Science.gov

Sample records for sulfate sodium sulfite

  1. Quaternary liquid/liquid equilibria of sodium sulfate, sodium sulfite and water with two solvents: Acetone and 2-propanol

    SciTech Connect

    Schiozer, A.L.

    1994-03-01

    Aqueous solutions of sodium sulfate and sodium sulfite are produced from sodium carbonate in flue-gas scrubbers; recovery of these salts often requires multi-effect evaporators; however, a new energy-efficient unit operation called extractive crystallization has been shown to have reduced energy costs. In this process, an organic solvent is added to the aqueous salt solution to precipitate salt. Acetone is a suitable solvent for this process, better than 2-propanol. Liquid/liquid/solid equilibria for ternary systems containing a salt, water, and an organic solvent were measured. Systems investigated were sodium sulfite/water/acetone and sodium sulfite/water/2-propanol. Experiments were conducted at salt saturation covering a temperature range between the lower consolute temperature and 48.6{degrees}C. In the attempt to improve the extractive crystallization process for recovery of sodium sulfate from flue-gas scrubbers, attention was given to a feed containing a mixture of sodium sulfite and sodium sulfate. Liquid-liquid equilibria for quaternary systems containing two salts, water, and an organic solvent were experimentally determined at 35{degrees}C. The systems investigated were sodium sulfate/sodium sulfite/water/acetone and sodium sulfate/sodium sulfite/water/2propanol. The systems were studied at three salt ratios. For each salt ratio, experiments were conducted starting at saturation, water was then added until the one-phase region was reached. Mixtures of the two salts proved to have a small disadvantage relative to the 100 % sulfate feed process. Therefore, a sulfate-based extractive crystallization process is recommended.

  2. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfite. 182.3798 Section 182.3798 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation. This substance...

  3. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium sulfite. 182.3798 Section 182.3798 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation. This substance...

  4. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation....

  5. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium sulfite. 182.3798 Section 182.3798 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation. This substance...

  6. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation....

  7. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation....

  8. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation....

  9. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation....

  10. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium sulfite. 182.3798 Section 182.3798 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation. This substance...

  11. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium sulfite. 182.3798 Section 182.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium...

  12. Recovery of anhydrous Na{sub 2}SO{sub 4} from SO{sub 2}-scrubbing liquor by extractive crystallization: Liquid-liquid equilibria for aqueous solutions of sodium carbonate, sulfate, and/or sulfite plus acetone, 2-propanol, or tert-butyl alcohol

    SciTech Connect

    Lynn, S.; Cos, R.; Prausnitz, J.M.; Schiozer, A.L.; Jaecksch, W.L.

    1996-11-01

    Sodium carbonate is a superior scrubbing agent for removing SO{sub 2} from combustion gases, but the resulting sodium sulfate (or sulfite) must be recovered for environmental reasons. Recovery by evaporative crystallization is energy-intensive; extractive crystallization provides an attractive alterative when technically feasible. Liquid/liquid equilibrium data were determined for two-phase mixtures containing aqueous solutions of sodium carbonate, sulfate, or sulfite and a polar organic solvent: acetone, 2-propanol, and 2-methylpropan-1-ol (i.e., tert-butyl alcohol). In the salt-saturated two-phase region, data were obtained between the lower consolute temperature and 60 C (50 C for acetone). data were also obtained at 35 C for liquid/liquid systems that were subsaturated with their respective salts and for liquid/liquid systems with overall molar ratios of sodium sulfite/sodium sulfate fixed at 25/75, 50/50, and 75/25. In the latter systems, it was found that the sulfite/sulfate ratios in the organic and aqueous phases were the same, i.e., there is no selectivity by these solvents for one salt relative to the other. The data show that any one of these solvents can be used to extract water from a concentrated solution of either sodium sulfite or sodium sulfate in a countercurrent extractor at 35 C, causing the anhydrous salt to crystallize. The wet solvent can be dried for recycle in a similar countercurrent operation at 35 C, using a saturated solution of Na{sub 2}CO{sub 3} as the drying agent. The number of moles of carbonate required for drying does not exceed the number of moles of sulfite-plus-sulfate precipitated. The process energy is about 0% of that required for single-stage evaporative crystallization of the same liquor.

  13. 40 CFR 415.200 - Applicability; description of the sodium sulfite production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the production of sodium sulfite by reacting sulfur dioxide with sodium carbonate. ... sodium sulfite production subcategory. 415.200 Section 415.200 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Sulfite Production Subcategory 415.200 Applicability; description of the...

  14. 40 CFR 415.200 - Applicability; description of the sodium sulfite production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the production of sodium sulfite by reacting sulfur dioxide with sodium carbonate. ... sodium sulfite production subcategory. 415.200 Section 415.200 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Sulfite Production Subcategory 415.200 Applicability; description of the...

  15. 40 CFR 415.200 - Applicability; description of the sodium sulfite production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the production of sodium sulfite by reacting sulfur dioxide with sodium carbonate. ... sodium sulfite production subcategory. 415.200 Section 415.200 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Sulfite Production Subcategory 415.200 Applicability; description of the...

  16. 40 CFR 415.200 - Applicability; description of the sodium sulfite production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the production of sodium sulfite by reacting sulfur dioxide with sodium carbonate. ... sodium sulfite production subcategory. 415.200 Section 415.200 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Sulfite Production Subcategory 415.200 Applicability; description of the...

  17. Hydrogen production via photolytic oxidation of aqueous sodium sulfite solutions.

    PubMed

    Huang, Cunping; Linkous, Clovis A; Adebiyi, Olawale; T-Raissi, Ali

    2010-07-01

    Sulfur dioxide (SO(2)) emission from coal-burning power plants and refinery operations has been implicated as a cause of acid rain and other air pollution related problems. The conventional treatment of SO(2)-contaminated air consists of two steps: SO(2) absorption using an aqueous sodium hydroxide solution, forming aqueous sodium sulfite (Na(2)SO(3)), and Na(2)SO(3) oxidation via air purging to produce sodium sulfate (Na(2)SO(4)). In this process, the potential energy of SO(2) is lost. This paper presents a novel ultraviolet (UV) photolytic process for production of hydrogen from aqueous Na(2)SO(3) solutions. The results show that the quantum efficiency of hydrogen production can reach 14.4% under illumination from a low pressure mercury lamp. The mechanism occurs via two competing reaction pathways that involve oxidation of SO(3)(2-) to SO(4)(2-) directly and through the dithionate (S(2)O(6)(2-)) ion intermediate. The first route becomes dominant once a photostationary state for S(2)O(6)(2-) is established. The initial pH of Na(2)SO(3) solution plays an important role in determining both the hydrogen production rate and the final products of the photolytic oxidation. At initial solution pH of 9.80 Na(2)SO(3) photo-oxidation generates Na(2)SO(4) as the final reaction product, while Na(2)S(2)O(6) is merely a reaction intermediate. The highest hydrogen production rate occurs when the initial solution pH is 7.55. Reduction in the initial solution pH to 5.93 results in disproportionation of HSO(3)(-) to elemental sulfur and SO(4)(2-) but no hydrogen production. PMID:20515046

  18. Removal of sulfide, sulfate and sulfite ions by electro coagulation.

    PubMed

    Murugananthan, M; Raju, G Bhaskar; Prabhakar, S

    2004-06-18

    The removal of various species of sulfur from beamhouse of tannery wastewater and also from synthetic samples was studied by electro-flotation technique. Consumable anodes of iron and aluminum and insoluble anode of titanium were tested as anodes. It was found that iron and aluminum anodes were effective for the removal of suspended solids, sulfide, sulfite and sulfate. Progress of simultaneous coagulation of suspended solids during electro-flotation was measured using particle size analysis. Coagulation was found to be essential for effective flotation of suspended solids. Metal ions generated in situ by electrolytic oxidation of anode were found to react with dissolved sulfide ions. Metal sulfides thus formed as colloidal suspension were coagulated and floated simultaneously by hydrogen bubbles generated from cathode. Simultaneous occurrence of precipitation, coagulation and flotation was observed during electro-flotation. X-ray diffraction studies were conducted to identify the nature of sulfide phase formed during electrolytic precipitation. The effect of pH, current density and initial concentration of pollutants was studied and the results are discussed. The removal of sulfite and sulfate ions is explained by zeta-potential measurements. PMID:15177743

  19. Nitrogen dioxide absorption in aqueous sodium sulfite

    NASA Astrophysics Data System (ADS)

    Shen, Chen Hua

    The Clean Air Act of 1990 requires additional reduction of acid gases, sulfur dioxide, and nitrogen oxides released into the atmosphere from coal-fired electric power plants. In the case of older existing power plants, a possible retrofit strategy is to oxidize nitric oxide (NO, the major constituent of NOsbX in flue gas) to nitrogen dioxide (NOsb2) by the addition of methanol or other hydrocarbons into the duct at an optimum temperature regime. NOsb2 can then be removed by either modifying existing SOsb2 control equipment or by adding a limestone (CaCOsb3) slurry scrubbing process. Limestone reacts with SOsb2 to from CaSOsb3, and the free sulfite (SO{sb3sp{=}}) in the solution is reactive toward NOsb2. The focus of this research is to study the reaction between NOsb2 and aqueous sulfite at elevated temperature and in the presence of gas phase Osb2. The removal of NOsb2 by limestone slurry scrubbing involves the reaction between NOsb2 and SO{sb3sp{=}}, bisulfite (HSO{sb3sp{-}}) and water. The reactions between NOsb2 and SO{sb3sp{=}}/HSO{sb3sp{-}} are first order in both reactants, while the NOsb2-water reaction is second order in NOsb2 concentration. The rate constants of the above reactions and the NOsb2-thiosulfate (Ssb2O{sb3sp{=}}) reaction were determined at 55sp°C. SO{sb3sp{=}} was found to be the most reactive toward NOsb2, while the contribution of chemical reaction still dominated in the absorption of NOsb2 into water. The effect of gas phase SOsb2 and Osb2, and liquid phase additives such as Ssb2O{sb3sp{=}}, Casp{++}, Mgsp{++}, and Clsp{-} on NOsb2 absorption was also investigated. The absorption of NOsb2 catalyzes free radical reactions that lead to sulfite oxidation. A semi-empirical model was proposed to relate the rate of sulfite oxidation to the rate of NOsb2 absorption. Thiosulfate inhibits sulfite oxidation by providing an alternative route for the termination of the free radical reactions, and a fundamental model was derived to quantify the effect of Ssb2O{sb3sp{=}} on sulfite oxidation. The absorption of NOsb2 into aqueous bisulfide (HSsp{-}) was studied in an attempt to discover alternative scrubbing technologies. The reaction between NOsb2 and HSsp{-} is twice as fast as the NOsb2-SO{sb3sp{=}} reaction at 55sp°C. A semi-empirical model was proposed to relate NOsb2 absorption to HSsp{-} oxidation. This study has shown that acceptable level of NOsb2 removal by a conventional limestone slurry scrubber is not probable. However, aqueous scrubbing of NOsb2 by Nasb2SOsb3 and Nasb2S solutions are viable options. Furthermore, significant reduction in hold tank liquid depth and/or oxidizing air stoichiometry is possible by NOsb2 injection.

  20. 40 CFR 415.200 - Applicability; description of the sodium sulfite production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the sodium sulfite production subcategory. 415.200 Section 415.200 Protection of Environment ENVIRONMENTAL... the production of sodium sulfite by reacting sulfur dioxide with sodium carbonate....

  1. Influence of the enzyme dissimilatory sulfite reductase on stable isotope fractionation during sulfate reduction

    NASA Astrophysics Data System (ADS)

    Mangalo, Muna; Einsiedl, Florian; Meckenstock, Rainer U.; Stichler, Willibald

    2008-03-01

    The stable isotopes of sulfate are often used as a tool to assess bacterial sulfate reduction on the macro scale. However, the mechanisms of stable isotope fractionation of sulfur and oxygen at the enzymatic level are not yet fully understood. In batch experiments with water enriched in 18O we investigated the effect of different nitrite concentrations on sulfur isotope fractionation by Desulfovibrio desulfuricans. With increasing nitrite concentrations, we found sulfur isotope enrichment factors ranging from -11.2 1.8 to -22.5 3.2. Furthermore, the ?18O values in the remaining sulfate increased from approximately 50-120 when 18O-enriched water was supplied. Since 18O-exchange with ambient water does not take place in sulfate, but rather in intermediates of the sulfate reduction pathway (e.g. SO32-), we suggest that nitrite affects the steady-state concentration and the extent of reoxidation of the metabolic intermediate sulfite to sulfate during sulfate reduction. Given that nitrite is known to inhibit the production of the enzyme dissimilatory sulfite reductase, our results suggest that the activity of the dissimilatory sulfite reductase regulates the kinetic isotope fractionation of sulfur and oxygen during bacterial sulfate reduction. Our novel results also imply that isotope fractionation during bacterial sulfate reduction strongly depends on the cell internal enzymatic regulation rather than on the physico-chemical features of the individual enzymes.

  2. Food preservatives sodium sulfite and sorbic acid suppress mitogen-stimulated peripheral blood mononuclear cells.

    PubMed

    Winkler, Christiana; Frick, Barbara; Schroecksnadel, Katharina; Schennach, Harald; Fuchs, Dietmar

    2006-12-01

    Antioxidant preservatives prolong the quality of food and ensure the nutritional adequacy, palatability and safety of many processed foods and beverages. Effects of sodium sulfite (E221) and sorbic acid (E200) were investigated in human peripheral blood mononuclear cells (PBMC) which were purified from blood of healthy donors. Cells were stimulated with the mitogen phytohaemagglutinin in vitro, which induces proliferation of T-cells and the production of Th1-type cytokines like interferon-gamma. The latter triggers enzyme indoleamine (2,3)-dioxygenase, which degrades tryptophan, and GTP cyclohydrolase I, which leads to increased neopterin production, in monocyte-derived macrophages. Sodium sulfite and sorbic acid suppressed both these biochemical changes in a dose-dependent way (P<0.01 at 1 mM sodium sulfite and 50 mM sorbic acid). Data demonstrate a suppressive influence of sodium sulfite and sorbic acid on the activated Th1-type immune response. PMID:16904801

  3. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and....1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6), also known as Glauber's salt... by the neutralization of sulfuric acid with sodium hydroxide. (b) The ingredient is used as...

  4. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  5. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  6. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  7. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  8. Access to antigens related to anthrose using pivotal cyclic sulfite/sulfate intermediates.

    PubMed

    Milhomme, Ophélie; John, Cédric; Djedaïni-Pilard, Florence; Grandjean, Cyrille

    2011-08-01

    Anthrose is the upstream terminal unit of the tetrasaccharide side chain from a major glycoprotein of Bacillus anthracis exosporium and is part of important antigenic determinants. A novel entry to anthrose-containing antigens and precursors is described. The synthetic route, starting from D(+)-fucose, makes use of intermediates featuring a cyclic sulfite or sulfate function which serves successively as a protecting and a leaving group. PMID:21678952

  9. Diversity and composition of sulfate- and sulfite-reducing prokaryotes as affected by marine-freshwater gradient and sulfate availability.

    PubMed

    Fan, Lan-Feng; Tang, Sen-Lin; Chen, Chang-Po; Hsieh, Hwey-Lian

    2012-01-01

    Sulfate- and sulfite-reducing prokaryotes (SSRP) communities play a key role in both sulfur and carbon cycles. In estuarine ecosystems, sulfate concentrations change with tides and could be limited in tidal freshwater reach or deep sediments. In a subtropical estuary of northern Taiwan in December 2007, we examined the compositional changes of SSRP communities. We examined three sites: from the lower estuarine brackish-water reach (site GR and mangrove vegetation site, GM) to the upper estuarine tidal freshwater reach (site HR), as well as from surface to a 50-cm depth. The partial sequence of sulfite reductase (dsrB) genes was used as a molecular marker of SSRP, linked to polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE) techniques. SSRP communities of the DGGE profiles varied with sites according to one-way analyses of similarities (Global R?=?0.69, P?=?0.001). Using cluster analysis, the DGGE profile was found to show site-specific clusters and a distinct depth zonation (five, six, and two SSRP communities at the GM, GR, and HR sites, respectively). SSRP composition was highly correlated to the combination of salinity, reduced sulfur, and total organic carbon contents (BIO-ENV analysis, r ( s )?=?0.56). After analyzing a total of 35 dsrB sequences in the DGGE gel, six groups with 15 phylotypes were found, which were closely related to marine-freshwater gradient. Moreover, sequences neighboring sulfite-reducing prokaryotes were observed, in addition to those affiliated to sulfate-reducing prokaryotes. Four phylotypes harvested in HR resembled the genus Desulfitobacterium, a sulfite-reducing prokaryote, which failed to use sulfate as an electron acceptor and were active in freshwater and sulfate-limited habitat. The other five phylotypes in the HR reach belonged to the sulfate-reducing prokaryotes of the genera Desulfatiferula, Desulfosarcina, Desulfovibrio, and Desulfotomaculum, which appeared to tolerate low salinity and low sulfate supply. SSRP phylotypes at the mangrove-vegetated GM site (five phylotypes in two groups) were phylogenetically less diverse, when compared with those at the non-mangrove-vegetated GR site (three phylotypes in three groups) and the tidally influenced freshwater HR site (nine phylotypes in five groups). Phylotypes found at GR and GM were all affiliated to marine sulfate-reducing prokaryote strains of the genera Desulfofaba, Desulfobotulus, Desulfatiferula, Desulfosarcina, and Desulfotomaculum. Notably, a phylotype recorded in the surface sediment at GR resembled the genus Desulfobulbus, which was recorded from freshwater environment consisting of the freshwater input at GR during ebb tides. PMID:21785985

  10. Avoiding total reduced sulfur (TRS) emissions from sodium sulfite pulping recovery processes

    SciTech Connect

    Norman, J.C.; Sell, N.J. ); Ciriacks, J.C. )

    1990-06-01

    This paper reports that one of the current trends in paper-making with cellulose pulping is the use of high-yield processes. With yields greater than 65%, these processes include mechanical pulps (groundwood and thermomechanical pulps or TMP), and semichemical types (chemi-TMP or CTMP). Groundwood and TMP make up about 10% of North American pulp production. Semichemical pulp makes up about 7% and is mostly used for corrugating medium. High-yield pulping for linerboard, particularly using the alkaline sulfite process, is also likely to be used in the future. High-yield pulping is based primarily on the sulfite process using mostly sodium-based chemicals. A disadvantage of this process is the unavailability of a recovery system for the inorganic pulping chemicals. Generally, mills have not accepted any particular recovery system for this process. For this and other reasons, sulfite processes constitute only 3-4% of the total North American pulp production. If high-yield processes continue to increase in popularity, a sodium sulfite chemical recovery system will be needed. A number of chemical recovery systems have been developed in the past 30 years for sodium-based sulfite pulping processes, with most of the mills successfully using this process located in Scandinavia.

  11. Isolation and characterization of an operon involved in sulfate and sulfite metabolism in Sinorhizobium fredii.

    PubMed

    Lu, Zu-Jun; Cao, Yong-Qiang; Long, Wen-Jie; Long, Zhang-De; Chen, Gang; Ma, Qing-Sheng; Wu, Bo

    2008-05-01

    A gene cluster ORFabcd from a Sinorhizobium fredii HN01 mutant strain HSMRalpha was isolated. We showed that it was an operon involved in sulfur metabolism. Functional studies revealed that, except for ORFb, the three genes ORFa, ORFc and ORFd were involved in sulfite reduction. ORFa and ORFc were similar to the cysG and cysI from Sinorhizobium meliloti 1021 and Rhizobium etli CFN 42, respectively. ORFd encodes a conserved hypothetical protein in other bacteria. We demonstrate here, for the first time, that it was a new locus involved in sulfate assimilation in S. fredii HN01 and we designated it as cysII. PMID:18336549

  12. Decreased immunoglobulin E (IgE) binding to cashew allergens following sodium sulfite treatment and heating.

    PubMed

    Mattison, Christopher P; Desormeaux, Wendy A; Wasserman, Richard L; Yoshioka-Tarver, Megumi; Condon, Brian; Grimm, Casey C

    2014-07-16

    Cashew nut and other nut allergies can result in serious and sometimes life-threatening reactions. Linear and conformational epitopes within food allergens are important for immunoglobulin E (IgE) binding. Methods that disrupt allergen structure can lower IgE binding and lessen the likelihood of food allergy reactions. Previous structural and biochemical data have indicated that 2S albumins from tree nuts and peanuts are potent allergens, and that their structures are sensitive to strong reducing agents such as dithiothreitol. This study demonstrates that the generally regarded as safe (GRAS) compound sodium sulfite effectively disrupted the structure of the cashew 2S albumin, Ana o 3, in a temperature-dependent manner. This study also showed that sulfite is effective at disrupting the disulfide bond within the cashew legumin, Ana o 2. Immunoblotting and ELISA demonstrated that the binding of cashew proteins by rabbit IgG or IgE from cashew-allergic patients was markedly lowered following treatment with sodium sulfite and heating. The results indicate that incorporation of sodium sulfite, or other food grade reagents with similar redox potential, may be useful processing methods to lower or eliminate IgE binding to food allergens. PMID:24926808

  13. 21 CFR 172.822 - Sodium lauryl sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium lauryl sulfate. 172.822 Section 172.822... Sodium lauryl sulfate. The food additive sodium lauryl sulfate may be safely used in food in accordance... of sodium alkyl sulfates consisting chiefly of sodium lauryl sulfate . (2) It has a minimum...

  14. 21 CFR 172.822 - Sodium lauryl sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium lauryl sulfate. 172.822 Section 172.822 Food... Multipurpose Additives § 172.822 Sodium lauryl sulfate. The food additive sodium lauryl sulfate may be safely... specifications: (1) It is a mixture of sodium alkyl sulfates consisting chiefly of sodium lauryl sulfate . (2)...

  15. Multiple Lateral Transfers of Dissimilatory Sulfite Reductase Genes between Major Lineages of Sulfate-Reducing Prokaryotes

    PubMed Central

    Klein, Michael; Friedrich, Michael; Roger, Andrew J.; Hugenholtz, Philip; Fishbain, Susan; Abicht, Heike; Blackall, Linda L.; Stahl, David A.; Wagner, Michael

    2001-01-01

    A large fragment of the dissimilatory sulfite reductase genes (dsrAB) was PCR amplified and fully sequenced from 30 reference strains representing all recognized lineages of sulfate-reducing bacteria. In addition, the sequence of the dsrAB gene homologs of the sulfite reducer Desulfitobacterium dehalogenans was determined. In contrast to previous reports, comparative analysis of all available DsrAB sequences produced a tree topology partially inconsistent with the corresponding 16S rRNA phylogeny. For example, the DsrAB sequences of several Desulfotomaculum species (low G+C gram-positive division) and two members of the genus Thermodesulfobacterium (a separate bacterial division) were monophyletic with ?-proteobacterial DsrAB sequences. The most parsimonious interpretation of these data is that dsrAB genes from ancestors of as-yet-unrecognized sulfate reducers within the ?-Proteobacteria were laterally transferred across divisions. A number of insertions and deletions in the DsrAB alignment independently support these inferred lateral acquisitions of dsrAB genes. Evidence for a dsrAB lateral gene transfer event also was found within the ?-Proteobacteria, affecting Desulfobacula toluolica. The root of the dsr tree was inferred to be within the Thermodesulfovibrio lineage by paralogous rooting of the alpha and beta subunits. This rooting suggests that the dsrAB genes in Archaeoglobus species also are the result of an ancient lateral transfer from a bacterial donor. Although these findings complicate the use of dsrAB genes to infer phylogenetic relationships among sulfate reducers in molecular diversity studies, they establish a framework to resolve the origins and diversification of this ancient respiratory lifestyle among organisms mediating a key step in the biogeochemical cycling of sulfur. PMID:11567003

  16. Techno-economic evaluation of conditioning with sodium sulfite for bioethanol production from softwood.

    PubMed

    Cavka, Adnan; Martn, Carlos; Alriksson, Bjrn; Mrtsell, Marlene; Jnsson, Leif J

    2015-11-01

    Conditioning with reducing agents allows alleviation of inhibition of biocatalytic processes by toxic by-products generated during biomass pretreatment, without necessitating the introduction of a separate process step. In this work, conditioning of steam-pretreated spruce with sodium sulfite made it possible to lower the yeast and enzyme dosages in simultaneous saccharification and fermentation (SSF) to 1g/L and 5FPU/g WIS, respectively. Techno-economic evaluation indicates that the cost of sodium sulfite can be offset by benefits resulting from a reduction of either the yeast load by 0.68g/L or the enzyme load by 1FPU/g WIS. As those thresholds were surpassed, inclusion of conditioning can be justified. Another potential benefit results from shortening the SSF time, which would allow reducing the bioreactor volume and result in capital savings. Sodium sulfite conditioning emerges as an opportunity to lower the financial uncertainty and compensate the overall investment risk for commercializing a softwood-to-ethanol process. PMID:26232771

  17. Separation of sulfite, sulfate, and thiosulfate by ion chromatography with gradient elution

    SciTech Connect

    Sunden, T.; Lindgren, M.; Cedergren, A.; Siemer, D.D.

    1983-01-01

    A simple gradient apparatus, consisting of a peristaitic pump in addition to a standard high-pressure pump, is described. The device is used to make a single-run ion chromotographic separation of sulfite, sulfate, and thiosulfate in less than 15 min. This separation required a step gradient with 4.8 mM NaHCO/sub 3//4.7 mM Na/sub 2/CO/sub 3/ as start eluent and 6.9 mM NaHCO/sub 3//8.6 mM Na/sub 2/CO/sub 3/ is final eluent when two (4 x 50) mm Dionex anion precolumns in series were used as separator. The eluent compositions were simplex optimized.

  18. Final report on the safety assessment of sodium cetearyl sulfate and related alkyl sulfates as used in cosmetics.

    TOXLINE Toxicology Bibliographic Information

    Fiume M; Bergfeld WF; Belsito DV; Klaassen CD; Marks JG Jr; Shank RC; Slaga TJ; Snyder PW; Alan Andersen F

    2010-05-01

    Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.

  19. 21 CFR 172.822 - Sodium lauryl sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium lauryl sulfate. 172.822 Section 172.822... CONSUMPTION Multipurpose Additives § 172.822 Sodium lauryl sulfate. The food additive sodium lauryl sulfate... following specifications: (1) It is a mixture of sodium alkyl sulfates consisting chiefly of sodium...

  20. Novel colorimetric immunoassay for ultrasensitive monitoring of brevetoxin B based on enzyme-controlled chemical conversion of sulfite to sulfate.

    PubMed

    Lai, Wenqiang; Zhuang, Junyang; Tang, Dianping

    2015-02-25

    A simple colorimetric immunoassay for quantitative monitoring of brevetoxin B on a functionalized magnetic bead by using glucose oxidase (GOx)/antibrevetoxin antibody-labeled gold nanoparticle as the signal transduction tag was developed. The assay was carried out on the basis of GOx-controlled sulfite-to-sulfate chemical conversion with a silver(I)-3,3',5,5'-tetramethylbenzidine [Ag(I)-TMB] system. Initially, the sulfite was used as an inhibitor of Ag(I) to hinder the color development of TMB due to the formation of insoluble silver sulfite. Accompanying H2O2 generation with GOx-catalyzed glucose, the sulfite was converted into the sulfate, thus resulting in the colorless-to-blue change. Under the optimal conditions, the absorbance decreased with increasing brevetoxin B from 0.5 to 200 ng/kg with a detection limit of 0.1 ng/kg (ppt). The precision and specificity were acceptable. Furthermore, the methodology gave results matching well with the referenced brevetoxin ELISA kit for monitoring of spiked Musculista senhousia samples. PMID:25660549

  1. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium methyl sulfate. 173.385 Section 173.385... CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in... pectin by sulfuric acid and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It...

  2. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium methyl sulfate. 173.385 Section 173.385 Food... Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in pectin in... sulfuric acid and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It does not exceed...

  3. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium methyl sulfate. 173.385 Section 173.385... Sodium methyl sulfate. Sodium methyl sulfate may be present in pectin in accordance with the following... subsequent treatment with sodium bicarbonate. (b) It does not exceed 0.1 percent by weight of the pectin....

  4. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... pectin by sulfuric acid and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It does... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium methyl sulfate. 173.385 Section 173.385... CONSUMPTION Specific Usage Additives 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present...

  5. 40 CFR 415.170 - Applicability; description of the sodium dichromate and sodium sulfate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sodium dichromate and sodium sulfate production subcategory. 415.170 Section 415.170 Protection of... MANUFACTURING POINT SOURCE CATEGORY Sodium Dichromate and Sodium Sulfate Production Subcategory 415.170 Applicability; description of the sodium dichromate and sodium sulfate production subcategory. The provisions...

  6. 40 CFR 415.170 - Applicability; description of the sodium dichromate and sodium sulfate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sodium dichromate and sodium sulfate production subcategory. 415.170 Section 415.170 Protection of... MANUFACTURING POINT SOURCE CATEGORY Sodium Dichromate and Sodium Sulfate Production Subcategory 415.170 Applicability; description of the sodium dichromate and sodium sulfate production subcategory. The provisions...

  7. 40 CFR 415.170 - Applicability; description of the sodium dichromate and sodium sulfate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sodium dichromate and sodium sulfate production subcategory. 415.170 Section 415.170 Protection of... MANUFACTURING POINT SOURCE CATEGORY Sodium Dichromate and Sodium Sulfate Production Subcategory 415.170 Applicability; description of the sodium dichromate and sodium sulfate production subcategory. The provisions...

  8. 40 CFR 415.170 - Applicability; description of the sodium dichromate and sodium sulfate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sodium dichromate and sodium sulfate production subcategory. 415.170 Section 415.170 Protection of... MANUFACTURING POINT SOURCE CATEGORY Sodium Dichromate and Sodium Sulfate Production Subcategory 415.170 Applicability; description of the sodium dichromate and sodium sulfate production subcategory. The provisions...

  9. 40 CFR 415.170 - Applicability; description of the sodium dichromate and sodium sulfate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sodium dichromate and sodium sulfate production subcategory. 415.170 Section 415.170 Protection of... MANUFACTURING POINT SOURCE CATEGORY Sodium Dichromate and Sodium Sulfate Production Subcategory 415.170 Applicability; description of the sodium dichromate and sodium sulfate production subcategory. The provisions...

  10. Spinal reflexes in normal and sulfite oxidase deficient rats: effect of sulfite exposure.

    PubMed

    Kkatay, V; Gen, O; Kocamaz, E; Emmungil, G; Erken, Ha; Bagci, H

    2008-04-01

    Sulfites, which are commonly used as food preservatives, are continuously formed in the body during metabolism of sulfur-containing amino acids. Sulfite is oxidized to sulfate ion by sulfite oxidase (SOX, EC. 1.8.3.1). Although sulfite treatment has been reported to increase the excitability of some neurons in vitro, the possible effects of sulfite on neuronal excitability in vivo remain unclear. The aim of this study was to investigate the possible effects of sulfite treatment on spinal reflexes in anesthetized SOX competent and deficient rats. For this purpose, male albino rats used in this study were divided into four groups such as control group (C), sulfite group (CS), SOX deficient group (D), and SOX deficient + sulfite group (DS). Rats in SOX deficient groups were made deficient in SOX by the administration of low molybdenum (Mo) diet (AIN 76, Research Dyets Inc., USA) with concurrent addition of 200-ppm tungsten (W) to their drinking water in the form of sodium tungstate (NaWO4). Sulfite in the form of sodium metabisulfite (Na2O5S2, 70 mg/kg) was given orally by adding to drinking water to the S and DS groups. Monosynaptic reflex potentials were recorded from the ipsilateral L5 ventral root. SOX deficient rats had an approximately 15-fold decrease in hepatic SOX activity compared with normal rats. This makes SOX activity of SOXD rats in the range of human SOX activity. The results of this study show that sulfite treatment significantly increases the amplitude of the monosynaptic reflex response in both S and DS groups with respect to their respective control groups (C and D). SOX deficient rats also had enhanced spinal reflexes when compared with control rats. In conclusion, sulfite has increasing effects on the excitability of spinal reflexes and we speculate that this compound may exhibit its effects on nervous system by affecting sodium channels. PMID:18842692

  11. Multiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20

    PubMed Central

    Leavitt, William D.; Cummins, Renata; Schmidt, Marian L.; Sim, Min S.; Ono, Shuhei; Bradley, Alexander S.; Johnston, David T.

    2014-01-01

    Dissimilatory sulfate reduction serves as a key metabolic carbon remineralization process in anoxic marine environments. Sulfate reducing microorganisms can impart a wide range in mass-dependent sulfur isotopic fractionation. As such, the presence and relative activity of these organisms is identifiable from geological materials. By extension, sulfur isotope records are used to infer the redox balance of marine sedimentary environments, and the oxidation state of Earth's oceans and atmosphere. However, recent work suggests that our understanding of microbial sulfate reduction (MSRs) may be missing complexity associated with the presence and role of key chemical intermediates in the reductive process. This study provides a test of proposed metabolic models of sulfate reduction by growing an axenic culture of the well-studied MSRs, Desulfovibrio alaskensis strain G20, under electron donor limited conditions on the terminal electron acceptors sulfate, sulfite or thiosulfate, and tracking the multiple S isotopic consequences of each condition set. The dissimilatory reduction of thiosulfate and sulfite produce unique minor isotope effects, as compared to the reduction of sulfate. Further, these experiments reveal a complex biochemistry associated with sulfite reduction. That is, under high sulfite concentrations, sulfur is shuttled to an intermediate pool of thiosulfate. Site-specific isotope fractionation (within thiosulfate) is very large (34ε ~ 30‰) while terminal product sulfide carries only a small fractionation from the initial sulfite (34ε < 10‰): a signature similar in magnitude to sulfate and thiosulfate reduction. Together these findings show that microbial sulfate reduction (MSR) is highly sensitive to the concentration of environmentally important sulfur-cycle intermediates (sulfite and thiosulfate), especially when thiosulfate and the large site-specific isotope effects are involved. PMID:25505449

  12. Effects of sulfhydryl compounds, carbohydrates, organic acids, and sodium sulfite on the formation of lysinoalanine in preserved egg.

    PubMed

    Luo, Xu-Ying; Tu, Yong-Gang; Zhao, Yan; Li, Jian-Ke; Wang, Jun-Jie

    2014-08-01

    To identify inhibitors for lysinoalanine formation in preserved egg, sulfhydryl compounds (glutathione, L-cysteine), carbohydrates (sucrose, D-glucose, maltose), organic acids (L-ascorbic acid, citric acid, DL-malic acid, lactic acid), and sodium sulfite were individually added at different concentrations to a pickling solution to prepare preserved eggs. Lysinoalanine formation as an index of these 10 substances was determined. Results indicate that glutathione, D-glucose, maltose, L-ascorbic acid, citric acid, lactic acid, and sodium sulfite all effectively diminished lysinoalanine formation in preserved egg albumen and yolk. When 40 and 80 mmol/L of sodium sulfite, citric acid, L-ascorbic acid, and D-glucose were individually added into the pickling solution, the inhibition rates of lysinoalanine in the produced preserved egg albumen and yolk were higher. However, the attempt of minimizing lysinoalanine formation was combined with the premise of ensuring preserved eggs quality. Moreover, the addition of 40 and 80 mmol/L of sodium sulfite, 40 and 80 mmol/L of D-glucose, 40 mmol/L of citric acid, and 40 mmol/L of L-ascorbic acid was optimal to produce preserved eggs. The corresponding inhibition rates of lysinoalanine in the albumen were approximately 76.3% to 76.5%, 67.6% to 67.8%, 74.6%, and 74.6%, and the corresponding inhibition rates of lysinoalanine in the yolk were about 68.7% to 69.7%, 50.6% to 51.8%, 70.4%, and 57.8%. It was concluded that sodium sulfite, D-glucose, L-ascorbic, and citric acid at suitable concentrations can be used to control the formation of lysinoalanine during preserved egg processing. PMID:25047093

  13. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  14. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum sodium sulfate. 182.1131 Section 182.1131...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of use. This substance is...

  15. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  16. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  17. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  18. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  19. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  20. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  1. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  2. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  3. Contribution of dissolved sulfates and sulfites in hydrogen sulfide emission from stagnant water bodies in Sri Lanka.

    PubMed

    Kularatne, K I A; Dissanayake, D P; Mahanama, K R R

    2003-08-01

    Accumulation of sulfur-containing compounds and their bacterial mediated reductions have led to the emission of pungent odors from stagnant water bodies. This study is focused on the contribution of inorganic sulfur compounds in the emission of hydrogen sulfide. The measured dissolved oxygen levels have demonstrated good negative correlations with the dissolved sulfide levels implying the oxygen deficiency is the key for the reduction of sulfate ion and sulfite ion to sulfide ion. Particularly, the dissolved molar fractions of sulfide from the total dissolved sulfur compounds (sulfates, sulfites and sulfides) have a very good correlation with the dissolved oxygen for the stagnant water bodies except the artificially aerated prawn farms. For the stagnant water bodies with significant correlations, linear regressions are reported for them to be utilized in estimating one component of the regression from the measurement of the other. The measured data were further utilized to estimate the levels of hydrogen sulfide gas. The pH of the water bodies has confined much of the dissolved sulfides in the form of bisulfide ion and they can be easily escaped to the atmosphere upon acidification due to industrial discharges and/or acidic precipitations. The estimated levels of hydrogen sulfide just above the water surface were plotted for the most polluted stagnant water body in Sri Lanka for the pH range of 5-10 and temperature range of 25-35 degrees C. PMID:12757791

  4. Enhanced generation of hydroxyl radical and sulfur trioxide anion radical from oxidation of sodium sulfite, nickel(II) sulfite, and nickel subsulfide in the presence of nickel(II) complexes.

    PubMed

    Shi, X; Dalal, N; Kasprzak, K S

    1994-09-01

    Electron spin resonance (ESR) spin trapping was utilized to investigate the generation of free radicals from oxidation of sodium sulfite, nickel(II) sulfite, and nickel subsulfide (Ni3S2) by ambient oxygen or H2O2 at pH 7.4. The spin trap used was 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Under ambient oxygen, a solution of sodium sulfite alone generated predominantly sulfur trioxide anion radical (.SO3-) due to the autoxidation of sulfite. Addition of nickel(II) chloride [Ni(II)] enhanced the .SO3- yield about 4-fold. Incubation of sulfite with Ni(II) in the presence of chelators such as tetraglycine, histidine, beta-alanyl-3-methyl-L-histidine (anserine), beta--L-histidine (carnosine), gamma-aminobutyryl-L-histidine (homocarnosine), glutathione, and penicillamine did not have any significant effect on that enhancement. In contrast, albumin, and especially glycylglycylhistidine (GlyGlyHis), augmented the enhancing effect of Ni(II) by factors of 1.4 and 4, respectively. Computer simulation analysis of the spin-adduct spectrum and formate scavenging experiment showed that the mixture of sodium sulfite, Ni(II), and GlyGlyHis generated both hydroxyl (.OH) radical and .SO3- radical, in the ratio of approximately 1:2. The free-radical spin adduct intensity reached its saturation level in about 5 min. The yield of the radical adducts could be slightly reduced by deferoxamine and very strongly reduced by diethylenetriaminepentaacetic acid (DTPA). Aqueous suspensions of sparingly soluble nickel(II) sulfite in the presence of air and GlyGlyHis generated surface-located .SO3- and .OH radicals. The same radicals were generated in Ni3S2 suspension in the presence of GlyGlyHis and H2O2, indicating sulfite production by oxidation of the sulfide moiety of this compound.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7843142

  5. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in... pectin by sulfuric acid and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It...

  6. 40 CFR 436.150 - Applicability; description of the sodium sulfate subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sodium sulfate subcategory. 436.150 Section 436.150 Protection of Environment ENVIRONMENTAL PROTECTION... Sodium Sulfate Subcategory 436.150 Applicability; description of the sodium sulfate subcategory. The provisions of this subpart are applicable to the processing of sodium sulfate. Sodium sulfate obtained...

  7. 40 CFR 436.150 - Applicability; description of the sodium sulfate subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sodium sulfate subcategory. 436.150 Section 436.150 Protection of Environment ENVIRONMENTAL PROTECTION... Sodium Sulfate Subcategory 436.150 Applicability; description of the sodium sulfate subcategory. The provisions of this subpart are applicable to the processing of sodium sulfate. Sodium sulfate obtained...

  8. Direct demonstration of the presence of coordinated sulfate in the reaction pathway of Arabidopsis thaliana sulfite oxidase using 33S labeling and ESEEM spectroscopy

    PubMed Central

    Astashkin, Andrei V.; Johnson-Winters, Kayunta; Klein, Eric L.; Byrne, Robert S.; Hille, Russ; Raitsimring, Arnold M.; Enemark, John H.

    2008-01-01

    Sulfite oxidase from Arabidopsis thaliana has been reduced at pH = 6 with sulfite labeled with 33S (nuclear spin I = 3/2), followed by reoxidation by ferricyanide to generate the Mo(V) state of the active center. To obtain information about the hyperfine interaction (hfi) of 33S with Mo(V), continuous wave EPR and electron spin echo envelope modulation (ESEEM) experiments have been performed. The interpretation of the EPR and ESEEM spectra was facilitated by a theoretical analysis of the nuclear transition frequencies expected for the situation of the nuclear quadrupole interaction being much stronger than the Zeeman and hyperfine interactions. The isotropic hfi constant of 33S determined in these experiments was about 3 MHz, which demonstrates the presence of coordinated sulfate in the sulfite-reduced low-pH form of the plant enzyme. PMID:17983221

  9. 21 CFR 172.822 - Sodium lauryl sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives 172.822 Sodium lauryl sulfate. The food additive sodium lauryl sulfate may be safely used in food in accordance with the following conditions: (a) The additive meets...

  10. Thermal energy storage composition comprising sodium sulfate decahydrate; sodium carbonate decahydrate; and sodium tetraborate decahydrate

    SciTech Connect

    Chen, J.C.

    1981-09-29

    A thermal energy storage composition is disclosed that stores heat upon melting and releases heat upon solidification. It is composed of a mixture of sodium sulfate decahydrate, sodium carbonate decahydrate, sodium borate decahydrate and a thickening agent. Its good heat transfer characteristics, relatively high latent heat of fusion, low cost, and favorable melting point allow this material to be particularly useful for space heating applications.

