Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago 683-8504 (Japan)]. E-mail: gshiota@grape.med.tottori-u.ac.jp

    2006-07-14

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SR{alpha} promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells than in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes.

  18. Oleuropein protects against dextran sodium sulfate-induced chronic colitis in mice.

    PubMed

    Giner, Elisa; Recio, María-Carmen; Ríos, José-Luis; Giner, Rosa-María

    2013-06-28

    The anti-inflammatory effect of oleuropein (1), the major phenolic secoiridoid in Olea europaea, was evaluated in an experimental model of chronic colitis in mice. Animals were exposed to four repeated cycles of dextran sodium sulfate in drinking water followed by a 7-day rest period. Animals receiving a standard diet supplemented with 0.25% of 1 (equivalent to 500 mg/kg/day) for 56 days exhibited a decrease of inflammatory symptoms, as reflected by improvement of disease activity index and histopathological changes. It was found that 1 decreased inflammatory cell recruitment and the release of inflammatory cytokines interleukin (IL)-1? and IL-6 with increased IL-10 levels in colon tissue. Colon expression of cyclooxygenase-2 and inducible nitric oxide synthase was reduced significantly by 1. The anti-inflammatory molecular mechanism of 1 was associated with the suppression of the phosphorylation of p38 mitogen-activated protein kinase and might be mediated by up-regulation of annexin A1. In addition, 1 ameliorated intestinal wound healing in IEC-18 monolayers. Therefore, oleuropein seems to be a promising active molecule in experimental ulcerative colitis. PMID:23758110

  19. Allyl isothiocyanate ameliorates angiogenesis and inflammation in dextran sulfate sodium-induced acute colitis.

    PubMed

    Davaatseren, Munkhtugs; Hwang, Jin-Taek; Park, Jae Ho; Kim, Myung-Sunny; Wang, Shuaiyu; Sung, Mi Jeong

    2014-01-01

    Allyl isothiocyanate (AITC) is a phytochemical found in cruciferous vegetables that has known chemopreventive and chemotherapeutic activities. Thus far, the antiangiogenic activity of AITC has not been reported in in vivo studies. Herein, we investigated the effect of AITC on angiogenesis and inflammation in a mouse model of colitis. Experimental colitis was induced in mice by administering 3% dextran sulfate sodium via drinking water. To monitor the activity of AITC in this model, we measured body weight, disease activity indices, histopathological scores, microvascular density, myeloperoxidase activity, F4/80 staining, inducible nitric oxide synthase (iNOS) expression, cyclooxygenase-2 (COX-2) expression, and vascular endothelial growth factor (VEGF)-A/VEGF receptor 2 (VEGFR2) expression in the mice. We found that AITC-treated mice showed less weight loss, fewer clinical signs of colitis, and longer colons than vehicle-treated mice. AITC treatment also significantly lessened the disruption of colonic architecture that is normally associated with colitis and repressed the microvascularization response. Further, AITC treatment reduced both leukocyte recruitment and macrophage infiltration into the inflamed colon, and the mechanism these activities involved repressing iNOS and COX-2 expression. Finally, AITC attenuated the expression of VEGF-A and VEGFR2. Thus, AITC may have potential application in treating conditions marked by inflammatory-driven angiogenesis and mucosal inflammation. PMID:25051185

  20. American ginseng attenuates azoxymethane/dextran sodium sulfate-induced colon carcinogenesis in mice

    PubMed Central

    Yu, Chunhao; Wen, Xiao-Dong; Zhang, Zhiyu; Zhang, Chun-Feng; Wu, Xiao-Hui; Martin, Adiba; Du, Wei; He, Tong-Chuan; Wang, Chong-Zhi; Yuan, Chun-Su

    2014-01-01

    Background Colorectal cancer is a leading cause of cancer-related death, and inflammatory bowel disease is a risk factor for this malignancy. We previously reported colon cancer chemoprevention potential using American ginseng (AG) in a xenograft mice model. However, the nude mouse model is not a gut-specific colon carcinogenesis animal model. Methods In this study, an experimental colitis and colitis-associated colorectal carcinogenesis mouse model, chemically induced by azoxymethane/dextran sodium sulfate (DSS) was established and the effects of oral AG were evaluated. The contents of representative ginseng saponins in the extract were determined. Results AG significantly reduced experimental colitis measured by the disease activity index scores. This suppression of the experimental colitis was not only evident during DSS treatment, but also very obvious after the cessation of DSS, suggesting that the ginseng significantly promoted recovery from the colitis. Consistent with the anti-inflammation data, we showed that ginseng very significantly attenuated azoxymethane/DSS-induced colon carcinogenesis by reducing the colon tumor number and tumor load. The ginseng also effectively suppressed DSS-induced proinflammatory cytokines activation using an enzyme-linked immunosorbent assay array, in which 12 proinflammatory cytokine levels were assessed, and this effect was supported subsequently by real-time polymerase chain reaction data. Conclusion AG, as a candidate of botanical-based colon cancer chemoprevention, should be further investigated for its potential clinical utility. PMID:25535472

  1. Bovine serum albumin-sodium alkyl sulfates bioconjugates as drug delivery systems.

    PubMed

    Benk?, M; Varga, N; Seb?k, D; Bohus, G; Juhász, Á; Dékány, I

    2015-06-01

    Precipitation of bovine serum albumin (BSA) by anionic surfactants with alkyl chains of increasing lengths (octyl, decyl, dodecyl sulfates) was studied at room temperature, at pH 3.0, in isotonic sodium chloride solution. The particle size of albumin, the zeta potential, the surface charge and fluorescent properties of BSA-surfactant composites were investigated concerning addition of increasing amount of surfactant. The thermal stability of the systems was monitored by calorimetric analysis (DSC). The formation of the well-ordered structure in the self-assembly process in liquid phase was studied by XRD measurement. The structure of the precipitated BSA-surfactant nanocomposites was characterized by small-angle X-ray scattering (SAXS). Finally, ibuprofen (IBU) molecules were enclosed in BSA-surfactant bioconjugate systems and the release properties of the drug were investigated. It has been found out that, as a consequence to the increasing number of carbon atoms in the alkyl chains of the surfactant, the structure and the fluorescent properties of the aggregates formed can be controlled due to the increase in the hydrophobicity of BSA-surfactant composites. The bioconjugates are well applicable as carrier to realize controlled release of drug molecules. PMID:25935562

  2. Sodium dodecyl sulfate monomers induce XAO peptide polyproline II to ?-helix transition.

    PubMed

    Hong, Zhenmin; Damodaran, Krishnan; Asher, Sanford A

    2014-09-11

    XAO peptide (Ac-X2A7O2-NH2; X: diaminobutyric acid side chain, -CH2CH2NH3(+); O: ornithine side chain, -CH2CH2CH2NH3(+)) in aqueous solution shows a predominantly polyproline II (PPII) conformation without any detectable ?-helix-like conformations. Here we demonstrate by using circular dichroism (CD), ultraviolet resonance Raman (UVRR) and nuclear magnetic resonance (NMR) spectroscopy that sodium dodecyl sulfate (SDS) monomers bind to XAO and induce formation of ?-helix-like conformations. The stoichiometry and the association constants of SDS and XAO were determined from the XAO-SDS diffusion coefficients measured by pulsed field gradient NMR. We developed a model for the formation of XAO-SDS aggregate ?-helix-like conformations. Using UVRR spectroscopy, we calculated the Ramachandran ? angle distributions of aggregated XAO peptides. We resolved ?-, ?- and 3(10)-helical conformations and a turn conformation. XAO nucleates SDS aggregation at SDS concentrations below the SDS critical micelle concentration. The XAO4-SDS16 aggregates have four SDS molecules bound to each XAO to neutralize the four side chain cationic charges. We propose that the SDS alkyl chains partition into a hydrophobic core to minimize the hydrophobic area exposed to water. Neutralization of the flanking XAO charges enables ?-helix formation. Four XAO-SDS4 aggregates form a complex with an SDS alkyl chain-dominated hydrophobic core and a more hydrophilic shell where one face of the ?-helix peptide contacts the water environment. PMID:25121643

  3. Simple sodium dodecyl sulfate-assisted sample preparation method for LC-MS-based proteomics applications.

    PubMed

    Zhou, Jian-Ying; Dann, Geoffrey P; Shi, Tujin; Wang, Lu; Gao, Xiaoli; Su, Dian; Nicora, Carrie D; Shukla, Anil K; Moore, Ronald J; Liu, Tao; Camp, David G; Smith, Richard D; Qian, Wei-Jun

    2012-03-20

    Sodium dodecyl sulfate (SDS) is one of the most popular laboratory reagents used for biological sample extraction; however, the presence of this reagent in samples challenges LC-MS-based proteomics analyses because it can interfere with reversed-phase LC separations and electrospray ionization. This study reports a simple SDS-assisted proteomics sample preparation method facilitated by a novel peptide-level SDS removal step. In an initial demonstration, SDS was effectively (>99.9%) removed from peptide samples through ion substitution-mediated DS(-) precipitation using potassium chloride (KCl), and excellent peptide recovery (>95%) was observed for <20 ?g of peptides. Further experiments demonstrated the compatibility of this protocol with LC-MS/MS analyses. The resulting proteome coverage obtained for both mammalian tissues and bacterial samples was comparable to or better than that obtained for the same sample types prepared using standard proteomics preparation methods and analyzed using LC-MS/MS. These results suggest the SDS-assisted protocol is a practical, simple, and broadly applicable proteomics sample processing method, which can be particularly useful when dealing with samples difficult to solubilize by other methods. PMID:22339560

  4. Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature

    SciTech Connect

    Rashad, A.M., E-mail: alaarashad@yahoo.com [Housing and Building National Research Center, HBRC, 87 El-Tahrir St., Dokki, Giza 11511, P.O. Box: 1770, Cairo (Egypt); Bai, Y., E-mail: y.bai@qub.ac.uk [School of Planning, Architecture and Civil Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG (United Kingdom); Basheer, P.A.M. [School of Planning, Architecture and Civil Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG (United Kingdom); Collier, N.C.; Milestone, N.B. [Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2012-02-15

    The chemical and mechanical stability of slag activated with two different concentrations of sodium sulfate (Na{sub 2}SO{sub 4}) after exposure to elevated temperatures ranging from 200 to 800 Degree-Sign C with an increment of 200 Degree-Sign C has been examined. Compressive strengths and pH of the hardened pastes before and after the exposure were determined. The various decomposition phases formed were identified using X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The results indicated that Na{sub 2}SO{sub 4} activated slag has a better resistance to the degradation caused by exposure to elevated temperature up to 600 Degree-Sign C than Portland cement system as its relative strengths are superior. The finer slag and higher Na{sub 2}SO{sub 4} concentration gave better temperature resistance. Whilst the pH of the hardened pastes decreased with an increase in temperature, it still maintained a sufficiently high pH for the protection of reinforcing bar against corrosion.

  5. Allicin Alleviates Dextran Sodium Sulfate- (DSS-) Induced Ulcerative Colitis in BALB/c Mice

    PubMed Central

    Ismail, Salmiah; Saadatdoust, Zeinab; Esa, Norhaizan Mohd.

    2015-01-01

    The objective of this study is to evaluate the effect of allicin (10?mg/kg body weight, orally) in an experimental murine model of UC by administering 2.5% dextran sodium sulfate (DSS) in drinking water to BALB/c mice. DSS-induced mice presented reduced body weight, which was improved by allicin administration. We noted increases in CD68 expression, myeloperoxidase (MPO) activities, and Malonaldehyde (MDA) and mRNA levels of proinflammatory cytokines, such as tumor necrosis factor- (TNF-) ?, interleukin- (IL-) 1?, IL-6, and IL-17, and decrease in the activities of enzymic antioxidants such as superoxide dismutase (SOD), Catalase (CAT), Glutathione reductase (GR), and Glutathione peroxidase (GPx) in DSS-induced mice. However, allicin treatment significantly decreased CD68, MPO, MDA, and proinflammatory cytokines and increased the enzymic antioxidants significantly (P < 0.05). In addition, allicin was capable of reducing the activation and nuclear accumulation of signal transducer and activator of transcription 3 (STAT3), thereby preventing degradation of the inhibitory protein I?B and inducing inhibition of the nuclear translocation of nuclear factor (NF)-?B-p65 in the colonic mucosa. These findings suggest that allicin exerts clinically useful anti-inflammatory effects mediated through the suppression of the NF-?B and IL-6/p-STAT3Y705 pathways.

  6. Simple Sodium Dodecyl Sulfate-Assisted Sample Preparation Method for LC-MS-based Proteomic Applications

    SciTech Connect

    Zhou, Jianying; Dann, Geoffrey P.; Shi, Tujin; Wang, Lu; Gao, Xiaoli; Su, Dian; Nicora, Carrie D.; Shukla, Anil K.; Moore, Ronald J.; Liu, Tao; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2012-03-10

    Sodium dodecyl sulfate (SDS) is one of the most popular laboratory reagents used for highly efficient biological sample extraction; however, SDS presents a significant challenge to LC-MS-based proteomic analyses due to its severe interference with reversed-phase LC separations and electrospray ionization interfaces. This study reports a simple SDS-assisted proteomic sample preparation method facilitated by a novel peptide-level SDS removal protocol. After SDS-assisted protein extraction and digestion, SDS was effectively (>99.9%) removed from peptides through ion substitution-mediated DS- precipitation with potassium chloride (KCl) followed by {approx}10 min centrifugation. Excellent peptide recovery (>95%) was observed for less than 20 {mu}g of peptides. Further experiments demonstrated the compatibility of this protocol with LC-MS/MS analyses. The resulting proteome coverage from this SDS-assisted protocol was comparable to or better than those obtained from other standard proteomic preparation methods in both mammalian tissues and bacterial samples. These results suggest that this SDS-assisted protocol is a practical, simple, and broadly applicable proteomic sample processing method, which can be particularly useful when dealing with samples difficult to solubilize by other methods.

  7. Membrane-derived oligosaccharides (MDOs) are essential for sodium dodecyl sulfate resistance in Escherichia coli.

    PubMed

    Rajagopal, Soumitra; Eis, Nicole; Bhattacharya, Meenakshi; Nickerson, Kenneth W

    2003-06-01

    We studied the role of membrane-derived oligosaccharides (MDOs) in sodium dodecyl sulfate (SDS) resistance by Escherichia coli. MDOs are also known as osmoregulated periplasmic glucans. Wild-type E. coli MC4100 grew in the presence of 10% SDS whereas isogenic mdoA and mdoB mutants could not grow above 0.5% SDS. Similarly, E. coli DF214, a mutant (pgi, zwf) unable to grow on glucose, exhibited conditional sensitivity to SDS in that it grew in gluconate and glucose or galactose but not in gluconate and mannose or sorbose. DF214 requires both gluconate and glucose/galactose because the gluconate is used for energy production, while glucose/galactose is used for MDO synthesis. Finally, the fate of E. coli cells subjected to SDS shock either during growth or when used as an inoculum is dependent on the presence or absence of sufficient MDOs. In both cases, cells grown under high-osmolarity (low-MDO) conditions were rapidly lysed by 5% SDS. Based on findings from a wild-type E. coli (MC4100), two mdo mutants and strain DF214 we conclude that MDOs are required for SDS resistance. PMID:12798996

  8. Self-aggregation of sodium dodecyl sulfate within (choline chloride + urea) deep eutectic solvent.

    PubMed

    Pal, Mahi; Rai, Rewa; Yadav, Anita; Khanna, Rajesh; Baker, Gary A; Pandey, Siddharth

    2014-11-11

    Deep eutectic solvents (DESs) have shown tremendous promise as green solvents with low toxicity and cost. Understanding molecular aggregation processes within DESs will not only enhance the application potential of these solvents but also help alleviate some of the limitations associated with them. Among DESs, those comprising choline chloride and appropriate hydrogen-bond donors are inexpensive and easy to prepare. On the basis of fluorescence probe, electrical conductivity, and surface tension experiments, we present the first clear lines of evidence for self-aggregation of an anionic surfactant within a DES containing a small fraction of water. Namely, well-defined assemblies of sodium dodecyl sulfate (SDS) apparently form in the archetype DES Reline comprising a 1:2 molar mixture of choline chloride and urea. Significant enhancement in the solubility of organic solvents that are otherwise not miscible in choline chloride-based DESs is achieved within Reline in the presence of SDS. The remarkably improved solubility of cyclohexane within SDS-added Reline is attributed to the presence of spontaneously formed cyclohexane-in-Reline microemulsions by SDS under ambient conditions. Surface tension, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), density, and dynamic viscosity measurements along with responses from the fluorescence dipolarity and microfluidity probes of pyrene and 1,3-bis(1-pyrenyl)propane are employed to characterize these aggregates. Such water-free oil-in-DES microemulsions are appropriately sized to be considered as a new type of nanoreactor. PMID:25314953

  9. Myristica fragrans seed extract protects against dextran sulfate sodium-induced colitis in mice.

    PubMed

    Kim, Hyojung; Bu, Youngmin; Lee, Beom-Joon; Bae, Jinhyun; Park, Sujin; Kim, Jinsung; Lee, Kyungjin; Cha, Jae-Myung; Ryu, Bongha; Ko, Seok-Jae; Han, Gajin; Min, Byungil; Park, Jae-Woo

    2013-10-01

    Nutmeg (seed of Myristica fragrans [MF]) is one of the most commonly used spices in the world and also a well-known herb for the treatment of various intestinal diseases, including colitis in traditional Korean medicine. The purpose of the current study was to investigate whether water extract of MF (MFE) can protect against dextran sulfate sodium (DSS) induced colitis in a mouse model. Colitis was induced by 5% DSS in balb/c mice. MFE (100, 300 or 1000 mg/kg) was orally administered to the mice twice a day for 7 days. Body weight, colon length, clinical score, and histological score were assessed to determine the effects on colitis. Proinflammatory cytokines (interferon-?, tumor necrosis factor-?, interleukin [IL]-1?, and IL-6) were measured to investigate the mechanisms of action. MFE dose dependently inhibited the colon shortening and histological damage to the colon. However, it did not prevent weight loss. MFE also inhibited proinflammatory cytokines. The current results suggest that MFE ameliorates DSS-induced colitis in mice by inhibiting inflammatory cytokines. Further investigation, including the exact mechanisms is needed. PMID:24063406

  10. Quasi-elastic light scattering study of intermicellar interactions in aqueous sodium dodecyl sulfate solutions

    SciTech Connect

    Corti, M.; Deglorgio, V.

    1981-03-19

    Quasi-elastic light scattering measurement have been performed on aqueous sodium dodecyl sulfate solutions in the 0.1 to 0.6 mole NaCl concentration range at 25 and 40 C. The aggregation number M, the hydrodynamic radius Rh, and the amphiphile concentration dependence of static and transport coefficients of micellar solutions are obtained from the experimental data. The micellar parameters M and Rh increase with salt concentration and slightly decrease with temperature. The concentration dependence of the apparent molecular weight and of the mass diffusion coefficient is interpreted on the basis of Derjaguin-Landau-Verwey-Overbeek theory of colloid stability. The fit to the experimental data, performed with the assumption that the Hamaker constant for micellar attraction A and the micellar electric charge Q do not depend on the salt concentration, is satisfactory and gives A = 4.5 x 10/sup -20/ J and Q = 37 electronic charges. The electric potential at the shear surface of the micelle goes from 70 MV at 0.1 mole NaCl to approximately 30 MV at 0.5 to 0.6 mole NaCl. 45 references.

  11. Ginsenosides Regulate PXR/NF-?B Signaling and Attenuate Dextran Sulfate Sodium-Induced Colitis.

    PubMed

    Zhang, Jun; Cao, Lijuan; Wang, Hong; Cheng, Xuefang; Wang, Lin; Zhu, Lin; Yan, Tingting; Xie, Yang; Wu, Yuzheng; Zhao, Min; Ma, Sijing; Wu, Mengqiu; Wang, Guangji; Hao, Haiping

    2015-08-01

    Pregnane X receptor (PXR) activation exhibits anti-inflammatory effects via repressing nuclear factor-?B (NF-?B); however, its overactivation may disrupt homeostasis of various enzymes and transporters. Here we found that ginsenosides restore PXR/NF-?B signaling in inflamed conditions without disrupting PXR function in normal conditions. The effects and mechanisms of ginsenosides in regulating PXR/NF-?B signals were determined both in vitro and in vivo. Ginsenosides significantly inhibited NF-?B activation and restored the expression of PXR target genes in tumor necrosis factor-?-stimulated LS174T cells. Despite not being PXR agonists, ginsenosides repressed NF-?B activation in a PXR-dependent manner. Ginsenosides significantly increased the physical association between PXR and the NF-?B p65 subunit and thereby decreased the nuclear translocation of p65. Ginsenoside Rb1 and compound K (CK) were major bioactive compounds in the regulating PXR/NF-?B signaling. Consistently, ginsenosides significantly attenuated dextran sulfate sodium-induced experimental colitis, which was associated with restored PXR/NF-?B signaling. This study indicates that ginsenosides may elicit anti-inflammatory effects via targeting PXR/NF-?B interaction without disrupting PXR function in healthy conditions. Ginsenoside Rb1 and CK may serve as leading compounds in the discovery of new drugs that target PXR/NF-?B interaction in therapy for inflammatory bowel disease. PMID:25986850

  12. Determination of amantadine sulfate in sodium chloride injection by capillary gas chromatography.

    PubMed

    Yao, Weifeng; Luo, Xuefang; Hu, Yuzhu

    2006-01-01

    This paper describes a new method to determine amantadine sulfate in sodium chloride injection by capillary gas chromatography. The chromatographic conditions of the methods employed a SGE BP-1 capillary column (30 m x 0.53 mm i.d., 1.0-microm film thickness); isothermal elution with N2 at a pressure of 100 KPa; injector, oven, and detector temperatures at 220 degrees C, 110 degrees C, and 220 degrees C, respectively; a split-less mode; and a 1-microL injection volume. Naphthalene was used as the internal standard. Peak purity testing with a Varian Saturn 2200 capillary gas chromatography- mass spectrometry system (Varian, Inc.) equipped with a DB-5 capillary column (30 m x 0.25 mm i.d., 0.25-microm film thickness) was performed for the investigation of specificity. There was a linear relationship between peak area ratios of analyte to the internal standard and concentration of analyte over the concentration range 0.1-2.0 mg/mL. The recovery was 97.8 approximately 100.7%. The relative standard deviation (%) of intermediate precision was less than 0.8. The limits of detection and quantitation were 0.2 microg/mL with a signal-to-noise ratio of 3, and 0.7 microg/mL with a signal-to-noise ratio of 10, respectively. The results of determination were similar to the titration method. PMID:17089682

  13. Ginsenoside Rh2 alleviates dextran sulfate sodium-induced colitis via augmenting TGF? signaling.

    PubMed

    Ye, Hua; Wu, Qiong; Zhu, Yuzhen; Guo, Cancan; Zheng, Xuebao

    2014-08-01

    Ginsenoside Rh2 (GRh2) has been reported to have therapeutic effects on various diseases. However, whether it may also affect the recovery from ulcerative colitis remains unknown. Here we induced colitis in mice by dextran sulfate sodium (DSS) administration, and then treated the mice with GRh2. We found that GRh2-treated mice showed significant alleviation of the DSS-induced colitis. Moreover, significant increase in the activity of TGF? signaling was detected in the GRh2-treated colon that had received DSS. To investigate whether there is a causative link among GRh2 treatment, TGF? signaling augment and the cure of colitis, we gave the DSS-treated mice a combination of GRh2 and a specific TGF? receptor I inhibitor, SB431542. SB431542 significantly decreased the activation of TGF? signaling in the colon from the GRh2-administrated mice, and consequently attenuated the therapeutic effect of GRh2. Our data thus demonstrate that GRh2 may alleviate DSS-induced colitis via augmenting TGF? signaling. PMID:24893598

  14. Effect of Arctium lappa L. in the dextran sulfate sodium colitis mouse model

    PubMed Central

    Huang, Tzou-Chi; Tsai, Shinn-Shyong; Liu, Li-Fang; Liu, Yu Lin; Liu, Hung-Jen; Chuang, Kuo Pin

    2010-01-01

    AIM: To analyze the possible protective role of Arctium lappa L. (AL) in a murine model of ulcerative colitis (UC). METHODS: BALB/c mice were administered 100 mg/kg AL powder orally each day. After 7 d, colitis was induced by administration of dextran sulfate sodium (DSS) (5% W/V) in drinking water for a further 8 consecutive days. Diarrhea and bloody stools as well as colonic histology were observed. The level of interleukin-6 (IL-6) and tumor necrosis factor-? (TNF-?) in colonic sections were detected by immunohistochemistry. RESULTS: There were significant differences in mean body weight values and disease activity indices between controls and AL-treated animals. Moreover, the histological findings showed that AL treatment can prevent mucosal edema, submucosal erosions, ulceration, inflammatory cell infiltration and colon damage. In addition, immunohistochemistry analysis showed that the levels of the inflammatory cytokines, IL-6 and TNF-? were also decreased in AL-treated groups. CONCLUSION: We suggest that AL can prevent intestinal damage and decrease inflammatory cytokines in mice with DSS-induced colitis. Thus, AL could prove to be a useful food for UC. PMID:20806438

  15. Electrocatalytic oxidation of sulfite at polymeric iron tetra (4-aminophenyl) porphyrin—modified electrode

    Microsoft Academic Search

    M. Lucero; G. Ramírez; A. Riquelme; I. Azocar; M. Isaacs; F. Armijo; J. E. Förster; E. Trollund; M. J. Aguirre; D. Lexa

    2004-01-01

    The electro-oxidation of sulfite was studied by using a glassy carbon electrode coated with a polymeric film of Fe-tetra-4-aminophenylporphyrin, in a wide pH range. The polymeric complex-modified electrode catalyses the electro-oxidation of sulfite to sulfate in acid and basic media, but it is more active at pH higher than 8.5. The polymer film coating is obtained by cycling the electrode

  16. Sodium dodecyl sulfate allows the persistence and recovery of biofilms of Pseudomonas fluorescens formed under different hydrodynamic conditions

    Microsoft Academic Search

    Manuel Simões; Lúcia C. Simões; Maria O. Pereira; Maria J. Vieira

    2008-01-01

    The effect of the anionic surfactant sodium dodecyl sulfate (SDS) on Pseudomonas fluorescens biofilms was investigated using flow cell reactors with stainless steel substrata, under turbulent (Re = 5200) and laminar (Re = 2000) flow. Steady-state biofilms were exposed to SDS in single doses (0.5, 1, 3 and 7 mM) and biofilm respiratory activity and mass measured at 0, 3, 7 and 12 h after the

  17. Effect of Surfactant Impregnation into Chitosan Hydrogel Beads Formed by Sodium Dodecyl Sulfate Gelation for the Removal of Congo Red

    Microsoft Academic Search

    Sudipta Chatterjee; Tania Chatterjee; Seong-Rin Lim; Seung H. Woo

    2011-01-01

    Effect of cetyltrimethylammonium bromide (CTAB) and triton X-100 (TX100) impregnation into chitosan hydrogel beads formed by sodium dodecyl sulfate (SDS) gelation (CSB) was investigated for the adsorption of Congo red (CR) from aqueous solutions. An impregnation of CTAB at 0.1 wt% into CSB increased adsorption from 97.46 mg\\/g to 113.24 mg\\/g, while 0.5 wt% TX100 impregnation into CSB registered a very small increase from

  18. Synthesis of acrylic acid-based superabsorbent interpenetrated with sodium PVA sulfate using inverse-emulsion polymerization

    Microsoft Academic Search

    Doo-Won Lim; Kyong-Geun Song; Kee-Jong Yoon; Sohk-Won Ko

    2002-01-01

    Acrylic acid (AA)-based superabsorbent interpenetrated with sodium poly(vinyl alcohol) (PVA) sulfate (SPS) was prepared by inverse-emulsion polymerization. The disperse phase was prepared by dissolving AA and crosslinking monomer in aqueous SPS solution. Toluene was used as the continuous phase in which oil-soluble initiator and emulsifiers were dissolved. Sorbitan monooleate and ethyl cellulose were used as emulsifiers. The maximum water and

  19. Validation of murine dextran sulfate sodium-induced colitis using four therapeutic agents for human inflammatory bowel disease

    Microsoft Academic Search

    Silvia Melgar; Lisa Karlsson; Erika Rehnström; Agneta Karlsson; Helena Utkovic; Liselotte Jansson; Erik Michaëlsson

    2008-01-01

    Dextran sulfate sodium (DSS)-induced colitis is one of the most frequently used rodent models for inflammatory bowel disease (IBD). The aim of this study was to validate the murine DSS-induced colitis model using four therapeutic agents for IBD. C57BL\\/6 mice were exposed to 3% DSS for 5days followed by 7–9 days of water (acute inflammation) or 20–31 days of water

  20. Corrosion resistance of sodium sulfate coated cobalt-chromium-aluminum alloys at 900 C, 1000 C, and 1100 C

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1979-01-01

    The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales.

  1. Sodium dodecyl sulfate coated poly (vinyl) chloride: An alternative support for solid phase extraction of some transition and heavy metals

    Microsoft Academic Search

    Farzaneh Marahel; Mehrorang Ghaedi; Ardeshir Shokrollahi; Morteza Montazerozohori; Shahnaz Davoodi

    2009-01-01

    A simple and relatively fast approach for developing a solid phase extraction has been described and used for determination of trace quantities of some heavy and transition metal ions with sodium dodecyl sulfate (SDS)-coated poly vinyl chloride (PVC) modified with bis(2-hydroxyacetophenone)-1,4-butanediimine (BHABDI) ligand.The adsorbed ions were stripped from the solid phase by 10mL of 3M nitric acid as eluent. The

  2. Adsorption of hydroxamate siderophores and EDTA on goethite in the presence of the surfactant sodium dodecyl sulfate

    Microsoft Academic Search

    Naraya Carrasco; Ruben Kretzschmar; Jide Xu; Stephan M Kraemer

    2009-01-01

    Siderophore-promoted iron acquisition by microorganisms usually occurs in the presence of other organic molecules, including biosurfactants. We have investigated the influence of the anionic surfactant sodium dodecyl sulfate (SDS) on the adsorption of the siderophores DFOB (cationic) and DFOD (neutral) and the ligand EDTA (anionic) onto goethite (?-FeOOH) at pH 6. We also studied the adsorption of the corresponding 1:1

  3. Dispersion of multiwall carbon nanotubes by sodium dodecyl sulfate for preparation of modified electrodes toward detecting hydrogen peroxide

    Microsoft Academic Search

    Jing Zhang; Lian Gao

    2007-01-01

    Sodium dodecyl sulfate (SDS) as a useful dispersing agent for pristine and purified multiwall carbon nanotubes (MWCNTs) to prepare MWCNTs-modified electrodes is described. The morphology of different MWCNTs is characterized by Transmission Electron Microscopy (TEM). Voltammetric responses at MWCNTs–SDS modified glassy carbon electrodes towards detecting H2O2 are observed to compare the electrochemical action of MWCNTs in different circumstances. The best

  4. Application of the Aqueous Porous Pathway Model to Quantify the Effect of Sodium Lauryl Sulfate on Ultrasound-Induced Skin Structural Perturbation

    E-print Network

    Polat, Baris E.

    This study investigated the effect of sodium lauryl sulfate (SLS) on skin structural perturbation when utilized simultaneously with low-frequency sonophoresis (LFS). Pig full-thickness skin (FTS) and pig split-thickness ...

  5. Transport Pathways and Enhancement Mechanisms within Localized and Non-Localized Transport Regions in Skin Treated with Low-Frequency Sonophoresis and Sodium Lauryl Sulfate

    E-print Network

    Polat, Baris E.

    Recent advances in transdermal drug delivery utilizing low-frequency sonophoresis (LFS) and sodium lauryl sulfate (SLS) have revealed that skin permeability enhancement is not homogenous across the skin surface. Instead, ...

  6. Betaine reduces the irritating effect of sodium lauryl sulfate on human oral mucosa in vivo.

    PubMed

    Rantanen, Irma; Nicander, Ingrid; Jutila, Kirsti; Ollmar, Stig; Tenovuo, Jorma; Söderling, Eva

    2002-10-01

    Our aim was to evaluate whether betaine has a protective effect during exposure of the human oral mucosa in vivo to sodium lauryl sulfate (SLS) or cocoamidopropylbetaine (CAPB) as measured with a multifrequency electrical impedance spectrometer (EI). Both detergents were used at the concentration of 2.0% w/v with and without 4.0% w/v betaine in distilled water in 20 volunteers, and 0.5% and 1.0% w/v SLS combined with 4.0% w/v betaine in 5 volunteers. EI measurements were taken before application of the test solutions, after their removal, and every 15 min up to 45 min. Both 0.5% and 1% SLS solutions showed a significant reduction in 3 of the 4 indices, indicating mucosal irritation after the 15-min exposure (P < 0.05), whereas 2% SLS did so in all 4 indices (P < 0.001). Betaine had no effect on the detergent-induced decline with either the 2% or the 0.5% SLS solutions. However, when combined with the 1% SLS solution, betaine significantly (P < 0.05) reduced mucosal irritation by abolishing decreases in indices MIX (magnitude index) and IMIX (imaginary part index) and lowering it for PIX (phase index). The 2% CAPB solution showed a significant (P < 0.05) reduction in all 4 indices after the 15-min exposure, but the effect was significantly weaker than that of 2% SLS (P < 0.05). Betaine did not reduce the irritating effect of 2% CAPB. These findings can be used in the development of less irritating products for oral health care. PMID:12418722

  7. Poultry enteric inflammation model with dextran sodium sulfate mediated chemical induction and feed restriction in broilers.

    PubMed

    Kuttappan, V A; Berghman, L R; Vicuña, E A; Latorre, J D; Menconi, A; Wolchok, J D; Wolfenden, A D; Faulkner, O B; Tellez, G I; Hargis, B M; Bielke, L R

    2015-06-01

    Gut inflammation is a cardinal event occurring in various gastrointestinal diseases regardless of etiology. A potential mechanism of action for antibiotic growth promoters and probiotics is alleviation or attenuation of such inflammation. In vivo inflammation models and markers to quantify changes in inflammation, such as paracellular leakage and tight junction function, are necessary tools in the search for methods to reduce enteric inflammation. Dextran sodium sulfate (DSS) and feed restriction (FRS), and fluorescein isothiocyanate dextran (FITC-d; 3 to 5 kDa) marker were evaluated for induction and assessment of enteric inflammation in broilers. Three independent experiments were conducted where birds received an inflammation inducer treatment and an oral gavage of FITC-d (2.2 mg/bird) 2.5 h before killing on d 4, followed by measurement of serum FITC-d levels and release of FITC-d from different regions of gastrointestinal tract (GIT) to evaluate tight junction function. Experiment 1 tested control (CON) and DSS; Experiments 2 and 3 evaluated CON, DSS, and FRS. In all experiments DSS, as well as FRS in Experiments 2 and 3, showed higher (P < 0.05) leakage of FITC-d into serum than CON, but FRS was not different from DSS. The amount of FITC-d retained in duodenal and cecal tissue was affected (P < 0.05) by FRS in Experiments 2 and 3, and DSS affected FITC-d retention in duodenum only, suggesting differences in gut passage or absorption/adsorption. In conclusion, DSS oral gavage and FRS could induce leaky gut, with changes in serum FITC-d and migration of FITC-d from GIT. PMID:25877409

  8. Oligonol Inhibits Dextran Sulfate Sodium-Induced Colitis and Colonic Adenoma Formation in Mice

    PubMed Central

    Yum, Hye-Won; Zhong, Xiancai; Park, Jin; Na, Hye-Kyung; Kim, Nayoung; Lee, Hye Seung

    2013-01-01

    Abstract Aims: To evaluate the effects of oligonol administration on experimentally induced colitis and colonic adenoma formation. Results: Oral administration of oligonol protected against mouse colitis induced by dextran sulfate sodium (DSS). Under the same experimental conditions, oligonol administration significantly inhibited the activation of nuclear factor-kappa B and signal transducer and activator of transcription (STAT) 3 and expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cyclin D1 in the mouse colon. Further, oligonol inhibited azoxymethane-initiated and DSS-promoted adenoma formation in the mouse colon. Oligonol administration also attenuated lipid peroxidation (malondialdehyde) and protein oxidation (4-hydroxy-2-nonenal), thereby preventing oxidative stress-induced apoptosis of colonic epithelial cells. In vitro studies demonstrated that oligonol treatment reduced lipopolysaccharide-induced expression of interleukin (IL)-1?, tumor necrosis factor ?, il-6, cox-2, and inos in murine macrophage RAW 264.7 cells. In another study, oligonol upregulated the antioxidant gene expression in the intestinal epithelial CCD841CoN cells and in the mouse colon. Innovation: Oligonol, an innovative formulation of catechin-type oligomers derived from the lychee fruit extract, was tested in this study for the first time to evaluate its effects on experimentally induced colitis and colonic adenoma formation in mice. Conclusion: Oligonol is effective in protecting against DSS-induced mouse colitis and colon carcinogenesis, suggesting that this polyphenol formulation may have a potential for the amelioration of inflammatory bowel disease and related disorders. Antioxid. Redox Signal. 19, 102–114. PMID:23394584

  9. Sodium Dodecyl Sulfate Adsorption onto Positively Charged Surfaces: Monolayer Formation With Opposing Headgroup Orientations

    PubMed Central

    Song, Sang-Hun; Koelsch, Patrick; Weidner, Tobias; Wagner, Matthew S.; Castner, David G.

    2013-01-01

    The adsorption and structure of sodium dodecyl sulfate (SDS) layers onto positively charged films have been monitored in situ with vibrational sum-frequency-generation (SFG) spectroscopy and surface plasmon resonance (SPR) sensing. Substrates with different charge densities and polarities used in these studies include CaF2 at different pH values as well as allylamine and heptylamine films deposited onto CaF2 and Au substrates by radio frequency glow discharge deposition. The SDS films were adsorbed from aqueous solutions ranging in concentration from 0.067 to 20 mM. In general the SFG spectra exhibited well resolved CH and OH peaks. However, at SDS concentrations between 1–8 mM the SFG CH and OH intensities decreased close to background levels. Combined data sets from molecular conformation, orientation, and order sensitive SFG with mass sensitive SPR suggest that the observed changes in SFG intensities above 0.2 mM are related to structural arrangements in the SDS layer. A model is proposed where the SFG intensity minimum between 1–8 mM is associated with a monolayer containing two head group orientations, one pointing towards the substrate and one pointing towards the solution phase. The SFG peaks observed at concentrations below 0.2 mM are dominated by the presence of adsorbed contaminants such as fatty alcohols (e.g., dodecanol), which are more surface active than SDS. As SDS solution concentration is increased above 1 mM SDS molecules are incorporated in the surface layer, with dodecanol continuing to be present in the surface layer for solution concentrations up to at least critical micelle concentration. PMID:24024777

  10. Dietary black raspberries modulate DNA methylation in dextran sodium sulfate (DSS)-induced ulcerative colitis

    PubMed Central

    Wang, Li-Shu

    2013-01-01

    Ulcerative colitis (UC) is characterized by chronic inflammation of the colon. During inflammation, NF-?B is increased in colonic epithelial cells and in immune cells, leading to increases in proinflammatory cytokines. These events then increase DNA methyltransferases (DNMTs), which silence a subset of tumor suppressor genes by promoter methylation. Negative regulators of the Wnt pathway are frequently methylated in UC, leading to dysregulation of the pathway and, potentially, to colorectal cancer. We determined if black raspberries (BRBs) influence promoter methylation of suppressors in the Wnt pathway in dextran sodium sulfate (DSS)-induced UC. C57BL/6J mice received 1% DSS and were fed either control or 5% BRB diets. Mice were euthanized on days 7, 14 and 28, and their colons, spleen and bone marrow were collected. Berries reduced ulceration at day 28. This was accompanied by decreased staining of macrophages and neutrophils and decreased NF-?B p65 nuclear localization in the colon at all time points. At day 7, BRBs demethylated the promoter of dkk3, leading to its increased messenger RNA (mRNA) expression in colon, spleen and bone marrow. ?-Catenin nuclear localization, c-Myc staining as well as protein expression of DNMT3B, histone deacetylases 1 and 2 (HDAC1 and HDAC2) and methyl-binding domain 2 (MBD2) were all decreased in colon; mRNA expression of these four proteins was decreased in bone marrow cells by BRBs. These results suggest that BRBs suppress colonic ulceration by correcting promoter hypermethylation of suppressor genes in the colon, as well as in the spleen and bone marrow that systematically regulate inflammation. Summary: Our results suggest that dietary BRBs suppress colonic ulceration by correcting promoter hypermethylation of suppressor genes in the colon, as well as in the spleen and bone marrow that systematically regulate inflammation in DSS-induced UC. PMID:24067901

  11. Synergistic antifungal activity of sodium hypochlorite, hydrogen peroxide, and cupric sulfate against Penicillium digitatum.

    PubMed

    Cerioni, Luciana; Rapisarda, Viviana Andrea; Hilal, Mirna; Prado, Fernando Eduardo; Rodríguez-Montelongo, Luisa

    2009-08-01

    Oxidizing compounds such as sodium hypochlorite (NaCIO) and hydrogen peroxide (H2O2) are widely used in food sanitization because of their antimicrobial effects. We applied these compounds and metals to analyze their antifungal activity against Penicillium digitatum, the causal agent of citrus green mold. The MICs were 300 ppm for NaClO and 300 mM for H2O2 when these compounds were individually applied for 2 min to conidia suspensions. To minimize the concentration of these compounds, we developed and standardized a sequential treatment for conidia that resulted in loss of viability on growth plates and loss of infectivity on lemons. The in vitro treatment consists of preincubation with 10 ppm of NaClO followed by incubation with 100 mM H2O2 and 6 mM CuSO4 (cupric sulfate). The combination of NaClO and H2O2 in the presence of CuSO4 produces a synergistic effect (fractional inhibitory concentration index of 0.36). The sequential treatment applied in situ on lemon peel 24 h after the fruit was inoculated with conidia produced a significant delay in the fungal infection. The in vitro treatment was effective on both imazalil-sensitive and imazalil-resistant strains of P. digitatum and Geotrichum candidum, the causal agent of citrus sour rot. However, this treatment inhibited 90% of mycelial growth for Penicillium italicum (citrus blue mold). These results indicate that sequential treatment may be useful for postharvest control of citrus fruit diseases. PMID:19722397

  12. Comparison of sodium acid sulfate to citric acid to inhibit browning of fresh-cut potatoes.

    PubMed

    Calder, Beth L; Kash, Emily A; Davis-Dentici, Katherine; Bushway, Alfred A

    2011-04-01

    Sodium acid sulfate (SAS) dip treatments were evaluated against a distilled water control and citric acid (CA) to compare its effectiveness in reducing enzymatic browning of raw, French-fry cut potatoes. Two separate studies were conducted with dip concentrations ranging from 0%, 1%, and 3% in experiment 1 to 0%, 2%, and 2.5% in experiment 2 to determine optimal dip concentrations. Russet Burbank potatoes were peeled, sliced, and dipped for 1 min and stored at 3 °C. Color, texture, fry surface pH, and microbiological analyses were conducted on days 0, 7, and 14. The 3% SAS- and CA-treated samples had significantly (p<0.0001) lower pH levels on fry surfaces than all other treatments. Both acidulants had significantly (p?0.05) lower aerobic plate counts compared to controls in both studies by day 7. However, SAS appeared to be the most effective at the 3% level in maintaining a light fry color up to day 14 and had the highest?L-values than all other treatments. The 3% SAS-treated fry slices appeared to have the least change in textural properties over storage time, having a significantly (p=0.0002) higher force value (kg force [kgf]) than the other treatments during experiment 1, without any signs of case-hardening that appeared in the control and CA-treated samples. SAS was just as comparable to CA in reducing surface fry pH and also lowering microbial counts over storage time. According to the results, SAS may be another viable acidulant to be utilized in the fresh-cut fruit and vegetable industry. PMID:21535855

  13. Kimchi protects against azoxymethane/dextran sulfate sodium-induced colorectal carcinogenesis in mice.

    PubMed

    Kim, Hee-Young; Song, Jia-Le; Chang, Hee-Kyung; Kang, Soon-Ah; Park, Kun-Young

    2014-08-01

    The chemopreventive effects of different types and quantities of kimchi prepared with different subingredients, including commercial kimchi (CK), standardized kimchi (SK), cancer-preventive kimchi (CPK), and anticancer kimchi (ACK), on colorectal carcinogenesis in mice were evaluated. The development of colon cancer was induced in male BALB/c mice with a single intraperitoneal injection of azoxymethane (AOM, 10?mg/kg body weight) and subsequent treatment with 2% dextran sulfate sodium (DSS) in drinking water for 7 days for two cycles. After exposure to AOM and DSS, treatment with the methanolic extracts from different kimchis, particularly 1.89?g/kg of ACK, significantly increased colon length, decreased the ratio of colon weight/length, and resulted in the lowest number of tumors compared with the other kimchi-treated groups. Histological observation revealed that ACK was able to suppress AOM- and DSS-induced colonic mucosal damage and neoplasia. ACK also significantly decreased the mRNA levels of proinflammatory cytokines (TNF-?, IL-6, and IFN-?) as well as the mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase-2 (COX-2). In addition, the mRNA and protein expression of p53 and p21 was elevated in colon tissues from the ACK-treated mice compared with the other kimchi-treated groups. Our results suggest that kimchi exerted a suppressive effect on AOM- and DSS-induced colorectal carcinogenesis in the BALB/c mice. The anticancer effects of ACK were particularly potent. Thus, it is possible that the health-promoting subingredients added to ACK might be used to prevent colon carcinogenesis in humans. PMID:25029638

  14. Interactions of small dendrimers with sodium dodecyl sulfate at the air-water interface.

    PubMed

    Yanez Arteta, Marianna; Campbell, Richard A; Watkins, Erik B; Obiols-Rabasa, Marc; Schillén, Karin; Nylander, Tommy

    2014-10-01

    We have determined how the bulk behavior of mixtures of small cationic poly(amidoamine) dendrimers (generation 2, PAMAM-G2) and sodium dodecyl sulfate (SDS) affects the structure and composition of the adsorbed layers at the air-water interface. The aim is to reveal how the size of a well-defined hyperbranched polyelectrolyte affects the interfacial and bulk solution behavior of mixtures with oppositely charged surfactants, when the size of the polyelectrolyte approaches that of the surfactant. A combination of electrophoretic mobility, UV-vis spectroscopy, dynamic light scattering, and small-angle X-ray scattering measurements have been employed to characterize the interactions in the bulk solution. PAMAM-G2 associates strongly with SDS in the bulk, forming large aggregates where the size and the charge depend on the bulk composition. We show that kinetically trapped aggregates can be formed at compositions outside the equilibrium two-phase region, and the positively charged aggregates are larger than the negative ones. Surface tensiometry, neutron reflectometry, and ellipsometry have been used to reveal the properties of the interfacial layers. The interfacial structures formed depend strongly on the bulk composition: structured layers are present for samples inside the two-phase region, whereas intact nanostructured aggregates adsorb for samples just outside the two-phase region. The interfacial behavior of PAMAM-G2/SDS mixtures is compared with that of small amines or multivalent ions and oppositely charged surfactants. The implications of aggregate adsorption, dissociation, and spreading processes are discussed as well as the potential of small dendrimers for applications involving the delivery of functional molecules to interfaces. PMID:25203770

  15. A study of the structure of mixed micellar solutions based on heptaethylene glycol monotetradecyl ether and sodium (lithium) dodecyl sulfate by the small-angle neutron scattering method

    SciTech Connect

    Rajewska, A. [Joint Institute for Nuclear Research (Russian Federation)], E-mail: aldonar@jinr.ru; Medrzycka, K.; Hallmann, E. [Gdansk University of Technology (Poland)

    2007-09-15

    The micellization in mixed aqueous systems based on a new nonionic surfactant, namely, heptaethylene glycol monotetradecyl ether (C{sub 14}E{sub 7}), and an anionic surfactant, namely, sodium dodecyl sulfate, sodium decyl sulfate, or lithium dodecyl sulfate, is studied by small-angle neutron scattering. Preliminary results of the investigation into the behavior of C{sub 14}E{sub 7} aqueous solutions (at two concentrations, 0.17 and 0.50%) upon addition of small amounts of three different classical anionic surfactants are reported.

  16. Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants1[W][OPEN

    PubMed Central

    Yarmolinsky, Dmitry; Brychkova, Galina; Kurmanbayeva, Assylay; Bekturova, Aizat; Ventura, Yvonne; Khozin-Goldberg, Inna; Eppel, Amir; Fluhr, Robert; Sagi, Moshe

    2014-01-01

    Sulfite reductase (SiR) is an essential enzyme of the sulfate assimilation reductive pathway, which catalyzes the reduction of sulfite to sulfide. Here, we show that tomato (Solanum lycopersicum) plants with impaired SiR expression due to RNA interference (SIR Ri) developed early leaf senescence. The visual chlorophyll degradation in leaves of SIR Ri mutants was accompanied by a reduction of maximal quantum yield, as well as accumulation of hydrogen peroxide and malondialdehyde, a product of lipid peroxidation. Interestingly, messenger RNA transcripts and proteins involved in chlorophyll breakdown in the chloroplasts were found to be enhanced in the mutants, while transcripts and their plastidic proteins, functioning in photosystem II, were reduced in these mutants compared with wild-type leaves. As a consequence of SiR impairment, the levels of sulfite, sulfate, and thiosulfate were higher and glutathione levels were lower compared with the wild type. Unexpectedly, in a futile attempt to compensate for the low glutathione, the activity of adenosine-5?-phosphosulfate reductase was enhanced, leading to further sulfite accumulation in SIR Ri plants. Increased sulfite oxidation to sulfate and incorporation of sulfite into sulfoquinovosyl diacylglycerols were not sufficient to maintain low basal sulfite levels, resulting in accumulative leaf damage in mutant leaves. Our results indicate that, in addition to its biosynthetic role, SiR plays an important role in prevention of premature senescence. The higher sulfite is likely the main reason for the initiation of chlorophyll degradation, while the lower glutathione as well as the higher hydrogen peroxide and malondialdehyde additionally contribute to premature senescence in mutant leaves. PMID:24987017

  17. Formation of Reactive Sulfite-Derived Free Radicals by the Activation of Human Neutrophils: An ESR Study

    PubMed Central

    Ranguelova, Kalina; Rice, Annette B.; Khajo, Abdelahad; Triquigneaux, Mathilde; Garantziotis, Stavros; Magliozzo, Richard S.; Mason, Ronald P.

    2012-01-01

    The objective of the present study is to determine the effect of (bi)sulfite (hydrated sulfur dioxide) on human neutrophils and the ability of these immune cells to produce reactive free radicals due to (bi)sulfite oxidation. Myeloperoxidase (MPO) is an abundant heme protein in neutrophils that catalyzes the formation of cytotoxic oxidants implicated in asthma and inflammatory disorders. In the present study sulfite (•SO3?) and sulfate (SO4•?) anion radicals are characterized with the ESR spin-trapping technique using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in the reaction of (bi)sulfite oxidation by human MPO and human neutrophils via sulfite radical chain reaction chemistry. After treatment with (bi)sulfite, PMA-stimulated neutrophils produced DMPO-sulfite anion radical, -superoxide, and -hydroxyl radical adducts. The latter adduct probably resulted, in part, from the conversion of DMPO-sulfate to DMPO-hydroxyl radical adduct via a nucleophilic substitution reaction of the radical adduct. This anion radical (SO4•?) is highly reactive and, presumably, can oxidize target proteins to protein radicals, thereby initiating protein oxidation. Therefore, we propose that the potential toxicity of (bi)sulfite during pulmonary inflammation or lung-associated diseases such as asthma may be related to free radical formation. PMID:22326772

  18. Soluble Epoxide Hydrolase Deficiency Inhibits Dextran Sulfate Sodium-induced Colitis and Carcinogenesis in Mice

    PubMed Central

    DONG, HUA; LIAO, JIE; HAMMOCK, BRUCE D.; YANG, GUANG-YU

    2014-01-01

    Soluble epoxide hydrolase (sEH) hydrolyses/inactivates anti-inflammatory epoxyeicosatrienoic acids (EETs) to their corresponding diols, and targeting sEH leads to strong anti-inflammatory effects. In the present study, using a tissue microarray and immunohistochemical approach, a significant increase of sEH expression was identified in ulcerative colitis (UC)-associated dysplasia and adenocarcinoma. The effects of deficiency in the sEH gene were determined on dextran sulfate sodium (DSS) colitis-induced carcinogenesis. The effects of EETs on lipopolysaccharide (LPS)-activated macrophages were analyzed in vitro. With extensive histopathological and immunohistochemical analyses, compared to wild-type mice, sEH?/? mice exhibited a significant decrease in tumor incidence (13/20 vs. 6/19, p<0.05) and a markedly reduced average tumor size (59.62±20.91 mm3 vs. 22.42±11.22 mm3), and a significant number of pre-cancerous dysplasia (3±1.18 vs. 2±0.83, p<0.01). The inflammatory activity, as measured by the extent/proportion of erosion/ulceration/dense lymphoplasmacytosis (called active colitis index) in the colon, was significantly lower in sEH?/? mice (44.7%±24.9% vs. 20.2%±16.2%, p<0.01). The quantitative polymerase chain reaction (qPCR) assays demonstrated significantly low levels of cytokines/chemokines including monocyte chemoattractant protein (MCP-1), inducible nitric oxide synthase (iNOS), vasopressin-activated calcium-mobilizing (VCAM-1), interleukin-1 beta (IL-1?) and tumor necrosis factor-alpha (TNF-?). In vitro, LPS-activated macrophages treated with 14,15-EET showed a significant reduction of LPS-triggered IL-1? and TNF-? expression. Eicosanoic acid metabolic profiling revealed a significant increase of the ratios of EETs/dihydroeicosatrienoic acids (DHETs) and epoxyoctadecennoic acid/dihydroxyoctadecenoic acid (EpOMEs/DiHOMEs). These results indicate that sEH plays an important role in the development of colitis and in inducing carcinogenesis. PMID:24324059

  19. Histopathological and morphometric changes induced by a dextran sodium sulfate (DSS) model in broilers.

    PubMed

    Menconi, A; Hernandez-Velasco, X; Vicuña, E A; Kuttappan, V A; Faulkner, O B; Tellez, G; Hargis, B M; Bielke, L R

    2015-05-01

    Oral administration of dextran sodium sulfate (DSS) is commonly used as an inducer of enteric inflammation in rodents. However, there is a dearth of knowledge regarding appropriate dosage, timing, or ageresponses in broilers for this potential inducer of inflammation without necrosis. Two experiments were conducted in day-of-hatch chicks to analyze clinical parameters and enteric histological changes induced by DSS when administered via drinking water ( DW: ). In both experiments, birds were distributed into nontreated control or varying concentrations of DSS in DW. For both experiments, only 0.75% DSS in DW was histologically evaluated. In Experiment 1, chicks received DSS from day 3 to 11, and at 3, 6, and 8 d of treatment, chicks were weighed, and sections of the duodenum, ileum, and ceca were formalin fixed. The addition of 0.75% DSS caused depression, anemia, and watery bloody diarrhea, plus significantly (P < 0.05) decreased BW gain at all times. Shortened ileal villi at 6 d and duodenal villi at 8 d of treatment, reduced duodenal and ileal epithelial cell height at 3, 6, and 8 d, and increased duodenal goblet cell density at 6 and 8 d were observed in response to DSS administration (P < 0.05). In Experiment 2, birds received DSS from days 10 to 16 and were sampled at 3 and 6 d of treatment. Similar changes were found in ceca of treated birds. There was no significant change in the duodenal villus height and goblet cell density by 6 d of treatment, suggesting that 6 d of 0.75% DSS in DW was not sufficient for the reproduction of duodenal symptoms in these older birds. However, there was a significant decrease in ilealvillus height and decreased ileal epithelial cell height at 3 and 6 d of treatment, as well as a significant decrease in BW compared to the control group. These findings indicate that DW administration of 0.75% DSS caused generalized mild and non-necrotic enteritis in broilers and that this compound may be useful for enteric inflammation modeling in poultry. PMID:25743415

  20. Therapeutic effect of a hydroxynaphthoquinone fraction on dextran sulfate sodium-induced ulcerative colitis

    PubMed Central

    Zhang, Zi-Liang; Fan, Hua-Ying; Yang, Ming-Yan; Zhang, Zuo-Kai; Liu, Ke

    2014-01-01

    AIM: To evaluate the therapeutic effect of hydroxynaphthoquinone mixture (HM) on dextran sulfate sodium (DSS)-induced colitis and explore the underlying mechanisms. METHODS: BALB/c mice received 3.5% DSS for 6 d to induce ulcerative colitis. Groups of mice were orally administered HM 3.5, 7 and 14 mg/kg and mesalazine 200 mg/kg per day for 7 d. During the experiment, clinical signs and body weight, stool consistency and visible fecal blood were monitored and recorded daily. A disease activity index score was calculated for each animal. At the conclusion of the experiment, the colonic histopathological lesions were evaluated. Myeloperoxidase (MPO) activity and tumor necrosis factor-? (TNF-?) levels were determined. Protein expression levels of TNF-?, nuclear factor-?B (NF-?B) p65, inhibitor of ?B (I?B) and phosphorylation of I?B (p-I?B) were analyzed by Western blot analysis. RESULTS: Administration of 3.5% DSS for 6 d successfully induced acute colitis associated with soft stool, diarrhea, rectal bleeding, and colon shortening, as well as a loss of body weight. Administration of HM effectively attenuated the severity of colonic mucosa injury. For histopathological analysis, HM treatment improved histological alterations and lowered pathological scores compared with the DSS only group. This manifested as a reduction in the extent of colon injury and inflammatory cell infiltration, as well as the degree of mucosal destruction. In addition, HM at doses of 7 and 14 mg/kg significantly decreased MPO activity in colonic tissue (0.98 ± 0.22 U/g vs 1.32 ± 0.24 U/g, 0.89 ± 0.37 U/g vs 1.32 ± 0.24 U/g tissue, P < 0.05) and serum TNF-? levels (68.78 ± 7.34 ng/L vs 88.98 ± 17.79 ng/L, 64.13 ± 14.13 ng/L vs 88.98 ± 17.79 ng/L, P < 0.05). Furthermore, HM down-regulated the expression of TNF-?, NF-?B p65 and p-I?B? in colonic tissue while up-regulating I?B? protein expression. These results suggest that the significant anti-inflammatory effect of HM may be attributable to its inhibition of TNF-? production and NF-?B activation. CONCLUSION: HM had a favorable therapeutic effect on DSS-induced ulcerative colitis, supporting its further development and clinical application in inflammatory bowel disease. PMID:25386079

  1. Modifying effects of polyethylene glycols and sodium dodecyl sulfate on synthesis of Ni nanocrystals in 1,2-propanediol

    NASA Astrophysics Data System (ADS)

    Zhang, Xifeng; Yin, Hengbo; Cheng, Xiaonong; Jiang, Zhonggui; Zhao, Xin; Wang, Aili

    2006-09-01

    Morphology-controlled synthesis of nickel (Ni) nanocrystals has been carried out from nickel acetate tetrahydrate with 1,2-propanediol as both solvent and reductant in the presence of modifiers. The as-prepared nanostructured Ni samples have been characterized by powder X-ray diffraction (XRD), transmission electron micrographs (TEM), selected area electron diffraction (SAED) and Fourier transform infrared (FTIR). The presence of modifiers plays an important role in morphology-controlled synthesis of Ni nanocrystals. The modifying and stabilizing effects of single modifiers such as polyethylene glycols (PEGs) and sodium dodecyl sulfate (SDS), and their composites have been investigated.