  11. Protective performances of two anti-graffiti treatments towards sulfite and sulfate formation in SO 2 polluted model environment

    NASA Astrophysics Data System (ADS)

    Carmona-Quiroga, Paula María; Panas, Itai; Svensson, Jan-Erik; Johansson, Lars-Gunnar; Blanco-Varela, María Teresa; Martínez-Ramírez, Sagrario

    2010-11-01

    Specific strategies for protection are being developed to counter both the staining and corrosive effects of polluted air in cities, as well as to allow for efficient removal of unwanted graffiti paintings. These protection strategies employ molecules with tailored functionalities, e.g. being hydrophobic, while maintaining porosity for molecular water vapour permeation. The present study employs SO 2 and water to probe the behaviors of two anti-graffiti treatments, a water-base fluoroalkylsiloxane ("Protectosil Antigraffiti" marketed by Degussa) and an organically modified silicate (Ormosil) synthesized from a polymer chain (polydimethyl siloxane, PDMS) and two network forming alkoxides (Zr propoxide and methyl triethoxy silane, MTES) dissolved in n-propanol, on five building materials, comprising limestone, aged lime mortar, hydrated cement mortar, granite, and brick material. The materials were exposed to a synthetic atmosphere for 20 h in a climate chamber, 0.78 ± 0.03 ppm of SO 2 and 95% RH. Diffuse reflectance Fourier transform infrared (DR-FTIR) spectra were registered before and after exposure in the climate chamber in the cases of both treated and untreated samples. DR-FTIR, scanning electron microscope (SEM) images and energy dispersive X-ray (EDX) analyses, suggest the anti-graffiti Ormosil to suppress formation of calcium sulfite hemihydrate (the primary initial product of the reaction of calcium compounds with SO 2 and water) on carbonate materials (limestone and lime mortar). In case of the granite, brick and cement mortar, Ormosil has a negligible influence on the SO 2 capture. While no sulfite formation was detected by DR-FTIR, gypsum is inferred to form due to metal oxides and minority compounds catalysed oxidation of sulfite to sulfate. In case of brick, this understanding finds support from SEM images as well as EDX. A priori presence of gypsum in hydrated cement mortars prevents positive identification by SEM. However, support for sulfur accumulation in hydrated cement mortar is provided by means of EDX. In case of a second anti-graffiti considered, Protectosil, no influence of the anti-graffiti treatment on the SO 2 uptake of any of the building materials was observed.

  12. 40 CFR 436.150 - Applicability; description of the sodium sulfate subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sodium sulfate subcategory. 436.150 Section 436.150 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Sodium Sulfate Subcategory 436.150 Applicability; description of the sodium sulfate subcategory. The provisions of this subpart are applicable to the processing of sodium sulfate. Sodium...

  13. 40 CFR 436.150 - Applicability; description of the sodium sulfate subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sodium sulfate subcategory. 436.150 Section 436.150 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Sodium Sulfate Subcategory 436.150 Applicability; description of the sodium sulfate subcategory. The provisions of this subpart are applicable to the processing of sodium sulfate. Sodium...

  14. 40 CFR 436.150 - Applicability; description of the sodium sulfate subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sodium sulfate subcategory. 436.150 Section 436.150 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Sodium Sulfate Subcategory 436.150 Applicability; description of the sodium sulfate subcategory. The provisions of this subpart are applicable to the processing of sodium sulfate. Sodium...

  15. Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes

    SciTech Connect

    Minz, D.; Flax, J.L.; Green, S.J.; Muyzer, G.; Cohen, Y.; Wagner, M.; Rittmann, B.E.; Stahl, D.A.

    1999-10-01

    Sequence analysis of genes encoding dissimilatory sulfite reductase (DSR) was used to identify sulfate-reducing bacteria in a hypersaline microbial mat and to evaluate their distribution in relation to levels of oxygen. The most highly diverse DSR sequences, most related to those of the Desulfonema-like organisms within the {delta}-proteobacteria, were recovered from oxic regions of the mat. This observation extends those of previous studies by the authors and others associating Desulfonema-like organisms with oxic habitats.

  16. Effects of sodium dodecyl sulfate of polyphenoloxidase

    SciTech Connect

    Moore, B.M.; Flurkey, W.H. )

    1989-04-01

    The effects of sodium dodecyl sulfate (SDS) on the enzymatic and physical characteristics of purified broad bean polyphenoloxidase (PPO) were examined. A sigmoidal increase in PPO activation was observed with increasing SDS concentrations. Half maximal activation occurred at .9 mM SDS well below the CMC of 3.5 mM. No apparent changes in the Km for catechol, pH optimum, of I{sub 50} for tropolone were observed in the presence vs absence of SDS. Thermal inactivation and binding of {sup 14}C dopa increased in the presence of SDS. Analytical ultracentrifugation and HPLC-SEC indicated that SDS did not change the apparent size of the PPO under nondenaturing conditions. Scanning fluorescence spectroscopy showed an increase in intrinsic trp/tyr fluorescence at approximately the same concentration in which SDS activation began. Further addition of SDS caused a large increase in intrinsic fluorescence. These results suggest the SDS causes an apparent conformational change induced by SDS binding which leads to enzyme activation.

  17. New insights into an ancient antibrowning agent: formation of sulfophenolics in sodium hydrogen sulfite-treated potato extracts.

    PubMed

    Narvez-Cuenca, Carlos-Eduardo; Kuijpers, Tomas F M; Vincken, Jean-Paul; de Waard, Pieter; Gruppen, Harry

    2011-09-28

    The effect of sodium hydrogen sulfite (S), used as antibrowning agent, on the phenolic profile of potato extracts was investigated. This extract was compared to one obtained in the presence of ascorbic acid (A). In the presence of A, two major compounds were obtained, 5-O-caffeoylquinic acid (5-CQA) and 4-O-caffeoyl quinic acid. With S, their 2'-sulfo-adducts were found instead, the structures of which were confirmed by nuclear magnetic resonance spectroscopy and mass spectrometry. Also, for minor caffeoyl derivatives and quercetin glycosides, the corresponding sulfo-adducts were observed. Feruloyl and sinapoyl derivatives were not chemically affected by the presence of S. Polyphenol oxidase (PPO) was thought to be responsible for the formation of the sulfo-adducts. This was confirmed by preparing 2'-sulfo-5-O-caffeoyl quinic acid in a model system using 5-CQA, sodium hydrogen sulfite, and PPO. This sulfo-adduct exhibited a small bathochromic shift (?max 329 nm) as compared to 5-CQA (?max 325 nm) and a strong hypochromic shift with an extinction coefficient of 9357395 M(-1) cm(-1) as compared to 18494196 M(-1) cm(-1), respectively. The results suggest that whenever S is used as an antibrowning agent, the O-quinone formed with PPO reacts with S to produce sulfo-O-diphenol, which does not participate in browning reactions. PMID:21854040

  18. Radiolysis and photolysis of sodium sulfate crystalline hydrate

    NASA Astrophysics Data System (ADS)

    Tenchurina, A. R.; Sal'keeva, A. K.

    2016-03-01

    The thermal treatment of sodium sulfate was found to affect its optical and luminescent properties when activated with trivalent rare-earth ions. The influence of crystal water molecules on radiation processes in sodium sulfate was studied. The interactions of atomic hydrogen with ions and radicals were calculated by the semiempirical MNDO quantum-chemical method. The hydrogen atom was found to form stable complexes with all ions and radicals. The ions and radicals of the sulfate subsystem play the role of traps for hydrogen atoms and escape recombination, giving rise to recombination luminescence at 150 K during UV excitation of the crystalline hydrate.

  19. Dissociation and reduction of covalent ?-lactoglobulin-quinone adducts by dithiothreitol, tris(2-carboxyethyl)phosphine, or sodium sulfite.

    PubMed

    Jongberg, Sisse; Lund, Marianne N; Otte, Jeanette

    2015-06-01

    Covalent protein-phenol adducts, generated by reaction of protein nucleophiles with quinones, have recently attracted increased attention because the interactions change the functionality and physicochemical properties of proteins in biological and food systems. The formation of such covalent adducts between ?-lactoglobulin (?-LG) and the quinone of 4-methylcatechol, 4-methylbenzoquinone (4MBQ), and subsequent reduction by dithiothreitol (DTT), tris(2-carboxyethyl)phosphine (TCEP), or sodium sulfite was investigated by mass spectrometry. The results showed that 19.0 8.8% of ?-LG reacted with 4MBQ when present in equimolar ratio at 20C (pH 8.0) to yield the protein-phenol adduct (?-LG-Q). Following treatment with sulfite, DTT, or TCEP, 75, 68, or 36%, respectively, of the formed ?-LG-Q adduct dissociated. Different reaction mechanisms were proposed for the reduction of ?-LG and ?-LG-Q by each of the reducing agents. These results show that on reductive sample preparation for analysis of protein samples, not only are protein polymers formed through oxidative disulfide bonds reduced into the individual protein constituents but also a large part of any protein-phenol adducts present will dissociate and, thus, give a false picture of the level of protein-protein interactions that have occurred in the sample. PMID:25700864

  20. 40 CFR Appendix A to Subpart Hhhh... - Method for Determining Free-Formaldehyde in Urea-Formaldehyde Resins by Sodium Sulfite (Iced...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Method for Determining Free-Formaldehyde in Urea-Formaldehyde Resins by Sodium Sulfite (Iced & Cooled) A Appendix A to Subpart HHHH of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS...

  1. 40 CFR Appendix A to Subpart Hhhh... - Method for Determining Free-Formaldehyde in Urea-Formaldehyde Resins by Sodium Sulfite (Iced...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Method for Determining Free-Formaldehyde in Urea-Formaldehyde Resins by Sodium Sulfite (Iced & Cooled) A Appendix A to Subpart HHHH of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS...

  2. Sodium sulfate induced hot corrosion in gas turbines

    SciTech Connect

    Im, K.H.; Ahluwalia, R.K.

    1989-04-01

    A mass transfer model is developed that considers diffusive and chemical aspects of sodium sulfate formation and deposition on cooled turbine blades. The roles of gas phase condensation of sodium sulfate and multicomponent diffusion across a chemically frozen thin boundary layer are elaborated. A rational procedure is presented for correlating material wastage with laboratory weight gain data obtained by exposing alloy specimens pre-coated with a thin film of salt to SO/sub 2/-SO/sub 3/ in an oxygen environment. The sodium sulfate mass transfer model is used in conjunction with the correlation to project blade corrosion and lifetime as a function of gas turbine inlet temperature, blade cooling, and sodium and sulfur contaminant concentration. 19 refs., 16 figs.

  3. Sodium sulfate - Vaporization thermodynamics and role in corrosive flames

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Stearns, C. A.; Fryburg, G. C.

    1975-01-01

    Mass spectrometer experiments were conducted to determine the thermodynamic properties of gaseous Na2SO4, and these data were used in a computer program to calculate equilibrium flame compositions and temperatures for representative turbine engine and burner rig flames. The work is important in that sodium sulfate is the major phase recovered from turbine surfaces after instances of corrosion, due to the presence of sulfur in fuels and sodium chloride in intake air.

  4. Optimization of alkaline sulfite pretreatment and comparative study with sodium hydroxide pretreatment for improving enzymatic digestibility of corn stover.

    PubMed

    Liu, Huan; Pang, Bo; Wang, Haisong; Li, Haiming; Lu, Jie; Niu, Meihong

    2015-04-01

    In this study, alkaline sulfite pretreatment of corn stover was optimized. The influences of pretreatments on solid yield, delignification, and carbohydrate recovery under different pretreatment conditions and subsequent enzymatic hydrolysis were investigated. The effect of pretreatment was evaluated by enzymatic hydrolysis efficiency and the total sugar yield. The optimum pretreatment conditions were obtained, as follows: the total titratable alkali (TTA) of 12%, liquid/solid ratio of 6:1, temperature of 140 C, and holding time of 20 min. Under those conditions, the solid yield was 55.24%, and the removal of lignin was 82.68%. Enzymatic hydrolysis rates of glucan and xylan for pretreated corn stover were 85.38% and 70.36%, and the total sugar yield was 74.73% at cellulase loading of 20 FPU/g and ?-glucosidase loading of 10 IU/g for 48 h. Compared with sodium hydroxide pretreatment with the same amount of total titratable alkali, the total sugar yield was raised by about 10.43%. Additionally, the corn stover pretreated under the optimum pretreatment conditions was beaten by PFI at 1500 revolutions. After beating, enzymatic hydrolysis rates of glucan and xylan were 89.74% and 74.06%, and the total sugar yield was 78.58% at the same enzymatic hydrolysis conditions. Compared with 1500 rpm of PFI beating after sodium pretreatment with the same amount of total titratable alkali, the total sugar yield was raised by about 14.05%. PMID:25773993

  5. Community composition and distribution of sulfate- and sulfite-reducing prokaryotes in sediments from the Changjiang estuary and adjacent East China Sea

    NASA Astrophysics Data System (ADS)

    He, Hui; Zhen, Yu; Mi, Tiezhu; Xu, Bochao; Wang, Guoshan; Zhang, Yu; Yu, Zhigang

    2015-11-01

    Sulfate- and sulfite-reducing prokaryotes (SSRP) communities play a vital role in both sulfur and carbon cycles. Community composition and abundance of SSRP were investigated using dissimilatory sulfite reductase β subunit (dsrB) gene sequencing in sediments from the Changjiang estuary and its adjacent area in the East China Sea (ECS). Clone libraries were constructed and real-time fluorescence quantitative polymerase chain reaction (qPCR) was applied to understand the community information of SSRP. In addition to sequences affiliated to sulfate-reducing prokaryotes (SRP), those affiliated with sulfite-reducing prokaryotes (SiRP) were also observed. Four phylotypes of SRP in this study showed genetic similarity to Desulfobulbaceae, Syntrophobacteraceae, Desulfobacteraceae and Peptococcaceae, and an unknown group that could not be clearly affiliated with known lineages was found. Salinity, temperature and contents of total organic carbon (TOC) were most closely correlated with the SSRP communities by canonical correspondence analysis (CCA). 210Pb activities demonstrated the sedimentary environment at S33 was more stable than that at S31. Intense resuspension and reconstruction of sediments made the vertical abundance profile of SSRP fluctuate violently. For surface sediments, the dsrB gene copy numbers near the Changjiang estuary were higher than those in the mouth of Hangzhou Bay and the mud deposits along the Zhejiang coast, and contents of TOC were positively related to the copy numbers of dsrB gene. Our data provided valuable information to achieve a better understanding of the potential role of SSRP in sediments from the Changjiang estuary and adjacent East China Sea.

  6. Mechanism for forming hydrogen chloride and sodium sulfate from sulfur trioxide, water, and sodium chloride

    NASA Technical Reports Server (NTRS)

    Anderson, A. B.

    1984-01-01

    A molecular orbital study of sodium sulfate and hydrogen chloride formation from sulfur trioxide, water, and sodium chloride shows no activation barrier, in agreement with recent experimental work of Kohl, Fielder, and Stearns. Two overall steps are found for the process. First, gas-phase water reacts with sulfur trioxide along a pathway involving a linear O-H-O transition state yielding closely associated hydroxyl and bisulfite which rearrange to become a hydrogen sulfate molecule. Then the hydrogen sulfate molecule transfers a hydrogen atom to a surface chloride in solid sodium chloride while an electron and a sodium cation simultaneously transfer to yield sodium bisulfate and gas-phase hydrogen chloride. This process repeats. Both of these steps represent well-known reactions for which mechanisms have not been previously determined.

  7. Enhanced growth of methane-propane clathrate hydrate crystals with sodium dodecyl sulfate, sodium tetradecyl sulfate, and sodium hexadecyl sulfate surfactants

    NASA Astrophysics Data System (ADS)

    Yoslim, Jeffry; Linga, Praveen; Englezos, Peter

    2010-12-01

    In the present study the effect of three commercially available anionic surfactants on the hydrate growth from a gas mixture of 90.5 mol% methane/9.5 mol% propane mixture was investigated. The surfactants used were sodium dodecyl sulfate (SDS), sodium tetradecyl sulfate (STS), and sodium hexadecyl sulfate (SHS). The morphology of the growing crystals and the gas consumption were observed during the experiments. The results showed that in the presence of surfactants, branches of porous fibre-like crystals were formed instead of dendritic crystals formed in the absence of any additive. In addition, extensive hydrate crystal growth on the crystallizer walls and a "mushy" hydrate layer instead of a thin crystal film appeared at the gas/water interface. Finally, the addition of SDS with concentration range between 242 and 2200 ppm (Δ T=13.1 K) was found to increase the mole consumption for hydrate formation by approximately 14 times compared to pure water. This increase is related to the change in hydrate morphology, whereby a more porous hydrate forms with enhanced water/gas contacts.

  8. Synthesis and solid state properties of the 4-naphthyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane, cyclic sulfate not available through sulfite oxidation procedure

    NASA Astrophysics Data System (ADS)

    Bredikhina, Zemfira A.; Gubaidullin, Aidar T.; Bredikhin, Alexander A.

    2010-12-01

    The chiral adrenoblocker propranolol precursor 4-naphthyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane, 2, was obtained in racemic and scalemic form. It was found that sulfates 2 are practically unavailable through the standard Ru-catalyzed sulfite oxidation procedure, but could be obtained by the direct action of SO 2Cl 2 on the corresponding vicinal diols 3. The published properties of the sulfate were corrected. Thermodynamic characteristics and binary melting phase diagram were evaluated for compound 2 by DSC. The crystal structure of rac- and scal- 2 was established by single crystal X-ray analysis and the absolute configuration of scal- 2 was established by the Flack method. The flexible nature of the sulfur-containing cycle, and the sensitivity of the compound conformation to homo- and heterochiral crystal environment was demonstrated.

  9. 21 CFR 172.822 - Sodium lauryl sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium lauryl sulfate. 172.822 Section 172.822 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.822...

  10. Subclinical, non-erythematous irritation with an open assay model (washing): sodium lauryl sulfate (SLS) versus sodium laureth sulfate (SLES).

    PubMed

    Charbonnier, V; Morrison, B M; Paye, M; Maibach, H I

    2001-03-01

    Compared to exaggerated hand washing procedures, an open non-exaggerated assay better approximates consumer surfactant use. Our goal was to observe skin surface modifications induced by an open test with regard to discriminating between surfactant solutions. This human in vivo assay provided information about the effect of only three washes at the laboratory and a week of at-home use. Dorsal hand and volar forearm were compared. The results demonstrated that this clinical model permits exploration of subclinical surfactant-induced irritation. Both the volar forearm and the dorsal hand are capable of discriminating between the effects of sodium lauryl sulfate (SLS) and sodium laureth sulfate (SLES). Squamometry proved to be a sensitive assessment technique for detecting surfactant-induced subclinical skin surface alterations and for differentiating surfactant effects in this open application assay, in as few as three washes. PMID:11278060

  11. Physicochemical effects on sulfite transformation in a lipid-rich Chlorella sp. strain

    NASA Astrophysics Data System (ADS)

    Liang, Fang; Wen, Xiaobin; Luo, Liming; Geng, Yahong; Li, Yeguang

    2014-11-01

    SO2 is very rapidly hydrated to sulfurous acid in water solution at pH value above 6.0, whereby sulfite is yielded from the disassociation of protons. We aimed to improve the sulfite transformation efficiency and provide a basis for the direct utilization of SO2 from flue gas by a microalgal suspension. Chlorella sp. XQ-20044 was cultured in a medium with 20 mmol/L sodium sulfite under different physicochemical conditions. Under light conditions, sulfite concentration in the algal suspension reduced linearly over time, and was completely converted into sulfate within 8 h. The highest sulfite transformation rate (3.25 mmol/(L·h)) was obtained under the following conditions: 35°C, light intensity of 300 μmol/(m2·s), NaHCO3 concentration of 6 g/L, initial cell density (OD540) of 0.8 and pH of 9-10. There was a positive correlation between sulfite transformation rate and the growth of Chlorella, with the conditions favorable to algal growth giving better sulfite transformation. Although oxygen in the air plays a role in the transformation of SO2- 3 to SO2- 4, the transformation is mainly dependent on the metabolic activity of algal cells. Chlorella sp. XQ-20044 is capable of tolerating high sulfite concentration, and can utilize sulfite as the sole sulfur source for maintaining healthy growth. We found that sulfite ≤20 mmol/L had no obvious effect on the total lipid content and fatty acid profiles of the algae. Thus, the results suggest it is feasible to use flue gas for the mass production of feedstock for biodiesel using Chlorella sp. XQ-20044, without preliminary removal of SO2, assuming there is adequate control of the pH.

  12. Destabilization of yttria-stabilized zirconia induced by molten sodium vanadate-sodium sulfate melts

    NASA Technical Reports Server (NTRS)

    Nagelberg, A. S.; Hamilton, J. C.

    1985-01-01

    The extent of surface destabilization of ZrO2 - 8 wt percent Y2O3 ceramic disks was determined after exposure to molten salt mixtures of sodium sulfate containing up to 15 mole percent sodium metavanadate (NaVO3) at 1173 K. The ceramic surface was observed to transform from the cubic/tetragonal to monoclinic phase, concurrent with chemical changes in the molten salt layer in contact with the ceramic. Significant attack rates were observed in both pure sulfate and metavanadate sulfate melts. The rate of attack was found to be quite sensitive to the mole fraction of vanadate in the molten salt solution and the partial pressure of sulfur trioxide in equilibrium with the salt melt. The observed parabolic rate of attack is interpreted to be caused by a reaction controlled by diffusion in the salt that penetrates into the porous layer formed by the destabilization. The parabolic rate constant in mixed sodium metavanadate - sodium sulfate melts was found to be proportional to the SO3 partial pressure and the square of the metavanadate concentration. In-situ Raman spectroscopic measurements allowed simultaneous observations of the ceramic phases and salt chemistry during the attack process.

  13. Sulfite Reductase Defines a Newly Discovered Bottleneck for Assimilatory Sulfate Reduction and Is Essential for Growth and Development in Arabidopsis thaliana[C][W

    PubMed Central

    Khan, Muhammad Sayyar; Haas, Florian Heinrich; Allboje Samami, Arman; Moghaddas Gholami, Amin; Bauer, Andrea; Fellenberg, Kurt; Reichelt, Michael; Hnsch, Robert; Mendel, Ralf R.; Meyer, Andreas J.; Wirtz, Markus; Hell, Rdiger

    2010-01-01

    The role of sulfite reductase (SiR) in assimilatory reduction of inorganic sulfate to sulfide has long been regarded as insignificant for control of flux in this pathway. Two independent Arabidopsis thaliana T-DNA insertion lines (sir1-1 and sir1-2), each with an insertion in the promoter region of SiR, were isolated. sir1-2 seedlings had 14% SiR transcript levels compared with the wild type and were early seedling lethal. sir1-1 seedlings had 44% SiR transcript levels and were viable but strongly retarded in growth. In mature leaves of sir1-1 plants, the levels of SiR transcript, protein, and enzymatic activity ranged between 17 and 28% compared with the wild type. The 28-fold decrease of incorporation of 35S label into Cys, glutathione, and protein in sir1-1 showed that the decreased activity of SiR generated a severe bottleneck in the assimilatory sulfate reduction pathway. Root sulfate uptake was strongly enhanced, and steady state levels of most of the sulfur-related metabolites, as well as the expression of many primary metabolism genes, were changed in leaves of sir1-1. Hexose and starch contents were decreased, while free amino acids increased. Inorganic carbon, nitrogen, and sulfur composition was also severely altered, demonstrating strong perturbations in metabolism that differed markedly from known sulfate deficiency responses. The results support that SiR is the only gene with this function in the Arabidopsis genome, that optimal activity of SiR is essential for normal growth, and that its downregulation causes severe adaptive reactions of primary and secondary metabolism. PMID:20424176

  14. Preparation and anticoagulation activity of sodium cellulose sulfate.

    PubMed

    Wang, Zhao Mei; Li, Lin; Zheng, Bi Sheng; Normakhamatov, Nodirali; Guo, Si Yuan

    2007-10-01

    Semi-synthesis of cellulose sulfate sodium (Na-MCS) was carried out by sulfation of microcrystalline cellulose (MCC) with chlorosulfonic acid-dimethylformamide complex as sulfating agent. As shown by FT-IR, NMR spectroscopy, and elemental analysis, the sulfation occurred mainly at C6, partially at C2, and no substitution at C3. The substitution degree ranged from 1.10 to 1.70 and the average molecular weight is between 1.1 and 3.5 x 10(4)Da. The anticoagulant efficacy and its possible mechanism were investigated using in vitro, in vivo coagulation assays and amidolytic tests in comparison with heparin. Results indicated that Na-MCS exhibited higher anticoagulation activity based on activated partial thromboplastin time (APTT) assay and prolonged the thrombin time (TT) to a lesser extent than heparin. No effect was detected on the prothrombin time (PT). Subcutaneous administration of Na-MCS to mice increased the clotting time (CT) in a moderate dose-dependent manner with a longer duration. Na-MCS exhibited anticoagulation activity mainly by accelerating the inhibition of antithrombin III (AT-III) on coagulation factors FIIa and FXa in plasma. PMID:17602735

  15. 40 CFR Appendix A to Subpart Hhhh... - Method for Determining Free-Formaldehyde in Urea-Formaldehyde Resins by Sodium Sulfite (Iced...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (class A). 3.2.5One 10-mL pipette (class A). 3.2.6One 50-mL graduated cylinder (class A). 3.2.7A pH meter, standardized using pH 7 and pH 10 buffers. 3.2.8Magnetic stirrer. 3.2.9Magnetic stirring bars. 3.2.10Several 5... mL of 1 M sodium sulfite into a stirred 250-mL beaker. 3.5.1.2Using a standardized pH meter,...

  16. 40 CFR Appendix A to Subpart Hhhh... - Method for Determining Free-Formaldehyde in Urea-Formaldehyde Resins by Sodium Sulfite (Iced...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (class A). 3.2.5One 10-mL pipette (class A). 3.2.6One 50-mL graduated cylinder (class A). 3.2.7A pH meter, standardized using pH 7 and pH 10 buffers. 3.2.8Magnetic stirrer. 3.2.9Magnetic stirring bars. 3.2.10Several 5... mL of 1 M sodium sulfite into a stirred 250-mL beaker. 3.5.1.2Using a standardized pH meter,...

  17. Precipitating Sodium Dodecyl Sulfate to Create Ultrastable and Stimulable Foams.

    PubMed

    Zhang, Li; Mikhailovskaya, Alesya; Yazhgur, Pavel; Muller, Franois; Cousin, Fabrice; Langevin, Dominique; Wang, Nan; Salonen, Anniina

    2015-08-10

    Ultrastable foams are made very simply by adding salt (NaCl or KCl) to sodium dodecyl sulfate. The addition of high concentrations of salt leads to the precipitation of the surfactant on the bubble surfaces and as crystals in the interstices between the bubbles. As a consequence, the ageing of the foams is stopped to make them stable indefinitely, or until they are heated above the melting temperature of the crystals. The use of KCl is shown to be much more effective than that of NaCl because potassium dodecyl sulfate has a higher melting temperature and faster rates of crystallization. The crystalline structures have been investigated inside the foam using small angle neutron scattering. The larger lattice spacing of the crystals formed with NaCl in comparison with KCl has been evidenced. These simple temperature stimulable foams could have many potential applications. PMID:26120060

  18. Diffusion of sodium dodecyl sulfate micelles in agarose gels.

    PubMed

    Musnicki, Wyatt J; Lloyd, Nathan W; Phillips, Ronald J; Dungan, Stephanie R

    2011-04-01

    The gradient diffusion of ionic sodium dodecyl sulfate micelles in agarose gel was investigated at moderate concentrations above the CMC. Of particular interest were the effects of micelle, gel, and sodium chloride concentration on the micelle diffusivity. Holographic interferometry was used to measure the gradient diffusion coefficient at three sodium chloride concentrations (0, 0.03, 0.10 M), three gel concentrations (0, 1, 2 wt%), and several surfactant concentrations. Time-resolved fluorescence quenching was used to measure aggregation numbers both in solution and gel. The micelle diffusivity increased linearly with surfactant concentration at the two larger sodium chloride concentrations and all gel concentrations. In general, the strength of this effect increased with decreasing sodium chloride concentration and increased with gel concentration. This behavior is evidence of decreasing micelle-micelle electrostatic interactions with increasing sodium chloride concentrations, and increasing excluded volume effects and hydrodynamic screening with increasing gel concentration, respectively. The only exception was at 0.1M sodium chloride and 2 wt% agarose, which showed a slight reduction in the slope compared to 1 wt% agarose. It was found that the concentration effect is quite strong for charged solutes: at a NaCl concentration of 0.03 M in a 2% agarose gel, in a solution with 3% SDS micelles by volume, the micelle diffusion coefficient is doubled relative to its value in the same gel at infinite dilution. The extrapolated, infinite-dilution diffusion coefficients and the rate at which the micelle diffusivity increased with surfactant concentration were compared with predictions of previously published theories in which the micelles are treated as charged, colloidal spheres and the gel as a Brinkman medium. The experimental data and theoretical predictions were in good agreement. PMID:21272891

  19. Amperometric Determination of Sulfite by Gas Diffusion-Sequential Injection with Boron-Doped Diamond Electrode

    PubMed Central

    Chinvongamorn, Chakorn; Pinwattana, Kulwadee; Praphairaksit, Narong; Imato, Toshihiko; Chailapakul, Orawon

    2008-01-01

    A gas diffusion sequential injection system with amperometric detection using a boron-doped diamond electrode was developed for the determination of sulfite. A gas diffusion unit (GDU) was used to prevent interference from sample matrices for the electrochemical measurement. The sample was mixed with an acid solution to generate gaseous sulfur dioxide prior to its passage through the donor channel of the GDU. The sulfur dioxide diffused through the PTFE hydrophobic membrane into a carrier solution of 0.1M phosphate buffer (pH 8)/0.1% sodium dodecyl sulfate in the acceptor channel of the GDU and turned to sulfite. Then the sulfite was carried to the electrochemical flow cell and detected directly by amperometry using the boron-doped diamond electrode at 0.95 V (versus Ag/AgCl). Sodium dodecyl sulfate was added to the carrier solution to prevent electrode fouling. This method was applicable in the concentration range of 0.2-20 mg SO32?/L and a detection limit (S/N = 3) of 0.05 mg SO32?/L was achieved. This method was successfully applied to the determination of sulfite in wines and the analytical results agreed well with those obtained by iodimetric titration. The relative standard deviations for the analysis of sulfite in wines were in the range of 1.0-4.1 %. The sampling frequency was 65 h?1.

  20. A precise spectrophotometric method for measuring sodium dodecyl sulfate concentration.

    PubMed

    Rupprecht, Kevin R; Lang, Ewa Z; Gregory, Svetoslava D; Bergsma, Janet M; Rae, Tracey D; Fishpaugh, Jeffrey R

    2015-10-01

    Sodium dodecyl sulfate (SDS) is used to denature and solubilize proteins, especially membrane and other hydrophobic proteins. A quantitative method to determine the concentration of SDS using the dye Stains-All is known. However, this method lacks the accuracy and reproducibility necessary for use with protein solutions where SDS concentration is a critical factor, so we modified this method after examining multiple parameters (solvent, pH, buffers, and light exposure). The improved method is simple to implement, robust, accurate, and (most important) precise. PMID:26150094

  1. Fate and effects of the surfactant sodium dodecyl sulfate.

    PubMed

    Singer, M M; Tjeerdema, R S

    1993-01-01

    Sodium dodecyl sulfate is the most widely used of the anionic alkyl sulfate surfactants. Its surface-active properties make it important in hundreds of household and industrial cleaners, personal care products, and cosmetics. It is also used in several types of industrial manufacturing processes, as a delivery aid in pharmaceuticals, and in biochemical research involving electrophoresis. SDS synthesis is a relatively simple process involving the sulfation of 1-dodecanol followed by neutralization with a cation source. Purification is accomplished through repeated extraction. It is available commercially in both broad-cut and purified forms. Although its environmental occurrence arises mainly from its presence in complex domestic and industrial effluents, SDS is also directly released in some applications (e.g., oil dispersants and pesticides). Although surfactants are known to significantly contribute to the toxicity of some effluents, no official water quality standards currently exist. Research has shown SDS to be highly biodegradable by a large number of naturally occurring bacteria, and degradation is generally reported to be > or = 90% within 24 hr. The process involves initial enzymatic sulfate liberation and conversion to dodecanoic acid, followed by either beta-oxidative shortening or elongation and desaturation. All surfactant properties are lost after initial sulfate hydrolysis. SDS can enhance absorption of chemicals through skin, gastrointestinal mucosa, and other mucous membranes. Thus, it is used in transepidermal, nasal, and ocular drug delivery systems and to enhance the intestinal absorption of poorly absorbed drugs; enhancement is concentration dependent. Human exposure is mainly through oral ingestion and dermal contact, although cases of respiratory exposure are known. The main sources of daily intake are ingestion of personal care products, residues on insufficiently rinsed utensils, and contaminated drinking water. Uptake, distribution, and excretion of SDS are all rapid. In fish, uptake in various tissues plateaus within 24-72 hr, with elimination occurring within < 24-48 hr; selective accumulation occurs in the hepatopancreas and gall bladder. In mammals, it is readily absorbed via the intestine, colon, and skin. Metabolism is similar in fish and mammals, proceeding from initial omega-oxidation to a carboxylic acid, then to beta-oxidation to butyric acid 4-sulfate, which is finally nonenzymatically desulfurated to gamma-butyrolactone and inorganic sulfate. SDS elicits both physical and biochemical effects on cells, with the membrane the primary target structure. Effects are concentration dependent and range from loss of barrier function and increased permeability to complete cell lysis. Hemolysis in mammals is pH dependent.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8234943

  2. Studies on the bioavailability of deoxynivalenol (DON) and DON sulfonate (DONS) 1, 2, and 3 in pigs fed with sodium sulfite-treated DON-contaminated maize.

    PubMed

    Paulick, Marleen; Winkler, Janine; Kersten, Susanne; Schatzmayr, Dian; Schwartz-Zimmermann, Heidi Elisabeth; Dnicke, Sven

    2015-11-01

    Deoxynivalenol (DON) exposure of pigs might cause serious problems when critical dietary toxin concentrations are exceeded. As DON contamination of agricultural crops cannot be completely prevented, detoxification measures are needed. Wet preservation with sodium sulfite resulted in a significant DON reduction of naturally-contaminated maize in previous experiments. The preserved material had a characteristic DON sulfonates (DONS) pattern. DONS is known to be less toxic than DON but its stability was shown to depend on pH, which gives rise to the question if a back-conversion to DON occurs in vivo. Therefore, the toxicokinetics and bioavailability of DON and DONS were studied in pigs. After the administration of a single oral or intravenous bolus of DON or DONS, serial blood samples were collected and subsequently analyzed. DONS was not detectable after oral administration of DONS mixtures. The results showed further that the bioavailability of DONS as DON in pigs fed maize preserved wet with sodium sulfite was significantly decreased compared to untreated control maize (DON), indicating that DONS obviously did not convert back to DON to a large extent in vivo. Moreover, the fact that DONS was not detectable in systemic blood requires further investigations regarding their ingestive and/or metabolic fate. PMID:26556376

  3. Studies on the Bioavailability of Deoxynivalenol (DON) and DON Sulfonate (DONS) 1, 2, and 3 in Pigs Fed with Sodium Sulfite-Treated DON-Contaminated Maize

    PubMed Central

    Paulick, Marleen; Winkler, Janine; Kersten, Susanne; Schatzmayr, Dian; Schwartz-Zimmermann, Heidi Elisabeth; Dänicke, Sven

    2015-01-01

    Deoxynivalenol (DON) exposure of pigs might cause serious problems when critical dietary toxin concentrations are exceeded. As DON contamination of agricultural crops cannot be completely prevented, detoxification measures are needed. Wet preservation with sodium sulfite resulted in a significant DON reduction of naturally-contaminated maize in previous experiments. The preserved material had a characteristic DON sulfonates (DONS) pattern. DONS is known to be less toxic than DON but its stability was shown to depend on pH, which gives rise to the question if a back-conversion to DON occurs in vivo. Therefore, the toxicokinetics and bioavailability of DON and DONS were studied in pigs. After the administration of a single oral or intravenous bolus of DON or DONS, serial blood samples were collected and subsequently analyzed. DONS was not detectable after oral administration of DONS mixtures. The results showed further that the bioavailability of DONS as DON in pigs fed maize preserved wet with sodium sulfite was significantly decreased compared to untreated control maize (DON), indicating that DONS obviously did not convert back to DON to a large extent in vivo. Moreover, the fact that DONS was not detectable in systemic blood requires further investigations regarding their ingestive and/or metabolic fate. PMID:26556376

  4. Final report of the amended safety assessment of sodium laureth sulfate and related salts of sulfated ethoxylated alcohols.

    PubMed

    Robinson, Valerie C; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2010-07-01

    Sodium laureth sulfate is a member of a group of salts of sulfated ethoxylated alcohols, the safety of which was evaluated by the Cosmetic Ingredient Review (CIR) Expert Panel for use in cosmetics. Sodium and ammonium laureth sulfate have not evoked adverse responses in any toxicological testing. Sodium laureth sulfate was demonstrated to be a dermal and ocular irritant but not a sensitizer. The Expert Panel recognized that there are data gaps regarding use and concentration of these ingredients. However, the overall information available on the types of products in which these ingredients are used and at what concentrations indicates a pattern of use. The potential to produce irritation exists with these salts of sulfated ethoxylated alcohols, but in practice they are not regularly seen to be irritating because of the formulations in which they are used. These ingredients should be used only when they can be formulated to be nonirritating. PMID:20634505

  5. On the Effect of Sodium Chloride and Sodium Sulfate on Cold Denaturation

    PubMed Central

    Pica, Andrea; Graziano, Giuseppe

    2015-01-01

    Both sodium chloride and sodium sulfate are able to stabilize yeast frataxin, causing an overall increase of its thermodynamic stability curve, with a decrease in the cold denaturation temperature and an increase in the hot denaturation one. The influence of low concentrations of these two salts on yeast frataxin stability can be assessed by the application of a theoretical model based on scaled particle theory. First developed to figure out the mechanism underlying cold denaturation in water, this model is able to predict the stabilization of globular proteins provided by these two salts. The densities of the salt solutions and their temperature dependence play a fundamental role. PMID:26197394

  6. Overexpression of a Maize Sulfite Oxidase Gene in Tobacco Enhances Tolerance to Sulfite Stress via Sulfite Oxidation and CAT-Mediated H2O2 Scavenging

    PubMed Central

    Xia, Zongliang; Sun, Kaile; Wang, Meiping; Wu, Ke; Zhang, Hua; Wu, Jianyu

    2012-01-01

    Sulfite oxidase (SO) plays an important role in sulfite metabolism. To date, the molecular mechanisms of sulfite metabolism in plants are largely unknown. Previously, a full-length cDNA of the putative sulfite oxidase gene from maize (ZmSO) was cloned, and its response to SO2/sulfite stress at the transcriptional level was characterized. In this study, the recombinant ZmSO protein was purified from E.coli. It exhibited sulfite-dependent activity and had strong affinity for the substrate sulfite. Over-expression (OE) of ZmSO in tobacco plants enhanced their tolerance to sulfite stress. The plants showed much less damage, less sulfite accumulation, but greater amounts of sulfate. This suggests that tolerance of transgenic plants to sulfite was enhanced by increasing SO expression levels. Interestingly, H2O2 accumulation levels by histochemical detection and quantitative determination in the OE plants were much less than those in the wild-type upon sulfite stress. Furthermore, reductions of catalase levels detected in the OE lines were considerably less than in the wild-type plants. This indicates that SO may play an important role in protecting CAT from inhibition by excess sulfite. Collectively, these data demonstrate that transgenic tobacco plants over-expressing ZmSO enhance tolerance to excess sulfite through sulfite oxidation and catalase-mediated hydrogen peroxide scavenging. This is the first SO gene from monocots to be functionally characterized. PMID:22693572

  7. Physicochemical characterization of tacrolimus-loaded solid dispersion with sodium carboxylmethyl cellulose and sodium lauryl sulfate.

    PubMed

    Park, Young-Joon; Ryu, Dong-Sung; Li, Dong Xun; Quan, Qi Zhe; Oh, Dong Hoon; Kim, Jong Oh; Seo, Youn Gee; Lee, Young-Im; Yong, Chul Soon; Woo, Jong Soo; Choi, Han-Gon

    2009-06-01

    To develop a novel tacrolimus-loaded solid dispersion with improved solubility, various solid dispersions were prepared with various ratios of water, sodium lauryl sulfate, citric acid and carboxylmethylcellulose-Na using spray drying technique. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy, differential scanning calorimetery and powder X-ray diffraction. Furthermore, their solubility and dissolution were evaluated compared to drug powder. The solid dispersion at the tacrolimus/CMC-Na/sodium lauryl sulfate/citric acid ratio of 3/24/3/0.2 significantly improved the drug solubility and dissolution compared to powder. The scanning electron microscopy result suggested that carriers might be attached to the surface of drug in this solid dispersion. Unlike traditional solid dispersion systems, the crystal form of drug in this solid dispersion could not be converted to amorphous form, which was confirmed by the analysis of DSC and powder X-ray diffraction. Thus, the solid dispersion system with water, sodium lauryl sulfate, citric acid and CMC-Na should be a potential candidate for delivering a poorly water-soluble tacrolimus with enhanced solubility and no convertible crystalline. PMID:19557367

  8. Growth and physiological responses of five cotton genotypes to sodium chloride and sodium sulfate saline water irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to investigate the salt tolerance of five cotton genotypes [three Gossypium hirsutum L. (DN 1, DP 491, and FM 989) and two G. barbadense L. (Cobalt and Pima S-7)] under sodium chloride or sodium sulfate salinity conditions at similar osmotic potentials (100 mM sodium chlorid...

  9. Detergent (sodium dodecyl sulfate) shock proteins in Escherichia coli

    SciTech Connect

    Adamowicz, M.; Kelley, P.M.; Nickerson, K.W. )

    1991-01-01

    The protein composition of Escherichia coli W3110 grown in the presence and absence of 5% sodium dodecyl sulfate (SDS) was examined by two-dimensional gel electrophoresis. In SDS-grown cells, at least 4 proteins were turned on, 13 were turned off, 15 were elevated, and 15 were depressed. The 19 unique and elevated SDS-induced spots constituted 7.91% of the total 35S-labeled protein. There was no apparent overlap between these 19 detergent (SDS) stress proteins and those of other known bacterial stress responses. The detergent stress stimulon is a distinct and independent stimulon. Its physiological relevance probably derives from the presence of bile salts in animal gastrointestinal tracts.

  10. Sulfite Reductase Protects Plants against Sulfite Toxicity1[W][OA

    PubMed Central

    Yarmolinsky, Dmitry; Brychkova, Galina; Fluhr, Robert; Sagi, Moshe

    2013-01-01

    Plant sulfite reductase (SiR; Enzyme Commission 1.8.7.1) catalyzes the reduction of sulfite to sulfide in the reductive sulfate assimilation pathway. Comparison of SiR expression in tomato (Solanum lycopersicum Rheinlands Ruhm) and Arabidopsis (Arabidopsis thaliana) plants revealed that SiR is expressed in a different tissue-dependent manner that likely reflects dissimilarity in sulfur metabolism between the plant species. Using Arabidopsis and tomato SiR mutants with modified SiR expression, we show here that resistance to ectopically applied sulfur dioxide/sulfite is a function of SiR expression levels and that plants with reduced SiR expression exhibit higher sensitivity than the wild type, as manifested in pronounced leaf necrosis and chlorophyll bleaching. The sulfite-sensitive mutants accumulate applied sulfite and show a decline in glutathione levels. In contrast, mutants that overexpress SiR are more tolerant to sulfite toxicity, exhibiting little or no damage. Resistance to high sulfite application is manifested by fast sulfite disappearance and an increase in glutathione levels. The notion that SiR plays a role in the protection of plants against sulfite is supported by the rapid up-regulation of SiR transcript and activity within 30 min of sulfite injection into Arabidopsis and tomato leaves. Peroxisomal sulfite oxidase transcripts and activity levels are likewise promoted by sulfite application as compared with water injection controls. These results indicate that, in addition to participating in the sulfate assimilation reductive pathway, SiR also plays a role in protecting leaves against the toxicity of sulfite accumulation. PMID:23221833

  11. Phylogeography of sulfate-reducing bacteria among disturbed sediments, disclosed by analysis of the dissimilatory sulfite reductase genes (dsrAB).

    PubMed

    Prez-Jimnez, J R; Kerkhof, L J

    2005-02-01

    Sediment samples were collected worldwide from 16 locations on four continents (in New York, California, New Jersey, Virginia, Puerto Rico, Venezuela, Italy, Latvia, and South Korea) to assess the extent of the diversity and the distribution patterns of sulfate-reducing bacteria (SRB) in contaminated sediments. The SRB communities were examined by terminal restriction fragment (TRF) length polymorphism (TRFLP) analysis of the dissimilatory sulfite reductase genes (dsrAB) with NdeII digests. The fingerprints of dsrAB genes contained a total of 369 fluorescent TRFs, of which <20% were present in the GenBank database. The global sulfidogenic communities appeared to be significantly different among the anthropogenically impacted (petroleum-contaminated) sites, but nearly all were less diverse than pristine habitats, such as mangroves. A global SRB indicator species of petroleum pollution was not identified. However, several dsrAB gene sequences corresponding to hydrocarbon-degrading isolates or consortium members were detected in geographically widely separated polluted sites. Finally, a cluster analysis of the TRFLP fingerprints indicated that many SRB microbial communities were most similar on the basis of close geographic proximity (tens of kilometers). Yet, on larger scales (hundreds to thousands of kilometers) SRB communities could cluster with geographically widely separated sites and not necessarily with the site with the closest proximity. These data demonstrate that SRB populations do not adhere to a biogeographic distribution pattern similar to that of larger eukaryotic organisms, with the greatest species diversity radiating from the Indo-Pacific region. Rather, a patchy SRB distribution is encountered, implying an initially uniform SRB community that has differentiated over time. PMID:15691959

  12. 2,4,6-trinitrophenyl-amino acid derivatives as spectrophotometric reagents for sulfur dioxide. [Using sodium sulfite

    SciTech Connect

    Al-Hajjaji, M.A.

    1984-01-01

    A spectrophotometric method for sulfur dioxide determination was explored on the basis of its complexation with TNP-amino acid derivatives forming an orange colored 1:1 complex with an increase in absorbance at 420 nm. TNP-glycine, TNP-threonine, TNP-serine and TNP-histidine (TNP-(2,4,6-trinitrophenyl-)) were investigated. The color development was instantaneous and the absorbance remained unchanged even after 24 h of mixing when kept in the dark. Linear calibration graphs (0-5 x 10/sup -5/M sulfite ions) were obtained at optimal reaction conditions of 7 x 10/sup -5/M TNP-amino acid and pH 8.0 phosphate buffer (0.05 M). The investigation of the effect of several diverse ions revealed an interference by sulfide and mercury ions at concentration levels of 10/sup -4/M. The standard deviation of determining 3 x 10/sup -5/M sulfite solution (10 times) was 1.474 x 10/sup -7/M. 22 references, 2 figures, 1 table.

  13. Effect of binding of cations to polyethylene glycol on its interactions with sodium dodecyl sulfate

    SciTech Connect

    Maltesh, C.; Somasundaran, P.

    1992-08-01

    Interactions between polyethylene glycol and sodium dodecyl sulfate have been studied using fluorescence spectroscopy. Changes in polymer conformation on its association with the surfactant were monitored using polymers end-labeled with pyrene. The effect of various salts of sodium, cesium, lithium, and magnesium on the binding between polymer and surfactant was determined. The conformation of the polyethylene glycol is affected significantly by sodium dodecyl sulfate binding. Initial binding of the polyethylene glycol is affected significantly by sodium dodecyl sulfate binding. Initial binding of the surfactant causes the polymer to coil whereas saturation of the polymer by the surfactant causes the coiled polymer to stretch out. The amount of surfactant bound to the polymer depends on the cations in the solution as well as the affinity of the cation toward polyethylene glycol. The stronger the binding of the cation to polyethylene glycol the less is the interaction between sodium dodecyl sulfate and the polymer. 29 refs., 6 figs., 2 tabs.

  14. Sodium sulfate as an eluant for concentrated solution of pertechnetate.

    PubMed

    Mushtaq, A; Haider, I

    2008-08-01

    Fission molybdenum-99 based technetium-99m chromatography generators are the most widely employed generator systems in the field of diagnostic nuclear medicine. In the first week these generators provide high specific volume activity Na99mTcO4, but in the second week the radioactive concentration of the eluate (99mTc) becomes 17% of that at the beginning of the first week. Low specific volume activity limits the clinical procedures (e.g. 99mTc-DTPA for lung ventilation scanning, 99mTc-sestamibi for myocardial perfusion studies, 99mTc-ECD for brain imaging and 99mTc-red cells for testicles) that can be performed at the beginning of the second week. To overcome such limitations sodium sulfate was used as an eluant, which provides>80% of 99mTc radioactivity in 2 ml solution, while 0.9% NaCl provides only 40-45% 99mTc in first 2 ml solution. PMID:18280744

  15. Adverse reactions to sulfites

    PubMed Central

    Yang, William H.; Purchase, Emerson C.R.

    1985-01-01

    Sulfites are widely used as preservatives in the food and pharmaceutical industries. In the United States more than 250 cases of sulfite-related adverse reactions, including anaphylactic shock, asthmatic attacks, urticaria and angioedema, nausea, abdominal pain and diarrhea, seizures and death, have been reported, including 6 deaths allegedly associated with restaurant food containing sulfites. In Canada 10 sulfite-related adverse reactions have been documented, and 1 death suspected to be sulfite-related has occurred. The exact mechanism of sulfite-induced reactions is unknown. Practising physicians should be aware of the clinical manifestations of sulfite-related adverse reactions as well as which foods and pharmaceuticals contain sulfites. Cases should be reported to health officials and proper advice given to the victims to prevent further exposure to sulfites. The food industry, including beer and wine manufacturers, and the pharmaceutical industry should consider using alternative preservatives. In the interim, they should list any sulfites in their products. PMID:4052897

  16. Sulfite inhibits oxalate production from glycolate and glyoxylate in vitro and from dichloroacetate infused i.v. into male rats.

    PubMed

    Sharma, V; Schwille, P O

    1993-04-01

    The effect of sulfite on oxalate production from glycolate and glyoxylate was investigated in an in vitro assay system using rabbit muscle LDH and rat liver 35-60% ammonium sulfate fraction as enzymes. A > or = 50% inhibition in oxalate production was observed at sulfite to glyoxylate ratio of 0.4. LDH activity (change in A340 nm) was inhibited by > or = 40% at sulfite to glyoxylate ratio of 0.5. Male Sprague-Dawley rats fasted for 24 h and infused with dichloroacetate (150 mg/rat/h, iv, n = 6), without and with sodium sulfite (150 mg/rat/h, n = 6) excreted oxalate in urine, respectively, at the rate of 1.13 +/- 0.29 and 0.61 +/- 0.09 mumol/h/100 g body wt, showing a nearly 50% reduction due to sulfite. The present report demands further experimentation to define the role of sulfite as an intracellular modulator of oxalate production. PMID:8484965

  17. Comparison of Solubilization Capacity of Resveratrol in Sodium 3?,12?-Dihydroxy-7-oxo-5?-cholanoate and Sodium Dodecyl Sulfate

    PubMed Central

    Cveji?, Jelena; Poa, Mihalj

    2014-01-01

    In this study we investigated resveratrol (trans-3,5,4?-trihydroxystilbene) solubilization with sodium 3?,12?-dihydroxy-7-oxo-5?-cholanoate (S7-OD) and sodium dodecyl sulfate (SDS). The investigation was aimed at determining whether large spherical micelles (SDS) or small longitudinal micelles (S7-OD) are more convenient for incorporation of resveratrol. Also, we studied resveratrol behavior in mixed micelles with mentioned surfactants using spectroflourimetric method as well as the effects of sodium chloride and urea on resveratrol solubilization capacity in the applied surfactants. Resveratrol solubilization curve was different in the investigated surfactants. Resveratrol solubilization curve for sodium 3?,12?-dihydroxy-7-oxo-5?-cholanoate at concentration 0.9 CMC reached saturation level of 60% dissolved resveratrol. The curve for sodium dodecyl sulfate was linear within the whole range of the investigated concentration; resveratrol solubilization rate reached 13% at 2 CMC. In S7-OD, NaCl increased capacity of resveratrol solubilization up to 1.4 CMC surfactant concentration, whilst maximum level of dissolved resveratrol (90%) was observed at 0.9 CMC. In SDS, NaCl decreased resveratrol solubilization capacity. Urea reduced resveratrol solubilization rate in sodium 3?,12?-dihydroxy-7-oxo-5?-cholanoate, whereas it had inverse effect in sodium dodecyl sulfate. The obtained results strongly suggest that structure, that is, shape, of the surfactant micelles significantly affects their capacity of resveratrol solubilization. Also, presence of NaCl and urea influences solubilization capacities of investigated surfactants. PMID:24688374

  18. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    PubMed

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and effective for the determination of high levels of sulfites in dried fruits. PMID:24282955

  19. Time measurement-visual analysis of L-cysteine using the autocatalytic sodium sulfite/hydrogen peroxide reaction system and its application to length detection-flow analysis.

    PubMed

    Kato, Jun; Chiba, Michihito; Igarashi, Shukuro

    2009-09-15

    Trace amounts of L-cysteine can function as a trigger, i.e., reaction initiator, in the autocatalytic sodium sulfite/hydrogen peroxide reaction system. Rapidly changing of pH after induction time is visually confirmed by color changing of bromothymol blue in this autocatalytic reaction. Based on this finding, microg L(-1) levels of L-cysteine were measured over time using the autocatalytic reaction system. The determination range using the above method was 5.0 x 10(-8)-2.5 x 10(-6)M, the detection limit (3 sigma) was 1.8 x 10(-8)M (1.94 microg L(-1)), and the relative standard deviation was 2.41% at an l-cysteine concentration of 5 x 10(-7)M (n=5). This method was also applied to length detection-flow injection analysis. The determination range for the flow injection analysis was 2.0 x 10(-7)-1.0 x 10(-5)M. The detection limit (3 sigma) was 1.4 x 10(-7)M (17.0 microg L(-1)), and the relative standard deviation was 0.91% at an initial L-cysteine concentration of 10(-6)M (n=5). PMID:19615525

  20. Effects of increasing concentrations of sodium sulfite on deoxynivalenol and deoxynivalenol sulfonate concentrations of maize kernels and maize meal preserved at various moisture content.

    PubMed

    Paulick, Marleen; Rempe, Inga; Kersten, Susanne; Schatzmayr, Dian; Schwartz-Zimmermann, Heidi Elisabeth; Dnicke, Sven

    2015-03-01

    Under moderate climatic conditions, deoxynivalenol (DON) contamination occurs frequently on cereals. Detoxification measures are required to avoid adverse effects on farm animals. In the present study, a wet preservation method with sodium sulfite (Na2SO3) and propionic acid was tested to titrate the optimum Na2SO3-dose for maximum DON reduction of contaminated maize kernels and meal and to examine the interaction between dose and moisture content in dependence on the preservation duration. The DON concentration decreased with increasing amounts of supplemented Na2SO3 and with increasing duration of the preservation period in a bi-exponential fashion. Additionally, the feed structure and moisture content had a significant influence on the decontaminating effect. Variants with 30% moisture content favored higher DON reduction rates compared to 14% moisture, but especially at low moisture contents, DON reduction was more pronounced in maize kernels than in maize meal. In addition to the decrease of DON, a concomitant formation of three different DON sulfonates was observed which differed in their formation pattern over the time course of preservation. The overall results and statistical analysis clarified that Na2SO3 addition of 10 g/kg maize at 30% moisture for eight days was necessary to obtain a complete DON reduction. PMID:25760079

  1. Effects of Increasing Concentrations of Sodium Sulfite on Deoxynivalenol and Deoxynivalenol Sulfonate Concentrations of Maize Kernels and Maize Meal Preserved at Various Moisture Content

    PubMed Central

    Paulick, Marleen; Rempe, Inga; Kersten, Susanne; Schatzmayr, Dian; Schwartz-Zimmermann, Heidi Elisabeth; Dänicke, Sven

    2015-01-01

    Under moderate climatic conditions, deoxynivalenol (DON) contamination occurs frequently on cereals. Detoxification measures are required to avoid adverse effects on farm animals. In the present study, a wet preservation method with sodium sulfite (Na2SO3) and propionic acid was tested to titrate the optimum Na2SO3-dose for maximum DON reduction of contaminated maize kernels and meal and to examine the interaction between dose and moisture content in dependence on the preservation duration. The DON concentration decreased with increasing amounts of supplemented Na2SO3 and with increasing duration of the preservation period in a bi-exponential fashion. Additionally, the feed structure and moisture content had a significant influence on the decontaminating effect. Variants with 30% moisture content favored higher DON reduction rates compared to 14% moisture, but especially at low moisture contents, DON reduction was more pronounced in maize kernels than in maize meal. In addition to the decrease of DON, a concomitant formation of three different DON sulfonates was observed which differed in their formation pattern over the time course of preservation. The overall results and statistical analysis clarified that Na2SO3 addition of 10 g/kg maize at 30% moisture for eight days was necessary to obtain a complete DON reduction. PMID:25760079

  2. Structure-Based Alteration of Substrate Specificity and Catalytic Activity of Sulfite Oxidase from Sulfite Oxidation to Nitrate Reduction

    SciTech Connect

    Qiu, James A.; Wilson, Heather L.; Rajagopalan, K.V.

    2012-04-18

    Eukaryotic sulfite oxidase is a dimeric protein that contains the molybdenum cofactor and catalyzes the metabolically essential conversion of sulfite to sulfate as the terminal step in the metabolism of cysteine and methionine. Nitrate reductase is an evolutionarily related molybdoprotein in lower organisms that is essential for growth on nitrate. In this study, we describe human and chicken sulfite oxidase variants in which the active site has been modified to alter substrate specificity and activity from sulfite oxidation to nitrate reduction. On the basis of sequence alignments and the known crystal structure of chicken sulfite oxidase, two residues are conserved in nitrate reductases that align with residues in the active site of sulfite oxidase. On the basis of the crystal structure of yeast nitrate reductase, both positions were mutated in human sulfite oxidase and chicken sulfite oxidase. The resulting double-mutant variants demonstrated a marked decrease in sulfite oxidase activity but gained nitrate reductase activity. An additional methionine residue in the active site was proposed to be important in nitrate catalysis, and therefore, the triple variant was also produced. The nitrate reducing ability of the human sulfite oxidase triple mutant was nearly 3-fold greater than that of the double mutant. To obtain detailed structural data for the active site of these variants, we introduced the analogous mutations into chicken sulfite oxidase to perform crystallographic analysis. The crystal structures of the Mo domains of the double and triple mutants were determined to 2.4 and 2.1 {angstrom} resolution, respectively.

  3. Effect of sodium chloride on solute-solvent interactions in aqueous polyethylene glycol-sodium sulfate two-phase systems.

    PubMed

    da Silva, Nuno R; Ferreira, Luisa A; Madeira, Pedro P; Teixeira, Jos A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2015-12-18

    Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.215M NaCl and 0.5M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate-0.215M NaCl system, all in 0.01M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system change in the presence of NaCl additive. PMID:26615710

  4. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate

    SciTech Connect

    Ward, R.L.; Ashley, C.S.

    1980-06-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties of rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.

  5. Prevention of sodium lauryl sulfate irritant contact dermatitis by Pro-Q aerosol foam skin protectant.

    PubMed

    Patterson, S E; Williams, J V; Marks, J G

    1999-05-01

    Eczematous skin disease is a serious work-related illness. Since 1995, reimbursement by insurance companies for treatment of skin diseases has become the largest cost source in some countries. This study was a randomized controlled trial (N = 20) of the efficacy of Pro-Q, a skin protectant product, in the prevention of contact dermatitis from sodium lauryl sulfate and urushiol, the resinous sap of poison ivy and poison oak. Pro-Q was significantly effective in reducing the irritation from sodium lauryl sulfate but did not prevent the allergic reaction to urushiol. PMID:10321615

  6. The heptahydrate of sodium sulfate: Does it have a role in terrestrial and planetary geochemistry?

    NASA Astrophysics Data System (ADS)

    Hall, Christopher; Hamilton, Andrea

    2008-11-01

    Sodium sulfate readily forms a metastable heptahydrate from concentrated aqueous solutions on cooling to around 10 C. It crystallises much more easily than the well recognised and less soluble decahydrate (mirabilite), although the existence of the heptahydrate is almost entirely ignored in the geochemical literature on sodium sulfate. There is strong evidence that the heptahydrate is stable below a triple point temperature of -9.5 C at low water vapour pressures, conditions which are found in cold dry environments such as the surface of Mars and the icy moons of Jupiter.

  7. Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Marcolongo, Juan P.; Mirenda, Martin

    2011-01-01

    An undergraduate laboratory experiment is presented that allows a thermodynamic characterization of micelle formation of sodium dodecyl sulfate (SDS) in aqueous solutions. The critical micelle concentration (CMC) and the degree of micelle ionization (alpha) are obtained at different temperatures by conductimetry. The molar standard free energy…

  8. Analysis of sperm antigens by sodium dodecyl sulfate gel/protein blot radioimmunobinding method

    SciTech Connect

    Lee, C.Y.G.; Huang, Y.S.; Hu, P.C.; Gomel, V.; Menge, A.C.

    1982-06-01

    A radioimmunobinding method based on the blotting of renatured proteins from sodium dodecyl sulfate gels on to nitrocellulose filter papers was developed to analyze the sperm antigens that elicit serum anti-sperm antibodies. In rabbits, serum anti-sperm antibodies were raised by immunization with homologous epididymal spermatozoa mixed with complete Freund's adjuvant. The raised antisera from either male or female rabbits were shown to react with three major sperm protein bands on sodium dodecyl sulfate gels with the corresponding molecular weights of about 70,000 +/- 5000, 14,000, and 13,000, respectively. In humans, the monoclonal antibodies against human sperm were raised by a hybridoma technique. Out of six independent hybrid cell lines that were generated, three of them were shown to secrete immunoglobulins that react with the same two protein bands on sodium dodecyl sulfate gels, which have the approximate molecular weight of 10,000. The same procedure was also used to analyze human serum samples that were shown to contain anti-sperm antibodies by the known techniques. Unique sperm antigens that elicit anti-sperm antibodies in humans were identified and correlated. The results of this study suggest that sodium dodecyl sulfate gel/protein blot radioimmunobinding method may be a sensitive and useful tool for the study of sperm antigens that elicit autoimmune responses and their association with human infertility.

  9. Spectrophotometric quantitation of watermelon lycopene extracted into aqueous sodium dodecyl sulfate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The absorbance properties of aqueous sodium dodecyl sulfate (SDS) extracts of watermelon tissue were examined as part of an ongoing effort to develop simpler, more economical ways to quantify carotenoids in melon fruit. Levels of SDS >0.2% extracted and solubilized watermelon lycopene-containing ch...

  10. Iron(III) sulfate: a stable, cost effective electrode material for sodium ion batteries.

    PubMed

    Mason, Chad W; Gocheva, Irina; Hoster, Harry E; Yu, Denis Y W

    2014-03-01

    Iron(iii) sulfate, a rhombohedral NASICON compound, has been demonstrated as a sodium intercalation host. This cost-effective material is attractive, as it can be slurry processed in bulk with ball-milling, while utilizing the iron 2(+)/3(+) redox couple, offering stable 3.2 V performance for over 400 cycles. PMID:24217427

  11. DETERMINATION OF SURFACTANT SODIUM LAURYL ESTHER SULFATE BY ION PAIRING CHROMATOGRAPHY WITH SUPPRESED CONDUCTIVITY DETECTION

    EPA Science Inventory

    A method for the determination of the anionic Steol CS-330 surfactant is described. S-330 is a complex mixture of oligomers due to the various sizes of fatty alcohols and the number of moles of the ethoxylation. he main component of CS-330 is sodium lauryl ether sulfate (SLES). i...

  12. DETERMINATION OF SURFACTANT SODIUM LAURYL ETHER SULFATE BY ION PAIRING CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITY DETECTION

    EPA Science Inventory

    A method for the determination of the anionic Steol CS-330 surfactant is described. CS-330 is a complex mixture of oligomers due to the various sizes of fatty alcohols and the number of moles of the ethoxylation. The main component of CS-330 is sodium lauryl ether sulfate (SLES)....

  13. Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Marcolongo, Juan P.; Mirenda, Martin

    2011-01-01

    An undergraduate laboratory experiment is presented that allows a thermodynamic characterization of micelle formation of sodium dodecyl sulfate (SDS) in aqueous solutions. The critical micelle concentration (CMC) and the degree of micelle ionization (alpha) are obtained at different temperatures by conductimetry. The molar standard free energy

  14. 21 CFR 524.1883 - Prednisolone sodium phosphate-neomycin sulfate ophthalmic ointment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ophthalmic ointment. 524.1883 Section 524.1883 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1883 Prednisolone sodium phosphate-neomycin sulfate...

  15. 21 CFR 524.1883 - Prednisolone sodium phosphate-neomycin sulfate ophthalmic ointment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ophthalmic ointment. 524.1883 Section 524.1883 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1883 Prednisolone sodium phosphate-neomycin sulfate...

  16. 21 CFR 524.1883 - Prednisolone sodium phosphate-neomycin sulfate ophthalmic ointment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ophthalmic ointment. 524.1883 Section 524.1883 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1883 Prednisolone sodium phosphate-neomycin sulfate...

  17. 21 CFR 524.1883 - Prednisolone sodium phosphate-neomycin sulfate ophthalmic ointment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ophthalmic ointment. 524.1883 Section 524.1883 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1883 Prednisolone sodium phosphate-neomycin sulfate...

  18. A CRITICAL EXAMINATION OF THE SODIUM DODECYL SULFATE (SDS) SEDIMENTATION TEST FOR WHEAT MEALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sedimentation tests have long been used to characterize wheat flours and meals with the aim of predicting processing and end-product qualities. However, the use of the sodium dodecyl sulfate (SDS) sedimentation test AACC International Approved Method 56-70 for durum wheat has not been characterized...

  19. Acute and chronic toxicity of sodium sulfate to four freshwater organisms in water-only exposures

    USGS Publications Warehouse

    Wang, Ning; Consbrock, Rebecca A.; Ingersoll, Christopher G.; Hardesty, Douglas K.; Brumbaugh, William G.; Hammer, Edward J.; Bauer, Candice R.; Mount, David R.

    2015-01-01

    The acute and chronic toxicity of sulfate (tested as sodium sulfate) was determined in diluted well water (hardness of 100 mg/L and pH 8.2) with a cladoceran (Ceriodaphnia dubia; 2-d and 7-d exposures), a midge (Chironomus dilutus; 4-d and 41-d exposures), a unionid mussel (pink mucket, Lampsilis abrupta; 4-d and 28-d exposures), and a fish (fathead minnow, Pimephales promelas; 4-d and 34-d exposures). Among the 4 species, the cladoceran and mussel were acutely more sensitive to sulfate than the midge and fathead minnow, whereas the fathead minnow was chronically more sensitive than the other 3 species. Acute-to-chronic ratios ranged from 2.34 to 5.68 for the 3 invertebrates but were as high as 12.69 for the fish. The fathead minnow was highly sensitive to sulfate during the transitional period from embryo development to hatching in the diluted well water, and thus, additional short-term (7- to 14-d) sulfate toxicity tests were conducted starting with embryonic fathead minnow in test waters with different ionic compositions at a water hardness of 100 mg/L. Increasing chloride in test water from 10 mg Cl/L to 25 mg Cl/L did not influence sulfate toxicity to the fish, whereas increasing potassium in test water from 1mg K/L to 3mg K/L substantially reduced the toxicity of sulfate. The results indicate that both acute and chronic sulfate toxicity data, and the influence of potassium on sulfate toxicity to fish embryos, need to be considered when environmental guidance values for sulfate are developed or refined.

  20. Acute and chronic toxicity of sodium sulfate to four freshwater organisms in water-only exposures.

    PubMed

    Wang, Ning; Dorman, Rebecca A; Ingersoll, Christopher G; Hardesty, Doug K; Brumbaugh, William G; Hammer, Edward J; Bauer, Candice R; Mount, David R

    2016-01-01

    The acute and chronic toxicity of sulfate (tested as sodium sulfate) was determined in diluted well water (hardness of 100 mg/L and pH 8.2) with a cladoceran (Ceriodaphnia dubia; 2-d and 7-d exposures), a midge (Chironomus dilutus; 4-d and 41-d exposures), a unionid mussel (pink mucket, Lampsilis abrupta; 4-d and 28-d exposures), and a fish (fathead minnow, Pimephales promelas; 4-d and 34-d exposures). Among the 4 species, the cladoceran and mussel were acutely more sensitive to sulfate than the midge and fathead minnow, whereas the fathead minnow was chronically more sensitive than the other 3 species. Acute-to-chronic ratios ranged from 2.34 to 5.68 for the 3 invertebrates but were as high as 12.69 for the fish. The fathead minnow was highly sensitive to sulfate during the transitional period from embryo development to hatching in the diluted well water, and thus, additional short-term (7- to 14-d) sulfate toxicity tests were conducted starting with embryonic fathead minnow in test waters with different ionic compositions at a water hardness of 100 mg/L. Increasing chloride in test water from 10 mg Cl/L to 25 mg Cl/L did not influence sulfate toxicity to the fish, whereas increasing potassium in test water from 1 mg K/L to 3 mg K/L substantially reduced the toxicity of sulfate. The results indicate that both acute and chronic sulfate toxicity data, and the influence of potassium on sulfate toxicity to fish embryos, need to be considered when environmental guidance values for sulfate are developed or refined. Environ Toxicol Chem 2016;35:115-127. Published 2015 SETAC. This article is a US Government work and is in the public domain in the United States. PMID:26139383

  1. Effect of sulfite treatment on total antioxidant capacity, total oxidant status, lipid hydroperoxide, and total free sulfydryl groups contents in normal and sulfite oxidase-deficient rat plasma.

    PubMed

    Herken, Emine Nur; Kocamaz, Erdogan; Erel, Ozcan; Celik, Hakim; Kucukatay, Vural

    2009-08-01

    Sulfites, which are commonly used as preservatives, are continuously formed in the body during the metabolism of sulfur-containing amino acids. Sulfite oxidase (SOX) is an essential enzyme in the pathway of the oxidative degradation of sulfite to sulfate protecting cells from sulfite toxicity. This article investigated the effect of sulfite on total antioxidant capacity (TAC), total oxidant status, lipid hydroperoxide (LOOH), and total free sulfydryl groups (-SH) levels in normal and SOX-deficient male albino rat plasma. For this purpose, rats were divided into four groups: control, sulfite-treated, SOX-deficient, and sulfite-treated SOX-deficient groups. SOX deficiency was established by feeding rats a low molybdenum diet and adding to their drinking water 200 ppm tungsten. Sulfite (70 mg/kg) was administered to the animals via their drinking water. SOX deficiency together with sulfite treatment caused a significant increase in the plasma LOOH and total oxidant status levels. -SH content of rat plasma significantly decreased by both sulfite treatment and SOX deficiency compared to the control. There was also a significant decrease in plasma TAC level by sulfite treatment. In conclusion, sulfite treatment affects the antioxidant/oxidant balance of the plasma cells of the rats toward oxidants in SOX-deficient groups. PMID:18553142

  2. The influence of sodium lauryl sulfate on the crystal phases of titania by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Chaohong; Wang, Xin

    2012-11-01

    In this paper, we prepared TiO2 nanostructures by a hydrothermal method and investigated the influence of the SO4^{2-} ion and the effect of long alkyl chains of sodium dodecyl sulfate on the crystal phases of TiO2 by experiments and theoretical calculations. The results indicate that the absorption of the H+HSO4 fragment on rutile (110) is more stable than that of the 2H+SO4 fragment and more favorable to the formation of anatase. The absorption and steric effects of sodium dodecyl sulfate on the surfaces of TiO2 grains also have an important influence on the formation of mixed crystals by changing the speed and the way of octahedral TiO6 units combining. Based on the above facts, we revised the original reaction scheme for crystalline titania formation by previous authors.

  3. Thermodynamics of micelle formation in a water-alcohol solution of sodium tetradecyl sulfate

    NASA Astrophysics Data System (ADS)

    Shilova, S. V.; Tret'yakova, A. Ya.; Barabanov, V. P.

    2016-01-01

    The effects of addition of ethanol and propan-1-ol on sodium tetradecyl sulfate micelle formation in an aqueous solution are studied via microprobe fluorescence microscopy and conductometry. The critical micelle concentration, quantitative characteristics of micelles, and thermodynamic parameters of micelle formation are determined. Addition of 5-15 vol % of ethanol or 5-10 vol % of propan-1-ol is shown to result in a lower critical micelle concentration than in the aqueous solution, and in the formation of mixed spherical micelles whose sizes and aggregation numbers are less than those for the systems without alcohol. The contribution from the enthalpy factor to the free energy of sodium tetradecyl sulfate micelle formation is found to dominate in mixed solvents, in contrast to aqueous solutions.

  4. Sclerotherapy using 1% sodium tetradecyl sulfate to treat a vascular malformation: a report of two cases.

    PubMed

    Min, Hong-Gi; Kim, Su-Gwan; Oh, Ji-Su; You, Jae-Seek

    2015-12-01

    Vascular malformations are the most common congenital and neonatal vascular anomalies in the head and neck region. The demand for simple and esthetic vascular malformation treatments have increased more recently. In this study, two patients that were diagnosed with venous malformations were treated with sodium tetradecyl sulfate as a sclerosing agent. Recurrence was not found one year after the surgery. This article gives a brief case report of sclerotherapy as an effective approach to treat vascular malformations in the oral cavity. PMID:26734559

  5. Sclerotherapy using 1% sodium tetradecyl sulfate to treat a vascular malformation: a report of two cases

    PubMed Central

    2015-01-01

    Vascular malformations are the most common congenital and neonatal vascular anomalies in the head and neck region. The demand for simple and esthetic vascular malformation treatments have increased more recently. In this study, two patients that were diagnosed with venous malformations were treated with sodium tetradecyl sulfate as a sclerosing agent. Recurrence was not found one year after the surgery. This article gives a brief case report of sclerotherapy as an effective approach to treat vascular malformations in the oral cavity. PMID:26734559

  6. One-step casting of Laemmli discontinued sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel.

    PubMed

    Wu, Xiaoqiang; Koiwa, Hisashi

    2012-02-01

    A modified Laemmli sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) protocol is described. The new method saves 30 min for gel casting without loss of the resolution power of Laemmli gel. In this method, both the upper and lower gels can be cast at the same time because the lower gel contains 10% glycerol, which generates higher density in the lower gel than in the upper gel. PMID:22037291

  7. Solubility of hydrogen sulfide in aqueous solutions of the single salts sodium sulfate, ammonium sulfate, sodium chloride, and ammonium chloride at temperatures from 313 to 393 K and total pressures up to 10 MPa

    SciTech Connect

    Xia, J.; Kamps, A.P.S.; Rumpf, B.; Maurer, G.

    2000-04-01

    New experimental results for the solubility of hydrogen sulfide in aqueous solutions of the single salts sodium sulfate, ammonium sulfate, sodium chloride, and ammonium chloride at temperatures from 313 to 393 K and total pressures up to 10 MPa are reported. As in the salt-free system, a second-hydrogen sulfide-rich--liquid phase is observed at high hydrogen sulfide concentrations. A model to describe the phase equilibrium is presented. Calculations are compared to the new experimental data.

  8. Sulfonates as Terminal Electron Acceptors for Growth of Sulfite-Reducing Bacteria (Desulfitobacterium spp.) and Sulfate-Reducing Bacteria: Effects of Inhibitors of Sulfidogenesis

    PubMed Central

    Lie, Thomas J.; Godchaux, Walter; Leadbetter, Edward R.

    1999-01-01

    This study demonstrates the ability of Desulfitobacterium spp. to utilize aliphatic sulfonates as terminal electron acceptors (TEA) for growth. Isethionate (2-hydroxyethanesulfonate) reduction by Desulfitobacterium hafniense resulted in acetate as well as sulfide accumulation in accordance with the expectation that the carbon portion of isethionate was oxidized to acetate and the sulfur was reduced to sulfide. The presence of a polypeptide, approximately 97 kDa, was evident in isethionate-grown cells of Desulfitobacterium hafniense, Desulfitobacterium sp. strain PCE 1, and the two sulfate-reducing bacteria (SRB)Desulfovibrio desulfuricans IC1 (T. J. Lie, J. R. Leadbetter, and E. R. Leadbetter, Geomicrobiol. J. 15:135149, 1998) and Desulfomicrobium norvegicum; this polypeptide was not detected when these bacteria were grown on TEA other than isethionate, suggesting involvement in its metabolism. The sulfate analogs molybdate and tungstate, effective in inhibiting sulfate reduction by SRB, were examined for their effects on sulfonate reduction. Molybdate effectively inhibited sulfonate reduction by strain IC1 and selectively inhibited isethionate (but not cysteate) reduction by Desulfitobacterium dehalogenans and Desulfitobacterium sp. strain PCE 1. Desulfitobacterium hafniense, however, grew with both isethionate and cysteate in the presence of molybdate. In contrast, tungstate only partially inhibited sulfonate reduction by both SRB and Desulfitobacterium spp. Similarly, another inhibitor of sulfate reduction, 1,8-dihydroxyanthraquinone, effectively inhibited sulfate reduction by SRB but only partially inhibited sulfonate reduction by both SRB and Desulfitobacterium hafniense. PMID:10508097

  9. Compatibility and stability of cefazolin sodium, clindamycin phosphate, and gentamicin sulfate in two intravenous solutions.

    PubMed

    Zbrozek, A S; Marble, D A; Bosso, J A

    1988-11-01

    We studied the compatibility and stability of clindamycin phosphate admixed with gentamicin sulfate and cefazolin sodium in small-volume diluents under specific storage conditions. In two replicate 100 ml dilutions of NaCl 0.9% injection and dextrose 5% (D5W) injection, clindamycin phosphate 900 mg was admixed with gentamicin sulfate 80 mg and cefazolin sodium 1 g. Drug concentrations were determined at the time of preparation and at 1, 4, 8, 12, 24, and 48 hours. Clindamycin and cefazolin were assayed by high-performance liquid chromatography and gentamicin was assayed by fluorescence polarization immunoassay. Visual inspections and pH determinations of each solution were performed at each assay time. Test solutions were maintained at constant room temperature and fluorescent lighting. Concentrations of clindamycin and gentamicin remained greater than 90 percent of the original concentrations throughout the study. Cefazolin concentrations dropped below 90 percent in D5W injection at 4 hours after admixture and at 12 hours after admixture in NaCl 0.9% injection. Visual analyses and pH changes revealed no significant changes. The combination of clindamycin phosphate 900 mg, gentamicin sulfate 80 mg, and cefazolin sodium 1 g in D5W 100 ml was found to be compatible for up to 4 hours. The duration of compatibility for these three drugs in 100 ml of NaCl 0.9% was 12 hours. PMID:3234252

  10. Inactivation of HIV-1 in breast milk by treatment with the alkyl sulfate microbicide sodium dodecyl sulfate (SDS)

    PubMed Central

    Urdaneta, Sandra; Wigdahl, Brian; Neely, Elizabeth B; Berlin, Cheston M; Schengrund, Cara-Lynne; Lin, Hung-Mo; Howett, Mary K

    2005-01-01

    Background Reducing transmission of HIV-1 through breast milk is needed to help decrease the burden of pediatric HIV/AIDS in society. We have previously reported that alkyl sulfates (i.e., sodium dodecyl sulfate, SDS) are microbicidal against HIV-1 at low concentrations, are biodegradable, have little/no toxicity and are inexpensive. Therefore, they may be used for treatment of HIV-1 infected breast milk. In this report, human milk was artificially infected by adding to it HIV-1 (cell-free or cell-associated) and treated with ?1% SDS (?10 mg/ml). Microbicidal treatment was at 37C or room temperature for 10 min. SDS removal was performed with a commercially available resin. Infectivity of HIV-1 and HIV-1 load in breast milk were determined after treatment. Results SDS (?0.1%) was virucidal against cell-free and cell-associated HIV-1 in breast milk. SDS could be substantially removed from breast milk, without recovery of viral infectivity. Viral load in artificially infected milk was reduced to undetectable levels after treatment with 0.1% SDS. SDS was virucidal against HIV-1 in human milk and could be removed from breast milk if necessary. Milk was not infectious after SDS removal. Conclusion The proposed treatment concentrations are within reported safe limits for ingestion of SDS by children of 1 g/kg/day. Therefore, use of alkyl sulfate microbicides, such as SDS, to treat HIV1-infected breast milk may be a novel alternative to help prevent/reduce transmission of HIV-1 through breastfeeding. PMID:15888210

  11. Hydrothermal synthesis of sodium tungstate nanorods and nanobundles in the presence of sodium sulfate

    SciTech Connect

    Cao Guangxiang; Song Xinyu; Yu Haiyun; Fan Chunhua; Yin Zhilei; Sun Sixiu . E-mail: ssx@sdu.edu.cn

    2006-02-02

    Sodium tungstate nanorods and nanobundles have been successfully prepared, for the first time, through a simple salt-assisted hydrothermal route based on the reaction between Na{sub 2}WO{sub 4} and HCl in aqueous solution. The resultant sodium tungstate nanorods and nanobundles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electronic diffraction (SAED) techniques. The ingredients of the sample have been detected by energy-dispersive spectrum (EDS) method. It is found that hydrothermal temperature and time play important roles in the control of the morphology and size of the products.

  12. Synthesis and foaming properties of new anionic surfactants based on a renewable building block: sodium dodecyl isosorbide sulfates.

    PubMed

    Lavergne, Aurlie; Zhu, Ying; Pizzino, Aldo; Molinier, Valrie; Aubry, Jean-Marie

    2011-08-15

    Two agro-based anionic surfactants containing an isosorbide moiety have been synthesized and their amphiphilic properties evaluated. Since isosorbide is now considered as an important platform chemical of the starch industry, these compounds could represent bio-sourced alternatives to the alkyl ether sulfates (notably lauryl ether sulfate, LES) that are based on petroleum-derived ethylene oxides. As isosorbide is an asymmetric diol, two isomers can be prepared (2-O-dodecyl isosorbide sulfate and 5-O-dodecyl isosorbide sulfate) that show significantly different aqueous properties as regards to their Krafft temperatures and critical micellar concentrations. 5-O-dodecyl isosorbide sulfate is the most soluble and the most efficient surfactant. It possesses a much lower critical micelle concentration (cmc) than sodium dodecyl sulfate, SDS, leading to comparable foaming properties with a three times lower concentration. Its behavior compares well with the one of pure diethoxylated dodecyl sulfate that has also been prepared and evaluated in this work. PMID:21621216

  13. Polioencephalomalacia in cattle consuming water with elevated sodium sulfate levels: A herd investigation

    PubMed Central

    Hamlen, Heidi; Clark, Edward; Janzen, Eugene

    1993-01-01

    Polioencephalomalacia (PEM), hereafter used to refer to the specific lesion of cerebrocortical necrosis, developed in 11 of 110 mature cattle on pasture in central Saskatchewan. The primary water source contained a markedly elevated level of sodium sulfate (7200 ppm). The significant clinical findings of the herd investigation included depression, ataxia, cortical blindness, dysphagia, and death. Diagnosis of PEM was confirmed by histopathological evidence of cerebrocortical and subcortical necrosis with microvascular fibrinoid necrosis predominantly in the thalamic region of three affected cattle. The histopathology of sulfate-associated PEM observed in this herd appears to be unique and its features are presented and discussed. Mean levels for serum transketolase, copper, red blood cell transketolase activity, and thiamine (vitamin B1) in all exposed young (n = 100) and mature (n = 99) animals did not reveal evidence of deficiencies. Although the blood thiamine status of the seven surviving, affected animals was not evaluated before treatment with exogenous thiamine, 199 members of the herd had blood thiamine levels within the reference range at the time of the outbreak. The outbreak resolved after cattle were moved to a water source containing acceptable levels of sodium sulfate. ImagesFigure 1. PMID:17424182

  14. Influence and hydrolysis kinetics in titanyl sulfate solution from the sodium hydroxide molten salt method

    NASA Astrophysics Data System (ADS)

    Wang, Weijing; Chen, Desheng; Chu, Jinglong; Li, Jie; Xue, Tianyan; Wang, Lina; Wang, Dong; Qi, Tao

    2013-10-01

    Hydrated titanium dioxide (HTD) was precipitated by thermal hydrolysis in purified titanyl sulfate solution (TSS) obtained through the sodium hydroxide molten salt clean method. Various factors including the stirring speed and initial concentrations of TiOSO4, sulfuric acid, and sodium ion were studied. The main influence factors in the hydrolysis process were the initial concentrations of TiOSO4 and sulfuric acid. Contrary to the ferrous ion, the sodium ion improved the ionic activity of Ti4+, but did not decrease the crystal size. The Boltzman growth model (x=A2+(A1-A2)/{1+exp[(t-t0)/dt)]}, which focuses on two main parameters (CTiOSO4 and CH2SO4), fits the hydrolysis process well with R2>0.97. An increase in sulfuric acid concentration negatively affected the hydrolysis rates and the value of A2, while t0 increased. An increase in titanyl sulfate concentration directly reduced the hydrolysis rates and particle size of HTD, contrary to the trend for the value of t0. A simulation software called 1stopt was used to observe the relationship between Z (A1, A2, t0, dt) and a, b (CTiO2 and CH2SO4).