  2. Improving sodium dodecyl sulfate polyacrylamide gel electrophoresis detection of low-abundance protein samples by rapid freeze centrifugation.

    PubMed

    Virgen-Ortíz, J J; Ibarra-Junquera, V; Escalante-Minakata, P; Osuna-Castro, J A; Ornelas-Paz, J de J; Mancilla-Margalli, N A; Castañeda-Aguilar, R L

    2013-12-15

    This work presents a rapid and simple freeze centrifugation method to concentrate dilute protein solutions for detection by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) Coomassie blue staining. Moreover, a simple way to assemble a cryoconcentration device is presented, and its use is discussed. Commercial purified protein standard and an enzyme with high fructosyltransferase (FTase) activity, coming from target fractions obtained by chromatographic separation, were used as an example. FTase, coming directly from the chromatographic fractions, was difficult to view through SDS-PAGE analysis; however, it was easily visualized, and its activity was enhanced, after the application of the freeze centrifugation protocol presented here. PMID:24050966

  3. Pilot field-verification studies of the sodium sulfide/ferrous sulfate treatment process. Final report, September 1987-May 1988

    SciTech Connect

    Wiloff, P.M.; Suciu, D.F.; Prescott, D.S.; Schober, R.K.; Loyd, F.S.

    1988-09-01

    In previous project, jar and dynamic testing showed that the sodium sulfide/ferrous sulfate process was a viable method for reducing hexavalent chromium and removing heavy metals from the Tinker AFB industrial wastewater with significant decrease in sludge production and treatment costs. In this phase, pilot-plant field verification studies were conducted to evaluate the chemical and physical parameters of the chromium reduction process, the precipitation and clarification process, and the activated-sludge system. Sludge production was evaluated and compared to the sulfuric acid/sulfur dioxide/lime process.

  4. Electrochemical measurements on the binding of sodium dodecyl sulfate and dodecyltrimethylammonium bromide with {alpha}- and {beta}-cyclodextrins

    SciTech Connect

    Wan Yunus, W.M.Z.; Taylor, J.; Bloor, D.M.; Hall, D.G.; Wyn-Jones, E. [Univ. of Salford (United Kingdom)

    1992-10-29

    The binding of ionic surfactants (S) to {alpha}- and {beta}-cyclodextrins (CD) has been investigated using surfactant-selective electrodes. These electrochemical measurements have shown that S(CD) and S(CD){sub 2} inclusion complexes are formed between sodium dodecyl sulfate and both {alpha}- and {beta}-cyclodextrins and also between dodecyltrimethylammonium bromide and {alpha}-cyclodextrin. On the other hand, the cationic surfactant only forms a 1:1 complex with {beta}-cyclodextrin. From the data the equilibrium binding constants for the formation of each of the complexes have been evaluated. 29 refs., 5 figs., 1 tab.

  5. The effects of sodium sulfate in the water of nursery pigs and the efficacy of nonnutritive feed additives to mitigate those effects.

    PubMed

    Flohr, J R; Tokach, M D; Dritz, S S; DeRouchey, J M; Goodband, R D; Nelssen, J L

    2014-08-01

    Two experiments were conducted to investigate the effects of sodium sulfate water and the efficacy of nonnutritive feed additives in nursery pig diets. In Exp. 1, 320 barrows (5.4 ± 0.1 kg BW and 21 d of age) were allotted to 1 of 8 treatments for 24 d in a 2 × 4 factorial with 2 levels of sodium sulfate water (control or 3,000 mg sodium sulfate/L added), and 4 dietary zeolite (clinoptilolite) levels (0, 0.25, 0.50, or 1%). Fecal samples were collected on d 5, 9, 16, and 23; visually scored for consistency (1 = firm and 5 = watery); and analyzed for DM. No interactions of sodium sulfate × zeolite were observed for any response criteria. Overall (d 0 to 24), pigs drinking sodium sulfate water had decreased (P < 0.01) ADG, ADFI, and G:F compared with pigs drinking control water. Pigs drinking sodium sulfate water also had increased (P < 0.01) fecal scores and lower (P < 0.04) fecal DM on d 5, 9, and 16 compared with pigs drinking control water. Increasing dietary zeolite increased (linear; P < 0.05) ADG and ADFI but had no effect on G:F. In Exp. 2, 350 barrows (5.7 ± 0.1 kg BW and 21 d of age) were allotted to 1 of 10 treatments in a 2 × 5 factorial for 21 d with 2 levels of sodium sulfate water (control or 2,000 mg sodium sulfate/L added) and 5 dietary treatments (control, 1 or 2% zeolite, 1% humic acid substance [HA], and 1% humic and fulvic acid substance [HFB]). Fecal samples were collected on d 5, 8, 15, and 21; visually scored for consistency (1 = firm and 5 = watery); and analyzed for DM. Overall (d 0 to 21), a water source × diet interaction was observed for ADG and G:F because pigs fed the 1% HA had decreased (P < 0.01) ADG and G:F when drinking sodium sulfate water compared with other treatments but increased ADG and G:F when drinking control water. Pigs drinking sodium sulfate water had decreased (P < 0.01) ADG and G:F and tended (P < 0.08) to have decreased ADFI compared with pigs drinking control water. Pigs drinking sodium sulfate water had increased (P < 0.01) fecal scores and decreased (P < 0.01) fecal DM on d 5 and 8. In conclusion, water high in sodium sulfate concentrations decreased growth performance and increased fecal moisture in newly weaned pigs. Although zeolite improved growth performance in the first experiment, it did not influence growth in the second study. The nonnutritive feed additives used in both experiments were unsuccessful in ameliorating the increased osmotic diarrhea observed from high sodium sulfate water. PMID:24981569

  6. Electron spin echo modulation of doxylstearic acid probes of the surface and internal structure of lithium dodecyl sulfate micelles: comparison with sodium dodecyl sulfate and tetramethylammonium dodecyl sulfate micelles

    SciTech Connect

    Jones, R.R.M.; Maldonado, R.; Szajdzinska-Pietek, E.; Kevan, L.

    1986-03-13

    Two-pulse electron spin echo modulation analyses of x-doxylstearic acid spin probes (x = 5, 7, 10, 12, and 16) in frozen lithium dodecyl sulfate (LDS) micelles in D/sub 2/O and lithium dodecyl-12,12,12-d/sub 3/ sulfate micelles in H/sub 2/O have been carried out. The results give information on the average conformation of the stearic acid chains and the distribution of D/sub 2/O and the -CD/sub 3/ end groups in the micellar aggregates. These are compared to data from dodecyl sulfate micelles with sodium or tetramethylammonium counterions (SDS and TMADS, respectively) which were studied previously in a similar fashion. The LDS micelles show a less compact and more hydrated headgroup region than SDS micelles. The -CD/sub 3/ surfactant end groups in LDS micelles are not concentrated at the micelle center but are broadly distributed throughout the micellar volume. The surface and internal structure of LDS micelles is quite comparable to that of TMADS micelles and is different from that of SDS micelles. 23 references, 2 figures.

  7. Immunological comparison of sulfite oxidase

    SciTech Connect

    Pollock, V.; Barber, M.J. (Univ. South Florida College, Tampa (United States))

    1991-03-11

    Polyclonal antibodies (rabbit), elicited against FPLC-purified chicken and rat liver sulfite oxidase (SO), have been examined for inhibition and binding to purified chicken (C), rat (R), bovine (B), alligator (A) and shark (S) liver enzymes. Anti-CSO IgG cross-reacted with all five enzymes, with varying affinities, in the order CSO=ASO{gt}RSO{gt}BSO{gt}SSO. Anti-ROS IgG also cross-reacted with all five enzymes in the order RSO{gt}CSO=ASO{gt}BSO{gt}SSO. Anti-CSO IgG inhibited sulfite:cyt. c reductase (S:CR), sulfite:ferricyanide reductase (S:FR) and sulfite:dichlorophenolindophenol reductase (S:DR) activities of CSO to different extents (S:CR{gt}S:FR=S:DR). Similar differential inhibition was found for anti-ROS IgG and RSO S:CR, S:FR and S:DR activities. Anti-CSO IgG inhibited S:CR activities in the order CSO=ASO{much gt}SSO{gt}BSO. RSO was uninhibited. For anti-RSO IgG the inhibition order was RSO{gt}SSO{gt}BSO{gt}ASO. CSO was uninhibited. Anti-CSO and RSO IgGs partially inhibited Chlorella nitrate reductase (NR). Minor cross-reactivity was found for xanthine oxidase. Common antigenic determinants for all five SO's and NR are indicated.

  8. Determination and application of the equilibrium oxygen isotope effect between water and sulfite

    NASA Astrophysics Data System (ADS)

    Wankel, Scott D.; Bradley, Alexander S.; Eldridge, Daniel L.; Johnston, David T.

    2014-01-01

    The information encoded by the two stable isotope systems in sulfate (?34SSO4 and ?18OSO4) has been widely applied to aid reconstructions of both modern and ancient environments. Interpretation of ?18OSO4 records has been complicated by rapid oxygen isotope equilibration between sulfoxyanions and water. Specifically, the apparent relationship that develops between ?18OSO4 and ?18Owater during microbial sulfate reduction is thought to result from rapid oxygen isotope equilibrium between intracellular water and aqueous sulfite - a reactive intermediate of the sulfate reduction network that can back-react to produce sulfate. Here, we describe the oxygen equilibrium isotope effect between water and sulfite (referring to all the sum of all S(IV)-oxyanions including sulfite and both isomers and the dimer of bisulfite). Based on experiments conducted over a range of pH (4.5-9.8) and temperature (2-95 °C), where ? = 1000 * (? - 1), we find ?SO3-H2O=13.61-0.299?pH-0.081?T °C. Thus, at a pH (7.0) and temperature (25 °C) typifying commonly used experimental conditions for sulfate reducing bacterial cultures, sulfite is enriched in 18O by 9.5‰ (±0.8‰) relative to ambient water. We examine the implication of these results in a sulfate reduction network that has been revised to reflect our understanding of the reactions involving oxygen. By evaluating previously published data within this new architecture, our results are consistent with previous suggestions of high reversibility of the sulfate reduction biochemical network. We also demonstrate that intracellular exchange rates between SO32- and water must be on average 1-3 orders of magnitude more rapid than intracellular fluxes of sulfate reduction intermediates and that kinetic isotope effects upstream of SO32- are required to explain previous laboratory and environmental studies of ?18OSO4 resulting as a consequence of sulfate reduction.

  9. [Colorimetric determination of sulfite in "kanpyo" (dried gourd shavings) and "konnyakuseiko" (devil's-tongue fine powder) using sulfite oxidase and catalase].

    PubMed

    Aoki, Kazuko; Ueno, Seiichi; Ishizaki, Mutsuo

    2002-06-01

    A simple and convenient method for colorimetric determination of sulfite in foods based on its conversion to formaldehyde with sulfite oxidase and catalase was developed. Sulfite in a sample was extracted with water and then diluted with methanol. One mL of sample solution containing about 5-10 micrograms of sulfite was taken into a test tube with a ground-glass stopper, and 3 mL of 0.04 mol/L borate buffer (pH 8.7), 1 mL of 0.4% 3-methyl-2-benzothiazolinone hydrazone (MBTH) solution, 2,000 units of catalase solution and 1.0 units of sulfite oxidase were added. The mixture was incubated for 35 minutes at 37 degrees C. Then 0.15 mL of 1 mol/L hydrochloric acid and 5 mL of 0.2% iron(III) nitrate solution were added. The reaction mixture was transferred to a measuring flask after standing for 5 minutes at room temperature, and diluted to 20 mL with methanol. The absorbance of this solution was measured using a spectrophotometer at the wavelength of 635 nm. The calibration curve prepared with sodium sulfite showed linearity between 0 to 16 micrograms/mL as sulfur dioxide. The recoveries of sulfite in "Kanpyo" (dried gourd shavings) and "Konnyaku-seiko" (devil's-tongue fine powder) by the proposed method were 97-104%, and the coefficients of variation were below 6%. The sulfite values in these foods determined by the proposed method were reasonably consistent with those obtained by the bubbling distillation-alkaline titration method. PMID:12238155

  10. Oxidation of byproduct calcium sulfite hemihydrate from coal-fired power plant 

    E-print Network

    Bhatt, Sandeep

    1995-01-01

    sulfate in slurry or solid form. Oxidation of calcium sulfite in the gypsite slurry form was carried out at temperatures between 30 and 80 'C and for slurry concentrations of 4 to 8 % solids. Sulfuric acid was used to convert calcium carbonate to calcium...

  11. Stopped-flow kinetic studies of sphere-to-rod transitions of sodium alkyl sulfate micelles induced by hydrotropic salt.

    PubMed

    Zhang, Jingyan; Ge, Zhishen; Jiang, Xiaoze; Hassan, P A; Liu, Shiyong

    2007-12-15

    The kinetics and mechanism of sphere-to-rod transitions of sodium alkyl sulfate micelles induced by hydrotropic salt, p-toluidine hydrochloride (PTHC), were investigated by stopped-flow with light scattering detection. Spherical sodium dodecyl sulfate (SDS) micelles transform into short ellipsoidal shapes at low salt concentrations ([PTHC]/[SDS], chi(PTHC)=0.3 and 0.4). Upon stopped-flow mixing aqueous solutions of spherical SDS micelles with PTHC, the scattered light intensity gradually increases with time. Single exponential fitting of the dynamic traces leads to characteristic relaxation time, tau(g), for the growth process from spherical to ellipsoidal micelles, and it increases with increasing SDS concentrations. This suggests that ellipsoidal micelles might be produced by successive insertion of unimers into spherical micelles, similar to the case of formation of spherical micelles as suggested by Aniansson-Wall (A-W) theory. At chi(PTHC) > or = 0.5, rod-like micelles with much higher axial ratio form. The scattered light intensity exhibits an initially abrupt increase and then levels off. The dynamic curves can be well fitted with single exponential functions, and the obtained tau(g) decreases with increasing SDS concentration. Thus, the growth from spherical to rod-like micelles might proceed via fusion of spherical micelles, in agreement with mechanism proposed by Ikeda et al. At chi(PTHC)=0.3 and 0.6, the apparent activation energies obtained from temperature dependent kinetic studies for the micellar growth are 40.4 and 3.6 kJ/mol, respectively. The large differences between activation energies for the growth from spherical to ellipsoidal micelles at low chi(PTHC) and the sphere-to-rod transition at high chi(PTHC) further indicate that they should follow different mechanisms. Moreover, the sphere-to-rod transition kinetics of sodium alkyl sulfate with varying hydrophobic chain lengths (n=10, 12, 14, and 16) are also studied. The longer the carbon chain lengths, the slower the sphere-to-rod transition. PMID:17904570

  12. Influence of Sodium Lauryl Sulfate and Tween 80 on Carbamazepine–Nicotinamide Cocrystal Solubility and Dissolution Behaviour

    PubMed Central

    Li, Mingzhong; Qiao, Ning; Wang, Ke

    2013-01-01

    The influence of the surfactants of sodium lauryl sulfate (SLS) and Tween 80 on carbamazepine–nicotinamide (CBZ–NIC) cocrystal solubility and dissolution behaviour has been studied in this work. The solubility of the CBZ–NIC cocrystal was determined by measuring the eutectic concentrations of the drug and the coformer. Evolution of the intrinsic dissolution rate (IDR) of the CBZ–NIC cocrystal was monitored by the UV imaging dissolution system during dissolution. Experimental results indicated that SLS and Tween 80 had little influence upon the solubility of the CBZ–NIC cocrystal but they had totally opposite effects on the IDR of the CBZ–NIC cocrystal during dissolution. SLS significantly increased the IDR of the CBZ–NIC cocrystal while Tween 80 decreased its IDR. PMID:24300560

  13. Microfluidic two-dimensional separation of proteins combining temperature gradient focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    PubMed

    Shameli, Seyed Mostafa; Ren, Carolyn L

    2015-04-01

    A two-dimensional separation system is presented combining scanning temperature gradient focusing (TGF) and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) in a PDMS/glass microfluidic chip. Denatured proteins are first focused and separated in a 15 mm long channel via TGF with a temperature range of 16-47 °C and a pressure scanning rate of -0.5 Pa/s and then further separated via SDS-PAGE in a 25 mm long channel. A side channel is designed at the intersection between the two dimensions to continuously inject SDS into the gel, allowing SDS molecules to be compiled within the focused bands. Separation experiments are performed using several fluorescently labeled proteins with single point detection. Experimental results show a dramatic improvement in peak capacity over one-dimensional separation techniques. PMID:25787346

  14. The effect of caffeine on the reactions of the excited singlet state of pyrene in micellar sodium lauryl sulfate

    NASA Astrophysics Data System (ADS)

    Hashimoto, Shuichi; Thomas, J. Kerry

    1984-08-01

    The effect of caffeine on a few photo-induced reactions of pyrene in micellar sodium lauryl sulfate (NaLS) has been studied. In these systems caffeine complexes with the pyrene (K asso = 85 ± 10 M -1 and also with the other reactants, e.g. Cu 2+ or TI +. The efficiencies of reactions which involve contact, i.e. pyrene excimer formation, and quenching by TI + ions to give the triplet state of pyrene, are significantly reduced in the presence of caffeine, due to geometric inhibitions formed by the complexation processes. The kinetics of photo-induced electron transfer, e.g. between excited pyrene and Cu 2+, are not affected. However, the subsequent reactions of the products are modified and the yield of ionic products is markedly increased.

  15. Adiabatic polymerization of acrylamide in water under the effect of the potassium persulfate-sodium metabisulfite-copper sulfate system

    SciTech Connect

    Kurenkov, V.F.; Baiburdov, T.A.; Stupen'kova, L.L.

    1988-04-10

    Since adiabatic polymerization of acrylamide (AA) has been studied very little and the information on the effect of copper ions on polymerization of AA prepared in dilute aqueous solutions is very limited, the features of adiabatic polymerization of AA in concentrated aqueous solutions in the presence of the potassium persulfate-sodium metabisulfite-copper sulfate redox initiating system were investigated in this study. The empirical equation for the overall rate of adiabatic polymerization of acrylamide in concentrated aqueous solutions was found, and the effective total activation energy, which decreases with an increase in the concentration of CuSO/sub 4/, was determined. An increase in the molecular weight of the polymer with an increase in the concentration of the monomer and a decrease in the concentration of the components of the initiating system was demonstrated.

  16. Protective Effects of Different Marigold (Calendula officinalis L.) and Rosemary Cream Preparations against Sodium-Lauryl-Sulfate-Induced Irritant Contact Dermatitis

    Microsoft Academic Search

    S. M. Fuchs; S. Schliemann-Willers; T. W. Fischer; P. Elsner

    2005-01-01

    In the present study, we evaluated the protective action of cream preparations containing seven different types of marigold and rosemary extracts in vivo in healthy volunteers with experimentally induced irritant contact dermatitis (ICD). Marigold and rosemary extracts in base cream DAC (Deutscher Arzneimittel-Codex = German Pharmaceutical Codex) were tested in a 4-day repetitive irritation test using sodium lauryl sulfate. The

  17. Interference in the Coomassie Brilliant Blue and Pyrogallol Red protein dye-binding assays is increased by the addition of sodium dodecyl sulfate to the dye reagents

    Microsoft Academic Search

    Thomas Marshall; Katherine M Williams

    2004-01-01

    We have investigated the effect of sodium dodecyl sulfate (SDS) upon the response of the Coomassie Brilliant Blue (CBB) and Pyrogallol Red-molybdate (PRM) protein dye-binding assays to interference from aminoglycosides, ampholytes, detergents, phenothiazines, reducing agents, and miscellaneous substances previously reported to interfere with the assays. The CBB assay was less prone to interference than the PRM assay but gave positive

  18. Iron Supplementation Increases Disease Activity and Vitamin E Ameliorates the Effect in Rats with Dextran Sulfate Sodium-Induced Colitis1

    Microsoft Academic Search

    Julie Carrier; Elaheh Aghdassi; Jim Cullen; Johane P. Allard

    Inflammatory bowel disease is often associated with iron deficiency anemia and oral iron supple- mentation may be required. However, iron may increase oxidative stress through the Fenton reaction and thus exacerbate the disease. This study was designed to determine in rats with dextran sulfate sodium (DSS)-induced colitis whether oral iron supplementation increases intestinal inflammation and oxidative stress and whether the

  19. Acids in combination with sodium dodecyl sulfate caused quality deterioration of fresh-cut iceburg lettuce during storage in modified atmosphere package

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies showed that levulinic acid (LA) and sodium acid sulfate (SAS) were effective in inactivating human pathogens on fresh produce. The present study investigated the effects of LA and SAS in comparison with citric acid and chlorine on the inactivation of E. coli O157:H7 and the sensory qu...

  20. TREATMENT OF A SATURATED ZONE HEXAVALENT CHROMIUM SOURCE AREA USING A FERROUS SULFATE/SODIUM DITHIONITE MIXTURE: A FIELD PILOT STUDY

    EPA Science Inventory

    A field pilot study was conducted to evaluate the performance of a combined ferrous sulfate/sodium dithionite solution for in situ treatment of a saturated zone hexavalent chromium source area at a former ferrochromium alloy production facility in Charleston, S.C. The saturate...

  1. The acceleration of decomposition of potassium persulfate in the presence of sodium dodecyl sulfate and polymer particles as a model of emulsion polymerization system

    Microsoft Academic Search

    M. Okubo; M. Fujimura; T. Mori

    1991-01-01

    The decomposition rates of potassium persulfate (KPS) in aqueous solutions containing sodium dodecyl sulfate (SDS) in the presence of polystyrene or poly(methyl methacrylate) particles as models of emulsion polymerization systems were measured by isotachophoresis. “Free” SDS molecules dispersed in the monomolecular state had an ability to accelerate the KPS decomposition, but SDS molecules adsorbed onto the polymer particles did not

  2. Negative impact of bone-marrow-derived mesenchymal stem cells on dextran sulfate sodium-induced colitis

    PubMed Central

    Nam, Young-Sun; Kim, Nayoun; Im, Keon-Il; Lim, Jung-Yeon; Lee, Eun-Sol; Cho, Seok-Goo

    2015-01-01

    AIM: To investigate the effects of mesenchymal stem cells (MSCs) on dextran sulfate sodium-induced inflammatory bowel disease (IBD). METHODS: C57BL/6 mice were fed 3.5% (g/L) dextran sulfate sodium. On day seven, the mice received intraperitoneal injections of 1 × 106 MSCs. The survival rate, disease activity index values, and body weight, were monitored daily. On day ten, colon lengths and histopathologic changes were assessed. In addition, immunoregulatory changes following MSC administration were evaluated by determining the levels of effector T cell responses in the spleen and mesenteric lymph nodes, and the expression levels of inflammatory cytokines in homogenized colons. RESULTS: Intraperitoneal administration of MSCs did not prevent development of colitis and did not reduce the clinicopathologic severity of IBD. No significant difference was evident in either survival rate or disease activity index score between the control and MSC-treated group. Day ten-sacrificed mice exhibited no significant difference in either colon length or histopathologic findings. Indeed, the MSC-treated group exhibited elevated levels of interleukin (IL)-6 and transforming growth factor-?, and a reduced level of IL-10, in spleens, mesenteric lymph nodes, and homogenized colons. The IL-17 level was lower in the mesenteric lymph nodes of the MSC-treated group (P = 0.0126). In homogenized colons, the IL-17 and tumor necrosis factor-? (P = 0.0092) expression levels were also lower in the treated group. CONCLUSION: MSC infusion provided no significant histopathologic or clinical improvement, thus representing a limited therapeutic approach for IBD. Functional enhancement of MSCs is needed in further study. PMID:25717235

  3. Sulfite-formaldehyde pretreatment on rice straw for the improvement of enzymatic saccharification.

    PubMed

    Gu, Feng; Wang, Wangxia; Jing, Lei; Jin, Yongcan

    2013-08-01

    Rice straw is one of the most abundant agricultural residues in China. It is considered as a promising raw material for bioethanol production. In this work, rice straw was pretreated by sodium sulfite-formaldehyde (SF) for improving enzymatic saccharification. The SF pretreatment, using proven technology and industrialized equipment, showed efficient delignification selectivity and high carbohydrates retention in pretreated solid. The highest sugar yields of 79.0%, 88.8% and 71.1% for total sugar, glucan and xylan, respectively were obtained at an enzyme loading of 40 FPU/g-substrate after the raw material pretreated with 12% sodium sulfite at 160°C. About 75% of lignin was dissolved in pretreatment spent liquor and 78% of silica was retained in the residue of enzymatic hydrolysis. The results proved sulfite-formaldehyde as a promising pretreatment for the production of bioethanol as well as potential high value added by-products of silica nanoparticles and lignosulfonate. PMID:23743425

  4. Measurements and modeling of deposition rates from a near supercritical aqueous sodium sulfate solution to a heated cylinder

    SciTech Connect

    Hodes, M.S.; Smith, K.A.; Hurst, W.S.; Bowers, W.J. Jr.; Griffith, P.

    1997-07-01

    Toxic organic wastes and mixed wastes, composed of toxic organic compounds and radioactive elements, are a major environmental management problem. Supercritical water oxidation (SCWO) shows promise for effective remediation of these wastes by destroying their organic constituents and, when necessary, concentrating their radioactive ingredients in forms suited to safe disposal. In the Supercritical Water oxidation process, organic compounds containing heteroatoms such as S, Cl or P are oxidized to the corresponding acid. In order to avoid corrosion, bases are therefore often injected into the reactor. The salts that are formed upon neutralization (sulfates, chlorides, phosphates, etc.) have low solubility in SCW and consequently precipitate as solid phases. These salts can form agglomerates and coat internal surfaces, leading to plugging of transport lines and inhibition of heat transfer. The purpose of this study is to develop an understanding of salt deposition kinetics and nucleation phenomena in SCWO reactors. The authors provide experimental deposition rate data from a sodium sulfate-containing SCW stream to a heated cylinder and develop a predictive model which is buttressed by these data. They also discuss how the deposition rate is linked to the nucleation mechanism and what type of nucleation is most important in the experiments. For the experiments, the test section is a six-port chamber which is fashioned from a 1.91 cm (3/4 in.) diameter Swagelok cross. One port was used to mount a 5.08 mm diameter internally heated cylinder into the center of the chamber and the remaining ports provided fluid cross flow, visual observation capability and instrumentation access. Aqueous sodium sulfate solutions of 4 wt% salt concentration were pumped at about 250 bar through preheaters that brought the solution to a temperature close to that at which precipitation occurs. The heated cylinder raised the nearby solution above this temperature, thus limiting deposition almost exclusively to the heated cylinder. The rate of deposition was observed to be of order 0.1 gm/minute. Natural convection dominated transport at the conditions investigated and the observed deposition rates indicate that all the salt nucleated heterogeneously at the salt layer-solution interface.

  5. A novel, environmentally friendly sodium lauryl ether sulfate-, cocamidopropyl betaine-, cocamide monoethanolamine-containing buffer for MEKC on microfluidic devices.

    PubMed

    Hoeman, Kurt W; Culbertson, Christopher T

    2008-12-01

    A new buffer has been developed for fast, high-efficiency separations of amino acids by MEKC. This buffer was more environmentally friendly than the most commonly used surfactant-containing buffers for MEKC separations. It used a commercially available dishwashing soap by Seventh Generation (Burlington, VT, USA), which contained three micelle-forming agents. The mixed micelles were composed of sodium lauryl ether sulfate (anionic), cocamidopropyl betaine (zwitterionic), and cocamide monoethanolamine (non-ionic). The optimized buffer contained 5.0% w/w Seventh Generation Free & Clear dishwashing soap, 10 mM sodium borate, and was completely void of organics. The lack of organics and the biodegradability of the surfactant molecules made this buffer more environmentally friendly than typical SDS-containing buffers. This new buffer also had a different selectivity and provided faster separations with higher separation efficiencies than SDS-based buffers. Fast separations of BODIPY FL labeled amino acids yielded peaks with separation efficiencies greater than 100,000 in less than 20 s. PMID:19130569

  6. Control of pathogens in biofilms on the surface of stainless steel by levulinic acid plus sodium dodecyl sulfate.

    PubMed

    Chen, Dong; Zhao, Tong; Doyle, Michael P

    2015-08-17

    The efficacy of levulinic acid (LVA) plus sodium dodecyl sulfate (SDS) to remove or inactivate Listeria monocytogenes, Salmonella Typhimurium, and Shiga toxin-producing Escherichia coli (STEC) in biofilms on the surface of stainless steel coupons was evaluated. Five- or six-strain mixtures (ca. 9.0logCFU/ml) of the three pathogens were separately inoculated on stainless steel coupons. After incubation at 21°C for 72h, the coupons were treated for 10min by different concentrations of LVA plus SDS (0.5% LVA+0.05% SDS, 1% LVA+0.1% SDS, and 3% LVA+2% SDS) and other commonly used sanitizers, including a commercial quaternary ammonium-based sanitizer (150ppm), lactic acid (3%), sodium hypochlorite (100ppm), and hydrogen peroxide (2%). The pathogens grew in the biofilms to ca. 8.6 to 9.3logCFU/coupon after 72h of incubation. The combined activity of LVA with SDS was bactericidal in biofilms for cells of the three pathogens evaluated, with the highest concentrations (3% LVA+2% SDS) providing the greatest log reduction. Microscopic images indicated that the cells were detached from the biofilm matrix and the integrity of cell envelopes were decreased after the treatment of LVA plus SDS. This study is conducive to better understanding the antimicrobial behavior of LVA plus SDS to the foodborne pathogens within biofilms. PMID:25950851

  7. Sulfite-Mediated Oxidation of Myeloperoxidase to a Free Radical: Immuno-Spin Trapping Detection in Human Neutrophils

    PubMed Central

    Ranguelova, Kalina; Rice, Annette B.; Lardinois, Olivier M.; Triquigneaux, Mathilde; Steinckwich, Natacha; Deterding, Leesa J.; Garantziotis, Stavros; Mason, Ronald P.

    2013-01-01

    Previous studies focused on catalyzed oxidation of (bi)sulfite, leading to the formation of reactive sulfur trioxide (•SO3?), peroxymonosulfate (?O3SOO•) and sulfate (SO4•?) anion radicals, which can damage target proteins and oxidize them to protein radicals. It is known that these very reactive sulfur- and oxygen-centered radicals can be formed by oxidation of (bi)sulfite by peroxidases. Myeloperoxidase (MPO), an abundant heme protein secreted from activated neutrophils that play a central role in host defense mechanisms, allergic reactions and asthma, is a likely candidate for initiating the respiratory damage caused by sulfur dioxide. The objective of the present study is to examine the oxidative damage caused by (bi)sulfite-derived free radicals in human neutrophils through formation of protein radicals. We used immuno-spin trapping and confocal microscopy to study the protein oxidations driven by sulfite-derived radicals. We found that the presence of sulfite can cause MPO-catalyzed oxidation of MPO to a protein radical in phorbol 12-myristate 13-acetate (PMA)-activated human neutrophils. We trapped the MPO-derived radicals in situ using the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and detected them immunologically as nitrone adducts in cells. Our present study demonstrates that myeloperoxidase initiates (bi)sulfite oxidation leading to MPO radical damage possibly leading to (bi)sulfite-exacerbated allergic reactions. PMID:23376232

  8. The optical constants of several atmospheric aerosol species - Ammonium sulfate, aluminum oxide, and sodium chloride

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.; Khare, B. N.

    1976-01-01

    An investigation is conducted of problems which are related to a use of measured optical constants in the simulation of the optical constants of real atmospheric aerosols. The techniques of measuring optical constants are discussed, taking into account transmission measurements through homogeneous and inhomogeneous materials, the immersion of a material in a liquid of a known refractive index, the consideration of the minimum deviation angle of prism measurement, the interference of multiply reflected light, reflectivity measurements, and aspects of mathematical analysis. Graphs show the real and the imaginary part of the refractive index as a function of wavelength for aluminum oxide, NaCl, and ammonium sulfate. Tables are provided for the dispersion parameters and the optical constants.

  9. Thermodynamics of interaction between sulfite-thiosulfate solutions and noble metals

    Microsoft Academic Search

    A. S. Gudkov; I. A. Zhuchkov; G. G. Mineev

    2010-01-01

    The thermodynamic probability of dissolution of noble metals in aqueous solutions of sodium thiosulfate, sodium sulfite, and\\u000a their mixture under standard conditions (without heating of the solution) is considered. The influence of impurities and catalysts\\u000a (divalent copper, elemental sulfur, oxygen access into the solution, and ammonia) is evaluated. Theoretical calculations of\\u000a reaction rates are performed. As a result of theoretical

  10. A Picrorhiza kurroa Derivative, Picroliv, Attenuates the Development of Dextran-Sulfate-Sodium-Induced Colitis in Mice

    PubMed Central

    Zhang, De-Kui; Yu, Jian-Jie; Li, Yu-Min; Wei, Li-Na; Yu, Yi; Feng, Yan-Hu; Wang, Xiang

    2012-01-01

    Background. Free radicals and proinflammatory cytokines have been shown to play a critical role in the pathogenesis of ulcerative colitis (UC). Picroliv, a Picrorhiza kurroa derivative, has been demonstrated to have antioxidant and anti-inflammatory effect. The purpose of the study was to investigate the effects of picroliv on experimental model of UC in mice. Materials and Methods. Picroliv was administrated orally by gavage to mice with colitis induced by dextran sulfate sodium (DSS). Disease activity index (DAI), colon length, and histology score were observed. Myeloperoxidase (MPO) activity, and SOD, MDA concentrations were measured by enzyme-linked immunosorbent assay (ELISA) while the expression of cytokine mRNAs was studied by real-time-quantitative polymerase chain reaction and also ELISA. The expression of NF-?B p65 was observed by immunohistochemistry staining and western blotting. Results. A significant improvement was observed in DAI and histological score in mice treated with picroliv, and incerased MPO activity, MDA concentrations, and the expression of IL-1?, TNF-?, and NF-?B p65 in mice with DSS-induced colitis were significantly reduced while decreased SOD level increased following administration of picroliv. Conclusion. The administration of picroliv leads to an amelioration of DSS-induced colitis, suggesting administration of picroliv may provide a therapeutic approach for UC. PMID:23125487

  11. Effect of low concentration sodium dodecyl sulfate on the electromigration of palonosetron hydrochloride stereoisomers in micellar electrokinetic chromatography.

    PubMed

    Hu, Shao-Qiang; Wang, Gui-Xia; Guo, Wen-Bo; Guo, Xu-Ming; Zhao, Min

    2014-05-16

    The effect of low concentrations of sodium dodecyl sulfate (SDS) on the separation of palonosetron hydrochloride (PALO) stereoisomers by micellar electrokinetic chromatography (MEKC) has been investigated. It was found that the addition of SDS prolongs the migration time and the migration order of four stereoisomers changes regularly with the SDS concentration. Good separations for all the four stereoisomers were achieved at appropriate SDS concentration. The effect of SDS on the electromigration (mobilities) of PALO stereoisomers has been studied, in order to explain its effect on the separation by MEKC. It was found that low concentrations of SDS added into the separation media forms negatively charged complexes with PALO stereoisomers and hence reverses their electromigration direction. Furthermore, the migration order between two enantiomeric pairs is also reversed because the enantiomeric pair with a bigger positive mobility than that of another pair turns to have a bigger negative mobility when bound with SDS. Based on these results, the effect of SDS on the MEKC separation of PALO stereoisomers was elucidated reasonably. The performance of the developed chiral MEKC method was validated by the analysis of a real sample. PMID:24709591

  12. Molecular dynamics simulation of cetyltrimethylammonium bromide and sodium octyl sulfate mixtures: aggregate shape and local surfactant distribution.

    PubMed

    Chen, Jingfei; Hao, Jingcheng

    2013-04-21

    To examine the self-assembly of cationic-anionic (catanionic) surfactant mixtures, we performed molecular dynamical (MD) simulations at fixed surfactant numbers but different ratios of cationic cetyltrimethylammonium bromide (CTAB) and anionic sodium octyl sulfate (SOS) aqueous mixtures, which were investigated previously (J. Phys. Chem. 1996, 100, 5874-5879). The simulation results show that with an increase of CTAB, there are two different potential aggregation evolving paths. For SOS-rich mixtures, the aggregation transition is sphere-disc-rod, while in CTAB-rich mixtures, it is rod-sphere. Furthermore, a disc micelle model was built to explain the shape of the aggregates with varying compositions of CTAB and SOS. In the model, the surfactant distribution in disc micelles is spontaneously adjusted according to the different curvature of the disc surface. The short-tailed SOS tends to stay in the edge region of high curvature, while in the disc center, where the curvature is very low, equimolar mixing of cationic and anionic surfactants is better for the arrangement of CTAB and SOS. Based on this model, the relation between the shape and composition of CTAB and SOS aggregates is well established by analyzing the local surfactant distribution. These new simulations on the evolving mechanism of aggregate shape are very important for the full understanding of the complex phase behavior in cationic and anionic mixtures and for the self-assembly of other mixed surfactant systems. PMID:23463240

  13. Design of high payload PLGA nanoparticles containing melittin/sodium dodecyl sulfate complex by the hydrophobic ion-pairing technique.

    PubMed

    Yang, Linlin; Cui, Fude; Shi, Kai; Cun, Dongmei; Wang, Rui

    2009-08-01

    The water-soluble peptide, melittin, was modified with an anionic agent, sodium dodecyl sulfate by hydrophobic ion-pairing. Investigations showed that the formed complex was very soluble in organic solvent, especially, in dimethylsulfoxide and dehydrated alcohol. Furthermore, the physiochemical properties of the complex in the solid state or in an aqueous medium were characterized using octanol/water partition measurement, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The complex was formulated into poly(D,L-lactide-co-glycolide acid) nanoparticles by an emulsion solvent diffusion method. It was found that the nanoparticles of about 130 nm in size can be produced with a high encapsulation efficiency, and the entrapment of nanoparticles prepared with the formed complex increased from about 50% to nearly 100% compared with that for pure melittin. Moreover, the growth inhibitory effects of modified melittin and melittin-loaded nanoparticles in breast cancer MCF-7 cells were not changed comparing with free melittin as determined by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. PMID:19274512

  14. Determination of antihypertensive drug moexipril hydrochloride based on the enhancement effect of sodium dodecyl sulfate at carbon paste electrode.

    PubMed

    Attia, Ali K

    2010-04-15

    Herein, an electrochemical differential pulse voltammetric method was developed for the determination of moexipril hydrochloride based on the enhancement effect of sodium dodecyl sulfate. The oxidation process has been carried out in Britton-Robinson buffer. Moexipril hydrochloride exhibits a well-defined irreversible oxidation peak over the entire pH range (2-11). The peak current varied linearly over the range from 4.0 x 10(-7) to 5.2 x 10(-6) mol L(-1). The limits of detection and quantification were 6.87 x 10(-8) mol L(-1) and 2.29 x 10(-7) mol L(-1), respectively. The recovery was found in the range from 99.65% to 100.76%. The relative standard deviation was found in the range from 0.429% to 0.845%. The proposed method possesses high sensitivity, accuracy and rapid response. Finally, this method was successfully used to determine moexipril hydrochloride in tablets. PMID:20188882

  15. Adsorption of hydroxamate siderophores and EDTA on goethite in the presence of the surfactant sodium dodecyl sulfate

    PubMed Central

    2009-01-01

    Siderophore-promoted iron acquisition by microorganisms usually occurs in the presence of other organic molecules, including biosurfactants. We have investigated the influence of the anionic surfactant sodium dodecyl sulfate (SDS) on the adsorption of the siderophores DFOB (cationic) and DFOD (neutral) and the ligand EDTA (anionic) onto goethite (?-FeOOH) at pH 6. We also studied the adsorption of the corresponding 1:1 Fe(III)-ligand complexes, which are products of the dissolution process. Adsorption of the two free siderophores increased in a similar fashion with increasing SDS concentration, despite their difference in molecule charge. In contrast, SDS had little effect on the adsorption of EDTA. Adsorption of the Fe-DFOB and Fe-DFOD complexes also increased with increasing SDS concentrations, while adsorption of Fe-EDTA decreased. Our results suggest that hydrophobic interactions between adsorbed surfactants and siderophores are more important than electrostatic interactions. However, for strongly hydrophilic molecules, such as EDTA and its iron complex, the influence of SDS on their adsorption seems to depend on their tendency to form inner-sphere or outer-sphere surface complexes. Our results demonstrate that surfactants have a strong influence on the adsorption of siderophores to Fe oxides, which has important implications for siderophore-promoted dissolution of iron oxides and biological iron acquisition. PMID:19523232

  16. Use of sodium dodecyl sulfate-polymyxin B-sucrose medium for isolation of Vibrio vulnificus from shellfish.

    PubMed Central

    Bryant, R G; Jarvis, J; Janda, J M

    1987-01-01

    The differential and selective sodium dodecyl sulfate-polymyxin B-sucrose medium (SPS) of Kitaura et al. (T. Kitaura, S. Doke, I. Azuma, M. Imaida, K. Miyano, K. Harada, and E. Yabuuchii, FEMS Microbiol. Lett. 17:205-209, 1983), which highlights alkylsulfatase activity, was evaluated for its potential use in the direct isolation and enumeration of Vibrio vulnificus from shellfish. V. vulnificus was detected by this method in six of nine shellfish samples collected from diverse geographic locales during the summer of 1986. Direct enumeration of V. vulnificus at 7.0 X 10(2) to 2.2 X 10(4) CFU/g of shellfish was achieved on SPS agar. All sample results were confirmed in parallel examinations by using conventional glucose-salt-Teepol (Shell Oil Co.) broth and alkaline peptone water enrichment with plating onto thiosulfate-citrate-bile salts-sucrose agar. Additionally, alkylsulfatase activity was evaluated in vitro for 97 strains representing 14 Vibrio spp. V. vulnificus and Vibrio cholerae-01 were the only species consistently found to possess this activity. The range of plating efficiencies for random V. vulnificus strains analyzed on SPS was 11 to 74% (mean, 39%). The use of SPS shows great promise for the study of shellfish and other environmental sources for V. vulnificus. Images PMID:3662506

  17. Mechanisms of ocular toxicity using the in vitro bovine lens and sodium dodecyl sulfate as a chemical model.

    PubMed

    Bantseev, Vladimir; McCanna, David; Banh, Alice; Wong, Winnie W; Moran, Kelley L; Dixon, D George; Trevithick, John R; Sivak, Jacob G

    2003-05-01

    Previous work using the in vitro bovine lens as a model has shown a correlation between toxicity and lens optical function and showed much higher sensitivity in detecting irritancy of several surfactants at much lower concentrations than the Draize score. In the current study, cultured bovine lenses were used to study the effects of the surfactant sodium dodecyl sulfate (SDS) on lens optical properties and mitochondrial integrity. Bovine lenses were exposed to SDS (0.1 to 0.00625%) for 30 min and cultured for 24 h. Compared to controls (n = 17), loss of sharp focus was evident immediately following exposure to 0.1% SDS (n = 14, p < 0.0001). At 24 h loss of sharp focus became evident in all groups. Loss of lens transparency, significant increase in lens wet weight, and axial length were seen 24 h postexposure in lenses treated with 0.1 to 0.025% SDS. Confocal analysis 24 h postexposure showed SDS concentration-dependent decrease in number and length of the mitochondria in lens epithelial and superficial cortical fiber cells. The results of this study show a correlation between lens optical properties and metabolic function and together provide a sensitive in vitro model of ocular chemical toxicity. Results of confocal analysis suggest that the mitochondrial integrity of the superficial cortical fiber cells is most sensitive to damage caused by SDS. The results further suggest that recovery of lens metabolic function is necessary for the recovery of lens optical properties. PMID:12700424

  18. Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt.

    PubMed

    Hassan, P A; Fritz, Gerhard; Kaler, Eric W

    2003-01-01

    The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases. PMID:16256467

  19. Analysis of the Subunit Structure of Protochlorophyllide Holochrome by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis 1

    PubMed Central

    Canaani, Ora D.; Sauer, Kenneth

    1977-01-01

    The subunit structures of protochlorophyllide holochrome (PCH) and chlorophyllide holochrome (CH) were studied by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. PCH from leaves of dark-grown (Phaseolus vulgaris var. red kidney) is a polymeric pigment-protein complex of approximately 600,000 daltons. It is composed of 12 to 14 polypeptides of 45,000 daltons, when examined prior to and immediately following photoconversion. The protochlorophyllide or chlorophyllide pigment molecules are associated with these polypeptides. Subsequent to photoconversion, the absorption maximum of newly formed chlorophyllide shifts from 678 nm to 674 nm upon standing in darkness. Following the 678 to 674 spectral shift, the chlorophyllide is associated with a polypeptide with a molecular weight of 16,000 daltons. In addition, sucrose gradient centrifugation of PCH and CH under nondenaturing conditions indicates that during the course of the dark spectroscopic shift, the 600,000 dalton CH undergoes dissociation into a small chlorophyllide protein. The dissociation of CH, the change in the molecular weight of the chlorophyllide polypeptide from 45,000 to 16,000 daltons, as well as the dark spectroscopic shift are temperature-dependent and blocked below 0 C. It was also found that each holochrome molecule of 600,000 daltons contains at least four protochlorophyllide pigment molecules. PMID:16660106

  20. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis

    PubMed Central

    Qiu, Xinyun; Zhang, Feng; Yang, Xi; Wu, Na; Jiang, Weiwei; Li, Xia; Li, Xiaoxue; Liu, Yulan

    2015-01-01

    Intestinal fungi are increasingly believed to greatly influence gut health. However, the effects of fungi on intestinal inflammation and on gut bacterial constitution are not clear. Here, based on pyrosequencing method, we reveal that fungal compositions vary in different intestinal segments (ileum, cecum, and colon), prefer different colonization locations (mucosa and feces), and are remarkably changed during intestinal inflammation in dextran sulfate sodium (DSS)-colitis mouse models compare to normal controls: Penicillium, Wickerhamomyces, Alternaria, and Candida are increased while Cryptococcus, Phialemonium, Wallemia and an unidentified Saccharomycetales genus are decreased in the guts of DSS-colitis mice. Fungi-depleted mice exhibited aggravated acute DSS-colitis associated with gain of Hallella, Barnesiella, Bacteroides, Alistipes, and Lactobacillus and loss of butyrate-producing Clostridium XIVa, and Anaerostipes compare with normal control. In contrast, bacteria-depleted mice show attenuated acute DSS-colitis. Mice with severely chronic recurrent DSS-colitis show increased plasma (1,3)-?-D-glucan level and fungal translocation into the colonic mucosa, mesenteric lymph nodes and spleen. This work demonstrate the different roles of fungi in acute and chronic recurrent colitis: They are important counterbalance to bacteria in maintaining intestinal micro-ecological homeostasis and health in acutely inflamed intestines, but can harmfully translocate into abnormal sites and could aggravate disease severity in chronic recurrent colitis. PMID:26013555

  1. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis.

    PubMed

    Qiu, Xinyun; Zhang, Feng; Yang, Xi; Wu, Na; Jiang, Weiwei; Li, Xia; Li, Xiaoxue; Liu, Yulan

    2015-01-01

    Intestinal fungi are increasingly believed to greatly influence gut health. However, the effects of fungi on intestinal inflammation and on gut bacterial constitution are not clear. Here, based on pyrosequencing method, we reveal that fungal compositions vary in different intestinal segments (ileum, cecum, and colon), prefer different colonization locations (mucosa and feces), and are remarkably changed during intestinal inflammation in dextran sulfate sodium (DSS)-colitis mouse models compare to normal controls: Penicillium, Wickerhamomyces, Alternaria, and Candida are increased while Cryptococcus, Phialemonium, Wallemia and an unidentified Saccharomycetales genus are decreased in the guts of DSS-colitis mice. Fungi-depleted mice exhibited aggravated acute DSS-colitis associated with gain of Hallella, Barnesiella, Bacteroides, Alistipes, and Lactobacillus and loss of butyrate-producing Clostridium XIVa, and Anaerostipes compare with normal control. In contrast, bacteria-depleted mice show attenuated acute DSS-colitis. Mice with severely chronic recurrent DSS-colitis show increased plasma (1,3)-?-D-glucan level and fungal translocation into the colonic mucosa, mesenteric lymph nodes and spleen. This work demonstrate the different roles of fungi in acute and chronic recurrent colitis: They are important counterbalance to bacteria in maintaining intestinal micro-ecological homeostasis and health in acutely inflamed intestines, but can harmfully translocate into abnormal sites and could aggravate disease severity in chronic recurrent colitis. PMID:26013555

  2. Beneficial Effect of Shikonin on Experimental Colitis Induced by Dextran Sulfate Sodium in Balb/C Mice

    PubMed Central

    Andújar, Isabel; Ríos, José Luis; Giner, Rosa María; Miguel Cerdá, José; Recio, María del Carmen

    2012-01-01

    The naphthoquinone shikonin, a major component of the root of Lithospermum erythrorhizon, now is studied as an anti-inflammatory agent in the treatment of ulcerative colitis (UC). Acute UC was induced in Balb/C mice by oral administration of 5% dextran sodium sulfate (DSS). The disease activity index was evaluated, and a histologic study was carried out. Orally administered shikonin reduces induced UC in a dose-dependent manner, preventing the shortening of the colorectum and decreasing weight loss by 5% while improving the appearance of feces and preventing bloody stools. The disease activity index score was much lower in shikonin-treated mice than in the colitic group, as well as the myeloperoxidase activity. The expression of cyclooxygenase-2 was reduced by 75%, activation of NF-?B was reduced by 44%, and that of pSTAT-3 by 47%, as well as TNF-?, IL-1?, and IL-6 production. Similar results were obtained in primary macrophages culture. This is the first report of shikonin's ability to attenuate acute UC induced by DSS. Shikonin acts by blocking the activation of two major targets: NF-?B and STAT-3, and thus constitutes a promising potential therapeutic agent for the management of the inflammatory bowel disease. PMID:23346196

  3. Strawberry phytochemicals inhibit azoxymethane/dextran sodium sulfate-induced colorectal carcinogenesis in Crj: CD-1 mice.