  15. Determination of surfactant sodium lauryl ether sulfate by ion pairing chromatography with suppressed conductivity detection

    SciTech Connect

    Ye, M.Y.; Walkup, R.G.; Hill, K.D. )

    1994-01-01

    A method for the determination of the anionic Steol CS-330 surfactant is described. CS-330 is a complex mixture of oligomers due to the various sizes of fatty alcohols and the number of moles of the ethoxylation. The main component of CS-330 is sodium lauryl ether sulfate (SLES). Since a SLES molecule has a hydrophilic sulfate head and a hydrophobic alkyl ethoxyl tail, it is very difficult to separate these molecules with conventional reverse phase chromatography or ion exchange chromatography. This work uses ion pairing chromatography with suppressed conductivity detection. The separation of oligomers in CS-330 is achieved. SLES does not have UV-absorbing chromophores, therefore an optical detector is not very sensitive. Suppressed conductivity detection technique significantly increases sensitivity and a quantitation limit of 56.60 ppm is achieved.

  16. Enthalpies of formation for water + sodium dodecyl sulfate + 1-pentanol + triethanolamine mixtures

    NASA Astrophysics Data System (ADS)

    Batov, D. V.

    2015-05-01

    The enthalpies of mixing of water (H2O) + sodium dodecyl sulfate (NaDDS) + 1-pentanol (PeOH) + triethanolamine (TEA) mixtures with different compositions at 298.15 K are determined using the thermochemical cycle. The enthalpies of dissolution of NaDDS, H2O, PeOH, TEA, and H2O + TEA + PeOH + NaDDS mixtures in 2-propanol are measured by means of calorimetry. The formation of the studied mixtures from neat components is shown to be mainly an exothermic process. The influence of the nature of components and a mixture's composition on the enthalpies of mixing is discussed.

  17. Analysis of Furaneol in tomato using dynamic headspace sampling with sodium sulfate.

    PubMed

    Buttery, R G; Takeoka, G R; Naim, M; Rabinowitch, H; Nam, Y

    2001-09-01

    High-flow dynamic headspace sampling with excess anhydrous sodium sulfate was found to be an effective method of isolating Furaneol from fresh tomatoes. Quantitative analysis was carried out by gas chromatography using maltol as internal standard. Furaneol was found in the highest concentrations (660-1100 ppb) in the summer crop of home-grown tomatoes and in some of the greenhouse hydroponically grown tomatoes, which are ripened on the plant before being transported to the supermarkets. Furaneol was found in the lowest concentrations (38-180 ppb) in the common ethylene-ripened, field-grown, supermarket tomatoes. PMID:11559136

  18. Dextran Sulfate Sodium (DSS)-Induced Acute Colitis in the Rat.

    PubMed

    Martin, Jrme C; Briou, Galle; Josien, Rgis

    2016-01-01

    Inflammatory bowel diseases (IBDs) are complex multifactorial disease thought to result from inappropriate immune responses to the gut microbiota, in genetically susceptible individuals, under the influence of environmental factors. Among the different animal models developed to help in understanding IBDs pathophysiological mechanisms as well as to achieve pharmacological preclinical studies, the dextran sulfate sodium (DSS)-induced colitis model is the most widely used because of its simplicity, cost-effectiveness, and similarity with human IBDs. This section provides with a detailed protocol that we validated in our laboratory to perform DSS-induced acute colitis in the Sprague-Dawley (SPD) rat. PMID:26530802

  19. Critical role of vitamin D in sulfate homeostasis: regulation of the sodium-sulfate cotransporter by 1,25-dihydroxyvitamin D3.

    PubMed

    Bolt, Merry J G; Liu, Wenhua; Qiao, Guilin; Kong, Juan; Zheng, Wei; Krausz, Thomas; Cs-Szabo, Gabriella; Sitrin, Michael D; Li, Yan Chun

    2004-10-01

    As the fourth most abundant anion in the body, sulfate plays an essential role in numerous physiological processes. One key protein involved in transcellular transport of sulfate is the sodium-sulfate cotransporter NaSi-1, and previous studies suggest that vitamin D modulates sulfate homeostasis by regulating NaSi-1 expression. In the present study, we found that, in mice lacking the vitamin D receptor (VDR), NaSi-1 expression in the kidney was reduced by 72% but intestinal NaSi-1 levels remained unchanged. In connection with these findings, urinary sulfate excretion was increased by 42% whereas serum sulfate concentration was reduced by 50% in VDR knockout mice. Moreover, levels of hepatic glutathione and skeletal sulfated proteoglycans were also reduced by 18 and 45%, respectively, in the mutant mice. Similar results were observed in VDR knockout mice after their blood ionized calcium levels and rachitic bone phenotype were normalized by dietary means, indicating that vitamin D regulation of NaSi-1 expression and sulfate metabolism is independent of its role in calcium metabolism. Treatment of wild-type mice with 1,25-dihydroxyvitamin D3 or vitamin D analog markedly stimulated renal NaSi-1 mRNA expression. These data provide strong in vivo evidence that vitamin D plays a critical role in sulfate homeostasis. However, the observation that serum sulfate and skeletal proteoglycan levels in normocalcemic VDR knockout mice remained low in the absence of rickets and osteomalacia suggests that the contribution of sulfate deficiency to development of rickets and osteomalacia is minimal. PMID:15165995

  20. Standard state thermodynamic properties of completely ionized aqueous sodium sulfate using high dilution calorimetry up to 598.15 K.

    PubMed

    Djamali, Essmaiil; Chen, Keith; Cobble, James W

    2009-08-27

    Pabalan and Pitzer (Geochim. Cosmochim. Acta 1988, 52, 2393-2404) reported a comprehensive set of thermodynamic properties of aqueous solutions of sodium sulfate without using ion association or hydrolysis. However, there is now ample evidence available indicating that the ion association cannot be ignored at temperatures T>or=373 K. For example, even at the lowest concentration of their studies (m>or=0.05) and at 573.15 K, less than 20% of SO4(2-)(aq) is available as free ions. In the present study, the integral heats of solution of sodium sulfate were measured to very low concentrations (10(-4) m) up to 573.16 K. The data were analyzed correcting for the hydrolysis of SO4(2-)(aq) and the association of Na+(aq) with SO4(2-)(aq) and NaSO4-(aq) in order to obtain the final standard state thermodynamic properties of completely ionized aqueous sodium sulfate, Na2SO4(aq). From these and the available solubility data, the stoichiometric activity coefficients of saturated aqueous solutions of sodium sulfate were calculated up to 573.15 K and compared with literature data. The stoichiometric activity coefficients of aqueous solutions of sodium sulfate, as a function of temperature at all concentrations (0

  1. Investigating the interaction of crystal violet probe molecules on sodium dodecyl sulfate micelles with hyper-Rayleigh scattering.

    PubMed

    Revillod, Guillaume; Russier-Antoine, Isabelle; Benichou, Emmanuel; Jonin, Christian; Brevet, Pierre-Franois

    2005-03-24

    We report the use of the nonlinear optical technique of hyper-Rayleigh scattering to investigate the interaction of the cationic probe molecule crystal violet with micelles of sodium dodecyl sulfate. An absolute value of (847 +/- 80) x 10(-30) esu is measured at the fundamental wavelength of 870 nm for the molecular hyperpolarizability of crystal violet free in pure aqueous solutions. In aqueous solutions of sodium dodecyl sulfate, above and below the critical micelle concentration, the measured hyperpolarizability of crystal violet is weaker than in the solution free of sodium dodecyl sulfate. From the comparison with linear optical photoabsorption spectroscopy data, this difference is attributed to electrostatic interactions between the cationic crystal violet molecules and the negatively charged sodium dodecyl sulfate surfactant molecules present in excess. Polarization resolved hyper-Rayleigh scattering measurements are then performed to show that, below and above the critical micelle concentration, crystal violet molecules also undergo symmetry changes upon interaction with sodium dodecyl sulfate. Above the critical micelle concentration, the minimum fraction of micelles interacting with at least one CV molecule is estimated. For instance, for a crystal violet aqueous concentration of 150 microM, this fraction is larger than 7%. PMID:16863205

  2. Effect of chromuium, aluminum, and titanium on the corrosion resistance of nickel in molten sodium sulfate and chloride

    SciTech Connect

    Oryshich, I.V.

    1985-09-01

    The author reports on a study whose purpose was to determine the corrosion of binary nickel alloys, containing aluminum, titanium and chromium, in molten sodium sulfate and chloride. The work was undertaken because under operating conditions, gas-turbine materials are subject to oxidation and high-temperature corrosion caused by contact with molten salt based on sodium sulfate formed during fuel combustion. It is concluded that: on alloying nickel with chromium, resistance to sulfide corrosion increases, but with aluminum and titanium it is reduced; alloying nickel with aluminum, titanium (up to 6-8 %) and chromium (up to 10-12 %) leads to an increase in its resistance to the action of molten sodium chloride; and, binary Ni-Al, Ni-Ti and ternary Ni-Al-Ti alloys have a lower corrosion resistance in sodium solfate than in sodium chloride.

  3. Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 3. Sulfur dioxide, sulfite, and sulfate radical anions.

    PubMed

    Zamora, Pedro L; Villamena, Frederick A

    2012-07-01

    Radical forms of sulfur dioxide (SO(2)), sulfite (SO(3)(2-)), sulfate (SO(4)(2-)), and their conjugate acids are known to be generated in vivo through various chemical and biochemical pathways. Oxides of sulfur are environmentally pervasive compounds and are associated with a number of health problems. There is growing evidence that their toxicity may be mediated by their radical forms. Electron paramagnetic resonance (EPR) spin trapping using the commonly used spin trap, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), has been employed in the detection of SO(3)(-) and SO(4)(-). The thermochemistries of SO(2)(-), SO(3)(-), SO(4)(-), and their respective conjugate acids addition to DMPO were predicted using density functional theory (DFT) at the PCM/B3LYP/6-31+G**//B3LYP/6-31G* level. No spin adduct was observed for SO(2)(-) by EPR, but an S-centered adduct was observed for SO(3)(-)and an O-centered adduct for SO(4)(-). Determination of adducts as S- or O-centered was made via comparison based on qualitative trends of experimental hfcc's with theoretical values. The thermodynamics of the nonradical addition of SO(3)(2-) and HSO(3)(-) to DMPO followed by conversion to the corresponding radical adduct via the Forrester-Hepburn mechanism was also calculated. Adduct acidities and decomposition pathways were investigated as well, including an EPR experiment using H(2)(17)O to determine the site of hydrolysis of O-centered adducts. The mode of radical addition to DMPO is predicted to be governed by several factors, including spin population density, and geometries stabilized by hydrogen bonds. The thermodynamic data supports evidence for the radical addition pathway over the nucleophilic addition mechanism. PMID:22668066

  4. Theoretical and Experimental Studies of the Spin Trapping of Inorganic Radicals by 5,5-Dimethyl-1-Pyrroline N-Oxide (DMPO). 3. Sulfur Dioxide, Sulfite and Sulfate Radical Anions

    PubMed Central

    Zamora, Pedro L.; Villamena, Frederick A.

    2012-01-01

    Radical forms of sulfur dioxide (SO2), sulfite (SO32?), sulfate (SO42?), and their conjugate acids are known to be generated in vivo through various chemical and biochemical pathways. Oxides of sulfur are environmentally pervasive compounds and are associated with a number of health problems. There is growing evidence that their toxicity may be mediated by their radical forms. Electron paramagnetic resonance (EPR) spin trapping using the commonly used spin trap, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), has been employed in the detection of SO3? and SO4?. The thermochemistries of SO2?, SO3?, SO4?, and their respective conjugate acids addition to DMPO were predicted using density functional theory (DFT) at the PCM/B3LYP/6-31+G**//B3LYP/6-31G* level. No spin adduct was observed for SO2? by EPR but an S-centered adduct was observed for SO3? and an O-centered adduct for SO4?. Determination of adducts as S- or O-centered was made via comparison based on qualitative trends of experimental hfccs with theoretically calculated ones. The thermodynamics of the non-radical addition of SO32? and HSO3? to DMPO followed by conversion to the corresponding radical adduct via the Forrester-Hepburn mechanism was also calculated. Adduct acidities and decomposition pathways were investigated as well, including an EPR experiment using H217O to determine the site of hydrolysis of O-centered adducts. The mode of radical addition to DMPO is predicted to be governed by several factors, including spin population density, and geometries stabilized by hydrogen bonds. The thermodynamic data supports evidence for the radical addition pathway over the nucleophilic addition mechanism. PMID:22668066

  5. Temporal changes in sulfate, chloride, and sodium concentrations in four eastern Pennsylvania streams

    USGS Publications Warehouse

    Barker, J.L.

    1986-01-01

    Trend analyses of 20 years or more of chemical quality and streamflow data for four streams in eastern Pennsylvania indicate that sulfate has decreased significantly in three of the four basins studied, while sodium and chloride have generally increased. The majority of chemical quality changes occurred in the late 1950 's and early 1960 's coincident with significant cultural changes. It is believed that these chemical quality changes are presently of little or no environmental consequence, as the concentrations are well within the range of those found in natural waters. Decreases in sulfate follow a regional trend concurrent with the conversion of home and industrial heating units from high to low sulfur coal, gas, and oil. The most significant decreases were observed in those basins severely affected by mine-drainage where pumpage has decreased significantly in the past 25 years, thereby further reducing the sulfur content of the streams. The observed increases in chloride and sodium are attributed to population increases and shifts from rural to suburban communities with concurrent increase in the percentage of the population using municipal waste treatment facilities and the increased use of salt on roadways. The concentrations of dissolved chloride, which are from two to three times higher in recent years, reach a peak in January, coincident with the application of salt to melt ice on the roadways. (USGS)

  6. Nanoparticle formation from probucol/PVP/sodium alkyl sulfate co-ground mixture.

    PubMed

    Wanawongthai, C; Pongpeerapat, A; Higashi, K; Tozuka, Y; Moribe, K; Yamamoto, K

    2009-07-01

    Nanoparticles of a poorly water-soluble drug, probucol, have been obtained by co-grinding with PVP and SDS. The purpose of this study was to investigate the effect of the alkyl chain length of sodium alkyl sulfates (CnS, n=6, 8, 12, 16 and 18) on probucol nanoparticle formation. From the results of particle size determination and quantitative measurement of nanoparticle fraction of probucol by HPLC, it was found that the alkyl chain length of the sodium alkyl sulfate affected the probucol nanoparticle formation. The efficiency, based on the quantitative determination of nanoparticles, was in the order: C18S>C16S>C12S>C8S>C6S. Probucol nanoparticles of less than 800 nm were effectively produced (more than 95%) with the increase of the amount of surfactants. (13)C solid-state NMR of co-ground mixtures showed a new peak originating from the probucol interaction with PVP together with the existence of probucol crystal peaks. Excess amounts of surfactants were expected to play an important role for stabilizing the probucol nanoparticles in the suspension via the electrostatic repulsive effect. PMID:19409462

  7. Beyond the detergent effect: a binding site for sodium dodecyl sulfate (SDS) in mammalian apoferritin

    SciTech Connect

    Liu, Renyu Bu, Weiming; Xi, Jin; Mortazavi, Shirin R.; Cheung-Lau, Jasmina C.; Dmochowski, Ivan J.; Loll, Patrick J.

    2012-05-01

    Using X-ray crystallography and isothermal titration calorimetry, we show that sodium dodecyl sulfate (SDS) binds specifically to a pre-formed internal cavity in horse-spleen apoferritin. Although sodium dodecyl sulfate (SDS) is widely used as an anionic detergent, it can also exert specific pharmacological effects that are independent of the surfactant properties of the molecule. However, structural details of how proteins recognize SDS are scarce. Here, it is demonstrated that SDS binds specifically to a naturally occurring four-helix bundle protein: horse apoferritin. The X-ray crystal structure of the apoferritin–SDS complex was determined at a resolution of 1.9 Å and revealed that the SDS binds in an internal cavity that has previously been shown to recognize various general anesthetics. A dissociation constant of 24 ± 9 µM at 293 K was determined by isothermal titration calorimetry. SDS binds in this cavity by bending its alkyl tail into a horseshoe shape; the charged SDS head group lies in the opening of the cavity at the protein surface. This crystal structure provides insights into the protein–SDS interactions that give rise to binding and may prove useful in the design of novel SDS-like ligands for some proteins.

  8. Orally delivered ?-glucans aggravate dextran sulfate sodium (DSS)-induced intestinal inflammation.

    PubMed

    Heinsbroek, Sigrid E M; Williams, David L; Welting, Olaf; Meijer, Sybren L; Gordon, Siamon; de Jonge, Wouter J

    2015-12-01

    ?-Glucans have beneficial health effects due to their immune modulatory properties. Oral administration of ?-glucans affects tumour growth, microbial infection, sepsis, and wound healing. We hypothesized that pre-treatment with orally delivered soluble and particulate ?-glucans could ameliorate the development of aggravate dextran sulfate sodium (DSS) induced intestinal inflammation. To study this, mice were orally pre-treated with ?-glucans for 14 days. We tested curdlan (a particulate ?-(1,3)-glucan), glucan phosphate (a soluble ?-(1,3)-glucan), and zymosan (a particle made from Saccharomyces cerevisiae, which contains around 55% ?-glucans). Weight loss, colon weight, and feces score did not differ between ?-glucan and vehicle treated groups. However, histology scores indicated that ?-glucan-treated mice had increased inflammation at a microscopic level suggesting that ?-glucan treatment worsened intestinal inflammation. Furthermore, curdlan and zymosan treatment led to increased colonic levels of inflammatory cytokines and chemokines, compared to vehicle. Glucan phosphate treatment did not significantly affect cytokine and chemokine levels. These data suggest that particulate and soluble ?-glucans differentially affect the intestinal immune responses. However, no significant differences in other clinical colitis scores between soluble and particulate ?-glucans were found in this study. In summary, ?-glucans aggravate the course of dextran sulfate sodium (DSS)-induced intestinal inflammation at the level of the mucosa. PMID:26500083

  9. Rhodamine-123: a p-glycoprotein marker complex with sodium lauryl sulfate.

    PubMed

    Al-Mohizea, Abdullah M; Al-Jenoobi, Fahad Ibrahim; Alam, Mohd Aftab

    2015-03-01

    Aim of this study was to investigate the role of sodium lauryl sulfate (SLS) as P-glycoprotein inhibitor. The everted rat gut sac model was used to study in-vitro mucosal to serosal transport of Rhodamine-123 (Rho-123). Surprisingly, SLS decreases the serosal absorption of Rho-123 at all investigated concentrations. Investigation reveals complex formation between Rhodamine-123 and sodium lauryl sulfate. Interaction profile of SLS & Rho-123 was studied at variable SLS concentrations. The SLS concentration higher than critical micelle concentration (CMC) increases the solubility of Rho-123 but could not help in serosal absorption, on the contrary the absorption of Rho-123 decreased. Rho-123 and SLS form pink color complex at sub-CMC. The SLS concentrations below CMC decrease the solubility of Rho-123. For further studies, Rho-123 & SLS complex was prepared by using solvent evaporation technique and characterized by using differential scanning calorimeter (DSC). Thermal analysis also proved the formation of complex between SLS & Rho-123. The P values were found to be significant (<0.05) except group comprising 0.0001% SLS, and that is because 0.0001% SLS is seems to be very low to affect the solubility or complexation of Rho-123. PMID:25730814

  10. Effect of 1-Butyl-3-methylimidazolium Halide on the Relative Stability between Sodium Dodecyl Sulfate Micelles and Sodium Dodecyl Sulfate-Poly(ethylene oxide) Nanoaggregates.

    PubMed

    Ferreira, Gabriel M Dias; Ferreira, Guilherme M Dias; Agudelo, lvaro J Patio; Hespanhol da Silva, Maria C; Rezende, Jaqueline de Paula; Pires, Ana Clarissa Dos Santos; da Silva, Luis Henrique Mendes

    2015-12-24

    It is well-known that ionic liquids (ILs) alter the properties of aqueous systems containing only surfactants. However, the effect of ILs on polymer-surfactant systems is still unknown. Here, the effect of 1-butyl-3-methylimidazolium bromide (bmimBr) and chloride (bmimCl) on the micellization of sodium dodecyl sulfate (SDS) and its interaction with poly(ethylene oxide) (PEO) was evaluated using conductimetry, fluorimetry, and isothermal titration calorimetry. The ILs decreased the critical micellar concentration (cmc) of the surfactant, stabilizing the SDS micelles. A second critical concentration (c2thc) was verified at high SDS concentrations, due to the micelle size decrease. The stability of PEO/SDS aggregates was also affected by ILs, and the critical aggregation concentration (cac) of SDS increased. Integral aggregation enthalpy changed from -0.72 in water to 2.16 kJ mol(-1) in 4.00 mM bmimBr. IL anions did not affect the SDS micellization or the beginning of PEO/SDS aggregation. Nevertheless, when chloride was replaced with bromide, the amount of SDS bound to the polymer increased. At 100.0 mM IL, the PEO-SDS interaction vanished. We suggest that the effect of ILs comes from participating in the structure of the formed aggregates, interacting with the SDS monomers at the core/interface of the micelles, and promoting preferential solvation of the polymer. PMID:26595360

  11. Sulfite-oxidizing enzymes.

    PubMed

    Kappler, Ulrike; Enemark, John H

    2015-03-01

    Sulfite-oxidizing enzymes (SOEs) are molybdenum enzymes that exist in almost all forms of life where they carry out important functions in protecting cells and organisms against sulfite-induced damage. Due to their nearly ubiquitous presence in living cells, these enzymes can be assumed to be evolutionarily ancient, and this is reflected in the fact that the basic domain architecture and fold structure of all sulfite-oxidizing enzymes studied so far are similar. The Mo centers of all SOEs have five-coordinate square pyramidal coordination geometry, which incorporates a pyranopterin dithiolene cofactor. However, significant differences exist in the quaternary structure of the enzymes, as well as in the kinetic properties and the nature of the electron acceptors used. In addition, some SOEs also contain an integral heme group that participates in the overall catalytic cycle. Catalytic turnover involves the paramagnetic Mo(V) oxidation state, and EPR spectroscopy, especially high-resolution pulsed EPR spectroscopy, provides detailed information about the molecular and electronic structure of the Mo center and the Mo-based sulfite oxidation reaction. PMID:25261289

  12. Sulfite oxidizing enzymes

    PubMed Central

    Feng, Changjian; Tollin, Gordon; Enemark, John H.

    2007-01-01

    Sulfite oxidizing enzymes are essential mononuclear molybdenum (Mo) proteins involved in sulfur metabolism of animals, plants and bacteria. There are three such enzymes presently known: (1) sulfite oxidase (SO) in animals, (2) SO in plants, and (3) sulfite dehydrogenase (SDH) in bacteria. X-ray crystal structures of enzymes from all three sources (chicken SO, Arabidopsis thaliana SO, and Starkeya novella SDH) show nearly identical square pyramidal coordination around the Mo atom, even though the overall structures of the proteins and the presence of additional cofactors vary. This structural information provides a molecular basis for studying the role of specific amino acids in catalysis. Animal SO catalyzes the final step in the degradation of sulfur-containing amino acids and is critical in detoxifying excess sulfite. Human SO deficiency is a fatal genetic disorder that leads to early death, and impaired SO activity is implicated in sulfite neurotoxicity. Animal SO and bacterial SDH contain both Mo and heme domains, whereas plant SO only has the Mo domain. Intraprotein electron transfer (IET) between the Mo and Fe centers in animal SO and bacterial SDH is a key step in the catalysis, which can be studied by laser flash photolysis in the presence of deazariboflavin. IET studies on animal SO and bacterial SDH clearly demonstrate the similarities and differences between these two types of sulfite oxidizing enzymes. Conformational change is involved in the IET of animal SO, in which electrostatic interactions may play a major role in guiding the docking of the heme domain to the Mo domain prior to electron transfer. In contrast, IET measurements for SDH demonstrate that IET occurs directly through the protein medium, which is distinctly different from that in animal SO. Point mutations in human SO can result in significantly impaired IET or no IET, thus rationalizing their fatal effects. The recent developments in our understanding of sulfite oxidizing enzyme mechanisms that are driven by a combination of molecular biology, rapid kinetics, pulsed electron paramagnetic resonance (EPR), and computational techniques are the subject of this review. PMID:17459792

  13. Influence of sodium dodecyl sulfate concentration on the photocatalytic activity and dielectric properties of intercalated sodium dodecyl sulfate into Zn–Cd–Al layered double hydroxide

    SciTech Connect

    Ahmed, Abdullah Ahmed Ali; Talib, Zainal Abidin; Hussein, Mohd Zobir

    2015-02-15

    Highlights: • Zn–Cd–Al–LDH–DS were synthesized with different SDS concentrations. • Photocatalytic activity of samples was improved by increasing SDS concentration. • Dielectric response of LDH can be described by anomalous low frequency dispersion. • The dc conductivity values were calculated for Zn–Cd–Al–LDH–DS samples. • ESR spectra exhibited the successful intercalation of DS molecule into LDH gallery. - Abstract: Sodium dodecyl sulfate (SDS) has been successfully intercalated into Zn–Cd–Al–LDH precursor with different SDS concentrations (0.2, 0.3, 0.4, 0.5 and 1 mol L{sup −1}) using the coprecipitation method at (Zn{sup 2+} + Cd{sup 2+})/Al{sup 3+} molar ratio of 13 and pH 8. The structural, morphological, texture and composition properties of the synthesized (Zn–Cd–Al–LDH–DS) nanostructure were investigated using powder X-ray diffraction (PXRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR), respectively. The photocatalytic activity of these materials was developed by increasing the concentration of intercalated SDS. The absorbance spectra have been used to detect an anion in the LDH interlayer before and after the intercalation process, which confirmed the presence of the dodecyl sulfate (DS{sup −}) anion into LDH gallery after intercalation. The anomalous low frequency dispersion (ALFD) has been used to describe the dielectric response of Zn–Cd–Al–LDH–DS nanostructure using the second type of universal power law. At low frequency, the polarization effect of electrodes caused the rising in dielectric constant and loss values. An important result of the dielectric measurements is the calculated dc conductivity values, which are new in dielectric spectroscopy of LDH materials. An important result of the electron spin resonance (ESR) spectra exhibited the successful intercalation of DS molecule into LDH gallery. The g-factor value was affected by the SDS concentration which indicated changes to the environment around the DS molecule in LDH interlayer.

  14. Strategies for overcoming temporary phytotoxic effects of calcium sulfite applied to agricultural soils

    SciTech Connect

    Ritchey, K.D.; Kinraide, T.B.; Wendell, R.R.; Clark, R.B.; Baligar, V.C.

    1994-12-31

    Calcium sulfite is a major component of scrubber residues produced by lime-based flue gas desulfurization (FGD) processes, widely used in the Ohio River Valley. Preliminary studies have shown that calcium sulfite severely decreased corn plant growth when incorporated into acid soils at moderate rates. Evidence is strong that the toxic effect on plant growth is due to generation of sulfur dioxide in acidic soil. Bioassay methods were used to demonstrate that raising soil pH reduced calcium sulfite toxicity. In solution and in soils, calcium sulfite oxidizes to calcium sulfate (gypsum), which is an agricultural soil amendment useful for increasing calcium levels in acidic subsoils. This potential for oxidation indicates the possibility of incorporating calcium sulfite several months before the crop is sown so that the calcium sulfite will transform to gypsum, which should, because of its relatively high solubility, leach below the plow layer and improve the subsoil.

  15. Electrophoretic separation of alginic sodium diester and sodium hexametaphosphate in chondroitin sulfate that interfere with the cetylpyridinium chloride titration assay.

    PubMed

    Weiguo, Zhang; Giancaspro, Gabriel; Adams, Kristie M; Neal-Kababick, James; Hildreth, Jana; Li, Aishan; Roman, Mark C; Betz, Joseph M

    2014-01-01

    The most commonly used chondroitin sulfate (CS) assay method is cetylpyridinium chloride (CPC) titration. Cellulose acetate membrane electrophoresis (CAME) is the technique used for detection of impurities in the U.S. Pharmacopeia's CS monograph. Because CPC titration is a relatively nonspecific quantitative technique, the apparent amount of CS as determined by CPC titration alone may not reflect the true amount of CS due to possible interference with the CPC assay by impurities that contain CPC titratable functional groups. When CAME is used in conjunction with CPC titration, certain non-CS and adulterants can be visualized and estimated, and a true value for CS can be assigned once the presence of these non-CS impurities has been ruled out. This study examines conjunct application of CPC and CAME in ascertaining CS assay and purity in the presence of certain adulterants. These include propylene glycol alginate sulfate sodium, known in commerce as alginic sodium diester (ASD), and Zero One (Z1), a water-soluble agent newly reported in the CS marketplace and subsequently identified as sodium hexametaphosphate. ASD, Z1, and CS are similar in physical appearance and solubility in water and ethanol. They are also titratable anions and form ionic pairs with CPC, therefore interfering with the CPC titration assay for CS CAME separates these adulterants from each other and from CS by differences in their electrophoretic mobility. CAME is able to detect these impurities in CS at levels as low as 0.66% by weight. Although it is recommended that a method for detecting impurities (e.g., CAME) be used in cormbination with relatively nonspecific assay methods such as CPC titration, this is seldom done in practice. Assay results for CS derived fromn CPC titration may, therefore, be misleading, leaving the CS supply chain vulnerable to adulteration. In this study, the authors investigated ASD and Z1 adulteration of CS and developed an electrophoretic separation of these adulterants in CS and procedures to isolate ASD from CS matrixes containing these adulterants. The authors describe in this paper utilization of an orthogonal approach to establish the identity of Z1 as sodium hexametaphosphate and to confirm the identity of ASD, including ethanol fractionation, FTIR spectroscopy, differential scanning calorimetry, and NMR spectroscopy. The authors suggest that CAME is a cost-effective and easy to use methodfor detecting certain impurities in CS raw ingredients and recommend that CPC and CAME be used in combination by QC laboratories as a means of effectively deterring the practice of adulterating CS raw materials with the known adulterants ASD and Z1 and/or other non-chondroitin substances that can be separated from CSby CAME and that exhibit CPC titration behavior similar to CS. PMID:25372663

  16. Sodium Dodecyl Sulfate (SDS)-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material.

    PubMed

    Li, Li; Molin, Soeren; Yang, Liang; Ndoni, Sokol

    2013-01-01

    Biofilms cause extensive damage to industrial settings. Thus, it is important to improve the existing techniques and develop new strategies to prevent bacterial biofilm formation. In the present study, we have prepared nanoporous polymer films from a self-assembled 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS) block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS) was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment in short-term (3 h) and significantly reduce biofilm formation in long-term (1 week) by gram-negative bacterium Escherichia coli. Tuning the thickness or surface morphology of the nanoporous polymer films allowed to extent the anti-biofilm capability. PMID:23377015

  17. [Effects of sodium doecyl sulfate on the artificial dental plaque in chemostat].

    PubMed

    Wei, G; Qiao, W; Bian, Z

    1997-11-01

    Sodium doecyl sulfate (SDS) is widely used as a detergent in dentifrices. It has been shown to interfere with the protein adsorption to hydroxyapatite (HA), and inhibit acquired pellicle formation. The aim of the present study was to examine the effects of SDS on the artificial dental plaque in chemostat. The amount of the 3H-labelled bacteria adhered on the enamel fragment surface was determined with scintillometer. The artificial dental plaque was observed under the scanning electron microscope. The results showed that enamel fragments treated with SDS adsorbed less bacteria than untreated ones, and had no plague formed. It suggested that SDS can inhibit the bacterial adherence on enamel surface and thus reduce dental plaque formation. PMID:11189307

  18. Nanoscale supramolecular structures in the gels of poly(diallyldimethylammonium chloride) interacting with sodium dodecyl sulfate

    SciTech Connect

    Yeh, F.; Sokolov, E.L.; Khokhlov, A.R.; Chu, B.

    1996-07-17

    A highly ordered supramolecular structure is formed in the polyelectrolyte-surfactant complexe between the anionic surfactant sodium dodecyl sulfate (SDS) and the cationic network of poly(diallyldimethylammonium chloride) (PDADMACl). From small-angle X-ray scattering (SAXS), the complexes between PDADMACI and SDS were shown to exhibit a hexagonal type of microstructure which is different from that of pure SDS. A d spacing of 3.7 nm corresponding to the interdistance between SDS aggregates in the gel network was obtained. The intensity of the diffraction peaks and the degree of order increased with increasing initial SDS concentration and charge content of the PDADMACl gels. The diffraction peaks were broadened when the concentration of SDS in the external solution phase was higher than its critical micelle concentration (cmc). The SAXS profiles were unexpectedly independent of the degree of cross-linking of the PDADMACI gels in the range of 0.5-2%. 27 refs., 6 figs.

  19. Sodium dodecyl sulfate-agarose gel electrophoresis for the detection and isolation of amyloid curli fibers.

    PubMed

    Sitaras, Chris; Naghavi, Mahsa; Herrington, Muriel B

    2011-01-15

    Curli are amyloid-like fibers on the surface of some strains of Escherichia coli and Salmonella enteritidis. We tested the use of horizontal sodium dodecyl sulfate (SDS)-agarose gel electrophoresis to detect, isolate, and quantitate curli. Cell extracts fractionated in SDS-agarose gels and stained with Coomassie blue exhibited a soluble fraction that entered the gel and an insoluble fraction that remained in the well. Much more insoluble material was observed with curli-proficient strains than with strains that do not make curli. Both highly purified curli and the insoluble material isolated from an SDS-agarose gel could be dissociated into monomers when treated with formic acid. For quantitation, we immobilized samples in SDS-agarose prior to electrophoresis. This avoids losses during the staining of the gel. Our methods provide a rapid and simple fractionation of curli using equipment that is readily available. PMID:20920455

  20. Copper staining: a five-minute protein stain for sodium dodecyl sulfate-polyacrylamide gels.

    PubMed

    Lee, C; Levin, A; Branton, D

    1987-11-01

    We present a new method for visualizing proteins electrophoresed in sodium dodecyl sulfate-polyacrylamide gels. After electrophoresis, gels are incubated in CuCl2 to produce a negative image of colorless protein bands against a semiopaque background. Gels are stained completely within 5 min, do not require destaining, and can be stored indefinitely without loss of the image. Because proteins are not permanently fixed within the gel, they can be quantitatively eluted after chelation of Cu with EDTA. The sensitivity of the CuCl2 stain falls between that of Coomassie blue and silver. We anticipate that CuCl2 will be useful in the rapid analysis of proteins by polyacrylamide gel electrophoresis and in the preparation of purified polypeptides by elution from gel slices. PMID:2449094

  1. Sodium Dodecyl Sulfate (SDS)-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    PubMed Central

    Li, Li; Molin, Soeren; Yang, Liang; Ndoni, Sokol

    2013-01-01

    Biofilms cause extensive damage to industrial settings. Thus, it is important to improve the existing techniques and develop new strategies to prevent bacterial biofilm formation. In the present study, we have prepared nanoporous polymer films from a self-assembled 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS) block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS) was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment in short-term (3 h) and significantly reduce biofilm formation in long-term (1 week) by gram-negative bacterium Escherichia coli. Tuning the thickness or surface morphology of the nanoporous polymer films allowed to extent the anti-biofilm capability. PMID:23377015

  2. Enhancement by Sodium Dodecyl Sulfate of Pigment Formation in Serratia marcescens O8

    PubMed Central

    Feng, J. S.; Webb, J. W.; Tsang, J. C.

    1982-01-01

    Three methods were used to determine the enhancement by sodium dodecyl sulfate (SDS) of prodigiosin formation in Serratia marcescens O8. The results of the agar disk diffusion method indicated that pigment formation was dependent upon the concentration of SDS. Diameters of the pigment zones were proportional to the logarithm of SDS concentrations of 300 to 1,500 ?g/ml. When bacteria were grown in broth containing SDS from 0 to 800 ?g/ml and the pigment extracts were analyzed spectrophotometrically, a similar enhancement of pigment formation was observed. Finally, these results were confirmed by high-performance liquid chromatographic analysis of the extracts. Prodigiosin appeared to be the sole component with increased synthesis. The possible mechanism of the SDS enhancement effect could be explained by an increase in negative binding sites by the association of SDS with a cell envelope component(s). These binding sites may be required for prodigiosin synthesis. PMID:16345993

  3. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate

    SciTech Connect

    Lacks, S.A.; Springhorn, S.S.

    1980-08-10

    A number of enzymes, including amylases, dehydrogenases, and proteases, were shown to be renaturable after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Enzyme activity was detected in situ by action on substrates introduced into the gel and subsequent staining of either the product or unreacted substrate. Enzymes appeared to recover activity as soon as the detergent diffused out of the gel. Renatured enzymes were retained in gels after electrophoresis longer than native enzymes which had been subjected to electrophoresis in the absence of detergent. Re-electrophoresis of the renatured enzymes showed that part of the retained activity was physically anchored to the gel, possibly by the folding of polypeptides around the gel matrix as the enzymes were renatured.

  4. Phosphoprotein staining for sodium dodecyl sulfate-polyacrylamide gel electrophoresis using fluorescent reagent morin hydrate.

    PubMed

    Wang, Xu; Hwang, Sun-Young; Cong, Wei-Tao; Jin, Li-Tai; Choi, Jung-Kap

    2013-04-01

    A fluorescence-based stain with 3,5,7,2',4'-pentahydroxyflavone (morin hydrate, MH) was designed to stain phosphoproteins in one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Al(3+) was applied as a "fixed bridge," providing an efficient energy transfer channel between phosphoprotein and MH, to produce a strong fluorescent complex for the determination of phosphoprotein. As little as 62.5ng of ?-casein (7 or 8 phosphates) and ?-casein (5 phosphates), 125ng of ovalbumin (2 phosphates), and ?-casein (1 phosphate) could be visualized with a wide linear dynamic range. In comparison with conventional methods, MH stain is a time-saving method that takes just 90min. It also has good compatibility with routine protein stainings such as Coomassie Brilliant Blue R (CBBR) and SYPRO Ruby for total protein analysis. PMID:23274386

  5. Binding of heavy metals to derivatives of cholesterol and sodium dodecyl sulfate

    SciTech Connect

    Ahmadi, S.; Batchelor, B.; Koseoglu, S.S.; Huang, Y.C.

    1995-09-01

    The binding behaviors of five metals (cadmium, copper, nickel, lead, and zinc), individually at pH 6 and collectively at pHs 6 and 3, to deoxycholic acid (DCA) and taurocholic acid (TCA) were compared with those of sodium dodecyl sulfate (SDS) using a continuous diafiltration method. DCA and SDS have been successfully applied in micellar-enhanced ultrafiltration (MEUF) for metal removal from water. In this study, SDS exhibits the strongest binding in the single-component experiments while DCA binds the most in the multicomponent trials. TCA does not show any significant biding compared with DCA and SDS. Overall the molar binding ratios of the mixture at pH 3 were well below those of the other two solutions. This diafiltration technique quantifies the binding characteristics of a surfactant by generating sorption isotherms and determining the intrinsic association constraints with corresponding number of binding sites. These parameters can be useful in designing an efficient MEUF system.

  6. Inhibition effects of inorganic multivalent cations on iron corrosion in aerated sodium sulfate solution

    SciTech Connect

    Aramaki, K.

    1999-02-01

    Inhibition effects of inorganic multivalent cations on corrosion of Fe in an aerated 0.5 M sodium sulfate (Na{sub 2}So{sub 4}) solution were investigated using polarization measurements. The cations formed deposit layers of their hydroxides on the Fe surface by reactions with hydroxide ions (OH{sup {minus}}) afforded through the cathodic process of Fe corrosion. Some layers on the surface were analyzed by x-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA). Since the cations suppressed the cathodic process but stimulated the anodic one, their inhibition efficiencies were not markedly high. Inhibition effects of the cations on the cathodic process were related closely to the hard and soft acids and bases (HSAB) principle because the effect increased with the hardness of a cation as an acid.

  7. XRD, SEM and infrared study into the intercalation of sodium hexadecyl sulfate (SHS) into hydrocalumite.

    PubMed

    Zhang, Ping; Wang, Tianqi; Zhang, Longlong; Wu, Daishe; Frost, Ray L

    2015-12-01

    Hydrocalumite (CaAl-LDH-Cl) interacted with a natural anionic surfactant, sodium hexadecyl sulfate (SHS), was performed using an intercalation method. To understand the intercalation behavior and characterize the resulting products, powder X-ray diffraction (XRD), scan electron microscopy (SEM) and mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique were used. The XRD analysis indicated that SHS was intercalated into CaAl-LDH-Cl successfully, resulting in an expansion of the interlayer (from 0.78 nm to 2.74 nm). The bands of C-H stretching vibrations of SHS were observed in the near-infrared spectra, which indicated that the resulting products were indeed CaAl-LDH-SHS. In addition, the bands of water stretching vibrations and OH groups shifted to higher wavenumbers when SHS was intercalated into CaAl-LDH-Cl interlayer space. PMID:26163791

  8. Concentration of sodium sulfate from pickle liquor of tannery effluent by electrodialysis

    SciTech Connect

    Thampy, S.K.; Narayanan, P.K.; Chauhan, D.K.

    1995-11-01

    An electrodialysis technique using indigeneously prepared interpolymer membranes and a laboratory-scale electrodialysis unit having an effective area of 25 cm x 12 cm with 20 pairs of ion-exchange membranes was used for the concentration of sodium sulfate in the effluent was concentrated three and half times with respect to the original effluents, thereby rendering the concentrate usable in the tannery process. The diluate of first stage solution was further subjected to eletrodialysis in a once through pass system, and the total dissolved solids content of the second stage diluation was brought down to less than 1000 ppm. This process offers the possibility of either reusing the water or safely discharging it. The parameters voltage, flow rate, and change of concentration with fresh effluent were investigated. The energy requirement and current efficiency were also calculated.

  9. Location of phenothiazine in sodium dodecyl sulfate/n-pentanol/water microemulsions.

    PubMed

    Liu, Yan; Guo, Rong; Guo, Xia

    2006-01-19

    The location of phenothiazine (PTZ) in sodium dodecyl sulfate (SDS)/n-pentanol (n-C5H11OH)/water microemulsions is studied by cyclic voltammetry at a Pt electrode. The results indicate that PTZ exists in the membrane phase of microemulsion droplets with its N atom or S atom toward the polar head of the surfactant. In addition, we examine the effect of the compositions and structures of the microemulsions, pH, temperature, and the inorganic salts on the location distribution for PTZ in the membrane phase of the microemulsions. The results show that the location distribution for PTZ in the membrane phase of the microemulsions is mainly dependent on the hydrogen bond between the -NH in PTZ and n-pentanol (or the -SO4- of SDS) and on the electrostatic interaction between the S atom (or N atom) in PTZ and the polar head of SDS. PMID:16471603

  10. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.; Kleinmann, R.L.P.; Erickson, P.M.

    1984-07-01

    Thiobacillus ferrooxidans promote indirect oxidation of pyrite through the catalysis of the oxidation of ferrous iron to ferric iron, which is an effective oxidant of pyrite. These bacteria also may catalyze direct oxidation of pyrite by oxygen. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous iron to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage microorganisms. In this study, benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.

  11. Oral fluoride levels 1 h after use of a sodium fluoride rinse: effect of sodium lauryl sulfate.

    PubMed

    Vogel, Gerald L; Schumacher, Gary E; Chow, Laurence C; Tenuta, Livia M A

    2015-01-01

    Increasing the concentration of free fluoride in oral fluids is an important goal in the use of topical fluoride agents. Although sodium lauryl sulfate (SLS) is a common dentifrice ingredient, the influence of this ion on plaque fluid and salivary fluid fluoride has not been examined. The purpose of this study was to investigate the effect of SLS on these parameters and to examine the effect of this ion on total (or whole) plaque fluoride, an important source of plaque fluid fluoride after a sufficient interval following fluoride administration, and on total salivary fluoride, a parameter often used as a surrogate measure of salivary fluid fluoride. Ten subjects accumulated plaque for 48 h before rinsing with a 12 mmol/l NaF (228 g/g F) rinse containing or not containing 0.5% (w/w) SLS. SLS had no statistically significant effect on total plaque and total saliva fluoride but significantly increased salivary fluid and plaque fluid fluoride (by 147 and 205%, respectively). These results suggest that the nonfluoride components of topical agents can be manipulated to improve the fluoride release characteristics from oral fluoride reservoirs and that statistically significant change may be observed in plaque fluid and salivary fluid fluoride concentrations that may not be observed in total plaque and total saliva fluoride concentrations. PMID:25924684

  12. Over-Expression of CD200 Protects Mice from Dextran Sodium Sulfate Induced Colitis

    PubMed Central

    Chen, Zhiqi; Yu, Kai; Zhu, Fang; Gorczynski, Reginald

    2016-01-01

    Background and aim CD200:CD200 receptor (CD200R) interactions lead to potent immunosuppression and inhibition of autoimmune inflammation. We investigated the effect of "knockout"of CD200 or CD200R, or over-expression of CD200, on susceptibility to dextran sodium sulfate (DSS)—induced colitis, a mouse model of inflammatory bowel disease (IBD). Methods Acute or chronic colitis was induced by administration of dextran sodium sulfate (DSS) in four groups of age-matched C57BL/6 female mice: (1) CD200-transgenic mice (CD200tg); (2) wild-type (WT) mice; (3) CD200 receptor 1-deficient (CD200R1KO) mice; and (4) CD200-deficient (CD200KO) mice. The extent of colitis was determined using a histological scoring system. Colon tissues were collected for quantitative RT-PCR and Immunohistochemical staining. Supernatants from colonic explant cultures and mononuclear cells isolated from colonic tissue were used for ELISA. Results CD200KO and CD200R1KO mice showed greater sensitivity to acute colitis than WT mice, with accelerated loss of body weight, significantly higher histological scores, more severe infiltration of macrophages, neutrophils and CD3+ cells, and greater expression of macrophage-derived inflammatory cytokines, whose production was inhibited in vitro (in WT/CD200KO mouse cells) by CD200. In contrast, CD200tg mice showed less sensitivity to DSS compared with WT mice, with attenuation of all of the features seen in other groups. In a chronic colitis model, greater infiltration of Foxp3+ regulatory T (Treg) cells was seen in the colon of CD200tg mice compared to WT mice, and anti-CD25 mAb given to these mice attenuated protection. Conclusions The CD200:CD200R axis plays an immunoregulatory role in control of DSS induced colitis in mice. PMID:26841120

  13. Toxicity detection of sodium nitrite, borax and aluminum potassium sulfate using electrochemical method.

    PubMed

    Yu, Dengbin; Yong, Daming; Dong, Shaojun

    2013-04-01

    Based on the inhibition effect on the respiratory chain activity of microorganisms by toxicants, an electrochemical method has been developed to measure the current variation of a mediator in the presence of microorganisms contacted with a toxicant. Microelectrode arrays were adopted in this study, which can accelerate the mass transfer rate of an analyte to the electrode and also increase the total current signal, resulting in an improvement in detection sensitivity. We selected Escherichia coli as the testee and the standard glucose-glutamic acid as an exogenous material. Under oxygen restriction, the experiments in the presence of toxicant were performed at optimum conditions (solution pH 7.0, 37 degrees C and reaction for 3 hr). The resulting solution was then separated from the suspended microorganisms and was measured by an electrochemical method, using ferricyanide as a mediator. The current signal obtained represents the reoxidation of ferrocyanide, which was transformed to inhibiting efficiency, IC50, as a quantitative measure of toxicity. The IC50 values measured were 410, 570 and 830 mg/L for sodium nitrite, borax and aluminum potassium sulfate, respectively. The results show that the toxicity sequence for these three food additives is consistent with the value reported by other methods. Furthermore, the order of damage degree to the microorganism was also observed to be: sodium nitrite > borax > aluminum potassium sulfate > blank, according to the atomic force microscopy images of E. coli after being incubated for 3 hr with the toxic compound in buffer solutions. The electrochemical method is expected to be a sensitive and simple alternative to toxicity screening for chemical food additives. PMID:23923788

  14. Dextran sulfate sodium inhibits amyloid-β oligomer binding to cellular prion protein.

    PubMed

    Aimi, Takahiro; Suzuki, Koichiro; Hoshino, Tatsuya; Mizushima, Tohru

    2015-08-01

    Amyloid-β peptide (Aβ), especially its oligomeric form, is believed to play an important role in the pathogenesis of Alzheimer's disease (AD). To this end, the binding of Aβ oligomer to cellular prion protein (PrP(C)) plays an important role in synaptic dysfunction in a mouse model of AD. Here, we have screened for compounds that inhibit Aβ oligomer binding to PrP(C) from medicines already used clinically (Mizushima Approved Medicine Library 1), and identified dextran sulfate sodium (DSS) as a candidate. In a cell-free assay, DSS inhibited Aβ oligomer binding to PrP(C) but not to ephrin receptor B2, another endogenous receptor for Aβ oligomers, suggesting that the drug's action is specific to the binding of Aβ oligomer to PrP(C) . Dextran on the other hand did not affect this binding. DSS also suppressed Aβ oligomer binding to cells expressing PrP(C) but not to control cells. Furthermore, while incubation of mouse hippocampal slices with Aβ oligomers inhibited the induction of long-term potentiation, simultaneous treatment with DSS restored the long-term potentiation. As DSS has already been approved for use in patients with hypertriglyceridemia, and its safety in humans has been confirmed, we propose further analysis of this drug as a candidate for AD treatment. Amyloid-β peptide (Aβ) oligomer-binding to cellular prion protein (PrP(C) ) is important in synaptic dysfunction in Alzheimer's disease (AD). We found here that dextran sulfate sodium (DSS) inhibits Aβ oligomer binding to PrP(C) . Simultaneous treatment of hippocampal slices with DSS restored long-term potentiation (LTP) in the presence of Aβ oligomers. Since DSS has already been approved for clinical use, we propose this drug is a candidate drug for AD treatment. PMID:25963375

  15. Effect of Scutellariae Radix extract on experimental dextran-sulfate sodium-induced colitis in rats

    PubMed Central

    Chung, Ho-Lam; Yue, Grace Gar-Lee; To, Ka-Fai; Su, Ya-Lun; Huang, Yu; Ko, Wing-Hung

    2007-01-01

    AIM: To investigate the effect of Scutellariae Radix extract (SRE) on ulcerative colitis (UC) in rats induced by dextran-sulfate sodium (DSS). METHODS: Colitis was induced in male Sprague-Dawley (SD) rats (170-180 g) by 4% dextran sulfate sodium (DSS, wt/v; MW 54000) in drinking water for 8 d. The treated rats received 4% DSS and SRE orally (100 mg/kg per day). Control rats received either tap water or SRE only. Macroscopic assessment which included body weight changes, fecal occult blood and stool consistency were determined daily. At the appointed time, the rats were sacrificed and the entire colons were removed. The colon length and the myeloperoxidase (MPO) activity were measured. The severity of colitis was graded by morphological and histological assessments. The ion transport activity of the colonic mucosa was assessed by electrophysiological technique. RESULTS: Rats treated with oral administration of 4% DSS regularly developed clinical and macroscopic signs of colitis. Treatment with SRE relieved the symptoms, including the reduction in body weight, shortening and ulceration of the colon. Administration of SRE also significantly reduced the histological damage induced by DSS. Moreover, the ISC responses of the colonic mucosa to forskolin were suppressed after the induction of colitis. The stimulated ion transport activity of DSS-rats treated with SRE displayed significant improvement in the secretory responsiveness. CONCLUSION: SRE was effective in treating acute DSS-induced ulcerative colitis, as gauged by reduced clinical disease, improved macroscopic and histological damage scores, and enhanced recovery of normal colonic secretory function. PMID:17948935

  16. Preparation, characterization and pharmacokinetics of fluorescence labeled propylene glycol alginate sodium sulfate

    NASA Astrophysics Data System (ADS)

    Li, Pengli; Li, Chunxia; Xue, Yiting; Zhang, Yang; Liu, Hongbing; Zhao, Xia; Yu, Guangli; Guan, Huashi

    2014-08-01

    A rapid and sensitive fluorescence labeling method was developed and validated for the microanalysis of a sulfated polysaccharide drug,namely propylene glycol alginate sodium sulfate (PSS), in rat plasma. Fluorescein isothiocyanate (FITC) was selected to label PSS, and 1, 6-diaminohexane was used to link PSS and FITC in order to prepare FITC-labeled PSS (F-PSS) through a reductive amination reaction. F-PSS was identified by UV-Vis, FT-IR and 1H-NMR spectrum. The cell stability and cytotoxicity of F-PSS were tested in Madin-Darby canine kidney (MDCK) cells. The results indicated that the labeling efficiency of F-PSS was 0.522% ± 0.0248% and the absolute bioavailability was 8.39%. F-PSS was stable in MDCK cells without obvious cytotoxicity. The method was sensitive and reliable; it showed a good linearity, precision, recovery and stability. The FITC labeling method can be applied to investigating the absorption and metabolism of PSS and other polysaccharides in biological samples.

  17. Sodium Sulfate Separation from Aqueous Alkaline Solutions via Crystalline Urea-Functionalized Capsules: Thermodynamics and Kinetics of Crystallization

    DOE PAGESBeta

    Custelcean, Radu; Sloop Jr, Frederick; Rajbanshi, Arbin; Wan, Shun; Moyer, Bruce A

    2015-01-01

    ABSTRACT: The thermodynamics and kinetics of crystallization of sodium sulfate with a tripodal tris-urea receptor (L1) from aqueous alkaline solutions have been measured in the 15 55 C temperature range, with the goal of identifying the optimal conditions for efficient and quick sulfate removal from nuclear wastes. The use of radiolabeled Na235SO4 provided a practical way to monitor the sulfate concentration in solution by liquid scintillation counting. Our results are consistent with a two-step crystallization mechanism, involving relatively quick dissolution of crystalline L1 followed by the rate-limiting crystallization of the Na2SO4(L1)2(H2O)4 capsules. We found that temperature exerted relatively little influencemore » over the equilibrium sulfate concentration, which ranged between 0.004 and 0.011 M. This corresponds to 77 91% removal of sulfate from a solution containing 0.0475 M initial sulfate concentration, as found in a typical Hanford waste tank. The apparent pseudo-first-order rate constant for sulfate removal increased 20-fold from 15 to 55 C, corresponding to an activation energy of 14.1 kcal/mol. At the highest measured temperature of 55 C, 63% and 75% of sulfate was removed from solution within 8 h and 24 h, respectively.« less

  18. Sodium Sulfate Separation from Aqueous Alkaline Solutions via Crystalline Urea-Functionalized Capsules: Thermodynamics and Kinetics of Crystallization

    SciTech Connect

    Custelcean, Radu; Sloop Jr, Frederick {Fred} V; Rajbanshi, Arbin; Wan, Shun; Moyer, Bruce A

    2015-01-01

    ABSTRACT: The thermodynamics and kinetics of crystallization of sodium sulfate with a tripodal tris-urea receptor (L1) from aqueous alkaline solutions have been measured in the 15 55 C temperature range, with the goal of identifying the optimal conditions for efficient and quick sulfate removal from nuclear wastes. The use of radiolabeled Na235SO4 provided a practical way to monitor the sulfate concentration in solution by liquid scintillation counting. Our results are consistent with a two-step crystallization mechanism, involving relatively quick dissolution of crystalline L1 followed by the rate-limiting crystallization of the Na2SO4(L1)2(H2O)4 capsules. We found that temperature exerted relatively little influence over the equilibrium sulfate concentration, which ranged between 0.004 and 0.011 M. This corresponds to 77 91% removal of sulfate from a solution containing 0.0475 M initial sulfate concentration, as found in a typical Hanford waste tank. The apparent pseudo-first-order rate constant for sulfate removal increased 20-fold from 15 to 55 C, corresponding to an activation energy of 14.1 kcal/mol. At the highest measured temperature of 55 C, 63% and 75% of sulfate was removed from solution within 8 h and 24 h, respectively.

  19. Characterization of implant materials in fetal bovine serum and sodium sulfate by electrochemical impedance spectroscopy. II. Coarsely sandblasted samples.

    PubMed

    Contu, F; Elsener, B; Böhni, H

    2003-10-01

    Electrochemical impedance spectroscopy is used to investigate the corrosion resistance of coarsely sandblasted implant alloys, commercially pure titanium, Ti6Al4V, Ti6Al7Nb, and CoCrMo in 0.1M sodium sulfate and fetal bovine serum. Coarsely sandblasted samples have a heterogeneous surface constituted by a large number of protrusions and recessions. Impedance spectra collected in sodium sulfate present two time constants (maxima in the phase-angle of the bode plot) associated with the total surface and with the tips, respectively. In bovine serum, the two maxima in the impedance spectra cannot be distinguished because of the formation of an adsorption layer of organic molecules, which causes a decrease in the values of both the total and tips' capacitances as well as an increase in the polarization resistance. Ti6Al4V and Ti6Al7Nb show the highest corrosion rate both in serum and in sodium sulfate. Based on the capacitance values obtained in sodium sulfate, the real surface area of the coarsely sandblasted electrodes has been estimated relative to mechanically polished surfaces. The values of the effective electrode area correlate with the mechanical properties of the samples: in fact, the softest electrode (commercially pure titanium) shows the largest effective electrode area, whereas the hardest material (CoCrMo alloy) shows the smallest surface area. PMID:14517883

  20. Characterizing the distribution of sodium alkyl sulfate surfactant homologues in water-based, acrylic pressure-sensitive adhesive films.

    PubMed

    Zhang, Jilin; Severtson, Steven J; Houtman, Carl J

    2011-06-30

    The distributions of three sodium alkyl sulfate surfactants in dry adhesive films cast from water-based latexes were characterized using confocal Raman microscopy (CRM) and contact angle (CA) and tack measurements. Sodium dodecyl sulfate (SDS), sodium tetradecyl sulfate (STS), and sodium octadecyl sulfate (SODS) were added to dialyzed commercial adhesive latex at various concentrations. Uneven distributions were found for all three surfactants along with a tendency to enrich film-air interfaces and, to a much lesser extent, film-glass interfaces. SDS demonstrated the greatest tendency to concentrate near film surfaces followed by STS and SODS. For all three surfactants, water CA values for dried films decreased sharply with increasing concentrations in the latex, but significant differences were observed, with SDS again having the greatest impact followed by STS and SODS. Tack of dried polymer films was also found to decrease with increasing latex surfactant levels, with SDS producing the sharpest drop as well as the lowest plateau values. Results indicate that interfacial enrichment by surfactants is detectable via both CRM and CA measurements, and this enrichment can significantly affect the performance of films. Finally, surface enrichment levels are qualitatively related to measures of the surfactants' affinity for aqueous solutions, as characterized by the logarithm of their 1-octanol-water distribution coefficients (K(ow)). PMID:21604743

  1. Modification of an acetone-sodium dodecyl sulfate disruption method for cellular protein extraction from neuropathogenic Clostridium botulinum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An acetone-sodium dodecyl sulfate (SDS) disruption method was used for the extraction of cellular proteins from neurotoxigenic Clostridium botulinum. The amount of protein extracted per gram of dry weight and the protein profile as revealed by polyacrylamide gel electrophoresis (PAGE) was comparabl...

  2. Use of a Ferrous Sulfate - Sodium Dithionite Blend to Treat a Dissolved Phase Cr(VI) Plume

    EPA Science Inventory

    A field study was conducted to evaluate the use of a combination of sodium dithionite and ferrous sulfate in creating an in situ redox zone for treatment of a dissolved phase Cr(VI) plume at a former industrial site. The reductant blend was injected into the path of a dissolved ...

  3. Corrosion of NiCoCrAlY Coatings and TBC Systems Subjected to Water Vapor and Sodium Sulfate

    NASA Astrophysics Data System (ADS)

    Eriksson, Robert; Yuan, Kang; Li, Xin-Hai; Lin Peng, Ru

    2015-08-01

    Thermal barrier coating (TBC) systems are commonly used in gas turbines for protection against high-temperature degradation. Penetration of the ceramic top coat by corrosive species may cause corrosion damage on the underlying NiCoCrAlY bond coat and cause failure of the TBC system. In the current study, four oxidation/corrosion conditions were tried: (i) lab air, (ii) water vapor, (iii) sodium sulfate deposited on the specimens, and (iv) water vapor + sodium sulfate. The test was done at 750 °C in a cyclic test rig with 48 h cycles. The corrosion damage was studied on NiCoCrAlY-coated specimens, thin APS TBC specimens, and thick APS TBC specimens. Water vapor was found to have very minor influence on the oxidation, while sodium sulfate increased the TGO thickness both for NiCoCrAlY specimens and TBC-coated specimens; the influence of the TBC thickness was found to be very small. Sodium sulfate promoted thicker TGO; more Cr-rich TGO; the formation of Y oxides, and internally, Y sulfides; pore formation in the coating as well as in the substrate; and the formation of a Cr-depleted zone in the substrate.

  4. Interaction of Sodium Dodecyl Sulfate with watermelon chromoplasts and examination of the organization of lycopene within the chromoplasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The properties of plant-derived precipitates of watermelon lycopene were examined in aqueous sodium dodecyl sulfate (SDS) as part of an ongoing effort to develop simpler, more economical ways to quantify carotenoids in melon fruit. Levels of SDS >0.2% were found to increase the water solubility of ...

  5. Comparison of solubilization capacity of resveratrol in sodium 3α, 12α -dihydroxy-7-oxo-5 β-cholanoate and sodium dodecyl sulfate.

    PubMed

    Cvejić, Jelena; Poša, Mihalj; Sebenji, Ana; Atanacković, Milica

    2014-01-01

    In this study we investigated resveratrol (trans-3,5,4'-trihydroxystilbene) solubilization with sodium 3α,12 α-dihydroxy-7-oxo-5 β-cholanoate (S7-OD) and sodium dodecyl sulfate (SDS). The investigation was aimed at determining whether large spherical micelles (SDS) or small longitudinal micelles (S7-OD) are more convenient for incorporation of resveratrol. Also, we studied resveratrol behavior in mixed micelles with mentioned surfactants using spectroflourimetric method as well as the effects of sodium chloride and urea on resveratrol solubilization capacity in the applied surfactants. Resveratrol solubilization curve was different in the investigated surfactants. Resveratrol solubilization curve for sodium 3α,12 α-dihydroxy-7-oxo-5 β-cholanoate at concentration 0.9 CMC reached saturation level of 60% dissolved resveratrol. The curve for sodium dodecyl sulfate was linear within the whole range of the investigated concentration; resveratrol solubilization rate reached 13% at 2 CMC. In S7-OD, NaCl increased capacity of resveratrol solubilization up to 1.4 CMC surfactant concentration, whilst maximum level of dissolved resveratrol (90%) was observed at 0.9 CMC. In SDS, NaCl decreased resveratrol solubilization capacity. Urea reduced resveratrol solubilization rate in sodium 3α ,12 α-dihydroxy-7-oxo-5 β-cholanoate, whereas it had inverse effect in sodium dodecyl sulfate. The obtained results strongly suggest that structure, that is, shape, of the surfactant micelles significantly affects their capacity of resveratrol solubilization. Also, presence of NaCl and urea influences solubilization capacities of investigated surfactants. PMID:24688374

  6. Direct comparison of the hygroscopic properties of ammonium sulfate and sodium chloride aerosol at relative humidities approaching saturation.

    PubMed

    Walker, Jim S; Wills, Jon B; Reid, Jonathan P; Wang, Liangyu; Topping, David O; Butler, Jason R; Zhang, Yun-Hong

    2010-12-01

    Holographic optical tweezers are used to make comparative measurements of the hygroscopic properties of single component aqueous aerosol containing sodium chloride and ammonium sulfate over a range of relative humidity from 84% to 96%. The change in RH over the course of the experiment is monitored precisely using a sodium chloride probe droplet with accuracy better than ±0.09%. The measurements are used to assess the accuracy of thermodynamic treatments of the relationship between water activity and solute mass fraction with particular attention focused on the dilute solute limit approaching saturation vapor pressure. The consistency of the frequently used Clegg-Brimblecombe-Wexler (CBW) treatment for predicting the hygroscopic properties of sodium chloride and ammonium sulfate aerosol is confirmed. Measurements of the equilibrium size of ammonium sulfate aerosol are found to agree with predictions to within an uncertainty of ±0.2%. Given the accuracy of treating equilibrium composition, the inconsistencies highlighted in recent calibration measurements of critical supersaturations of sodium chloride and ammonium sulfate aerosol cannot be attributed to uncertainties associated with the thermodynamic predictions and must have an alternative origin. It is concluded that the CBW treatment can allow the critical supersaturation to be estimated for sodium chloride and ammonium sulfate aerosol with an accuracy of better than ±0.002% in RH. This corresponds to an uncertainty of ≤1% in the critical supersaturation for typical supersaturations of 0.2% and above. This supports the view that these systems can be used to accurately calibrate instruments that measure cloud condensation nuclei concentrations at selected supersaturations. These measurements represent the first study in which the equilibrium properties of two particles of chemically distinct composition have been compared simultaneously and directly alongside each other in the same environment. PMID:21067131

  7. Effect of potassium sodium tartrate and sodium citrate on the preparation of {alpha}-calcium sulfate hemihydrate from flue gas desulfurization gypsum in a concentrated electrolyte solution

    SciTech Connect

    Shen, Z.X.; Guan, B.H.; Fu, H.L.; Yang, L.C.

    2009-12-15

    Flue gas desulfurization (FGD) gypsum mainly composed of calcium sulfate dihydrate (DH) was used as a raw material to obtain alpha-calcium sulfate hemihydrate ({alpha}-HH) through dehydration in a Ca-Mg-K-Cl-solution medium at 95{sup o}C under atmospheric pressure. The effects of potassium sodium tartrate and sodium citrate on the preparation of alpha-HH in the electrolyte solution were investigated. The results revealed that the addition of potassium sodium tartrate (1.0 x 10{sup -2} - 2.5 x 10{sup -2}M) decreased the dehydration rate of FGD gypsum and increased the length/width (l/w) ratio of {alpha}-HH crystals, which could yield unfavorable strength properties. Addition of sodium citrate (1.0 x 10{sup -5} - 2.0 x 10{sup -5}M) slightly increased the dehydration rate of FGD gypsum and decreased the l/w ratio of {alpha}-HH crystals, which could be beneficial to increase strength. However, it also led to a partial formation of anhydrite (AH) crystals. AH was also the only dehydration product when the concentration of sodium citrate increased to 1.0 x 10{sup -4}M. Therefore, sodium citrate rather than potassium sodium tartrate could be used as an additive in Ca-Mg-K-Cl electrolyte solutions if alpha-HH with a shorter l/w ratio is the desired product from FGD gypsum dehydration. The concentration of sodium citrate should be properly controlled to reduce the formation of AH.

  8. Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency.

    PubMed

    Belaidi, Abdel A; Rper, Juliane; Arjune, Sita; Krizowski, Sabina; Trifunovic, Aleksandra; Schwarz, Guenter

    2015-07-15

    Mammalian sulfite oxidase (SO) is a dimeric enzyme consisting of a molybdenum cofactor- (Moco) and haem-containing domain and catalyses the oxidation of toxic sulfite to sulfate. Following sulfite oxidation, electrons are passed from Moco via the haem cofactor to cytochrome c, the terminal electron acceptor. In contrast, plant SO (PSO) lacks the haem domain and electrons shuttle from Moco to molecular oxygen. Given the high similarity between plant and mammalian SO Moco domains, factors that determine the reactivity of PSO towards oxygen, remained unknown. In the present study, we generated mammalian haem-deficient and truncated SO variants and demonstrated their oxygen reactivity by hydrogen peroxide formation and oxygen-consumption studies. We found that intramolecular electron transfer between Moco and haem showed an inverse correlation to SO oxygen reactivity. Haem-deficient SO variants exhibited oxygen-dependent sulfite oxidation similar to PSO, which was confirmed further using haem-deficient human SO in a cell-based assay. This finding suggests the possibility to use oxygen-reactive SO variants in sulfite detoxification, as the loss of SO activity is causing severe neurodegeneration. Therefore we evaluated the potential use of PEG attachment (PEGylation) as a modification method for future enzyme substitution therapies using oxygen-reactive SO variants, which might use blood-dissolved oxygen as the electron acceptor. PEGylation has been shown to increase the half-life of other therapeutic proteins. PEGylation resulted in the modification of up to eight surface-exposed lysine residues of SO, an increased conformational stability and similar kinetic properties compared with wild-type SO. PMID:26171830

  9. 21 CFR 201.22 - Prescription drugs containing sulfites; required warning statements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... are added to certain drug products to inhibit the oxidation of the active drug ingredient. Oxidation.... Examples of specific sulfites used to inhibit this oxidation process include sodium bisulfite,...

  10. 21 CFR 201.22 - Prescription drugs containing sulfites; required warning statements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... are added to certain drug products to inhibit the oxidation of the active drug ingredient. Oxidation.... Examples of specific sulfites used to inhibit this oxidation process include sodium bisulfite,...

  11. 21 CFR 201.22 - Prescription drugs containing sulfites; required warning statements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... are added to certain drug products to inhibit the oxidation of the active drug ingredient. Oxidation.... Examples of specific sulfites used to inhibit this oxidation process include sodium bisulfite,...

  12. 21 CFR 201.22 - Prescription drugs containing sulfites; required warning statements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... are added to certain drug products to inhibit the oxidation of the active drug ingredient. Oxidation.... Examples of specific sulfites used to inhibit this oxidation process include sodium bisulfite,...

  13. Improved oral absorption of tacrolimus by a solid dispersion with hypromellose and sodium lauryl sulfate.

    PubMed

    Jung, Hyuck Jun; Ahn, Hye In; Park, Ji Yeon; Ho, Myoung Jin; Lee, Dae Ro; Cho, Ha Ra; Park, Jun Seo; Choi, Yong Seok; Kang, Myung Joo

    2016-02-01

    A novel surfactant-incorporated hydroxypropyl methylcellulose (HPMC) solid dispersion (SD) system was constructed in order to facilitate the release rate and oral absorption of tacrolimus (FK506), a poorly water-soluble immunosuppressant. Several emulsifiers including sodium lauryl sulfate (SLS), as drug release promotors, were employed with HPMC to fabricate SD using the solvent wetting method. The solid state characteristics using differential scanning calorimetry and X-ray powder diffraction, revealed that FK506 was molecularly distributed within all dispersions in amorphous form. The dissolution rates of FK506 in SLS-incorporated SDs were much higher than those in SDs prepared with HPMC alone, and even with stearoyl polyoxyl-32 glycerides or tocopheryl polyethylene glycol 1000 succinate. In particular, the greatest dissolution enhancement was obtained from the SD consisting of the drug, HPMC, and SLS in a weight ratio of 1:1:3, providing a 50-fold higher drug concentration within 15min, compared with HPMC SD. In vivo absorption study in rats demonstrates that the optimized formula remarkably increased the oral absorption of FK506, providing about 4.0-fold greater bioavailability (p<0.05) compared with the marketed product (Prograf(), Astellas Pharma). These data suggest that a novel SLS/HPMC SD may be an advantageous dosage form of FK506, boosting the dissolution and absorption in gastrointestinal tract. PMID:26642839

  14. Effects of Treatment with Sodium Dodecyl Sulfate on the Ultrastructure of Escherichia coli

    PubMed Central

    Woldringh, C. L.; Van Iterson, Woutera

    1972-01-01

    An electron microscopy study has been made of the effects of dissolution of the plasma membrane of Escherichia coli with sodium dodecyl sulfate (SDS) on the organization of the nucleoplasm and the cytoplasm. The alterations observed in time course experiments were related to absorbance changes and to release of macromolecules from the cells. As the cells became plasmolyzed, under the conditions used, the first visible effect of SDS was a collapse of the plasmolysis spaces. This was accompanied by a displacement of the nuclear material which then appeared in broad contact with the redeployed plasma membrane. This initial displacement of nuclear material to the cell border may indicate an association between the nucleoplasm and the plasma membrane. Upon further dissolution of the plasma membrane, the nuclear material receded from the cell margin and contracted into an axial filament. Meanwhile, the cytoplasm dissociated into an amorphous, Pronase-sensitive component and an electron-opaque, granular one sensitive to ribonuclease. The latter represented one continuous area of ribosomal structures surrounding the nucleoplasm, an organization which did not occur when the cells were inhibited with rifamycin before SDS treatment. During prolonged SDS interaction, approximately 65% of the cellular protein, 25% of the ribonucleic acid and 40% of the deoxyribonucleic acid were released from the cells concomitant with the disappearance of the amorphous cytoplasmic part, expansion of the ribosomal aggregate, and rearrangement of the nuclear material at the cell periphery. The observations support the contention that all ribosomal structures bear a direct relationship with the nucleoplasm. Images PMID:4559830

  15. Solubilities of ethane in aqueous solutions of sodium dodecyl sulfate at elevated pressures

    SciTech Connect

    Li, P.; Han, B.; Yan, H.; Liu, R.

    1995-10-01

    The solubilities of ethane in aqueous solutions of sodium dodecyl sulfate (SDS) were measured at 313.15 K and at pressures up to 3 MPa. The molalities of SDS (m{sub SDS}) in the aqueous solution were 0.0000, 0.0020, 0.0040, 0.0060, 0.0070, 0.0080, 0.0090, 0.0100, 0.0126, 0.0150, 0.0200, and 0.0300. The effect of SDS on the gas solubility in both concentration regions below and above the critical micelle concentration (cmc) was studied. The existence of the micelles of SDS in the solution is favorable to the dissolution of ethane due to the hydrocarbon-like interior of the micelles. The solubilities of ethane in each micelle at different pressures were evaluated based on some assumptions. It was found that the intramicellar solubility of ethane is less than that of the gas in n-dodecane. It was also found that the solubility of ethane in the micelles increases linearly with the partial pressure of ethane. The cmc of SDS was evaluated based on the solubility vs m{sub SDS} curves and the effect of dissolved ethane on the cmc was studied. It was observed that the cmc shifts toward a higher value with the increase in dissolved ethane.

  16. Centrifuge-blotting of proteins after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    PubMed

    Hermansen, L F; Pedersen, O; Sletten, K

    1993-12-01

    A protein transfer method which allows elution and immobilization of polypeptides onto a polyvinylidene difluoride (PVDF) membrane has been developed. The protein band in a gel is eluted by centrifugation. The centrifuge-blotting procedure involves the following steps: (i) visualization of the protein in a sodium dodecyl sulfate (SDS)-polyacrylamide gel with 1 M KCl, (ii) excision of the protein band and equilibration for 15 min in a solution of 0.05% SDS/5% methanol/0.02% dithiothreitol in distilled water, (iii) placing the gel piece in direct contact with the PVDF membrane in the receptacle, (iv) centrifugation at 3000 g for 1 h. A 10 kDa cut-off dialysis membrane is placed beneath the PVDF membrane to retain nonimmobilized protein. The N-terminal sequence of the immobilized protein on the PVDF membrane was determined. For proteins with a molecular mass less than 30 kDa, an overall yield between 10%-30% has been obtained. PMID:8137793

  17. Ginsenosides Regulate PXR/NF-?B Signaling and Attenuate Dextran Sulfate Sodium-Induced Colitis.

    PubMed

    Zhang, Jun; Cao, Lijuan; Wang, Hong; Cheng, Xuefang; Wang, Lin; Zhu, Lin; Yan, Tingting; Xie, Yang; Wu, Yuzheng; Zhao, Min; Ma, Sijing; Wu, Mengqiu; Wang, Guangji; Hao, Haiping

    2015-08-01

    Pregnane X receptor (PXR) activation exhibits anti-inflammatory effects via repressing nuclear factor-?B (NF-?B); however, its overactivation may disrupt homeostasis of various enzymes and transporters. Here we found that ginsenosides restore PXR/NF-?B signaling in inflamed conditions without disrupting PXR function in normal conditions. The effects and mechanisms of ginsenosides in regulating PXR/NF-?B signals were determined both in vitro and in vivo. Ginsenosides significantly inhibited NF-?B activation and restored the expression of PXR target genes in tumor necrosis factor-?-stimulated LS174T cells. Despite not being PXR agonists, ginsenosides repressed NF-?B activation in a PXR-dependent manner. Ginsenosides significantly increased the physical association between PXR and the NF-?B p65 subunit and thereby decreased the nuclear translocation of p65. Ginsenoside Rb1 and compound K (CK) were major bioactive compounds in the regulating PXR/NF-?B signaling. Consistently, ginsenosides significantly attenuated dextran sulfate sodium-induced experimental colitis, which was associated with restored PXR/NF-?B signaling. This study indicates that ginsenosides may elicit anti-inflammatory effects via targeting PXR/NF-?B interaction without disrupting PXR function in healthy conditions. Ginsenoside Rb1 and CK may serve as leading compounds in the discovery of new drugs that target PXR/NF-?B interaction in therapy for inflammatory bowel disease. PMID:25986850

  18. Mechanical properties of mouse lungs along organ decellularization by sodium dodecyl sulfate.

    PubMed

    Nonaka, Paula N; Uriarte, Juan J; Campillo, Noelia; Melo, Esther; Navajas, Daniel; Farr, Ramon; Oliveira, Luis V F

    2014-08-15

    Lung decellularization is based on the use of physical, chemical, or enzymatic methods to break down the integrity of the cells followed by a treatment to extract the cellular material from the lung scaffold. The aim of this study was to characterize the mechanical changes throughout the different steps of lung decellularization process. Four lungs from mice (C57BL/6) were decellularized by using a conventional protocol based on sodium dodecyl sulfate. Lungs resistance (R(L)) and elastance (E(L)) were measured along decellularization steps and were computed by linear regression fitting of tracheal pressure, flow, and volume during mechanical ventilation. Transients differences found were more distinct in an intermediate step after the lungs were rinsed with deionized water and treated with 1% SDS, whereupon the percentage of variation reached approximately 80% for resistance values and 30% for elastance values. In conclusion, although a variation in extracellular matrix stiffness was observed during the decellularization process, this variation can be considered negligible overall because the resistance and elastance returned to basal values at the final decellularization step. PMID:24837837

  19. Comparison of sodium dodecyl sulfate depletion techniques for proteome analysis by mass spectrometry.

    PubMed

    Kachuk, Carolyn; Stephen, Kegan; Doucette, Alan

    2015-10-30

    In proteomics, sodium dodecyl sulfate (SDS) is favored for protein solubilization and mass-based separation (e.g. GELFrEE or SDS PAGE). Numerous SDS depletion techniques are available to purify proteins ahead of mass spectrometry. The effectiveness of the purification has a controlling influence on the success of the analysis. Here we quantitatively assess eight approaches to SDS depletion: in-gel digestion; protein precipitation in acetone or with TCA; detergent precipitation with KCl; strong cation exchange; protein level and peptide level purification with Pierce detergent removal cartridges; and FASP II. Considering protein purity, FASP II showed the highest degree of SDS removal, matching that of in-gel digestion (over 99.99% depleted). Other methods (acetone, strong cation exchange, Pierce cartridges) also deplete SDS to levels amenable to LC-MS (>99%). Accounting for protein recovery, FASP II revealed significant sample loss (<40% yield); other approaches show even greater protein loss. We further assessed acetone precipitation, having the highest protein recovery relative to FASP II, to process GELFrEE fractionated Escherichia coli ahead of bottom-up mass spectrometry. Acetone precipitation yielded a 17% average increase in identified proteins, and 40% increase in peptides, indicating this approach as a favored strategy for SDS depletion in a proteomics workflow. PMID:26422304

  20. The Influence of Ghrelin on the Development of Dextran Sodium Sulfate-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Dagmara; Warzecha, Zygmunt; Ceranowicz, Piotr; Fyderek, Krzysztof; Gałązka, Krystyna; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Pihut, Małgorzata; Dembiński, Artur

    2015-01-01

    Ghrelin has protective and therapeutic effects in the gut. The aim of present studies was to investigate the effect of treatment with ghrelin on the development of colitis evoked by dextran sodium sulfate (DSS). Methods. Studies have been performed on rats. Colitis was induced by adding 5% DSS to the drinking water for 5 days. During this period animals were treated intraperitoneally twice a day with saline or ghrelin given at the dose of 8 nmol/kg/dose. On the sixth day, animals were anesthetized and the severity of colitis was assessed. Results. Treatment with ghrelin during administration of DSS reduced the development of colitis. Morphological features of colonic mucosa exhibited a reduction in the area and deep of mucosal damage. Ghrelin reversed the colitis-induced decrease in blood flow, DNA synthesis, and superoxide dismutase activity in colonic mucosa. These effects were accompanied by a decrease in the colitis-evoked increase in mucosal concentration of interleukin-1β and malondialdehyde. Treatment with ghrelin reversed the DSS-induced reduction in body weight gain. Conclusions. Administration of ghrelin exhibits the preventive effect against the development of DSS-induced colitis. This effect seems to be related to ghrelin's anti-inflammatory and antioxidative properties. PMID:26713317

  1. Prophylactic role of curcumin in dextran sulfate sodium (DSS)-induced ulcerative colitis murine model.

    PubMed

    Arafa, Hossam M M; Hemeida, Ramadan A; El-Bahrawy, Ali I M; Hamada, Farid M A

    2009-06-01

    We have addressed in this study the possible protective role of the main principle of turmeric pigment; curcumin on a murine model of ulcerative colitis (UC). Colitis was induced by administration of dextran sulfate sodium (DSS) (3% W/V) in drinking water to male Swiss albino rats for 5 consecutive days. DSS challenge induced UC model that was well characterized morphologically and biochemically. DSS produced shrinkage of colon length and increased the relative colon weight/length ratio accompanied by mucosal edema and bloody stool. Histologically, DSS produced submucosal erosions, ulceration, inflammatory cell infiltration and crypt abscess as well as epithelioglandular hyperplasia. The model was confirmed biochemically, and the test battery entailed elevated serum tumor necrosis factor (TNF-alpha) and colonic activity of myleoperoxidase (MPO). Colonic glutathione-S-transferase (GST) activity and its substrate concentration; GSH, were notably reduced, while lipid peroxidation, expressed as malondialdehyde (MDA) level, and total nitric oxide (NO) were significantly increased. Prior administration of curcumin (100mg/kg, IP) for 7 consecutive days ahead of DSS challenge mitigated the injurious effects of DSS and ameliorated all the altered biochemical parameters. These results suggest that curcumin could possibly have a protective role in ulcerative colitis probably via regulation of oxidant/anti-oxidant balance and modulation of the release of some inflammatory endocoids, namely TNF-alpha and NO. PMID:19285535

  2. Diplacone and mimulone ameliorate dextran sulfate sodium-induced colitis in rats.

    PubMed

    Vochynov, Zora; Bartoov, Ladislava; Bujdkov, Veronika; Fictum, Petr; Husnk, Roman; Such, Pavel; mejkal, Karel; Hoek, Jan

    2015-03-01

    Diplacone (1) and mimulone (2), two geranylated flavanones, have previously shown anti-inflammatory and antiradical activity in vitro. The present study aimed to evaluate their activity in vivo on a model of colitis induced in Wistar rats by an oral administration of dextran sulfate sodium (DSS). Diplacone (1) and mimulone (2) were administered at a bolus dose of 25mg/kg by gastric gavage 48 and 24h prior to the induction of colitis by DSS and every 24h on the following days of the experiment. The effect of the treatment was assessed by monitoring the disease activity index (DAI), histopathological examination, evaluation of the weight and length of the colon and by analysis of the levels and activities of cyclooxygenase-2 (COX-2), matrix metalloproteinase-2 (MMP2), superoxide dismutase-2 (SOD2), and catalase (CAT) in the inflamed tissue. Administration of the test compounds prior and after induction of colitis ameliorated the symptoms of colitis (diarrhea, presence of the blood in the stool) and delayed their onset. The ability of compounds 1 and 2 to reduce the levels of COX-2 and to increase the ratio of pro-MMP2/MMP2 activity correlates with the values of the DAI. The lowering of the levels of the antioxidant enzymes SOD2 and CAT reflects the ability of the test compounds to scavenge reactive oxygen species. PMID:25623260