    PubMed

    Shi, Ni; Clinton, Steven K; Liu, Zhihua; Wang, Yongquan; Riedl, Kenneth M; Schwartz, Steven J; Zhang, Xiaoli; Pan, Zui; Chen, Tong

    2015-03-01

    Human and experimental colon carcinogenesis are enhanced by a pro-inflammatory microenvironment. Pharmacologically driven chemopreventive agents and dietary variables are hypothesized to have future roles in the prevention of colon cancer by targeting these processes. The current study was designed to determine the ability of dietary lyophilized strawberries to inhibit inflammation-promoted colon carcinogenesis in a preclinical animal model. Mice were given a single i.p. injection of azoxymethane (10 mg kg-1 body weight). One week after injection, mice were administered 2% (w/v) dextran sodium sulfate in drinking water for seven days and then an experimental diet containing chemically characterized lyophilized strawberries for the duration of the bioassay. Mice fed control diet, or experimental diet containing 2.5%, 5.0% or 10.0% strawberries displayed tumor incidence of 100%, 64%, 75% and 44%, respectively (p < 0.05). The mechanistic studies demonstrate that strawberries reduced expression of proinflammatory mediators, suppressed nitrosative stress and decreased phosphorylation of phosphatidylinositol 3-kinase, Akt, extracellular signal-regulated kinase and nuclear factor kappa B. In conclusion, strawberries target proinflammatory mediators and oncogenic signaling for the preventive efficacies against colon carcinogenesis in mice. This works supports future development of fully characterized and precisely controlled functional foods for testing in human clinical trials for this disease. PMID:25763529

  4. Sodium dodecyl sulfate coated alumina modified with a new Schiff's base as a uranyl ion selective adsorbent.

    PubMed

    Tashkhourian, J; Moradi Abdoluosofi, L; Pakniat, M; Montazerozohori, M

    2011-03-15

    A simple and selective method was used for the preconcentration and determination of uranium(VI) by solid-phase extraction (SPE). In this method, a column of alumina modified with sodium dodecyl sulfate (SDS) and a new Schiff's base ligand was prepared for the preconcentration of trace uranyl(VI) from water samples. The uranium(VI) was completely eluted with HCl 2M and determined by a spectrophotometeric method with Arsenazo(III). The preconcentration steps were studied with regard to experimental parameters such as amount of extractant, type, volume and concentration of eluent, pH, flow rate of sample source and tolerance limit of diverse ions on the recovery of uranyl ion. A preconcentration factor more than 200 was achieved and the average recovery of uranyl(VI) was 99.5%. The relative standard deviation was 1.1% for 10 replicate determinations of uranyl(VI) ion in a solution with a concentration of 5 ?g mL(-1). This method was successfully used for the determination of spiked uranium in natural water samples. PMID:21282004

  5. Electrosynthesis of polyaniline–mutilwalled carbon nanotube nanocomposite films in the presence of sodium dodecyl sulfate for glucose biosensing

    NASA Astrophysics Data System (ADS)

    Huyen Le, Trong; Thang Trinh, Ngoc; Nguyen, Le Huy; Binh Nguyen, Hai; Nguyen, Van Anh; Tran, Dai Lam; Dung Nguyen, Tuan

    2013-06-01

    Polyaniline–mutilwalled carbon nanotube (PANi–MWCNT) nanocomposites were electropolymerized in the presence of sodium dodecyl sulfate (SDS) onto interdigitated platinum-film planar microelectrodes (ID?E). The MWCNTs were first dispersed in SDS solution then mixed with aniline and H2SO4. This mixture was used to electro-synthesize PANi–MWCNT films with potentiostatic method at E = + 0.90 V (versus SCE). The PANi–MWCNT films were characterized by cyclic voltammetry (CV) and scanning electron microscopy (SEM). The results show that the PANi–MWCNT films have a high electroactivity, and a porous and branched structure that can increase the specific surface area for biosensing application. In this work the PANi–MWCNT films were applied for covalent immobilization of glucose oxidase (GOx) via glutaraldehyde agent. The GOx/PANi–MWCNT/ID?E was studied using cyclic voltammetric and chronoamperometric techniques. The effect of several interferences, such as ascorbic acid (AA), uric acid (UA), and acetaminophen (AAP) on the glucosensing at +0.6 V (versus SCE) is not significant. The time required to reach 95% of the maximum steady-state current was less than 5 s. A linear range of the calibration curve for the glucose concentration lies between 1 and 12 mM which is a suitable level in the human body.

  6. A small-angle neutron scattering study of sodium dodecyl sulfate-poly(propylene oxide) methacrylate mixed micelles.

    PubMed

    Bastiat, Guillaume; Grassl, Bruno; Borisov, Oleg; Lapp, Alain; François, Jeanne

    2006-03-15

    Mixed micelle of protonated or deuterated sodium dodecyl sulfate (SDS and SDSd25, respectively) and poly(propylene oxide) methacrylate (PPOMA) are studied by small-angle neutron scattering (SANS). In all the cases the scattering curves exhibit a peak whose position changes with the composition of the system. The main parameters which characterize mixed micelles, i.e., aggregation numbers of SDS and PPOMA, geometrical dimensions of the micelles and degree of ionisation are evaluated from the analysis of the SANS curves. The position q(max) of the correlation peak can be related to the average aggregation numbers of SDS-PPOMA and SDSd25-PPOMA mixed micelles. It is found that the aggregation number of SDS decreases upon increasing the weight ratio PPOMA/SDS (or SDSd25). The isotopic combination, which uses the "contrast effect" between the two micellar systems, has allowed us to determine the mixed micelle composition. Finally, the SANS curves were adjusted using the RMSA for the structure factor S(q) of charged spherical particles and the form factor P(q) of spherical core-shell particle. This analysis confirms the particular core-shell structure of the SDS-PPOMA mixed micelle, i.e., a SDS "core" micelle surrounded by the shell formed by PPOMA macromonomers. The structural parameters of mixed micelles obtained from the analysis of the SANS data are in good agreement with those determined previously by conductimetry and fluorescence studies. PMID:16380127

  7. Synergistic effects between sodium tripolyphosphate and zinc sulfate in corrosion inhibition for copper in neutral tap water

    SciTech Connect

    Feng, Y.; Siow, K.S.; Teo, W.K.; Tan, K.L.; Hsieh, A.K. [National Univ. of Singapore (Singapore)

    1997-07-01

    The corrosion inhibition behavior of sodium tripolyphosphate (Na{sub 5}P{sub 3}O{sub 10}, or TPP) and zinc sulfate and the synergistic effects between them were studied for copper in neutral simulated tap water using electrochemical methods, x-ray photoelectron spectroscopy, and scanning electron microscopy. Zn{sup 2+} alone showed few inhibiting effects on copper corrosion. The film formed in the presence of Zn{sup 2+} was porous and composed mainly of cuprous oxide, which was similar in morphology and composition to films formed in the absence of the inhibitor. In the presence of TPP, a smooth and compact film, believed to be of Cu(II)-TPP compounds, formed on the copper surface. More protective films were formed in solutions containing TPP and Zn{sup 2+} as a blend. High zinc content (15% to 19%) was detected by XPS. Synergistic effects of TPP and Zn{sup 2+} were believed to result from formation of Zn(II)-TPP compounds that incorporated in the films, with Cu(II)-TPP in the upper layer and Cu{sub 2}O in the inner layer. The zinc compounds increased the anodic diffusion resistance of copper ions in the films and enhanced polarization of the cathodic reduction of dissolved oxygen.

  8. Effect of salt additives on protein partition in polyethylene glycol-sodium sulfate aqueous two-phase systems.

    PubMed

    Ferreira, Luisa; Madeira, Pedro P; Mikheeva, Larissa; Uversky, Vladimir N; Zaslavsky, Boris

    2013-12-01

    Partitioning of 15 proteins in polyethylene glycol (PEG)-sodium sulfate aqueous two-phase systems (ATPS) formed by PEG of two different molecular weights, PEG-600 and PEG-8000 in the presence of different buffers at pH7.4 was studied. The effect of two salt additives (NaCl and NaSCN) on the protein partition behavior was examined. The salt effects on protein partitioning were analyzed by using the Collander solvent regression relationship between the proteins partition coefficients in ATPS with and without salt additives. The results obtained show that the concentration of buffer as well as the presence and concentration of salt additives affects the protein partition behavior. Analysis of ATPS in terms of the differences between the relative hydrophobicity and electrostatic properties of the phases does not explain the protein partition behavior. The differences between protein partitioning in PEG-600-salt and PEG-8000-salt ATPS cannot be explained by the protein size or polymer excluded volume effect. It is suggested that the protein-ion and protein-solvent interactions in the phases of ATPS are primarily important for protein partitioning. PMID:23920121

  9. Origin of salt additive effect on solute partitioning in aqueous polyethylene glycol-8000-sodium sulfate two-phase system.

    PubMed

    da Silva, Nuno R; Ferreira, Luisa A; Mikheeva, Larissa M; Teixeira, José A; Zaslavsky, Boris Y

    2014-04-11

    Partitioning of a homologous series of dinitrophenylted (DNP-) amino acids with aliphatic side chains was examined in aqueous polyethylene glycol (PEG)-8000-sodium sulfate two-phase systems (ATPS) with the additives NaSCN, NaClO4, and NaH2PO4 at concentrations varied from 0.025M up to 0.54M. The differences between the relative hydrophobicities and electrostatic properties of the two phases in all ATPS were estimated. Partitioning of adenine, adenosine mono-, di- and tri-phosphates was also examined in all ATPSs, including those with NaCl additive. Partition coefficients for these compounds and for nonionic organic compounds previously reported [L.A. Ferreira, P. Parpot, J.A. Teixeira, L.M. Mikheeva, B.Y. Zaslavsky, J. Chromatogr. A 1220 (2012) 14.] were analyzed in terms of linear solvent regression relationship. The results obtained suggest that the effects of the salts additives are related to their influence on the water structure. PMID:24613040

  10. Activation of Intestinal Human Pregnane X Receptor Protects against Azoxymethane/Dextran Sulfate Sodium–Induced Colon Cancer

    PubMed Central

    Cheng, Jie; Fang, Zhong-Ze; Nagaoka, Kenjiro; Okamoto, Minoru; Qu, Aijuan; Tanaka, Naoki; Kimura, Shioko

    2014-01-01

    The role of intestinal human pregnane X receptor (PXR) in colon cancer was determined through investigation of the chemopreventive role of rifaximin, a specific agonist of intestinal human PXR, toward azoxymethane (AOM)/dextran sulfate sodium (DSS)–induced colon cancer. Rifaximin treatment significantly decreased the number of colon tumors induced by AOM/DSS treatment in PXR-humanized mice, but not wild-type or Pxr-null mice. Additionally, rifaximin treatment markedly increased the survival rate of PXR-humanized mice, but not wild-type or Pxr-null mice. These data indicated a human PXR–dependent therapeutic chemoprevention of rifaximin toward AOM/DSS-induced colon cancer. Nuclear factor ?-light-chain-enhancer of activated B cells–mediated inflammatory signaling was upregulated in AOM/DSS-treated mice, and inhibited by rifaximin in PXR-humanized mice. Cell proliferation and apoptosis were also modulated by rifaximin treatment in the AOM/DSS model. In vitro cell-based assays further revealed that rifaximin regulated cell apoptosis and cell cycle in a human PXR-dependent manner. These results suggested that specific activation of intestinal human PXR exhibited a chemopreventive role toward AOM/DSS-induced colon cancer by mediating anti-inflammation, antiproliferation, and proapoptotic events. PMID:25277138

  11. Factors affecting size and swelling of poly(ethylene glycol) microspheres formed in aqueous sodium sulfate solutions without surfactants

    PubMed Central

    Nichols, Michael D.; Scott, Evan A.; Elbert, Donald L.

    2009-01-01

    The LCST behavior of poly(ethylene glycol) (PEG) in aqueous sodium sulfate solutions was exploited to fabricate microspheres without the use of other monomers, polymers, surfactants or organic solvents. Reactive PEG derivatives underwent thermally induced phase separation to produce spherical PEG-rich domains that coarsened in size pending gelation, resulting in stable hydrogel microspheres between ?1–100 microns in size. The time required to reach the gel point during the coarsening process and the extent of crosslinking after gelation both affected the final microsphere size and swelling ratio. The gel point could be varied by pre-reaction of the PEG derivatives below the cloud point, or by controlling pH and temperature above the cloud point. Pre-reaction brought the PEG derivatives closer to the gel point prior to phase separation, while the pH and temperature influenced the rate of reaction. Dynamic light scattering indicated a percolation-to-cluster transition about 3–5 minutes following phase separation. The mean radius of PEG-rich droplets subsequently increased with time to the 1/4th power until gelation. PEG microspheres produced by these methods with controlled sizes and densities may be useful for the production of modular scaffolds for tissue engineering. PMID:19615738

  12. Skin deposition and permeation of finasteride in vitro: effects of propylene glycol, ethanol and sodium lauryl sulfate.

    PubMed

    Limpongsa, Ekapol; Jaipakdee, Napaphak; Pongjanyakul, Thaned

    2014-08-27

    Abstract The objective of this study was to investigate the effects of propylene glycol (PG), ethanol (EtOH) and sodium lauryl sulfate (SLS) on the in vitro deposition and permeation of finasteride (FNS). A side-by-side diffusion cell mounted with a pig ear skin and a saturated solution of FNS in PG (10, 20%?v/v), EtOH (10, 20%?v/v) or SLS (0.5, 1%?w/v) vehicles were used. Incorporation of PG, EtOH or SLS caused a significant increase in FNS solubility both in the solution and on the skin with SLS?>?EtOH?>?PG. The results obtained from skin deposition studies showed that the FNS deposition rate and time increased in the same order as that of the solubility. The deposition kinetics of FNS solubilized in PG, EtOH and SLS vehicles followed either zero-order, square-root-of-time or pseudo-first-order kinetic models depending on the type and concentration of the enhancer. The permeation studies demonstrated that FNS permeation fluxes were enhanced only by EtOH vehicles. These results suggest that PG and SLS could be used as deposition enhancers, while EtOH could be the effective permeation enhancer of FNS. The obtained results can be used as the considerable insights for formulating the topical and transdermal products of FNS. PMID:25162771

  13. Omentum Cells Promote Healing of Colonic Tissues in Dextran Sulfate Sodium (DSS) Induced Model of Colitis in Mice

    PubMed Central

    Jung, Byung Chul; Lee, Min Ho; Sethupathi, Periannan; Lee, In-soo; Lee, Dongsup; Rhee, Ki-Jong

    2013-01-01

    Background Inflammatory bowel disease is characterized by persistent inflammation of the intestinal tissues. Although the usage of biologics has greatly enhanced the management of this disorder, a permanent treatment does not exist. In this study, we investigated whether the cells with anti-inflammatory and healing properties from the omentum could be harnessed to treat colitis in dextran sulfate sodium (DSS)-induced mouse colitis model. Methods: C57BL/6 mice were administered 2% DSS for 10 days and then injected in the peritoneum with cells isolated from the murine omentum. Thereafter, body weight change, serum KC levels, and histological analysis of the colon were conducted. We also examined if omentum infused mice were resistant to a lethal challenge of 4% DSS. Results: 2% DSS-mice injected with omentum cells exhibited a decrease in body weight loss, decreased inflammation in the colon and decreased levels of the inflammatory cytokine KC in the serum compared to mice given 2% DSS alone. In addition, mice administered a lethal dose of 4% DSS exhibited a 50% decrease in mortality when injected with omentum cells. Conclusion: Cells from the omentum exert anti-inflammatory and/or healing properties in the acute DSS-induced colitis model.

  14. About the singular behavior of the ionic condensation of sodium chondroitin sulfate: Conductivity study in water and water dioxane mixture

    NASA Astrophysics Data System (ADS)

    M'halla, Jalel; Besbes, Rafik; Bouazzi, Ramzi; Boughammoura, Sondes

    2006-01-01

    In this work, we generalized the (Bjerrum-Debye-Fuoss-MSA) double layer model to an ellipsoidal polyion (chondroitin sulfate) of (? Zs? e) structural charge, Ls structural length, R minor axe and ( R2 + L2/4) 1/2 major axe. With L ? Ls. Na + counter ions are distributed on the contact (or condensed) layer and on the Debye layer (ionic atmosphere). Both layers are ellipsoidal equipotentials of, respectively, R and d minor axes and are concentric to the polyion. With d = ( R + 1/2 ?), ? is the Debye-MSA screen parameter. The equilibrium distribution of Na + ions is derived from a "two states" statistical approach, leading to a general implicit expression for the rate of condensation (1 - ?). The generality of this formula results from the fact that it takes into account the finite size of the polyion ( L ? ? and R ? 0) and allows to calculate ? for different conformations of the polyion: (ellipsoidal L ? 0, cylindrical: L = Ls, spherical: L ? 0, and Manning's model: RL-1 ? 0). The main conclusion of this model is that, ? obeys to the Ostwald's principle of dilution ( ? ? 1 when CNa+ ? 0). This result is contrary to Manning's theory, for which ? is a constant ?M independent on the concentration Ci: ?M = bS/(? Zi? Lb), with bS = Ls/? Zs? and Lb = e2/( ?kT) is the Bjerrum length. However, our analysis shows that the rate of variation: (? ?/? Ci) in a given range of concentration, depends on the structural parameter bS. Indeed, the critical Manning condition ( ?-1?M = 1, ?(? ?/? Ci) ? 0), is compatible with the general following "rod-like model" approximation: (1-?)?|Zi|(?bS)[4?Zi2Lb][?CiR2];withbS?=?M-1 only for some peculiar values of bS and Lb (i.e., dielectric constant: ?). In water at 25 °C ( ? = 78.3), this singular behavior occurs for a range of a relative low or moderate concentration for some polyelectrolytes of bS structural parameter of about 5.8 Å. This is the case of sodium chondroitin sulfate in water ( bS = 5.72 Å). The addition of dioxane increases Lb, consequently, ? is shifted from its Manning's value. In order to verify this dioxane effect, we have compared experimental equivalent conductibilities ?exp of sodium chondroitin sulfate in water ( no shift) and water-dioxane (60 wt%) mixture ( positive shift), to their theoretical values ?M, ?cthand?sth corresponding, respectively, to the Manning, cylindrical and spherical models. This comparison allows also, to explain the conformation "chosen" by the polyion, in order to minimizing the friction effects (due to: viscosity; ionic and dielectric relaxations) and therefore, to optimize its mobility by the shift of its rate of ionic condensation ?.

  15. The Distribution of mixtures of dodecyl ether of poly(23)ethylene glycol with sodium dodecyl sulfate and dodecyltrimethylammonium bromide in the water/octane system

    NASA Astrophysics Data System (ADS)

    Soboleva, O. A.; Pronchenko, K. S.; Chernysheva, M. G.; Badun, G. A.

    2012-03-01

    The scintillation phase and tensiometry methods were used to study the mutual influence of dodecyl ether of poly(23)ethylene glycol (Brij-35) with sodium dodecyl sulfate and Brij-35 with dodecyltrimethylammonium bromide on the distribution in the water/octane system and adsorption at the liquid/liquid interface. The composition of mixed adsorption layers was determined and interaction parameters between molecules were calculated according to the Rosen model.

  16. 20 kHz sonoelectrochemical degradation of perchloroethylene in sodium sulfate aqueous media: Influence of the operational variables in batch mode

    Microsoft Academic Search

    Verónica Sáez; María Deseada Esclapez; Ignacio Tudela; Pedro Bonete; Olivier Louisnard; José González-García

    2010-01-01

    A preliminary study of the 20kHz sonoelectrochemical degradation of perchloroethylene in aqueous sodium sulfate has been carried out using controlled current density degradation sonoelectrolyses in batch mode. An important improvement in the viability of the sonochemical process is achieved when the electrochemistry is implemented, but the improvement of the electrochemical treatment is lower when the 20kHz ultrasound field is simultaneously

  17. Exogenous expression of human SGLT1 exhibits aggregations in sodium dodecyl sulfate polyacrylamide gel electrophoresis

    PubMed Central

    Huang, Wei-Chien; Hsu, Sheng-Chie; Huang, Shyh-Jer; Chen, Yun-Ju; Hsiao, Yu-Chun; Zhang, Weihua; Fidler, Isaiah J; Hung, Mien-Chie

    2013-01-01

    Sodium/glucose co-transporter 1 (SGLT1), which actively and energy-dependently uptakes glucose, plays critical roles in the development of various diseases including diabetes mellitus and cancer, and has been viewed as a promising therapeutic target for these diseases. Protein-protein interaction with EGFR has been shown to regulate the expression and activity of SGLT1. Exogenous expression of SGLT1 is one of the essential approaches to characterize its functions; however, exogenously expressed SGLT1 is not firmly detectable by Western blot at its calculated molecular weight, which creates a hurdle for further understanding the molecular events by which SGLT1 is regulated. In this study, we demonstrated that exogenous SGLT1 functions in glucose-uptake normally but is consistently detected near the interface between stacking gel and running gel rather than at the calculated molecular weight in Western blot analysis, suggesting that the overexpressed SGLT1 forms SDS-resistant aggregates, which cannot be denatured and effectively separated on SDS-PAGE. Co-expression of EGFR enhances both the glucose-uptake activity and protein level of the SGLT1. However, fusion with Flag or HA tag at its carboxy- but not its amino-terminus abolished the glucose-uptake activity of exogenous SGLT1 without affecting its protein level. Furthermore, the solubility of SGLT1 aggregates was not affected by other detergents but was partially improved by inhibition of o-link glycosylation. These findings suggested exogenous overexpression of SGLT1 can function normally but may not be consistently detectable at its formula weight due to its gel-shift behavior by forming the SDS-resistant aggregates. PMID:23724167

  18. Exogenous expression of human SGLT1 exhibits aggregations in sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    PubMed

    Huang, Wei-Chien; Hsu, Sheng-Chie; Huang, Shyh-Jer; Chen, Yun-Ju; Hsiao, Yu-Chun; Zhang, Weihua; Fidler, Isaiah J; Hung, Mien-Chie

    2013-01-01

    Sodium/glucose co-transporter 1 (SGLT1), which actively and energy-dependently uptakes glucose, plays critical roles in the development of various diseases including diabetes mellitus and cancer, and has been viewed as a promising therapeutic target for these diseases. Protein-protein interaction with EGFR has been shown to regulate the expression and activity of SGLT1. Exogenous expression of SGLT1 is one of the essential approaches to characterize its functions; however, exogenously expressed SGLT1 is not firmly detectable by Western blot at its calculated molecular weight, which creates a hurdle for further understanding the molecular events by which SGLT1 is regulated. In this study, we demonstrated that exogenous SGLT1 functions in glucose-uptake normally but is consistently detected near the interface between stacking gel and running gel rather than at the calculated molecular weight in Western blot analysis, suggesting that the overexpressed SGLT1 forms SDS-resistant aggregates, which cannot be denatured and effectively separated on SDS-PAGE. Co-expression of EGFR enhances both the glucose-uptake activity and protein level of the SGLT1. However, fusion with Flag or HA tag at its carboxy- but not its amino-terminus abolished the glucose-uptake activity of exogenous SGLT1 without affecting its protein level. Furthermore, the solubility of SGLT1 aggregates was not affected by other detergents but was partially improved by inhibition of o-link glycosylation. These findings suggested exogenous overexpression of SGLT1 can function normally but may not be consistently detectable at its formula weight due to its gel-shift behavior by forming the SDS-resistant aggregates. PMID:23724167

  19. ?-Caryophyllene Inhibits Dextran Sulfate Sodium-Induced Colitis in Mice through CB2 Receptor Activation and PPAR? Pathway

    PubMed Central

    Bento, Allisson Freire; Marcon, Rodrigo; Dutra, Rafael Cypriano; Claudino, Rafaela Franco; Cola, Maíra; Pereira Leite, Daniela Ferraz; Calixto, João B.

    2011-01-01

    Cannabinoid receptor 2 (CB2) activation is suggested to trigger the peroxisome proliferator-activated receptor-? (PPAR?) pathway, and agonists of both receptors improve colitis. Recently, the plant metabolite (E)-?-caryophyllene (BCP) was shown to bind to and activate CB2. In this study, we examined the anti-inflammatory effect of BCP in dextran sulfate sodium (DSS)-induced colitis and analyzed whether this effect was mediated by CB2 and PPAR?. Oral treatment with BCP reduced disease activity, colonic macro- and microscopic damage, myeloperoxidase and N-acetylglucosaminidase activities, and levels and mRNA expression of colonic tumor necrosis factor-?, IL-1?, interferon-?, and keratinocyte-derived chemokine. BCP treatment also inhibited the activation of extracellular signal-regulated kinase 1/2, nuclear factor ?B, I?B-kinase ?/?, cAMP response element binding and the expression of caspase-3 and Ki-67. Moreover, BCP enhanced IL-4 levels and forkhead box P3 mRNA expression in the mouse colon and reduced cytokine levels (tumor necrosis factor-?, keratinocyte-derived chemokine, and macrophage-inflammatory protein-2) in a culture of macrophages stimulated with lipopolysaccharide. The use of the CB2 antagonist AM630 or the PPAR? antagonist GW9662 significantly reversed the protective effect of BCP. Confirming our results, AM630 reversed the beneficial effect of BCP on pro-inflammatory cytokine expression in IEC-6 cells. These results demonstrate that the anti-inflammatory effect of BCP involves CB2 and the PPAR? pathway and suggest BCP as a possible therapy for the treatment of inflammatory bowel disease. PMID:21356367

  20. The Sasa quelpaertensis Leaf Extract Inhibits the Dextran Sulfate Sodium-induced Mouse Colitis Through Modulation of Antioxidant Enzyme Expression

    PubMed Central

    Yeom, Yiseul; Kim, Yuri

    2015-01-01

    Background: Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease. The objective of this study is to investigate the protective effect of Sasa quelpaertensis leaf extract (SQE) against oxidative stress in mice with dextran sulfate sodium (DSS)-induced colitis. Methods: Mice were treated with SQE (100 mg/kg or 300 mg/kg body weight) by gavage in advance two weeks before inflammation was induced. Then, the mice were administered with 2.5% DSS in drinking water for 7 days and normal drinking water for 7 days between two DSS treatment. Disease activity index values, gut motility, and severity of the resulting oxidative DNA damage were analyzed. The antioxidant effect of SQE was evaluated by measuring malondialdehyde (MDA) and superoxide dismutase (SOD) activity in plasma samples. Catalase activity and expressions levels of glutathione peroxidase 1 (Gpx1), SOD1, and SOD2 were also detected in colon tissues. Results: Administration of SQE significantly reduced the severity of DSS-induced colitis compared to the control (Ctrl) group. Levels of 8-oxo-dG, an oxidative DNA damage marker, were significantly lower in the SQE group compared to the untreated DSS Ctrl group. In the SQE (300 mg/kg) group, MDA levels were significantly lower, while SOD and catalase activity levels in the plasma samples were significantly higher compared with the DSS Ctrl group. The expression levels of the antioxidant enzymes, SOD2 and Gpx1, were significantly higher, while the levels of SOD 1 expression were lower, in the colon tissues of the DSS Ctrl group compared with those of the Ctrl group. In contrast, administration of SQE significantly down-regulated SOD2 and Gpx1 expressions and up-regulated SOD1 expression. Conclusions: These results indicate that SQE efficiently suppresses oxidative stress in DSS-induced colitis in mice, and its action is associated with the regulation of antioxidant enzymes.

  1. Sodium Dodecyl Sulfate and C31G as Microbicidal Alternatives to Nonoxynol 9: Comparative Sensitivity of Primary Human Vaginal Keratinocytes

    PubMed Central

    Krebs, Fred C.; Miller, Shendra R.; Catalone, Bradley J.; Welsh, Patricia A.; Malamud, Daniel; Howett, Mary K.; Wigdahl, Brian

    2000-01-01

    A broad-spectrum vaginal microbicide must be effective against a variety of sexually transmitted disease pathogens and be minimally toxic to the cell types found within the vaginal epithelium, including vaginal keratinocytes. We assessed the sensitivity of primary human vaginal keratinocytes to potential topical vaginal microbicides nonoxynol-9 (N-9), C31G, and sodium dodecyl sulfate (SDS). Direct immunofluorescence and fluorescence-activated cell sorting analyses demonstrated that primary vaginal keratinocytes expressed epithelial cell-specific keratin proteins. Experiments that compared vaginal keratinocyte sensitivity to each agent during a continuous, 48-h exposure demonstrated that primary vaginal keratinocytes were almost five times more sensitive to N-9 than to either C31G or SDS. To evaluate the effect of multiple microbicide exposures on cell viability, primary vaginal keratinocytes were exposed to N-9, C31G, or SDS three times during a 78-h period. In these experiments, cells were considerably more sensitive to C31G than to N-9 or SDS at lower concentrations within the range tested. When agent concentrations were chosen to result in an endpoint of 25% viability after three daily exposures, each exposure decreased cell viability at the same constant rate. When time-dependent sensitivity during a continuous 48-h exposure was examined, exposure to C31G for 18 h resulted in losses in cell viability not caused by either N-9 or SDS until at least 24 to 48 h. Cumulatively, these results reveal important variations in time- and concentration-dependent sensitivity to N-9, C31G, or SDS within populations of primary human vaginal keratinocytes cultured in vitro. These investigations represent initial steps toward both in vitro modeling of the vaginal microenvironment and studies of factors that impact the in vivo efficacy of vaginal topical microbicides. PMID:10858360

  2. Black tea extract prevents lipopolysaccharide-induced NF-?B signaling and attenuates dextran sulfate sodium-induced experimental colitis

    PubMed Central

    2011-01-01

    Background Black tea has been shown to elicit anti-oxidant, anti-carcinogenic, anti-inflammatory and anti-mutagenic properties. In this study, we investigated the impact of black tea extract (BTE) on lipopolysaccharide (LPS)-induced NF-?B signaling in bone marrow derived-macrophages (BMM) and determined the therapeutic efficacy of this extract on colon inflammation. Methods The effect of BTE on LPS-induced NF-?B signaling and pro-inflammatory gene expression was evaluated by RT-PCR, Western blotting, immunofluorescence and electrophoretic mobility shift assay (EMSA). The in vivo efficacy of BTE was assessed in mice with 3% dextran sulfate sodium (DSS)-induced colitis. The severity of colitis was measured by weight loss, colon length and histologic scores. Results LPS-induced IL-12p40, IL-23p19, IL-6 and IL-1? mRNA expressions were inhibited by BTE. LPS-induced I?B? phosphorylation/degradation and nuclear translocation of NF-?B/p65 were blocked by BTE. BTE treatment blocked LPS-induced DNA-binding activity of NF-?B. BTE-fed, DSS-exposed mice showed the less weight loss, longer colon length and lower histologic score compared to control diet-fed, DSS-exposed mice. DSS-induced I?B? phosphorylation/degradation and phosphorylation of NF-?B/p65 were blocked by BTE. An increase of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) in DSS-exposed mice was blocked by BTE. Conclusions These results indicate that BTE attenuates colon inflammation through the blockage of NF-?B signaling and apoptosis in DSS-induced experimental colitis model. PMID:21989142

  3. Intestinal epithelium-specific knockout of the cytochrome p450 reductase gene exacerbates dextran sulfate sodium-induced colitis.

    PubMed

    Zhu, Yi; Xie, Fang; Ding, Liang; Fan, Xiaoyu; Ding, Xinxin; Zhang, Qing-Yu

    2015-07-01

    The potential involvement of intestinal microsomal cytochrome P450 (P450) enzymes in defending against colon inflammation and injury was studied in mice treated with dextran sulfate sodium (DSS) to induce colitis. Wild-type (WT) mice and mice with intestinal epithelium (IE)-specific deletion of the P450 reductase gene (IE-Cpr-null) were compared. IE-Cpr-null mice have little microsomal P450 activity in IE cells. DSS treatment (2.5% in drinking water for 6 days) caused more severe colon inflammation, as evidenced by the presence of higher levels of myeloperoxidase and proinflammatory cytokines [tumor necrosis factor-?, interleukin (IL)-6, and IL-1?], and greater weight loss, colonic tissue damage, and colon shortening, in IE-Cpr-null mice than in WT mice. The IE-Cpr-null mice were deficient in colonic corticosterone (CC) synthesis, as indicated by the inability of ex vivo cultured colonic tissues from DSS-treated IE-Cpr-null mice (in contrast to DSS-treated WT mice) to show increased CC production, compared with vehicle-treated mice, and by the ability of added deoxycorticosterone (DOC), a precursor of CC biosynthesis via mitochondrial CYP11B1, to restore ex vivo CC production by colonic tissues from DSS-treated null mice. Intriguingly, null (but not WT) mice failed to show increased serum CC levels following DSS treatment. Nevertheless, cotreatment of DSS-exposed mice with DOC, which did not restore DSS-induced increase in serum CC, abolished the hypersensitivity of IE-Cpr-null mice to DSS-induced colon injury. Taken together, our results strongly support the notion that microsomal P450 enzymes in the intestine play an important role in protecting colon epithelium from DSS-induced inflammation and injury, possibly through increased local CC synthesis in response to DSS challenge. PMID:25926522

  4. Clcn5 knockout mice exhibit novel immunomodulatory effects and are more susceptible to dextran sulfate sodium-induced colitis.

    PubMed

    Alex, Philip; Ye, Mei; Zachos, Nicholas C; Sipes, Jennifer; Nguyen, Thuan; Suhodrev, Maxim; Gonzales, Liberty; Arora, Zubin; Zhang, Ting; Centola, Michael; Guggino, Sandra E; Li, Xuhang

    2010-04-01

    Although the intracellular Cl(-)/H(+) exchanger Clc-5 is expressed in apical intestinal endocytic compartments, its pathophysiological role in the gastrointestinal tract is unknown. In light of recent findings that CLC-5 is downregulated in active ulcerative colitis (UC), we tested the hypothesis that loss of CLC-5 modulates the immune response, thereby inducing susceptibility to UC. Acute dextran sulfate sodium (DSS) colitis was induced in Clcn5 knockout (KO) and wild-type (WT) mice. Colitis, monitored by disease activity index, histological activity index, and myeloperoxidase activity were significantly elevated in DSS-induced Clcn5 KO mice compared with those in WT mice. Comprehensive serum multiplex cytokine profiling demonstrated a heightened Th1-Th17 profile (increased TNF-alpha, IL-6, and IL-17) in DSS-induced Clcn5 KO mice compared with that in WT DSS colitis mice. Interestingly, Clcn5 KO mice maintained on a high vitamin D diet attenuated DSS-induced colitis. Immunofluorescence and Western blot analyses of colonic mucosa validated the systemic cytokine patterns and further revealed enhanced activation of the NF-kappaB pathway in DSS-induced Clcn5 KO mice compared with those in WT mice. Intriguingly, high baseline levels of IL-6 and phospho-IkappaB were observed in Clcn5 KO mice, suggesting a novel immunopathogenic role for the functional defects that result from the loss of Clc-5. Our studies demonstrate that the loss of Clc-5 1) exhibits IL-6-mediated immunopathogenesis, 2) significantly exacerbated DSS-induced colitis, which is influenced by dietary factors, including vitamin D, and 3) portrays distinct NF-kappaB-modulated Th1-Th17 immune dysregulation, implying a role for CLC-5 in the immunopathogenesis of UC. PMID:20181886

  5. Beneficial effects of the traditional medicine Igongsan and its constituent ergosterol on dextran sulfate sodium-induced colitis in mice.

    PubMed

    Kim, Su-Jin; Shin, Hyun-Ji; Lee, Geun-Hyuk; Kim, Dae-Seung; Kim, Hye-Lin; Park, Jinbong; Jung, Yunu; Youn, Dong-Hyun; Kang, Jongwook; Hong, Seung-Heon; Um, Jae-Young

    2015-09-01

    Ulcerative colitis (UC) is a type of inflammatory bowel disease and is considered a chronic gastrointestinal disorder. Igongsan (IGS) is a Korean herbal medicine, which has been used to treat digestive disorders. However, the ameliorative effect and molecular mechanisms of IGS in intestinal inflammation have not yet been studied in detail. The present study aimed to investigate the protective effects of IGS and its constituent, ergosterol, in a mouse model of dextran sulfate sodium (DSS)?induced colitis. Colitis was induced in mice by supplementing their drinking water with 5% (w/v) DSS for 7 days. The effects of IGS were then determined on DSS?induced clinical signs of colitis, including weight loss, colon shortening, diarrhea and obscure/gross bleeding. In addition, the effects of IGS were determined on the expression levels of inflammation?associated genes in the colon tissue of DSS?treated mice. The results of the present study demonstrated that mice treated with DSS exhibited marked clinical symptoms, including weight loss and reduced colon length. Treatment with IGS attenuated these symptoms and also suppressed the expression levels of tumor necrosis factor?? and interleukin?6, as well as the expression of cyclooxygenase?2 in the colon tissue of DSS?treated mice. IGS also reduced the activation of the transcription factor nuclear factor??B p65 in the colon tissue of DSS?treated mice. In addition, ergosterol was shown to attenuate the DSS?induced clinical symptoms of colitis in mice. In conclusion, the present study provided experimental evidence that IGS may be a useful therapeutic drug for patients with UC. PMID:26005209

  6. Hexafluoroisopropanol-modified cetyltrimethylammonium bromide/sodium dodecyl sulfate vesicles as a pseudostationary phase in electrokinetic chromatography.

    PubMed

    Tian, Yu; Li, Yunfang; Mei, Jie; Deng, Bin; Xiao, Yuxiu

    2015-07-24

    A novel catanionic surfactant vesicle system, formulated from hexafluoroisopropanol (HFIP), cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), was developed as pseudostationary phase (PSP) in electrokinetic chromatography (EKC). HFIP, as an organic modifier with the prominent properties of ionization, hydrogen bond donor and hydrophobicity, was used to effectively promote the spontaneous vesicle formation from CTAB/SDS mixed aqueous solutions, where precipitates are easy to occur due to long carbon chains, and adjust the performance of CTAB/SDS vesicles. The physical features (size and viscosity) and electrophoretic parameters (electroosmotic mobility, electrophoretic mobility and elution range) of HFIP-modified CTAB/SDS vesicles were characterized as HFIP volume content (0-4%, v/v), CTAB/SDS molar ratio (2:8-7:3mol/mol) and total surfactant concentration (10-50mM) varying, respectively. The 3% v/v HFIP-modified CTAB/SDS (3:7mol/mol, 50mM) vesicle system proves to have the largest mean diameter (288.20nm) and the widest elution range (12.41), which is also much wider than that of the corresponding other four PSP systems including trifluoroethanol (TFE)-modified CTAB/SDS vesicles (5.69), isopropanol-modified CTAB/SDS micelles (2.03), HFIP-modified SDS micelles (4.86) and unmodified SDS micelles (3.12). The chromatographic performance of the HFIP-modified vesicle system was evaluated by separating eight polycyclic aromatic hydrocarbons, nitrotoluene positional isomers, five positively charged and five negatively charged/neutral drugs, respectively. Baseline or near-baseline separation was achieved for each series of solutes. Compared with the TFE-modified vesicle system, as well as the HFIP-modified and unmodified SDS micelle systems, the HFIP-modified vesicle system shows the best separation selectivity, the highest or comparable efficiency, and the lowest retention. PMID:26044380

  7. Clcn5 Knockout Mice Exhibit Novel Immunomodulatory Effects and Are More Susceptible to Dextran Sulfate Sodium-Induced Colitis

    PubMed Central

    Alex, Philip; Ye, Mei; Zachos, Nicholas C.; Sipes, Jennifer; Nguyen, Thuan; Suhodrev, Maxim; Gonzales, Liberty; Arora, Zubin; Zhang, Ting; Centola, Michael; Guggino, Sandra E.; Li, Xuhang

    2015-01-01

    Although the intracellular Cl?/H+ exchanger Clc-5 is expressed in apical intestinal endocytic compartments, its pathophysiological role in the gastrointestinal tract is unknown. In light of recent findings that CLC-5 is downregulated in active ulcerative colitis (UC), we tested the hypothesis that loss of CLC-5 modulates the immune response, thereby inducing susceptibility to UC. Acute dextran sulfate sodium (DSS) colitis was induced in Clcn5 knockout (KO) and wild-type (WT) mice. Colitis, monitored by disease activity index, histological activity index, and myeloperoxidase activity were significantly elevated in DSS-induced Clcn5 KO mice compared with those in WT mice. Comprehensive serum multiplex cytokine profiling demonstrated a heightened Th1–Th17 profile (increased TNF-?, IL-6, and IL-17) in DSS-induced Clcn5 KO mice compared with that in WT DSS colitis mice. Interestingly, Clcn5 KO mice maintained on a high vitamin D diet attenuated DSS-induced colitis. Immunofluorescence and Western blot analyses of colonic mucosa validated the systemic cytokine patterns and further revealed enhanced activation of the NF-?B pathway in DSS-induced Clcn5 KO mice compared with those in WT mice. Intriguingly, high baseline levels of IL-6 and phospho-I?B were observed in Clcn5 KO mice, suggesting a novel immunopathogenic role for the functional defects that result from the loss of Clc-5. Our studies demonstrate that the loss of Clc-5 1) exhibits IL-6–mediated immunopathogenesis, 2) significantly exacerbated DSS-induced colitis, which is influenced by dietary factors, including vitamin D, and 3) portrays distinct NF-?B–modulated Th1–Th17 immune dysregulation, implying a role for CLC-5 in the immunopathogenesis of UC. PMID:20181886

  8. Isolation and characterization of sulfite oxidase from Alligator mississipiensis

    SciTech Connect

    Robbins, A.; Neame, P.J.; Barber, M.J. (Univ. of South Florida College, Tampa (United States))

    1991-03-11

    Sulfite oxidase has been isolated from fresh alligator liver using ammonium sulfate and acetone fractionation, DEAE chromatography and FPLC on Mono Q. The enzyme is dimeric and exhibits a subunit M. Wt. of approximately 58 kDa, larger than that of chicken SO. EPR spectroscopy of the partially-reduced enzyme revealed a single Mo(V) species while visible spectroscopy revealed the presence of cytochrome b{sub 557}. Maximal activities were obtained at pH 8 and 9, respectively. K{sub m}'s for SO{sub 3}{sup 2 {minus}}, cyt. c and Fe(CN){sub 6}{sup 3 {minus}} were 23.5 uM, 2.9 uM and 8.0 uM, respectively. Sequencing of peptides obtained by endoprotease K digestion indicated regions of extensive sequence similarity to chicken and rat enzymes in both heme and Mo-pterin domains. Regions of sequence dissimilarity were also found.

  9. Applications of pulsed EPR spectroscopy to structural studies of sulfite oxidizing enzymes

    SciTech Connect

    Klein, Eric L.; Astashkin, Andrei V.; Raitsimring, Arnold; Enemark, John H.

    2013-01-01

    Sulfite oxidizing enzymes (SOEs), including sulfite oxidase (SO) and bacterial sulfite dehydrogenase (SDH), catalyze the oxidation of sulfite (SO32?) to sulfate (SO42?). The active sites of SO and SDH are nearly identical, each having a 5-coordinate, pseudo-square-pyramidal Mo with an axial oxo ligand and three equatorial sulfur donor atoms. One sulfur is from a conserved Cys residue and two are from a pyranopterindithiolene (molybdopterin, MPT) cofactor. The identity of the remaining equatorial ligand, which is solvent-exposed, varies during the catalytic cycle. Numerous in vitro studies, particularly those involving electron paramagnetic resonance (EPR) spectroscopy of the Mo(V) states of SOEs, have shown that the identity and orientation of this exchangeable equatorial ligand depends on the buffer pH, the presence and concentration of certain anions in the buffer, as well as specific point mutations in the protein. Until very recently, however, EPR has not been a practical technique for directly probing specific structures in which the solvent-exposed, exchangeable ligand is an O, OH?, H2O, SO32?, or SO42? group, because the primary O and S isotopes (16O and 32S) are magnetically silent (I = 0). This review focuses on the recent advances in the use of isotopic labeling, variable-frequency high resolution pulsed EPR spectroscopy, synthetic model compounds, and DFT calculations to elucidate the roles of various anions, point mutations, and steric factors in the formation, stabilization, and transformation of SOE active site structures.

  10. Control of crystal habit and particle morphology of calcium sulfite hemihydrate crystals

    NASA Astrophysics Data System (ADS)

    Chen, Pao-Chi; Tai, Clifford Y.; Shih, Shin-Min

    1992-09-01

    Using a pH-stat apparatus, we produced crystals of calcium sulfite hemihydrate in a semibatch crystallizer by reacting Ca(OH) 2 with NaHSO 3 under various operational conditions. The habits of calcium sulfite hemihydrate obtained in this study were acicular, long-platelet, platelet and tabular. Each of them was prone to form agglomerates, depending on the pH value, solution composition and concentration of additives. At low pH and high concentration of sodium bisulfite the agglomerate of acicular crystal would form. In contrast, platelet and tabular crystals and their agglomerates were obtained at high pH and low levels of sodium bisulfite concentration. The particle morphology was not significantly altered by the addition of EDTA and DMA, but the crystal habit was tabular at low EDTA concentration and became platelet as the EDTA concentration increased.

  11. Oxidation kinetics of by-product calcium sulfite

    E-print Network

    Othman, Hasliza

    1992-01-01

    solid buildup in the fritted cylinder. The electrode and stirring bar were also rinsed thoroughly with distilled water before each run. In the first part of the experiment, calcium sulfite was oxidized in a slurry form, Acids (succinic, sulfuric... in air only at high temperatures. With 5 C/min heating rate, calcium sulfite starts to oxidize above 550 C. Oxidation of calcium sulfite in a slurry form was achieved by dissolution, oxidation and precipitation. Oxidation of calcium sulfite in a...

  12. 21 CFR 130.9 - Sulfites in standardized food.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...a) Any standardized food that contains a sulfiting...sulfiting agents that is functional and provided for in...present in the finished food at a detectable level...sulfiting agent that has no functional effect in the food and that would,...

  13. 21 CFR 130.9 - Sulfites in standardized food.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...a) Any standardized food that contains a sulfiting...sulfiting agents that is functional and provided for in...present in the finished food at a detectable level...sulfiting agent that has no functional effect in the food and that would,...

  14. A quantum-mechanical study of the reaction mechanism of sulfite oxidase.

    PubMed

    van Severen, Marie-Céline; Andreji?, Milica; Li, Jilai; Starke, Kerstin; Mata, Ricardo A; Nordlander, Ebbe; Ryde, Ulf

    2014-10-01

    The oxidation of sulfite to sulfate by two different models of the active site of sulfite oxidase has been studied. Both protonated and deprotonated substrates were tested. Geometries were optimized with density functional theory (TPSS/def2-SV(P)) and energies were calculated either with hybrid functionals and large basis sets (B3LYP/def2-TZVPD) including corrections for dispersion, solvation, and entropy, or with coupled-cluster theory (LCCSD(T0)) extrapolated toward a complete basis set. Three suggested reaction mechanisms have been compared and the results show that the lowest barriers are obtained for a mechanism where the substrate attacks a Mo-bound oxo ligand, directly forming a Mo-bound sulfate complex, which then dissociates into the products. Such a mechanism is more favorable than mechanisms involving a Mo-sulfite complex with the substrate coordinating either by the S or O atom. The activation energy is dominated by the Coulomb repulsion between the Mo complex and the substrate, which both have a negative charge of -1 or -2. PMID:24957901

  15. Effects of buffered vinegar and sodium dodecyl sulfate plus levulinic acid on Salmonella Typhimurium survival, shelf-life, and sensory characteristics of ground beef patties.

    PubMed

    Stelzleni, Alexander M; Ponrajan, Amudhan; Harrison, Mark A

    2013-09-01

    The inclusion of two sources of buffered vinegar and sodium dodecyl sulfate plus levulinic acid were studied as interventions for Salmonella Typhimurium and for their effect on shelf-life and sensory characteristics of ground beef. For the Salmonella challenge, beef trimmings (80/20) were inoculated then treated with 2% (w/v) liquid buffered vinegar (LVIN), 2.5% (w/w) powdered buffered vinegar (PVIN), a solution containing 1.0% levulinic acid plus 0.1% sodium dodecyl sulfate (SDLA) at 10% (w/v), or had no intervention applied (CNT). The same trim source and production methods were followed during production of patties for shelf-life and sensory testing without inoculation. SDLA patties had the largest reduction (P<0.05; 0.70 log CFU/g) of Salmonella. However, LVIN and PVIN had the least (P<0.05) psychrotrophic growth. SDLA patties had more purge (P<0.05) and lower (P<0.05) subjective color scores. There were not large differences in sensory characteristics, except PVIN exhibited stronger off-flavor (P<0.05). PMID:23639886

  16. Adsorption of the anionic surfactant sodium dodecyl sulfate on a C18 column under micellar and high submicellar conditions in reversed-phase liquid chromatography.

    PubMed

    Ortiz-Bolsico, C; Ruiz-Angel, M J; García-Alvarez-Coque, M C

    2015-02-01

    Micellar liquid chromatography makes use of aqueous solutions or aqueous-organic solutions containing a surfactant, at a concentration above its critical micelle concentration. In the mobile phase, the surfactant monomers aggregate to form micelles, whereas on the surface of the nonpolar alkyl-bonded stationary phases they are significantly adsorbed. If the mobile phase contains a high concentration of organic solvent, micelles break down, and the amount of surfactant adsorbed on the stationary phase is reduced, giving rise to another chromatographic mode named high submicellar liquid chromatography. The presence of a thinner coating of surfactant enhances the selectivity and peak shape, especially for basic compounds. However, the risk of full desorption of surfactant is the main limitation in the high submicellar mode. This study examines the adsorption of the anionic surfactant sodium dodecyl sulfate under micellar and high submicellar conditions on a C18 column, applying two methods. One of them uses a refractive index detector to obtain direct measurements of the adsorbed amount of sodium dodecyl sulfate, whereas the second method is based on the retention and peak shape for a set of cationic basic compounds that indirectly reveal the presence of adsorbed monomers of surfactant on the stationary phase. PMID:25476819

  17. Value-Added Products From FGD Sulfite-Rich Scrubber Materials

    SciTech Connect

    Vivak M. Malhotra

    2006-09-30

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber materials are produced every year in the USA. In fact, at present, the production of wet sulfite-rich scrubber cake outstrips the production of wet sulfate-rich scrubber cake by about 6 million tons per year. However, most of the utilization focus has centered on FGD gypsum. Therefore, we have recently initiated research on developing new strategies for the economical, but environmentally-sound, utilization of sulfite-rich scrubber material. In this exploratory project (Phase I), we attempted to ascertain whether it is feasible to develop reconstituted wood replacement products from sulfite-rich scrubber material. In pursuit of this goal, we characterized two different wet sulfite-rich scrubber materials, obtained from two power plants burning Midwestern coal, for their suitability for the development of value-added products. The overall strategy adopted was to fabricate composites where the largest ingredient was scrubber material with additional crop materials as additives. Our results suggested that it may be feasible to develop composites with flexural strength as high as 40 MPa (5800 psi) without the addition of external polymers. We also attempted to develop load-bearing composites from scrubber material, natural fibers, and phenolic polymer. The polymer-to-solid ratio was limited to {le} 0.4. The formulated composites showed flexural strengths as high as 73 MPa (10,585 psi). We plan to harness the research outcomes from Phase I to develop parameters required to upscale our value-added products in Phase II.

  18. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases.

    PubMed

    Müller, Albert Leopold; Kjeldsen, Kasper Urup; Rattei, Thomas; Pester, Michael; Loy, Alexander

    2015-05-01

    The energy metabolism of essential microbial guilds in the biogeochemical sulfur cycle is based on a DsrAB-type dissimilatory (bi)sulfite reductase that either catalyzes the reduction of sulfite to sulfide during anaerobic respiration of sulfate, sulfite and organosulfonates, or acts in reverse during sulfur oxidation. Common use of dsrAB as a functional marker showed that dsrAB richness in many environments is dominated by novel sequence variants and collectively represents an extensive, largely uncharted sequence assemblage. Here, we established a comprehensive, manually curated dsrAB/DsrAB database and used it to categorize the known dsrAB diversity, reanalyze the evolutionary history of dsrAB and evaluate the coverage of published dsrAB-targeted primers. Based on a DsrAB consensus phylogeny, we introduce an operational classification system for environmental dsrAB sequences that integrates established taxonomic groups with operational taxonomic units (OTUs) at multiple phylogenetic levels, ranging from DsrAB enzyme families that reflect reductive or oxidative DsrAB types of bacterial or archaeal origin, superclusters, uncultured family-level lineages to species-level OTUs. Environmental dsrAB sequences constituted at least 13 stable family-level lineages without any cultivated representatives, suggesting that major taxa of sulfite/sulfate-reducing microorganisms have not yet been identified. Three of these uncultured lineages occur mainly in marine environments, while specific habitat preferences are not evident for members of the other 10 uncultured lineages. In summary, our publically available dsrAB/DsrAB database, the phylogenetic framework, the multilevel classification system and a set of recommended primers provide a necessary foundation for large-scale dsrAB ecology studies with next-generation sequencing methods. PMID:25343514

  19. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases

    PubMed Central

    Müller, Albert Leopold; Kjeldsen, Kasper Urup; Rattei, Thomas; Pester, Michael; Loy, Alexander

    2015-01-01

    The energy metabolism of essential microbial guilds in the biogeochemical sulfur cycle is based on a DsrAB-type dissimilatory (bi)sulfite reductase that either catalyzes the reduction of sulfite to sulfide during anaerobic respiration of sulfate, sulfite and organosulfonates, or acts in reverse during sulfur oxidation. Common use of dsrAB as a functional marker showed that dsrAB richness in many environments is dominated by novel sequence variants and collectively represents an extensive, largely uncharted sequence assemblage. Here, we established a comprehensive, manually curated dsrAB/DsrAB database and used it to categorize the known dsrAB diversity, reanalyze the evolutionary history of dsrAB and evaluate the coverage of published dsrAB-targeted primers. Based on a DsrAB consensus phylogeny, we introduce an operational classification system for environmental dsrAB sequences that integrates established taxonomic groups with operational taxonomic units (OTUs) at multiple phylogenetic levels, ranging from DsrAB enzyme families that reflect reductive or oxidative DsrAB types of bacterial or archaeal origin, superclusters, uncultured family-level lineages to species-level OTUs. Environmental dsrAB sequences constituted at least 13 stable family-level lineages without any cultivated representatives, suggesting that major taxa of sulfite/sulfate-reducing microorganisms have not yet been identified. Three of these uncultured lineages occur mainly in marine environments, while specific habitat preferences are not evident for members of the other 10 uncultured lineages. In summary, our publically available dsrAB/DsrAB database, the phylogenetic framework, the multilevel classification system and a set of recommended primers provide a necessary foundation for large-scale dsrAB ecology studies with next-generation sequencing methods. PMID:25343514

  20. VOLATILE COMPONENT RECOVERY FROM SULFITE EVAPORATOR CONDENSATE

    EPA Science Inventory

    This study is on the operation and modification of a demonstration unit to remove sulfur dioxide, methanol, furfural, and acetic acid from its sulfite evaporator condensate. This unit consisted of a steam stripper, vent tank SO2 recovery, activated carbon adsorption columns, and ...

  1. Comparison of microenvironments of aqueous sodium dodecyl sulfate micelles in the presence of inorganic and organic salts: a time-resolved fluorescence anisotropy approach.

    PubMed

    Dutt, G B

    2005-11-01

    Microenvironments of aqueous sodium dodecyl sulfate (SDS) micelles was examined in the presence of additives such as sodium chloride and p-toluidine hydrochloride (PTHC) by monitoring the fluorescence anisotropy decays of two hydrophobic probes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and coumarin 6 (C6). It has been well-established that SDS micelles undergo a sphere-to-rod transition and that their mean hydrodynamic radius increases from 19 to 100 A upon the addition of 0.0-0.7 M NaCl at 298 K. A similar size and shape transition is induced by PTHC at concentrations that are 20 times lower compared to that of NaCl. This study was undertaken to find out how the microviscosity of the micelles is influenced under these circumstances. It was noticed that the microviscosity of the SDS/NaCl system increased by approximately 45%, whereas there was a less than 10% variation in the microviscosity of the SDS/PTHC system. The large increase in the microviscosity of the former system with salt concentration has been rationalized on the basis of the high concentration of sodium ions in the headgroup region of the micelles and their ability to strongly coordinate with the water present in this region, which decreases the mobility of the probe molecules. PMID:16262297

  2. 20 kHz sonoelectrochemical degradation of perchloroethylene in sodium sulfate aqueous media: influence of the operational variables in batch mode.

    PubMed

    Sáez, Verónica; Esclapez, María Deseada; Tudela, Ignacio; Bonete, Pedro; Louisnard, Olivier; González-García, José

    2010-11-15

    A preliminary study of the 20 kHz sonoelectrochemical degradation of perchloroethylene in aqueous sodium sulfate has been carried out using controlled current density degradation sonoelectrolyses in batch mode. An important improvement in the viability of the sonochemical process is achieved when the electrochemistry is implemented, but the improvement of the electrochemical treatment is lower when the 20 kHz ultrasound field is simultaneously used. A fractional conversion of 100% and degradation efficiency around 55% are obtained independently of the ultrasound power used. The current efficiency is also enhanced compared to the electrochemical treatment and a higher speciation is also detected; the main volatile compounds produced in the electrochemical and sonochemical treatment, trichloroethylene and dichloroethylene, are not only totally degraded, but also at shorter times than in the sonochemical or electrochemical treatments. PMID:20705391

  3. Optimization of sodium dedecyl sulfate (SDS) addition coupled with adenosine triphosphate (ATP) regeneration for glutathione overproduction in high density cultivation of Candida utilis.

    PubMed

    Liang, Guobin; Mo, Yiwei; Du, Guocheng

    2010-05-01

    In the previous study, glutathione production was elevated by adding precursor amino acids and adenosine triphosphate (ATP) in high cell density cultivation of Candida utilis. Furthermore, in the present research, glutathione production was further improved by optimizing sodium dedecyl sulfate (SDS) addition coupled with ATP regeneration. Results indicated that with 2g/l ATP added at 60h and 0.8g/l SDS added repeatedly at 60, 63, 66 and 69h, final glutathione yield reached 2286mg/l after 72h cultivation. Moreover, by applying the novel strategies of regenerating ATP by feeding glucose at 6g/(lh) from 60 to 72h coupled with impulse SDS treatments, a total glutathione yield of 2485mg/l was achieved at 72h, which was 8.7% higher than with addition of ATP and SDS, suggesting application of the proposed strategies as being feasible for glutathione overproduction on industrial scales. PMID:25919630

  4. The effect of a synthetic ceramide-2 on transepidermal water loss after stripping or sodium lauryl sulfate treatment: an in vivo study.

    PubMed

    Lintner, K; Mondon, P; Girard, F; Gibaud, C

    1997-02-01

    The integrity of the chemical and physical structure of the horny layer is essential for maintaining the skin in good health. Any disturbance of this integrity may lead to cutaneous reactions of varying degree: dryness, redness, inflammation. The measurement of Transepidermal Water Loss (TEWL) allows one to record this kind of disturbance and to follow the slow return to normal. In this in vivo study two techniques of insulting the epidermis were used: stripping and washing with sodium lauryl sulfate (SLS). A significant increase of TEWL values resulted in both cases. The application of emulsions containing 0.5% and 1% of a synthetic ceramide type-2 (N-stearoyl-DL-erythro-sphinganine) decreased the disturbance measured by TEWL, in a significant fashion in both trials. The placebo emulsions showed no significant effect. The ceramide thus seemed to participate in the restructuring of the horny layer. PMID:18507646

  5. Comparative In Vitro Sensitivities of Human Immune Cell Lines, Vaginal and Cervical Epithelial Cell Lines, and Primary Cells to Candidate Microbicides Nonoxynol 9, C31G, and Sodium Dodecyl Sulfate

    Microsoft Academic Search

    Fred C. Krebs; Shendra R. Miller; Bradley J. Catalone; Raina Fichorova; Deborah Anderson; Daniel Malamud; Mary K. Howett; Brian Wigdahl

    2002-01-01

    In experiments to assess the in vitro impact of the candidate microbicides nonoxynol 9 (N-9), C31G, and sodium dodecyl sulfate (SDS) on human immune and epithelial cell viability, cell lines and primary cell populations of lymphocytic and monocytic origin were generally shown to be equally sensitive to exposures ranging from 10 min to 48 h. However, U-937 cells were more

  6. Interaction of quinine sulfate with anionic micelles of sodium dodecylsulfate: A time-resolved fluorescence spectroscopy at different pH.

    PubMed

    Joshi, Sunita; Pant, Debi D

    2015-09-01

    Photophysical behavior and rotational relaxation dynamics of quinine sulfate (QS) in anionic surfactant, sodium dodecylsulfate (SDS) at different pH have been studied using steady state and time resolved fluorescence spectroscopy. It has been observed that the cationic form of quinine sulfate (at pH 2) forms a fluorescent ion pair complex with the surfactant molecules at lower concentrations of surfactant. However, for higher concentrations of SDS, the probe molecules bind strongly with the micelles and reside at the water-micelle interface. At pH 7, QS is singly protonated in bulk aqueous solution. At lower concentrations of SDS aggregation between probe and surfactant molecules has been observed. However, for higher concentrations of SDS, an additional fluorescence peak corresponding to dicationic form of QS appears and this has been attributed to double protonation of the QS molecule in micellar solution. At pH 7, in the presence of SDS micelles, the photophysical properties of QS showed substantial changes compared to that in the bulk water solution. At pH 12, an increase in fluorescence intensity and lifetime has been observed and this has been attributed to the increase in radiative rate due to the incorporation of QS at the micelle-water interface. The local pH at micellar surface has been found different from the pH of bulk solution. PMID:25863459

  7. Screening and partial immunochemical characterization of sulfite oxidase from plant source.

    PubMed

    Ahmad, Ausaf; Sarfraz, Ahmad

    2010-01-01

    Sulfite oxidase [SO; EC 1.8.3.1] catalyses the physiologically vital oxidation of sulfite to sulfate, the terminal reaction in degradation of sulfur containing amino acids, cysteine and methionine. Sulfite oxidase from vertebrate sources is among the best studied molybdenum enzymes. Existence of SO in plants has been established recently by identification of a cDNA from Arabidopsis thaliana encoding a functional SO. The present study was undertaken to identify herbaceous and woody plants (viz., Azardirachta indica L., Cassia fistula L., Saraca indica L., Spinacea oleracea L., and Syzyzium cumini L.), a relatively less explored source, having significant SO activity and to characterize some of its immuno-biochemical properties. The Syzyzium cumini was chosen to characterize SO as it showed maximum enzyme activity in the crude extract as compared to other plants. Absorption spectra of SO revealed two peaks at 235 and 277 nm, but no distinct peak in the visible region could be observed. Crude extract of all the plants were taken into considerations for immuno-biochemical studies. Despite of significant protein structure-functional similarities between plant and animal SO, no cross-reactivity could be established between the two sources of SO. These data suggested that plants SO, however, differed with regards to their immunobiochemical properties. PMID:20358871

  8. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production.

    PubMed

    Cordente, Antonio G; Heinrich, Anthony; Pretorius, Isak S; Swiegers, Jan H

    2009-05-01

    The production of hydrogen sulfide (H(2)S) during fermentation is a common and significant problem in the global wine industry as it imparts undesirable off-flavors at low concentrations. The yeast Saccharomyces cerevisiae plays a crucial role in the production of volatile sulfur compounds in wine. In this respect, H(2)S is a necessary intermediate in the assimilation of sulfur by yeast through the sulfate reduction sequence with the key enzyme being sulfite reductase. In this study, we used a classical mutagenesis method to develop and isolate a series of strains, derived from a commercial diploid wine yeast (PDM), which showed a drastic reduction in H(2)S production in both synthetic and grape juice fermentations. Specific mutations in the MET10 and MET5 genes, which encode the catalytic alpha- and beta-subunits of the sulfite reductase enzyme, respectively, were identified in six of the isolated strains. Fermentations with these strains indicated that, in comparison with the parent strain, H(2)S production was reduced by 50-99%, depending on the strain. Further analysis of the wines made with the selected strains indicated that basic chemical parameters were similar to the parent strain except for total sulfite production, which was much higher in some of the mutant strains. PMID:19236486

  9. Prevention of acid drainage from stored coal. [Inhibition of bacterial action by treatment with a solution of sodium lauryl sulfate

    Microsoft Academic Search

    H. Olem; T. L. Bell; J. J. Longaker

    1983-01-01

    A method has been identified for controlling acid production and subsequent dissolution of toxic pollutants in drainage from coal storage piles. Results of laboratory and field experiments indicate that it may be possible to prevent, rather than treat, acid drainage by periodically applying an environmentally safe detergent formulation to the coal. These experiments showed that a mild solution of sodium

  10. Electron spin resonances and electron spin echo modulation studies of N,N,N',N'-tetramethylbenzidine photoionization in anionic micelles: structural effects of tetramethylammonium cation counterion substitution for sodium cation in dodecyl sulfate micelles

    SciTech Connect

    Szajdzinska-Pietek, E.; Maldonado, R.; Kevan, L.; Jones, R.R.M.

    1984-08-22

    Comparative electron spin resonance and electron spin echo modulation studies have been carried out for the radical cation produced by photoionization of N,N,N'N'-tetramethylbenzidine in micellar sodium dodecyl sulfate (SDS) and tetramethylammonium dodecyl sulfate (TMADS) solutions. The substitution of tetramethylammonium ion for sodium ion brings about a marked increase in photoionization efficiency at 77K which correlates with increased photoproduced cation-water interactions as determined by electron spin echo modulation (ESEM) experiments. ESEM experiments have also been performed for a series of x-doxylstearic acids as paramagnetic probes in both micellar solutions. The data indicate more water penetration in TMADS than SDS micelles. The results have been explained in terms of a decrease in the compactness of the micelle polar head-group region and increased surface roughness by the substitution of the more hydrophobic tetramethylammonium cation for sodium cation. 18 references, 6 figures.

  11. A critical evaluation of fasted state simulating gastric fluid (FaSSGF) that contains sodium lauryl sulfate and proposal of a modified recipe.

    PubMed

    Aburub, Aktham; Risley, Donald S; Mishra, Dinesh

    2008-01-22

    The aim of this work is to evaluate one of the most commonly used fasted state simulating gastric fluids (FaSSGFs), which contains sodium lauryl sulfate (SLS) (FaSSGF(SLS)), and propose a more appropriate surfactant concentration. Surface tension studies clearly show that the critical micelle concentration (CMC) of SLS in the relevant media (a media whose pH and sodium chloride concentration are representative of physiological conditions) is significantly lower (p<0.05) than 8.67 mM, which is the SLS concentration in FaSSGF(SLS). The CMC of SLS in the relevant media was determined to be 1.75 mM. Based on this a modified recipe is proposed in which the concentration of SLS is sufficient to achieve a surface tension similar to that in vivo without causing artificial micellar solubilization. Solubility, intrinsic dissolution, and GastroPlus modeling studies are presented to support and give rationale for the modified recipe. In addition, a comparison between the modified recipe and other FaSSGFs reported in the literature is made. PMID:17656053

  12. Effect of salt additives on partition of nonionic solutes in aqueous PEG–sodium sulfate two-phase system

    Microsoft Academic Search

    Luisa A. Ferreira; Jose A. Teixeira; Larissa M. Mikheeva; Arnon Chait; Boris Y. Zaslavsky

    2011-01-01

    Partition of 12 nonionic organic compounds in aqueous PEG-8000–Na2SO4 two-phase system was examined. Effects of four salt additives (NaCl, NaSCN, NaClO4, and NaH2PO4) in the concentration range from 0.027 up to ca. 1.9M on binodal curve of PEG-sulfate two-phase system and solute partitioning were explored. It was found that different salt additives at the relatively high concentrations display different effects

  13. Composition of sulfited potatoes: comparison with fresh and frozen potatoes.

    PubMed

    Chalom, S; Elrezzi, E; Peña, P; Astiarsarán, I; Bello, J

    1995-02-01

    The content in moisture, fat, protein, carbohydrate, fibre and vitamin C was analyzed in three commercial types of potatoes: sulfited (treated with E223), frozen potatoes (pre-fried) and fresh potatoes (not processed). The composition of sulfited potatoes does not usually appear in food composition tables. Our results showed significant differences in the content of carbohydrates and fibre between sulfited and fresh potatoes. The content of vitamin C in sulfited potatoes, which is similar to that of frozen potatoes, was shown to be approximately half of that found in fresh potatoes. PMID:7792261

  14. Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR.

    PubMed Central

    Karkhoff-Schweizer, R R; Huber, D P; Voordouw, G

    1995-01-01

    The structural genes for dissimilatory sulfite reductase (desulfoviridin) from Desulfovibrio vulgaris Hilden-borough were cloned as a 7.2-kbp SacII DNA fragment. Nucleotide sequencing indicated the presence of a third gene, encoding a protein of only 78 amino acids, immediately downstream from the genes for the alpha and beta subunits (dsvA and dsvB). We designated this protein DsvD and the gene encoding it the dsvD gene. The alpha- and beta-subunit sequences are highly homologous to those of the dissimilatory sulfite reductase from Archaeoglobus fulgidus, a thermophilic archaeal sulfate reducer, which grows optimally at 83 degrees C. A gene with significant homology to dsvD was also found immediately downstream from the dsrAB genes of A. fulgidus. The remarkable conservation of gene arrangement and sequence across domain (bacterial versus archaeal) and physical (mesophilic versus thermophilic) boundaries indicates an essential role for DsvD in dissimilatory sulfite reduction and allowed the construction of conserved deoxyoligonucleotide primers for detection of the dissimilatory sulfite reductase genes in the environment. PMID:7887608

  15. Dose-dependent effect of nutritional sulfite intake on visual evoked potentials and lipid peroxidation.

    PubMed

    Ozturk, Nihal; Yargicoglu, Piraye; Derin, Narin; Akpinar, Deniz; Agar, Aysel; Aslan, Mutay

    2011-01-01

    The aim of this study was to clarify the dose-dependent effect of sulfite (SO?²?) ingestion on brain and retina by means of electrophysiological and biochemical parameters. Fifty two male Wistar rats, aged 3 months, were randomized into four experimental groups of 13 rats as follows; control (C), sulfite treated groups (S(1); 10 mg/kg/day, S?; 100mg/kg/day, S?; 260 mg/kg/day). Control rats were administered distilled water, while the other three groups were given sodium metabisulfite (Na?S?O?) of amounts mentioned above, via gavage for a period of 35 days. All components of visual evoked potential (VEP) were prolonged in S? and S? groups compared with S? and C groups. Plasma-S-sulfonate levels, which are an indicator of sulfur dioxide (SO?) exposure, were increased in Na?S?O? treated groups in a dose-dependent manner. Furthermore, the significant increments in thiobarbituric acid reactive substances (TBARS) and 4-hydroxy-2-nonenal (4-HNE) levels occurred with increasing intake of Na?S?O?. Though not significant, glutathione (GSH) and oxidized glutathione (GSSG) levels were observed to decrease with increasing doses of Na?S?O?. In conclusion, Na?S?O? treatment in rats caused a dose-dependent increase in lipid peroxidation and all VEP latencies. The data indicate that lipid peroxidation could play an important role in sulfite toxicity. PMID:20875852

  16. Small-angle neutron scattering study of the structural effects of substitution of tetramethylammonium for sodium as the counterion in dodecyl sulfate micelles

    SciTech Connect

    Berr, S.S.; Coleman, M.J.; Jones, R.R.M.; Johnson, J.S. Jr.

    1986-11-20

    Small-angle neutron scattering (SANS) data have been obtained at 303 K for aqueous micellar solutions of CH/sub 3/(CH/sub 2/)/sub 11/SO/sub 4/Na (sodium dodecyl sulfate (SDS)) and CH/sub 3/(CH/sub 2/)/sub 11/SO/sub 4/N(CH/sub 3/)/sub 4/ (tetramethylammonium dodecyl sulfate (TMADS)) and their deuterated analogues CH/sub 3/(CH/sub 2/)/sub 10/CD/sub 2/SO/sub 4/Na (D/sub 2/-SDS) and CH/sub 3/(CH/sub 2/)/sub 11/SO/sub 4/N(CD/sub 3/)/sub 4/ (D/sub 12/-TMADS). Results have been obtained for 0.4 mol dm/sup -3/ surfactant in various H/sub 2/O/D/sub 2/O mixtures and for TMADS as a function of surfactant concentration in D/sub 2/O. The SANS data are well described by charged, monodisperse hard spheres interacting through a screened Coulomb potential. The asphericity and the polydispersity of the systems were estimated to be small. The deuterium for the deuterated surfactants lies mainly in the Stern region of the micelle and increases contrast between the hydrocarbon core and the water-saturated Stern layer. Therefore, these deuterated micellar systems were used to determine the radius of the dry core, which was then used in the determination of the structural parameters for the micellar systems. The degree of hydration was determined without resorting to the assignment of values for the water of hydration for the individual ions present. It was found that TMADS micelles are smaller and have a higher charge, smaller degree of aggregation, and less but more deeply penetrating water than do SDS micelles. Both SDS and TMADS micelles had substantial amounts of hydrocarbon residing in the aqueous Stern layer.

  17. Oxidation rate of magnesium sulfite catalyzed by cobalt ions.

    PubMed

    Qiangwei, Li; Lidong, Wang; Yi, Zhao; Yongliang, Ma; Shuai, Cui; Shuang, Liu; Peiyao, Xu; Jiming, Hao

    2014-04-01

    Oxidation of magnesium sulfite is important for recycle of byproduct in the magnesium desulfurization. The oxidation rate of magnesium sulfite, prepared by vacuum evaporation method, was investigated in a bubbling tank in presence of transition metal catalysts, which shows cobalt is the most effective. The general reaction orders with respect to cobalt, magnesium sulfite, and oxygen are 0.44, 0, and 0.46, respectively, and the apparent activity energy is 17.43 KJ·mol. The catalytic performance of cobalt compared with other metals was also analyzed employing the ion potential theory. Integrated with the three-phase reaction model, we inferred that the general oxidation rate of magnesium sulfite is controlled by mass transfer of oxygen. Further, the intrinsic kinetics was predicted, indicating that the reaction orders with respect to cobalt and oxygen are 1.0 and 0, respectively. The results are helpful for the recycle of magnesium sulfite in magnesia desulfurization. PMID:24588305

  18. An Intertwined Evolutionary History of Methanogenic Archaea and Sulfate Reduction

    PubMed Central

    Susanti, Dwi; Mukhopadhyay, Biswarup

    2012-01-01

    Hydrogenotrophic methanogenesis and dissimilatory sulfate reduction, two of the oldest energy conserving respiratory systems on Earth, apparently could not have evolved in the same host, as sulfite, an intermediate of sulfate reduction, inhibits methanogenesis. However, certain methanogenic archaea metabolize sulfite employing a deazaflavin cofactor (F420)-dependent sulfite reductase (Fsr) where N- and C-terminal halves (Fsr-N and Fsr-C) are homologs of F420H2 dehydrogenase and dissimilatory sulfite reductase (Dsr), respectively. From genome analysis we found that Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP), both being abundant in methanogens. Dsr-LPs fell into two groups defined by following sequence features: Group I (simplest), carrying a coupled siroheme-[Fe4-S4] cluster and sulfite-binding Arg/Lys residues; Group III (most complex), with group I features, a Dsr-type peripheral [Fe4-S4] cluster and an additional [Fe4-S4] cluster. Group II Dsr-LPs with group I features and a Dsr-type peripheral [Fe4-S4] cluster were proposed as evolutionary intermediates. Group III is the precursor of Fsr-C. The freestanding Fsr-N homologs serve as F420H2 dehydrogenase unit of a putative novel glutamate synthase, previously described membrane-bound electron transport system in methanogens and of assimilatory type sulfite reductases in certain haloarchaea. Among archaea, only methanogens carried Dsr-LPs. They also possessed homologs of sulfate activation and reduction enzymes. This suggested a shared evolutionary history for methanogenesis and sulfate reduction, and Dsr-LPs could have been the source of the oldest (3.47-Gyr ago) biologically produced sulfide deposit. PMID:23028926

  19. Effect of salt additives on partition of nonionic solutes in aqueous PEG-sodium sulfate two-phase system.

    PubMed

    Ferreira, Luisa A; Teixeira, Jose A; Mikheeva, Larissa M; Chait, Arnon; Zaslavsky, Boris Y

    2011-08-01

    Partition of 12 nonionic organic compounds in aqueous PEG-8000-Na(2)SO(4) two-phase system was examined. Effects of four salt additives (NaCl, NaSCN, NaClO(4), and NaH(2)PO(4)) in the concentration range from 0.027 up to ca. 1.9 M on binodal curve of PEG-sulfate two-phase system and solute partitioning were explored. It was found that different salt additives at the relatively high concentrations display different effects on both phase separation and partition of various nonionic solutes. Analysis of the results indicates that the PEG-Na(2)SO(4) ATPS with the up to 0.215 M NaCl concentration may be viewed as similar to the ATPS without NaCl in terms of the Collander equation's predictive ability of the partitioning behavior of nonionic compounds. All ATPS with each of the salt additive used at the concentration of 0.027 M may be viewed as similar to each other as the Collander equation holds for partition coefficients of nonionic solutes in these ATPS. Collander equation is valid also for the compounds examined in the ATPS with additives of NaSCN and NaClO(4) at the concentrations up to 0.215 M. The observed similarity between these ATPS might be explained by the similar effects of these two salts on the water structure. At concentrations of the salt additives exceeding the aforementioned values, different effects of salt additives on partitioning of various nonionic solutes are displayed. In order to explain these effects of salt additives it is necessary to examine the intensities of different solute-solvent interactions in these ATPS within the framework of the so-called Linear Solvation Energy Relationship (LSER) model. PMID:21665218

  20. Temperature-dependent phase transition and desorption free energy of sodium dodecyl sulfate at the water/vapor interface: approaches from molecular dynamics simulations.

    PubMed

    Chen, Meng; Lu, Xiancai; Liu, Xiandong; Hou, Qingfeng; Zhu, Youyi; Zhou, Huiqun

    2014-09-01

    Adsorption of surfactants at the water/vapor interface depends upon their chemical potential at the interface, which is generally temperature-dependent. Molecular dynamics simulations have been performed to reveal temperature influences on the microstructure of sodium dodecyl sulfate (SDS) molecule adsorption layer. At room temperature, SDS molecules aggregate at the interface, being in a liquid-expanded phase, whereas they tend to spread out and probably transit to a gaseous phase as the temperature increases to above 318 K. This phase transition has been confirmed by the temperature-dependent changes in two-dimensional array, tilt angles, and immersion depths to the aqueous phase of SDS molecules. The aggregation of SDS molecules accompanies with larger immersion depths, more coordination of Na(+) ions, and less coordination of water. Desorption free energy profiles show that higher desorption free energy appears for SDS molecules at the aggregate state at low temperatures, but no energy barrier is observed. The shapes of desorption free energy profiles depend upon the distribution of SDS at the interface, which, in turn, is related to the phase state of SDS. Our study sheds light on the development of adsorption thermodynamics and kinetics theories. PMID:25127193

  1. Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil.

    PubMed

    Deschênes, L; Lafrance, P; Villeneuve, J P; Samson, R

    1996-12-01

    The effect of two anionic surfactants was assessed during biodegradation of 13 of the 16 USEPA priority polycyclic aromatic hydrocarbons (PAH) in a wood-preserving soil contaminated with creosote and pentacholorophenol for a period of at least 20 years. Sodium dodecyl sulfate (SDS) and biosurfactants from Pseudomonas aeruginosa UG2 were utilized at concentrations of 10, 100 and 500 micrograms/g soil. Because both surfactants are readily biodegradable, the microcosms received a fresh spike of surfactant every 2 weeks. Biodegradation of aged PAH residues was monitored by GC/MS for a period of 45 weeks. Results indicated that the biodegradation of the three-ring PAH was rapid and almost complete but was slowed by the addition of 100 micrograms/g and 500 micrograms/g chemical surfactant. Similarly, at the same concentrations, the two surfactants significantly decreased the biodegradation rate of the four-ring PAH. In this case, the inhibition was more pronounced with SDS. High-molecular-mass PAH (more than four rings) were not biodegraded under the test conditions. It was suggested that the preferential utilization of surfactants by PAH degraders was responsible for the inhibition observed in the biodegradation of the hydrocarbons. The high biodegradability and the inhibitory effect of these two surfactants would have a significant impact on the development of both above-ground and in situ site reclamation processes. PMID:9008894

  2. Pre-labeling of diverse protein samples with a fixed amount of Cy5 for sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis.

    PubMed

    Bjerneld, Erik J; Johansson, Johan D; Laurin, Ylva; Hagner-McWhirter, Åsa; Rönn, Ola; Karlsson, Robert

    2015-09-01

    A pre-labeling protocol based on Cy5 N-hydroxysuccinimide (NHS) ester labeling of proteins has been developed for one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. We show that a fixed amount of sulfonated Cy5 can be used in the labeling reaction to label proteins over a broad concentration range-more than three orders of magnitude. The optimal amount of Cy5 was found to be 50 to 250pmol in 20?l using a Tris-HCl labeling buffer at pH 8.7. Labeling protein samples with a fixed amount of dye in this range balances the requirements of sub-nanogram detection sensitivity and low dye-to-protein (D/P) ratios for SDS-PAGE. Simulations of the labeling reaction reproduced experimental observations of both labeling kinetics and D/P ratios. Two-dimensional electrophoresis was used to examine the labeling of proteins in a cell lysate using both sulfonated and non-sulfonated Cy5. For both types of Cy5, we observed efficient labeling across a broad range of molecular weights and isoelectric points. PMID:25957128

  3. Aggregation behavior of sodium lauryl ether sulfate with a positively bicharged organic salt and effects of the mixture on fluorescent properties of conjugated polyelectrolytes.

    PubMed

    Tang, Yongqiang; Liu, Zhang; Zhu, Linyi; Han, Yuchun; Wang, Yilin

    2015-02-24

    The aggregation behavior of anionic single-chain surfactant sodium lauryl ether sulfate containing three ether groups (SLE3S) with positively bicharged organic salt 1,2-bis(2-benzylammoniumethoxy)ethane dichloride (BEO) has been investigated in aqueous solution, and the effects of the BEO/SLE3S aggregate transitions on the fluorescent properties of anionic conjugated polyelectrolyte MPS-PPV with a larger molecular weight and cationic conjugated oligoelectrolyte DAB have been evaluated. Without BEO, SLE3S does not affect the fluorescent properties of MPS-PPV and only affects the fluorescent properties of DAB at a higher SLE3S concentration. With the addition of BEO, SLE3S and BEO form gemini-like surfactant (SLE3S)2-BEO. When the BEO/SLE3S molar ratio is fixed at 0.25, with increasing the BEO/SLE3S concentration, the BEO/SLE3S mixture forms large, loosely arranged aggregates and then transforms to closely packed spherical aggregates and finally to long thread-like micelles. The photoluminescence (PL) intensity of MPS-PPV varies with the morphologies of the BEO/SLE3S aggregates, while the PL intensity of DAB is almost independent of the aggregate morphologies. The results demonstrate that gemini-like surfactants formed through intermolecular interactions can effectively adjust the fluorescent properties of conjugated polyelectrolytes. PMID:25641198

  4. Coupling sodium dodecyl sulfate-capillary polyacrylamide gel electrophoresis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry via a poly(tetrafluoroethylene) membrane.

    PubMed

    Lu, Joann J; Zhu, Zaifang; Wang, Wei; Liu, Shaorong

    2011-03-01

    Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) is a fundamental analytical technique for proteomic research, and SDS-capillary gel electrophoresis (CGE) is its miniaturized version. Compared to conventional slab-gel electrophoresis, SDS-CGE has many advantages such as increased separation efficiency, reduced separation time, and automated operation. SDS-CGE is not widely accepted in proteomic research primarily due to the difficulties in identifying the well-resolved proteins. MALDI-TOF-MS is an outstanding platform for protein identifications. Coupling the two would solve the problem but is extremely challenging because the MS detector has no access to the SDS-CGE-resolved proteins and the SDS interferes with MS detection. In this work we introduce an approach to address these issues. We discover that poly(tetrafluoroethylene) (PTFE) membranes are excellent materials for collecting SDS-CGE-separated proteins. We demonstrate that we can wash off the SDS bound to the collected proteins and identify these proteins on-membrane with MALDI-TOF-MS. We also show that we can immunoblot and Coomassie-stain the proteins collected on these membranes. PMID:21309548

  5. Dextran sulfate sodium-induced colitis alters stress-associated behaviour and neuropeptide gene expression in the amygdala-hippocampus network of mice.

    PubMed

    Reichmann, Florian; Hassan, Ahmed Mostafa; Farzi, Aitak; Jain, Piyush; Schuligoi, Rufina; Holzer, Peter

    2015-01-01

    Psychological stress causes disease exacerbation and relapses in inflammatory bowel disease (IBD) patients. Since studies on stress processing during visceral inflammation are lacking, we investigated the effects of experimental colitis as well as psychological stress on neurochemical and neuroendocrine changes as well as behaviour in mice. Dextran sulfate sodium (DSS)-induced colitis and water avoidance stress (WAS) were used as mouse models of colitis and mild psychological stress, respectively. We measured WAS-associated behaviour, gene expression and proinflammatory cytokine levels within the amygdala, hippocampus and hypothalamus as well as plasma levels of cytokines and corticosterone in male C57BL/6N mice. Animals with DSS-induced colitis presented with prolonged immobility during the WAS session, which was associated with brain region-dependent alterations of neuropeptide Y (NPY), NPY receptor Y1, corticotropin-releasing hormone (CRH), CRH receptor 1, brain-derived neurotrophic factor and glucocorticoid receptor gene expression. Furthermore, the combination of DSS and WAS increased interleukin-6 and growth regulated oncogene-? levels in the brain. Altered gut-brain signalling in the course of DSS-induced colitis is thought to cause the observed distinct gene expression changes in the limbic system and the aberrant molecular and behavioural stress responses. These findings provide new insights into the effects of stress during IBD. PMID:26066467

  6. Dextran sulfate sodium-induced colitis alters stress-associated behaviour and neuropeptide gene expression in the amygdala-hippocampus network of mice

    PubMed Central

    Reichmann, Florian; Hassan, Ahmed Mostafa; Farzi, Aitak; Jain, Piyush; Schuligoi, Rufina; Holzer, Peter

    2015-01-01

    Psychological stress causes disease exacerbation and relapses in inflammatory bowel disease (IBD) patients. Since studies on stress processing during visceral inflammation are lacking, we investigated the effects of experimental colitis as well as psychological stress on neurochemical and neuroendocrine changes as well as behaviour in mice. Dextran sulfate sodium (DSS)-induced colitis and water avoidance stress (WAS) were used as mouse models of colitis and mild psychological stress, respectively. We measured WAS-associated behaviour, gene expression and proinflammatory cytokine levels within the amygdala, hippocampus and hypothalamus as well as plasma levels of cytokines and corticosterone in male C57BL/6N mice. Animals with DSS-induced colitis presented with prolonged immobility during the WAS session, which was associated with brain region-dependent alterations of neuropeptide Y (NPY), NPY receptor Y1, corticotropin-releasing hormone (CRH), CRH receptor 1, brain-derived neurotrophic factor and glucocorticoid receptor gene expression. Furthermore, the combination of DSS and WAS increased interleukin-6 and growth regulated oncogene-? levels in the brain. Altered gut-brain signalling in the course of DSS-induced colitis is thought to cause the observed distinct gene expression changes in the limbic system and the aberrant molecular and behavioural stress responses. These findings provide new insights into the effects of stress during IBD. PMID:26066467

  7. Characterization of Growth, Water Relations, and Proline Accumulation in Sodium Sulfate Tolerant Callus of Brassica napus L. cv Westar (Canola) 1

    PubMed Central

    Chandler, Stephen F.; Thorpe, Trevor A.

    1987-01-01

    Unselected and sodium sulfate tolerant callus cultures of Brassica napus L. cv Westar were grown on media supplemented with mannitol, NaCl, or Na2SO4. In all cases, growth of tolerant callus, measured on a fresh weight or dry weight basis, was greater than that of unselected callus, which was also subject to necrosis on high levels of salt. Tissue water potential became more negative in both unselected and tolerant callus grown in the presence of mannitol or Na2SO4. Water potentials in unselected callus were more negative than those of the tolerant tissues; but over a range of Na2SO4 concentrations both cultures displayed osmotic adjustment, maintaining relatively constant turgor. Proline accumulation in both unselected and tolerant callus was low (15 to 20 micromoles per gram dry weight) in the absence of stress, but increased on media supplemented with mannitol, NaCl, or Na2SO4. Increases in proline concentration were approximately linear in tolerant callus, reaching a maximum of 130 to 175 micromoles per gram dry weight. In unselected callus, concentrations were higher, reaching 390 to 520 micromoles per gram dry weight. Proline accumulation was correlated with inhibition of growth, and there was a negative correlation between proline concentration and culture age for tolerant callus. PMID:16665381

  8. Ethanol Extract of Cordyceps militaris Grown on Germinated Soybeans Attenuates Dextran-Sodium-Sulfate- (DSS-) Induced Colitis by Suppressing the Expression of Matrix Metalloproteinases and Inflammatory Mediators

    PubMed Central

    Park, Dong Ki; Park, Hye-Jin

    2013-01-01

    The effect of Cordyceps militaris (CM) grown on germinated soybeans (GSC) in the inflammatory bowel disease (IBD) model was studied. To demonstrate the preventive effect of GSC extract in a dextran-sodium-sulfate- (DSS-) induced acute colitis mouse model, GSC was administered 2 days before DSS coadministration. GSC significantly suppressed DSS-induced disease activity index (DAI) as well as histopathological scores, compared to control or CM-treated group. To elucidate the anti-IBD activity of GSC, we checked the level of matrix metalloproteinases (MMPs) and inflammatory mediators. GSC extract decreased the level of MMP-3 and -9 mRNAs and p53 proteins. The level and activity of LPS-induced MMP-9 were reduced in GSC-treated RAW264.7 cells. It also attenuated the level of inducible nitric oxide synthase (iNOS) and tumor necrosis factor- (TNF-) ? mRNAs both in colon tissue and in macrophage cells. These results suggest that GSC can be applied as a protective agent against IBDs. PMID:23841050

  9. A rapid method of species identification of wild chironomids (Diptera: Chironomidae) via electrophoresis of hemoglobin proteins in sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE).

    PubMed

    Oh, J T; Epler, J H; Bentivegna, C S

    2014-10-01

    Studying aquatic benthic macroinvertebrates (BMIs) in the field requires accurate taxonomic identification, which can be difficult and time consuming. Conventionally, head capsule morphology has been used to identify wild larvae of Chironomidae. However, due to the number of species and possible damage and/or deformity of their head capsules, another supporting approach for identification is needed. Here, we provide hemoglobin (Hb) protein in hemolymph of chironomids as a new biomarker that may help resolve some of the ambiguities and difficulties encountered during taxonomic identification. Chironomids collected from two locations in Maine and New Jersey, USA were identified to the genus level and in some cases to the species-level using head capsule and body morphologies. The head capsule for a particular individual was then associated with a corresponding Hb protein profile generated from sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Distinct Hb profiles were observed from one group (Thienemannimyia) and four genera (Chironomus, Cricotopus, Dicrotendipes, and Glyptotendipes) of chironomids. Several species were polymorphic, having more than one Hb profile and/or having bands of the same size as those of other species. However, major bands and the combination of bands could distinguish individuals at the genus and sometimes species-level. Overall, this study showed that Hb profiles can be used in combination with head capsule morphology to identify wild chironomids. PMID:24923437

  10. Inhibitory effects of Dendrobium candidum Wall ex Lindl. on azoxymethane- and dextran sulfate sodium-induced colon carcinogenesis in C57BL/6 mice

    PubMed Central

    WANG, QIANG; SUN, PENG; LI, GUIJIE; ZHU, KAI; WANG, CUN; ZHAO, XIN

    2014-01-01

    Dendrobium candidum Wall ex Lindl. was purchased for the evaluation of azoxymethane (AOM)- and dextran sulfate sodium (DSS)-induced colon carcinogenesis in C57BL/6 mice. The body weights of the AOM- and DSS-induced colon cancer control groups were lighter than those of the untreated mice. D. candidum increased the body weights of the mice compared with the control group, and reduced the levels of the serum proinflammatory cytokines, IL-6, IL-12, TNF-? and IFN-?, compared with the colon cancer control group. Reverse transcription-polymerase chain reaction and western blot analyses of the apoptotic-related genes, bax, bcl-2, caspase-3 and caspase-9, were performed in the colon tissues. The high-concentration D. candidum group showed a significant increase in the mRNA and protein expression levels of bax, caspase-3 and caspase-9 and decreased expression levels of bcl-2 compared with the control group. These results indicate that D. candidum Wall ex Lindl. exhibits preventive effects against colon carcinogenesis in mice. PMID:24396476

  11. Comparison of primary human fibroblasts and keratinocytes with immortalized cell lines regarding their sensitivity to sodium dodecyl sulfate in a neutral red uptake cytotoxicity assay.

    PubMed

    Olschläger, Veronika; Schrader, Andreas; Hockertz, Stefan

    2009-01-01

    Cell lines present a valuable tool for in vitro assessment of skin damage caused by application of cosmeticals or pharmaceuticals. They form a reproducible test system under controllable test conditions and, in many cases, can be used as alternatives to animal testing in order to assess the compatibility of drugs or cosmetics and human skin. Yet, it can not necessarily be assumed that the behavior of cultured cells, when treated with different substances, is exactly consistent with the behavior of cells being part of a live organism. Becoming immortal, cells exhibit changes in genotype and/or phenotype, possibly resulting in modified reactions to external influences. Therefore, to obtain results close to in vivo studies, it seems apparent to use primary cells for testing that have not yet undergone any modifications. To compare the properties of primary fibroblasts (Normal Human Dermal Fibroblasts, NHDF) and primary keratinocytes (Normal Human Epidermal Keratinocytes, NHEK) with those of immortal cell lines (3T3 (ACC 173) Swiss albino mouse fibroblasts and HaCaT (human, adult, low calcium, high temperature, human adult skin keratinocytes) cells), their sensitivities in cytotoxicity assays have been assessed. While both fibroblast cell cultures showed similar sensitivities towards sodium dodecyl sulfate (SDS), primary keratinocytes died at SDS concentrations about three times lower than the immortal HaCaT cells. PMID:19402346

  12. The effects of dodecyl maltoside and sodium dodecyl sulfate surfactants on the stability and aggregation of recombinant interferon Beta-1b.

    PubMed

    Haji Abdolvahab, Mohadeseh; Fazeli, Ahmad; Fazeli, Mohammad Reza; Brinks, Vera; Schellekens, Huub

    2014-11-01

    Aggregation often occurs during manufacturing and storage of protein drugs. Detergents such as sodium dodecyl sulfate are commonly used to prevent aggregation but need to be eliminated before final formulation for safety reasons. We studied the ability of dodecylmaltoside (DDM), a nontoxic alkyl saccharide surfactant, to reduce aggregation and increase the stability of interferon beta-1b (IFN)-?-1b. An increase of 8°C in the Tm of IFN-?-1b was observed when 0.1% of DDM was present in the protein solution. The absorption of DDM on hydrophobic surfaces of IFN-?-1b enables the surface to become hydrophilic and non-ionic, and increases the stability of the protein. 0.1% DDM also results in a 62% increase in helical and a 25% decrease in ?-sheet structures. 0.1% DDM not only suppresses aggregate formation but also improves IFN-?-1b solubilization. Furthermore, we have showed the protective effect of DDM on the anti-viral activity of IFN-?-1b in solution. PMID:24956236

  13. Acetylsalicylic Acid Reduces the Severity of Dextran Sodium Sulfate-Induced Colitis and Increases the Formation of Anti-Inflammatory Lipid Mediators

    PubMed Central

    Köhnke, Thomas; Bilal, Süleyman; Zhou, Xiangzhi; Rothe, Michael; Baumgart, Daniel C.; Weylandt, Karsten H.

    2013-01-01

    The role of non-steroidal anti-inflammatory drugs in inflammatory bowel disease is controversial, as they have been implicated in disease aggravation. Different from other cyclooxygenase inhibitors, acetylsalicylic acid (ASA) enhances the formation of anti-inflammatory and proresolution lipoxins derived from arachidonic acid as well as resolvins from omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). In this study, we examined the effect of ASA on murine dextran sodium sulfate colitis. A mouse magnetic resonance imaging (MRI) protocol and post mortem assessment were used to assess disease severity, and lipid metabolites were measured using liquid chromatography-coupled tandem mass spectrometry. Decreased colitis activity was demonstrated by phenotype and MRI assessment in mice treated with ASA, and confirmed in postmortem analysis. Analysis of lipid mediators showed sustained formation of lipoxin A4 and an increase of DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA) after treatment with ASA. Furthermore, in vitro experiments in RAW264.7 murine macrophages demonstrated significantly increased phagocytosis activity after incubation with 17-HDHA, supporting its proresolution effect. These results show a protective effect of ASA in a murine colitis model and could give a rationale for a careful reassessment of ASA therapy in patients with inflammatory bowel disease and particularly ulcerative colitis, possibly combined with DHA supplementation. PMID:24083240

  14. 2,4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles for effective removal of Cd(II) and Ni(II) ions from water samples.

    PubMed

    Sobhanardakani, Soheil; Zandipak, Raziyeh

    2015-07-01

    2,4-Dinitrophenylhydrazine immobilized on sodium dodecyl sulfate (SDS)-coated magnetite and was used for removal of Cd(II) and Ni(II) ions from aqueous solution. The prepared product was characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The size of the nanoparticles according to SEM was obtained around 20-35 nm. In batch tests, the effects of pH, contact time, initial metal concentration, and temperature were studied. The kinetic and equilibrium data were modeled with recently developed models. The adsorption kinetics and isotherms were well fitted by the fractal-like pseudo-second-order model and Langmuir-Freundlich model, respectively. Maximum adsorption capacity by this adsorbent is 255.1 mg g(-1) for Cd(II) ion and 319.6 mg g(-1) for Ni(II) ion at pH 7.0 and 25 °C. The method was successfully applied to the removal of metal cations in real samples (tap water, river water, and petrochemical wastewater). PMID:26050063

  15. Variation and Genomic Localization of Genes Encoding DROSOPHILA MELANOGASTER Male Accessory Gland Proteins Separated by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis

    PubMed Central

    Whalen, Michael; Wilson, Thomas G.

    1986-01-01

    Accessory gland proteins from Drosophila melanogaster males have been separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis into nine major bands. When individual males from 175 strains were examined, considerable polymorphism for nearly one-half of the major protein bands was seen, including null alleles for three bands. Variation was observed not only among long-established laboratory strains but also among stocks recently derived from natural populations. There was little difference in the amount of variation between P and M strains, indicating that P element mutagenesis is not a factor producing the variation. Codominant expression of variants for each of five bands was found in heterozygotes, suggesting structural gene variation and not posttranslational modification variation. Stocks carrying electrophoretic variants of four of the major proteins were used to map the presumed structural genes for these proteins; the loci were found to be dispersed on the second chromosome. Since males homozygous for variant proteins were fertile, the polymorphism seems to have little immediate effect on successful sperm transfer. We propose that a high degree of polymorphism can be tolerated because these proteins play a nutritive rather than enzymatic role in Drosophila reproduction. PMID:3095182

  16. Poly(amidoamine) and poly(propyleneimine) dendrimers show distinct binding behaviors with sodium dodecyl sulfate: insights from SAXS and NMR analysis.

    PubMed

    Li, Tianfu; Shao, Naimin; Liu, Yuntao; Hu, Jingjing; Wang, Yu; Zhang, Li; Wang, Hongli; Chen, Dongfeng; Cheng, Yiyun

    2014-03-20

    We investigate the interactions of generation 3 (G3) poly(amidoamine) (PAMAM) and G3 poly(propylenimine) (PPI) dendrimers with sodium dodecyl sulfate (SDS) in aqueous solution. Size and structure of the dendrimer-SDS aggregates as a function of SDS/dendrimer molar ratio were revealed by SAXS and NMR. G3 PAMAM has a relatively open and dense-core structure, while G3 PPI with the same number of surface amine groups possesses a compact and uniform structure. Upon addition of SDS, much more SDS monomers were encapsulated in the interior of PPI rather than in PAMAM. More significant size increase in PAMAM-SDS aggregate is observed at low SDS concentrations, due to the binding of SDS on PAMAM surface and further assembly into larger supramolecular structures. Both noncooperative and cooperative binding of SDS on G3 PPI surface are observed, while only noncooperative binding is proposed on G3 PAMAM, due to its open surface and large surface group distance. The size of the PPI-SDS complex is larger than that of PAMAM-SDS at higher SDS concentrations. Within the investigated SDS concentrations, SDS exhibits much stronger interactions with G3 PPI than with G3 PAMAM. These results provide new insights into dendrimer-surfactant interactions and explain why PPI is much more cytotoxic than PAMAM. PMID:24606033

  17. Transport Pathways and Enhancement Mechanisms within Localized and Non-Localized Transport Regions in Skin Treated with Low-Frequency Sonophoresis and Sodium Lauryl Sulfate

    PubMed Central

    Polat, Baris E.; Figueroa, Pedro L.; Blankschtein, Daniel; Langer, Robert

    2011-01-01

    Recent advances in transdermal drug delivery utilizing low-frequency sonophoresis (LFS) and sodium lauryl sulfate (SLS) have revealed that skin permeability enhancement is not homogenous across the skin surface. Instead, highly perturbed skin regions, known as localized transport regions (LTRs), exist. Despite these findings, little research has been conducted to identify intrinsic properties and formation mechanisms of LTRs and the surrounding less-perturbed non-LTRs. By independently analyzing LTR, non-LTR, and total skin samples treated at multiple LFS frequencies, we found that the pore radii (rpore) within non-LTRs are frequency-independent, ranging from 18.2 – 18.5 Å, but significantly larger than rpore of native skin samples (13.6 Å). Conversely, rpore within LTRs increases significantly with decreasing frequency from 161 Å, to 276 Å, and to ? (>300Å) for LFS/SLS-treated skin at 60 kHz, 40 kHz, and 20 kHz, respectively. Our findings suggest that different mechanisms contribute to skin permeability enhancement within each skin region. We propose that the enhancement mechanism within LTRs is the frequency-dependent process of cavitation-induced microjet collapse at the skin surface, while the increased rpore values in non-LTRs are likely due to SLS perturbation, with enhanced penetration of SLS into the skin resulting from the frequency-independent process of microstreaming. PMID:20740667

  18. Application of the Aqueous Porous Pathway Model to Quantify the Effect of Sodium Lauryl Sulfate on Ultrasound-Induced Skin Structural Perturbation

    PubMed Central

    Polat, Baris E.; Seto, Jennifer E.; Blankschtein, Daniel; Langer, Robert

    2011-01-01

    This study investigated the effect of sodium lauryl sulfate (SLS) on skin structural perturbation when utilized simultaneously with low-frequency sonophoresis (LFS). Pig full-thickness skin (FTS) and pig split-thickness skin (STS) treated with LFS/SLS and LFS were analyzed in the context of the aqueous porous pathway model to quantify skin perturbation through changes in skin pore radius and porosity-to-tortuosity ratio (?/?). In addition, skin treatment times required to attain specific levels of skin electrical resistivity were analyzed to draw conclusions about the effect of SLS on reproducibility and predictability of skin perturbation. We found that LFS/SLS-treated FTS, LFS/SLS-treated STS, and LFS-treated FTS exhibited similar skin perturbation. However, LFS-treated STS exhibited significantly higher skin perturbation, suggesting greater structural changes to the less robust STS induced by the purely physical enhancement mechanism of LFS. Evaluation of ?/? values revealed that LFS/SLS-treated FTS and STS have similar transport pathways, while LFS-treated FTS and STS have lower ?/? values. In addition, LFS/SLS treatment times were much shorter than LFS treatment times for both FTS and STS. Moreover, the simultaneous use of SLS and LFS not only results in synergistic enhancement, as reflected in the shorter skin treatment times, but also in more predictable and reproducible skin perturbation. PMID:20963845

  19. Electron spin echo modulation study of sodium dodecyl sulfate and dodecyltrimethylammonium bromide micellar solutions in the presence of urea: Evidence for urea interaction at the micellar surface

    SciTech Connect

    Baglioni, P. (Univ. of Udine (Italy)); Ferroni, E. (Univ. of Florence (Italy)); Kevan, L. (Univ. of Houston, TX (USA))

    1990-05-17

    Electron spin echo studies have been carried out for a series of x-doxylstearic acid (x-DSA, x = 5,7,10,12,16) and 4-octanoyl-2,2,6,6-tetramethylpiperidine-1-oxy (C{sub 8}-TEMPO) spin probes in micellar solutions of anionic sodium dodecyl sulfate (SDS) and cationic dodecyltrimethylammonium bromide (DTAB) in D{sub 2}O and in the presence of 2 or 6 M urea or urea-d{sub 4}. Modulation effects due to the interaction of the unpaired electron with urea and water deuteriums show that urea does not affect the bent conformation of the x-DSA probe in the micelle. The analysis of the deuterium modulation depth and the Fourier transformation of the two-pulse electron spin echo spectra show that urea interacts with the surfactant polar headgroups at the micelle surface. These results support recent molecular dynamics and Monte Carlo calculations of micellar systems and are in agreement with direct interaction of urea at micellar surfaces in which it replaces some water molecules in the surface region.

  20. Bifidobacterium longum Alleviates Dextran Sulfate Sodium-Induced Colitis by Suppressing IL-17A Response: Involvement of Intestinal Epithelial Costimulatory Molecules

    PubMed Central

    Miyauchi, Eiji; Ogita, Tasuku; Miyamoto, Junki; Kawamoto, Seiji; Morita, Hidetoshi; Ohno, Hiroshi; Suzuki, Takuya; Tanabe, Soichi

    2013-01-01

    Although some bacterial strains show potential to prevent colitis, their mechanisms are not fully understood. Here, we investigated the anti-colitic mechanisms of Bifidobacterium longum subsp. infantis JCM 1222T, focusing on the relationship between interleukin (IL)-17A secreting CD4+ T cells and intestinal epithelial costimulatory molecules in mice. Oral administration of JCM 1222T to mice alleviated dextran sulfate sodium (DSS)-induced acute colitis. The expression of type 1 helper T (Th1)- and IL-17 producing helper T (Th17)-specific cytokines and transcriptional factors was suppressed by JCM 1222T treatment. Intestinal epithelial cells (IECs) from colitic mice induced IL-17A production from CD4+ T cells in a cell-cell contact-dependent manner, and this was suppressed by oral treatment with JCM 1222T. Using blocking antibodies for costimulatory molecules, we revealed that epithelial costimulatory molecules including CD80 and CD40, which were highly expressed in IECs from colitic mice, were involved in IEC-induced IL-17A response. Treatment of mice and intestinal epithelial cell line Colon-26 cells with JCM 1222T decreased the expression of CD80 and CD40. Collectively, these data indicate that JCM 1222T negatively regulate epithelial costimulatory molecules, and this effect might be attributed, at least in part, to suppression of IL-17A in DSS-induced colitis. PMID:24255712

  1. Anti-colitic effects of kanjangs (fermented soy sauce and sesame sauce) in dextran sulfate sodium-induced colitis in mice.

    PubMed

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Lim, Yaung-Iee; Park, Kun-Young

    2014-09-01

    This study was conducted to investigate the preventive effects of different kanjangs (Korean soy sauces), including acid-hydrolyzed soy sauce (AHSS), fermented soy sauce (FSS), and fermented sesame sauce (FSeS), on 2% dextran sulfate sodium (DSS)-induced ulcerative colitis in C57BL/6J mice. The fermented sauces, particularly FSeS, significantly suppressed DSS-induced body weight loss, increased colon length, and decreased colon weight/length ratios. Histological observations suggested that the fermented sauces prevented edema, mucosal damage, and the loss of crypts induced by DSS compared to the control mice and animals fed AHSS. FSeS and FSS decreased the serum levels of tumor necrosis factor-? (TNF-?), interferon-? (IFN-?), interleukin (IL)-6, and IL-17?. mRNA expression of these cytokines as well as that of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in colon mucosa was also inhibited by the two sauces. Our results suggest that fermented sauces, especially FSeS, exert an anticolitic effect partially by reducing the serum levels of proinflammatory cytokines and inhibiting the mRNA expression of these factors in the colon tissue of mice treated with DSS. However, AHSS did not protect against DSS-induced colitis. In addition, low-dose treatment (4?mL/kg) with the fermented sauces resulted in greater anticolitic effects than consumption of a high quantity (8?mL/kg) of the sauces. PMID:25188463

  2. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 4, A laboratory study conducted in fulfillment of Phase 2, Objective 1 titled: Inhibition of acid production in coal refuse amended with calcium sulfite and calcium sulfate - containing FGD solids

    SciTech Connect

    none,

    1998-06-30

    Control of S02 emission from coal combustion requires desulfurization of coal before its combustion to produce coal refuse. Alternatively, gaseous emissions from coal combustion may be scrubbed to yield flue gas desulfurization (FGD) by-products that include calcium sulfite (CaSO3?0.5H2O or simply CaS03). Acid production in coal refuse due to pyrite oxidation and disposal of large amounts of FGD can cause environmental degradation. Addition of CaS03 and CaS03-containing FGD to coal refuse may reduce the amounts of oxygen and ferric ion available to oxidize pyrite because the sulfite moiety in CaS03 is a strong reductant and thus may mitigate acid production in coal refuse. In Chapter 1, it was shown that CaS03 efficiently scavenged dissolved oxygen and ferric ion in water under the conditions commonly encountered in a coal refuse disposal environment. In the presence ofCaS03, the concentration of dissolved oxygen in water exposed to the atmosphere declined to below 0.01 mg L"1 at pH <8.0. In Chapter 2, it was demonstrated that CaS03 prevented a pH drop in coal refuse slurry when 0.2 gCaS03 was added to a 2% fresh coal refuse slurry every three days. Calcium sulfite also inhibited acid leaching from fresh coal refuse in bench-scale columns under controlled conditions. During the initial 13 weeks of leaching, the total amounts of titratable acidity, soluble H\\ Fe, and Al from CaS03-treated refuse (6.4 gin 50 g fresh coal refuse) were only 26%,10%, 32%, and 39% of those of the control columns, respectively. A combination of CaS03 with CaC03 or fly ash enhanced the inhibitory effect of CaS03 on acid leaching. Calcium sulfite-containing FGD which combined CaS03, CaC03, fly ash, and gypsum showed a much stronger inhibitory effect on acid leaching than CaS03 alone. This combination effect was partially due to the positive interaction of CaS03 with CaC03 and fly ash on inhibition of acid leaching. In Chapter 3, CaS03-containing FGD was found to inhibit acid leaching from both fresh and aged coal refuse in large scale columns under simulated field conditions. During 39 weeks of leaching, the reduction of leachate acidity and Fe concentration and the increase ofleachate pH were significant (p <0.05) for the 22% FGD treatment with a linear response to increasing FGD rates (0%, 5.5%, 11%, and 22%). I conclude that CaS03 and CaS03-containing FGD have the ability to inhibit acid production in coal refuse and the inhibitory effect shown in this experiment is likely to occur under field conditions. Thus, the research results present a potential new method for mitigation of acid production in coal refuse and another beneficial utilization of FGD by-products.

  3. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment

    Microsoft Academic Search

    D. Rose; S. S. Gunthe; E. Mikhailov; G. P. Frank; U. Dusek; M. O. Andreae; U. Pöschl

    2008-01-01

    Experimental and theoretical uncertainties in the measurement of cloud condensation nuclei (CCN) with a continuous-flow thermal-gradient CCN counter from Droplet Measurement Technologies (DMT-CCNC) have been assessed by model calculations and calibration experiments with ammonium sulfate and sodium chloride aerosol particles in the diameter range of 20-220 nm. Experiments have been performed in the laboratory and during field measurement campaigns, covering

  4. Characterization of Dextran Sodium Sulfate-Induced Inflammation and Colonic Tumorigenesis in Smad3?/? Mice with Dysregulated TGF?