  3. Dietary Uptake of Wedelia chinensis Extract Attenuates Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Chen, Yung-Hsiang; Huang, Wen-Ching; Huang, Li-Ting; Lin, Wen-Ching; Arulselvan, Palanisamy; Liao, Jiunn-Wang; Lin, Shu-Hui; Hsiao, Pei-Wen; Kuo, Sheng-Chu; Yang, Ning-Sun

    2013-01-01

    Scope Traditional medicinal herbs are increasingly used as alternative therapies in patients with inflammatory diseases. Here we evaluated the effect of Wedelia chinensis, a medicinal herb commonly used in Asia, on the prevention of dextran sulfate sodium (DSS)-induced acute colitis in mice. General safety and the effect of different extraction methods on the bioactivity of W. chinensis were also explored. Methods and Results C57BL/6 mice were administrated hot water extract of fresh W. chinensis (WCHF) orally for one week followed by drinking water containing 2% DSS for nine days. WCHF significantly attenuated the symptoms of colitis including diarrhea, rectal bleeding and loss of body weight; it also reduced the shortening of colon length and histopathological damage caused by colonic inflammation. Among four W. chinensis extracts prepared using different extraction techniques, WCHF showed the highest anti-colitis efficacy. Analyses of specific T-cell regulatory cytokines (TNF-?, IL-4, IFN-?, IL-17, TGF-?, IL-12) revealed that WCHF treatment can suppress the Th1 and Th17, but not Th2, responses in colon tissues and dendritic cells of DSS-induced colitis mice. A 28-day subacute toxicity study showed that daily oral administration of WCHF (100, 500, 1000 mg/kg body weight) was not toxic to mice. Conclusion Together, our findings suggest that specific extracts of W. chinensis have nutritional potential for future development into nutraceuticals or dietary supplements for treatment of inflammatory bowel disease. PMID:23734189

  4. Efficacy and Safety of Balloon-Occluded Retrograde Transvenous Obliteration with Sodium Tetradecyl Sulfate Liquid Sclerotherapy

    PubMed Central

    Chang, Il Soo; Kwon, So Young; Choe, Won Hyeok; Cheon, Young Koog; Shim, Chan Sup; Lee, Tae Yoon; Kim, Jeong Han

    2016-01-01

    Objective To evaluate the efficacy and safety of balloon-occluded retrograde transvenous obliteration (BRTO) with sodium tetradecyl sulfate (STS) liquid sclerotherapy of gastric varices. Materials and Methods Between February 2012 and August 2014, STS liquid sclerotherapy was performed in 17 consecutive patients (male:female = 8:9; mean age 58.6 years, range 44–86 years) with gastric varices. Retrograde venography was performed after occlusion of the gastrorenal shunt using a balloon catheter and embolization of collateral draining veins using coils or gelfoam pledgets, to evaluate the anatomy of the gastric varices. We prepared 2% liquid STS by mixing 3% STS and contrast media in a ratio of 2:1. A 2% STS solution was injected into the gastric varices until minimal filling of the afferent portal vein branch was observed (mean 19.9 mL, range 6–33 mL). Patients were followed up using computed tomography (CT) or endoscopy. Results Technical success was achieved in 16 of 17 patients (94.1%). The procedure failed in one patient because the shunt could not be occluded due to the large diameter of gastrorenal shunt. Complete obliteration of gastric varices was observed in 15 of 16 patients (93.8%) with follow-up CT or endoscopy. There was no rebleeding after the procedure. There was no procedure-related mortality. Conclusion BRTO using STS liquid can be a safe and useful treatment option in patients with gastric varices. PMID:26957907

  5. Hyperbranched exopolysaccharide-enhanced foam properties of sodium fatty alcohol polyoxyethylene ether sulfate.

    PubMed

    Deng, Quanhua; Li, Haiping; Sun, Haoyang; Sun, Yange; Li, Ying

    2016-05-01

    The foam properties, such as the foamability, foam stability, drainage, coalescence and bulk rheology, of aqueous solutions containing an eco-friendly exopolysaccharide (EPS) secreted by a deep-sea mesophilic bacterium, Wangia profunda SM-A87, and an anionic surfactant, sodium fatty alcohol polyoxyethylene ether sulfate (AES), were studied. Both the foamability and foam stability of the EPS/AES solutions are considerably higher than those of single AES solutions, even at very low AES concentrations, although pure EPS solutions cannot foam. The improved foamability and foam stability arise from the formation of the EPS/AES complex via hydrogen bonds at the interfaces. The synergism between the EPS and AES decreases the surface tension, increases the interfacial elasticity and water-carrying capacity, and suppresses the coalescence and collapse of the foams. The EPS/AES foams are more salt-resistant than the AES foams. This work provides not only a new eco-friendly foam with great potential for use in enhanced oil recovery and health-care products but also useful guidance for designing other environmentally friendly foam systems that exhibit high performance. PMID:26852104

  6. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice

    PubMed Central

    Pandurangan, Ashok Kumar; Mohebali, Nooshin; Norhaizan, Mohd Esa; Looi, Chung Yeng

    2015-01-01

    Gallic acid (GA) is a polyhydroxy phenolic compound that has been detected in various natural products, such as green tea, strawberries, grapes, bananas, and many other fruits. In inflammatory bowel disease, inflammation is promoted by oxidative stress. GA is a strong antioxidant; thus, we evaluated the cytoprotective and anti-inflammatory role of GA in a dextran sulfate sodium (DSS)-induced mouse colitis model. Experimental acute colitis was induced in male BALB/c mice by administering 2.5% DSS in the drinking water for 7 days. The disease activity index; colon weight/length ratio; histopathological analysis; mRNA expressions of IL-21 and IL-23; and protein expression of nuclear erythroid 2-related factor 2 (Nrf2) were compared between the control and experimental mice. The colonic content of malondialdehyde and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity were examined as parameters of the redox state. We determined that GA significantly attenuated the disease activity index and colon shortening, and reduced the histopathological evidence of injury. GA also significantly (P<0.05) reduced the expressions of IL-21 and IL-23. Furthermore, GA activates/upregulates the expression of Nrf2 and its downstream targets, including UDP-GT and NQO1, in DSS-induced mice. The findings of this study demonstrate the protective effect of GA on experimental colitis, which is probably due to an antioxidant nature of GA. PMID:26251571

  7. Self-aggregation of sodium dodecyl sulfate within (choline chloride + urea) deep eutectic solvent.

    PubMed

    Pal, Mahi; Rai, Rewa; Yadav, Anita; Khanna, Rajesh; Baker, Gary A; Pandey, Siddharth

    2014-11-11

    Deep eutectic solvents (DESs) have shown tremendous promise as green solvents with low toxicity and cost. Understanding molecular aggregation processes within DESs will not only enhance the application potential of these solvents but also help alleviate some of the limitations associated with them. Among DESs, those comprising choline chloride and appropriate hydrogen-bond donors are inexpensive and easy to prepare. On the basis of fluorescence probe, electrical conductivity, and surface tension experiments, we present the first clear lines of evidence for self-aggregation of an anionic surfactant within a DES containing a small fraction of water. Namely, well-defined assemblies of sodium dodecyl sulfate (SDS) apparently form in the archetype DES Reline comprising a 1:2 molar mixture of choline chloride and urea. Significant enhancement in the solubility of organic solvents that are otherwise not miscible in choline chloride-based DESs is achieved within Reline in the presence of SDS. The remarkably improved solubility of cyclohexane within SDS-added Reline is attributed to the presence of spontaneously formed cyclohexane-in-Reline microemulsions by SDS under ambient conditions. Surface tension, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), density, and dynamic viscosity measurements along with responses from the fluorescence dipolarity and microfluidity probes of pyrene and 1,3-bis(1-pyrenyl)propane are employed to characterize these aggregates. Such water-free oil-in-DES microemulsions are appropriately sized to be considered as a new type of nanoreactor. PMID:25314953

  8. Platelets to rings: Influence of sodium dodecyl sulfate on Zn-Al layered double hydroxide morphology

    SciTech Connect

    Yilmaz, Ceren; Unal, Ugur; Yagci Acar, Havva

    2012-03-15

    In the current study, influence of sodium dodecyl sulfate (SDS) on the crystallization of Zn-Al layered double hydroxide (LDH) was investigated. Depending on the SDS concentration coral-like and for the first time ring-like morphologies were obtained in a urea-hydrolysis method. It was revealed that the surfactant level in the starting solution plays an important role in the morphology. Concentration of surfactant equal to or above the anion exchange capacity of the LDH is influential in creating different morphologies. Another important parameter was the critical micelle concentration (CMC) of the surfactant. Surfactant concentrations well above CMC value resulted in ring-like structures. The crystallization mechanism was discussed. - Graphical abstract: Dependence of ZnAl LDH Morphology on SDS concentration. Highlights: Black-Right-Pointing-Pointer In-situ intercalation of SDS in ZnAl LDH was achieved via urea hydrolysis method. Black-Right-Pointing-Pointer Morphology of ZnAl LDH intercalated with SDS depended on the SDS concentration. Black-Right-Pointing-Pointer Ring like morphology for SDS intercalated ZnAl LDH was obtained for the first time. Black-Right-Pointing-Pointer Growth mechanism was discussed. Black-Right-Pointing-Pointer Template assisted growth of ZnAl LDH was proposed.

  9. Polycation-sodium lauryl ether sulfate-type surfactant complexes: influence of ethylene oxide length.

    PubMed

    Vleugels, Leo F W; Pollet, Jennifer; Tuinier, Remco

    2015-05-21

    Polyelectrolyte-surfactant complexes (PESC) are a class of materials which form spontaneously by self-assembly driven by electrostatic and hydrophobic interactions. PESC containing sodium lauryl ether sulfates (SLES) have found wide application in hair care products like shampoo. Typically, SLES with only one or two ethylene oxide (EO) groups are used for this application. We have studied the influence of the size of the EO block (ranging from 0 to 30 EO groups) on complexation with two model polycations: linear polyDADMAC and branched PEI. PESC size and electrostatic properties were determined during stepwise titration of buffered polycation solutions. The critical aggregation concentration (CAC) of PESC was determined by surface tension measurements and fluorescence spectroscopy. For polyDADMAC, there is no influence of the size of the EO block on the complexation behavior; the stiff polycation governs the structure formation. For PEI, it was seen that the EO block size does affect the structure of the complexes. The CAC value of the investigated complexes turns out to be rather independent of the EO block size; however, the CMC/CAC ratio decreases with increasing size of the EO block. This latter observation explains why the Lochhead-Goddard effect is most effective for small EO blocks. PMID:25940957

  10. American ginseng attenuates azoxymethane/dextran sodium sulfate-induced colon carcinogenesis in mice

    PubMed Central

    Yu, Chunhao; Wen, Xiao-Dong; Zhang, Zhiyu; Zhang, Chun-Feng; Wu, Xiao-Hui; Martin, Adiba; Du, Wei; He, Tong-Chuan; Wang, Chong-Zhi; Yuan, Chun-Su

    2014-01-01

    Background Colorectal cancer is a leading cause of cancer-related death, and inflammatory bowel disease is a risk factor for this malignancy. We previously reported colon cancer chemoprevention potential using American ginseng (AG) in a xenograft mice model. However, the nude mouse model is not a gut-specific colon carcinogenesis animal model. Methods In this study, an experimental colitis and colitis-associated colorectal carcinogenesis mouse model, chemically induced by azoxymethane/dextran sodium sulfate (DSS) was established and the effects of oral AG were evaluated. The contents of representative ginseng saponins in the extract were determined. Results AG significantly reduced experimental colitis measured by the disease activity index scores. This suppression of the experimental colitis was not only evident during DSS treatment, but also very obvious after the cessation of DSS, suggesting that the ginseng significantly promoted recovery from the colitis. Consistent with the anti-inflammation data, we showed that ginseng very significantly attenuated azoxymethane/DSS-induced colon carcinogenesis by reducing the colon tumor number and tumor load. The ginseng also effectively suppressed DSS-induced proinflammatory cytokines activation using an enzyme-linked immunosorbent assay array, in which 12 proinflammatory cytokine levels were assessed, and this effect was supported subsequently by real-time polymerase chain reaction data. Conclusion AG, as a candidate of botanical-based colon cancer chemoprevention, should be further investigated for its potential clinical utility. PMID:25535472

  11. Effect of Arctium lappa L. in the dextran sulfate sodium colitis mouse model

    PubMed Central

    Huang, Tzou-Chi; Tsai, Shinn-Shyong; Liu, Li-Fang; Liu, Yu Lin; Liu, Hung-Jen; Chuang, Kuo Pin

    2010-01-01

    AIM: To analyze the possible protective role of Arctium lappa L. (AL) in a murine model of ulcerative colitis (UC). METHODS: BALB/c mice were administered 100 mg/kg AL powder orally each day. After 7 d, colitis was induced by administration of dextran sulfate sodium (DSS) (5% W/V) in drinking water for a further 8 consecutive days. Diarrhea and bloody stools as well as colonic histology were observed. The level of interleukin-6 (IL-6) and tumor necrosis factor-? (TNF-?) in colonic sections were detected by immunohistochemistry. RESULTS: There were significant differences in mean body weight values and disease activity indices between controls and AL-treated animals. Moreover, the histological findings showed that AL treatment can prevent mucosal edema, submucosal erosions, ulceration, inflammatory cell infiltration and colon damage. In addition, immunohistochemistry analysis showed that the levels of the inflammatory cytokines, IL-6 and TNF-? were also decreased in AL-treated groups. CONCLUSION: We suggest that AL can prevent intestinal damage and decrease inflammatory cytokines in mice with DSS-induced colitis. Thus, AL could prove to be a useful food for UC. PMID:20806438

  12. Genetic Determination of Resistance to Acriflavine, Phenethyl Alcohol, and Sodium Dodecyl Sulfate in Escherichia coli

    PubMed Central

    Nakamura, Hakobu

    1968-01-01

    Wild-type strains of Escherichia coli K-12 are resistant to acriflavine. Gene acrA+ which determines resistance to acriflavine is located near the lac region of the chromosome. This gene determines not only resistance to basic dyes but also resistance to phenethyl alcohol. Acriflavine resistance was transmitted, together with phenethyl alcohol resistance, from a resistant Hfr strain to a sensitive recipient by mating. Reversion of the mutant gene acrA1 (phenotypically acriflavine-sensitive) to acriflavine resistance was accompanied by a change from phenethyl alcohol sensitivity to resistance, and conversely the revertants selected for phenethyl alcohol resistance were resistant to acriflavine. A suppressor mutation, sup-100, closely linked to the acr locus, suppresses the acrA1 gene (phenotypically acriflavine-resistant), but does not determine resistance to phenethyl alcohol and basic dyes other than acriflavine. The genetic change in the locus acrA1 to types resistant to basic dyes and phenethyl alcohol was accompanied by an increase in resistance to sodium dodecyl sulfate, a potent solvent of lipopolysaccharide and lipoprotein. It is suggested that gene acrA determines synthesis of a membrane substance. The system seemed to be affected strongly by the presence of inorganic phosphate. PMID:4879570

  13. Structural changes of a sodium dodecyl sulfate (SDS) micelle induced by alcohol molecules.

    PubMed

    Mndez-Bermdez, Jose G; Dominguez, Hector

    2016-01-01

    Coarse-grained dynamical simulations have been performed to investigate the behavior of a surfactant micelle in the presence of six different alcohols: hexanol, octanol, decanol, dodecanol, tetradecanol, and hexadecanol. The self-assembly of sodium dodecyl sulfate (SDS) is modified by the alcohol molecules into cylindrical and bilayer micelles as a function of the alcohol/SDS mass ratio. Therefore, in order to understand, from a molecular point of view, how SDS and alcohol molecules self-organize to form the new micelles, different studies were carried out. Analysis of micelle structures, density profiles, and parameters of order were conducted to characterize the shape and size of those micelles. The density profiles revealed that the alcohol molecules were located at the water-micelle interface next to the SDS molecules at low alcohol/SDS mass ratio. At high alcohol/SDS mass ratios, alcohol molecules moved to the middle of the micelle by increasing their size and by producing a structural change. Moreover, micelle structures and sizes were influenced not only by the alcohol/SDS mass ratio but also by the order of the SDS and alcohol tails. Finally, the size of the micelles and enthalpy calculations were used as order parameters to determine a structural phase diagram of alcohol/SDS mixtures in water. Graphical Abstract Structural transition of SDS/alcohol mixtures. PMID:26768159

  14. New perspective on dextran sodium sulfate colitis: antigen-specific T cell development during intestinal inflammation.

    PubMed

    Morgan, Mary E; Zheng, Bin; Koelink, Pim J; van de Kant, Hendrick J G; Haazen, Lizette C J M; van Roest, Manon; Garssen, Johan; Folkerts, Gert; Kraneveld, Aletta D

    2013-01-01

    CD4+ T cell responses against oral antigens can develop in inflammatory bowel disease (IBD) patients, which may modulate disease. Dextran sodium sulfate (DSS) colitis is commonly used to study IBD, however, it is not considered the best model in which to study T cell involvement in intestinal disease. Our aim was to determine if antigen-specific T cells could be induced during DSS colitis and if they could be detected after disease resolution. To induce antigen-specific T cells, the tracking antigen, ovalbumin (OVA), was administered orally during colitis initiation. Disease severity was monitored, and the antigen-reactivity of CD4+ T cells examined using CD69 expression. While OVA-directed, CD4+ Foxp3+ regulatory T cells could be detected in the spleens of both OVA-treated control and DSS mice, OVA-reactive, CD4+ Foxp3-T cells were only found in the OVA and DSS-treated mice. These results indicate that during DSS colitis T cells develop that are specific against oral antigens, and they are found systemically after colitis resolution. This gives added depth and utility to the DSS model as well as a way to track T cells that are primed against luminal antigens. PMID:23936123

  15. Evaluation of toxicity reduction of sodium dodecyl sulfate submitted to electron beam radiation

    NASA Astrophysics Data System (ADS)

    Romanelli, M. F.; Moraes, M. C. F.; Villavicencio, A. L. C. H.; Borrely, S. I.

    2004-09-01

    Surfactants, as detergent active substances, are an important source of pollution causing biological adverse effects to aquatic organisms. Several data have been showing ecological disturbance due to the high concentration of surfactants on receiving waters and on wastewater treatment plants. Ionizing radiation has been proved as an effective technology to decompose organic substances and few papers have included ecotoxicological aspects. This paper shows the reduction of acute toxicity of a specific surfactant, sodium dodecyl sulfate (SDS), when diluted in distilled water and submitted to electron beam radiation. The study included two test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. Radiation processing resulted in an important acute toxicity removal for both assays, which can be summarized between 70% and 96%, using 3.0, 6.0, 9.0 and 12.0 kGy as radiation doses. Nevertheless, lower doses demonstrated better effect than 9.0 and 12.0 kGy and the bacterium assay was more sensitive to SDS than crustacean assay.

  16. Management of stomal varices with transvenous obliteration utilizing sodium tetradecyl sulfate foam sclerosis.

    PubMed

    Saad, Wael E A; Schwaner, Sandra; Lippert, Allison; Sabri, Saher S; Al-Osaimi, Abdullah; Matsumoto, Alan H; Angle, John F; Caldwell, Stephen

    2014-12-01

    The management of parastomal varices is not established. Transjugular intrahepatic portosystemic shunt (TIPS) creation is the most commonly described treatment; however, the rebleed rate after TIPS is 21-37%. The purpose of the study is to determine the effectiveness of transvenous obliteration using sodium tetradecyl sulfate (STS) and to describe a new simplified technique in obliterating these varices. Four patients are presented who underwent transvenous obliteration using STS. One was obliterated using balloon occlusion from the systemic veins, the second was obliterated without balloon from a transhepatic antegrade approach, and the last two patients were obliterated using the direct antegrade technique. This simplified technique requires only a micropuncture kit (not requiring balloons or coils) and ultrasound transducer compression of the systemic draining veins, relying on high portal pressure to keep the sclerosant confined to the varices. The sclerosant is essentially trapped between the portal pressure and the ultrasound-transducer compression (10-15 min). Technical success was achieved in all four patients without procedural or postprocedural complications and no rebleeding for a mean follow-up of 17 (range 2-33) months. Transvenous obliteration of parastomal varices utilizing STS as a sclerosant is safe and effective. The newly described technique is simple, feasible, and requires minimal equipment (no balloons or coils or catheters). PMID:24798128

  17. Allicin Alleviates Dextran Sodium Sulfate- (DSS-) Induced Ulcerative Colitis in BALB/c Mice

    PubMed Central

    Ismail, Salmiah; Saadatdoust, Zeinab; Esa, Norhaizan Mohd.

    2015-01-01

    The objective of this study is to evaluate the effect of allicin (10 mg/kg body weight, orally) in an experimental murine model of UC by administering 2.5% dextran sodium sulfate (DSS) in drinking water to BALB/c mice. DSS-induced mice presented reduced body weight, which was improved by allicin administration. We noted increases in CD68 expression, myeloperoxidase (MPO) activities, and Malonaldehyde (MDA) and mRNA levels of proinflammatory cytokines, such as tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, and IL-17, and decrease in the activities of enzymic antioxidants such as superoxide dismutase (SOD), Catalase (CAT), Glutathione reductase (GR), and Glutathione peroxidase (GPx) in DSS-induced mice. However, allicin treatment significantly decreased CD68, MPO, MDA, and proinflammatory cytokines and increased the enzymic antioxidants significantly (P < 0.05). In addition, allicin was capable of reducing the activation and nuclear accumulation of signal transducer and activator of transcription 3 (STAT3), thereby preventing degradation of the inhibitory protein IκB and inducing inhibition of the nuclear translocation of nuclear factor (NF)-κB-p65 in the colonic mucosa. These findings suggest that allicin exerts clinically useful anti-inflammatory effects mediated through the suppression of the NF-κB and IL-6/p-STAT3Y705 pathways. PMID:26075036

  18. Comparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and restricted fragment length polymorphism among fenugreek accessions.

    PubMed

    Haliem, E A; Al-Huqail, A A

    2013-01-01

    Protein and DNA polymorphismswere surveyed among seven accessions of wild fenugreek (Trigonellafoenum-graecum L.) to estimate their genetic diversity and relationships. Samples were obtained from diverse ecogeographical areas in Saudi Arabia and Yemen. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of seed storage protein showed genetic variations among fenugreek germplasms, both quantitatively and qualitatively, generating a total of 168 polypeptide bands with different molecular weights ranging from 4.5 to 300 kDa. Twenty-six of these bands were polymorphic, with a considerable polymorphism value (80.00%). Furthermore, restriction fragment length polymorphism (RFLP) analysis was also employed, which was based on the ability of four restriction enzymes (EagI, EcoRI, FspI, and HindIII) to cleave genomic DNA of the plant materials at specific target nucleotide sequences into different numbers of DNA fragments. RFLP analysis revealed 166 fragments with known sequences and variable lengths ranging from 80 to 4000 bp with a highly degree of polymorphism (88.71%). Data derived from SDS-PAGE or RFLP analyses were used to produce dendrograms, which clustered the studied fenugreek accessions into different groups based on the unweighted pair group method with arithmetic mean (UPGMA). The resulting relationships indicated that these two marker techniques were nearly equivalent, but not identical, with respect to phylogenetic information. In conclusion, SDS-PAGE analysis of seed proteins should be augmented with RFLP analysis of DNA for reliable estimates of genetic diversity among fenugreek germplasms. PMID:24338424

  19. Quasi-elastic light scattering study of intermicellar interactions in aqueous sodium dodecyl sulfate solutions

    SciTech Connect

    Corti, M.; Deglorgio, V.

    1981-03-19

    Quasi-elastic light scattering measurement have been performed on aqueous sodium dodecyl sulfate solutions in the 0.1 to 0.6 mole NaCl concentration range at 25 and 40 C. The aggregation number M, the hydrodynamic radius Rh, and the amphiphile concentration dependence of static and transport coefficients of micellar solutions are obtained from the experimental data. The micellar parameters M and Rh increase with salt concentration and slightly decrease with temperature. The concentration dependence of the apparent molecular weight and of the mass diffusion coefficient is interpreted on the basis of Derjaguin-Landau-Verwey-Overbeek theory of colloid stability. The fit to the experimental data, performed with the assumption that the Hamaker constant for micellar attraction A and the micellar electric charge Q do not depend on the salt concentration, is satisfactory and gives A = 4.5 x 10/sup -20/ J and Q = 37 electronic charges. The electric potential at the shear surface of the micelle goes from 70 MV at 0.1 mole NaCl to approximately 30 MV at 0.5 to 0.6 mole NaCl. 45 references.

  20. Myristica fragrans seed extract protects against dextran sulfate sodium-induced colitis in mice.

    PubMed

    Kim, Hyojung; Bu, Youngmin; Lee, Beom-Joon; Bae, Jinhyun; Park, Sujin; Kim, Jinsung; Lee, Kyungjin; Cha, Jae-Myung; Ryu, Bongha; Ko, Seok-Jae; Han, Gajin; Min, Byungil; Park, Jae-Woo

    2013-10-01

    Nutmeg (seed of Myristica fragrans [MF]) is one of the most commonly used spices in the world and also a well-known herb for the treatment of various intestinal diseases, including colitis in traditional Korean medicine. The purpose of the current study was to investigate whether water extract of MF (MFE) can protect against dextran sulfate sodium (DSS) induced colitis in a mouse model. Colitis was induced by 5% DSS in balb/c mice. MFE (100, 300 or 1000 mg/kg) was orally administered to the mice twice a day for 7 days. Body weight, colon length, clinical score, and histological score were assessed to determine the effects on colitis. Proinflammatory cytokines (interferon-γ, tumor necrosis factor-α, interleukin [IL]-1β, and IL-6) were measured to investigate the mechanisms of action. MFE dose dependently inhibited the colon shortening and histological damage to the colon. However, it did not prevent weight loss. MFE also inhibited proinflammatory cytokines. The current results suggest that MFE ameliorates DSS-induced colitis in mice by inhibiting inflammatory cytokines. Further investigation, including the exact mechanisms is needed. PMID:24063406

  1. Phosphorescence lifetime studies of interactions between serum albumins and sodium dodecyl sulfate.

    PubMed

    Enescu, M; Ionescu, R; Dumbraveanu, G; Pascu, M L

    1993-02-01

    Binding of sodium dodecyl sulfate (SDS) to bovine serum albumin (BSA) and human serum albumin (HSA) in aqueous solutions at room temperature induces significant changes in the phosphorescence lifetime of tryptophan (Trp) residues. A steep rise of the phosphorescence lifetime from 1.9 ms to 10.0 ms for BSA and from 1.9 ms to 5.5 ms for HSA is observed when the total SDS concentration increases from 0.0 mM to 0.22 mM at 1 mg/mL protein concentration. As the total SDS concentration is further increased to 2.2 mM, a slower increase in the phosphorescence lifetime is observed, from 10.0 ms to 19.5 ms for BSA and from 5.5 ms to 7.2 ms for HSA. It appears that the phosphorescence lifetime modifications are mainly due to an increase of protein matrix rigidity around Trp residues. The observed differences (between HSA and BSA) allow us to distinguish the contribution of the two Trp residues to the BSA phosphorescence. PMID:8451299

  2. Allicin Alleviates Dextran Sodium Sulfate- (DSS-) Induced Ulcerative Colitis in BALB/c Mice.

    PubMed

    Pandurangan, Ashok Kumar; Ismail, Salmiah; Saadatdoust, Zeinab; Esa, Norhaizan Mohd

    2015-01-01

    The objective of this study is to evaluate the effect of allicin (10?mg/kg body weight, orally) in an experimental murine model of UC by administering 2.5% dextran sodium sulfate (DSS) in drinking water to BALB/c mice. DSS-induced mice presented reduced body weight, which was improved by allicin administration. We noted increases in CD68 expression, myeloperoxidase (MPO) activities, and Malonaldehyde (MDA) and mRNA levels of proinflammatory cytokines, such as tumor necrosis factor- (TNF-) ?, interleukin- (IL-) 1?, IL-6, and IL-17, and decrease in the activities of enzymic antioxidants such as superoxide dismutase (SOD), Catalase (CAT), Glutathione reductase (GR), and Glutathione peroxidase (GPx) in DSS-induced mice. However, allicin treatment significantly decreased CD68, MPO, MDA, and proinflammatory cytokines and increased the enzymic antioxidants significantly (P < 0.05). In addition, allicin was capable of reducing the activation and nuclear accumulation of signal transducer and activator of transcription 3 (STAT3), thereby preventing degradation of the inhibitory protein I?B and inducing inhibition of the nuclear translocation of nuclear factor (NF)-?B-p65 in the colonic mucosa. These findings suggest that allicin exerts clinically useful anti-inflammatory effects mediated through the suppression of the NF-?B and IL-6/p-STAT3(Y705) pathways. PMID:26075036

  3. Dextran sodium sulfate enhances secretion of recombinant human transferrin in Schizosaccharomyces pombe.

    PubMed

    Mukaiyama, Hiroyuki; Giga-Hama, Yuko; Tohda, Hideki; Takegawa, Kaoru

    2009-11-01

    The effect of medium supplementation on heterologous production of human serum transferrin (hTF) in the fission yeast Schizosaccharomyces pombe has been investigated. The productivity of recombinant hTF was low in wild-type S. pombe cells. To overcome this impediment, culture media supplements were screened for their ability to improve secretion of hTF. Casamino acids (CAA), which have been reported to increase heterologous protein productivity in Pichia pastoris, improved the secretion hTF by more than fourfold. An anion surfactant deoxycholate or polyethylene glycol also improved the secretion hTF. Interestingly, dextran sodium sulfate (DSS), a poly-anion surfactant, was found to enhance production of secreted hTF better than any other supplement tested. Addition of DSS in the presence of 2% CAA exhibited a synergistic effect on increasing hTF secretion, resulting in an increase of about sevenfold relative to conventional conditions. Cell growth was not found to be affected by the addition of DSS or CAA. DSS may act as a surfactant and may also facilitate the anchoring of liposomes, and these properties may contribute to efficient secretion or exocytosis through the plasma membrane. PMID:19629473

  4. Panax notoginseng attenuates experimental colitis in the azoxymethane/dextran sulfate sodium mouse model.

    PubMed

    Wen, Xiao-Dong; Wang, Chong-Zhi; Yu, Chunhao; Zhao, Lei; Zhang, Zhiyu; Matin, Adiba; Wang, Yunwei; Li, Ping; Xiao, Shu-Yuan; Du, Wei; He, Tong-Chuan; Yuan, Chun-Su

    2014-06-01

    Patients suffering from inflammatory bowel disease are at a high risk of developing colorectal cancer. To assess the anticancer potential of botanicals, in this study, we evaluated the effects of Panax notoginseng on azoxymethane/dextran sulfate sodium (DSS)-induced colitis. One week after A/J mice received azoxymethane, the animals received DSS for 8?days or were supplemented with P.?notoginseng extract, at 30 or 90?mg/kg. DSS-induced colitis was scored with the disease activity index. The severity of the inflammatory lesions was evaluated by a colon tissue histological assessment. The expression of inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) were also explored. We observed that the effects of P.?notoginseng on the reduction of colon inflammation, expressed in disease activity index score, were in a dose-related manner (p?

  5. Beyond the detergent effect: a binding site for sodium dodecyl sulfate (SDS) in mammalian apoferritin

    PubMed Central

    Liu, Renyu; Bu, Weiming; Xi, Jin; Mortazavi, Shirin R.; Cheung-Lau, Jasmina C.; Dmochowski, Ivan J.; Loll, Patrick J.

    2012-01-01

    Although sodium dodecyl sulfate (SDS) is widely used as an anionic detergent, it can also exert specific pharmacological effects that are independent of the surfactant properties of themolecule. However, structural details of how proteins recognize SDS are scarce. Here, it is demonstrated that SDS binds specifically to a naturally occurring four-helix bundle protein: horse apoferritin. The X-ray crystal structure of the apoferritinSDS complex was determined at a resolution of 1.9? and revealed that the SDS binds in an internal cavity that has previously been shown to recognize various general anesthetics. A dissociation constant of 24 9?M at 293?K was determined by isothermal titration calorimetry. SDS binds in this cavity by bending its alkyl tail into a horseshoe shape; the charged SDS head group lies in the opening of the cavity at the protein surface. This crystal structure provides insights into the proteinSDS interactions that give rise to binding and may prove useful in the design of novel SDS-like ligands for some proteins. PMID:22525747

  6. Effects of appendectomy and oral tolerance on dextran sulfate sodium colitis

    PubMed Central

    Yue, Min; Shen, Zhe; Yu, Chao-Hui; Ye, Hua; Ye, Yue-Fang; Li, You-Ming

    2011-01-01

    AIM: To evaluate the concomitant effects of appendectomy and oral tolerance on colitis. METHODS: Delayed-type hypersensitivity (DTH) was investigated at a 7-d interval after ovalbumin (OVA) administration and immunization under normal and colitis conditions in appendectomized or sham-operated mice. Pathological scores for the colon were graded after ingestion of colon-extracted protein (CEP) and induction of dextran sulfate sodium (DSS) colitis in appendectomized or sham-operated mice. Thereafter, Th1 and Th2 in Peyer’s patches and spleen lymphocytes were detected in CEP-treated and bovine serum albumin (BSA)-treated control mice. RESULTS: In appendectomized mice, DTH was not inhibited at day 7 after OVA administration and at the initial phase of DSS colitis, whereas it was inhibited at day 14 and day 21. However, in sham-operated mice, it was inhibited during the whole procedure and the onset of DSS colitis. The protective role of CEP against DSS colitis was present in sham-operated mice, with predominant improvement of colonic pathological changes, while vanished in the appendectomized mice. A shift from Th1 to Th2 in Peyer’s patches resulted from a decrease of Th1 cells with the ingestion of CEP. Compared with BSA in the sham-operated group, no predominant changes were observed in the appendectomized mice. CONCLUSION: Appendectomy interferes with the protective role of CEP in DSS colitis via a shift from Th2 to Th1 during oral tolerance induction. PMID:21633645

  7. Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice.

    PubMed

    Hkansson, ; Tormo-Badia, N; Baridi, A; Xu, J; Molin, G; Hagsltt, M-L; Karlsson, C; Jeppsson, B; Cilio, C M; Ahrn, S

    2015-02-01

    Ulcerative colitis (UC) is characterized by chronic inflammation of the colonic mucosa. Administration of dextran sulfate sodium (DSS) to animals is a frequently used model to mimic human colitis. Deregulation of the immune response to the enteric microflora or pathogens as well as increased intestinal permeability have been proposed as disease-driving mechanisms. To enlarge the understanding of the pathogenesis, we have studied the effect of DSS on the immune system and gut microbiota in mice. Intestinal inflammation was verified through histological evaluation and myeloperoxidase activity. Immunological changes were assessed by flow cytometry in spleen, Peyer's patches and mesenteric lymph nodes and through multiplex cytokine profiling. In addition, quantification of the total amount of bacteria on colonic mucosa as well as the total amount of lactobacilli, Akkermansia, Desulfovibrio and Enterobacteriaceae was performed by the use of quantitative PCR. Diversity and community structure were analysed by terminal restriction fragment length polymorphism (T-RFLP) patterns, and principal component analysis was utilized on immunological and T-RFLP patterns. DSS-induced colitis show clinical and histological similarities to UC. The composition of the colonic microflora was profoundly changed and correlated with several alterations of the immune system. The results demonstrate a relationship between multiple immunological changes and alterations of the gut microbiota after DSS administration. These data highlight and improve the definition of the immunological basis of the disease and suggest a role for dysregulation of the gut microbiota in the pathogenesis of colitis. PMID:24414342

  8. Microangiopathy triggers, and inducible nitric oxide synthase exacerbates dextran sulfate sodium-induced colitis.

    PubMed

    Saijo, Hiroki; Tatsumi, Norifumi; Arihiro, Seiji; Kato, Tomohiro; Okabe, Masataka; Tajiri, Hisao; Hashimoto, Hisashi

    2015-07-01

    Ulcerative colitis (UC) is a representative clinical manifestation of inflammatory bowel disease that causes chronic gastrointestinal tract inflammation. Dextran sulfate sodium (DSS)-induced colitis mice have been used to investigate UC pathogenesis, and in this UC model, disturbance and impairment of the mucosal epithelium have been reported to cause colitis. However, how DSS sporadically breaks down the epithelium remains unclear. In this study, we focused on the colonic microcirculation and myenteric neurons of DSS-induced colitis. Moreover, we examined the potential of myenteric neurons as a target to prevent exacerbation of colitis. Fluorescent angiographic and histopathological studies revealed that DSS administration elicited blood vessel disruption before epithelial disorders appeared. Ischemic conditions in the lamina propria induced inducible nitric oxide synthase (iNOS) expression in myenteric neurons as colitis aggravated. When neuronal activity was inhibited with butylscopolamine, neuronal iNOS expression decreased, and the exacerbation of colitis was prevented. These results suggested that DSS-induced colitis was triggered by microcirculatory disturbance in the mucosa, and that excessive neuronal excitation aggravated colitis. During remission periods of human UC, endoscopic inspection of the colonic microcirculation may enable the early detection of disease recurrence, and inhibition of neuronal iNOS expression may prevent the disease from worsening. PMID:25938626

  9. Surface modification to produce hydrophobic nano-silica particles using sodium dodecyl sulfate as a modifier

    NASA Astrophysics Data System (ADS)

    Qiao, Bing; Liang, Yong; Wang, Ting-Jie; Jiang, Yanping

    2016-02-01

    Hydrophobic silica particles were prepared using the surfactant sodium dodecyl sulfate (SDS) as a modifier by a new route comprising three processes, namely, aqueous mixing, spray drying and thermal treatment. Since SDS dissolves in water, this route is free of an organic solvent and gave a perfect dispersion of SDS, that is, there was excellent contact between SDS and silica particles in the modification reaction. The hydrophobicity of the modified surface was verified by the contact angle of the nano-sized silica particles, which was 107°. The SDS grafting density reached 1.82 nm-2, which is near the highest value in the literature. The optimal parameters of the SDS/SiO2 ratio in the aqueous phase, process temperature and time of thermal treatment were determined to be 20%, 200 °C and 30 min, respectively. The grafting mechanism was studied by comparing the modification with that on same sized TiO2 particles, which indicated that the protons of the Brønsted acid sites on the surface of SiO2 reacted with SDS to give a carbocation which then formed a Si-O-C structure. This work showed that the hydrophilic surface of silica can be modified to be a hydrophobic surface by using a water soluble modifier SDS in a new modification route.

  10. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    SciTech Connect

    Kanbe, Takamasa |; Murai, Rie; Mukoyama, Tomoyuki; Murawaki, Yoshiyuki |; Hashiguchi, Ko-ichi; Yoshida, Yoko; Tsuchiya, Hiroyuki; Kurimasa, Akihiro; Harada, Ken-ichi; Yashima, Kazuo; Nishimuki, Eiji; Shabana, Noriko; Kishimoto, Yukihiro; Kojyo, Haruhiko; Miura, Kunihiko; Kawasaki, Hironaka; Murawaki, Yoshikazu; Shiota, Goshi . E-mail: gshiota@grape.med.tottori-u.ac.jp

    2006-07-14

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SR{alpha} promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells than in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes.