    PubMed Central

    Brabb, Thea; Maggio-Price, Lillian

    2013-01-01

    There are few mouse models that adequately mimic large bowel cancer in humans or the gastrointestinal inflammation which frequently precedes it. Dextran sodium sulphate (DSS)-induces colitis in many animal models and has been used in combination with the carcinogen azoxymethane (AOM) to induce cancer in mice. Smad3?/? mice are deficient in the transforming growth factor beta (TGF?) signaling molecule, SMAD3, resulting in dysregulation of the cellular pathway most commonly affected in human colorectal cancer, and develop inflammation-associated colon cancer. Previous studies have shown a requirement for a bacterial trigger for the colitis and colon cancer phenotype in Smad3?/? mice. Studies presented here in Smad3?/? mice detail disease induction with DSS, without the use of AOM, and show a) Smad3?/? mice develop a spectrum of lesions ranging from acute and chronic colitis, crypt herniation, repair, dysplasia, adenomatous polyps, disseminated peritoneal adenomucinosis, adenocarcinoma, mucinous adenocarcinoma (MAC) and squamous metaplasia; b) the colon lesions have variable galactin-3 (Mac2) staining c) increased DSS concentration and duration of exposure leads to increased severity of colonic lesions; d) heterozygosity of SMAD3 does not confer increased susceptibility to DSS-induced disease and e) disease is partially controlled by the presence of T and B cells as Smad3?/?Rag2?/? double knock out (DKO) mice develop a more severe disease phenotype. DSS-induced disease in Smad3?/? mice may be a useful animal model to study not only inflammation-driven MAC but other human diseases such as colitis cystica profunda (CCP) and pseudomyxomatous peritonei (PMP). PMID:24244446

  5. White and dark kidney beans reduce colonic mucosal damage and inflammation in response to dextran sodium sulfate.

    PubMed

    Monk, Jennifer M; Zhang, Claire P; Wu, Wenqing; Zarepoor, Leila; Lu, Jenifer T; Liu, Ronghua; Pauls, K Peter; Wood, Geoffrey A; Tsao, Rong; Robinson, Lindsay E; Power, Krista A

    2015-07-01

    Common beans are a rich source of nondigestible fermentable components and phenolic compounds that have anti-inflammatory effects. We assessed the gut-health-promoting potential of kidney beans in healthy mice and their ability to attenuate colonic inflammation following dextran sodium sulphate (DSS) exposure (via drinking water, 2% DSS w/v, 7 days). C57BL/6 mice were fed one of three isocaloric diets: basal diet control (BD), or BD supplemented with 20% cooked white (WK) or dark red kidney (DK) bean flour for 3 weeks. In healthy mice, anti-inflammatory microbial-derived cecal short chain fatty acid (SCFA) levels (acetate, butyrate and propionate), colon crypt height and colonic Mucin 1 (MUC1) and Resistin-like Molecule beta (Relm?) mRNA expression all increased in WK- and DK-fed mice compared to BD, indicative of enhanced microbial activity, gut barrier integrity and antimicrobial defense response. During colitis, both bean diets reduced (a) disease severity, (b) colonic histological damage and (c) increased mRNA expression of antimicrobial and barrier integrity-promoting genes (Toll-like Receptor 4 (TLR4), MUC1-3, Relm? and Trefoil Factor 3 (TFF3)) and reduced proinflammatory mediator expression [interleukin (IL)-1?, IL-6, interferon (IFN)?, tumor necrosis factor (TNF)? and monocyte chemoattractant protein-1], which correlated with reduced colon tissue protein levels. Further, bean diets exerted a systemic anti-inflammatory effect during colitis by reducing serum levels of IL-17A, IFN?, TNF?, IL-1? and IL-6. In conclusion, both WK and DK bean-supplemented diets enhanced microbial-derived SCFA metabolite production, gut barrier integrity and the microbial defensive response in the healthy colon, which supported an anti-inflammatory phenotype during colitis. Collectively, these data demonstrate a beneficial colon-function priming effect of bean consumption that mitigates colitis severity. PMID:25841250

  6. Macrokinetics of magnesium sulfite oxidation inhibited by ascorbic acid.

    PubMed

    Lidong, Wang; Yongliang, Ma; Wendi, Zhang; Qiangwei, Li; Yi, Zhao; Zhanchao, Zhang

    2013-08-15

    Magnesia flue gas desulfurization is a promising process for small to medium scale industrial coal-fired boilers in order to reduce sulfur dioxide emissions, in which oxidation control of magnesium sulfite is of great importance for the recycling of products. Effects of four inhibitors were compared by kinetic experiments indicating that ascorbic acid is the best additive, which retards the oxidation process of magnesium sulfite in trace presence. The macrokinetics of magnesium sulfite oxidation inhibited by ascorbic acid were studied. Effects of the factors, including ascorbic acid concentration, magnesium sulfite concentration, oxygen partial pressure, pH, and temperature, were investigated in a stirred reactor with bubbling. The results show that the reaction rate is -0.55 order in ascorbic acid, 0.77 in oxygen partial pressure, and zero in magnesium sulfite concentration, respectively. The apparent activation energy is 88.0 kJ mol(-1). Integrated with the kinetic model, it is concluded that the oxidation rate of magnesium sulfite inhibited by ascorbic acid is controlled by the intrinsic chemical reaction. The result provides a useful reference for sulfite recovery in magnesia desulfurization. PMID:23692683

  7. Nature of electronic states and optical functions of sodium oxyanionic compounds

    NASA Astrophysics Data System (ADS)

    Zhuravlev, Yu. N.; Korabel'Nikov, D. V.

    2009-01-01

    The band structure, the density of states, the partial electron densities, and optical functions (such as permittivity, refraction index, reflection and absorption coefficients) of sodium nitrite, nitrate, carbonate, chlorate, sulfite, perchlorate, and sulfate are calculated in a local approximation of the density-functional theory using the Troullier-Martins pseudopotentials in the basis of numerical pseudoatomic orbitals. The nature of the upper valence bands and the lower empty bands is established. It is shown that the specific features of the optical functions at energies of up to 8 eV and at E> 8 eV are due to the excitation of electrons into a localized anionic conduction band and into the bands of anion-cation states, respectively. The results are compared to experimental photoelectron spectra and reflection and absorption spectra.

  8. Effects of the methyltrimethoxysilane coupling agent on phenolic and miscanthus composites containing calcium sulfite scrubber material

    NASA Astrophysics Data System (ADS)

    Jones, Sean

    The purpose of this research is to test the effects of methyltrimethoxysilane coupling agent on composite material containing calcium sulfite obtained from the Southern Illinois Power Co-operative. This scrubber material and the miscanthus plant are of interest due to their use in coal burning power plants to reduce toxic emission. When calcium sulfate is passed through coal fire gas emissions it absorbs mercury and sulfur. In these composites it is used as filler to reduce cost. Miscanthus is a source of both cellulose reinforcement and some natural resin. This plant has low care requirements, little mineral content, useful energy return, and positive environmental effects. Under investigation is whether a post-cure procedure or a silane coupling agent will positively impact the composite. Hot pressing alone may not be enough to fully cure the phenolic. It is hoped that the silane will increase the strength characteristics of the composite by enhancing adhesion between the calcium sulfite and phenolic resin. Possible effects on the miscanthus by the silane will also be tested. Phenolic is being utilized because of its recycling and biodegradable properties along with cost effectiveness in mass production. Composite mechanical performance was measured through 3-point bending to measure flexural strength and strain at breakage. A dynamic mechanical analyzer (DMA) was used to find thermomechanical properties. The post-cure was found to be effective, particularly on the final composite containing silane. When methyltrimethoxysilane was added to the miscanthus prior to fabrication, it was found to reduce flexural strength and density. However the addition of methyltrimethoxysilane to the calcium sulfite altered thermo-mechanical properties to a state more like pure phenolic, with added flexibility and thermal stability.

  9. Ginsenoside Metabolite Compound K Promotes Recovery of Dextran Sulfate Sodium-Induced Colitis and Inhibits Inflammatory Responses by Suppressing NF-?B Activation

    PubMed Central

    Li, Juan; Zhong, Wei; Wang, Weiwei; Hu, Shaoping; Yuan, Jiahui; Zhang, Bing; Hu, Tianhui; Song, Gang

    2014-01-01

    Phytogenic compounds with anti-oxidant and anti-inflammatory properties, such as ginsenoside metabolite compound K (CK) or berberine (BBR), are currently discussed as promising complementary agents in the prevention and treatment of cancer and inflammation. The latest study showed that ginsenoside Rb1 and its metabolites could inhibit TNBS-induced colitis injury. However, the functional mechanisms of anti-inflammation effects of ginsenoside, particularly its metabolite CK are still not clear. Here, using dextran sulfate sodium (DSS)-induced colitis in mice, clinical parameters, intestinal integrity, pro-inflammatory cytokines production, and signaling pathways in colonic tissues were determined. In mild and sever colitis mice, CK and BBR (as a positive agent) alleviated colitis histopathology injury, ameliorated myeloperoxidase (MPO) activity, reduced pro-inflammatory cytokines production, such as, IL-6, IL-1?, TNF-?, and increased anti-inflammatory cytokine IL-10 production in both mice colon tissues and blood. Nevertheless, the results revealed that CK and BBR inhibited NF-?B p65 nuclear translocation, downregulated p-I?B? and upregulated I?B?, indicating that CK, as well as BBR, suppressed the activation of the NF-?B pathway in the progression of colitis with immunofluorescence, immunohistochemical and western blotting analysis. Furthermore, CK inhibited pro-inflammatory cytokines production in LPS-activated macrophages via down-regulation of NF-?B signaling pathway. Taken together, our results not only reveal that CK promotes the recovery of the progression of colitis and inhibits the inflammatory responses by suppressing NF-?B activation, but also suggest that CK downregulates intestinal inflammation through regulating the activation of macrophages and pro-inflammatory cytokines production. PMID:24504372

  10. Spontaneous formation of nanocubic particles and spherical vesicles in catanionic mixtures of ester-containing gemini surfactants and sodium dodecyl sulfate in the presence of electrolyte.

    PubMed

    Aghdastinat, Hasti; Javadian, Soheila; Tehrani-Bagha, Alireza; Gharibi, Hussein

    2014-03-20

    Self-assembly of pure ester-containing cationic gemini surfactants, dodecyl esterquat, and dodecyl betainate geminis, and cation-rich catanionic mixtures of them with sodium dodecyl sulfate (SDS) were investigated using surface tension, electrical conductivity, dynamic light scattering (DLS), transmission electron microscopy (TEM) and cyclic voltammetry (CV) measurements in the absence and presence of KCl. Different physicochemical properties such as the critical micelle concentration (CMC), degree of counterion dissociation (?diss), interfacial properties, morphology of aggregates, and interparticle interaction parameters were determined. Both geminis formed micelles in the absence of KCl, and mixing with SDS did not change the morphology; just a growth in micelle size was observed. However, the aggregation behavior of these geminis with respect to the position of the ester bond in the alkyl chain appeared completely different in the presence of KCl. Esterquat gemini formed cubic nanoparticles (or cobosomes) in the presence of [KCl] = 0.05 M and transformed into spherical micelles upon increasing the surfactant concentration. By contrast, betainate gemini formed vesicles in the presence of [KCl] = 0.05 M and subsequently converted to micelles as the surfactant concentration increased. The morphology of esterquat gemini (in the presence of 0.05 M KCl) after mixing with SDS changed from cubic nanoparticles (or cobosomes) to cylindrical nanoparticles coexistent with cobosomes. Betainate gemini remained vesicular upon mixing with SDS, and no dramatic structural change of aggregates took place. The morphology changes of aggregates upon mixing with SDS were explained from calculating the interactions between two gemini surfactants and SDS on the basis of regular solution theory. PMID:24547744

  11. Time course of the incidence/multiplicity and histopathological features of murine colonic dysplasia, adenoma and adenocarcinoma induced by benzo[a]pyrene and dextran sulfate sodium

    PubMed Central

    Sonoda, Jiro; Seki, Yuki; Hakura, Atsushi; Hosokawa, Satoru

    2015-01-01

    Benzo[a]pyrene (BP) is mutagenic but noncarcinogenic in the murine colon. Recently, we reported rapid induction of colonic tumors by treatment of CD2F1 mice with BP (125 mg/kg for 5 days) followed by a colitis inducer, dextran sulfate sodium (DSS) (4% in drinking water for 1 or 2 weeks). However, there are no reports on detailed time course and histopathological features of colonic proliferative lesions in this model. Here, we show the detailed time course of colonic dysplasia, adenoma and adenocarcinoma induced by treatment with BP, DSS, and a combination of the two (BP/DSS). In the colon of mice exposed to BP/DSS, 14.6 dysplastic foci per mouse were present one week after DSS treatment (week 4). The number of dysplastic foci decreased with time to 3.1 at week 9 and thereafter remained almost constant. At week 4, 1.5 adenocarcinomas were also observed, with a marked increase in numbers with time, reaching 29.3 at week 14. In contrast, the number of dysplastic foci induced by DSS alone showed a time course similar to that following BP/DSS treatment; however, only a few tumors appeared. Neither dysplastic foci nor neoplastic lesions were induced by BP only. In mice exposed to BP/DSS, ?-catenin was demonstrated immunohistochemically in the nucleus and/or cytoplasm of the tumor cells, and this translocation from the cell membrane was evident in subsets of dysplastic foci. In dysplastic foci induced by DSS alone, ?-catenin was absent in the nucleus/cytoplasm. These finding suggest that aberrant ?-catenin accumulation in dysplastic foci is associated with tumor progression in this BP/DSS model. PMID:26028820

  12. Dextran sodium sulfate inhibits the activities of both polymerase and reverse transcriptase: lithium chloride purification, a rapid and efficient technique to purify RNA

    PubMed Central

    2013-01-01

    Background Dextran sodium sulfate (DSS) is commonly used in mouse studies to induce a very reproducible colitis that effectively mimics the clinical and histological features of human inflammatory bowel disease (IBD) patients, especially ulcerative colitis. However, the mechanisms of action of DSS remain poorly understood, and observations by our laboratory and other groups indicate that DSS contamination of colonic tissues from DSS-treated mice potently inhibits the quantitative reverse-transcription polymerase chain reaction (qRT-PCR) amplification of mRNA. Results A prior study used poly-A-mediated mRNA purification to remove DSS from RNA extracts, but we herein report a second efficient and cost-effective approach to counteract this inhibition, using lithium chloride precipitation to entirely remove DSS from RNAs. We also explored how DSS interferes with qRT-PCR process, and we report for the first time that DSS can alter the binding of reverse transcriptase to previously primed RNA and specifically inhibits the enzymatic activities of reverse transcriptase and Taq polymerase in vitro. This likely explains why DSS-treated colonic RNA is not suitable to qRT-PCR amplification without a previous purification step. Conclusion In summary, we provide a simple method to remove DSS from colonic RNAs, and we demonstrate for the first time that DSS can inhibit the activities of both polymerase and reverse transcriptase. In order to reliably analyze gene expression in the colonic mucosa of DSS-treated mice, the efficiency rate of qRT-PCR must be the same between all the different experimental groups, including the water-treated control group, suggesting that whatever the duration and the percentage of the DSS treatment, RNAs must be purified. PMID:24010775

  13. Involvement of nitric oxide with activation of Toll-like receptor 4 signaling in mice with dextran sodium sulfate-induced colitis.

    PubMed

    Tun, Xin; Yasukawa, Keiji; Yamada, Ken-ichi

    2014-09-01

    Ulcerative colitis is an inflammatory bowel disease characterized by acute inflammation, ulceration, and bleeding of the colonic mucosa. Its cause remains unknown. Increases in adhesion molecules in vascular endothelium, and activated neutrophils releasing injurious molecules such as reactive oxygen species, are reportedly associated with the pathogenesis of dextran sodium sulfate (DSS)-induced colitis. Nitric oxide (NO) production derived from inducible NO synthase (iNOS) via activation of nuclear factor ?B (NF-?B) has been reported. It is also reported that stimulation of Toll-like receptor 4 (TLR4) by lipopolysaccharide can activate NF-?B. In this study, we investigated the involvement of NO production in activation of the TLR4/NF-?B signaling pathway in mice with DSS-induced colitis. The addition of 5% DSS to the drinking water of male ICR mice resulted in increases in TLR4 protein in colon tissue and NF-?B p65 subunit in the nuclear fraction on day 3, increases in colonic tumor necrosis factor-? on day 4, and increases in P-selectin, intercellular adhesion molecule-1, NO2(-)/NO3(-), and nitrotyrosine in colonic mucosa on day 5. These activated inflammatory mediators and pathology of colitis were completely suppressed by treatment with a NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, as well as an iNOS inhibitor, aminoguanidine. Conversely, a NO-releasing compound, NOC-18, increased TLR4 levels and nuclear translocation of NF-?B p65 and exacerbated mucosal damage induced by DSS challenge. These data suggest that increases in TLR4 expression induced by drinking DSS-treated water might be directly or indirectly associated with NO overproduction. PMID:24992835

  14. Hepatic early inflammation induces downregulation of hepatic cytochrome P450 expression and metabolic activity in the dextran sulfate sodium-induced murine colitis.

    PubMed

    Kusunoki, Yoshiki; Ikarashi, Nobutomo; Hayakawa, Yoshitaka; Ishii, Makoto; Kon, Risako; Ochiai, Wataru; Machida, Yoshiaki; Sugiyama, Kiyoshi

    2014-04-11

    Ulcerative colitis (UC) patients may have increased concentrations of drugs in their blood. We hypothesized that this response is mainly due to a decrease in the expression and activity of the drug-metabolizing enzyme, cytochrome P450 (CYP), in the liver. In this study, we have tried to demonstrate the hypothesis. UC was induced in mice by treatment with dextran sulfate sodium (DSS) solution. The mRNA and protein expression levels of CYP, inflammatory cytokine levels, and the metabolic activity of CYP3A in the liver were measured. The nuclear translocations of nuclear factor kappa B (NF-?B), pregnane X receptor (PXR), and constitutive androstane receptor (CAR) were analyzed. The levels of hepatic inflammatory cytokines increased in the DSS-treated group. The hepatic mRNA and protein expression of CYP (CYP1A, CYP2C, CYP2D, CYP2E, and CYP3A) and the CYP3A metabolic activity significantly decreased compared to the control group. Hepatic NF-?B nuclear translocation significantly increased in the DSS-treated group. In contrast, the nuclear translocations of PXR and CAR were decreased. Lipopolysaccharides from inflammatory sites in the colon induce hepatic inflammation in DSS-induced murine colitis. This inflammation then causes an increase in the nuclear translocation of hepatic NF-?B and a decrease in the nuclear translocation of PXR and CAR, resulting in the decreased expression and activities of CYP. The results of this study indicated that at the onset of UC, the decreased activity of hepatic CYP causes an increase in the concentrations of drugs in the blood, leading to an increase in the incidence of adverse reactions. PMID:24413062

  15. The Noncommensal Bacterium Methylococcus capsulatus (Bath) Ameliorates Dextran Sulfate (Sodium Salt)-Induced Ulcerative Colitis by Influencing Mechanisms Essential for Maintenance of the Colonic Barrier Function

    PubMed Central

    Hult, Lene T. Olsen; Spetalen, Signe; Kaldhusdal, Magne; Christofferesen, Trine Eker; Bengtsson, Oskar; Romarheim, Odd Helge; Jacobsen, Morten; Lea, Tor

    2013-01-01

    Dietary inclusion of a bacterial meal has recently been shown to efficiently abolish soybean meal-induced enteritis in Atlantic salmon. The objective of this study was to investigate whether inclusion of this bacterial meal in the diet could abrogate disease development in a murine model of epithelial injury and colitis and thus possibly have therapeutic potential in human inflammatory bowel disease. C57BL/6N mice were fed ad libitum a control diet or an experimental diet containing 254 g/kg of body weight BioProtein, a bacterial meal consisting of Methylococcus capsulatus (Bath), together with the heterogenic bacteria Ralstonia sp., Brevibacillus agri, and Aneurinibacillus sp. At day 8, colitis was induced by 3.5% dextran sulfate sodium (DSS) ad libitum in the drinking water for 6 days. Symptoms of DSS treatment were less profound after prophylactic treatment with the diet containing the BioProtein. Colitis-associated parameters such as reduced body weight, colon shortening, and epithelial damage also showed significant improvement. Levels of acute-phase reactants, proteins whose plasma concentrations increase in response to inflammation, and neutrophil infiltration were reduced. On the other, increased epithelial cell proliferation and enhanced mucin 2 (Muc2) transcription indicated improved integrity of the colonic epithelial layer. BioProtein mainly consists of Methylococcus capsulatus (Bath) (88%). The results that we obtained when using a bacterial meal consisting of M. capsulatus (Bath) were similar to those obtained when using BioProtein in the DSS model. Our results show that a bacterial meal of the noncommensal bacterium M. capsulatus (Bath) has the potential to attenuate DSS-induced colitis in mice by enhancing colonic barrier function, as judged by increased epithelial proliferation and increased Muc2 transcription. PMID:23064342

  16. Arctigenin but not arctiin acts as the major effective constituent of Arctium lappa L. fruit for attenuating colonic inflammatory response induced by dextran sulfate sodium in mice.

    PubMed

    Wu, Xin; Yang, Yan; Dou, Yannong; Ye, Jun; Bian, Difei; Wei, Zhifeng; Tong, Bei; Kong, Lingyi; Xia, Yufeng; Dai, Yue

    2014-12-01

    The crude powder of the fruit of Arctium lappa L. (ALF) has previously been reported to attenuate experimental colitis in mice. But, its main effective ingredient and underlying mechanisms remain to be identified. In this study, ALF was extracted with ethanol, and then successively fractionated into petroleum ether, ethyl acetate, n-butanol and water fraction. Experimental colitis was induced by dextran sulfate sodium (DSS) in mice. Among the four fractions of ALF, the ethyl acetate fraction showed the most significant inhibition of DSS-induced colitis in mice. The comparative studies of arctigenin and arctiin (the two main ingredients of ethyl acetate fraction) indicated that arctigenin rather than arctiin could reduce the loss of body weight, disease activity index and histological damage in the colon. Arctigenin markedly recovered the loss of intestinal epithelial cells (E-cadherin-positive cells) and decreased the infiltration of neutrophils (MPO-positive cells) and macrophages (CD68-positive cells). Arctigenin could down-regulate the expressions of TNF-?, IL-6, MIP-2, MCP-1, MAdCAM-1, ICAM-1 and VCAM-1 at both protein and mRNA levels in colonic tissues. Also, it markedly decreased the MDA level, but increased SOD activity and the GSH level. Of note, the efficacy of arctigenin was comparable or even superior to that of the positive control mesalazine. Moreover, it significantly suppressed the phosphorylation of MAPKs and the activation of NF-?B, including phosphorylation of I?B? and p65, p65 translocation and DNA binding activity. In conclusion, arctigenin but not arctiin is the main active ingredient of ALF for attenuating colitis via down-regulating the activation of MAPK and NF-?B pathways. PMID:25284342

  17. Serum Amino Acids Profile and the Beneficial Effects of L-Arginine or L-Glutamine Supplementation in Dextran Sulfate Sodium Colitis

    PubMed Central

    Wu, Miaomiao; Liu, Gang; Yang, Guan; Xion, Yan; Su, Dingding; Wu, Li; Li, Tiejun; Chen, Shuai; Duan, Jielin; Yin, Yulong; Wu, Guoyao

    2014-01-01

    This study was conducted to investigate serum amino acids profile in dextran sulfate sodium (DSS)-induced colitis, and impacts of graded dose of arginine or glutamine supplementation on the colitis. Using DSS-induced colitis model, which is similar to human ulcerative colitis, we determined serum profile of amino acids at day 3, 7, 10 and 12 (5 days post DSS treatment). Meanwhile, effects of graded dose of arginine (0.4%, 0.8%, and 1.5%) or glutamine (0.5%, 1.0% and 2.0%) supplementation on clinical parameters, serum amino acids, colonic tight junction proteins, colonic anti-oxidative indicators [catalase, total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px)], colonic pro-inflammatory cytokines [interleukin-1 beta (IL-1?), IL-6, IL-17 and tumor necrosis factor alpha (TNF-?)] in DSS-induced colitis were fully analyzed at day 7 and 12. Additionally, the activation of signal transduction pathways, including nuclear factor kappa B (NF-?B), mitogen-activated protein kinases (MAPK), phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt), and myosin light chain kinase (MLCK)- myosin light chain (MLC20), were analyzed using immunoblotting. Serum amino acids analysis showed that DSS treatment changed the serum contents of amino acids, such as Trp, Glu, and Gln (P<0.05). Dietary arginine or glutamine supplementation had significant (P<0.05) influence on the clinical and biochemical parameters (T-SOD, IL-17 and TNF-?) in colitis model. These results were associated with colonic NF-?B, PI3K-Akt and MLCK signaling pathways. In conclusion, arginine or glutamine could be a potential therapy for intestinal inflammatory diseases. PMID:24505477

  18. One-Step Synthesis of Single-Layer MnO2 Nanosheets with Multi-Role Sodium Dodecyl Sulfate for High-Performance Pseudocapacitors.

    PubMed

    Liu, Zhenning; Xu, Kongliang; Sun, Hang; Yin, Shengyan

    2015-05-01

    A template-free, one-step and one-phase synthesis of single-layer MnO2 nanosheets has been developed via a redox reaction between KMnO4 and sodium dodecyl sulfate (SDS). The successful formation of single-layer MnO2 nanosheets has been confirmed by the characteristic absorption around 374 nm and the typical thickness of ~0.95 nm. The slow redox reaction controlled by the gradual hydrolysis of SDS is found to be the key factor for the successful formation of single-layer nanosheets. SDS not only serves as the precursor of dodecanol to reduce KMnO4 , but also aids the formation of single-layer MnO2 nanosheets as a structure-inducing agent. The resultant single-layer MnO2 nanosheets possess superior specific capacitance, which can be attributed to the extended surface and high porosity of MnO2 nanosheets on the electrode. The MnO2 nanosheets also show excellent durability, retaining 91% of the starting capacitance after 10 000 charge/discharge cycles. Moreover, the symmetric pseudocapacitor based on the synthesized single-layer MnO2 nanosheets exhibits a high specific capacitance, indicating great potential for real energy storage. Therefore, it has been demonstrated for the first time that a single readily available reagent, SDS, can play multiple roles in reducing KMnO4 to conveniently yield single-layer MnO2 nanosheets as a high-performance pseudocapacitive material. PMID:25565035

  19. Mixed micelles of Triton X-100, sodium dodecyl dioxyethylene sulfate, and synperonic l61 investigated by NOESY and diffusion ordered NMR spectroscopy.

    PubMed

    Denkova, Pavletta S; Van Lokeren, Luk; Willem, Rudolph

    2009-05-14

    Mixed micelles formed from nonionic surfactant Triton X-100 (TX100), anionic surfactant sodium dodecyl dioxyethylene sulfate (SDP2S), and triblock copolymer Synperonic L61 (SL61) were investigated by 1H NMR spectroscopy. The size and shape of the aggregates were determined by diffusion ordered NMR spectroscopy (DOSY), while 2D nuclear Overhauser enhanced spectroscopy (NOESY) NMR was used to study the mutual spatial arrangement of the surfactant molecules in the aggregated state. An average micellar hydrodynamic radius of 3.6 nm, slightly increasing upon increasing TX100 molar fraction, was found for the mixed systems without additives. Addition of SL61 to the mixed micellar systems results in a slight increase of micellar radii. In the presence of AlCl3, an increase of TX100/SDP2S micellar sizes from 4 to 10 nm was found when increasing the SDP2S molar fraction. The mixed TX100/SDP2S micelles in the presence of both AlCl3 and polymer SL61 are almost spherical, with a radius of 4.5 nm. 2D NOESY data reveal that, as the individual TX100 micelles, mixed TX100/SDP2S and TX100/SDP2S/SL61/AlCl3 micelles also have a multilayer structure, with partially overlapping internal and external layers of TX100 molecules. In these mixed micelles, the SDP2S molecules are located at the level of the external layer of TX100 molecules, whereas the SL61 polymer is partially incorporated inside of the micellar core. PMID:19385612

  20. Deletion of Intestinal Epithelial Cell STAT3 Promotes T Lymphocyte STAT3 Activation and Chronic Colitis Following Acute Dextran Sodium Sulfate Injury in Mice

    PubMed Central

    Willson, Tara A.; Jurickova, Ingrid; Collins, Margaret; Denson, Lee A.

    2015-01-01

    BACKGROUND Intestinal epithelial cell (IEC) Stat3 is required for wound healing following acute Dextran Sodium Sulfate (DSS) injury. We hypothesized that loss of IEC STAT3 would promote the development of chronic colitis following acute DSS injury. METHODS Colitis was induced in IEC-specific Stat3 deficient mice (Stat3?IEC) and littermate controls (Stat3Flx/Flx) with 4%DSS for 7 days, followed by water consumption for 21 days. Epithelial and immune mediators and severity of colitis were determined. RESULTS Survival, colon length, and histologic injury were significantly worse at day 28 in Stat3?IEC mice. IEC proliferation and apoptosis did not vary by genotype at day 14 or day 28. The colonic lamina propria frequency of pSTAT3+ cells was increased at day 28 and correlated with histologic injury in Stat3?IEC mice. The frequency of colonic F480+pSTAT3+ macrophages and CD3+pSTAT3+ T-lymphocytes were increased in Stat3?IEC mice as compared to Stat3Flx/Flx controls. In Stat3?IEC mice, colonic expression of Stat3 target genes Reg3? and Reg3? which mediate epithelial restitution were significantly decreased, while expression of IL-17a, IFN?, CXCL2, CXCL10, and CCL2 were significantly increased and correlated with the increase in histologic severity at Day 28(p<.05). IL-17a expression also correlated with the increased lamina propria frequency of CD3+pSTAT3+ T-lymphocytes. CONCLUSIONS Loss of intestinal epithelial Stat3 leads to more severe chronic inflammation following acute injury which is not accounted for by a sustained defect in epithelial proliferation or apoptosis 7 or 21 days after one cycle of DSS but rather defective REG3 expression and expansion of pSTAT3+ lymphocytes and IL-17a expression. PMID:23429443

  1. Effects of Dietary Glutamine on the Homeostasis of CD4+ T Cells in Mice with Dextran Sulfate Sodium-Induced Acute Colitis

    PubMed Central

    Hsiung, Yuan-Chin; Liu, Jun-Jen; Hou, Yu-Chen; Yeh, Chiu-Li; Yeh, Sung-Ling

    2014-01-01

    This study investigated the effects of dietary glutamine (Gln) on T-helper (Th) and T regulatory (Treg) cell homeostasis and colonic inflammatory mediator expression in mice with dextran sulfate sodium (DSS)-induced colitis. Mice were randomly assigned to 4 groups with 2 normal control (C and G) and 2 DSS-treated groups (DC and DG). The C and DC groups were fed a common semipurified diet, while the G and DG groups received an identical diet except that part of the casein was replaced by Gln, which provided 25% of the total amino acid nitrogen. Mice were fed the diets for 10 days. On day 6, mice in the normal control groups were given distilled water, while those in the DSS groups were given distilled water containing 1.5% DSS for 5 d. At the end of the experiment, the mice were sacrificed for further examination. Results showed that DC group had higher plasma haptoglobin, colonic weight, immunoglobulin G, inflammatory cytokine and nuclear factor (NF)-?B protein levels. Gln administration lowered inflammatory mediators and NF-?B/I?B? ratio in colitis. Compared with the DC group, the percentages of interleukin-17F and interferon-? in blood and transcription factors, T-bet and RAR-related orphan receptor-?t, gene expressions in mesenteric lymph nodes were lower, whereas blood Foxp3 was higher in the DG group. Also, DG group had lower colon injury score. These results suggest that Gln administration suppressed Th1/Th17 and Th-associated cytokine expressions and upregulated the expression of Tregs, which may modulate the balance of Th/Treg and reduce inflammatory reactions in DSS-induced colitis. PMID:24416230

  2. Electrophoretic Extraction of Low Molecular Weight Cationic Analytes from Sodium Dodecyl Sulfate Containing Sample Matrices for Their Direct Electrospray Ionization Mass Spectrometry

    PubMed Central

    Kinde, Tristan F.; Lopez, Thomas D.; Dutta, Debashis

    2015-01-01

    While the use of sodium dodecyl sulfate (SDS) in separation buffers allows efficient analysis of complex mixtures, its presence in the sample matrix is known to severely interfere with the mass-spectrometric characterization of analyte molecules. In this article, we report a microfluidic device that addresses this analytical challenge by enabling inline electrospray ionization mass spectrometry (ESI-MS) of low molecular weight cationic samples prepared in SDS containing matrices. The functionality of this device relies on the continuous extraction of analyte molecules into an SDS-free solvent stream based on the free-flow zone electrophoresis (FFZE) technique prior to their ESI-MS analysis. The reported extraction was accomplished in our current work in a glass channel with microelectrodes fabricated along its sidewalls to realize the desired electric field. Our experiments show that a key challenge to successfully operating such a device is to suppress the electroosmotically driven fluid circulations generated in its extraction channel that otherwise tend to vigorously mix the liquid streams flowing through this duct. A new coating medium, N-(2-triethoxysilylpropyl) formamide, recently demonstrated by our laboratory to nearly eliminate electroosmotic flow in glass microchannels was employed to address this issue. Applying this surface modifier, we were able to efficiently extract two different peptides, human angiotensin I and MRFA, individually from an SDS containing matrix using the FFZE method and detect them at concentrations down to 3.7 and 6.3 µg/mL, respectively, in samples containing as much as 10 mM SDS. Notice that in addition to greatly reducing the amount of SDS entering the MS instrument, the reported approach allows rapid solvent exchange for facilitating efficient analyte ionization desired in ESI-MS analysis. PMID:25664891

  3. Anisometric Polyelectrolyte/Mixed Surfactant Nanoassemblies Formed by the Association of Poly(diallyldimethylammonium chloride) with Sodium Dodecyl Sulfate and Dodecyl Maltoside.

    PubMed

    Plazzotta, Beatrice; Fegyver, Edit; Mészáros, Róbert; Pedersen, Jan Skov

    2015-07-01

    The soluble complexes of oppositely charged macromolecules and amphiphiles, formed in the one-phase concentration range, are usually described on the basis of the beads on a string model assuming spherelike bound surfactant micelles. However, around and above the charge neutralization ionic surfactant to polyion ratio, a variety of ordered structures of the precipitates and large polyion/surfactant aggregates have been reported for the different systems which are difficult to connect to globular-like surfactant self-assembly units. In this article we have demonstrated through SAXS measurements that the structure of precipitates and those of the soluble polyion/mixed surfactant complexes of poly(diallyldimethylammonium chloride) (PDADMAC), sodium dodecyl sulfate (SDS), and dodecyl-maltoside (DDM) are strongly correlated. Specifically, SDS binds to the PDADMAC molecules in the form of small cylindrical surfactant micelles even at very low SDS-to-PDADMAC ratios. In this way, these anisometric surfactant self-assemblies formed in excess polyelectrolyte mimic the basic building units of the hexagonal structure of the PDADMAC/SDS precipitate and/or suspensions formed at charge equivalence or at higher SDS-to-PDADMAC ratios. The presence of DDM reduces the cmc and cac for the system but does not alter significantly the structure of the complexes in either the one-phase or two-phase region. The only exception is for samples at SDS-to-PDADMAC ratios close to charge neutralization and a high concentration of DDM where the precipitate forms a multiphasic or distorted hexagonal structure. PMID:26057578

  4. Effects of brief and intermediate exposures to sulfate submicron aerosols and sulfate injections on cardiopulmonary function of dogs and tracheal mucous velocity of sheep

    Microsoft Academic Search

    Marvin A. Sackner; Richard L. Dougherty; Gillete A. Chapman; John Cipley; Debbie Perez; Mark Kwoka; Michael Reinhart; Miguel Brito; Richard Schreck

    1981-01-01

    Pulmonary mechanics of anesthetized dogs were not changed or were minimally altered by breathing the following compounds as submicron aerosols in concentrations up to 17.3 mg\\/m for 7.5 min: (1) sodium chloride (as a control), (2) sodium sulfate, (3) ammonium sulfate, (4) zinc sulfate, (5) zinc ammonium sulfate, (6) ammonium bisulfate, (7) aluminum sulfate, (8) manganese sulfate, (9) nickel sulfate,

  5. Congruent Phylogenies of Most Common Small-Subunit rRNA and Dissimilatory Sulfite Reductase Gene Sequences Retrieved from Estuarine Sediments

    Microsoft Academic Search

    CATHERINE JOULIAN; NIELS B. RAMSING; KJELD INGVORSEN

    2001-01-01

    The diversity of sulfate-reducing bacteria (SRB) in brackish sediment was investigated using small-subunit rRNA and dissimilatory sulfite reductase (DSR) gene clone libraries and cultivation. The phylogenetic affili- ation of the most commonly retrieved clones for both genes was strikingly similar and produced Desulfosarcina variabilis-like sequences from the inoculum but Desulfomicrobium baculatum-like sequences from a high dilu- tion in natural media.

  6. ENZYMATIC BASIS FOR ASSIMILATORY AND DISSIMILATORY SULFATE REDUCTION

    PubMed Central

    Peck, H. D.

    1961-01-01

    Peck, H. D., Jr. (Oak Ridge National Laboratory, Oak Ridge, Tenn.). Enzymatic basis for assimilatory and dissimilatory sulfate reduction. J. Bacteriol. 82: 933–939. 1961.—Two pathways for the reduction of sulfate to sulfite in bacteria have been previously described. The substrate for sulfate reduction by extracts of yeast is 3?-phosphoadenosine-5?-phosphosulfate (PAPS) and, in contrast, the substrate for sulfate reduction in extracts of Desulfovibrio desulfuricans is adenosine-5?-phosphosulfate (APS). The enzymes catalyzing these reductions have been termed PAPS-reductase and APS-reductase, respectively. Since yeasts are “assimilatory sulfate reducers”, i.e., reduce only enough sulfate to satisfy nutritional requirements for sulfur, and D. desulfuricans is a “dissimilatory sulfate reducer”, i.e., utilizes sulfate as its terminal electron acceptor in anaerobic respiration, the pathway of sulfate reduction was determined in 25 microorganisms to ascertain whether there is a correlation between the pathway of sulfate reduction and the physiological role of sulfate in the metabolism of bacteria. Assimilatory sulfate reducers reduced sulfate in the form of PAPS, and, with one exception, APS-reductase was found only in dissimilatory sulfate reducers. APS-reductase was also found in the Thiobacilli in high specific activity and is involved in the oxidation of reduced sulfur compounds to sulfate. PMID:14484818

  7. Distribution, metabolism and toxicity of inhaled sulfur dioxide and endogenously generated sulfite in the respiratory tract of normal and sulfite oxidase-deficient rats.

    PubMed

    Gunnison, A F; Sellakumar, A; Currie, D; Snyder, E A

    1987-01-01

    We report on the distribution, metabolism, and toxicity of sulfite in the respiratory tract and other tissues of rats exposed to endogenously generated sulfite or to inhaled sulfur dioxide (SO2). Graded sulfite oxidase deficiency was induced in several groups of rats by manipulating their tungsten to molybdenum intake ratio. Endogenously generated sulfite and S-sulfonate compounds (a class of sulfite metabolite) accumulated in the respiratory tract tissues and in the plasma of these rats in inverse proportion to hepatic sulfite oxidase activity. In contrast to this systemic mode of exposure, sulfite exposure of normal, sulfite oxidase-competent rats via inhaled SO2 (10 and 30 ppm) was restricted to the airways. Minor pathological changes consisting of epithelial hyperplasia, mucoid degeneration, and desquamation of epithelium were observed only in the tracheas and bronchi of the rats inhaling SO2, even though the concentration of sulfite plus S-sulfonates in the tracheas and bronchi of these rats was considerably lower than that in the endogenously exposed rats. We attribute this histological damage to hydrogen ions stemming from inhaled SO2, not to the sulfite/bisulfite ions that are also a product of inhaled SO2. In addition to the lungs and trachea, all other tissues examined, except the testes, appeared to be refractory to high concentrations of endogenously generated sulfite. The testes of grossly sulfite oxidase-deficient rats were severely atrophied and devoid of spermatogenic cells. PMID:3573068

  8. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...form. It is produced synthetically by the neutralization of acetic acid with sodium carbonate or by treating calcium acetate with sodium sulfate and sodium bicarbonate. (b) The ingredient meets the specifications of the Food...

  9. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...form. It is produced synthetically by the neutralization of acetic acid with sodium carbonate or by treating calcium acetate with sodium sulfate and sodium bicarbonate. (b) The ingredient meets the specifications of the Food...

  10. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...form. It is produced synthetically by the neutralization of acetic acid with sodium carbonate or by treating calcium acetate with sodium sulfate and sodium bicarbonate. (b) The ingredient meets the specifications of the Food...

  11. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...form. It is produced synthetically by the neutralization of acetic acid with sodium carbonate or by treating calcium acetate with sodium sulfate and sodium bicarbonate. (b) The ingredient meets the specifications of the Food...

  12. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...form. It is produced synthetically by the neutralization of acetic acid with sodium carbonate or by treating calcium acetate with sodium sulfate and sodium bicarbonate. (b) The ingredient meets the specifications of the Food...

  13. Redox states of Desulfovibrio vulgaris DsrC, a key protein in dissimilatory sulfite reduction

    SciTech Connect

    Venceslau, Sofia S. [Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras (Portugal)] [Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras (Portugal); Cort, John R.; Baker, Erin S. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352 (United States)] [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Chu, Rosalie K.; Robinson, Errol W. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 (United States)] [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Dahl, Christiane [Institut für Mikrobiologie and Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn (Germany)] [Institut für Mikrobiologie and Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn (Germany); Saraiva, Lígia M. [Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras (Portugal)] [Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras (Portugal); Pereira, Inês A.C., E-mail: ipereira@itqb.unl.pt [Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras (Portugal)

    2013-11-29

    Highlights: •DsrC is known to interact with the dissimilatory sulfite reductase enzyme (DsrAB). •We show that, however, most cellular DsrC is not associated with DsrAB. •A gel-shift assay was developed that allows monitoring of the DsrC redox state. •The DsrC intramolecularly oxidized state could only be produced by arginine treatment. -- Abstract: Dissimilatory reduction of sulfite is carried out by the siroheme enzyme DsrAB, with the involvement of the protein DsrC, which has two conserved redox-active cysteines. DsrC was initially believed to be a third subunit of DsrAB. Here, we report a study of the distribution of DsrC in cell extracts to show that, in the model sulfate reducer Desulfovibrio vulgaris, the majority of DsrC is not associated with DsrAB and is thus free to interact with other proteins. In addition, we developed a cysteine-labelling gel-shift assay to monitor the DsrC redox state and behaviour, and procedures to produce the different redox forms. The oxidized state of DsrC with an intramolecular disulfide bond, which is proposed to be a key metabolic intermediate, could be successfully produced for the first time by treatment with arginine.

  14. The octaheme SirA catalyses dissimilatory sulfite reduction in Shewanella oneidensis MR-1

    SciTech Connect

    Shirodkar, Sheetal; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad

    2011-01-01

    Shewanella oneidensis MR-1 is a metal reducer that uses a large number of electron acceptors that include thiosulfate, polysulfide, and sulfite. The enzyme required for thiosulfate and polysulfide respiration has been recently identified, but the mechanisms of sulfite reduction remained unexplored. Analysis of MR-1 cultures grown anaerobically with sulfite suggested that the dissimilatory sulfite reductase catalyzes six-electron reduction of sulfite to sulfide. Reduction of sulfite required menaquinones and c cytochromes but appeared to be independent of the intermediate electron carrier CymA. Furthermore, the terminal sulfite reductase, SirA, was identified as an octaheme c cytochrome with an atypical heme binding site that represents a new class of sulfite reductases. The sirA locus was identified in the genomes of several sequenced Shewanella genomes, and its presence appears to be linked to the ability of these organisms to reduce sulfite under anaerobic conditions.

  15. Studies of Sulfate Utilization by Algae. 5. Identification of Thiosulfate as a Major Acid-Volatile Product Formed by a Cell-Free Sulfate-Reducing System From Chlorella 1

    PubMed Central

    Levinthal, Mark; Schiff, Jerome A.

    1968-01-01

    Separation of the products formed from sulfate-35S by cell-free extracts of Chlorella pyrenoidosa (Emerson Strain 3) has permitted the identification of thiosulfate as a major product which yields acid-volatile radioactivity. The products formed, as separated by Dowex-1-nitrate chromatography, are qualitatively the same whether extracts at pH 7.0 (using TPNH as the reductant) or extracts at pH 9 [using 2,3-dimercaptopropan-1-ol, (BAL) as reductant] are employed. While thiosulfate can be separated without the addition of carrier, the inclusion of carrier improves the recovery. High concentrations of ATP which have been shown previously to inhibit the formation of acid-volatile radioactivity from radioactive sulfate, inhibit the formation of thiosulfate almost completely. Degradation of the thiosulfate formed at normal ATP concentrations reveals that most of the radioactivity is in the SO3-sulfur of the molecule suggesting that the SH-sulfur is derived from the enzyme extracts. If carrier sulfite is present during thiosulfate formation from sulfate-35S, radioactive sulfite is recovered at the expense of radioactive thiosulfate. Reconstruction experiments utilizing specifically-labeled thiosulfates indicate that radioactive sulfite formation is probably not the result of trapping a normal intermediate, but can be attributed to non-enzymatic exchange between labeled thiosulfate formed from sulfate and the non-radioactive sulfite added, suggesting that free sulfite is not an intermediate in thiosulfate formation from sulfate. PMID:16656806

  16. Glucosamine sulfate

    MedlinePLUS

    ... Sulphate, Glucosamine Sulphate KCl, Glucosamine-6-Phosphate, GS, Mono-Sulfated Saccharide, Poly-(1->3)-N-Acetyl-2- ... Beta-D-Glucopyranurosyl-4-(or 6-) Sul, Saccharide Mono-Sulfaté, Saccharide Sulfaté, Sulfate de Glucosamine, Sulfate de ...

  17. Purification and Properties of a Highly Thermostable, Sodium Dodecyl Sulfate-Resistant and Stereospecific Proteinase from the Extremely Thermophilic Archaeon Thermococcus stetteri

    PubMed Central

    Klingeberg, M.; Galunsky, B.; Sjoholm, C.; Kasche, V.; Antranikian, G.

    1995-01-01

    The cultivation of the extremely thermophilic archaeon Thermococcus stetteri in a dialysis membrane reactor was paralleled by the production of an extremely heat-stable proteinase(s). By applying preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, an SDS-resistant proteinase was purified 67-fold in one step with a yield of 34%. The purified enzyme, which was composed of a single polypeptide chain with a molecular mass of 68 kDa, showed a broad temperature and pH profile (50 to 100(deg)C; pH 5 to 11). The optimal activity with substantial thermal stability was measured with casein at 85(deg)C and pH 8.5 to 9. Inhibition by phenylmethylsulfonyl fluoride and diisopropylfluorophosphate demonstrated that the enzyme was a serine proteinase. The enzyme displayed a relatively narrow substrate specificity, catalyzing the hydrolysis only of N-protected p-nitroanilides or p-nitrophenyl esters of basic (Arg or Lys) or hydrophobic (Phe or Tyr) l-amino acids. l-Phenylglycine amide was also attacked by the proteinase, but with a lower specificity constant. Within the detection limit, no hydrolysis of d-amino acid derivatives was observed. The catalytic efficiency of the enzyme at 80(deg)C (k(infcat)/K(infm) for benzoyl-Arg-p-nitroanilide, 10(sup4)) is the same order of magnitude when compared with that of functionally similar mesophilic enzymes. The proteinase also acts as a transferase, catalyzing the acyl transfer from protected amino acid ester or amide to amino acid amide. The observed thermostability, SDS resistance, relatively narrow substrate specificity, high stereospecificity, and limited catalytic efficiency probably reflect the tighter packing of the thermostable protein molecule and its limited flexibility. This was supported by fluorescence spectra of the enzyme, mainly due to tryptophan residues, in the temperature range of 30 to 90(deg)C. Structural reorganization was observed at temperatures over 100(deg)C. The results obtained could be of relevance for the better understanding of the structure-function relationship of enzymes from extreme thermophiles and suggest possible biotechnological application of the proteinase for resolution of racemic mixtures. PMID:16535107

  18. Management of Bleeding Duodenal Varices with Combined TIPS Decompression and Trans-TIPS Transvenous Obliteration Utilizing 3% Sodium Tetradecyl Sulfate Foam Sclerosis

    PubMed Central

    Saad, Wael E; Lippert, Allison; Schwaner, Sandra; Al-Osaimi, Abdullah; Sabri, Saher; Saad, Nael

    2014-01-01

    Objectives: Endoscopic experience in the management of duodenal varices (DVs) is limited and challenging given the anatomic constraints and limited experience. The endovascular management of DVs is not yet established and the controversy of whether to manage them by decompression with a transjugular intrahepatic portosystemic shunt (TIPS) or by transvenous obliteration is unresolved. In the literature, the 6–12 month rebleeding rate of DVs after TIPS is 21-37% and after transvenous obliteration is 13%. The purpose of the study is to evaluate the clinical outcome of combined TIPS decompression and transvenous obliteration/sclerosis. Materials and Methods: This is a retrospective study (case series) of two institutions, evaluating patients who underwent TIPS and/or transvenous obliteration/sclerosis for bleeding DVs (from January 2009 to June 2013). TIPS was performed according to a standard procedure using covered stents. Transvenous obliteration (variceal sclerosis) from the systemic and/or portal venous circulation was performed utilizing 3% sodium tetradecyl sulfate foam. Transvenous obliteration was commonly augmented with coils and/or vascular plugs. Technical (technical success of establishing TIPS and completely obliterating the DVs) and clinical outcomes (rebleeding rate and survival) were evaluated. Results: Five patients with liver cirrhosis presenting with bleeding DVs were included in the study with all eventually (and coincidentally) receiving TIPS and transvenous obliteration. Two of the five patients underwent concomitant TIPS and transvenous obliteration in the same procedural setting. However, three patients underwent transvenous obliteration due to bleeding despite a patent TIPS that had been previously placed. The average time from TIPS placement to transvenous obliteration was 125 days (range: 3-324 days). After having both procedures, there was no rebleeding in the patients during a mean follow-up period of 22 months (6–50 months). Coils and/or metallic vascular plugs were used to augment the sclerosant obliteration in four of five patients. Conclusion: The combination of TIPS decompression and foam sclerosant transvenous obliteration appears to be effective in preventing rebleeding in this limited case series and compares favorably with the existing evidence for either approach [TIPS or balloon-occluded retrograde transvenous obliteration (BRTO)] alone. PMID:25558434

  19. Patch testing with the irritant sodium lauryl sulfate (SLS) is useful in interpreting weak reactions to contact allergens as allergic or irritant.

    PubMed

    Geier, J; Uter, W; Pirker, C; Frosch, P J

    2003-02-01

    Several contact allergens are tested at concentrations which might cause irritant reactions. In this study we investigated whether the reactivity to a standard irritant is useful in identifying subjects with hyperreactive skin yielding a higher rate of doubtful or irritant reactions. Sodium lauryl sulfate (SLS) 0.5% (aqua) was tested in addition to the standard series routinely for 5 years in the Department of Dermatology, Dortmund. For data analysis, we compared reactions at D3 to the standard series, the vehicle/emulsifier and preservative series and benzoyl peroxide to the reactions obtained with SLS. Proportions were standardized for age and sex. The association between reactivity to a certain allergen and SLS reactivity as a dichotomous outcome, controlled for age and sex as potential confounders, was assessed with logistic regression analysis. Results showed that of the 1600 tested patients, 668 (41.8%) had an irritant reaction to SLS which exceeded 2 + in only 41 patients. Seasonal variation was statistically significant, showing reduced SLS reactivity in summer vs. winter. Patients with irritant reactions to SLS showed significantly more erythematous reactions to the following 10 allergens of the standard series: fragrance mix, cobalt chloride, balsam of Peru (Myroxylon pereirae), lanolin alcohol, 4-phenylenediamine base (PPD), propolis, formaldehyde, N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD), benzocaine, and 4-tert-butylphenol-formaldehyde resin. No significant differences regarding strong positive allergic reactions were observed. Concerning other allergens, significantly more erythematous reactions were observed in SLS-reactive patients to benzoyl peroxide, octyl gallate, cocamidopropyl betaine, Amerchol L-101, tert-butylhydroquinone, and triethanolamine. In the SLS-reactive group of patients, the reaction index was negative for 10 allergens of the standard series compared to only 5 in the SLS non-responder group. For the first time, this study, based on a large data pool, revealed a significant association between reactivity to the irritant SLS and erythematous reactions to certain allergens. With SLS as a marker for hyperreactive skin at hand, some of these reactions can now be classified as irritant more confidently, particularly if there is no history of exposure to the allergen. PMID:12694214

  20. Baicalin down regulates the expression of TLR4 and NFkB-p65 in colon tissue in mice with colitis induced by dextran sulfate sodium

    PubMed Central

    Feng, Jinshan; Guo, Cancan; Zhu, Yuzhen; Pang, Liping; Yang, Zheng; Zou, Ying; Zheng, Xuebao

    2014-01-01

    Background: Baicalin is one of flavonoid extracts from Scutellaria baicalensis, which has several functions including anti-inflammation, anti-bacteria, antitumor and et al. However, the mechanisms of anti-inflammatory of baicalin in ulcerative colitis is not clear. Methods: Mice colitis models were established by dextran sodium sulfate, Mice administrated with baicalin (100 mg/kg) and mesalazine (100 mg/kg) twice daily by intragastric injection for 7 days after colitis induced were defined as treated group. Then the mice were sacrificed and the colon samples were collected. Toll-like receptor-2, 4, 9 were detected by immunohistochemistry. Signaling proteins such as TLR4, MyD88, and NF-?B p65 were analyzed by western blotting. Cytokine’s mRNA include TNF-?, IL-6 IL-10 and IL-13 were measured by reverse transcription polymerase chain reaction. Modified disease activity index were used to analyse the severity of the disease by assessed of diarrhea, stool (occult) blood and body weight loss of the mice. Results: Compared with control and model groups, modified disease activity index in baicalin and mesalazine treated, mice decreased gradually. Immunohistochemistry analysis showed the expression of TLR4, but not TLR2 and TLR9, in the mucosa of mice colon were decreased. Western blot analysis showed that in colitis model, the expression of NF-?B p65 and TLR4 decreased (P < 0.05), while the expression of MyD88 increased significantly compared to control group, and MyD88 expression can not be repressed by baicalin (P < 0.05). Baicalin and mesalazine treatment suppressed the expression of TNF-?, IL-6 and IL-13 mRNA (P < 0.05), yet up-regulated the expression of IL-10 mRNA (P < 0.05), compared to the DDS and control groups. Conclusions: Baicalin administration by intragastric injection ameliorates the severity of colon inflammation. The possible mechanism of anti-inflammatory response by baicalin may involve in the blocking of the TLR4/NF-?B-p65/IL-6 signaling pathway. PMID:25550915

  1. MnO2 Nanosheets: One-Step Synthesis of Single-Layer MnO2 Nanosheets with Multi-Role Sodium Dodecyl Sulfate for High-Performance Pseudocapacitors (Small 18/2015).