  11. A comparative study of three cytotoxicity test methods for nanomaterials using sodium lauryl sulfate.

    PubMed

    Kwon, Jae-Sung; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-10-01

    The biocompatibility evaluation of nanomaterials is essential for their medical diagnostic and therapeutic usage, where a cytotoxicity test is the simplest form of biocompatibility evaluation. Three methods have been commonly used in previous studies for the cytotoxicity testing of nanomaterials: trypan blue exclusion, colorimetric assay using water soluble tetrazolium (WST), and imaging under a microscope following calcein AM/ethidium homodimer-1 staining. However, there has yet to be a study to compare each method. Therefore, in this study three methods were compared using the standard reference material of sodium lauryl sulfate (SLS). Each method of the cytotoxicity test was carried out using mouse fibroblasts of L-929 exposed to different concentrations of SLS. Compared to the gold standard trypan blue exclusion test, both colorimetric assay using water soluble tetrazolium (WST) and imaging under microscope with calcein AM/ethidium homodimer-1 staining showed results that were not statistically different. Also, each method exhibited various advantages and disadvantages, which included the need of equipment, time taken for the experiment, and provision of additional information such as cell morphology. Therefore, this study concludes that all three methods of cytotoxicity testing may be valid, though careful consideration will be needed when selecting tests with regard to time, finances, and the amount of information required by the researcher(s). PMID:25942919

  12. Loss of sulfiredoxin renders mice resistant to azoxymethane/dextran sulfate sodium-induced colon carcinogenesis.

    PubMed

    Wei, Qiou; Jiang, Hong; Baker, Alyson; Dodge, Lisa K; Gerard, Matthieu; Young, Matthew R; Toledano, Michel B; Colburn, Nancy H

    2013-06-01

    Sulfiredoxin (Srx) is the enzyme that reduces the hyperoxidized inactive form of peroxiredoxins. To study the function of Srx in carcinogenesis in vivo, we tested whether loss of Srx protects mice from cancer development. Srx null mice were generated and colon carcinogenesis was induced by an azoxymethane (AOM) and dextran sulfate sodium (DSS) protocol. Compared with either wild-type (Wt) or heterozygotes, Srx(-/-) mice had significantly reduced rates in both tumor multiplicity and volume. Mechanistic studies reveal that loss of Srx did not alter tumor cell proliferation; however, increased apoptosis and decreased inflammatory cell infiltration were obvious in tumors from Srx null mice compared with those from Wt control. In addition to the AOM/DSS model, examination of Srx expression in human reveals a tissue-specific expression pattern. Srx expression was also demonstrated in tumors from colorectal cancer patients and the levels of expression were associated with patients' clinic stages. These data provide the first in vivo evidence that loss of Srx renders mice resistant to AOM/DSS-induced colon carcinogenesis, suggesting that Srx has a critical oncogenic role in cancer development, and Srx may be used as a marker for human colon cancer pathogenicity. PMID:23393226

  13. Amelioration of dextran sodium sulfate-induced colitis in mice by Rhodobacter sphaeroides extract.

    PubMed

    Liu, Wen-Sheng; Chen, Man-Chin; Chiu, Kuo-Hsun; Wen, Zhi-Hong; Lee, Che-Hsin

    2012-01-01

    Bacteria can produce some compounds in response to their environment. These compounds are widely used in cosmetic and pharmaceutical applications. Some probiotics have immunomodulatory activities and modulate the symptoms of several diseases. Autoimmune diseases represent a complex group of conditions that are thought to be mediated through the development of autoreactive immunoresponses. Inflammatory bowel disease (IBD) is common autoimmune disease that affects many individuals worldwide. Previously, we found that the extracts of Rhodobacter sphaeroides (Lycogen) inhibited nitric oxide production and inducible nitric-oxide synthase expression in activated macrophages. In this study, the effect of Lycogen, a potent anti-inflammatory agent, was evaluated in mice with dextran sodium sulfate (DSS)-induced colitis. Oral administration of Lycogen reduced the expressions of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) in female BABL/c mice. In addition, the increased number of bacterial flora in the colon induced by DSS was amelirated by Lycogen. The histological score of intestinal inflammation in 5% DSS-treated mice after oral administration of Lycogen was lower than that of control mice. Meanwhile, Lycogen dramatically prolonged the survival of mice with severe colitis. These findings identified that Lycogen is an anti-inflammatory agent with the capacity to ameliorate DSS-induced colitis. PMID:23159923

  14. Effect of Nanometric Lactobacillus plantarum in Kimchi on Dextran Sulfate Sodium-Induced Colitis in Mice.

    PubMed

    Lee, Hyun Ah; Bong, Yeon-Ju; Kim, Hyunung; Jeong, Ji-Kang; Kim, Hee-Young; Lee, Kwang-Won; Park, Kun-Young

    2015-10-01

    Nanometric Lactobacillus plantarum (nLp) is a processed form of Lab. plantarum derived from kimchi and is 0.5-1.0 μm in size. This study was undertaken to determine the effect of nLp and kimchi plus nLp (K-nLp) on a dextran sulfate sodium (DSS)-induced mouse model of colitis. Animals fed nLp or K-nLp had longer colons, but lower colon weights per unit length than DSS controls. In addition, nLp- or K-nLp-fed animals showed lower levels of proinflammatory cytokines and inflammatory genes in serum and in colon tissues, lower populations of total bacteria, but higher populations of lactic acid bacteria in feces, and lower activities of fecal β-glucosidase and β-glucuronidase. Furthermore, these suppressive activities of nLp on colitis were equivalent to or higher than those of naive Lab. plantarum. Consequently, nLp was found to exhibit anticolitic effects, and the addition of nLp to kimchi was found to enhance the protective activity of kimchi against DSS-induced colitis. These results suggest that nLp might be an effective substitute for live probiotics and be useful as a functional ingredient with the anticolitic activity by the probiotic and food processing industries. PMID:26305853

  15. Simple Sodium Dodecyl Sulfate-Assisted Sample Preparation Method for LC-MS-based Proteomic Applications

    SciTech Connect

    Zhou, Jianying; Dann, Geoffrey P.; Shi, Tujin; Wang, Lu; Gao, Xiaoli; Su, Dian; Nicora, Carrie D.; Shukla, Anil K.; Moore, Ronald J.; Liu, Tao; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2012-03-10

    Sodium dodecyl sulfate (SDS) is one of the most popular laboratory reagents used for highly efficient biological sample extraction; however, SDS presents a significant challenge to LC-MS-based proteomic analyses due to its severe interference with reversed-phase LC separations and electrospray ionization interfaces. This study reports a simple SDS-assisted proteomic sample preparation method facilitated by a novel peptide-level SDS removal protocol. After SDS-assisted protein extraction and digestion, SDS was effectively (>99.9%) removed from peptides through ion substitution-mediated DS- precipitation with potassium chloride (KCl) followed by {approx}10 min centrifugation. Excellent peptide recovery (>95%) was observed for less than 20 {mu}g of peptides. Further experiments demonstrated the compatibility of this protocol with LC-MS/MS analyses. The resulting proteome coverage from this SDS-assisted protocol was comparable to or better than those obtained from other standard proteomic preparation methods in both mammalian tissues and bacterial samples. These results suggest that this SDS-assisted protocol is a practical, simple, and broadly applicable proteomic sample processing method, which can be particularly useful when dealing with samples difficult to solubilize by other methods.

  16. Fabrication and surface properties of hydrophobic barium sulfate aggregates based on sodium cocoate modification

    NASA Astrophysics Data System (ADS)

    Hu, Linna; Wang, Guangxiu; Cao, Rong; Yang, Chun; Chen, Xi

    2014-10-01

    Hydrophobic barium sulfate aggregates were fabricated by the direction of cocoate anions. At 30 °C, when the weight ratio of sodium cocoate to BaSO4 particles was 2.0 wt.%, the active ratio of the product reached 99.43% and the contact angle was greater than 120°. This method could not only simplify the complex modification process, but reduce energy consumption. The surface morphology, chemical structure and composition of BaSO4 aggregates were characterized by SEM, XRD, and FTIR. The results indicated that the as-synthesized BaSO4 particles were almond-liked and were composed of many interconnected nanoballs and that their surfaces were affected by cocoate anions. The adsorption of cocoate anions reversed the charge and weakened the surface polarity of BaSO4 particles, driving the formation of aggregates. And cocoate anions induced a change of the BaSO4 particles surface from hydrophilic to hydrophobic by a self-assembly and transformation process. Due to the self-assembled structure and the surface hydrophobicity, when adding the hydrophobic BaSO4 into PVC, the mechanical properties of PVC composite materials were significantly improved.

  17. Anti-Inflammatory Effects of Inonotus obliquus in Colitis Induced by Dextran Sodium Sulfate

    PubMed Central

    Choi, Se Young; Hur, Sun Jin; An, Chi Sun; Jeon, Yun Hui; Jeoung, Young Jun; Bak, Jong Phil; Lim, Beong Ou

    2010-01-01

    A total of 28 male BALB/c mice (average weight 20.7??1.6?g) were divided into 4 treatment groups and fed a commercial diet (A), a commercial diet + induced colitis by dextran sodium sulfate (DSS) (B), Inonotus obliquus (IO) administration (C), and IO administration + induced colitis by DSS (D). IO treatment (C, D) decreased the expression of tumor necrosis factor (TNF)-? and signal transducers and activators of transcription (STAT)1 compared to those of the colitis induced group (B). The expressions of IL-4 and STAT6 were decreased in group D compared to the colitis induced group (B). The serum immunoglobulin (Ig)E level decreased in IO treatment groups (C, D) compared to no IO treatment groups (A and B) although there was no significant difference between the IO treatment groups. Extract from IO itself had a weak cytotoxic effect on murine macrophage cell line (RAW264.7 cells). Extract from IO inhibited lipopolysaccharide- (LPS-) induced, TNF-?, STAT1, pSTAT1, STAT6, and pSTAT6 production in RAW264.7 cells. PMID:20300439

  18. Antibrowning and antimicrobial properties of sodium acid sulfate in apple slices.

    PubMed

    Fan, Xuetong; Sokorai, Kimberly J B; Liao, Ching-Hsing; Cooke, Peter; Zhang, Howard Q

    2009-01-01

    There are few available compounds that can both control browning and enhance microbial safety of fresh-cut fruits. In the present study, the antibrowning ability of sodium acid sulfate (SAS) on "Granny Smith" apple slices was first investigated in terms of optimum concentration and treatment time. In a separate experiment, the apple slices were treated with water or 3% of SAS, calcium ascorbate, citric acid, or acidified calcium sulfate for 5 min. Total plate count, color, firmness, and tissue damage were assessed during a 21-d storage at 4 degrees C. Results showed that the efficacy of SAS in inhibiting browning of apple slices increased with increasing concentration. A minimum 3% of SAS was needed to achieve 14 d of shelf life. Firmness was not significantly affected by SAS at 3% or lower concentrations. Antibrowning potential of SAS was similar for all treatment times ranging from 2 to 10 min. However, SAS caused some skin discoloration of apple slices. When cut surface of apple slices were stained with a fluorescein diacetate solution, tissue damage could be observed under a microscope even though visual damage was not evident. Among the antibrowning agents tested, SAS was the most effective in inhibiting browning and microbial growth for the first 14 d. Total plate count of samples treated with 3% SAS was significantly lower than those treated with calcium ascorbate, a commonly used antibrowning agent. Our results suggested that it is possible to use SAS to control browning while inhibiting the growth of microorganisms on the apple slices if the skin damage can be minimized. Practical Application: Fresh-cut apples have emerged as one of the popular products in restaurants, schools, and food service establishments as more consumers demand fresh, convenient, and nutritious foods. Processing of fresh-cut apples induces mechanical damage to the fruit and exposes apple tissue to air, resulting in the development of undesirable tissue browning. The fresh-cut industry currently uses antibrowning agents to prevent discoloration. However, the antibrowning solutions can become contaminated with human pathogens such as Listeria monocytogenes, and washing of apple slices with the contaminated solutions can result in the transfer of pathogens to the product. It would be ideal if an antibrowning compound prevented the proliferation of human pathogens in solutions and minimized the growth of pathogens during storage. The study was conducted to investigate antibrowning and antimicrobial properties of sodium acid sulfate (SAS) in comparison with other common antibrowning agents on Granny Smith apples. Results showed that among the antimicrobial agents we tested, SAS was the most effective in inhibiting browning and microbial growth for 14 d at 4 degrees C. However, SAS caused some skin discoloration of apple slices. Overall, SAS can potentially be used to inhibit tissue browning while reducing the microbial growth on apple slices. The information is useful for the fresh-cut produce industry to enhance microbial safety of fresh-cut apples while minimizing browning, thus increasing the consumption of the health benefiting fresh fruit. PMID:20492119

  19. Effect of n-pentanol on the solubility of ethane in micellar solutions of sodium dodecyl sulfate

    SciTech Connect

    Hoskins, J.C.; King, A.D. Jr.

    1981-07-01

    Experiments have been carried out to determine the effect that added n-pentanol has upon the solubility of ethane gas in micellar solutions of sodium dodecyl sulfate. The results show that when micellar sodium dodecyl sulfate is present, n-pentanol acts to enhance gas solubility. However, the degree to which the alcohol enhances gas solubility varies with concentration. At low concentrations, the incremental increase in ethane solubility per mole of alcohol is found to be numerically about equal to the solubility of ethane in ethanol. This incremental change in gas solubility increases with pentanol concentration and approaches the solubility of ethane in pure pentanol at high ratios of alcohol to surfactant. Unusual gas-induced gels are formed at moderate pressures (p is approx. 5 atm) with ethane and homogeneous solutions having compositions bordering those of the liquid crystal-solution phase boundary.

  20. Ferrous sulfate, but not iron polymaltose complex, aggravates local and systemic inflammation and oxidative stress in dextran sodium sulfate-induced colitis in rats

    PubMed Central

    Toblli, Jorge E; Cao, Gabriel; Angerosa, Margarita

    2015-01-01

    Background and aims Iron deficiency is common in inflammatory bowel disease, yet oral iron therapy may worsen the disease symptoms and increase systemic and local oxidative stress. The aim of this study was to compare the effects of oral ferrous sulfate and iron polymaltose complex on inflammatory and oxidative stress markers in colitic rats. Methods Animals were divided into four groups with ten animals each. Rats of three groups received dextran sodium sulfate to induce colitis and animals of two of these groups received 5 mg iron/kg of body weight a day, as ferrous sulfate or iron polymaltose complex, for 7 days. Gross colon anatomy, histology of colon and liver, stainings of L-ferritin, Prussian blue, hepcidin, tumor necrosis factor-?, and interleukin-6, as well serum levels of liver enzymes, inflammatory markers, and iron markers, were assessed. Results Body weight, gross anatomy, crypt injury and inflammation scores, inflammatory parameters in liver and colon, as well as serum and liver hepcidin levels were not significantly different between colitic animals without iron treatment and colitic animals treated with iron polymaltose complex. In contrast, ferrous sulfate treatment caused significant worsening of these parameters. As opposed to ferrous sulfate, iron polymaltose complex caused less or no additional oxidative stress in the colon and liver compared to colitic animals without iron treatment. Conclusion Iron polymaltose complex had negligible effects on colonic tissue erosion, local or systemic oxidative stress, and local or systemic inflammation, even at high therapeutic doses, and may thus represent a valuable oral treatment of iron deficiency in inflammatory bowel disease. PMID:26005335

  1. A novel sulfite alternative scavenger and benefits for the use of traced oxygen scavengers

    SciTech Connect

    Batton, C.B.; Riede, R.F.

    1994-12-31

    Dissolved oxygen in boiler systems is known to cause corrosion. Mechanical deaeration removes the majority of the dissolved oxygen while oxygen scavengers remove the remaining trace level. Sodium sulfate is a commonly used scavenger, but has several use limitations, such as high solids contribution to boiler water and decomposition products that are corrosive gases which can cause downstream equipment problems. A novel sulfite replacement oxygen scavenger has been developed which addresses the limitations of sulfite. Identification and demonstrated performance of the new scavenger is presented using both research and field data. In addition to oxygen scavenger performance, the success of a boiler water treatment program is dependent upon the correct dosage added to the feedwater. Plant managers and operators often struggle with indirect or inaccurate methods to determine what is occurring within their system. An oxygen scavenger product containing a proprietary fluorescent tracer has been developed. This technology for boilers provides a breakthrough in measurement capability for monitoring the dynamics of a boiler system. These two oxygen scavenger developments represent the result of maintaining desirable performance characteristics and significantly improving current technology. Laboratory and field data supporting these results are presented.

  2. Effects of various polyoxyethylene sorbitan monooils (Tweens) and sodium dodecyl sulfate on reflux synthesis of copper nanoparticles

    SciTech Connect

    Zhang Xifeng; Yin Hengbo . E-mail: yin@ujs.edu.cn; Cheng Xiaonong; Hu Huifeng; Yu Qi; Wang Aili

    2006-11-09

    Size-controlled synthesis of phase pure Cu nanoparticles was carried out by using copper sulfate pentahydrate as a precursor, ascorbic acid as a reductant, Tweens and sodium dodecyl sulfate (SDS) as modifiers in an aqueous solution at 80 deg. C. The as-prepared Cu nanoparticles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and Fourier transform infrared (FT-IR). The stabilizing effects of SDS and Tweens on the Cu nanoparticles should be through the coordination between Cu nanoparticles and the respective sulfate group and oxygen-containing bond. The synergic effect of the composite SDS and Tweens on Cu nanoparticles was different from those arising from the individuals.

  3. Corrosion resistance of sodium sulfate coated cobalt-chromium-aluminum alloys at 900 C, 1000 C, and 1100 C

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1979-01-01

    The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales.

  4. Effects of Sodium Citrate on the Ammonium Sulfate Recycled Leaching of Low-Grade Zinc Oxide Ores

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Li, Shi-wei; Zhang, Li-bo; Peng, Jin-hui; Ma, Ai-yuan; Wang, Bao-bao

    2016-03-01

    The effects of sodium citrate on ammonium sulfate recycled leaching of low-grade zinc oxide ores were studied. By applying various kinds of detection and analysis techniques such as chemical composition analysis, chemical phase method, scanning electron microscopy and energy dispersive spectrum (SEM/EDS), X-ray diffraction (XRD) and Fourier-transforming infrared spectrum (FT-IR), zinc raw ore, its leaching slag and the functional mechanism of sodium citrate were investigated. Based on a comprehensive analysis, it can be concluded that in contrast to hemimorphite (Zn4Si2O7(OH)2 · H2O), amorphous smithsonite (ZnCO3) and zinc silicate (Zn2SiO4) prove to be refractory phases under ammonium sulfate leaching, while sodium citrate has a better chelating action with the refractory phases, resulting in a higher zinc leaching rate. Under conditions of [NH3]/[NH3]T molar ratio being 0.5, [NH3]T being 7.5 mol/L, [Na3C6H5O7] being 0.2 mol/L, S/L ratio being 1:5, temperature being 303 K, holding time being 1 h in each of the two stages, and stirring rate being 300 rpm, the leaching rate of zinc reached 93.4%. In this article, sulfate ammonium recycled technology also reveals its unique advantage in processing low-grade zinc oxide ores accompanied by high silicon and high alkaline gangue.

  5. Free-radical chemistry of sulfite.

    PubMed Central

    Neta, P; Huie, R E

    1985-01-01

    The free-radical chemistry of sulfite oxidation is reviewed. Chemical transformations of organic and biological molecules induced by sulfite oxidation are summarized. The kinetics of the free-radical oxidations of sulfite are discussed, as are the kinetics of the reactions of the sulfite-derived radicals SO3 and the peroxy derivative SO5 with organic compounds. PMID:3830699

  6. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase.

    PubMed

    Leavitt, William D; Bradley, Alexander S; Santos, Andr A; Pereira, Ins A C; Johnston, David T

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major ((34)S/(32)S) and minor ((33)S/(32)S, (36)S/(32)S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in (34)S/(32)S (hereafter, [Formula: see text]) to be 15.3 2, 2?. The accompanying minor isotope effect in (33)S, described as [Formula: see text], is calculated to be 0.5150 0.0012, 2?. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3-0.6 times prior indirect estimates, which have ranged from 25 to 53 in (34)?DsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of [Formula: see text] is similar to the median value of experimental observations compiled from all known published work, where (34)? r-p = 16.1 (r-p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments ([Formula: see text] 17.3 1.5, 2?) and in modern marine sediments ([Formula: see text] 17.3 3.8). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in modern and ancient environments. PMID:26733949

  7. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in modern and ancient environments. PMID:26733949

  8. Fabrication and study of properties of magnetite nanoparticles in hybrid micelles of polystyrene- block-polyethylene oxide and sodium dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Loginova, T. P.; Timofeeva, G. I.; Lependina, O. L.; Shandintsev, V. A.; Matyushin, A. A.; Khotina, I. A.; Shtykova, E. V.

    2016-01-01

    Magnetite nanoparticles have been formed for the first time in hybrid micelles of polystyrene- block-polyethylene oxide and sodium dodecyl sulfate in water by ultrasonic treatment at room temperature. An analysis by small-angle X-ray scattering and transmission electron microscopy (TEM) showed that magnetite nanoparticles in hybrid micelles of block copolymer and sodium dodecyl sulfate are polydesperse (have sizes from 0.5 to 20 nm). The specific magnetization of solid samples has been measured.

  9. Effects of anthocyanin-rich tea "Sunrouge" on dextran sodium sulfate-induced colitis in mice.

    PubMed

    Akiyama, Satoko; Nesumi, Atsushi; Maeda-Yamamoto, Mari; Uehara, Mariko; Murakami, Akira

    2012-01-01

    Sunrouge, an anthocyanin-rich tea, has similar levels of catechins as "Yabukita," the most popular green tea cultivar consumed in Japan. Green tea polyphenols (GTPs) have attracted interest due to their potent antioxidative activities combined with a lack of side effects in humans at normal consumption levels. However, we previously reported that high doses (0.5 and 1%) of dietary GTPs can result in deterioration of colitis and failed to prevent colon carcinogenesis in inflamed colons. In the present study, we determined the inhibitory effects of Sunrouge on colitis in dextran sodium sulfate (DSS)-treated and untreated control mice. Five-week-old female ICR mice were administered a single dose of Yabukita or Sunrouge (extracts in 1 mL distilled water) via a stomach tube for 3 weeks. After 1 week of treatment, the mice were divided into four groups (two Yabukita and two Sunrouge groups) and given drinking water with or without 3% DSS for 2 weeks, then they were euthanized. Those treated with DSS developed watery diarrhea and bloody stools, and showed body weight loss, spleen hypertrophy, and shortening of the colon, as well as deteriorations in survival rate, liver function, colon mucosal interleukin-1? level and expression of phase II detoxification enzyme mRNA. Sunrouge improved these DSS-induced symptoms, at least in part, whereas Yabukita showed either no effect or adverse effects in regard to some those parameters. It is suggested that the differences between Yabukita and Sunrouge on DSS-induced colitis might be due to the high levels of anthocyanins found in Sunrouge tea. PMID:22422705

  10. Transcatheter Foam Sclerotherapy of Symptomatic Female Varicocele with Sodium-Tetradecyl-Sulfate Foam

    SciTech Connect

    Gandini, Roberto; Chiocchi, Marcello Konda, Daniel; Pampana, Enrico; Fabiano, Sebastiano; Simonetti, Giovanni

    2008-07-15

    To evaluate the efficacy of transcatheter foam sclerotherapy (TCFS) in pelvic varicocele using sodium-tetradecyl-sulfate foam (STSF), we conducted a retrospective study in 38 patients (mean age, 36.9 years; range, 22-44 years) with pelvic congestion syndrome (PCS) treated between January 2000 and June 2005 by TCFS. Pelvic pain was associated with dyspareunia in 23 (60.5%) patients, urinary urgency in 9 (23.7%) patients, and worsening of pain during menstruation and at the end of a day of work in 7 (18.4%) and 38 (100%) patients, respectively. Diagnosis was made by pelvic and transvaginal color Doppler ultrasound examination, demonstrating ovarian or pelvic varices with a diameter >5 mm presenting venous reflux. TCFS was performed in all patients, using 3% STSF. Follow-up was performed by physical examination, pelvic and transvaginal Doppler ultrasound examination and by a questionnaire-based assessment of pain at 1, 3, 6, and 12 months after the procedure. Technical success was achieved in all patients (100%). In three patients a pelvic colic-like pain occurred immediately after sclerotic agent injection, disappearing spontaneously after a few minutes. No recurrent varicoceles were observed during a 12-month follow-up. A statistically significant improvement in each category of specific symptoms was observed at 1, 3, 6, and 12 months after the procedure. We conclude that TCFS of female varicocele using a 3% STSF is safe and effective for the treatment of PCS. It is associated with a significant reduction of symptoms and can be regarded as a valid alternative to other endovascular and surgical techniques.

  11. Effect of sodium lauryl sulfate (SLS) on in vitro percutaneous penetration of water, hydrocortisone and nickel.

    PubMed

    Frankild, S; Andersen, K E; Nielsen, G D

    1995-06-01

    The dose- and time-related effect of sodium lauryl sulfate (SLS) on in vitro percutaneous penetration was studied using 3 radiolabeled tracer compounds with different physicochemical properties: tritiated water, hydrocortisone and nickel. Human cadaver abdominal skin from caucasian women was used as membrane in static in vitro penetration cells. Simultaneous application of SLS together with 1 of the tracer compounds showed, after 48 h, a significant dose-effect relationship between SLS concentration (0.25%, 2% and 10%) and penetration of tritiated water or nickel (p < 0.001, Spearman), whereas SLS had no significant effect on penetration of hydrocortisone. When 4% SLS was applied as pretreatment, a significant time-effect relationship, after 48 h, was found between pretreatment time (0.5, 2 and 8 h) and penetration of tritiated water. A similar relationship was not found for penetration of nickel or hydrocortisone. Pretreatment of the skin with SLS for 2 h using 3 concentrations (0.25%, 4% and 10%) showed, after 48 h, a significant dose-effect relationship between SLS treatment and penetration of tritiated water or nickel (p < 0.001, Spearman). Pretreatment had no effect on penetration of hydrocortisone. Pretreatment simulates a cleaning-washing situation. The present in vitro skin penetration model, using human cadaver skin, described the dose-effect and time-effect relationships for SLS on the penetration profiles of 3 different compounds. The model may be extended to other compounds with suspected irritant/damaging effect on the skin barrier. It should be kept in mind that the model uses a dead skin membrane without the barrier repair mechanisms of live skin. PMID:7554880

  12. Loss of p53 enhances the induction of colitis-associated neoplasia by dextran sulfate sodium.

    PubMed

    Chang, Wen-Chi L; Coudry, Renata A; Clapper, Margie L; Zhang, Xiaoyan; Williams, Kara-Lynn; Spittle, Cynthia S; Li, Tianyu; Cooper, Harry S

    2007-11-01

    Loss of p53 function is an early event in colitis-associated neoplasia in humans. We assessed the role of p53 in a mouse model of colitis-associated neoplasia. Colitis was induced in p53-/-, p53+/- and p53+/+ mice using three or four cycles of dextran sulfate sodium (DSS) followed by 120 days of water. Mice were examined for incidence, multiplicity and types of neoplastic lesions. Lesions were examined for mutations in beta-catenin (exon 3), K-ras (codons 12/13) and p53 (exons 5-8) by sequencing and for cellular localization of beta-catenin by immunohistochemistry. The incidence of neoplastic lesions was 57, 20 and 20% in p53-/-, p53+/- and p53+/+ mice, respectively (P = 0.013). p53-/- mice had a greater number of total lesions (P < 0.0001), cancers (P = 0.001) and dysplasias (P = 0.009) per mouse than either p53+/- or p53+/+ mice. Flat lesions were associated with the p53-/- genotype, whereas polypoid lesions were associated with the p53+/- and p53+/+ genotypes (P < 0.0001). beta-Catenin mutations were present in 75% of lesions of p53+/+ mice and absent in lesions from p53-/- mice (P = 0.055). Nuclear expression of beta-catenin was seen only in polypoid lesions (91%). No K-ras or p53 mutations were detected. These data indicate that loss of p53 enhances the induction of colitis-associated neoplasia, particularly flat lesions, and dysregulation of beta-catenin signaling plays an important role in the formation of polypoid lesions in this mouse model. As observed in humans, p53 plays a protective role in colitis-associated neoplasia in the DSS model. PMID:17557903

  13. Unfolding and folding pathway of lysozyme induced by sodium dodecyl sulfate.

    PubMed

    Sun, Yang; Filho, Pedro L O; Bozelli, Jos C; Carvalho, Juliana; Schreier, Shirley; Oliveira, Cristiano L P

    2015-10-21

    Proteins may exhibit an unfolding or folding state in the presence of a surfactant. In the present study, the unfolding and folding pathway of hen egg white lysozyme (HEWL) induced by sodium dodecyl sulfate (SDS) is studied. The stoichiometry obtained from isothermal titration calorimetry (ITC) provides guidelines for other techniques. The fluorescence spectra and circular dichroism show that the fluorescence properties and secondary structure of proteins undergo a two-step change upon binding with SDS, in which the intensity decreases, the emission blue shifts and the helical conformation decreases at low ratios of SDS to HEWL, while all of them return to the native-like state upon the addition of SDS at higher ratios. At the end of the binding, HEWL presents a higher ?-helical content but its tertiary structure is lost compared to its native state, which is namely a molten globule state. Small angle X-ray scattering (SAXS) analysis and the derived model reveal that the complexes possess a decorated core-shell structure, with the core composed of dodecyl chains and the shell consisting of SDS head groups with a protein in molten globule state. Five binding steps, including the individual details involved in the denaturation, were obtained to describe the unfolding and folding pathway of HEWL induced by SDS. The results of this study not only present details about the denaturation of protein induced by SDS and the structure of the complexes involved in each binding step, but also provide molecular insights into the mechanism of the higher helical conformation of proteins in the presence of surfactant micelles. PMID:26308474

  14. Characterization of sodium dodecyl sulfate-resistant proteolytic activity in the hyperthermophilic archaebacterium Pyrococcus furiosus.

    PubMed Central

    Blumentals, I I; Robinson, A S; Kelly, R M

    1990-01-01

    Cell extracts from Pyrococcus furiosus were found to contain five proteases, two of which (S66 and S102) are resistant to sodium dodecyl sulfate (SDS) denaturation. Cell extracts incubated at 98 degrees C in the presence of 1% SDS for 24 h exhibited substantial cellular proteolysis such that only four proteins could be visualized by amido black-Coomassie brilliant blue staining of SDS-polyacrylamide gels. The SDS-treated extract retained 19% of the initial proteolytic activity as represented by two proteases, S66 (66 kilodaltons [kDa]) and S102 (102 kDa). Immunoblot analysis with guinea pig sera containing antibodies against protease S66 indicated that S66 is related neither to S102 nor to the other proteases. The results of this analysis also suggest that S66 might be the hydrolysis product of a 200-kDa precursor which does not have proteolytic activity. The 24-h SDS-treated extract showed unusually thermostable proteolytic activity; the measured half-life at 98 degrees C was found to be 33 h. Proteases S66 and S102 were also resistant to denaturation by 8 M urea, 80 mM dithiothreitol, and 5% beta-mercaptoethanol. Purified protease S66 was inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate but not by EDTA, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, or iodoacetic acid. These results indicate that S66 is a serine protease. Amino acid ester hydrolysis studies showed that protease S66 was hydrolytically active towards N-benzoyl-L-arginine ethyl ester. Images PMID:2117873

  15. Adequate Dextran Sodium Sulfate-induced Colitis Model in Mice and Effective Outcome Measurement Method

    PubMed Central

    Park, Yo Han; Kim, Nayoung; Shim, Young Kwang; Choi, Yoon Jin; Nam, Ryoung Hee; Choi, Yoon Jeong; Ham, Min Hee; Suh, Ji Hyung; Lee, Sun Min; Lee, Chang Min; Yoon, Hyuk; Lee, Hye Seung; Lee, Dong Ho

    2015-01-01

    Background: Dextran sodium sulfate (DSS)-induced colitis mouse model is used for research of inflammatory bowel disease. The aim of this study was to establish the adequate conditions for DSS mice model, and to find useful tool to measure inflammation. Methods: The 2.5% DSS was administered to six male C57BL/6 mice and 4% DSS to eight mice at 5 or 9 weeks of age. Each group was consisted of 6 mice with control group in which vehicle was administered instead of DSS. The mice were sacrificed on the 7th day after DSS or vehicle administration. Body weight, diarrhea, and hematochezia were recorded daily. Disease activity index (DAI) score which was composed of body weight change, diarrhea, and hematochezia was measured every day. Colon length was measured after sacrifice and colon mucosal level of interleukin 1 beta (IL-1β) was measured by ELISA assay. Histological score was compared between ascending and descending colon in the DSS group. Results: Colon length of five- and nine-week DSS group was significantly shorter than each control group but there was no statistical significance depending on DSS concentration or age. DAI score of 4% DSS group in nine-week was significantly higher than that five-week (P = 0.012) but there was no difference between 2.5% and 4% DSS group. The level of IL-1β in DSS mice was much higher than control group (P < 0.01), but there was no difference among several DSS groups. The histological score was higher in the descending colon than in the ascending colon but there was no statistical difference between each pair of DSS groups. Conclusions: The 4% DSS mice in nine-week was adequate for DSS-induced colitis model. DAI score was useful tool and descending colon was more appropriate site for histological evaluation of colitis than ascending colon. PMID:26734588

  16. Sodium Dodecyl Sulfate Adsorption onto Positively Charged Surfaces: Monolayer Formation With Opposing Headgroup Orientations

    PubMed Central

    Song, Sang-Hun; Koelsch, Patrick; Weidner, Tobias; Wagner, Matthew S.; Castner, David G.

    2013-01-01

    The adsorption and structure of sodium dodecyl sulfate (SDS) layers onto positively charged films have been monitored in situ with vibrational sum-frequency-generation (SFG) spectroscopy and surface plasmon resonance (SPR) sensing. Substrates with different charge densities and polarities used in these studies include CaF2 at different pH values as well as allylamine and heptylamine films deposited onto CaF2 and Au substrates by radio frequency glow discharge deposition. The SDS films were adsorbed from aqueous solutions ranging in concentration from 0.067 to 20 mM. In general the SFG spectra exhibited well resolved CH and OH peaks. However, at SDS concentrations between 1–8 mM the SFG CH and OH intensities decreased close to background levels. Combined data sets from molecular conformation, orientation, and order sensitive SFG with mass sensitive SPR suggest that the observed changes in SFG intensities above 0.2 mM are related to structural arrangements in the SDS layer. A model is proposed where the SFG intensity minimum between 1–8 mM is associated with a monolayer containing two head group orientations, one pointing towards the substrate and one pointing towards the solution phase. The SFG peaks observed at concentrations below 0.2 mM are dominated by the presence of adsorbed contaminants such as fatty alcohols (e.g., dodecanol), which are more surface active than SDS. As SDS solution concentration is increased above 1 mM SDS molecules are incorporated in the surface layer, with dodecanol continuing to be present in the surface layer for solution concentrations up to at least critical micelle concentration. PMID:24024777

  17. L-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis.

    PubMed

    Coburn, Lori A; Gong, Xue; Singh, Kshipra; Asim, Mohammad; Scull, Brooks P; Allaman, Margaret M; Williams, Christopher S; Rosen, Michael J; Washington, M Kay; Barry, Daniel P; Piazuelo, M Blanca; Casero, Robert A; Chaturvedi, Rupesh; Zhao, Zhongming; Wilson, Keith T

    2012-01-01

    Inflammatory bowel disease (IBD), consisting of Crohn's disease and ulcerative colitis (UC), results in substantial morbidity and is difficult to treat. New strategies for adjunct therapies are needed. One candidate is the semi-essential amino acid, L-arginine (L-Arg), a complementary medicine purported to be an enhancer of immunity and vitality in the lay media. Using dextran sulfate sodium (DSS) as a murine colonic injury and repair model with similarities to human UC, we assessed the effect of L-Arg, as DSS induced increases in colonic expression of the y(+) cationic amino acid transporter 2 (CAT2) and L-Arg uptake. L-Arg supplementation improved the clinical parameters of survival, body weight loss, and colon weight, and reduced colonic permeability and the number of myeloperoxidase-positive neutrophils in DSS colitis. Luminex-based multi-analyte profiling demonstrated that there was a marked reduction in proinflammatory cytokine and chemokine expression with L-Arg treatment. Genomic analysis by microarray demonstrated that DSS-treated mice supplemented with L-Arg clustered more closely with mice not exposed to DSS than to those receiving DSS alone, and revealed that multiple genes that were upregulated or downregulated with DSS alone exhibited normalization of expression with L-Arg supplementation. Additionally, L-Arg treatment of mice with DSS colitis resulted in increased ex vivo migration of colonic epithelial cells, suggestive of increased capacity for wound repair. Because CAT2 induction was sustained during L-Arg treatment and inducible nitric oxide (NO) synthase (iNOS) requires uptake of L-Arg for generation of NO, we tested the effect of L-Arg in iNOS(-/-) mice and found that its benefits in DSS colitis were eliminated. These preclinical studies indicate that L-Arg supplementation could be a potential therapy for IBD, and that one mechanism of action may be functional enhancement of iNOS activity. PMID:22428068

  18. Kimchi Protects Against Azoxymethane/Dextran Sulfate SodiumInduced Colorectal Carcinogenesis in Mice

    PubMed Central

    Kim, Hee-Young; Song, Jia-Le; Chang, Hee-Kyung; Kang, Soon-Ah

    2014-01-01

    Abstract The chemopreventive effects of different types and quantities of kimchi prepared with different subingredients, including commercial kimchi (CK), standardized kimchi (SK), cancer-preventive kimchi (CPK), and anticancer kimchi (ACK), on colorectal carcinogenesis in mice were evaluated. The development of colon cancer was induced in male BALB/c mice with a single intraperitoneal injection of azoxymethane (AOM, 10?mg/kg body weight) and subsequent treatment with 2% dextran sulfate sodium (DSS) in drinking water for 7 days for two cycles. After exposure to AOM and DSS, treatment with the methanolic extracts from different kimchis, particularly 1.89?g/kg of ACK, significantly increased colon length, decreased the ratio of colon weight/length, and resulted in the lowest number of tumors compared with the other kimchi-treated groups. Histological observation revealed that ACK was able to suppress AOM- and DSS-induced colonic mucosal damage and neoplasia. ACK also significantly decreased the mRNA levels of proinflammatory cytokines (TNF-?, IL-6, and IFN-?) as well as the mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase-2 (COX-2). In addition, the mRNA and protein expression of p53 and p21 was elevated in colon tissues from the ACK-treated mice compared with the other kimchi-treated groups. Our results suggest that kimchi exerted a suppressive effect on AOM- and DSS-induced colorectal carcinogenesis in the BALB/c mice. The anticancer effects of ACK were particularly potent. Thus, it is possible that the health-promoting subingredients added to ACK might be used to prevent colon carcinogenesis in humans. PMID:25029638

  19. Dietary flaxseed intake exacerbates acute colonic mucosal injury and inflammation induced by dextran sodium sulfate.

    PubMed

    Zarepoor, Leila; Lu, Jenifer T; Zhang, Claire; Wu, Wenqing; Lepp, Dion; Robinson, Lindsay; Wanasundara, Janitha; Cui, Steve; Villeneuve, Sébastien; Fofana, Bourlaye; Tsao, Rong; Wood, Geoffrey A; Power, Krista A

    2014-06-15

    Flaxseed (FS), a dietary oilseed, contains a variety of anti-inflammatory bioactives, including fermentable fiber, phenolic compounds (lignans), and the n-3 polyunsaturated fatty acid (PUFA) α-linolenic acid. The objective of this study was to determine the effects of FS and its n-3 PUFA-rich kernel or lignan- and soluble fiber-rich hull on colitis severity in a mouse model of acute colonic inflammation. C57BL/6 male mice were fed a basal diet (negative control) or a basal diet supplemented with 10% FS, 6% kernel, or 4% hull for 3 wk prior to and during colitis induction via 5 days of 2% (wt/vol) dextran sodium sulfate (DSS) in their drinking water (n = 12/group). An increase in anti-inflammatory metabolites (hepatic n-3 PUFAs, serum mammalian lignans, and cecal short-chain fatty acids) was associated with consumption of all FS-based diets, but not with anti-inflammatory effects in DSS-exposed mice. Dietary FS exacerbated DSS-induced acute colitis, as indicated by a heightened disease activity index and an increase in colonic injury and inflammatory biomarkers [histological damage, apoptosis, myeloperoxidase, inflammatory cytokines (IL-6 and IL-1β), and NF-κB signaling-related genes (Nfkb1, Ccl5, Bcl2a1a, Egfr, Relb, Birc3, and Atf1)]. Additionally, the adverse effect of the FS diet was extended systemically, as serum cytokines (IL-6, IFNγ, and IL-1β) and hepatic cholesterol levels were increased. The adverse effects of FS were not associated with alterations in fecal microbial load or systemic bacterial translocation (endotoxemia). Collectively, this study demonstrates that although consumption of a 10% FS diet enhanced the levels of n-3 PUFAs, short-chain polyunsaturated fatty acids, and lignans in mice, it exacerbated DSS-induced colonic injury and inflammation. PMID:24763556

  20. Porcine ?-defensin 2 attenuates inflammation and mucosal lesions in dextran sodium sulfate-induced colitis.

    PubMed

    Han, Feifei; Zhang, Haiwen; Xia, Xi; Xiong, Haitao; Song, Deguang; Zong, Xin; Wang, Yizhen

    2015-02-15

    Intestinal permeability plays a critical role in the etiopathogenesis of ulcerative colitis. Defensins, including porcine ?-defensin (pBD)2, are crucial antimicrobial peptides for gut protection owing to their antibacterial and immunomodulatory activities. The purpose of this study was to investigate the protective effects of pBD2 on mucosal injury and the disruption of the epithelial barrier during the pathological process of dextran sodium sulfate (DSS)-induced colitis. The effects and mechanism of pBD2 were evaluated both using a DSS-induced C57BL/6 mouse model and, in vitro, using Caco-2 and RAW264.7 cells. DSS-induced colitis was characterized by higher disease activity index, shortened colon length, elevated activities of myeloperoxidase and eosinophil peroxidase, histologic evidence of inflammation, and increased expression levels of TNF-?, IL-6, and IL-8. pBD2 increased the expression of zonula occludens-1, zonula occludens-2, claudin-1, mucin-1, and mucin-2 mRNA and proteins, and it decreased permeability to FITC-D, as well as apoptosis, in DSS-treated mice. pBD2 also decreased inflammatory infiltrates of the colon epithelium. In Caco-2 cells, pBD2 increased transepithelial electrical resistance and mucin mRNA expression, and it decreased the permeability of FITC-D while preserving the structural integrity of the tight junctions. The effects of pBD2 appeared to be through upregulation of the expression of genes associated with tight junctions and mucins, and by suppressing DSS-induced increases in inflammation, inducible NO synthase, cyclooxygenase-2, and apoptosis. These results show that pBD2 improves DSS-induced changes in mucosal lesions and paracellular permeability, possibly by affecting the activation of NF-?B signaling. The present study demonstrates that intrarectal administration of pBD2 may be a novel preventive option for ulcerative colitis. PMID:25601921

  1. Bifidobacterium breve Attenuates Murine Dextran Sodium Sulfate-Induced Colitis and Increases Regulatory T Cell Responses

    PubMed Central

    Zheng, Bin; van Bergenhenegouwen, Jeroen; Overbeek, Saskia; van de Kant, Hendrik J. G.; Garssen, Johan; Folkerts, Gert; Vos, Paul; Morgan, Mary E.; Kraneveld, Aletta D.

    2014-01-01

    While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus) and Bifidobacterium breve (B. breve) on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC), and in vivo, using murine dextran sodium sulfate (DSS) colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th) 17 and regulatory T cell (Treg) subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition. PMID:24787575

  2. Modulation of partition and localization of perfume molecules in sodium dodecyl sulfate micelles.

    PubMed

    Fan, Yaxun; Tang, Haiqiu; Strand, Ross; Wang, Yilin

    2015-12-16

    The influence of perfume molecules on the self-assembly of the anionic surfactant sodium dodecyl sulfate (SDS) and their localization in SDS micelles have been investigated by ζ potential, small angle X-ray scattering (SAXS), one- and two-dimensional NMR and isothermal titration microcalorimetry (ITC). A broad range of perfume molecules varying in octanol/water partition coefficients P are employed. The results indicate that the surface charge, size and aggregation number of the SDS micelles strongly depend on the hydrophobicity/hydrophilicity degree of perfume molecules. Three distinct regions along the log P values are identified. Hydrophilic perfumes (log P < 2.0) partially incorporate into the SDS micelles and do not lead to micelle swelling, whereas hydrophobic perfumes (log P > 3.5) are solubilized close to the end of the hydrophobic chains in the SDS micelles and enlarge the micelles with higher ζ potential and a larger aggregation number. The incorporated fraction and micelle properties show increasing tendency for the perfumes in the intermediate log P region (2.0 < log P < 3.5). Besides, the molecular conformation of perfume molecules also affects these properties. The perfumes with a linear chain structure or an aromatic group can penetrate into the palisade layer and closely pack with the SDS molecules. Furthermore, the thermodynamic parameters obtained from ITC show that the binding of the perfumes in the intermediate log P region is more spontaneous than those in the other two log P regions, and the micellization of SDS with the perfumes is driven by entropy. PMID:26458054

  3. Kimchi protects against azoxymethane/dextran sulfate sodium-induced colorectal carcinogenesis in mice.

    PubMed

    Kim, Hee-Young; Song, Jia-Le; Chang, Hee-Kyung; Kang, Soon-Ah; Park, Kun-Young

    2014-08-01

    The chemopreventive effects of different types and quantities of kimchi prepared with different subingredients, including commercial kimchi (CK), standardized kimchi (SK), cancer-preventive kimchi (CPK), and anticancer kimchi (ACK), on colorectal carcinogenesis in mice were evaluated. The development of colon cancer was induced in male BALB/c mice with a single intraperitoneal injection of azoxymethane (AOM, 10?mg/kg body weight) and subsequent treatment with 2% dextran sulfate sodium (DSS) in drinking water for 7 days for two cycles. After exposure to AOM and DSS, treatment with the methanolic extracts from different kimchis, particularly 1.89?g/kg of ACK, significantly increased colon length, decreased the ratio of colon weight/length, and resulted in the lowest number of tumors compared with the other kimchi-treated groups. Histological observation revealed that ACK was able to suppress AOM- and DSS-induced colonic mucosal damage and neoplasia. ACK also significantly decreased the mRNA levels of proinflammatory cytokines (TNF-?, IL-6, and IFN-?) as well as the mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase-2 (COX-2). In addition, the mRNA and protein expression of p53 and p21 was elevated in colon tissues from the ACK-treated mice compared with the other kimchi-treated groups. Our results suggest that kimchi exerted a suppressive effect on AOM- and DSS-induced colorectal carcinogenesis in the BALB/c mice. The anticancer effects of ACK were particularly potent. Thus, it is possible that the health-promoting subingredients added to ACK might be used to prevent colon carcinogenesis in humans. PMID:25029638

  4. Coenzyme F420-Dependent Sulfite Reductase-Enabled Sulfite Detoxification and Use of Sulfite as a Sole Sulfur Source by Methanococcus maripaludis?