    PubMed

    Liu, Zhenning; Xu, Kongliang; Sun, Hang; Yin, Shengyan

    2015-05-01

    One-step synthesis of single-Layer MnO2 nanosheets with multi-role sodium dodecyl sulfate (SDS) is demonstrated by H. Sun, S. Yin, and co-workers on page 2182. Interestingly, SDS, normally recognized as a surfactant, not only aids the formation of single-layer MnO2 nanosheets as a structure-inducing agent, but also serves as the precursor of dodecanol to reduce KMnO4 . A mechanism is proposed based on carefully designed control experiments and the resultant MnO2 nanosheets exhibit high specific capacitance and excellent durability. PMID:25955484

  2. Linkage of High Rates of Sulfate Reduction in Yellowstone Hot Springs to Unique Sequence Types in the Dissimilatory Sulfate Respiration Pathway

    Microsoft Academic Search

    Susan Fishbain; Jesse G. Dillon; Heidi L. Gough; David A. Stahl

    2003-01-01

    Diversity, habitat range, and activities of sulfate-reducing prokaryotes within hot springs in Yellowstone National Park were characterized using endogenous activity measurements, molecular characterization, and enrichment. Five major phylogenetic groups were identified using PCR amplification of the dissimilatory sulfite reductase genes (dsrAB) from springs demonstrating significant sulfate reduction rates, including a warm, acidic (pH 2.5) stream and several nearly neutral hot

  3. Chemically induced unfolding of bovine serum albumin by urea and sodium dodecyl sulfate: a spectral study with the polarity-sensitive charge-transfer fluorescent probe (E)-3-(4-methylaminophenyl)acrylic acid methyl ester.

    PubMed

    Ghosh, Shalini; Guchhait, Nikhil

    2009-07-13

    Sensitivity of the charge-transfer (CT) band of the fluorescence probe (E)-3-(4-methylaminophenyl)acrylic acid methyl ester (MAPAME) towards the polarity of its immediate environment is employed to investigate the binding interaction of the probe with bovine serum albumin (BSA) and uncoiling of BSA by the denaturants urea and sodium dodecyl sulfate micelles. Binding of the probe with BSA produces a blue shift and enhanced intensity of the CT emission band which clearly point toward a decrease in polarity of the immediate environment of MAPAME. This is expected, since binding with BSA moves the probe from a polar water environment to a much less polar, hydrophobic protein interior, where the CT band is expected to be blue-shifted. Higher intensity arises due to fewer non-radiative decay paths available to the probe in the hydrophobic protein environment. Chemically induced unfolding of BSA by urea and sodium dodecyl sulfate is tracked by monitoring the induced spectral changes of the protein-bound probe MAPAME. Red-edge excitation shift or REES, fluorescence resonance energy transfer (FRET) and anisotropy measurements are used to investigate and monitor these binding and unfolding processes. PMID:19466702

  4. The formation of surface multilayers at the air-water interface from sodium polyethylene glycol monoalkyl ether sulfate/AlCl(3) solutions: the role of the size of the polyethylene oxide group.

    PubMed

    Xu, Hui; Penfold, Jeff; Thomas, Robert K; Petkov, Jordan T; Tucker, Ian; Webster, John P R

    2013-09-17

    Neutron reflectivity, NR, and surface tension, ST, have been used to study the surface adsorption properties at the air-water interface of the anionic surfactant sodium polyethylene glycol monododecyl ether sulfate (sodium lauryl ether sulfate, SLES) in the presence of Al(3+) multivalent counterions, by the addition of AlCl3. In the absence of AlCl3 and at low AlCl3 concentrations monolayer adsorption is observed. With increasing AlCl3 concentration, surface multilayer formation is observed, driven by SLES/Al(3+) complex formation. The onset of multilayer formation occurs initially as a single bilayer or a multilayer structure with a limited number of bilayers, N, ?3, and ultimately at higher AlCl3 concentrations N is large, >20. The evolution in the surface structure is determined by the surfactant and AlCl3 concentrations, and the size of the polyethylene oxide group in the different SLES surfactants studied. From the NR data, approximate surface phase diagrams are constructed, and the evolution of the surface structure with surfactant and electrolyte concentration is shown to be dependent on the size of the polyethylene oxide group. As the polyethylene oxide group increases in size the multilayer formation requires increasingly higher surfactant and AlCl3 concentrations to promote the formation. This is attributed to the increased steric hindrance of the polyethylene oxide group disrupting SLES/Al(3+) complex formation. PMID:23968161

  5. Effectiveness of levulinic acid and sodium dodecyl sulfate employed as a sanitizer during harvest or packing of cantaloupes contaminated with Salmonella Poona.

    PubMed

    Webb, Cathy C; Erickson, Marilyn C; Davey, Lindsey E; Doyle, Michael P

    2015-08-17

    Freshly harvested Eastern variety cantaloupes (Cucumis melo L. var. reticulatus cv. Athena) were subjected to three different harvest and wash treatments to examine conditions under which the efficacy of the sanitizer, levulinic acid (LV) plus sodium dodecyl sulfate (SDS), could be enhanced to reduce Salmonella contamination. In treatment set one, cantaloupes were spot inoculated with Salmonella enterica serovar Poona (prepared from solid or liquid media cultures) before or after a 1-min dip treatment in LV (2.5, 5.0, 7.5, or 10%) and 2.5% SDS. S. Poona initial populations on rind tissue (4.26-5.04 log CFU/sample) were reduced to detection by enrichment culture when cantaloupes were subsequently exposed to any of the LV/SDS solutions. When S. Poona was introduced after cantaloupes had been dip-treated, greater decreases in pathogen populations at the stem scar were observed when cantaloupes were treated with increasing concentrations of LV. In treatment set two, the response of S. Poona dip-treated with 5% LV/2.5% SDS was compared to a simulated commercial dump tank treatment incorporating 200ppm chlorine as well as a two-stage treatment employing both the chlorine tank and LV/SDS dip treatments. S. Poona levels (log CFU/sample or # positive by enrichment culture/# analyzed) after treatments were 5.25, 3.07, 7/10, 5/10 (stem scar) and 3.90, 25/40, 28/40, 20/40 (rind) for non-treated, chlorine tank, LV/SDS dip, and tank plus dip treatments, respectively. In treatment set three, freshly harvested cantaloupes were first treated in the field using a needle-free stem scar injection (200?l, 7.5% LV/1.0% SDS, 60psi) and a cantaloupe spray (30ml, 7.5% LV/0.5% SDS). Cantaloupe stem scar and rind tissue were then spot-inoculated with S. Poona using either a liquid or soil-based medium followed by a simulated dump tank treatment incorporating either 200ppm chlorine or 5% LV/2% SDS. S. Poona inoculated on field-treated cantaloupe rind decreased by 4.7 and 5.31 (liquid) and 3.27 and 3.36 (soil) log CFU/sample after simulated chlorine and LV/SDS tank treatments, respectively. In the case of stem scar tissue, S. Poona populations exhibited a 1.0 log greater reduction when cantaloupes were treated with LV/SDS compared to chlorine in the dump tank (P<0.05). Based on this study, application of multiple hurdles is warranted, as additional decreases in S. Poona populations were obtained when cantaloupes were subjected to a chlorine dump tank followed by a LV/SDS dip treatment. PMID:26001062

  6. [Mechanisms of tolerance to sulfur dioxide and sodium metabisulfite].

    PubMed

    Atzori, L; Corriga, A M; Cannas, E; Congiu, L

    1997-01-01

    Inhalation of sulphur dioxide (250 ppm), (SO2) or sodium metabisulfite (80 mM) (MBS) aerosol or perfusion with MBS (3 mM) induced a reduction in compliance and conductance in the isolated, perfused and ventilated guinea pig lung. Pretreatment of the lung with sodium sulfite (3 mM), a dissolution product of SO2 and MBS, reduced the bronchoconstriction induced by SO2 and MBS. Bronchoconstriction induced by SO2 and MBS in associated to increased levels of Calcitonin gene-Related Peptide (CGRP) in the perfusate effinent, indicating activation of sensory nerves. The release of CGRP induced by SO2 and MBS was not affected by sodium sulfite. Sulfite treatment did not modify lung reactivity towards acethylcholine, bradykinin, serotonin, histamine and substance P (fragment 5-11). An inhibitory effect by sulfite was observed on bronchoconstriction induced by neurokinin A (fragment 4-10). Since bronchoconstriction induced by SO2 and MBS appears to be mediated by neurokinin A release and action, sulfite may act by affecting its signal transduction pathway. In conclusion, the results indicate that during exposure to some environmental and occupational pollutants, e.g. SO2 and MBS, critical modifications of sulfhydryl groups on smooth muscle receptors may occur. We hypothesise this as a possible step in the development of tolerance and hyperreactivity. PMID:9377746

  7. Bisulfite or sulfite inhibits growth of Helicobacter pylori.

    PubMed Central

    Hawrylik, S J; Wasilko, D J; Haskell, S L; Gootz, T D; Lee, S E

    1994-01-01

    Bisulfite or sulfite was found to be inhibitory to Helicobacter pylori growth. A modified version of Brucella broth (BB), bisulfite-less BB (BLBB), supported rapid, robust, and consistent growth of H. pylori. We suggest that BLBB simply be called "Pylori broth" for distinction from Brucella broth. PMID:8195395

  8. Oxygen scavengers - The chemistry of sulfite under hydrothermal conditions

    Microsoft Academic Search

    1987-01-01

    Control of oxygen corrosion is critical to the reliability of steam generator systems. Mechanical deaeration and chemical oxygen scavenging effectively reduce oxygen levels in boiler feedwater systems. This paper reviews the use of sulfites to reduce oxygen and provide corrosion control throughout the boiler feedwater circuit as well as mechanical and operational oxygen reduction methods. The mechanism of oxygen pitting,

  9. Investigation of some aspects related to the degradation of polyamide membranes: aqueous chlorine oxidation catalyzed by aluminum and sodium laurel sulfate oxidation during cleaning

    Microsoft Academic Search

    I. C. Tessaro; J. B. A. da Silva; K. Wada

    2005-01-01

    The investigations are related to some problems that arose in a demineralization water plant located in southern Brazil: membrane degradation, and decline of membrane performance after cleaning. The water pretreatment of this plant utilizes aluminum sulfate in order to coagulate suspended solids, and gaseous chlorine proceeds the disinfection. The chemical cleaning procedure of the membranes adopted in the industrial process

  10. TREATMENT OF HEXAVALENT CHROMIUM IN CHROMITE ORE PROCESSING SOLID WASTE USING A MIXED REDUCTANT SOLUTION OF FERROUS SULFATE AND SODIUM DITHIONITE

    EPA Science Inventory

    We developed a method for disseminating ferrous iron in the subsurface to enhance chemical reduction of hexavalent chromium (Cr(VI)) in a chromite ore processing solid waste derived from the production of ferrochrome alloy. The method utilizes ferrous sulfate (FeSO4) in combinati...

  11. Sulfite species enhance carbon monoxide release from CO-releasing molecules: implications for the deoxymyoglobin assay of activity.

    PubMed

    McLean, Samantha; Mann, Brian E; Poole, Robert K

    2012-08-01

    Carbon monoxide-releasing molecules (CO-RMs) emulate the beneficial (e.g., anti-inflammatory) effects of CO in biology. CO release from CO-RMs is routinely determined in the presence of reduced deoxy-myoglobin by measuring the formation of carboxy-myoglobin (Mb-CO). Previous studies have highlighted discrepancies between the apparent CO release rates of some CO-RMs established using this assay versus other experimental data where a slower or more complex mechanism of release is suggested. It has been hypothesized that some CO-RMs require a CO acceptor, believed to be reduced myoglobin in Mb-CO assays, in order to facilitate the release of CO. Here, we show, for the first time, that CO is not liberated from the ruthenium (Ru)-based [Ru(CO)(3)Cl(2)](2) (CORM-2) and [Ru(CO)(3)Cl(glycinate)] (CORM-3) at an appreciable rate in the presence of reduced myoglobin alone. Rather, we confirm that it is the reducing agent sodium dithionite that facilitates release of CO from these CO-RMs. Other sulfite compounds, namely sodium sulfite and potassium metabisulfite, also promote the liberation of CO from CORM-3. We describe an alternative oxy-hemoglobin assay that eliminates dithionite and suggest that the efficacy of CO-RMs results from intracellular interactions with anions that facilitate CO delivery to therapeutic targets. PMID:22561917

  12. Effects of added tetramethylammonium chloride on sodium dodecyl sulfate micellar structure: electron scavenging ability of doxylstearic acid spin probes and their reaction with N,N,N'N'-tetramethylbenzidine photogenerated cations studied by electron spin resonance

    SciTech Connect

    Hiromitsu, I.; Kevan, L.

    1986-07-03

    Electron spin resonance (ESR) studies are carried out for a series of chi-doxylstearic acids (chi = 5, 7, 10, 12, and 16) and photoproduced N,N,N'N'-tetramethylbenzidine (TMB) cations in sodium dodecyl sulfate micelles in order to investigate the effects of added tetramethylammonium chloride (TMACl) on the micellar structure at room temperature. It is observed that chi-doxylstearic acids not only act as electron acceptors for electrons produced by photoionization of TMB but also react with TMB cations to produce nonparamagnetic products. chi-Dependences of the reactivities of these two reactions suggest that chi-doxylstearic acids increase their average number of gauche conformations inside the micelles when TMACl is added to the micellar solution. It is concluded that tetramethylammonium cations act as spacers between head groups of surfactant molecules to become more disordered and loosely packed inside the micelles. This confirms previous electron spin echo modulation studies on frozen micellar solutions.

  13. Flame atomic absorption spectrometric determination of zinc, nickel, iron and lead in different matrixes after solid phase extraction on sodium dodecyl sulfate (SDS)-coated alumina as their bis (2-hydroxyacetophenone)-1, 3-propanediimine chelates.

    PubMed

    Ghaedi, M; Tavallali, H; Shokrollahi, A; Zahedi, M; Montazerozohori, M; Soylak, M

    2009-07-30

    A sensitive and simple solid phase extraction method for the simultaneous determination of trace and toxic metals in food samples has been reported. The method is based on the adsorption of zinc, nickel, iron and lead on sodium dodecyl sulfate (SDS)-coated alumina, which is also chelated with bis (2-hydroxyacetophenone)-1, 3-propanediimine (BHAPN). The retained analyte ions on modified solid phase were eluted using 8 mL of 4 mol L(-1) HNO(3). The analyte determinations were carried out by flame atomic absorption spectrometry. The influences of some metal ions and anions on the recoveries of understudy analyte ions were investigated. The proposed method has been successfully applied for the evaluation of these trace and toxic metals in some traditional food samples from Iran. PMID:19200648

  14. Adsorption and desorption dynamics of sodium dodecyl sulfate at the octadecylsilane layer on the pore surface of a mesoporous silica film observed in-situ by optical waveguide spectroscopy.

    PubMed

    Yamaguchi, Akira; Arafune, Hiroyuki; Hotta, Kazuhiro; Itoh, Tetsuji; Teramae, Norio

    2011-01-01

    The purpose of this study is to apply optical waveguide (OWG) spectroscopy to observe adsorption and desorption dynamics occurring in a surfactant-templated mesoporous silica film. For that purpose, a mesoporous silica (MS) film with open accessible pores (pore diameter, ca. 6 nm) was formed on an aluminum (Al) layer deposited on a glass substrate, and the pore surface of the MS film was modified with octadecylsilane (ODS). The resulting ODS-modified MS (ODS-MS) and Al multilayer film showed a clear waveguide coupling dip in the reflection spectrum. The position of the waveguide coupling dip was red-shifted as the amount of sodium dodecyl sulfate within the ODS-MS layer increases. These results indicate the usefulness of OWG spectroscopy for the study of adsorption/desorption dynamics occurring in MS materials. PMID:21666356

  15. Novel photo-sulfite system: toward simultaneous transformations of inorganic and organic pollutants.

    PubMed

    Guo, Yaoguang; Lou, Xiaoyi; Fang, Changling; Xiao, Dongxue; Wang, Zhaohui; Liu, Jianshe

    2013-10-01

    An efficient and green advanced oxidation process (i.e., photo-sulfite reaction) for the simultaneous oxidation of sulfite and organic pollutants in water is reported. The photo-sulfite system (UV-Fe(III)-sulfite) is based on the Fe-catalyzed sulfite oxidation and photochemistry of Fe(III) species. SO4(•-) and (•)OH radicals were identified in the photo-sulfite system with radical scavenging experiments using specific alcohols. This novel technology was consistently proven to be more favorable than the alternative Fe(III)-sulfite systems for the degradation of 2,4,6-trichlorophenol (2,4,6-TCP) and other organic pollutants at all conditions tested. The reactivity of photo-sulfite system was sustained due to the spontaneous switch of photoactive species from Fe(III)-sulfito to Fe(III)-hydroxo complexes with the depletion of sulfite and the decrease in pH. In contrast, in the absence of light the performance of the Fe(III)-sulfite system was greatly diminished after the consumption of sulfite. The formation of the Fe(III)-sulfito complex is a necessary step for initiating the photo-sulfite reaction. Inhibition of the oxidation of 2,4,6-TCP and methyl orange (MO) was observed in the presence of ligands that can stabilize one or more of the reactants: Fe(III), Fe(II), or sulfite. Our study provides a new facile route for the generation of SO4(•-) and simultaneous removal of organic and inorganic pollutants. PMID:24015851

  16. Solution pH and oligoamine molecular weight dependence of the transition from monolayer to multilayer adsorption at the air-water interface from sodium dodecyl sulfate/oligoamine mixtures.

    PubMed

    Halacheva, S S; Penfold, J; Thomas, R K; Webster, J R P

    2013-05-14

    Neutron reflectivity and surface tension have been used to investigate the solution pH and oligoamine molecular weight dependence of the adsorption of sodium dodecyl sulfate (SDS)/oligoamine mixtures at the air-water interface. For diethylenetriamine, triamine, or triethylenetetramine, tetramine mixed with SDS, there is monolayer adsorption at pH 7 and 10, and multilayer adsorption at pH 3. For the slightly higher molecular weight tetraethylenepentamine, pentamine, and pentaethylenehexamine, hexamine, the adsorption is in the form of a monolayer at pH 3 and multilayers at pH 7 and 10. Hence, there is a pH driven transition from monolayer to multilayer adsorption, which shifts from low pH to higher pH as the oligoamine molecular weight increases from tetramine to pentamine. This results from the relative balance between the electrostatic attraction between the SDS and amine nitrogen group which decreases as the charge density decreases with increasing pH, the ion-dipole interaction between the amine nitrogen and SDS sulfate group which is dominant at higher pH, and the hydrophobic interalkyl chain interaction between bound SDS molecules which changes with oligoamine molecular weight. PMID:23641792

  17. Structures and reaction pathways of the molybdenum centres of sulfite-oxidizing enzymes by pulsed EPR spectroscopy

    PubMed Central

    Enemark, John H.; Astashkin, Andrei V.; Raitsimring, Arnold M.

    2008-01-01

    SOEs (sulfite-oxidizing enzymes) are physiologically vital and occur in all forms of life. During the catalytic cycle, the five-co-ordinate square pyramidal oxo-molybdenum active site passes through the Mo(V) state, and intimate details of the structure can be obtained from variable frequency pulsed EPR spectroscopy through the hyperfine and nuclear quadrupole interactions of nearby magnetic nuclei. By employing variable spectrometer operational frequencies, it is possible to optimize the measurement conditions for difficult quadrupolar nuclei of interest (e.g. 17O, 33S, 35Cl and 37Cl) and to simplify the interpretation of the spectra. Isotopically labelled model Mo(V) compounds provide further insight into the electronic and geometric structures and chemical reactions of the enzymes. Recently, blocked forms of SOEs having co-ordinated sulfate, the reaction product, were detected using 33S (I = 3/2) labelling. This blocking of product release is a possible contributor to fatal human sulfite oxidase deficiency in young children. PMID:19021510

  18. Formation of sulfite-like species on Cr 2O 3 after SO 2 chemisorption

    NASA Astrophysics Data System (ADS)

    Ranea, V. A.; Hernandez, S. N.; Medina, S.; Irurzun, I. M.; Coria, I. D.; Mola, E. E.

    2011-03-01

    The adsorption of sulfur dioxide (SO 2) on polycrystalline Cr 2O was experimentally investigated using temperature-programmed desorption (TPD). The chemisorption of SO 2 on the (0001) surface was also studied using theoretical methods. Different adsorption geometries were explored for SO 2 adsorption on the ?-Cr 2O (0001) surface. Two similar adsorption configurations were found to be the most stable with chemisorption energies of - 3.09 and - 2.79 eV/molecule. In both calculated stable adsorption configurations the appearance of sulfite-like species is predicted on the (0001) surface after adsorption. It is important to emphasize that these results are predicted only within the DFT + U framework. Under these conditions and despite great efforts, no stable sulfate-like geometry was found on this surface. The TPD spectrum exhibit a desorption peak at Tp ? 870 °C with a heating rate of ? ? 0.12 °C/s. The desorption energy calculated by the analysis given by Redhead and Adams, assuming the rate of desorption is given by a Polanyi-Wigner equation, is ? - 3.12 eV. This value is in good agreement with the predicted one using DFT + U calculations. To our knowledge, this is the first theoretical study of SO 2 adsorption on the Cr 2O (0001) surface.

  19. A Continuous Spectrophotometric Assay for APS Reductase Activity with Sulfite-Selective Probes

    PubMed Central

    Paritala, Hanumantharao; Carroll, Kate S.

    2013-01-01

    Mycobacterium tuberculosis (Mtb) adenosine 5?-phosphosulfate (APS) reductase (EC number 1.8.4.10), (APR) catalyzes the first committed step in sulfate reduction for the biosynthesis of essential reduced sulfur-containing biomolecules, such as cysteine, and is essential for survival in the latent phase of TB infection. Despite the importance of APR to Mtb, and other bacterial pathogens, current assay methods depend on use of [35S]-labeled APS or shunt AMP to a coupled-enzyme system. Both methods are cumbersome and require the use of expensive reagents. Here we report the development of a continuous spectrophotometric method for measuring APR activity by using novel sulfite-selective colorimetric or “off-on” fluorescent levulinate-based probes. The APR activity can thus be followed by monitoring the increase in absorbance or fluorescence of the resulting phenolate product. Using this assay, we determined Michelis-Menten kinetic constants (Km, kcat, kcat/Km) and apparent inhibition constant (Ki) for adenosine 5?-diphosphate (ADP), which compared favorably to values obtained in the gold-standard radioactive assay. The newly developed assay is robust and easy to perform with a simple spectrophotometer. PMID:23711725

  20. A continuous spectrophotometric assay for adenosine 5'-phosphosulfate reductase activity with sulfite-selective probes.

    PubMed

    Paritala, Hanumantharao; Carroll, Kate S

    2013-09-01

    Mycobacterium tuberculosis (Mtb) adenosine 5'-phosphosulfate (APS) reductase (APR) catalyzes the first committed step in sulfate reduction for the biosynthesis of essential reduced sulfur-containing biomolecules, such as cysteine, and is essential for survival in the latent phase of tuberculosis (TB) infection. Despite the importance of APR to Mtb and other bacterial pathogens, current assay methods depend on the use of (35)S-labeled APS or shunt adenosine 5'-monophosphate (AMP) to a coupled-enzyme system. Both methods are cumbersome and require the use of expensive reagents. Here, we report the development of a continuous spectrophotometric method for measuring APR activity by using novel sulfite-selective colorimetric or "off-on" fluorescent levulinate-based probes. Thus, the APR activity can be followed by monitoring the increase in absorbance or fluorescence of the resulting phenolate product. Using this assay, we determined Michaelis-Menten kinetic constants (K(m), k(cat), and k(cat)/K(m)) and the apparent inhibition constant (Ki) for adenosine 5'-diphosphate (ADP), which compared favorably with values obtained in the "gold standard" radioactive assay. The newly developed assay is robust and easy to perform with a simple spectrophotometer. PMID:23711725

  1. Two-compartment method for determination of the oxygen transfer rate with electrochemical sensors based on sulfite oxidation.

    PubMed

    Glazyrina, Julia; Materne, Eva; Hillig, Friederike; Neubauer, Peter; Junne, Stefan

    2011-08-01

    The dissolved oxygen concentration is a crucial parameter in aerobic bioprocesses due to the low solubility of oxygen in water. The present study describes a new method for determining the oxygen transfer rate (OTR) in shaken-culture systems based on the sodium sulfite method in combination with an electrochemical oxygen sensor. The method replaces the laborious titration of the remaining sulfite by an on-line detection of the end point of the reaction. This method is a two-step procedure that can be applied in arbitrary flasks that do not allow the insertion of electrodes. The method does not therefore depend on the type of vessel in which the OTR is detected. The concept is demonstrated by determination of the OTR for standard baffled 1-L shake flasks and for opaque Ultra Yield™ flasks. Under typical shaking conditions, k(L) a values in the standard baffled flasks reached values up to 220 h(-1) , whereas the k(L) a values of the Ultra Yield flasks were significantly higher (up to 422 h(-1) ). PMID:21751399

  2. Comparative study of sulfite pretreatments for robust enzymatic saccharification of corn cob residue

    PubMed Central

    2012-01-01

    Background Corn cob residue (CCR) is a kind of waste lignocellulosic material with enormous potential for bioethanol production. The moderated sulphite processes were used to enhance the hydrophily of the material by sulfonation and hydrolysis. The composition, FT-IR spectra, and conductometric titrations of the pretreated materials were measured to characterize variations of the CCR in different sulfite pretreated environments. And the objective of this study is to compare the saccharification rate and yield of the samples caused by these variations. Results It was found that the lignin in the CCR (43.2%) had reduced to 37.8%, 38.0%, 35.9%, and 35.5% after the sulfite pretreatment in neutral, acidic, alkaline, and ethanol environments, respectively. The sulfite pretreatments enhanced the glucose yield of the CCR. Moreover, the ethanol sulfite sample had the highest glucose yield (81.2%, based on the cellulose in the treated sample) among the saccharification samples, which was over 10% higher than that of the raw material (70.6%). More sulfonic groups and weak acid groups were produced during the sulfite pretreatments. Meanwhile, the ethanol sulfite treated sample had the highest sulfonic group (0.103 mmol/g) and weak acid groups (1.85 mmol/g) in all sulfite treated samples. In FT-IR spectra, the variation of bands at 1168 and 1190 cm-1 confirmed lignin sulfonation during sulfite pretreatment. The disappearance of the band at 1458 cm-1 implied the methoxyl on lignin had been removed during the sulfite pretreatments. Conclusions It can be concluded that the lignin in the CCR can be degraded and sulfonated during the sulfite pretreatments. The pretreatments improve the hydrophility of the samples because of the increase in sulfonic group and weak acid groups, which enhances the glucose yield of the material. The ethanol sulfite pretreatment is the best method for lignin removal and with the highest glucose yield. PMID:23206858

  3. Optimization of sulfide/sulfite pretreatment of lignocellulosic biomass for lactic acid production.

    PubMed

    Idrees, Muhammad; Adnan, Ahmad; Qureshi, Fahim Ashraf

    2013-01-01

    Potential of sodium sulfide and sodium sulfite, in the presence of sodium hydroxide was investigated to pretreat the corncob (CC), bagasse (BG), water hyacinth and rice husk (RH) for maximum digestibility. Response Surface Methodology was employed for the optimization of pretreatment factors such as temperature, time and concentration of Na?S and Na?SO?, which had high coefficient of determination (R²) along with low probability value (P), indicating the reliable predictability of the model. At optimized conditions, Na?S and Na?SO? remove up to 97% lignin, from WH and RH, along with removal of hemicellulose (up to 93%) during pretreatment providing maximum cellulose, while in BG and CC; 75.0% and 90.0% reduction in lignin and hemicellulose was observed. Saccharification efficiency of RH, WH, BG and CC after treatment with 1.0% Na?S at 130°C for 2.3-3.0 h was 79.40, 85.93, 87.70, and 88.43%, respectively. WH treated with Na?SO? showed higher hydrolysis yield (86.34%) as compared to Na?S while other biomass substrates showed 2.0-3.0% less yield with Na?SO?. Resulting sugars were evaluated as substrate for lactic acid production, yielding 26.48, 25.36, 31.73, and 30.31 gL?¹ of lactic acid with 76.0, 76.0, 86.0, and 83.0% conversion yield from CC, BG, WH, and RH hydrolyzate, respectively. PMID:24058918

  4. Triple-oxygen-isotope determination of molecular oxygen incorporation in sulfate produced during abiotic pyrite oxidation (pH = 2-11)

    NASA Astrophysics Data System (ADS)

    Kohl, Issaku; Bao, Huiming

    2011-04-01

    Aqueous oxidation of sulfide minerals to sulfate is an integral part of the global sulfur and oxygen cycles. The current model for pyrite oxidation emphasizes the role of Fe 2+-Fe 3+ electron shuttling and repeated nucleophilic attack by water molecules on sulfur. Previous ? 18O-labeled experiments show that a variable fraction (0-60%) of the oxygen in product sulfate is derived from dissolved O 2, the other potential oxidant. This indicates that nucleophilic attack cannot continue all the way to sulfate and that a sulfoxyanion of intermediate oxidation state is released into solution. The observed variability in O 2% may be due to the presence of competing oxidation pathways, variable experimental conditions (e.g. abiotic, biotic, or changing pH value), or uncertainties related to the multiple experiments needed to effectively use the ? 18O label to differentiate sulfate-oxygen sources. To examine the role of O 2 and Fe 3+ in determining the final incorporation of O 2 oxygen in sulfate produced during pyrite oxidation, we designed a set of aerated, abiotic, pH-buffered (pH = 2, 7, 9, 10, and 11), and triple-oxygen-isotope labeled solutions with and without Fe 3+ addition. While abiotic and pH-buffered conditions help to eliminate variables, triple oxygen isotope labeling and Fe 3+ addition help to determine the oxygen sources in sulfate and examine the role of Fe 2+-Fe 3+ electron shuttling during sulfide oxidation, respectively. Our results show that sulfate concentration increased linearly with time and the maximum concentration was achieved at pH 11. At pH 2, 7, and 9, sulfate production was slow but increased by 4× with the addition of Fe 3+. Significant amounts of sulfite and thiosulfate were detected in pH ? 9 reactors, while concentrations were low or undetectable at pH 2 and 7. The triple oxygen isotope data show that at pH ? 9, product sulfate contained 21-24% air O 2 signal, similar to pH 2 with Fe 3+ addition. Sulfate from the pH 2 reactor without Fe 3+ addition and the pH 7 reactors all showed 28-29% O 2 signal. While the O 2% in final sulfate apparently clusters around 25%, the measurable deviations (>experimental error) from the 25% in many reaction conditions suggest that (1) O 2 does get incorporated into intermediate sulfoxyanions (thiosulfate and sulfite) and a fraction survives sulfite-water exchange (e.g. the pH 2 with no Fe 3+ addition and both pH 7 reactors); and (2) direct O 2 oxidation dominates while Fe 3+ shuttling is still competitive in the sulfite-sulfate step (e.g. the pH 9, 10, and 11 and the pH 2 reactor with Fe 3+ addition). Overall, the final sulfate-oxygen source ratio is determined by (1) rate competitions between direct O 2 incorporation and Fe 3+ shuttling during both the formation of sulfite from pyrite and from sulfite to final sulfate, and (2) rate competitions between sulfite and water oxygen exchange and the oxidation of sulfite to sulfate. Our results indicate that thiosulfate or sulfite is the intermediate species released into solution at all investigated pH and point to a set of dynamic and competing fractionation factors and rates, which control the oxygen isotope composition of sulfate derived from pyrite oxidation.

  5. Chondroitin sulfate

    MedlinePLUS

    ... with other products, including manganese ascorbate, glucosamine sulfate, glucosamine hydrochloride, or N-acetyl glucosamine. Research from a couple ... Early evidence suggests that chondroitin, with or without glucosamine hydrochloride, can reduce pain in people with Kashin-Beck ...

  6. Spectrophotometric Determination of Total Sulfite in White Wine Samples Using Crude Extracts from Flowers

    NASA Astrophysics Data System (ADS)

    Flora Barbosa Soares, Márlon Herbert; Ramos, Luiz Antonio; Tadeu Gomes Cavalheiro, Éder

    2002-09-01

    A didactic spectrophotometric method for determining the sulfite content in white wine samples is proposed. It is based upon a discoloring reaction between flower anthocyanins and the sulfite in basic media. Students' results obtained from iodometric data agreed well with results obtained by the proposed procedure. The use of natural dyes attracted students' interest, enhancing the learning process.

  7. RECOVERY AND RECYCLING OF SO 2 IN A SULFITE PULP MILL

    Microsoft Academic Search

    Leo E. Hakka; David J. Brown

    Previous papers on CANSOLV ® System technology described applications in smelters, acid plants, refineries and sulfur recovery units 1,2,3 . This paper discusses integration of the process to sulfite pulp mills. Ammonia based sulfite pulp mills utilize ammonium bisulfite plus dissolved sulfur dioxide as the chemical reagent to delignify wood in order to produce a cellulose pulp. Unreacted SO 2

  8. Increase of sulfite tolerance in Oenococcus oeni by means of acidic adaptation

    Microsoft Academic Search

    Jean Guzzo; Michel-Philippe Jobin; Charles Diviès

    1998-01-01

    Sulfite is an antimicrobial agent used at the beginning of winemaking to avoid development of undesirable microorganisms. However, Oenococcus oeni, which is mainly responsible for the malolactic fermentation, has to grow in wine and therefore has to be resistant to sulfite. This study showed that acid-adapted cells of O. oeni survived better than non-adapted cells in the presence of a

  9. Reevaluation of Monier-Williams method for determining sulfite in food

    Microsoft Academic Search

    C. R. Warner; D. H. Daniels; F. L. Jr. Joe; T. Fazio

    2008-01-01

    The Monier-Williams distillation procedure has a long history of successful use for determining sulfite in fruit products and wine; however, a systematic evaluation of its accuracy and precision with other food matrices has not been undertaken. The authors found that Monier-Williams distillation yielded >90% recovery of sulfite added to foods such as table grapes, hominy, dried mangoes, and lemon juice.

  10. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    SciTech Connect

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C. (Shriners Hospital, Montreal, Quebec (Canada))

    1989-11-25

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with (35S) sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I.

  11. Reevaluation of Monier-Williams method for determining sulfite in food.

    PubMed

    Warner, C R; Daniels, D H; Joe, F L; Fazio, T

    1986-01-01

    The Monier-Williams distillation procedure has a long history of successful use for determining sulfite in fruit products and wine; however, a systematic evaluation of its accuracy and precision with other food matrices has not been undertaken. We found that the Monier-Williams distillation yielded greater than 90% recovery of sulfite added to foods such as table grapes, hominy, dried mangoes, and lemon juice. Less than 85% recovery was obtained with broccoli, soda crackers, cheese-peanut butter crackers, mushrooms, and potato chips. These results may, in fact, accurately reflect the residual levels of sulfite if a portion of the sulfite undergoes irreversible reaction with some food components. Analysis of commercial food products gave sulfite levels ranging from 1400 ppm in dried apple slices to 25 ppm in cream sherry. PMID:3949694

  12. A new diketopyrrolopyrrole-based probe for sensitive and selective detection of sulfite in aqueous solution

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Cui, Yu; Li, Yexin; Zheng, Luyi; Xie, Lijun; Ning, Rui; Liu, Zheng; Lu, Junling; Zhang, Gege; Liu, Chunxiang; Zhang, Guangyou

    2015-02-01

    A new probe was synthesized by incorporating an ?,? -unsaturated ketone to a diketopyrrolopyrrole fluorophore. The probe had exhibited a selective and sensitive response to the sulfite against other thirteen anions and biothiols (Cys, Hcy and GSH), through the nucleophilic addition of sulfite to the alkene of probe with the detection limit of 0.1 ?M in HEPES (10 mM, pH 7.4) THF/H2O (1:1, v/v). Meanwhile, it could be easily observed that the probe for sulfite changed from pink to colorless by the naked eye, and from pink to blue under UV lamp after the sulfite was added for 20 min. The NMR and Mass spectral analysis demonstrated the expected addition of sulfite to the Cdbnd C bonds.

  13. Development of an amperometric sulfite biosensor based on sulfite oxidase with cytochrome c, as electron acceptor, and a screen-printed transducer

    Microsoft Academic Search

    A. K. Abass; J. P. Hart; D. Cowell

    2000-01-01

    An amperometric biosensor for sulfite has been developed. The enzyme sulfite oxidase (SOD) and electron acceptor cytochrome c are mixed into the carbon ink that is deposited onto the working electrode of a screen-printed strip. A silver–silver chloride electrode is printed alongside the working electrode and serves as reference\\/counter electrode. The electrochemical behaviour of the biosensor surface in plain buffer

  14. Comparative in vitro sensitivities of human immune cell lines, vaginal and cervical epithelial cell lines, and primary cells to candidate microbicides nonoxynol 9, C31G, and sodium dodecyl sulfate.

    PubMed

    Krebs, Fred C; Miller, Shendra R; Catalone, Bradley J; Fichorova, Raina; Anderson, Deborah; Malamud, Daniel; Howett, Mary K; Wigdahl, Brian

    2002-07-01

    In experiments to assess the in vitro impact of the candidate microbicides nonoxynol 9 (N-9), C31G, and sodium dodecyl sulfate (SDS) on human immune and epithelial cell viability, cell lines and primary cell populations of lymphocytic and monocytic origin were generally shown to be equally sensitive to exposures ranging from 10 min to 48 h. However, U-937 cells were more sensitive to N-9 and C31G after 48 h than were primary monocyte-derived macrophages. Cytokine activation of monocytes and lymphocytes had no effect on cell viability following exposure to these microbicidal compounds. Primary and passaged vaginal epithelial cultures and cell lines differed in sensitivity to N-9 and C31G but not SDS. These studies provide a foundation for in vitro experiments in which cell lines of human immune and epithelial origin can be used as suitable surrogates for primary cells to further investigate the effects of microbicides on cell metabolism, membrane composition, and integrity and the effects of cell type, proliferation, and differentiation on microbicide sensitivity. PMID:12069993

  15. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs.

    PubMed Central

    Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B

    1997-01-01

    mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865

  16. Absence of a Putative Mannose-Specific Phosphotransferase System Enzyme IIAB Component in a Leucocin A-Resistant Strain of Listeria monocytogenes, as Shown by Two-Dimensional Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis

    PubMed Central

    Ramnath, M.; Beukes, M.; Tamura, K.; Hastings, J. W.

    2000-01-01

    Leucocin A is a class IIa bacteriocin produced by Leuconostoc spp. that has previously been shown to inhibit the growth of Listeria monocytogenes. A spontaneous resistant mutant of L. monocytogenes was isolated and found to be resistant to leucocin A at levels in excess of 2 mg/ml. The mutant showed no significant cross-resistance to nontype IIa bacteriocins including nisaplin and ESF1-7GR. However, there were no inhibition zones found on a lawn of the mutant when challenged with an extract containing 51,200 AU of pediocin PA-2 per ml as determined by a simultaneous assay on the sensitive wild-type strain. DNA and protein analysis of the resistant and susceptible strains were carried out using silver-stained amplified fragment length polymorphism (ssAFLP) and one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), respectively. Two-dimensional SDS-PAGE clearly showed a 35-kDa protein which was present in the sensitive but absent from the resistant strain. The N-terminal end of the 35-kDa protein was sequenced and found to have an 83% homology to the mannose-specific phosphotransferase system enzyme IIAB of Streptococcus salivarius. PMID:10877813

  17. Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    PubMed

    Ramnath, M; Beukes, M; Tamura, K; Hastings, J W

    2000-07-01

    Leucocin A is a class IIa bacteriocin produced by Leuconostoc spp. that has previously been shown to inhibit the growth of Listeria monocytogenes. A spontaneous resistant mutant of L. monocytogenes was isolated and found to be resistant to leucocin A at levels in excess of 2 mg/ml. The mutant showed no significant cross-resistance to nontype IIa bacteriocins including nisaplin and ESF1-7GR. However, there were no inhibition zones found on a lawn of the mutant when challenged with an extract containing 51,200 AU of pediocin PA-2 per ml as determined by a simultaneous assay on the sensitive wild-type strain. DNA and protein analysis of the resistant and susceptible strains were carried out using silver-stained amplified fragment length polymorphism (ssAFLP) and one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), respectively. Two-dimensional SDS-PAGE clearly showed a 35-kDa protein which was present in the sensitive but absent from the resistant strain. The N-terminal end of the 35-kDa protein was sequenced and found to have an 83% homology to the mannose-specific phosphotransferase system enzyme IIAB of Streptococcus salivarius. PMID:10877813

  18. The Impact of Simulated Sulfate Deposition on Peatland Testate Amoebae

    Microsoft Academic Search

    Richard Payne; Vincent Gauci; Dan J. Charman

    2010-01-01

    Peatlands subjected to sulfate deposition have been shown to produce less methane, believed to be due to competitive exclusion\\u000a of methanogenic archaea by sulfate-reducing bacteria. Here, we address whether sulfate deposition produces impacts on a higher\\u000a microbial group, the testate amoebae. Sodium sulfate was applied to experimental plots on a Scottish peatland and samples\\u000a extracted after a period of more

  19. Reaction of Hydrogen Sulfide with Oxygen in the Presence ofSulfite

    SciTech Connect

    Weres, Oleh; Tsao, Leon

    1983-01-01

    Commonly, abatement of hydrogen sulfide emissions from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One Mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. The authors studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDT are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use.

  20. Reaction of hydrogen sulfide with oxygen in the presence of sulfite

    SciTech Connect

    Weres, O.; Tsao, L.

    1983-01-14

    Commonly, abatement of hydrogen sulfide emission from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. We studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDTA are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use. 33 figures, 9 tables.

  1. Effect of alloy composition on the sodium-sulfate induced hot corrosion attack of cast nickel-base superalloys at 900 C

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Deadmore, D. L.; Barrett, C. A.

    1987-01-01

    The effects of Cr, Al, Ti, Mo, Ta, Nb, and W content on the hot corrosion of Ni-base alloys were examined experimentally. The superalloys were tested for 300 1-hr cycles at 900 C in a Mach 0.3 burner rig flame containing 0.5 ppmw sodium. The data reveal that the best corrosion resistance is obtained when the Cr content is greater than 12 percent; however, good resistance is detected in some alloys with Cr content less than 10 percent provided that the Al content is less than 2.5 wt pct and the Ti content is less than 4 wt pct. It is observed that the influence of W, Ta, Mo, and Nb content on resistance is dependent on Al and Ti contents. The derivation of an equation for estimating hot corrosion attack as a function of alloy composition using multiple linear regression analysis is described. The applicability of the equation is tested using various data sets of alloys. It is noted that the equation can be used to explain the effects of alloy composition on attack rates.

  2. Preparation and characterization of sodium dodecyl sulfate doped polypyrrole solid phase micro extraction fiber and its application to endocrine disruptor pesticide analysis.

    PubMed

    Korba, Korcan; Pelit, Levent; Pelit, Füsun Okçu; Ozdokur, K Volkan; Erta?, Hasan; Ero?lu, Ahmet E; Erta?, F Nil

    2013-06-15

    A robust in house solid-phase micro extraction (SPME) surface has been developed for the headspace (HS)-SPME determination of endocrine disruptor pesticides, namely, Chlorpyrifos, Penconazole, Procymidone, Bromopropylate and Lambda-Cyhalothrin in wine sample by using sodium dodecylsulfate doped polypyrrole SPME fiber. Pyrrole monomer was electrochemically polymerized on a stainless steel wire in laboratory conditions in virtue of diminishing the cost and enhancing the analyte retention on its surface to exert better selectivity and hence the developed polymerized surface could offer to analyst to exploit it as a fiber in headspace SPME analysis. The parameters, mainly, adsorption temperature and time, desorption temperature, stirring rate and salt amount were optimized to be as 70°C and 45min, 200°C, 600rpm and 10gL(-1), respectively. Limit of detection was estimated in the range of 0.073-1.659ngmL(-1) for the pesticides studied. The developed method was applied in to red wine sample with acceptable recovery values (92-107%) which were obtained for these selected pesticides. PMID:23669608

  3. Development and Comparison of SYBR Green Quantitative Real-time PCR Assays for Detection and Enumeration of Sulfate-reducing Bacteria in Stored Swine Manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A quantitative real-time polymerase chain reaction (PCR) assay for sulfate-reducing bacteria (SRB) was developed that targeted the dissimilatory sulfite reductase gene (dsrA). Degenerate primer sets were developed to detect three different groups of SRB in stored swine manure using a SYBR Green qua...

  4. X-RAY MICROTOMOGRAPHY OF AN ASTM C109 MORTAR EXPOSED TO SULFATE ATTACK

    E-print Network

    Bentz, Dale P.

    of sodium sulfate for about six weeks. To stop further hydration and sulfate attack at a selected testing time the specimen was potted with an ultra-low viscosity resin using a tw~step replacement procedure [4

  5. 75 FR 56101 - Lauryl Sulfate Salts Registration Review Final Decision; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ...EPA-HQ-OPP-2009-0727; FRL-8839-6] Lauryl Sulfate Salts Registration Review Final Decision; Notice of...review decision for the pesticide, lauryl sulfate salts (also known as sodium lauryl salts), case 4061. Registration review is...

  6. Perchlorate reduction by the sulfite/ultraviolet light advanced reduction process.

    PubMed

    Vellanki, Bhanu Prakash; Batchelor, Bill

    2013-11-15

    Advanced reduction processes (ARPs) are a new class of water treatment processes that combine activation methods and reducing agents to form highly reactive reducing radicals that degrade oxidized contaminants. The combination of sulfite with low-pressure ultraviolet light (UV-L) is the most effective ARP tested to date. In this study, batch kinetic experiments were conducted to characterize the kinetics of perchlorate destruction by the sulfite/UV-L ARP. Experimental variables were pH, sulfite concentration, temperature and UV-L irradiance. The rate of perchlorate degradation by sulfite/UV-L increases with increasing pH and temperature and increases with increasing sulfite concentration to a maximum and then decreases due to lack of mixing within the reactor system used. Efficiency of perchlorate degradation was measured as a quantum yield and was observed to decrease with increasing sulfite concentration. The ultimate product of perchlorate degradation by the sulfite/UV-L ARP is chloride, but chlorate was detected as an intermediate. PMID:24056247

  7. Does a glycine sodium nitrite crystal exist?

    E-print Network

    Dhavskar, Kiran T

    2015-01-01

    The glycine sodium nitrite crystal reported by Khandpekar and Pati in the paper entitled, Synthesis and characterisation of glycine sodium nitrite crystals having non linear optical behaviour, Opt Commun 285, 2012 288-293 is actually gamma-glycine. In addition, we show that glycine barium ammonium nitrate, glycine sodium zinc sulfate, glycine barium calcium nitrate, glycine acetamide and glycine dimer are dubious crystals.

  8. The effect of cooking preparations on the residual sulfite concentrations in shrimp

    E-print Network

    Lally, Audrey Ann

    1987-01-01

    %, respectivel y. The average percent loss in the canned shrimp was 52. 7$. The duration of cooking had a significant effect on the residual sulfite in shrimp during all four procedures. The primary differ ence was between the raw and the cooked product... for the boiled shell-on, shell-off and canned methods. However, breaded deep fried shrimp showed a significant difference in sulfite concentrations between 1 to 2 min- utes and 2 to 3 minutes. The loss of sulfite appeared to follow a first-order reaction rate...

  9. Enhancing hemicelluloses removal from a softwood sulfite pulp.

    PubMed

    Li, Jianguo; Zhang, Hongjie; Duan, Chao; Liu, Yishan; Ni, Yonghao

    2015-09-01

    Hemicelluloses removal is highly desirable in many biomass processes, including the pretreatment steps of the bioconversion for ethanol production, production of high-quality dissolving pulps. In this study, a sequential treatment consisting of pulp fractionation, followed by caustic treatment to remove hemicelluloses from a softwood sulfite pulp, was investigated. The long-fiber fraction obtained after pulp fractionation, had a lower hemicelluloses content and smaller specific surface area, but larger pore diameter than the short-fiber fraction. The fiber fractions were subsequently treated in a cold caustic extraction (CCE) or hot caustic extraction (HCE). Results showed that hemicelluloses removal in the long-fiber fraction was more pronounced than the short-fiber fraction in both CCE and HCE processes. Other parameters, such as hemicelluloses removal selectivity, yield were studied. The underlying explanations were given. PMID:26004557

  10. VALUE-ADDED PRODUCTS FROM FGD SULFITE-RICH SCRUBBER MATERIALS

    Microsoft Academic Search

    V. M. Malhotra; J. E. Musselman; G. Markevicius; W. G. Fogerson

    OBJECTIVES: According to the American Coal Ash Association, about 29.25 million tons of flue gas desulfurization (FGD) byproducts were produced in the USA in 2003. Out of 29.25 million tons, 17.35 million tons were sulfite-rich scrubber materials. At present, unlike its cousin FGD gypsum, the prospect for effective utilization of sulfite-rich scrubber materials is not bright. In fact, almost 16.9

  11. Sulfate attack on hardened cement paste

    SciTech Connect

    Wang, J.G. (Shenzhen Univ. (China). Dept. of Applied Chemistry)

    1994-01-01

    Hardened cement paste specimens made with different cement types and varying water-cement ratios (w/c) were immersed in 5% sodium sulfate solution maintained at constant pH value of 6. The distribution curves for ettringite, gypsum, and portlandite phases were obtained by using layer by layer XRD analysis and interpreted in terms of material damage due to sulfate attack. The mechanism of sulfate attack is evaluated in regard to the leaching of Ca(OH)[sub 2] and formation of gypsum and ettringite.

  12. 21 CFR 172.270 - Sulfated butyl oleate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...transesterification of an edible vegetable oil using 1-butanol. Following sulfation, the reaction mixture is washed with water and neutralized with aqueous sodium or...exceed 2 percent by weight in an aqueous emulsion in dehydrating grapes to produce...

  13. 21 CFR 172.270 - Sulfated butyl oleate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...transesterification of an edible vegetable oil using 1-butanol. Following sulfation, the reaction mixture is washed with water and neutralized with aqueous sodium or...exceed 2 percent by weight in an aqueous emulsion in dehydrating grapes to produce...

  14. Removal of Sulfate Ion From AN-107 by Evaporation

    SciTech Connect

    GJ Lumetta; GS Klinger; DE Kurath; RL Sell; LP Darnell; LR Greenwood; CZ Soderquist; MJ Steele; MW Urie; JJ Wagner

    2000-08-02

    Hanford low-activity waste solutions contain sulfate, which can cause accelerated corrosion of the vitrification melter and unacceptable operating conditions. A method is needed to selectively separate sulfate from the waste. An experiment was conducted to evaluate evaporation for removing sulfate ion from Tank AN-107 low-activity waste. Two evaporation steps were performed. In the first step, the volume was reduced by 55% while in the second step, the liquid volume was reduced another 22%. Analysis of the solids precipitated during these evaporations revealed that large amounts of sodium nitrate and nitrite co-precipitated with sodium sulfate. Many other waste components precipitated as well. It can be concluded that sulfate removal by precipitation is not selective, and thus, evaporation is not a viable option for removing sulfate from the AN-107 liquid.

  15. Studies of muscle proteins in embryonic myocardial cells of cardiac lethal mutant mexican axolotls (Ambystoma mexicanum) by use of heavy meromyosin binding and sodium dodecyl sulfate polyacrylamide gel electrophoresis

    PubMed Central

    1976-01-01

    In the Mexican axolotl Ambystoma mexicanum recessive mutant gene c, by way of abnormal inductive processes from surrounding tissues, results in an absence of embryonic heart function. The lack of contractions in mutant heart cells apparently results from their inability to form normally organized myofibrils, even though a few actin-like (60-A) and myosin-like (150-A) filaments are present. Amorphous "proteinaceous" collections are often visible. In the present study, heavy meromyosin (HMM) treatment of mutant heart tissue greatly increases the number of thin filaments and decorates them in the usual fashion, confirming that they are actin. The amorphous collections disappear with the addition of HMM. In addition, an analysis of the constituent proteins of normal and mutant embryonic hearts and other tissues is made by sodium dodecyl sulfate (SDS) gel electrophoresis. These experiments are in full agreement with the morphological and HMM binding studies. The gels show distinct 42,000-dalton bands for both normal and mutant hearts, supporting the presence of normal actin. During early developmental stages (Harrison's stage 34) the cardiac tissues in normal and mutant siblings have indistinguishable banding patterns, but with increasing development several differences appear. Myosin heavy chain (200,000 daltons) increases substantially in normal hearts during development but very little in mutants. Even so the quantity of 200,000-dalton protein in mutant hearts is significantly more than in any of the nonmuscle tissues studied (i.e. gut, liver, brain). Unlike normal hearts, the mutant hearts lack a prominent 34,000-dalton band, indicating that if mutants contain muscle tropomyosin at all, it is present in drastically reduced amounts. Also, mutant hearts retain large amounts of yolk proteins at stages when the platelets have virtually disappeared from normal hearts. The morphologies and electrophoresis patterns of skeletal muscle from normal and mutant siblings are identical, confirming that gene c affects only heart muscle differentiation and not skeletal muscle. The results of the study suggest that the precardiac mesoderm in cardiac lethal mutant axolotl embryos initiates but then fails to complete its differentiation into functional muscle tissue. It appears that this single gene mutation, by way of abnormal inductive processes, affects the accumulation and organization of several different muscle proteins, including actin, myosin, and tropomyosin. PMID:1107335

  16. Synthesis of basic aluminum sulfate assisted by microwave heating

    Microsoft Academic Search

    Jaime Jiménez-Becerril; Irma García-Sosa; Ignacio A. Rivero

    2011-01-01

    The synthesis of basic aluminum sulfate (BAS) was promoted by the microwave heating of a mixture of aluminum sulfate, aluminum nitrate, and sodium hydroxide. The heating process was facilitated by microwaves set at different temperatures and reaction time durations. The obtained products were characterized by X-ray diffraction and scanning electronic microscopy. Crystallographic and morphological analysis revealed BAS, boehmite, or a

  17. Electrochemiluminescence of terbium (III)-two fluoroquinolones-sodium sulfite system in aqueous solution

    NASA Astrophysics Data System (ADS)

    Chen, Shi-lv; Ding, Fen; Liu, Yu; Zhao, Hui-chun

    2006-05-01

    The electrochemiluminescence (ECL) of Tb 3+-enoxacin-Na 2SO 3 system (ENX system) and Tb 3+-ofloxacin-Na 2SO 3 system (OFLX system) in aqueous solution is reported. ECL is generated by the oxidation of Na 2SO 3, which is enhanced by Tb 3+-fluoroquinolone (FQ) complex. The ECL intensity peak versus potential corresponds to oxidation of Na 2SO 3, and the ECL emission spectra (the peaks are at 490, 545, 585 and 620 nm) match the characteristic emission spectrum of Tb 3+, indicating that the emission is from the excited state of Tb 3+. The mechanism of ECL is proposed and the difference of ECL intensity between ENX system and OFLX system is explained. Conditions for ECL emission were optimized. The linear range of ECL intensity versus concentrations of pharmaceuticals is 2.0 × 10 -10-8.0 × 10 -7 mol l -1 for ENX and 6.0 × 10 -10-6.0 × 10 -7 mol l -1 for OFLX, respectively. A theoretical limit of detection is 5.4 × 10 -11 mol l -1 for ENX and 1.6 × 10 -10 mol l -1 for OFLX, respectively. The ECL was satisfactorily applied to the determination of the two FQs in dosage form and urine sample.

  18. Desulfovirga adipica gen. nov., sp. nov., an adipate-degrading, Gram-negative, sulfate-reducing bacterium

    Microsoft Academic Search

    Kazuhiro Tanaka; Erko Stackebrandt; Shigehiro Tohyama; Tadashi Eguchi

    A novel, mesophilic, Gram-negative bacterium was isolated from an anaerobic digestor for municipal wastewater. The bacterium degraded adipate in the presence of sulfate, sulfite, thiosulfate and elemental sulfur. (E)-2- Hexenedioate accumulated transiently in the degradation of adipate. (E)-2- Hexenedioate, (E)-3-hexenedioate, pyruvate, lactate, C1-C12 straight-chain fatty acids and C2-C10 straight-chain primary alcohols were also utilized as electron donors. 3-Phenylpropionate was oxidized

  19. Value-Added Products from FGD Sulfite-Rich Scrubber Materials

    SciTech Connect

    Vivak Malhotra

    2010-01-31

    According to the American Coal Ash Association, about 29.25 million tons of flue gas desulfurization (FGD) byproducts were produced in the USA in 2003. Out of 29.25 million tons, 17.35 million tons were sulfite-rich scrubber materials. At present, unlike its cousin FGD gypsum, the prospect for effective utilization of sulfite-rich scrubber materials is not bright. In fact, almost 16.9 million tons are leftover every year. In our pursuit to mitigate the liability of sulfite-rich FGD scrubber materials' disposal, we are attempting to develop value-added products that can commercially compete. More specifically, for this Innovative Concept Phase I project, we have the following objectives: to characterize the sulfite-rich scrubber material for toxic metals; to optimize the co-blending and processing of scrubber material and natural byproducts; to formulate and develop structural composites from sulfite-rich scrubber material; and to evaluate the composites' mechanical properties and compare them with current products on the market. After successfully demonstrating the viability of our research, a more comprehensive approach will be proposed to take these value-added materials to fruition.

  20. Sulfite determination by a biosensor based on bay leaf tissue homogenate: very simple and economical method.

    PubMed

    Teke, Mustafa; Sezgintürk, Mustafa Kemal; Dinçkaya, Erhan

    2009-01-01

    Of all the food additives for which the FDA has received adverse reaction reports, the ones that most closely resemble true allergens are sulfur-based preservatives. Sulfites are used primarily as antioxidants to prevent or reduce discoloration of light-colored fruits and vegetables, such as dried apples and potatoes, and to inhibit the growth of microorganisms in fermented foods such as wine. This work aims to prepare an electrochemical biosensor based on bay leaf tissue homogenate that contains polyphenol oxidase enzyme abundantly for sulfite detection in foods. The principle of the biosensor is based on the inhibition effect of sulfites on polyphenol oxidase in the bioactive layer. Optimum conditions for the biosensor, such as temperature and pH, were investigated. Some stability parameters of the biosensor were also identified. The biosensor showed a linear calibration graph in the range of 25-100 microM sulfite. The biosensor presents a very simple, economical, reliable, and feasible method for sulfite detection in foods. PMID:19418312

  1. Electrodeposition of hard nanocrystalline chrome from aqueous sulfate trivalent chromium bath

    Microsoft Academic Search

    V. S. Protsenko; F. I. Danilov; V. O. Gordiienko; S. C. Kwon; M. Kim; J. Y. Lee

    2011-01-01

    A sulfate trivalent chromium bath is described which contains chromium(III) salt, sodium sulfate, aluminum sulfate, boric acid, formic acid, carbamide and surfactant. The bath is operated using either titanium–manganese dioxide anodes or platinized titanium anodes without separation of anodic and cathodic compartments. Effect of bath composition and electrolysis conditions on current efficiency of chromium electrodeposition was studied. At optimal bath

  2. Sulfite analysis of fruits and vegetables by high-performance liquid chromatography (HPLC) with ultraviolet spectrophotometric detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Free and total sulfite were analyzed in acidified vegetable products, instant mashed potatoes and dried apples. Sulfite was separated by HPLC and quantified with a UV/VIS detector. Good resolution from components of food samples was achieved by varying the acid concentration of the eluant solution...

  3. Sulfation of intrinsic glycoproteins of the rabbit vitreous.

    PubMed

    Góes, R M; Laicine, E M; Mendes, M L; Nader, H B; Haddad, A

    1998-09-01

    The experiments reported here were designed to characterize the intrinsic vitreous glycoproteins and to understand the process of their sulfation. Rabbits were injected intravitreally with 35S-sodium sulfate and killed at several time intervals after injection. In another series of experiments, rabbits were injected either with 35S-sodium sulfate, 3H-fucose or 3H-tyrosine, associated or not associated with tunicamycin administration. Vitreous from the control eyes was also digested with N-glycosidase. Furthermore, ciliary bodies, the putative source of the intrinsic vitreous glycoproteins, were incubated with 35S-sodium sulfate in the presence or absence of the protein synthesis inhibitor cycloheximide, and the culture media recovered for analysis. These and the vitreous samples of the other experiments were processed for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorography. Except for serum albumin, practically all polypeptide bands of the vitreous and culture media were labeled with radioactive sulfate and were shown to undergo renewal. The experiments using tunicamycin or enzyme treatment suggest that radioactive sulfate was incorporated not only into the carbohydrate side chains of the glycoproteins but also into the amino acid tyrosine of the polypeptide backbone of these glycoproteins. PMID:9778413

  4. Identification, purification, and characterization of subunits of cAMP-dependent protein kinase in human testis. Reverse mobilities of human RII alpha and RII beta on sodium dodecyl sulfate-polyacrylamide gel electrophoresis compared with rat and bovine RIIs.

    PubMed

    Skålhegg, B S; Landmark, B; Foss, K B; Lohmann, S M; Hansson, V; Lea, T; Jahnsen, T

    1992-03-15

    We have previously identified and characterized regulatory (R) subunits of cyclic AMP-dependent protein kinase, particularly the RII subunits in rat tissues (Jahnsen, T., Lohmann, S. M., Walter, U., Hedin, L., and Richards, J. S. (1985) J. Biol. Chem. 260, 15980-15987; Jahnsen, T., Hedin, L., Lohmann, S. M., Walter, U., and Richards, J. S. (1986) J. Biol. Chem. 261, 6637-6639; Jahnsen, T., Hedin, L., Kidd, V. J., Beattie, W. G., Lohmann, S. M., Walter, U., Durica, J., Schulz, T. Z., Schiltz, E., Browner, M., Lawrence, C. B., Goldman, D., Ratoosh, S. L., and Richards, J. S. (1986) J. Biol. Chem. 261, 12352-12361). These studies showed that rat RII alpha and RII beta had apparent molecular masses of 54 and 52 kDa, respectively. The aim of the present study was to purify and characterize cAMP-dependent protein kinase R subunits in human testis and to examine which of the subunits (mRNAs and proteins) are present in this tissue. Our results show that human testis contains mRNAs for five out of the seven known subunits of cAMP-dependent protein kinase. We observed strong expression of mRNAs for RI alpha (1.5 and 3.2 kilobases (kb)), RII alpha (2.2, 2.4, and 7.0 kb), and RII beta (3.3 kb). We also demonstrated mRNAs for two of the three catalytic subunits, C alpha (2.7 kb) and C gamma (1.7 kb). Purification of R subunits by DEAE-cellulose and cAMP affinity chromatography revealed three distinct forms with apparent molecular masses of 49, 51, and 53 kDa, respectively. Characterization of these R subunits by their 8-azido-cAMP photoaffinity labeling and immunoreactivity, as well as by a phosphorylation-dependent mobility shift on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), indicated subunit sizes of RII beta (53 kDa) greater than RII alpha dephosphoform (51 kDa) greater than RI alpha (49 kDa). This conclusion was verified by the analysis of RII subunits produced by in vitro transcription/translation of full-length cDNAs for both human RII alpha and RII beta in wheat germ lysates. The in vitro translated products were the same size as the purified human testis subunits, and only the smallest RII subunit (RII alpha) revealed a distinct mobility shift on SDS-PAGE after phosphorylation/dephosphorylation. This study supports the conclusion that the mobilities of human RII subunits (RII alpha, RII beta) on SDS-PAGE are reversed in contrast with those of other species such as rat and bovine.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1544918

  5. Desulfovibrio legallis sp. nov.: A Moderately Halophilic, Sulfate-Reducing Bacterium Isolated from a Wastewater Digestor in Tunisia

    Microsoft Academic Search

    Olfa Ben Dhia Thabet; Terres Wafa; Khelifi Eltaief; Jean-Luc Cayol; Moktar Hamdi; Guy Fauque; Marie-Laure Fardeau

    2011-01-01

    A new moderately halophilic sulfate-reducing bacterium (strain H1T) was enriched and isolated from a wastewater digestor in Tunisia. Cells were curved, motile rods (2–3 x 0.5 ?m). Strain H1T grew at temperatures between 22 and 43°C (optimum 35°C), and at pH between 5.0 and 9.2 (optimum 7.3–7.5). Strain H1T required salt for growth (1–45 g of NaCl\\/l), with an optimum at 20–30 g\\/l. Sulfate, sulfite,

  6. Crystallization of Chicken Egg White Lysozyme from Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    1998-01-01

    It has been "known" that chicken egg white lysozyme does not crystallize from sulfate, particularly ammonium sulfate, salts, but instead gives amorphous precipitates. This has been the basis of several studies using lysozyme comparing macromolecule crystal nucleation and amorphous precipitation. Recently Ries-Kautt et al (Acta Cryst D50, (1994) 366) have shown that purified isoionic CEWL could be crystallized from low concentrations of sulfate at basic pH, and we subsequently showed that in fact CEWL could be purified in both the tetragonal and orthorhombic forms using ammonium sulfate over the pH range 4.0 to 7.8 (Acta Cryst D53, (1997) 795). We have now extended these observations to include a range of common sulfate salts, specifically sodium, potassium, rubidium, magnesium, and manganese sulfates. In all cases but the manganese sulfates both the familiar tetragonal and orthorhombic forms were obtained, with unit cell dimensions close to those known for the "classic" sodium chloride crystallized forms. Manganese sulfate has only yielded orthorhombic crystals to date. All crystallizations were carried out using low (typically less than or equal to 6 M) salt and high (greater than approximately 90 mg/ml) protein concentrations. As with ammonium sulfate, the tetragonal - orthorhombic phase shift appears to be a function of both the temperature and the protein concentration, with higher temperatures and concentrations favoring the orthorhombic and lower the tetragonal form. The phase change range is somewhat reduced for the sulfate salts, depending upon conditions being typically between approximately 15 - 20 C. Both the magnesium and manganese sulfates gave crystals at salt concentrations over 0.6 M as well, with magnesium sulfate giving a very slowly nucleating and growing hexagonal form. A triclinic crystal form, characterized by aggressively small crystals (typically 0.1 mm in size) has been occasionally obtained from ammonium sulfate. Finally, preliminary spot solubility determinations have suggested that in some cases the solubility increases with increasing salt concentrations.

  7. Artifactual Sulfation of Silver-stained Proteins

    PubMed Central

    Gharib, Marlene; Marcantonio, Maria; Lehmann, Sylvia G.; Courcelles, Mathieu; Meloche, Sylvain; Verreault, Alain; Thibault, Pierre

    2009-01-01

    Sulfation and phosphorylation are post-translational modifications imparting an isobaric 80-Da addition on the side chain of serine, threonine, or tyrosine residues. These two post-translational modifications are often difficult to distinguish because of their similar MS fragmentation patterns. Targeted MS identification of these modifications in specific proteins commonly relies on their prior separation using gel electrophoresis and silver staining. In the present investigation, we report a potential pitfall in the interpretation of these modifications from silver-stained gels due to artifactual sulfation of serine, threonine, and tyrosine residues by sodium thiosulfate, a commonly used reagent that catalyzes the formation of metallic silver deposits onto proteins. Detailed MS analyses of gel-separated protein standards and Escherichia coli cell extracts indicated that several serine, threonine, and tyrosine residues were sulfated using silver staining protocols but not following Coomassie Blue staining. Sodium thiosulfate was identified as the reagent leading to this unexpected side reaction, and the degree of sulfation was correlated with increasing concentrations of thiosulfate up to 0.02%, which is typically used for silver staining. The significance of this artifact is discussed in the broader context of sulfation and phosphorylation site identification from in vivo and in vitro experiments. PMID:18936056

  8. Physico-chemical transformations of sulfated compounds during the leaching of highly sulfated cemented wastes

    SciTech Connect

    Lovera, P.; Bescop, P. le; Adenot, F. [CEA Centre de`Etudes de Saclay, Gif/Yvette (France)] [CEA Centre de`Etudes de Saclay, Gif/Yvette (France); Li, G. [CEA Centre d`Etudes de Saclay, Gif/Yvette (France)] [CEA Centre d`Etudes de Saclay, Gif/Yvette (France); [Ecole Normale Superieure de Cachan (France). Lab. de Mecanique et de Technologie; Tanaka, Y. [Japan Nuclear Fuel Ltd., Tokyo (Japan)] [Japan Nuclear Fuel Ltd., Tokyo (Japan); Owaki, E. [Taisei Corp., Yokohama (Japan). Technology Research Center] [Taisei Corp., Yokohama (Japan). Technology Research Center

    1997-10-01

    Cementation of sulfated evaporator concentrates leads to highly sulfated low level wastes, (ca. 25% w/w sodium sulfate solution as mix water), which exhibit the presence of U-phase, a sodium-bearing calcium monosulfphoaluminate-like phase. During the leaching of simulated highly sulfated OPC/BFS cements, cured at room temperature and containing U-phase, sodium sulfate, and ettringite, physico-chemical transformations have been pointed out (transformation of U-phase into ettringite). Samples having the same chemical composition, but cured at high temperature (maximal temperature during curing: 120 C), do not contain ettringite initially, but secondary ettringite is formed during leaching. XRD spectra point out the existence of precipitation fronts (or of phase formation fronts) varying linearly versus the square root of time. The analysis of leaching solutions has provided complementary data used in a code, the aim of which is to assess cement degradation, based on coupling between transport by diffusion and chemical reactions (DIFFUZON code). The U-phase-ettringite transformation is confirmed.

  9. Dietary Sodium

    MedlinePLUS

    Table salt is made up of the elements sodium and chlorine - the technical name for salt is sodium chloride. Your body needs some sodium to work properly. ... to healthy eating is choosing foods low in salt and sodium. Doctors recommend you eat less than ...

  10. Evaporator condensates: continuous bioprocessing of simulated sulfite condensates to produce single cell protein. [Candida utilis

    SciTech Connect

    Boyle, W.A.; Wines, B.; Baker, J.A.; Johanson, L.N.; McCarthy, J.L.

    1982-11-01

    The continuous bioprocessing of simulated steam-stripped sulfite pulp mill evaporator condensates using Candida utilis to produce single cell protein has been studied. At 32 degrees C, processing can be conducted at space velocities of up to 0.43 hr/sup -1/ with over 90% removal of acetic acid present at an initial concentration of 2 g/liter. (Refs. 16).

  11. Development of a liquid chromatography-tandem mass spectrometry method for the determination of sulfite in food.

    PubMed

    Robbins, Katherine S; Shah, Romina; MacMahon, Shaun; de Jager, Lowri S

    2015-06-01

    Sulfites are widely used food preservatives that can cause severe reactions in sensitive individuals. As a result, the U.S. FDA requires that sulfites be listed on the label of any food product containing >10 mg/kg (ppm) sulfite (measured as sulfur dioxide). Currently, the optimized Monier-Williams (MW) method (AOAC Official Method 990.28) is the most common approach for determining sulfite concentrations in food samples. However, this method is time-consuming and lacks specificity in certain matrices. An improved rapid, sensitive, and selective method has been developed using electrospray ionization (ESI) high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the determination of sulfite in various food matrices. A total of 12 different types of foods were evaluated. These included dried fruits and vegetables, frozen seafood, sweeteners, and juices. The matrix is extracted with a buffered formaldehyde solution, converting free and reversibly bound sulfite to the stable formaldehyde adduct, hydroxymethylsulfonate (HMS). Extracts are prepared for injection using a C18 SPE cartridge to remove any lipophilic compounds. HMS is then separated from other matrix components using hydrophilic interaction chromatography (HILIC) and detected using multiple reaction monitoring (MRM). The method was validated at 5 concentrations in 12 food matrices. Accuracy data showed spiked recoveries ranging from 84 to 115% in representative foods. Six commercially available sulfited products were analyzed using the LC-MS/MS method, as well as the MW method, to determine if differences exist. PMID:25695590

  12. The octahaem MccA is a haem c-copper sulfite reductase.

    PubMed

    Hermann, Bianca; Kern, Melanie; La Pietra, Luigi; Simon, Jörg; Einsle, Oliver

    2015-04-30

    The six-electron reduction of sulfite to sulfide is the pivot point of the biogeochemical cycle of the element sulfur. The octahaem cytochrome c MccA (also known as SirA) catalyses this reaction for dissimilatory sulfite utilization by various bacteria. It is distinct from known sulfite reductases because it has a substantially higher catalytic activity and a relatively low reactivity towards nitrite. The mechanistic reasons for the increased efficiency of MccA remain to be elucidated. Here we show that anoxically purified MccA exhibited a 2- to 5.5-fold higher specific sulfite reductase activity than the enzyme isolated under oxic conditions. We determined the three-dimensional structure of MccA to 2.2 Å resolution by single-wavelength anomalous dispersion. We find a homotrimer with an unprecedented fold and haem arrangement, as well as a haem bound to a CX15CH motif. The heterobimetallic active-site haem 2 has a Cu(I) ion juxtaposed to a haem c at a Fe-Cu distance of 4.4 Å. While the combination of metals is reminiscent of respiratory haem-copper oxidases, the oxidation-labile Cu(I) centre of MccA did not seem to undergo a redox transition during catalysis. Intact MccA tightly bound SO2 at haem 2, a dehydration product of the substrate sulfite that was partially turned over due to photoreduction by X-ray irradiation, yielding the reaction intermediate SO. Our data show the biometal copper in a new context and function and provide a chemical rationale for the comparatively high catalytic activity of MccA. PMID:25642962

  13. Na+-sulfate cotransporter SLC13A1.

    PubMed

    Markovich, Daniel

    2014-01-01

    Sulfate is essential for normal physiology. The kidney plays a major role in sulfate homeostasis. Sulfate is freely filtered and strongly reabsorbed in the proximal tubule. The apical membrane Na(+)-sulfate cotransporter NaS1 (SLC13A1) mediates sulfate (re)absorption across renal proximal tubule and small intestinal epithelia. NaS1 encodes a 595-amino acid (? 66 kDa) protein with 13 putative transmembrane domains. Its substrate preferences are sodium and sulfate, thiosulfate, and selenate, and its activity is inhibited by molybdate, selenate, tungstate, thiosulfate, succinate, and citrate. NaS1 is primarily expressed in the kidney (proximal tubule) and intestine (duodenum to colon). NaS1 expression is down-regulated in the renal cortex by high sulfate diet, hypothyroidism, vitamin D depletion, glucocorticoids, hypokalemia, metabolic acidosis, and NSAIDs and up-regulated by low sulfate diet, thyroid hormone, vitamin D supplementation, growth hormone, chronic renal failure, and during post-natal growth. Disruption of murine NaS1 gene leads to hyposulfatemia and hypersulfaturia, as well as changes in metabolism, growth, fecundity, behavior, gut physiology, and liver detoxification. This suggests that NaS1 is an important sulfate transporter and its disruption leads to perturbed sulfate homeostasis, which contributes to numerous pathophysiological conditions. PMID:24193406

  14. Studies of aged OH-Al solutions using kinetics of Al-ferron reactions and sulfate precipitation

    Microsoft Academic Search

    P. P. Tsai; P. H. Hsu

    2009-01-01

    A series of OH-Al solutions (0.02M in Al, NaOH\\/Al molar ratio = 1, slow neutralization) aged from 10 d to 55 months were all clear and had similar pH values and monomeric Al concentrations but reacted differently with sodium sulfate and ferron. The addition of sodium sulfate yielded three kinds of basic aluminum sulfates: tetrahedral crystals of composition Na\\/sub 0.08\\/Al(OH)\\/sub

  15. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing.

    PubMed

    Zhang, Lishan; Keller, Jürg; Yuan, Zhiguo

    2009-09-01

    Ferric iron is commonly used for sulfide precipitation in sewers, thus achieving corrosion and odour control. Its impact on the activities of sulfate-reducing bacteria and methanogens in anaerobic sewer biofilms is investigated in this study. Two lab-scale rising main sewer systems fed with real sewage were operated for 8 months. One received Fe(3+) dosage (experimental system) and the other was used as a control. In addition to precipitating sulfide from bulk water, Fe(3+) dosage was found to significantly inhibit sulfate reduction and methane production by sewer biofilms. The experimental reactor discharged an effluent containing a higher concentration of sulfate and a lower concentration of methane in comparison with the reference reactor. Batch experiments showed that the addition of ferric ions reduced the sulfate reduction and methane production rates of the sewer biofilms by 60% and 80%, respectively. The batch experiments further showed that Fe(3+) dosage changed the final products of sulfate reduction with sulfide accounting for only 54% of the sulfate reduced. The other products could not be confirmed, but were not dissolved inorganic sulfur species such as sulfite or thiosulfate. The results suggest the addition of Fe(3+) at upstream locations would minimize the ferric salts required for achieving the same level of sulfide removal. Fe(3+) dosing could also substantially reduce the formation of methane, a potent greenhouse gas, in sewers. PMID:19576610

  16. Multicomponent Convection Induced by Fronts in the Chlorate-Sulfite Reaction

    NASA Technical Reports Server (NTRS)

    Nagy, Istvan P.; Pojman, John A.

    1993-01-01

    An application of a new method is presented for the measurement of the temperature profiles of chemical waves propagating through a solution. Using solutions of thermocolor materials, the temperature distribution caused by the heat released in the propagating chlorate oxidation of sulfite was visualized and recorded using digital image processing methods. After calibration, the temperature gradient was calculated from the gray scale value in a digitized image. Extensive multicomponent convection ('fingering') was induced by descending fronts. Only ascending fingers were observed because of the large thermal gradient that suppressed descending ones. The characteristics of the temperature profile were determined as a function of initial sulfite and chlorate concentration, and tube diameter. Unusual behavior was observed when the fronts propagated under conditions of continuously changing diameter in a conical vessel. Fingering occurred periodically in a front descending in a flask with an increasing diameter. However, when a front propagated down in flask whose diameter decreased, no multicomponent convection was observed.

  17. Photocatalytic hydrogen production by direct sun light from sulfide\\/sulfite solution

    Microsoft Academic Search

    Atif Koca; Musa ?ahin

    2002-01-01

    The photocatalytic hydrogen production from a sulfide\\/sulfite solution is one of the photocatalytic processes that have been of interest recently for hydrogen production. Different types of semiconductor photocatalysts have been prepared and tested for this purpose. In this paper, photocatalysts CdS\\/ZnS that were prepared by a different coprecipitation technique was studied with and without n-Si in sulphide\\/sulphite solution irradiated with

  18. Kinetics of the oxidation of hydrogen sulfite by hydrogen peroxide in aqueous solution

    Microsoft Academic Search

    Frank Maaß; Horst Elias; Klaus J. Wannowius

    1999-01-01

    Conductometry was used to study the kinetics of the oxidation of hydrogen sulfite, HSO?3, by hydrogen peroxide in aqueous non-buffered solution at the low concentration level of 10?5–10?6M, typically found in cloud water. The kinetic data confirm that the rate law reported for the pH range 3–6 at higher concentration levels, rate=kH·[H+]·[HSO?3]·[H2O2], is valid at the low concentration level and

  19. Structure, interaction potentials, and vibrational spectra of the sulfite ion coordinated to alkaline element ions

    Microsoft Academic Search

    I. S. Perelygin; S. A. Shatokhin; S. V. Tuchkov

    1997-01-01

    Potential surface sections in the complexes of SO\\u000a 3\\u000a 2-\\u000a with Li+ and Na+ are calculated by the CNDO method with a modified potential of interaction between the cores. It is established that the\\u000a equilibrium geometry of the coordinated sulfite ion corresponds to the bidentate coordination of the onion to the Li+ and Na+ cations. Frequencies of normal vibrations are

  20. Classification of the pH-oscillatory hydrogen peroxide-thiosulfate-sulfite reaction.

    PubMed

    Veber, Tomáš; Schreiberová, Lenka; Schreiber, Igor

    2013-11-27

    The reaction of hydrogen peroxide with thiosulfate and sulfite in acidic solution is characterized by marked temporal pH variations suggesting autocatalytic nature of hydrogen ions. When carried out in a continuous-flow stirred tank reactor this reaction provides nonlinear dynamical regimes including periodic oscillations, chaotic behavior, and multiple steady states coexisting over a range of operating conditions. The aim of the presented experimental study is a classification of the role of species and the underlying mechanism in the periodic oscillatory mode by applying single pulse additions of chosen reaction species. The external perturbations at various phases of the periodically oscillating system may cause phase advance or phase delay of the oscillations. The resulting phase transition curves are obtained for hydrogen ions, hydroxide ions, thiosulfate ions, sulfite ions, and hydrogen sulfite ions. These curves are compared with the phase transition curves calculated using the prototype mechanisms representing categories of chemical oscillators established in previous work. We found our system to be compatible with the mechanism of the category 1CX. PMID:24182198

  1. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles

    SciTech Connect

    Meier, P.J.; Valantinas, J.; Hugentobler, G.; Rahm, I. (University Hospital, Zurich (Switzerland))

    1987-10-01

    The mechanism(s) and driving forces for biliary excretion of sulfate were investigated in canalicular rat liver plasma membrane vesicles (cLPM). Incubation of cLPM vesicles in the presence of an inside-to-outside (in, out) bicarbonate gradient but not pH or out-to-in sodium gradients, stimulated sulfate uptake 10-fold compared with the absence of bicarbonate and approximately 2-fold above sulfate equilibrium (overshoot). Initial rates of this bicarbonate gradient-driven ({sup 35}S)-sulfate uptake were saturable with increasing concentrations of sulfate and could be inhibited by probenecid, N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate, acetazolamide, furosemide, 4-acetamideo-4{prime}-isothiocyanostilbene-2,2{prime}-disulfonic acid, and 4,4{prime}-diisothiocyanostilbene-2,2{prime}-disulfonic acid (IC{sub 50}, {approximately}40 {mu}M). Cisinhibition of initial bicarbonate gradient-stimulated sulfate uptake and transstimulation of sulfate uptake in the absence of bicarbonate were observed with sulfate, thiosulfate, and oxalate but not with chloride, nitrate, phosphate, acetate, lactate, glutamate, aspartate, cholate, taurocholate, dehydrocholate, taurodehydrocholate, and reduced or oxidized glutathione. These findings indicate the presence of a sulfate (oxalate)-bicarbonate anion exchange system in canalicular rat liver plasma membranes. These findings support the concept that bicarbonate-sensitive transport system might play an important role in bile acid-independent canalicular bile formation.

  2. Heparan Sulfate Proteoglycans

    PubMed Central

    Sarrazin, Stephane; Lamanna, William C.; Esko, Jeffrey D.

    2011-01-01

    Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein–heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level. PMID:21690215

  3. [Activity and structure of the sulfate-reducing bacterial community in the sediments of the southern part of Lake Baikal].

    PubMed

    Pimenov, N V; Zakharova, E E; Briukhanov, A L; Korneeva, V A; Kuznetsov, B B; Turova, T P; Pogodaeva, T V; Kalmychkov, G V; Zemskaia, T I

    2014-01-01

    The rates of sulfate reduction (SR) and the diversity of sulfate-reducing bacteria (SRB) were studied in the sediments of the Posol'skaya banka elevation in the southern part of Lake Baikal. SR rates varied from 1.2 to 1641 nmol/(dm3 day), with high rates (> 600 nmol/(dm3 day)) observed at both deep-water stations and in subsurface silts. Integral SR rates calculated for the uppermost 50 cm of the sediments were higher for gas-saturated and gas hydrate-bearing sediments than in those with low methane content. Enrichment SRB cultures were obtained in Widdel medium for freshwater SRB. Analysis of the 16S rRNA gene fragments from clone libraries obtained from the enrichments revealed the presence of SRB belonged to Desulfosporosinus genus, with D. lacus as the most closely related member (capable of sulfate, sulfite, and thiosulfate reduction), as well as members of the order Clostridiales. PMID:25423722

  4. [Activity and structure of the sulfate-reducing bacterial community in the sediments of the southern part of Lake Baikal].

    PubMed

    2014-01-01

    The rates of sulfate reduction (SR) and the diversity of sulfate-reducing bacteria (SRB) were studied in the sediments of the Posol'skaya banka elevation in the southern part of Lake Baikal. SR rates varied from 1.2 to 1641 nmol/(dm3 day), with high rates (> 600 nmol/(dm3 day)) observed at both deep-water stations and in subsurface silts. Integral SR rates calculated for the uppermost 50 cm of the sediments were higher for gas-saturated and gas hydrate-bearing sediments than in those with low methane content. Enrichment SRB cultures were obtained in Widdel medium for freshwater SRB. Analysis of the 16S rRNA gene fragments from clone libraries obtained from the enrichments revealed the presence of SRB belonged to Desulfosporosinus genus, with D. lacus as the most closely related member (capable of sulfate, sulfite, and thiosulfate reduction), as well as members of the order Clostridiales. PMID:25507445

  5. Effect of nitrilotriacetic acid on batch methane fermentation of sulfate-containing wastewater

    Microsoft Academic Search

    Hu Qing-Hao; Li Xiu-Fen; Chen Jian

    2008-01-01

    The effects of nitrilotriacetic acid (NTA) on methane production and sulfate reduction during the treatment of sulfate laden organic wastewater were investigated in batch assays. The results showed that the methane fermentation was stimulated, while the sulfate reduction was inhibited. At a sodium acetate concentration of 7.0g\\/L, temperature of 35°C, and 0.9–15.0 of COD\\/SO42? ratio, the methane production was increased

  6. Synthesis of nanozeolite A from natural clinoptilolite and aluminum sulfate; Optimization of the method

    Microsoft Academic Search

    Mehdi Kamali; Sedigheh Vaezifar; Hamideh Kolahduzan; Akbar Malekpour; Mohammad Reza Abdi

    2009-01-01

    The zeolite NaA was synthesized from natural clinoptilolite as Si source and aluminum sulfate or sodium aluminate as Al source. The use of aluminum sulfate for the synthesis of zeolite A has not been reported in the literature. This study presents as the first time a synthesis approach in which the low cost and available source is used to prepare

  7. Krafft Temperature and Micelle Ionization of Aqueous Solutions of Cesium Dodecyl Sulfate Barney L. Bales*

    E-print Network

    Bales, Barney

    that the density of the surfactant is approximately 1.0 g/mL.4 V ) 0.398 L mol-1 for cesium dodecyl sulfate (Cs-exchange resin (Merck type 1), from sodium dodecyl sulfate (SDS, purchased from Touzart Matignon (France) and recrystal- lized twice from ethanol). A column of resin contained in a glass tube was first rinsed

  8. Identification of key components in the energy metabolism of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus by transcriptome analyses

    PubMed Central

    Hocking, William P.; Stokke, Runar; Roalkvam, Irene; Steen, Ida H.

    2014-01-01

    Energy conservation via the pathway of dissimilatory sulfate reduction is present in a diverse group of prokaryotes, but is most comprehensively studied in Deltaproteobacteria. In this study, whole-genome microarray analyses were used to provide a model of the energy metabolism of the sulfate-reducing archaeon Archaeoglobus fulgidus, based on comparative analysis of litoautotrophic growth with H2/CO2 and thiosulfate, and heterotrophic growth on lactate with sulfate or thiosulfate. Only 72 genes were expressed differentially between the cultures utilizing sulfate or thiosulfate, whereas 269 genes were affected by a shift in energy source. We identified co-located gene cluster encoding putative lactate dehydrogenases (LDHs; lldD, dld, lldEFG), also present in sulfate-reducing bacteria. These enzymes may take part in energy conservation in A. fulgidus by specifically linking lactate oxidation with APS reduction via the Qmo complex. High transcriptional levels of Fqo confirm an important role of F420H2, as well as a menaquinone-mediated electron transport chain, during heterotrophic growth. A putative periplasmic thiosulfate reductase was identified by specific up-regulation. Also, putative genes for transport of sulfate and sulfite are discussed. We present a model for hydrogen metabolism, based on the probable bifurcation reaction of the Mvh:Hdl hydrogenase, which may inhibit the utilization of Fdred for energy conservation. Energy conservation is probably facilitated via menaquinone to multiple membrane-bound heterodisulfide reductase (Hdr) complexes and the DsrC protein—linking periplasmic hydrogenase (Vht) to the cytoplasmic reduction of sulfite. The ambiguous roles of genes corresponding to fatty acid metabolism induced during growth with H2 are discussed. Putative co-assimilation of organic acids is favored over a homologous secondary carbon fixation pathway, although both mechanisms may contribute to conserve the amount of Fdred needed during autotrophic growth with H2. PMID:24672515

  9. Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane.

    PubMed

    Basen, Mirko; Krüger, Martin; Milucka, Jana; Kuever, Jan; Kahnt, Jörg; Grundmann, Olav; Meyerdierks, Anke; Widdel, Friedrich; Shima, Seigo

    2011-05-01

    Anaerobic oxidation of methane (AOM) with sulfate is catalysed by microbial consortia of archaea and bacteria affiliating with methanogens and sulfate-reducing Deltaproteobacteria respectively. There is evidence that methane oxidation is catalysed by enzymes related to those in methanogenesis, but the enzymes for sulfate reduction coupled to AOM have not been examined. We collected microbial mats with high AOM activity from a methane seep in the Black Sea. The mats consisted mainly of archaea of the ANME-2 group and bacteria of the Desulfosarcina-Desulfococcus group. Cell-free mat extract contained activities of enzymes involved in sulfate reduction to sulfide: ATP sulfurylase (adenylyl : sulfate transferase; Sat), APS reductase (Apr) and dissimilatory sulfite reductase (Dsr). We partially purified the enzymes by anion-exchange chromatography. The amounts obtained indicated that the enzymes are abundant in the mat, with Sat accounting for 2% of the soluble mat protein. N-terminal amino acid sequences of purified proteins suggested similarities to the corresponding enzymes of known species of sulfate-reducing bacteria. The deduced amino acid sequence of PCR-amplified genes of the Apr subunits is similar to that of Apr of the Desulfosarcina/Desulfococcus group. These results indicate that the major enzymes involved in sulfate reduction in the Back Sea microbial mats are of bacterial origin, most likely originating from the bacterial partner in the consortium. PMID:21392199

  10. Spore-Forming Thermophilic Sulfate-Reducing Bacteria Isolated from North Sea Oil Field Waters

    PubMed Central

    Rosnes, Jan Thomas; Torsvik, Terje; Lien, Torleiv

    1991-01-01

    Thermophilic sulfate-reducing bacteria were isolated from oil field waters from oil production platforms in the Norwegian sector of the North Sea. Spore-forming rods dominated in the enrichments when lactate, propionate, butyrate, or a mixture of aliphatic fatty acids (C4 through C6) was added as a carbon source and electron donor. Representative strains were isolated and characterized. The isolates grew autotrophically on H2-CO2 and heterotrophically on fatty acids such as formate, propionate, butyrate, caproate, valerate, pyruvate, and lactate and on alcohols such as methanol, ethanol, and propanol. Sulfate, sulfite, and thiosulfate but not nitrate could be used as an electron acceptor. The temperature range for growth was 43 to 78°C; the spores were extremely heat resistant and survived 131°C for 20 min. The optimum pH was 7.0. The isolates grew well in salt concentrations ranging from 0 to 800 mmol of NaCl per liter. Sulfite reductase P582 was present, but cytochrome c and desulfoviridin were not found. Electron micrographs revealed a gram-positive cell organization. The isolates were classified as a Desulfotomaculum sp. on the basis of spore formation, general physiological characteristics, and submicroscopic organization. To detect thermophilic spore-forming sulfate-reducing bacteria in oil field water, polyvalent antisera raised against antigens from two isolates were used. These bacteria were shown to be widespread in oil field water from different platforms. The origin of thermophilic sulfate-reducing bacteria in the pore water of oil reservoirs is discussed. Images PMID:16348538

  11. Wnts, Signaling and Sulfates

    NSDL National Science Digital Library

    Seth S. Blair (University of Wisconsin; Department of Zoology REV)

    2001-09-25

    Questions remain about the signaling pathways that control pattern formation during development. Blair describes how sulfated glycosaminoglycans affect several developmentally important signaling pathways, including Wnt-Wingless, Fibroblast growth factor, Hedgehog, and Bone morphogenetic protein-4 signaling. A new secreted sulfatase, Qsulf1, regulates the sensitivity of vertebrate cells to Wnts, possibly by modifying the sulfation of glycosaminoglycans.

  12. Promotion of Ni2+ removal by masking toxicity to sulfate-reducing bacteria: addition of citrate.

    PubMed

    Qian, Junwei; Zhu, Xiaoyu; Tao, Yong; Zhou, Yan; He, Xiaohong; Li, Daping

    2015-01-01

    The sulfate-reducing bioprocess is a promising technology for the treatment of heavy metal-containing wastewater. This work was conducted to investigate the possibility of promoting heavy metal removal by the addition of citrate to mask Ni2+ toxicity to sulfate-reducing bacteria (SRB) in batch reactors. SRB growth was completely inhibited in Ni2+-containing medium (1 mM) when lactate served as the sole carbon resource, leading to no sulfate reduction and Ni2+ removal. However, after the addition of citrate, SRB grew well, and sulfate was quickly reduced to sulfide. Simultaneously, the Ni-citrate complex was biodegraded to Ni2+ and acetate. The NiS precipitate was then formed, and Ni2+ was completely removed from the solution. It was suggested that the addition of citrate greatly alleviates Ni2+ toxicity to SRB and improves the removal of Ni2+, which was confirmed by quantitative real-time PCR targeting dissimilatory sulfite reductase (dsrAB) genes. Analysis of the carbon metabolism indicated that lactate instead of acetate served as the electron donor for sulfate reduction. This study offers a potential approach to increase the removal of heavy metals from wastewater in the single stage SRB-based bioprocess. PMID:25860948

  13. Sulfur X-Ray Absorption And Vibrational Spectroscopic Study of Sulfur Dioxide, Sulfite, And Sulfonate Solutions And of the Substituted Sulfonate Ions X(3)CSO(3-)(X = H, Cl, F)

    SciTech Connect

    Risberg, E.Damian; Eriksson, L.; Mink, J.; Pettersson, L.G.M.; Skripkin, M.Yu.; Sandstrom, M.

    2009-06-02

    Sulfur K-edge X-ray absorption near-edge structure (XANES) spectra have been recorded and the S(1s) electron excitations evaluated by means of density functional theory-transition potential (DFT-TP) calculations to provide insight into the coordination, bonding, and electronic structure. The XANES spectra for the various species in sulfur dioxide and aqueous sodium sulfite solutions show considerable differences at different pH values in the environmentally important sulfite(IV) system. In strongly acidic (pH < {approx}1) aqueous sulfite solution the XANES spectra confirm that the hydrated sulfur dioxide molecule, SO{sub 2}(aq), dominates. The theoretical spectra are consistent with an OSO angle of {approx}119{sup o} in gas phase and acetonitrile solution, while in aqueous solution hydrogen bonding reduces the angle to {approx}116{sup o}. The hydration affects the XANES spectra also for the sulfite ion, SO{sub 3}{sup 2-}. At intermediate pH (4) the two coordination isomers, the sulfonate (HSO{sub 3{sup -}}) and hydrogen sulfite (SO{sub 3}H{sup -}) ions with the hydrogen atom coordinated to sulfur and oxygen, respectively, could be distinguished with the ratio HSO{sub 3{sup -}}:SO{sub 3}H{sup -} about 0.28:0.72 at 298 K. The relative amount of HSO{sub 3{sup -}} increased with increasing temperature in the investigated range from 275 to 343 K. XANES spectra of sulfonate, methanesulfonate, trichloromethanesulfonate, and trifluoromethanesulfonate compounds, all with closely similar S-O bond distances in tetrahedral configuration around the sulfur atom, were interpreted by DFT-TP computations. The energy of their main electronic transition from the sulfur K-shell is about 2478 eV. The additional absorption features are similar when a hydrogen atom or an electron-donating methyl group is bonded to the -SO{sub 3} group. Significant changes occur for the electronegative trichloromethyl (Cl{sub 3}C-) and trifluoromethyl (F{sub 3}C-) groups, which strongly affect the distribution especially of the {pi} electrons around the sulfur atom. The S-D bond distance 1.38(2) {angstrom} was obtained for the deuterated sulfonate (DSO{sub 3{sup -}}) ion by Rietveld analysis of neutron powder diffraction data of CsDSO{sub 3}. Raman and infrared absorption spectra of the CsHSO{sub 3}, CsDSO{sub 3}, H{sub 3}CSO{sub 3}Na, and Cl{sub 3}CSO{sub 3}Na{center_dot}H{sub 2}O compounds and Raman spectra of the sulfite solutions have been interpreted by normal coordinate calculations. The C-S stretching force constant for the trichloromethanesulfonate ion obtains an anomalously low value due to steric repulsion between the Cl{sub 3}C- and -SO{sub 3} groups. The S-O stretching force constants were correlated with corresponding S-O bond distances for several oxosulfur species.

  14. Multicopy Fzf1 (Sul1) Suppresses the Sulfite Sensitivity but Not the Glucose Derepression or Aberrant Cell Morphology of a Grr1 Mutant of Saccharomyces Cerevisiae

    PubMed Central

    Avram, D.; Bakalinsky, A. T.

    1996-01-01

    An ssu2 mutation in Sacccharomyces cerevisiae, previously shown to cause sulfite sensitivity, was found to be allelic to GRR1, a gene previously implicated in glucose repression. The suppressor rgt1, which suppresses the growth defects of grr1 strains on glucose, did not fully suppress the sensitivity on glucose or nonglucose carbon sources, indicating that it is not strictly linked to a defect in glucose metabolism. Because the Cln1 protein was previously shown to be elevated in grr1 mutants, the effect of CLN1 overexpression on sulfite sensitivity was investigated. Overexpression in GRR1 cells resulted in sulfite sensitivity, suggesting a connection between CLN1 and sulfite metabolism. Multicopy FZF1, a putative transcription factor, was found to suppress the sulfite sensitive phenotype of grr1 strains, but not the glucose derepression or aberrant cell morphology. Multicopy FZF1 was also found to suppress the sensitivity of a number of other unrelated sulfite-sensitive mutants, but not that of ssu1 or met20, implying that FZF1 may act through Ssu1p and Met20p. Disruption of FZF1 resulted in sulfite sensitivity when the construct was introduced in single copy at the FZF1 locus in a GRR1 strain, providing evidence that FZF1 is involved in sulfite metabolism. PMID:8889516

  15. Dalteparin sodium.

    PubMed

    Pineo, G F; Hull, R D

    2001-08-01

    Dalteparin sodium (Fragmin, Pharmacia Corporation) is a low molecular weight heparin (LMWH) with a mean molecular weight of approximately 5000 Da. As with the other LMWHs, dalteparin sodium has certain advantages over unfractionated heparin (UFH), most important of which are improved bio-availability by sc. injection, a prolonged antithrombotic activity which is highly correlated with body weight permitting the o.d. administration of the drug. Dalteparin sodium has been subjected to a large number of well-designed randomised clinical trials for the prevention and treatment of thrombotic disorders. Based on data from the randomised clinical trials, dalteparin sodium has been approved internationally for a wide spectrum of clinical indications (e.g., prevention of thromboembolic events after surgery). Dalteparin sodium has also been studied in randomised controlled trials in the maintenance of graft patentcy following peripheral vascular surgery, in place of warfarin for the long-term treatment of patients presenting with deep vein thrombosis (DVT), in the prevention of upper extremity thrombosis in patients with indwelling portacath devices and in pregnant patients with a history of previous venous thromboembolism with or without thrombophilia. Dalteparin sodium has been compared with heparin for the prevention of thrombotic complications during haemodyalisis and haemofiltration. These studies have shown promising results but further work is required before dalteparin sodium can be recommended for these indications. PMID:11585001

  16. Isolation and characterization by immunofluorescence, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, western blot, restriction fragment length polymorphism-PCR, 16S rRNA gene sequencing, and pulsed-field gel electrophoresis of Rochalimaea quintana from a patient with bacillary angiomatosis.

    PubMed Central

    Maurin, M; Roux, V; Stein, A; Ferrier, F; Viraben, R; Raoult, D

    1994-01-01

    Rochalimaea quintana was isolated from the blood of a French human immunodeficiency virus-infected patient with bacillary angiomatosis. The isolate showed the typical growth characteristics of Rochalimaea species and was inert when typical biochemical testing was used. The purpose of the present work was to characterize and compare this new isolate with reference strains of R. quintana, Rochalimaea vinsonii, and Rochalimaea henselae by using immunofluorescence, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blot (immunoblot), restriction fragment length polymorphism-PCR of the citrate synthase gene, 16S rRNA gene sequencing, and pulsed-field gel electrophoresis. SDS-PAGE, Western blot, restriction fragment length polymorphism-PCR with TaqI enzyme, and 16S rRNA gene sequencing could differentiate the three Rochalimaea species and allowed characterization of the French isolate as R. quintana. However, identification of the Rochalimaea isolate to the species level was more easily obtained by immunofluorescence with specific murine antisera. Pulsed-field gel electrophoresis allowed differentiation of the French R. quintana isolate from R. quintana Fuller and may serve as an epidemiological tool. Images PMID:7519628

  17. Sodium-calcium ion exchange in the weathering of shales: Implications for global weathering budgets

    Microsoft Academic Search

    T. E. Cerling; B. L. Pederson; K. L. Von Damm

    1989-01-01

    Unpolluted rivers and streams that drain marine shales show an excess of sodium compared to chloride and a deficiency of calcium and magnesium compared to sulfate and alkalinity. This is due in part to cation exchange of sodium for divalent cations on clay minerals. Consideration of the global weathering budget suggest that up to 34% of the sodium in the

  18. The chemistry of sodium chloride involvement in processes related to hot corrosion. [in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1979-01-01

    Thermodynamic and mass transport calculations, and laboratory experiments elucidating the behavior of sodium chloride in combustion environments, in the deposition process, and in reactions with certain oxides on the surfaces of superalloys are summarized. It was found that some of the ingested salt is separated out of the air stream by the compressor. However, sodium chloride does pass from the compressor to the combustor where numerous chemical reactions take place. Here some of the salt is vaporized to yield gaseous sodium chloride molecules. Hydrogen and oxygen atoms present in the combustion products react with some sodium chloride to yield other gaseous species such as sodium, and a fraction of the salt remains as particulates. Both the gas phase and condensed sodium chloride can lead to sodium sulfate formation by various routes, all of which involve reaction with sulfur oxides and oxygen. In addition to contributing to the formation of sodium sulfate, the sodium chloride can contribute to corrosion directly.

  19. Improved Loading of Sulfate-Limited Waste in Glass

    SciTech Connect

    Aloy, A. S.; Soshnikov, R. A.; Trofimenko, A. V.; Vienna, John D.; Elliott, Michael L.; Holtzscheiter, Earl W.

    2006-02-28

    The loading of many wastes in borosilicate glass are limited by the allowable sulfate concentration (e.g., Hanford low-activity waste [LAW] and Idaho National Laboratory [INL] sodium-bearing waste [SBW]). By the Hanford baseline formulation method, the tolerated amount of sulfate in LAW is 0.77 wt% (as SO3) at the lowest soda contents, decreasing to 0.35 wt% at the highest soda contents. Roughly half of the Hanford LAW (on a glass mass basis) will be limited by sulfate tolerance of the glass melt. If the allowable concentrations of sulfate were to be increased only moderately, the cost and time required to vitrify the Hanford LAW would be significantly reduced.

  20. Hydrazine Sulfate (PDQ®)

    Cancer.gov

    Expert-reviewed information summary about the use of hydrazine sulfate as a treatment for people with cancer. Note: The information in this summary is no longer being updated and is provided for reference purposes only.

  1. Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process.

    PubMed

    Li, Xuchun; Fang, Jingyun; Liu, Guifang; Zhang, Shujuan; Pan, Bingcai; Ma, Jun

    2014-10-01

    Hydrated electron (e(aq)(-)), which is listed among the most reactive reducing species, has great potential for removal and detoxification of recalcitrant contaminants. Here we provided quantitative insight into the availability and conversion of e(aq)(-) in a newly developed sulfite/UV process. Using monochloroacetic acid as a simple e(aq)(-)-probe, the e(aq)(-)-induced dehalogenation kinetics in synthetic and surface water was well predicted by the developed models. The models interpreted the complex roles of pH and S(IV), and also revealed the positive effects of UV intensity and temperature quantitatively. Impacts of humic acid, ferrous ion, carbonate/bicarbonate, and surface water matrix were also examined. Despite the retardation of dehalogenation by electron scavengers, the process was effective even in surface water. Efficiency of the process was discussed, and the optimization approaches were proposed. This study is believed to better understand the e(aq)(-)-induced dehalogenation by the sulfite/UV process in a quantitative manner, which is very important for its potential application in water treatment. PMID:24956604

  2. Concentration of simple aldehydes by sulfite-containing double-layer hydroxide minerals: implications for biopoesis

    NASA Technical Reports Server (NTRS)

    Pitsch, S.; Krishnamurthy, R.; Arrhenius, G.; Bada, J. L. (Principal Investigator)

    2000-01-01

    Environmental conditions play an important role in conceptual studies of prebiotically relevant chemical reactions that could have led to functional biomolecules. The necessary source compounds are likely to have been present in dilute solution, raising the question of how to achieve selective concentration and to reach activation. With the assumption of an initial 'RNA World', the questions of production, concentration, and interaction of aldehydes and aldehyde phosphates, potential precursors of sugar phosphates, come into the foreground. As a possible concentration process for simple, uncharged aldehydes, we investigated their adduct formation with sulfite ion bound in the interlayer of positively charged expanding-sheet-structure double-layer hydroxide minerals. Minerals of this type, initially with chloride as interlayer counter anion, have previously been shown to induce concentration and subsequent aldolization of aldehyde phosphates to form tetrose, pentose, and hexose phosphates. The reversible uptake of the simple aldehydes formaldehyde, glycolaldehyde, and glyceraldehyde by adduct formation with the immobilized sulfite ions is characterized by equilibrium constants of K=1.5, 9, and 11, respectively. This translates into an observable uptake at concentrations exceeding 50 mM.

  3. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions. PMID:25228086

  4. EFFECT OF STEEPING WITH SULFITE SALTS AND ADJUNCT ACIDS ON CORN WET-MILLING YIELDS AND STARCH PROPERTIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two corn hybrids (3394 and 33R87) were steeped with three sulfite salts and five acids to test the effect of sulfur dioxide (SO2)source and acid sources on wet-milling yields and starch properties. Milling yields from each treatment were compared with a control sample that was steeped with 2,000 pp...

  5. Determination of added sulfites in dried garlic with a modified version of the optimized Monier-Williams method.

    PubMed

    Lafeuille, Jean-Louis; Lefevre, Stephane; Achouri, Djamila

    2007-01-01

    The optimized Monier-Williams method is slightly modified so that it could be applied for determining sulfite content in dried garlic. Dried garlic sample is directly acidified in a reactor at a pH below 3. At this pH level, the alliinase enzyme activity is irreversibly blocked, and the sulfur-containing amino acids such as alliin (the most abundant) present in dried garlic cannot be transformed into corresponding thiosulfinates such as allicin, which is absent in dried garlic. This prevents allicin from reacting with added sulfites and being probably converted to S-allyl thiosulfate, which is not volatile and has no taste. It is found that at a pH below 2.4 and at boiling water temperature, allicin produces sulfur dioxide in adequate quantity to explain the false-positive results when utilizing the optimized Monier-Williams method with allicin suppression for unsulfited dried garlic samples. Finally, when garlic samples are stabilized in a phosphoric acid buffer at a final pH around 2.4, no sulfite is produced during the Monier-Williams distillation, which is further proof there are no naturally occurring sulfites in unsulfited dried garlic under these mild conditions. PMID:17760347

  6. Role for Ferredoxin:NAD(P)H Oxidoreductase (FprA) in Sulfate Assimilation and Siderophore Biosynthesis in Pseudomonads

    PubMed Central

    Glassing, Angela; Harper, Justin; Franklin, Michael J.

    2013-01-01

    Pyridine-2,6-bis(thiocarboxylate) (PDTC), produced by certain pseudomonads, is a sulfur-containing siderophore that binds iron, as well as a wide range of transition metals, and it affects the net hydrolysis of the environmental contaminant carbon tetrachloride. The pathway of PDTC biosynthesis has not been defined. Here, we performed a transposon screen of Pseudomonas putida DSM 3601 to identify genes necessary for PDTC production (Pdt phenotype). Transposon insertions within genes for sulfate assimilation (cysD, cysNC, and cysG [cobA2]) dominated the collection of Pdt mutations. In addition, two insertions were within the gene for the LysR-type transcriptional activator FinR (PP1637). Phenotypic characterization indicated that finR mutants were cysteine bradytrophs. The Pdt phenotype of finR mutants could be complemented by the known target of FinR regulation, fprA (encoding ferredoxin:NADP+ oxidoreductase), or by Escherichia coli cysJI (encoding sulfite reductase). These data indicate that fprA is necessary for effective sulfate assimilation by P. putida and that the effect of finR mutation on PDTC production was due to deficient expression of fprA and sulfite reduction. fprA expression in both P. putida and P. aeruginosa was found to be regulated by FinR, but in a manner dependent upon reduced sulfur sources, implicating FinR in sulfur regulatory physiology. The genes and phenotypes identified in this study indicated a strong dependence upon intracellular reduced sulfur/cysteine for PDTC biosynthesis and that pseudomonads utilize sulfite reduction enzymology distinct from that of E. coli and possibly similar to that of chloroplasts and other proteobacteria. PMID:23794620

  7. Integrated approach for investigating the durability of self-consolidating concrete to sulfate attack

    NASA Astrophysics Data System (ADS)

    Bassuoni, Mohamed Tamer F.

    The growing use of self-consolidating concrete (SCC) in various infrastructure applications exposed to sulfate-rich environments necessitates conducting comprehensive research to evaluate its durability to external sulfate attack. Since the reliability and adequacy of standard sulfate immersion tests have been questioned, the current thesis introduced an integrated testing approach for assessing the durability of a wide scope of SCC mixtures to external sulfate attack. This testing approach involved progressive levels of complexity from single to multiple damage processes. A new series of sulfate attack tests involving multiple field-like parameters and combined damage mechanisms (various cations, controlled pH, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading) were designed to evaluate the performance (suitability) of the SCC mixtures under various sulfate attack exposure scenarios. The main mixture design variables of SCC included the type of binder (single, binary, ternary and quaternary), air-entrainment, sand-to-aggregate mass ratio and hybrid fibre reinforcement. The comprehensive database and knowledge obtained from this research were used to develop smart models (fuzzy and neuro-fuzzy inference systems) based on artificial-intelligence to evaluate and predict the performance of the SCC mixtures under various sulfate attack exposure regimes implemented in this study. In full immersion tests involving high concentration sodium and magnesium sulfate solutions with controlled pH, the low penetrability of SCC was responsible for the high durability of specimens. Ternary and quaternary cementitious systems with or without limestone materials provided a passivating layer, with or without acid neutralization capacity, which protected SCC from severe damage in the aggressive sulfuric acid and ammonium sulfate solutions. In contrast to conclusions drawn from the sodium sulfate immersion tests, the combined sulfate attack tests captured performance risks and complex damage mechanisms associated with the SCC pore structure and constituent materials. Sodium sulfate attack with wetting-drying cycles and/or partial immersion under temperate-hot conditions synergistically caused significant damage to specimens, especially to quaternary cementitious systems having very fine pore structure, due to the build-up of salt crystals and sulfate reaction products. The deleterious effects of sulfate reaction products and salt crystallization on all cementitious systems were more severe under the combined sodium sulfate and freezing-thawing exposure, with a potential of sudden brittle failure. Laboratory experiments in the current work documented evidence for the occurrence of thaumasite sulfate attack (TSA) in cementitious systems containing limestone filler, not only under cold but also under temperate-hot conditions, which made specimens more vulnerable to damage in the combined sulfate attack tests. The field-like combined exposure of sodium sulfate, cyclic environments and flexural loading had synergistic effects on SCC specimens and caused the coexistence of multiple-complex degradation mechanisms (sulfate attack, TSA, stress-corrosion, salt crystallization, surface scaling and corrosion of surface steel fibres) depending on the mixture design variables. The current thesis demonstrates that relying only on sulfate immersion tests to evaluate the performance of cement-based materials can be risky. It also shows that linear and deterministic modeling of the performance of concrete structures under external sulfate attack is unrealistic. Fuzzy and adaptive-neuro fuzzy inference systems developed in the current thesis accurately and rationally predicted the serviceability, deterioration in engineering properties and time to failure of the SCC mixtures under the various sulfate attack exposure regimes adopted in the integrated testing approach. A durability evaluation factor from multiple performance criteria was created for the ammonium sulfate exposure. Enviro

  8. Human keratinocytes contain keratin filaments that are glycosylated with keratan sulfate.

    PubMed

    Schafer, I A; Sorrell, J M

    1993-08-01

    We have reported strong intracytoplasmic immunoreactivity for anti-keratan sulfate monoclonal antibodies in human keratinocytes. Consequently, ultrastructural immunogold studies were undertaken to identify the cytoplasmic components responsible for this immunoreactivity. Immunogold labeling of cultured keratinocytes identified keratin filaments as a source of keratan sulfate epitopes. Immunolabeling also marked desmosomal cytoplasmic plaques and amorphous electron-dense bodies. These observations were confirmed for epidermal keratinocytes of human skin. Further evidence was obtained that some keratins have epitopes for anti-keratan sulfate antibodies by Western blot analyses following fractionation of proteins by sodium dodecyl sulfate gel electrophoresis. Four bands were detected with apparent molecular weights of 58, 54, 50, and 48 kDa that reacted with anti-keratin monoclonal antibody mixture AE1/AE3. Keratins of 58 and 56 kDa immunoreacted with anti-keratan sulfate antibody 8C2 while all four keratins immunoreacted with anti-keratan sulfate antibody 5D4. Endo-beta-D-galactosidase and keratanase, enzymes that degrade keratan sulfate, removed all, or a portion, of specific keratan sulfate epitopes from keratin extracts. These results demonstrate that a portion of the cytoplasmic anti-keratan sulfate immunoreactivity is due to keratins that are glycosylated with carbohydrates that contain keratan sulfate epitopes or that keratan sulfate-containing molecules bind or comigrate in SDS-polyacrylamide gels with cytokeratins. PMID:7688312

  9. Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes-PDDA-gold nanoparticles.

    PubMed

    Amatatongchai, Maliwan; Sroysee, Wongduan; Chairam, Sanoe; Nacapricha, Duangjai

    2015-02-01

    A new approach is presented for sensitive and selective measurement of sulfite (SO3(2-)) in beverages based on a simple flow injection system with amperometric detection. In this work, the sulfite sensor was a glassy carbon electrode modified with multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-gold nanoparticles composites (CNTs-PDDA-AuNPs/GC). Electrochemical oxidation of sulfite with this electrode was first studied in 0.1M phosphate buffer (pH 7.0) using cyclic voltammetry. The results indicated that the CNTs-PDDA-AuNPs/GC electrode possesses electrocatalytic activity for the oxidation of sulfite with high sensitivity and selectivity. Sulfite was quantified using amperometric measurement with the new sensor at +0.4V vs Ag/AgCl in conjunction with flow injection. The linear working range for the quantitation of sulfite was 2-200 mg L(-1) (r(2)=0.998) with a detection limit of 0.03 mg L(-1) (3? of blank) and an estimated precision of 1.5%.The proposed method was successfully applied to the determination of sulfite in fruit juices and wines with a sample throughput of 23 samples per hour. PMID:25435239

  10. Vitamin C-sulfate inhibits mineralization in chondrocyte cultures: a caveat

    NASA Technical Reports Server (NTRS)

    Boskey, A. L.; Blank, R. D.; Doty, S. B.

    2001-01-01

    Differentiating chick limb-bud mesenchymal cell micro-mass cultures routinely mineralize in the presence of 10% fetal calf serum, antibiotics, 4 mM inorganic phosphate (or 2.5 mM beta-glycerophosphate), 0.3 mg/ml glutamine and either 25 microg/ml vitamin C or 5-12 microg/ml vitamin C-sulfate. The failure of these cultures to produce a mineralized matrix (assessed by electron microscopy, 45Ca uptake and Fourier transform infrared microscopy) led to the evaluation of each of these additives. We report here that the "stable" vitamin C-sulfate (ascorbic acid-2-sulfate) causes increased sulfate incorporation into the cartilage matrix. Furthermore, the release of sulfate from the vitamin C derivative appears to be responsible for the inhibition of mineral deposition, as demonstrated in cultures with equimolar amounts of vitamin C and sodium sulfate.

  11. Pilot-scale tests of poly ferric sulfate synthesized using SO 2 at Des Moines Water Works

    Microsoft Academic Search

    Aron D. Butler; Maohong Fan; Robert C. Brown; Shihwu Sung; Barbara Duff

    2005-01-01

    Poly ferric sulfate (PFS) was synthesized by absorbing a dilute sulfur dioxide gas stream into a bench-scale reactor containing a stirred solution of ferrous sulfate, with sodium chlorate added as an oxidant. The reaction product was a solution containing approximately 50wt.% PFS, a highly effective coagulant used in water treatment. The reaction took place near atmospheric pressure and at temperatures

  12. Normal sulfation levels regulate spinal cord neural precursor cell proliferation and differentiation

    PubMed Central

    2012-01-01

    Background Sulfated glycosaminoglycan chains are known for their regulatory functions during neural development and regeneration. However, it is still unknown whether the sulfate residues alone influence, for example, neural precursor cell behavior or whether they act in concert with the sugar backbone. Here, we provide evidence that the unique 473HD-epitope, a representative chondroitin sulfate, is expressed by spinal cord neural precursor cells in vivo and in vitro, suggesting a potential function of sulfated glycosaminoglycans for spinal cord development. Results Thus, we applied the widely used sulfation inhibitor sodium chlorate to analyze the importance of normal sulfation levels for spinal cord neural precursor cell biology in vitro. Addition of sodium chlorate to spinal cord neural precursor cell cultures affected cell cycle progression accompanied by changed extracellular signal-regulated kinase 1 or 2 activation levels. This resulted in a higher percentage of neurons already under proliferative conditions. In contrast, the relative number of glial cells was largely unaffected. Strikingly, both morphological and electrophysiological characterization of neural precursor cell-derived neurons demonstrated an attenuated neuronal maturation in the presence of sodium chlorate, including a disturbed neuronal polarization. Conclusions In summary, our data suggest that sulfation is an important regulator of both neural precursor cell proliferation and maturation of the neural precursor cell progeny in the developing mouse spinal cord. PMID:22681904

  13. Mimic of superoxide dismutase activity protects Chlorella sorokiniana against the toxicity of sulfite

    SciTech Connect

    Rabinowitch, H.D.; Rosen, G.M.; Fridovich, I.

    1989-01-01

    The spin-trapping agent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) has been used to demonstrate the light-dependent production of O/sub 2/- by Chlorella sorokiniana. In the presence of SO/sub 3/= a light-dependent production of the sulfur trioxy anion radical (SO/sub 3/-.) could also be seen. A complex prepared by reacting desferrioxamine with MnO/sub 2/, which catalyzes the dismutation of O/sub 2/-, protected the alga against the toxicity of sulfite. The data suggest that SO/sub 2/ toxicity is at least partially due to the effects of sulfoxy-free radicals generated by the oxidation of SO3= by O/sub 2/-.

  14. Single-cell protein production from spent sulfite liquor utilizing cell-recycle and computer monitoring

    SciTech Connect

    Gold, D.; Mohagheghi, A.; Cooney, C.L.; Wang, D.I.C.

    1981-01-01

    To reduce the BOD of spent sulfite liquor before disposal, torula yeast (Candida utilis) is produced by a continuous culture process, the productivity of which is limited by sugar concentration and cell growth rate. To increase productivity, a recycle system has been designed and tested. Cells were sedimented continuously with a flocculating agent (bentonite) before being recycled to the fermentor. A bentonite concentration of 0.02 g/g cell was required. A computer monitoring system based on material balancing techniques was developed to monitor and control the recycle system. With this computer system, productivity was raised to 6.1 g/L-h, with cell concentrations of less than or equal to 65 g/L in the recycle stream and 24 g/L in the fermentor. This represents a productivity increase of 150% over continuous culture with no recycle.

  15. Sulfate could mediate the therapeutic effect of glucosamine sulfate

    Microsoft Academic Search

    L. John Hoffer; Ludmila N. Kaplan; Mazen J. Hamadeh; Ariadna C. Grigoriu; Murray Baron

    2001-01-01

    Glucosamine sulfate is a controversial osteoarthritis remedy that is presumed to stimulate articular cartilage glycosaminoglycan synthesis by increasing glucosamine concentrations in the joint space. However, this is not plausible because even large oral doses of the product have no effect on serum glucosamine concentrations. We propose instead that sulfate could mediate the clinical benefit attributed to this treatment. Sulfate is

  16. Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes.

    PubMed

    So, C M; Young, L Y

    1999-07-01

    An alkane-degrading, sulfate-reducing bacterial strain, AK-01, was isolated from an estuarine sediment with a history of chronic petroleum contamination. The bacterium is a short, nonmotile, non-spore-forming, gram-negative rod. It is mesophilic and grows optimally at pH 6.9 to 7.0 and at an NaCl concentration of 1%. Formate, fatty acids (C4 to C16) and hydrogen were readily utilized as electron donors. Sulfate, sulfite, and thiosulfate were used as electron acceptors, but sulfur, nitrite, and nitrate were not. Phenotypic characterization and phylogenetic analysis based on 16S rRNA gene sequence indicate that AK-01 is most closely related to the genera Desulfosarcina, Desulfonema, and Desulfococcus in the delta subdivision of the class Proteobacteria. It is phenotypically and phylogenetically different from strains Hxd3 and TD3, two previously reported isolates of alkane-degrading, sulfate-reducing bacteria. The alkanes tested to support growth of AK-01 had chain lengths of C13 to C18. 1-Alkenes (C15 and C16) and 1-alkanols (C15 and C16) also supported growth. The doubling time for growth on hexadecane was 3 days, about four times longer than that for growth on hexadecanoate. Mineralization of hexadecane was indicated by the recovery of 14CO2 from cultures grown on [1-14C]hexadecane. Degradation of hexadecane was dependent on sulfate reduction. The stoichiometric ratio (as moles of sulfate reduced per mole of hexadecane degraded) was 10.6, which is very close to the theoretical ratio of 12.25, assuming a complete oxidation to CO2. Anaerobic alkane degradation by sulfate reducers may be a more widespread phenomenon than was previously thought. PMID:10388691

  17. Pattern formation in the ferrocyanide-iodate-sulfite reaction: The control of space scale separation

    NASA Astrophysics Data System (ADS)

    Szalai, István; De Kepper, Patrick

    2008-06-01

    We revisit the conditions for the development of reaction-diffusion patterns in the ferrocyanide-iodate-sulfite bistable and oscillatory reaction. This hydrogen ion autoactivated reaction is the only example known to produce sustained stationary lamellar patterns and a wealth of other spatio-temporal phenomena including self-replication and localized oscillatory domain of spots, due to repulsive front interactions and to a parity-breaking front bifurcation (nonequilibrium Ising-Bloch bifurcation). We show experimentally that the space scale separation necessary for the observation of stationary patterns is mediated by the presence of low mobility weak acid functional groups. The presence of such groups was overlooked in the original observations made with hydrolyzable polyacrylamide gels. This missing information made the original observations difficult to reproduce and frustrated further experimental exploitation of the fantastic potentialities of this system. Using one-side-fed spatial reactors filled with agarose gel, we can reproduce all the previous pattern observations, in particular the stationary labyrinthine patterns, by introducing, above a critical concentration, well controlled amounts of polyacrylate chains in the gel network. We use two different geometries of spatial reactors (annular and disk shapes) to provide complementary information on the actual three-dimensional character of spatial patterns. We also reinvestigate the role of other feed parameters and show that the system exhibits both a domain of spatial bistability and of large-amplitude pH oscillations associated in a typical cross-shape diagram. The experimental method presented here can be adapted to produce patterns in the large number of oscillatory and bistable reactions, since the iodate-sulfite-ferrocynide reaction is a prototype of these systems.

  18. Investigation into the role of sodium chloride deposited on oxide and metal substrates in the initiation of hot corrosion

    NASA Technical Reports Server (NTRS)

    Birks, N.

    1983-01-01

    Sodium chloride is deposited on the surface of alumina substrates and exposed to air containing 1% SO2 at temperatures between 500 C and 700 C. In all cases the sodium chloride was converted to sodium sulfate. The volatilization of sodium chloride from the original salt particles was responsible for the development of a uniform coating of sodium sulfate on the alumina substrate. At temperatures above 625 C, a liquid NaCl-Na2SO4 autectic was formed on the substrate. The mechanisms for these reactions are given. One of the main roles of NaCl in low temperature hot corrosion lies in enabling a corrosive liquid to form.

  19. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  20. Porcine epidemic diarrhea virus uses cell-surface heparan sulfate as an attachment factor.

    PubMed

    Huan, Chang-Chao; Wang, Yue; Ni, Bo; Wang, Rui; Huang, Li; Ren, Xiao-Feng; Tong, Guang-Zhi; Ding, Chan; Fan, Hong-Jie; Mao, Xiang

    2015-07-01

    It is well known that many viruses use heparan sulfate as the initial attachment factor. In the present study, we determined whether porcine epidemic diarrhea virus (PEDV), an emerging veterinary virus, infects Vero cells by attaching to heparan sulfate. Western blot analysis, real-time PCR, and plaque formation assay revealed that PEDV infection was inhibited when the virus was pretreated with heparin (an analogue of heparan sulfate). There was no inhibitory effect when the cells were pre-incubated with heparin. We next demonstrated that enzymatic removal of the highly sulfated domain of heparan sulfate by heparinase I treatment inhibited PEDV infection. We also confirmed that sodium chlorate, which interferes with heparan sulfate biosynthesis, also inhibited PEDV infection. Furthermore, we examined the effect of two heparin derivatives with different types of sulfation on PEDV infection. The data suggested de-N-sulfated heparin, but not N-acetyl-de-O-sulfated heparin, inhibits PEDV infection. In summary, our studies revealed that heparan sulfate acts as the attachment factor of PEDV in Vero cells. PMID:25896095

  1. CoFe2O4 nanoparticles as oxidase mimic-mediated chemiluminescence of aqueous luminol for sulfite in white wines.

    PubMed

    Zhang, Xiaodan; He, Shaohui; Chen, Zhaohui; Huang, Yuming

    2013-01-30

    Recently, the intrinsic enzyme-like activity of nanoparticles (NPs) has become a growing area of interest. However, the analytical applications of the NP-based enzyme mimetic are mainly concentrated on their peroxidase-like activity; no attempts have been made to investigate the analytical applications based on the oxidase mimic activities of NPs. For the first time, we report that CoFe(2)O(4) NPs were found to possess intrinsic oxidase-like activity and could catalyze luminol oxidation by dissolved oxygen to produce intensified chemiluminescence (CL). The effect of sulfite on CoFe(2)O(4) NP oxidase mimic-mediated CL of aqueous luminol was investigated. It is very interesting that when adding sulfite to the luminol-CoFe(2)O(4) system, the role of sulfite in the luminol-CoFe(2)O(4) NP-sulfite system depends on its concentration. At a relatively low concentration level, sulfite presents an inhibition effect on the luminol-CoFe(2)O(4) NP system. However, it does have an enhancement effect at a higher concentration level. Investigations on the effect of the solution pH and luminol and CoFe(2)O(4) NP concentrations on the kinetic characteristics of the studied CL system in the presence of trace sulfite suggested that the enhancement and inhibition of the luminol-CoFe(2)O(4) NP-sulfite CL system also depended on the solution pH. It seems that the concentrations of luminol and CoFe(2)O(4) NPs did not influence the CL pathway. The possible mechanism of the luminol-CoFe(2)O(4) NP-sulfite CL system was also discussed. On this basis, a flow injection chemiluminescence method was established for the determination of trace sulfite in this study. Under the optimal conditions, the proposed system could respond down to 2.0 × 10(-8) M sulfite. The method has been applied to the determination of trace sulfite in white wine samples with satisfactory results. The results given by the proposed method are in good agreement with those given by the standard titration method. PMID:23289402

  2. Recovery of fission product rare earth sulfates from Purex 1WW

    Microsoft Academic Search

    E. J. Wheelwright; W. H. Swift

    1961-01-01

    Cerium-144 and promethium-147, accompanied by rare earths resulting from fission or decay can be removed from Purex 1WW in >90% yield as an insoluble, crystalline sodium-rare earth double sulfate. Precipitation is initiated by a one-to-three hour equilibration at 90°C and centrifugation at 90°C to take advantage of the lower solubility of the double sulfate salt at a higher temperature. The

  3. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    SciTech Connect

    Sugumaran, G.; Silbert, J.E.

    1988-04-05

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-(14C)glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo(14C)chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo(14C)chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo(14C) chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo(14C)chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo(14C)chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo(14C)chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo(14C)chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent.

  4. Fatty Acid soil detergency performance of poly(sodium ?-hydroxyacrylate)

    Microsoft Academic Search

    Motoko Komaki; Suk Kyung Kim; Toshimasa Hashimoto

    2002-01-01

    Effects and properties of poly(sodium ?-hydroxyacrylate) (PHA) on removal of stearic and oleic acids from cellulosic filter\\u000a paper under various wash conditions were evaluated and compared with those of sodium dodecyl sulfate (SDS) by using differential\\u000a scanning calorimetry. PHA had a much greater effect on the removal of stearic and oleic acids than SDS under the same washing\\u000a conditions. PHA

  5. Partition of sodium dodecyl sulfate into stratum corneum lipid liposomes

    Microsoft Academic Search

    D. T. Downing; W. Abraham; B. K. Wegner; K. W. Willman; J. L. Marshall

    1993-01-01

    Synthetic detergents produce deleterious effects on human skin as the result of being taken up by the stratum corneum (SC). The present study aimed to determine to what extent a typical detergent enters the SC lipid lamellae, and what effect this might have on the physical properties of the lipids. These effects were studied in large unilamellar liposomes prepared from

  6. Sodium sulfate: Vaporization thermodynamics and role in corrosive flames

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.

    1975-01-01

    Gaseous species over liquid Na2SO4 were identified by the technique of molecular beam mass spectrometry. The heat and entropy of vaporization of the Na2SO4 molecule were measured directly. Comparisons of the experimental entropy with values calculated using various molecular parameters were used to estimate the molecular structure and vibrational frequencies. The thermodynamic properties of gaseous and condensed phase Na2SO4, along with additional pertinent species, were used in a computer program to calculate equilibrium flame compositions and temperatures for representative turbine engine and burner rig flames. Compositions were calculated at various fuel-to-oxidant ratios with additions of sulfur to the fuel and the components of sea salt to the intake air. Temperatures for condensation of Na2SO4 were obtained as a function of sulfur and sea salt concentrations.

  7. Effect of a Modified Sulfite Waste Liquor and of Calcium Gluconate on Milk Production[1] and [2

    Microsoft Academic Search

    R. S. Emery; C. K. Smith; T. R. Lewis; June De Hate; L. D. Brown

    1960-01-01

    SUMMARY Milk production was increased by 0.6 to 1.9 lb. per head per day when dairy cows were supplementally fed 0.25 lb. per day of a modified dried sulfite waste liquor from paper pulp manufacture. This 4-mo. field trial included 171 control and 143 treated cows in 12 herds, each of which was divided between the two groups. Gluconic acid,

  8. Evaluation of autoclave oxidation of sulfide concentrates as applied to the subsequent sulfite-thiosulfate leaching of noble metals

    Microsoft Academic Search

    A. S. Gudkov; I. A. Zhuchkov; G. G. Mineev

    2010-01-01

    The results of investigations into the completeness of the sulfite-thiosulfate dissolution of noble metals depending on the\\u000a conditions of the autoclave opening (AO) of flotation concentrates under various leaching conditions (the reagent concentration\\u000a and the influence of various additions) are described. The necessity of carrying out the AO process with the complete maximum\\u000a recovery using cyanidation is shown allowing for

  9. Reduction of the aqueous mercuric ion by sulfite: UV spectrum of HgSOâ and its intramolecular redox reaction

    Microsoft Academic Search

    Lisa Van Loon; Elizabeth Mader; Susannah L. Scott

    2000-01-01

    Aqueous hydrogen sulfite reacts with Hg{sup 2+} to form, in the absence of excess HSOâ⁻, the HgSOâ complex, observed here for the first time. Its UV spectrum is described by ε(234 nm) = (1.57 {+-} 0.05) x 10⁴ M⁻¹ cm⁻¹. HgSOâ decomposes in an intramolecular redox reaction which is kinetically first-order. The rate constant is independent of [Hg{sup 2+}], [HSOâ⁻],

  10. Butylene sulfite as a film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries

    Microsoft Academic Search

    Renjie Chen; Feng Wu; Li Li; Yibiao Guan; Xinping Qiu; Shi Chen; Yuejiao Li; Shengxian Wu

    2007-01-01

    Butylene sulfite (BS) has been synthesized and the BS-based electrolytes containing different lithium salt are evaluated with differential scanning calorimetry (DSC) and alternating current impedance spectroscopy. These electrolytes exhibit high thermal stability and good electrochemical properties. BS has been investigated as a new film-forming additive to propylene carbonate (PC)-based electrolytes for use in lithium ion batteries. Even in small additive

  11. D-Area Sulfate Reduction DIW-1 Organic Application Field Study

    SciTech Connect

    Phifer, M.A.

    2003-01-12

    An acidic/metals/sulfate, groundwater contaminant plume emanates from the diarrhea Coal Pile Runoff Basin (DCPRB) at the Savannah River Site (SRS), due to the contaminated runoff the basin receives from the D-Area coal pile. From a previous feasibility evaluation and laboratory testing, it was concluded that the plume could be remediated with sulfate reduction remediation combined with monitored natural attenuation (MNA). Additionally these previous studies recommended that soybean oil and sodium lactate be utilized as organic substrates for sulfate reducing bacteria (SRB) during a subsequent sulfate reduction, pilot scale, field demonstration. The soybean oil was to be tested as a long-term, slow release, organic substrate, and the sodium lactate was to be tested as a short-term, immediately available, organic substrate. The subsequent sulfate reduction, pilot scale, field demonstration consisted of the following: (1) Approximately 825 gallons of soybean oil was injected into both the south and north wings of the existing D-Area interceptor well. (2) Approximately 227.5 gallons of sodium lactate and 1169 gallons of groundwater from a background well were injected into the south wing only. The groundwater was used to reduce the viscosity of the sodium lactate for injection, to flush the sodium lactate out of the injection point screen zones, and to provide bioaugmentation (i.e. the addition of SRB). Both pre-injection and post-injection monitoring and sampling and analysis were conducted in order to evaluate the impact of organic substrate injection on soluble organic, sulfate, nutrient, microbe, hydrogen sulfide, pH, Eh, and metal concentrations (i.e. the ability to promote sulfate reduction remediation of the plume). Overall it is clear from this field demonstration that both soybean oil and sodium lactate provided a suitable organic substrate to promote SRB growth. The SRB growth promoted by both soybean oil and sodium lactate resulted in sulfate reduction remediation as evidenced by the decrease in sulfate and increase in hydrogen sulfide concentrations, the subsequent increase in pH and decrease in Eh, and finally the subsequent decrease in metal concentrations.

  12. Low-spin sulfite reductases: a new homologous group of non-heme iron-siroheme proteins in anaerobic bacteria.

    PubMed

    Moura, I; Lino, A R; Moura, J J; Xavier, A V; Fauque, G; Peck, H D; LeGall, J

    1986-12-30

    Two new low molecular weight proteins with sulfite reductase activity, isolated from Methanosarcina barkeri (DSM 800) and Desulfuromonas acetoxidans (strain 5071), were studied by EPR and optical spectroscopic techniques. Both proteins have visible spectra similar to that of the low-spin sulfite reductase of Desulfovibrio vulgaris strain Hildenborough and no band at 715 nm, characteristic of high-spin Fe3+ complexes in isobacteriochlorins is observed. EPR shows that as isolated the siroheme is in a low-spin ferric state (S = 1/2) with g-values at 2.40, 2.30 and 1.88 for the Methanosarcina barkeri enzyme and g-values at 2.44, 2.33 and 1.81 for the Desulfuromonas acetoxidans enzyme. Chemical analysis shows that both proteins contain one siroheme and one [Fe4S4] center per polypeptidic chain. These results suggest that the low molecular weight, low-spin non-heme iron siroheme proteins represent a new homologous class of sulfite reductases common to anaerobic microorganisms. PMID:3028382

  13. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin

    NASA Technical Reports Server (NTRS)

    Dhillon, Ashita; Teske, Andreas; Dillon, Jesse; Stahl, David A.; Sogin, Mitchell L.

    2003-01-01

    The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing.

  14. Sulfate-Reducing Microorganisms in Wetlands – Fameless Actors in Carbon Cycling and Climate Change

    PubMed Central

    Pester, Michael; Knorr, Klaus-Holger; Friedrich, Michael W.; Wagner, Michael; Loy, Alexander

    2012-01-01

    Freshwater wetlands are a major source of the greenhouse gas methane but at the same time can function as carbon sink. Their response to global warming and environmental pollution is one of the largest unknowns in the upcoming decades to centuries. In this review, we highlight the role of sulfate-reducing microorganisms (SRM) in the intertwined element cycles of wetlands. Although regarded primarily as methanogenic environments, biogeochemical studies have revealed a previously hidden sulfur cycle in wetlands that can sustain rapid renewal of the small standing pools of sulfate. Thus, dissimilatory sulfate reduction, which frequently occurs at rates comparable to marine surface sediments, can contribute up to 36–50% to anaerobic carbon mineralization in these ecosystems. Since sulfate reduction is thermodynamically favored relative to fermentative processes and methanogenesis, it effectively decreases gross methane production thereby mitigating the flux of methane to the atmosphere. However, very little is known about wetland SRM. Molecular analyses using dsrAB [encoding subunit A and B of the dissimilatory (bi)sulfite reductase] as marker genes demonstrated that members of novel phylogenetic lineages, which are unrelated to recognized SRM, dominate dsrAB richness and, if tested, are also abundant among the dsrAB-containing wetland microbiota. These discoveries point toward the existence of so far unknown SRM that are an important part of the autochthonous wetland microbiota. In addition to these numerically dominant microorganisms, a recent stable isotope probing study of SRM in a German peatland indicated that rare biosphere members might be highly active in situ and have a considerable stake in wetland sulfate reduction. The hidden sulfur cycle in wetlands and the fact that wetland SRM are not well represented by described SRM species explains their so far neglected role as important actors in carbon cycling and climate change. PMID:22403575

  15. Process for the desulfurization of flue gases

    Microsoft Academic Search

    1980-01-01

    Flue gas having a content of sulfur dioxide is passed upwardly through a scrubbing tower against a descending flow of recycled aqueous sodium aluminate-sodium hydroxide liquor. The sulfur dioxide in the gas is converted to sodium and aluminum sulfates and sulfites and the liquor removes any fly ash present in the gas. Underflow is continuously discharged from the tower and

  16. Process for the desulfurization of flue gases

    Microsoft Academic Search

    1979-01-01

    Flue gas containing sulfur dioxide is passed upwardly through a scrubbing tower against a descending flow of recycled aqueous sodium aluminate-sodium hydroxide liquor. The sulfur dioxide in the gas is converted to sodium and aluminum sulfates and sulfites and the liquor removes any fly ash present in the gas. Underflow is continuously discharged from the tower and is sent to

  17. Composition of matter useful in flue gas desulfurization process

    Microsoft Academic Search

    1983-01-01

    Flue gas having a content of sulfur dioxide is passed upwardly through a scrubbing tower against a descending flow of recycled aqueous sodium aluminate-sodium hydroxide liquor. The sulfur dioxide in the gas is converted to sodium and aluminum sulfates and sulfites and the liquor removes any fly ash present in the gas. Underflow is continuously discharged from the tower and

  18. Sodium and potassium levels in the serum of acutely irradiated and non-irradiated rats 

    E-print Network

    Shepherd, David Preston

    1967-01-01

    , higher heat loss, possible blindness, delayed sexual maturity, and soft bones (10, 19, Z2, Z7). Death eventually supervenes (22, 30). Dietary sodium and potassium levels below the minimum percentages do not ei'feet the longevity of the rats (21... carbonate 10 drops Magnesium sulfate 25 mgm Manganese sulfate 7. 5 mgm Iron phosphate 500 gm Sodium fluoride 1 mgm Potassium iodide 25 mcgm Potassium phosphate 1 mgm Potassium chloride 10 mgm 10 mgm Copper Sulfate 40 rngm Aluminum potassium s ul...

  19. Electrochemistry of Ferrous Sulfate-Sodium Thiosulphate and Copper Sulfate-Sodium Thiosulphate Systems for Template-Assisted Nanowire Synthesis

    NASA Astrophysics Data System (ADS)

    Brogan, Lee Jeffery

    Two related series of investigations are presented in this dissertation. First, two candidate systems for electrochemical deposition of metal sulfides for photovoltaic applications have been characterized. Secondly, a general electrochemical synthesis method allowing countable numbers of wires embedded in porous anodic alumina arrays to be measured using macroscopic contacts was developed. Electrochemical studies of the FeSO4-Na2S 2O3 system and the CuSO4-Na2S 2O3 system were undertaken to evaluate their suitability as electrodeposition baths for FeS2 and CuxS, respectively. Each solution system was studied extensively using cyclic voltammetry to characterize electrochemical processes at various concentrations. The iron sulfide / thiosulfate system was found to be unsuitable for the synthesis of FeS2 due to the preferential formation of FeS. The copper sulfide / thiosulfate system was found to be suitable for the synthesis of Cu2S, with thiosulfate concentration being the most important parameter due to the high complexation of Cu(I) by thiosulfate. Investigations into the electrochemical synthesis of metal wires in porous anodic alumina templates revealed an interesting synthesis mechanism wherein sparse, isolated wires are created in a very small fraction of the available pores. These wires are nucleated through the reduction of metal from the deposition bath by aluminum at the base of the alumina pores. This reduction causes a localized increase in acidity, accelerating the dissolution of the alumina barrier layer and allowing more typical wire deposition to occur. The sparse nucleation is exaggerated by the increasing rate of wire deposition as the wires lengthen and the swift rate of overgrowth formation at the surface of the template, resulting in domes of overgrowth attached to countable numbers of nanowires. This geometry has been exploited to obtain in situ measurements of known numbers of nanowires.

  20. The effects of sulfate fertilization and high levels of sulfate and salt drinking water on the growth and mineral status of ruminants

    E-print Network

    Xie, Kehe

    1999-01-01

    the serum mineral concentrations of cows grazing oat pastures. Experiment 2 was conducted to determine the effects of high levels of calcium sulfate (CaSO?²?) and sodium chloride (NaCl) in drinking water on the performance and mineral status of growing...

  1. Synthesis and characterization of sulfite-containing AFm phases in the system CaO-Al{sub 2}O{sub 3}-SO{sub 2}-H{sub 2}O

    SciTech Connect

    Motzet, H.; Poellmann, H. [Univ. of Halle (Germany). Dept. of Mineralogy and Geochemistry] [Univ. of Halle (Germany). Dept. of Mineralogy and Geochemistry

    1999-07-01

    The use of sulfite-containing waste materials mainly from flue gas desulfurization causes the formation of new lamellar phases (AFm) in the field of calcium aluminum hydrates. The incorporation of sulfite anions in the structure of lamellar calcium aluminate hydroxy salts and solid solutions with tetracalcium aluminate hydrate will be shown. Using special synthesis conditions a sulfite containing ettringite (AFt) was synthesized. Besides the pure synthesis of phases, the thermal stability, the hydration stages, and other properties of sulfite-containing phases were investigated. Solid solutions of lamellar calcium aluminate hydroxy salts are discussed.

  2. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway.

    PubMed

    Mi-ichi, Fumika; Abu Yousuf, Mohammad; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2009-12-22

    Hydrogenosomes and mitosomes are mitochondrion-related organelles in anaerobic/microaerophilic eukaryotes with highly reduced and divergent functions. The full diversity of their content and function, however, has not been fully determined. To understand the central role of mitosomes in Entamoeba histolytica, a parasitic protozoon that causes amoebic dysentery and liver abscesses, we examined the proteomic profile of purified mitosomes. Using 2 discontinuous Percoll gradient centrifugation and MS analysis, we identified 95 putative mitosomal proteins. Immunofluorescence assay showed that 3 proteins involved in sulfate activation, ATP sulfurylase, APS kinase, and inorganic pyrophosphatase, as well as sodium/sulfate symporter, involved in sulfate uptake, were compartmentalized to mitosomes. We have also provided biochemical evidence that activated sulfate derivatives, adenosine-5'-phosphosulfate and 3'-phosphoadenosine-5'-phosphosulfate, were produced in mitosomes. Phylogenetic analysis showed that the aforementioned proteins and chaperones have distinct origins, suggesting the mosaic character of mitosomes in E. histolytica consisting of proteins derived from alpha-proteobacterial, delta-proteobacterial, and ancestral eukaryotic origins. These results suggest that sulfate activation is the major function of mitosomes in E. histolytica and that E. histolytica mitosomes represent a unique mitochondrion-related organelle with remarkable diversity. PMID:19995967

  3. Cooling crystallization of aluminum sulfate in pure water

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoxue; Sun, Yuzhu; Yu, Jianguo

    2015-06-01

    This study investigated the cooling crystallization of aluminum sulfate to explore the basic data for the recovery of aluminum resources from coal spoil. First, the metastable zone width (MSZW) of aluminum sulfate was reported. A parallel synthesis platform (CrystalSCAN) was used to determine the solubility from 10 °C to 70 °C, and an automatic lab reactor (LabMax) equipped with focused beam reflectance measurement (FBRM) was adopted to determine the supersolubility. The effects of operating variables on MSZW were experimentally explored. Results show that the MSZW of aluminum sulfate decreases with increasing stirring speed, while it increases with increasing cooling rate. Second, the continuous crystallization kinetics of aluminum sulfate was investigated in a laboratory-scale mixed-suspension mixed-product removal (MSMPR) crystallizer at a steady state. Growth kinetics presented size-dependent growth rate, which was well fitted with the MJ3 model. Both the growth rate (G) and the total nucleation rate (BTOT) were correlated in the power law kinetic expressions with good correlation coefficients. Third, aluminum sulfate products were modified by sodium dodecylbenzenesulfonate (SDBS). Crystals with large sizes and regular hexagonal plate morphologies were obtained. These crystals reveal that SDBS can inhibit crystal nucleation and promote crystal growth.

  4. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway

    PubMed Central

    Mi-ichi, Fumika; Yousuf, Mohammad Abu; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2009-01-01

    Hydrogenosomes and mitosomes are mitochondrion-related organelles in anaerobic/microaerophilic eukaryotes with highly reduced and divergent functions. The full diversity of their content and function, however, has not been fully determined. To understand the central role of mitosomes in Entamoeba histolytica, a parasitic protozoon that causes amoebic dysentery and liver abscesses, we examined the proteomic profile of purified mitosomes. Using 2 discontinuous Percoll gradient centrifugation and MS analysis, we identified 95 putative mitosomal proteins. Immunofluorescence assay showed that 3 proteins involved in sulfate activation, ATP sulfurylase, APS kinase, and inorganic pyrophosphatase, as well as sodium/sulfate symporter, involved in sulfate uptake, were compartmentalized to mitosomes. We have also provided biochemical evidence that activated sulfate derivatives, adenosine-5?-phosphosulfate and 3?-phosphoadenosine-5?-phosphosulfate, were produced in mitosomes. Phylogenetic analysis showed that the aforementioned proteins and chaperones have distinct origins, suggesting the mosaic character of mitosomes in E. histolytica consisting of proteins derived from ?-proteobacterial, ?-proteobacterial, and ancestral eukaryotic origins. These results suggest that sulfate activation is the major function of mitosomes in E. histolytica and that E. histolytica mitosomes represent a unique mitochondrion-related organelle with remarkable diversity. PMID:19995967

  5. Influence of soil pH and application rate on the oxidation of calcium sulfite derived from flue gas desulfurization

    SciTech Connect

    Lee, Y.B.; Bigham, J.M.; Dick, W.A.; Jones, E.S.; Ramsier, C. [Ohio State University, Columbus, OH (United States). School of Environmental & Natural Resources

    2007-01-15

    Calcium sulfite hemihydrate (CaSO{sub 3} {center_dot} 0.5H{sub 2}O), a common byproduct of coal-fired utilities, is fairly insoluble and can decompose to release toxic SO{sub 2} under highly acidic soil conditions; however, it can also oxidize to form gypsum. The objective of this study was to examine the effects of application rate and soil pH on the oxidation of calcium sulfite under laboratory conditions. Oxidation rates measured by release of SO{sub 4}-S to solution decreased with increasing application rate. Leachate SO{sub 4}-S from soils amended with 1.0 to 3.0 g kg{sup -1} CaSO{sub 3} increased over a 21 to 28 d period before reaching a plateau. At 4 g kg{sup -1}, maximum SO{sub 4}-S release was delayed until Week 7. Oxidation and release of SO{sub 4}-S from soil amended with 3.0 g kg{sup -1} calcium sulfite increased markedly with decreasing soil pH. After only 3 d incubation, the concentrations of SO{sub 4}-S in aqueous leachates were 77, 122, 1709 220, and 229 mg L{sup -1} for initial soil pH values of 7.8, 6.5, 5.5, 5.1, and 4.0, respectively. At an initial soil pH value of 4.0, oxidation/dissolution did not increase much after 3 d. At higher pH values, oxidation was maximized after 21 d. These results suggest that autumn surface applications of calcium sulfite in no-till systems should permit ample time for oxidation/dissolution reactions to occur without introducing biocidal effects related to oxygen scavenging. Soil and annual crops can thus benefit from additions of soluble Ca and SO{sub 4} if calcium sulfite is applied in advance of spring planting.

  6. Iron Sulfides and Sulfur Species Produced at (001) Hematite Surfaces in the Presence of Sulfate-Reducing Bacteria

    SciTech Connect

    Neal, Andrew L.; Techkarnjanaruk, Somkiet; Dohnalkova, Alice; McCready, David E.; Peyton, Brent M.; Geesey, Gill G.

    2001-01-01

    In the presence of sulfate-reducing bacteria (Desulfovibrio desulfuricans) hematite (a-Fe2O3) dissolution is affected and hydrogen sulfide, the product of sulfate reduction is released. As a consequence, ferrous ions are free to react with excess H2S to form insoluble iron sulfides. X-ray photoelectron spectra indicate binding energies consistent with the iron sulfides having a pyrrhotite structure (Fe2p3/2 708.4 eV; S2p3/2 161.5 eV). Other sulfur species identified at the surface include sulfate, sulfite and polysulfides. X-ray diffraction suggests an unidentifiable crystal structure at the hematite surface develops within 3 months, HRTEM confirms the presence of a hexagonal structure again suggesting the formation of pyrrhotite. The identification of pyrrhotite is inconsistent with previous reports in which mackinawite and greigite were products of biological sulfate reduction (Rickard 1969; Herbert et al 1998). The apparent differences in stoiciometries may be related to the availability of Fe2+(aq.) at the mineral surface through respiratory iron reduction by subsurface bacteria. The significance of pyrrhotite and polysulfide production in relation to the S- and Fe-cycles and to trace metal bioavailability is discussed.

  7. Doped with Sodium Acetate and Metallic Sodium

    NASA Astrophysics Data System (ADS)

    Tada, Satoki; Isoda, Yukihiro; Udono, Haruhiko; Fujiu, Hirofumi; Kumagai, Shunji; Shinohara, Yoshikazu

    2014-06-01

    We have investigated the thermoelectric properties of p-type Na-doped Mg2 Si0.25Sn0.75 solid solutions prepared by liquid-solid reaction and hot-pressing methods. Na was introduced into Mg2Si0.25Sn0.75 by using either sodium acetate (CH3COONa) or metallic sodium (2 N). The samples doped with sodium acetate consisted of phases with antifluorite structure and a small amount of MgO as revealed by x-ray diffraction, whereas the sample doped with metallic sodium contained the Sn, MgO, and Mg2SiSn phases. The hole concentrations of Mg1.975Na0.025Si0.25Sn0.75 doped by sodium acetate and metallic sodium were 1.84 × 1025 m-3 and 1.22 × 1025 m-3, respectively, resulting in resistivities of 4.96 × 10-5 ? m (sodium acetate) and 1.09 × 10-5 ? m (metallic sodium). The Seebeck coefficients were 198 ?V K-1 (sodium acetate) and 241 ?V K-1 (metallic sodium). The figures of merit for Mg1.975Na0.025Si0.25Sn0.75 were 0.40 × 10-3 K-1 (sodium acetate) and 0.25 × 10-3 K-1 (metallic sodium) at 400 K. Thus, sodium acetate is a suitable Na dopant for Mg2Si1- x Sn x .

  8. Uranium Immobilization by Sulfate-reducing Biofilms

    SciTech Connect

    Beyenal, Haluk; Sani, Rajesh K.; Peyton, Brent M.; Dohnalkova, Alice; Amonette, James E.; Lewandowski, Zbigniew

    2004-04-01

    Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI) was continuously fed into the reactor for 32 weeks at a concentration of 126 íM. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite.

  9. Desulfovibrio carbinoliphilus sp. nov., a benzyl alcohol-oxidizing, sulfate-reducing bacterium isolated from a gas condensate-contaminated aquifer.

    PubMed

    Allen, Toby D; Kraus, Paul F; Lawson, Paul A; Drake, Gwendolyn R; Balkwill, David L; Tanner, Ralph S

    2008-06-01

    Phenotypic and phylogenetic studies were performed on a novel sulfate-reducing bacterium, strain D41(T), isolated as part of a methanogenic syntrophic culture from a gas condensate-contaminated aquifer undergoing intrinsic bioremediation. The bacterium was a Gram-negative, non-spore-forming, curved rod, motile by a single polar flagellum, which oxidized several alcohols incompletely, including methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 3-methyl-1-butanol (isoamyl alcohol), ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, phenylethanol and benzyl alcohol. Additionally, the strain oxidized H(2)/CO(2), formate, lactate, pyruvate, maleate, malate and fumarate. Sulfate, thiosulfate and sulfite were used as electron acceptors. The DNA G+C content was 63 mol%. Based on phylogenetic and phenotypic evidence, the novel species Desulfovibrio carbinoliphilus sp. nov. is proposed. The type strain is D41(T) (=ATCC BAA-1241(T) =DSM 17524(T)). PMID:18523171

  10. Molecular Structure of Sulfate ion

    NSDL National Science Digital Library

    2002-09-11

    Sulfate is a naturally occurring substance that is found in minerals and rocks, and in soil it is one of the most predominant anions. This substance results from the oxidation of elemental sulfur, sulfides, or organic sulfur. While sulfate is one of the least toxic anions, it is monitored under the Safe Drinking Water Act (SDWA). The anion is used in mining, pulping, metal and plating industries, water and sewage treatment, leather processing and in the manufacture of numerous chemicals, dyes, glass, soaps, textiles, fungicides, insecticides, astringents, and emetics. Various sulfate salts are used in foods, the estimated daily intake of sulfate from the consumption of food is approximately 453 milligrams (mg). Sulfate can have a cathartic effect on humans which results in the purgation of the alimentary canal, when 1000-2000 mg is ingested.

  11. Post-Translational Modifications of Desulfovibrio vulgaris Hildenborough Sulfate Reduction Pathway Proteins

    SciTech Connect

    Gaucher, S.P.; Redding, A.M.; Mukhopadhyay, A.; Keasling, J.D.; Singh, A.K.

    2008-03-01

    Recent developments in shotgun proteomics have enabled high-throughput studies of a variety of microorganisms at a proteome level and provide experimental validation for predicted open reading frames in the corresponding genome. More importantly, advances in mass spectrometric data analysis now allow mining of large proteomics data sets for the presence of post-translational modifications(PTMs). Although PTMs are a critical aspectof cellular activity, such information eludes cell-wide studies conducted at the transcript level. Here, we analyze several mass spectrometric data sets acquired using two-dimensional liquid chromatography tandem mass spectrometry, 2D-LC/MS/MS, for the sulfate reducing bacterium, Desulfovibrio vulgaris Hildenborough. Our searches of the raw spectra led us to discover several post-translationally modified peptides in D. vulgaris. Of these, several peptides containing a lysine with a +42 Da modification were found reproducibly across all data sets. Both acetylation and trimethylation have the same nominal +42 Da mass, and are therefore candidates for this modification. Several spectra were identified having markers for trimethylation, while one is consistent with an acetylation. Surprisingly, these modified peptides predominantly mapped to proteins involved in sulfate respiration. Other highly expressed proteins in D. vulgaris, such as enzymes involved in electron transport and other central metabolic processes, did not contain this modification. Decoy database searches were used to control for random spectrum/sequence matches. Additional validation for these modifications was provided by alternate workflows, for example, two-dimensional gel electrophoresis followed by mass spectrometry analysis of the dissimilatory sulfite reductase gamma-subunit(DsrC) protein. MS data for DsrC in this alternate workflow also contained the +42 Da modification at the same loci. Furthermore, the DsrC homologue in another sulfate reducing bacterium, Desulfovibrio desulfuricans G20, also showed similar +42 Da modifications in the same pathway. Here, we discuss our methods and implications of potential trimethylation in the D. vulgaris sulfate reduction pathway.

  12. Stimulation of active and passive sodium absorption by sugars in the human jejunum.

    PubMed Central

    Fordtran, J S

    1975-01-01

    The effects of glucose and fructose on water and sodium absorption in the human jejunum were compared to assess the relative contribution of active and passive sugar stimulation of sodium transport. The effect of fructose is assumed to be entirely passive, and the difference between the effects of fructose and glucose is assumed to be a measure of sugar-stimulated, active sodium absorption. Water and sodium movement with mannitol was the base line. Three sets of test solutions with differing sugar concentrations were studied. Fructose stimulated 66-100 per cent as much net sodium and water absorption as glucose. Fructose stimulated potassium absorption, whereas glucose stimulated potassium secretion. Urea absorption was stimulated by both sugars. Glucose and fructose stimulated sodium absorption when chloride was the major anion, but they had relatively little effect on net sodium movement when chloride was replaced by bicarbonate or sulfate. It is concluded that glucose stimulates passive and active sodium transport in the human jejunum. Stimulated active sodium absorption generates an electrical potential across the mucosa that causes sodium (and potassium) secretion and partly or completely nullifies the effect of active sodium transport on net sodium movement. Net sodium absorption sitmulated by glucose is mainly (66-100 per cent) the passive consequence of solvent flow. The accompanying anion determines the degree to which sugars stimulate sodium absorption (C1 greater than SO-4 greater than HCO3). The effects of bicarbonate and sugars on jejunal sodium absorption are not additive. Images PMID:1120780

  13. Safety of Oral Sulfates in Rats and Dogs Contrasted With Phosphate-Induced Nephropathy in Rats

    Microsoft Academic Search

    Russell W. Pelham; Robert G. Russell; Eric L. Padgett; Frederick E. Reno; Mark v B. Cleveland

    2009-01-01

    An oral sulfate salt solution (OSS), under development as a bowel cleansing agent for colonoscopy in humans, is studied in rats and dogs. In rats, a maximum practical oral OSS dose (5 g\\/kg\\/d) is compared with an oral sodium phosphate (OSP) solution, both at about 7 times the clinical dose. OSS induces the intended effects of loose stools and diarrhea.

  14. Sodium in diet

    MedlinePLUS

    Diet - sodium (salt) ... salt is 40% sodium; 1 teaspoon of table salt contains 2,300 mg of sodium. Healthy adults should limit sodium intake to 2,300 mg per day. Adults with high blood pressure should have no more than 1,500 mg ...

  15. Ethanol production from non-detoxified whole slurry of sulfite-pretreated empty fruit bunches at a low cellulase loading.

    PubMed

    Cheng, Jinlan; Leu, Shao-Yuan; Zhu, J Y; Jeffries, Thomas W

    2014-07-01

    Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) was applied to an empty fruit bunches (EFB) for ethanol production. SPORL facilitated delignification through lignin sulfonation and dissolution of xylan to result in a highly digestible substrate. The pretreated whole slurry was enzymatically saccharified at a solids loading of 18% using a relatively low cellulase loading of 15 FPU/g glucan and simultaneously fermented without detoxification using Saccharomyces cerevisiae of YRH400. An ethanol yield of 217 L/tonne EFB was achieved at titer of 32 g/L. Compared with literature studies, SPORL produced high ethanol yield and titer with much lower cellulase loading without detoxification. PMID:24874873

  16. Glycosaminoglycan sulfation in murine splenocytes

    SciTech Connect

    Rider, C.C.; Hart, G.W.

    1986-05-01

    The authors have studied the incorporation of /sup 35/sulfate into glycosaminoglycans (GAG) in splenocytes incubated in medium RPMI 1640 containing 3..mu..M sulfate. Addition of Concanavalin A (Con A) and phorbol 12-myristate 13-acetate (PMA) caused within 24 hr a 10- to 20-fold increase in incorporation into secreted GAG and a 2- to 4-fold increase in cell-retained GAG. PMA added alone caused only 2- to 4-fold increases in both fractions. Between 0 and 3 h however, PMA either alone or with Con A caused a substantial decrease in the incorporation of sulfate into the cellular GAG fraction, suggesting that an immediate effect of these agents is to cause the clearance of nascent GAG chains from the Golgi. The composition of newly sulfated lymphocyte GAG has been found to be approximately 75% chondroitin sulfate and 25% heparan sulfates in both secreted and non-secreted GAG irrespective of the presence of Con A and PMA. Amino column HPLC analysis of disaccharides released by chondroitinase ABC digestion indicates that both ..delta.. Di-4S and ..delta.. Di-6S are produced with the proportion of the latter increasing gradually from initially low levels such that at 24 h, equal proportions of the two are found. Possible mechanisms for this change in the position of sulfation will be discussed.

  17. Detecting O-GlcNAc using in vitro sulfation.

    PubMed

    Wu, Zhengliang L; Robey, Matthew T; Tatge, Timothy; Lin, Cheng; Leymarie, Nancy; Zou, Yonglong; Zaia, Joseph

    2014-08-01

    O-linked ?-N-acetylglucosamine (O-GlcNAc) glycosylation, the covalent attachment of N-acetylglucosamine to serine and threonine residues of proteins, is a post-translational modification that shares many features with protein phosphorylation. O-GlcNAc is essential for cell survival and plays important role in many biological processes (e.g. transcription, translation, cell division) and human diseases (e.g. diabetes, Alzheimer's disease, cancer). However, detection of O-GlcNAc is challenging. Here, a method for O-GlcNAc detection using in vitro sulfation with two N-acetylglucosamine (GlcNAc)-specific sulfotransferases, carbohydrate sulfotransferase 2 and carbohydrate sulfotransferase 4, and the radioisotope (35)S is described. Sulfation on free GlcNAc is first demonstrated, and then on O-GlcNAc residues of peptides as well as nuclear and cytoplasmic proteins. It is also demonstrated that the sulfation on O-GlcNAc is sensitive to OGT and O-?-N-acetylglucosaminidase treatment. The labeled samples are separated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and visualized by autoradiography. Overall, the method is sensitive, specific and convenient. PMID:24799377

  18. Characterization of phosphate/sulfate waste grout cores

    SciTech Connect

    Martin, P.F.C.; Lokken, R.O.

    1993-09-01

    As part of efforts to clean up federal production sites, the U.S. Department of Energy (DOE) is treating selected low-level liquid wastes by incorporating them into cementitious waste forms. At the Hanford Site, low-level radioactive liquid wastes will be mixed with a blend of Portland cement, fly ash, clays, and other ingredients in a continuous process at the Grout Treatment Facility (GTF). The resulting grout slurry will be pumped to lined, underground concrete vaults where the grout will harden, thereby immobilizing contaminants. Physical property measurements and American Nuclear Society (ANS) 16.1 leach tests have been completed on 45 samples obtained from five cores from the phosphate/sulfate waste (PSW) grout vault. A summary of the compressive strength, bulk density, and sonic velocity data is compared with data from other PSW grout samples. Results of moisture content, thermal conductivity, and the leaching of aluminium, calcium, sodium, sulfate, cobalt-60, and cesium-137 are given.

  19. Properties of Desulfovibrio carbinolicus sp. nov. and Other Sulfate-Reducing Bacteria Isolated from an Anaerobic-Purification Plant

    PubMed Central

    Nanninga, Henk J.; Gottschal, Jan C.

    1987-01-01

    Several sulfate-reducing microorganisms were isolated from an anaerobic-purification plant. Four strains were classified as Desulfovibrio desulfuricans, Desulfovibrio sapovorans, Desulfobulbus propionicus, and Desulfovibrio sp. The D. sapovorans strain contained poly-?-hydroxybutyrate granules and seemed to form extracellular vesicles. A fifth isolate, Desulfovibrio sp. strain EDK82, was a gram-negative, non-spore-forming, nonmotile, curved organism. It was able to oxidize several substrates, including methanol. Sulfate, sulfite, thiosulfate, and sulfur were utilized as electron acceptors. Pyruvate, fumarate, malate, and glycerol could be fermented. Because strain EDK82 could not be ascribed to any of the existing species, a new species, Desulfovibrio carbinolicus, is proposed. The doubling times of the isolates were determined on several substrates. Molecular hydrogen, lactate, propionate, and ethanol yielded the shortest doubling times (3.0 to 6.3 h). Due to the presence of support material in an anaerobic filter system, these species were able to convert sulfate to sulfide very effectively at a hydraulic retention time as short as 0.5 h. Images PMID:16347324

  20. Activation of SO2 and CO2 by trivalent uranium leading to sulfite/dithionite and carbonate/oxalate complexes.

    PubMed

    Schmidt, Anna-Corina; Heinemann, Frank W; Kefalidis, Christos E; Maron, Laurent; Roesky, Peter W; Meyer, Karsten

    2014-10-13

    The first sulfite [{(((nP,Me) ArO)3 tacn)U(IV) }2 (?-?(1) :?(2) -SO3 )] (tacn=triazacyclononane) and dithionite [{(((nP,Me) ArO)3 tacn)U(IV) }2 (?-?(2) :?(2) -S2 O4 )] complexes of uranium from reaction with gaseous SO2 have been prepared. Additionally, the reductive activation of CO2 was investigated with respect to the rare oxalate [{(((nP,Me) ArO)3 tacn)U(IV) }2 (?-?(2) :?(2) -C2 O4 )] formation. This ultimately provides the unique S2 O4 (2-) /C2 O4 (2-) and SO3 (2-) /CO3 (2-) complex pairs. All new complexes were characterized by a combination of single-crystal X-ray diffraction, elemental analysis, UV/Vis/NIR electronic absorption, IR vibrational, and (1) H?NMR spectroscopy, as well as magnetization (VT SQUID) studies. Moreover, density functional theory (DFT) calculations were carried out to gain further insight into the reaction mechanisms. All observations, together with DFT, support the assumption that SO2 and CO2 show similar (dithionite/oxalate) to analogous (sulfite/carbonate) activation behavior with uranium complexes. PMID:25146340