    PubMed Central

    Johnson, Eric F.; Mukhopadhyay, Biswarup

    2008-01-01

    Coenzyme F420-dependent sulfite reductase (Fsr) of Methanocaldococcus jannaschii, a sulfite-tolerant methanogen, was expressed with activity in Methanococcus maripaludis, a sulfite-sensitive methanogen. The recombinant organism reduced sulfite to sulfide and grew with sulfite as the sole sulfur source, indicating that Fsr is a sulfite detoxification and assimilation enzyme for methanogens and that M. maripaludis synthesizes siroheme. PMID:18378657

  5. A study of the structure of mixed micellar solutions based on heptaethylene glycol monotetradecyl ether and sodium (lithium) dodecyl sulfate by the small-angle neutron scattering method

    SciTech Connect

    Rajewska, A. Medrzycka, K.; Hallmann, E.

    2007-09-15

    The micellization in mixed aqueous systems based on a new nonionic surfactant, namely, heptaethylene glycol monotetradecyl ether (C{sub 14}E{sub 7}), and an anionic surfactant, namely, sodium dodecyl sulfate, sodium decyl sulfate, or lithium dodecyl sulfate, is studied by small-angle neutron scattering. Preliminary results of the investigation into the behavior of C{sub 14}E{sub 7} aqueous solutions (at two concentrations, 0.17 and 0.50%) upon addition of small amounts of three different classical anionic surfactants are reported.

  6. Higher fecal bile acid hydrophobicity is associated with exacerbation of dextran sodium sulfate colitis in mice.

    PubMed

    Stenman, Lotta K; Holma, Reetta; Forsgrd, Richard; Gylling, Helena; Korpela, Riitta

    2013-11-01

    Increased luminal bile acid hydrophobicity is associated with cytotoxicity and has been suggested to contribute to gut barrier dysfunction. The aim of this study was to compare 2 high-fat diets and a low-fat diet as to whether they modify fecal bile acid profile and hydrophobicity and/or susceptibility to dextran sodium sulfate (DSS) colitis in C57Bl/6J mice. Control and DSS-Control groups received a low-fat control diet [5.5% of total energy (E%) soy oil, 4.5 E% lard], and the DSS-Lard (5.5 E% soy oil, 54.5 E% lard) and DSS-Fish oil (5.5 E% soy oil, 27.2 E% lard and 27.2% menhaden oil) groups received high-fat diets. Feces for bile acid analysis were collected after 3-wk feeding, followed by induction of dextran DSS colitis (2 d 5% DSS in drinking water + 2 d tap water). Fecal bile acid hydrophobicity was elevated 76% in the lard group (P = 0.051) and 122% in the fish oil group (P = 0.001) compared with control, indicating potentially increased cytotoxicity. DSS caused severe colitis symptoms, evaluated as rectal bleeding, whereas all the controls were symptom free. The median symptom scores were: DSS-Control, 2.3 (IQR = 0.6, 3.0); DSS-Lard, 0.3 (IQR = 0, 2.3); and DSS-Fish oil, 2.4 (IQR = 1.9, 2.8). The only differences were DSS-Control vs. control (P < 0.001) and DSS-Fish oil vs. control (P < 0.001). Severity of symptoms in all colitic mice was positively correlated with fecal bile acid hydrophobicity (Spearman's ? = 0.43; P = 0.028) and fecal deoxycholic acid concentration (Spearman's ? = 0.39; P = 0.048). These results suggest that luminal bile acid modification, induced by altered dietary fat composition, may alter susceptibility to DSS colitis. PMID:24047703

  7. Dextran sulfate sodium-induced acute colitis impairs dermal lymphatic function in mice

    PubMed Central

    Agollah, Germaine D; Wu, Grace; Peng, Ho-Lan; Kwon, Sunkuk

    2015-01-01

    AIM: To investigate whether dermal lymphatic function and architecture are systemically altered in dextran sulfate sodium (DSS)-induced acute colitis. METHODS: Balb/c mice were administered 4% DSS in lieu of drinking water ad libitum for 7 d and monitored to assess disease activity including body weight, diarrhea severity, and fecal bleeding. Control mice received standard drinking water with no DSS. Changes in mesenteric lymphatics were assessed following oral administration of a fluorescently-labelled fatty acid analogue, while dermal lymphatic function and architecture was longitudinally characterized using dynamic near-infrared fluorescence (NIRF) imaging following intradermal injection of indocyanine green (ICG) at the base of the tail or to the dorsal aspect of the left paw prior to, 4, and 7 d after DSS administration. We also measured dye clearance rate after injection of Alexa680-bovine serum albumin (BSA). NIRF imaging data was analyzed to reveal lymphatic contractile activity after selecting fixed regions of interest (ROIs) of the same size in fluorescent lymphatic vessels on fluorescence images. The averaged fluorescence intensity within the ROI of each fluorescence image was plotted as a function of imaging time and the lymphatic contraction frequency was computed by assessing the number of fluorescent pulses arriving at a ROI. RESULTS: Mice treated with DSS developed acute inflammation with clinical symptoms of loss of body weight, loose feces/watery diarrhea, and fecal blood, all of which were aggravated as disease progressed to 7 d. Histological examination of colons of DSS-treated mice confirmed acute inflammation, characterized by segmental to complete loss of colonic mucosa with an associated chronic inflammatory cell infiltrate that extended into the deeper layers of the wall of the colon, compared to control mice. In situ intravital imaging revealed that mice with acute colitis showed significantly fewer fluorescent mesenteric lymphatic vessels, indicating impaired uptake of a lipid tracer within mesenteric lymphatics. Our in vivo NIRF imaging data demonstrated dilated dermal lymphatic vessels, which were confirmed by immunohistochemical staining of lymphatic vessels, and significantly reduced lymphatic contractile function in the skin of mice with DSS-induced acute colitis. Quantification of the fluorescent intensity remaining in the depot as a function of time showed that there was significantly higher Alexa680-BSA fluorescence in mice with DSS-induced acute colitis compared to pre-treatment with DSS, indicative of impaired lymphatic drainage. CONCLUSION: The lymphatics are locally and systemically altered in acute colitis, and functional NIRF imaging is useful for noninvasively monitoring systemic lymphatic changes during inflammation. PMID:26668501

  8. Soluble epoxide hydrolase deficiency inhibits dextran sulfate sodium-induced colitis and carcinogenesis in mice.

    PubMed

    Zhang, Wanying; Li, Haonan; Dong, Hua; Liao, Jie; Hammock, Bruce D; Yang, Guang-Yu

    2013-12-01

    Soluble epoxide hydrolase (sEH) hydrolyses/inactivates anti-inflammatory epoxyeicosatrienoic acids (EETs) to their corresponding diols, and targeting sEH leads to strong anti-inflammatory effects. In the present study, using a tissue microarray and immunohistochemical approach, a significant increase of sEH expression was identified in ulcerative colitis (UC)-associated dysplasia and adenocarcinoma. The effects of deficiency in the sEH gene were determined on dextran sulfate sodium (DSS) colitis-induced carcinogenesis. The effects of EETs on lipopolysaccharide (LPS)-activated macrophages were analyzed in vitro. With extensive histopathological and immunohistochemical analyses, compared to wild-type mice, sEH(-/-) mice exhibited a significant decrease in tumor incidence (13/20 vs. 6/19, p<0.05) and a markedly reduced average tumor size (59.6220.91 mm(3) vs. 22.4211.22 mm(3)), and a significant number of pre-cancerous dysplasia (31.18 vs. 20.83, p<0.01). The inflammatory activity, as measured by the extent/proportion of erosion/ulceration/dense lymphoplasmacytosis (called active colitis index) in the colon, was significantly lower in sEH(-/-) mice (44.7%24.9% vs. 20.2%16.2%, p<0.01). The quantitative polymerase chain reaction (qPCR) assays demonstrated significantly low levels of cytokines/chemokines including monocyte chemoattractant protein (MCP-1), inducible nitric oxide synthase (iNOS), vasopressin-activated calcium-mobilizing (VCAM-1), interleukin-1 beta (IL-1?) and tumor necrosis factor-alpha (TNF-?). In vitro, LPS-activated macrophages treated with 14,15-EET showed a significant reduction of LPS-triggered IL-1? and TNF-? expression. Eicosanoic acid metabolic profiling revealed a significant increase of the ratios of EETs/ dihydroeicosatrienoic acids (DHETs) and epoxyoctadecennoic acid/dihydroxyoctadecenoic acid (EpOMEs/DiHOMEs). These results indicate that sEH plays an important role in the development of colitis and in inducing carcinogenesis. PMID:24324059

  9. Kefir treatment ameliorates dextran sulfate sodium-induced colitis in rats

    PubMed Central

    Senol, Altug; Isler, Mehmet; Sutcu, Recep; Akin, Mete; Cakir, Ebru; Ceyhan, Betul M; Kockar, M Cem

    2015-01-01

    AIM: To investigate the preventive effect of kefir on colitis induced with dextran sulfate sodium (DSS) in rats. METHODS: Twenty-four male Wistar-albino rats were randomized into four groups: normal control, kefir-control, colitis, and kefir-colitis groups. Rats in the normal and kefir-control groups were administered tap water as drinking water for 14 d. Rats in the colitis and kefir-colitis groups were administered a 3% DSS solution as drinking water for 8-14 d to induce colitis. Rats in the kefir-control and kefir-colitis groups were administered 5 mL kefir once a day for 14 d while rats in the normal control and colitis group were administered an identical volume of the placebo (skim milk) using an orogastric feeding tube. Clinical colitis was evaluated with reference to the disease activity index (DAI), based on daily weight loss, stool consistency, and presence of bleeding in feces. Rats were sacrificed on the 15th day, blood specimens were collected, and colon tissues were rapidly removed. Levels of myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, interleukin (IL)-10, malondialdehyde, and inducible nitric oxide synthase (iNOS) were measured in colon tissue. RESULTS: The DAI was lower in the kefir-colitis group than in the colitis group (on the 3rd and 5th days of colitis induction; P < 0.01). The DAI was also significantly higher in the colitis group between days 2 and 6 of colitis induction when compared to the normal control and kefir-control groups. The DAI was statistically higher only on the 6th day in the kefir-colitis group when compared to that in the normal control groups. Increased colon weight and decreased colon length were observed in colitis-induced rats. Mean colon length in the colitis group was significantly shorter than that of the kefir-control group. Kefir treatment significantly decreased histologic colitis scores (P < 0.05). MPO activity in the colitis group was significantly higher than in the kefir-control group (P < 0.05). Kefir treatment significantly reduced the DSS colitis-induced TNF-α increase (P < 0.01). No statistically significant differences were observed among groups for IL-10 and MDA levels. Colon tissue iNOS levels in the colitis group were significantly higher than those in the control and kefir-colitis groups (P < 0.05). CONCLUSION: Kefir reduces the clinical DAI and histologic colitis scores in a DSS-induced colitis model, possibly via reduction of MPO, TNF-α, and iNOS levels. PMID:26676086

  10. Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants1[W][OPEN

    PubMed Central

    Yarmolinsky, Dmitry; Brychkova, Galina; Kurmanbayeva, Assylay; Bekturova, Aizat; Ventura, Yvonne; Khozin-Goldberg, Inna; Eppel, Amir; Fluhr, Robert; Sagi, Moshe

    2014-01-01

    Sulfite reductase (SiR) is an essential enzyme of the sulfate assimilation reductive pathway, which catalyzes the reduction of sulfite to sulfide. Here, we show that tomato (Solanum lycopersicum) plants with impaired SiR expression due to RNA interference (SIR Ri) developed early leaf senescence. The visual chlorophyll degradation in leaves of SIR Ri mutants was accompanied by a reduction of maximal quantum yield, as well as accumulation of hydrogen peroxide and malondialdehyde, a product of lipid peroxidation. Interestingly, messenger RNA transcripts and proteins involved in chlorophyll breakdown in the chloroplasts were found to be enhanced in the mutants, while transcripts and their plastidic proteins, functioning in photosystem II, were reduced in these mutants compared with wild-type leaves. As a consequence of SiR impairment, the levels of sulfite, sulfate, and thiosulfate were higher and glutathione levels were lower compared with the wild type. Unexpectedly, in a futile attempt to compensate for the low glutathione, the activity of adenosine-5′-phosphosulfate reductase was enhanced, leading to further sulfite accumulation in SIR Ri plants. Increased sulfite oxidation to sulfate and incorporation of sulfite into sulfoquinovosyl diacylglycerols were not sufficient to maintain low basal sulfite levels, resulting in accumulative leaf damage in mutant leaves. Our results indicate that, in addition to its biosynthetic role, SiR plays an important role in prevention of premature senescence. The higher sulfite is likely the main reason for the initiation of chlorophyll degradation, while the lower glutathione as well as the higher hydrogen peroxide and malondialdehyde additionally contribute to premature senescence in mutant leaves. PMID:24987017

  11. In vitro and in vivo evaluations of sodium lauryl sulfate and dextran sulfate as microbicides against herpes simplex and human immunodeficiency viruses.

    PubMed

    Piret, J; Lamontagne, J; Bestman-Smith, J; Roy, S; Gourde, P; Dsormeaux, A; Omar, R F; Juhsz, J; Bergeron, M G

    2000-01-01

    The efficacy of sodium lauryl sulfate (SLS), a sulfated anionic chaotropic surfactant, and dextran sulfate (DS), a polysulfated carbohydrate, against herpes simplex virus (HSV) and human immunodeficiency virus (HIV) infections was evaluated in cultured cells and in different murine models of HSV infection. Results showed that both SLS and DS were potent inhibitors of the infectivities of various HSV-1 and HSV-2 strains. Pretreatment of HIV-1 (strain NL4-3) with SLS also reduced its infectivity to 1G5 cells. DS prevented the binding of HSV to cell surface receptors and therefore its entry into cells. Pretreatment of HSV-1 (strain F) with 50 microM SLS resulted in a complete loss of virus infectivity to Vero cells. However, viruses were able to enter into cells and to produce in the nuclei capsid shells devoid of a DNA core. The amount of the glycoprotein D gene produced in these cells remained unchanged compared to controls, suggesting that SLS could interfere with the maturation of the virus. At a higher SLS concentration (100 microM), HSV was highly damaged by SLS pretreatment and only a few viral particles could enter into cells to produce abnormal capsids. Although DS was a more potent inhibitor of HSV infectivity in vitro, it was unable to provide any protection in murine models of HSV infection. However, SLS conferred a complete protection of animals infected cutaneously with pretreated viruses. In addition, skin pretreatment of mice with a polymer formulation containing SLS completely prevented the development of cutaneous lesions. More interestingly, intravaginal pretreatment of mice with SLS in a buffered solution also completely protected against lethal HSV-2 infection. Taken together, our results suggest that SLS could thus represent a candidate of choice as a microbicide to prevent the sexual transmission of HIV, HSV, and possibly other pathogens that cause sexually transmitted diseases. PMID:10618073

  12. Electrochemical measurements on the binding of sodium dodecyl sulfate and dodecyltrimethylammonium bromide with {alpha}- and {beta}-cyclodextrins

    SciTech Connect

    Wan Yunus, W.M.Z.; Taylor, J.; Bloor, D.M.; Hall, D.G.; Wyn-Jones, E.

    1992-10-29

    The binding of ionic surfactants (S) to {alpha}- and {beta}-cyclodextrins (CD) has been investigated using surfactant-selective electrodes. These electrochemical measurements have shown that S(CD) and S(CD){sub 2} inclusion complexes are formed between sodium dodecyl sulfate and both {alpha}- and {beta}-cyclodextrins and also between dodecyltrimethylammonium bromide and {alpha}-cyclodextrin. On the other hand, the cationic surfactant only forms a 1:1 complex with {beta}-cyclodextrin. From the data the equilibrium binding constants for the formation of each of the complexes have been evaluated. 29 refs., 5 figs., 1 tab.

  13. Ultrasonic relaxation and electrochemical studies of the micellization of sodium decyl sulfate and decyltrimethylammonium bromide in glycerol/water mixtures

    SciTech Connect

    Takisawa, N.; Thomason, M.; Bloor, D.M.; Wyn-Jones, E. )

    1993-04-01

    An ultrasonic relaxation has been found in solutions of the surfactants sodium decyl sulfate and decyltrimethylammonium bromide in various glycerol/water mixtures. By suing membrane electrodes selective to these surfactants, their critical micellar concentrations and also the monomer surfactant concentrations in micellar solutions have been evaluated. The relaxation has been attributed to the perturbation of the equilibrium between surfactant monomer and micelle. The combined relaxation/electrochemical data have been analyzed to investigate the kinetics of this process, using the Aniansson and Wall and Teubner equations and a phenomenological approach developed in this laboratory.

  14. Formation of reactive sulfite-derived free radicals by the activation of human neutrophils: an ESR study.

    PubMed

    Ranguelova, Kalina; Rice, Annette B; Khajo, Abdelahad; Triquigneaux, Mathilde; Garantziotis, Stavros; Magliozzo, Richard S; Mason, Ronald P

    2012-04-15

    The objective of this study was to determine the effect of (bi)sulfite (hydrated sulfur dioxide) on human neutrophils and the ability of these immune cells to produce reactive free radicals due to (bi)sulfite oxidation. Myeloperoxidase (MPO) is an abundant heme protein in neutrophils that catalyzes the formation of cytotoxic oxidants implicated in asthma and inflammatory disorders. In this study sulfite (()SO(3)(-)) and sulfate (SO(4)(-)) anion radicals are characterized with the ESR spin-trapping technique using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in the reaction of (bi)sulfite oxidation by human MPO and human neutrophils via sulfite radical chain reaction chemistry. After treatment with (bi)sulfite, phorbol 12-myristate 13-acetate-stimulated neutrophils produced DMPO-sulfite anion radical, -superoxide, and -hydroxyl radical adducts. The last adduct probably resulted, in part, from the conversion of DMPO-sulfate to DMPO-hydroxyl radical adduct via a nucleophilic substitution reaction of the radical adduct. This anion radical (SO(4)(-)) is highly reactive and, presumably, can oxidize target proteins to protein radicals, thereby initiating protein oxidation. Therefore, we propose that the potential toxicity of (bi)sulfite during pulmonary inflammation or lung-associated diseases such as asthma may be related to free radical formation. PMID:22326772

  15. The effects of sodium sulfate in the water of nursery pigs and the efficacy of nonnutritive feed additives to mitigate those effects.

    PubMed

    Flohr, J R; Tokach, M D; Dritz, S S; DeRouchey, J M; Goodband, R D; Nelssen, J L

    2014-08-01

    Two experiments were conducted to investigate the effects of sodium sulfate water and the efficacy of nonnutritive feed additives in nursery pig diets. In Exp. 1, 320 barrows (5.4 0.1 kg BW and 21 d of age) were allotted to 1 of 8 treatments for 24 d in a 2 4 factorial with 2 levels of sodium sulfate water (control or 3,000 mg sodium sulfate/L added), and 4 dietary zeolite (clinoptilolite) levels (0, 0.25, 0.50, or 1%). Fecal samples were collected on d 5, 9, 16, and 23; visually scored for consistency (1 = firm and 5 = watery); and analyzed for DM. No interactions of sodium sulfate zeolite were observed for any response criteria. Overall (d 0 to 24), pigs drinking sodium sulfate water had decreased (P < 0.01) ADG, ADFI, and G:F compared with pigs drinking control water. Pigs drinking sodium sulfate water also had increased (P < 0.01) fecal scores and lower (P < 0.04) fecal DM on d 5, 9, and 16 compared with pigs drinking control water. Increasing dietary zeolite increased (linear; P < 0.05) ADG and ADFI but had no effect on G:F. In Exp. 2, 350 barrows (5.7 0.1 kg BW and 21 d of age) were allotted to 1 of 10 treatments in a 2 5 factorial for 21 d with 2 levels of sodium sulfate water (control or 2,000 mg sodium sulfate/L added) and 5 dietary treatments (control, 1 or 2% zeolite, 1% humic acid substance [HA], and 1% humic and fulvic acid substance [HFB]). Fecal samples were collected on d 5, 8, 15, and 21; visually scored for consistency (1 = firm and 5 = watery); and analyzed for DM. Overall (d 0 to 21), a water source diet interaction was observed for ADG and G:F because pigs fed the 1% HA had decreased (P < 0.01) ADG and G:F when drinking sodium sulfate water compared with other treatments but increased ADG and G:F when drinking control water. Pigs drinking sodium sulfate water had decreased (P < 0.01) ADG and G:F and tended (P < 0.08) to have decreased ADFI compared with pigs drinking control water. Pigs drinking sodium sulfate water had increased (P < 0.01) fecal scores and decreased (P < 0.01) fecal DM on d 5 and 8. In conclusion, water high in sodium sulfate concentrations decreased growth performance and increased fecal moisture in newly weaned pigs. Although zeolite improved growth performance in the first experiment, it did not influence growth in the second study. The nonnutritive feed additives used in both experiments were unsuccessful in ameliorating the increased osmotic diarrhea observed from high sodium sulfate water. PMID:24981569

  16. DISSOLUTION AND CRYSTALLIZATION OF CALCIUM SULFITE PLATELETS

    EPA Science Inventory

    The paper discusses the dissolution and crystallization of calcium sulfite platelets. The rates of calcium sulfite dissolution and crystallization are important in slurry scrubbing processes for flue gas desulfurization. The rates affect the scrubber solution composition, SO2 abs...

  17. Elucidating the Catalytic Mechanism of Sulfite Oxidizing Enzymes using Structural, Spectroscopic and Kinetic Analyses

    PubMed Central

    Johnson-Winters, Kayunta; Tollin, Gordon; Enemark, John H.

    2010-01-01

    Sulfite oxidizing enzymes (SOEs) are molybdenum cofactor dependent enzymes that are found in plants, animals and bacteria. Sulfite oxidase (SO) is found in animals and plants, while sulfite dehydrogenase (SDH) is found in bacteria. In animals, SO catalyzes the oxidation of toxic sulfite to sulfate as the final step in the catabolism of the sulfur-containing amino acids, methionine and cysteine. In humans, sulfite oxidase deficiency is an inherited recessive disorder that produces severe neonatal neurological problems that lead to early death. Plant SO (PSO) also plays an important role in sulfite detoxification, but in addition serves as an intermediate enzyme in the assimilatory reduction of sulfate. In vertebrates the proposed catalytic mechanism of SO involves two intramolecular one-electron transfer (IET) steps from the molybdenum cofactor to the iron of the integral b-type heme. A similar mechanism is proposed for SDH, involving its molybdenum cofactor and c-type heme. However, PSO, which lacks an integral heme cofactor, uses molecular oxygen as its electron acceptor. Here we review recent results for SOEs from kinetic measurements, computational studies, electron paramagnetic resonance (EPR) spectroscopy, electrochemical measurements, and site-directed mutagenesis on active site residues of SOEs and of the flexible polypepetide tether that connects the heme and molybdenum domains of human SO. Rapid-kinetic studies of PSO are also discussed. PMID:20666399

  18. Therapeutic effect of a hydroxynaphthoquinone fraction on dextran sulfate sodium-induced ulcerative colitis

    PubMed Central

    Zhang, Zi-Liang; Fan, Hua-Ying; Yang, Ming-Yan; Zhang, Zuo-Kai; Liu, Ke

    2014-01-01

    AIM: To evaluate the therapeutic effect of hydroxynaphthoquinone mixture (HM) on dextran sulfate sodium (DSS)-induced colitis and explore the underlying mechanisms. METHODS: BALB/c mice received 3.5% DSS for 6 d to induce ulcerative colitis. Groups of mice were orally administered HM 3.5, 7 and 14 mg/kg and mesalazine 200 mg/kg per day for 7 d. During the experiment, clinical signs and body weight, stool consistency and visible fecal blood were monitored and recorded daily. A disease activity index score was calculated for each animal. At the conclusion of the experiment, the colonic histopathological lesions were evaluated. Myeloperoxidase (MPO) activity and tumor necrosis factor-α (TNF-α) levels were determined. Protein expression levels of TNF-α, nuclear factor-κB (NF-κB) p65, inhibitor of κB (IκB) and phosphorylation of IκB (p-IκB) were analyzed by Western blot analysis. RESULTS: Administration of 3.5% DSS for 6 d successfully induced acute colitis associated with soft stool, diarrhea, rectal bleeding, and colon shortening, as well as a loss of body weight. Administration of HM effectively attenuated the severity of colonic mucosa injury. For histopathological analysis, HM treatment improved histological alterations and lowered pathological scores compared with the DSS only group. This manifested as a reduction in the extent of colon injury and inflammatory cell infiltration, as well as the degree of mucosal destruction. In addition, HM at doses of 7 and 14 mg/kg significantly decreased MPO activity in colonic tissue (0.98 ± 0.22 U/g vs 1.32 ± 0.24 U/g, 0.89 ± 0.37 U/g vs 1.32 ± 0.24 U/g tissue, P < 0.05) and serum TNF-α levels (68.78 ± 7.34 ng/L vs 88.98 ± 17.79 ng/L, 64.13 ± 14.13 ng/L vs 88.98 ± 17.79 ng/L, P < 0.05). Furthermore, HM down-regulated the expression of TNF-α, NF-κB p65 and p-IκBα in colonic tissue while up-regulating IκBα protein expression. These results suggest that the significant anti-inflammatory effect of HM may be attributable to its inhibition of TNF-α production and NF-κB activation. CONCLUSION: HM had a favorable therapeutic effect on DSS-induced ulcerative colitis, supporting its further development and clinical application in inflammatory bowel disease. PMID:25386079

  19. Purification of papain by metal affinity partitioning in aqueous two-phase polyethylene glycol/sodium sulfate systems.

    PubMed

    Jiang, Zhi-Guo; Zhang, Hai-De; Wang, Wei-Tao

    2015-05-01

    A simple and inexpensive aqueous two-phase affinity partitioning system using metal ligands was introduced to improve the selectivity of commercial papain extraction. Polyethylene glycol 4000 was first activated using epichlorohydrin, then it was covalently linked to iminodiacetic acid. Finally, the specific metal ligand Cu(2+) was attached to the polyethylene glycol-iminodiacetic acid. The chelated Cu(2+) content was measured by atomic absorption spectrometry as 0.88 mol/mol (polyethylene glycol). The effects on the purification at different conditions, including polyethylene glycol molecular weight (2000, 4000, and 6000), concentration of phase-forming components (polyethylene glycol 12-20% w/w and sodium sulfate 12-20%, w/w), metal ligand type, and concentration, system pH and the commercial papain loading on papain extraction, were systematically studied. Under optimum conditions of the system, i.e. 18% w/w sodium sulfate, 18% w/w polyethylene glycol 4000, 1% w/w polyethylene glycol-iminodiacetic acid-Cu(2+) and pH 7, a maximum yield of 90.3% and a degree of purification of 3.6-fold were obtained. Compared to aqueous two phase extraction without ligands, affinity partitioning was found to be an effective technique for the purification of commercial papain with higher extraction efficiency and degree of purification. PMID:25641671

  20. Anticoagulant and FGF/FGFR signal activating activities of the heparinoid propylene glycol alginate sodium sulfate and its oligosaccharides.

    PubMed

    Wu, Jian; Zhang, Meng; Zhang, Yiran; Zeng, Yangyang; Zhang, Lijuan; Zhao, Xia

    2016-01-20

    Propylene glycol alginate sodium sulfate (PSS), prepared by chemical sulfation of alginate, has been used for treating cardiovascular diseases in China for nearly 30 years. In the current study, the PSS was hydrolyzed partially by an environment-friendly solid phase acid degradation method, and then separated by using a Bio-Gel P6 chromatographic column. Thirteen PSS oligosaccharide fractions were obtained and characterized by ESI-MS. The results of different coagulation assays showed that a high molecular weight and a higher degree of sulfation were essential for the anticoagulant activity of the PSS because the PSS oligosaccharides exhibited no detectable anticoagulant activity. In contrast, not only PSS but also certain oligosaccharides showed significant activities in stimulation of FGF1, 2, 7, 8, 9 or 10 induced cell proliferation in FGFR1c-expressing BaF3 cells. Such properties made the PSS and its oligosaccharides promising compounds in the regulation of FGF-dependent development, treatment of cancer, and wound healing processes. PMID:26572396

  1. Molecular interactions of sodium laureth sulfate with N-alkyl-1,3-propanediamine in aqueous solutions, based on potentiometric and photometric data

    NASA Astrophysics Data System (ADS)

    Yaremko, Z. M.; Fedushinskaya, L. B.; Burka, O. A.; Soltys, M. N.

    2014-02-01

    The role of Coulomb and hydrophobic interactions in association and aggregation in binary solutions of anionic surfactant sodium laureth sulfate and cationic surfactant N-alkyl-1,3-propanediamine is established from the concentration dependences of the pH of the solutions. It is shown that the development of the processes is initiated by the Coulomb interaction of oppositely charged sodium laureth sulfate and N-alkyl-1,3-propanediamine molecules and enhanced by the hydrophobic interaction between the hydrocarbon tails of neutral associates of the surfactant molecules.

  2. Chemistry of Frozen Sodium-Magnesium-Sulfate-Chloride Brines: Implications for Surface Expression of Europa's Ocean Composition

    NASA Astrophysics Data System (ADS)

    Vu, Tuan H.; Hodyss, Robert; Choukroun, Mathieu; Johnson, Paul V.

    2016-01-01

    The composition of Europa’s subsurface ocean is a critical determinant of its habitability. However, our current understanding of the ocean composition is limited to its expression on the surface. This work investigates experimentally the composition of mixed sodium-magnesium-sulfate-chloride solutions when frozen to 100 K, simulating conditions that likely occur as ocean fluids are emplaced onto Europa’s surface. Micro-Raman spectroscopy is used to characterize phase composition of the frozen brines at 100 K. Our results show that solutions containing Na+, Cl-, Mg2+, and {{{SO}}4}2- preferentially crystallize into Na2SO4 and MgCl2 hydrated minerals upon freezing, even at elevated [Mg2+]/[Na+] ratios. The detection of epsomite (MgSO4•7H2O) on Europa’s surface, if confirmed, may thus imply a relatively sodium-poor ocean composition or a radiolytic process that converts MgCl2 to MgSO4 as suggested by Brown & Hand. The formation of NaCl on the surface, while dependent upon a number of factors such as freezing rate, may indicate an ocean significantly more concentrated in sodium than in magnesium.

  3. Immunological comparison of sulfite oxidase

    SciTech Connect

    Pollock, V.; Barber, M.J. )

    1991-03-11

    Polyclonal antibodies (rabbit), elicited against FPLC-purified chicken and rat liver sulfite oxidase (SO), have been examined for inhibition and binding to purified chicken (C), rat (R), bovine (B), alligator (A) and shark (S) liver enzymes. Anti-CSO IgG cross-reacted with all five enzymes, with varying affinities, in the order CSO=ASO{gt}RSO{gt}BSO{gt}SSO. Anti-ROS IgG also cross-reacted with all five enzymes in the order RSO{gt}CSO=ASO{gt}BSO{gt}SSO. Anti-CSO IgG inhibited sulfite:cyt. c reductase (S:CR), sulfite:ferricyanide reductase (S:FR) and sulfite:dichlorophenolindophenol reductase (S:DR) activities of CSO to different extents (S:CR{gt}S:FR=S:DR). Similar differential inhibition was found for anti-ROS IgG and RSO S:CR, S:FR and S:DR activities. Anti-CSO IgG inhibited S:CR activities in the order CSO=ASO{much gt}SSO{gt}BSO. RSO was uninhibited. For anti-RSO IgG the inhibition order was RSO{gt}SSO{gt}BSO{gt}ASO. CSO was uninhibited. Anti-CSO and RSO IgGs partially inhibited Chlorella nitrate reductase (NR). Minor cross-reactivity was found for xanthine oxidase. Common antigenic determinants for all five SO's and NR are indicated.

  4. Microscopic evidence of "necklace and bead"-like morphology of polymer-surfactant complexes: a comparative study on poly(vinylpyrrolidone)-sodium dodecyl sulfate and poly(diallyldimethylammonium chloride)-sodium dodecyl sulfate systems.

    PubMed

    Chatterjee, Surajit; Prajapati, Roopali; Bhattacharya, Arpan; Mukherjee, Tushar K

    2014-08-19

    Here, we report the microscopic evidence of "necklace and bead"-like morphology, which has long been the most widely accepted model for polymer-surfactant complexes. The lack of microscopic evidence of the initial complexation between surfactant and polymer has resulted in many contradictory reports in the literature. In this paper, we visualized these initial complexes formed between negatively charged surfactant sodium dodecyl sulfate (SDS) with neutral poly(vinylpyrrolidone) (PVP) and cationic poly(diallyldimethylammonium chloride) (PDADMAC) polymer through photoluminescence (PL) microscopy and atomic force microscopy (AFM) using silicon quantum dot (Si QD) as an external PL marker. It is observed that, for the PVP-SDS system, SDS molecules bind at the hydrophobic sites on the random-coiled PVP chain through their hydrocarbon tails, while for the PDADMAC-SDS system, SDS head groups are associated with the positively charged nitrogen centers of the polymer, where the polymer chain wraps around the surfactant head groups. PMID:25105837

  5. Stopped-flow kinetic studies of sphere-to-rod transitions of sodium alkyl sulfate micelles induced by hydrotropic salt.

    PubMed

    Zhang, Jingyan; Ge, Zhishen; Jiang, Xiaoze; Hassan, P A; Liu, Shiyong

    2007-12-15

    The kinetics and mechanism of sphere-to-rod transitions of sodium alkyl sulfate micelles induced by hydrotropic salt, p-toluidine hydrochloride (PTHC), were investigated by stopped-flow with light scattering detection. Spherical sodium dodecyl sulfate (SDS) micelles transform into short ellipsoidal shapes at low salt concentrations ([PTHC]/[SDS], chi(PTHC)=0.3 and 0.4). Upon stopped-flow mixing aqueous solutions of spherical SDS micelles with PTHC, the scattered light intensity gradually increases with time. Single exponential fitting of the dynamic traces leads to characteristic relaxation time, tau(g), for the growth process from spherical to ellipsoidal micelles, and it increases with increasing SDS concentrations. This suggests that ellipsoidal micelles might be produced by successive insertion of unimers into spherical micelles, similar to the case of formation of spherical micelles as suggested by Aniansson-Wall (A-W) theory. At chi(PTHC) > or = 0.5, rod-like micelles with much higher axial ratio form. The scattered light intensity exhibits an initially abrupt increase and then levels off. The dynamic curves can be well fitted with single exponential functions, and the obtained tau(g) decreases with increasing SDS concentration. Thus, the growth from spherical to rod-like micelles might proceed via fusion of spherical micelles, in agreement with mechanism proposed by Ikeda et al. At chi(PTHC)=0.3 and 0.6, the apparent activation energies obtained from temperature dependent kinetic studies for the micellar growth are 40.4 and 3.6 kJ/mol, respectively. The large differences between activation energies for the growth from spherical to ellipsoidal micelles at low chi(PTHC) and the sphere-to-rod transition at high chi(PTHC) further indicate that they should follow different mechanisms. Moreover, the sphere-to-rod transition kinetics of sodium alkyl sulfate with varying hydrophobic chain lengths (n=10, 12, 14, and 16) are also studied. The longer the carbon chain lengths, the slower the sphere-to-rod transition. PMID:17904570

  6. An Essential Role for Tomato Sulfite Oxidase and Enzymes of the Sulfite Network in Maintaining Leaf Sulfite Homeostasis1[W][OA

    PubMed Central

    Brychkova, Galina; Grishkevich, Vladislav; Fluhr, Robert; Sagi, Moshe

    2013-01-01

    Little is known about the homeostasis of sulfite levels, a cytotoxic by-product of plant sulfur turnover. By employing extended dark to induce catabolic pathways, we followed key elements of the sulfite network enzymes that include adenosine-5′-phosphosulfate reductase and the sulfite scavengers sulfite oxidase (SO), sulfite reductase, UDP-sulfoquinovose synthase, and β-mercaptopyruvate sulfurtransferases. During extended dark, SO was enhanced in tomato (Solanum lycopersicum) wild-type leaves, while the other sulfite network components were down-regulated. SO RNA interference plants lacking SO activity accumulated sulfite, resulting in leaf damage and mortality. Exogenous sulfite application induced up-regulation of the sulfite scavenger activities in dark-stressed or unstressed wild-type plants, while expression of the sulfite producer, adenosine-5′-phosphosulfate reductase, was down-regulated. Unstressed or dark-stressed wild-type plants were resistant to sulfite applications, but SO RNA interference plants showed sensitivity and overaccumulation of sulfite. Hence, under extended dark stress, SO activity is necessary to cope with rising endogenous sulfite levels. However, under nonstressed conditions, the sulfite network can control sulfite levels in the absence of SO activity. The novel evidence provided by the synchronous dark-induced turnover of sulfur-containing compounds, augmented by exogenous sulfite applications, underlines the role of SO and other sulfite network components in maintaining sulfite homeostasis, where sulfite appears to act as an orchestrating signal molecule. PMID:23148079

  7. Electrochemical behavior of sodium azide at Pt and Au electrodes in sodium sulfate electrolyte: A DEMS study

    SciTech Connect

    Dalmia, A.; Wasmus, S.; Savinell, R.F.; Liu, C.C.

    1995-11-01

    Azides are widely used in chemical technology for a large variety of applications, such as detonators (Pb(N{sub 3}){sub 2}), getters in electric discharge tubes, anticorrosive agents, or additives for the production of foam rubber. The electro-oxidation and -reduction of sodium azide at porous painted platinum and gold electrodes was studied using the multipurpose electrochemical mass spectrometry (MPEMS) which was operated in the differential electrochemical mass spectrometry (DEMS) mode. The platinum electrode was found to be active for electro-oxidation as well as for electroreduction. Above 0.3 V vs. Hg/Hg{sub 2}SO{sub 4}, azide is oxidized to give N{sub 2}, NO, NO{sub 2}, and N{sub 2}O. Reduction of azide takes place below {minus}0.9 V forming N{sub 2}, N{sub 2}H{sub 4}, and possibly NH{sub 3}. In contrast to platinum, gold showed only activity for the electro-oxidation of azide leading to the formation of N{sub 2}, NO, NO{sub 2}, and N{sub 2}O above 0.5 V. Evidence for a reaction without evolution of volatile products was also found taking place above 0.1 V. A reaction mechanism is discussed emphasizing the role of adsorbed hydrogen and oxygen.

  8. Micelle enhanced and native spectrofluorimetric methods for determination of sertindole using sodium dodecyl sulfate as sensitizing agent

    NASA Astrophysics Data System (ADS)

    El-Kosasy, Amira M.; Hussein, Lobna A.; Sedki, Nehal G.; Salama, Nahla N.

    2016-01-01

    Two stability indicating spectrofluorimetric methods were developed and validated for the determination of sertindole (SER) in the presence of its acid and oxidative degradates at λex 257 nm and λem 335 nm. Method A was based on measuring the native fluorescence of SER using isopropanol as solvent. Method B was based on the enhancement of native fluorescence of SER quenched in aqueous media by using micellar microenvironment created by sodium dodecyl sulfate (SDS) anionic micelles using Britton Robinson Buffer (BRB) pH 3.29 as solvent. Different factors affecting fluorescence intensity; both native and enhanced, were carefully studied to reach the optimum conditions of measurements. The proposed spectrofluorimetric methods were validated in accordance with ICH guidelines and were successfully applied for the determination of SER in bulk powder and pharmaceutical preparation with high sensitivity and stability indicating power. They were also statistically compared to the manufacturer methods with no significant difference in performance.

  9. Adsorption of phenol molecules by sodium dodecyl sulfate (SDS) surfactants deposited on solid surfaces: A computer simulation study.

    PubMed

    Peredo-Mancilla, Deneb; Dominguez, Hector

    2016-04-01

    Adsorption studies of phenol molecules on a sodium dodecyl sulfate (SDS) micelle were investigated by molecular dynamics simulations. Simulations were carried out in bulk and on three distinct solid surfaces, silicon dioxide, titanium dioxide and graphite. It was observed that different surfactant micellar shapes were formed on the surfaces. For the silicon dioxide and titanium dioxide surfaces the surfactants were adsorbed by their headgroups whereas for the graphite surface they were adsorbed mainly by their tail groups. It was found that the amount of phenol adsorbed on the SDS micelle was altered by the surfactant shape deposited on the solid surface. However, the best phenol adsorption was obtained by the surfactant modified silicon dioxide surface. Moreover, in all cases, from structural investigations, it was determined that the phenol molecules were located inside the surfactant micelle with their hydroxyl groups close to the SDS headgroups. PMID:26973047

  10. High-performance polyaniline counter electrode electropolymerized in presence of sodium dodecyl sulfate for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Qiu, Yin; Lu, Shan; Wang, Shasha; Zhang, Xuehua; He, Shengtai; He, Tao

    2014-05-01

    Polyaniline (PANI) counter electrode (CE) has been fabricated for dye-sensitized solar cells (DSSCs) via electropolymerization in the presence of sodium dodecyl sulfate (SDS), which can act as both dopant and surfactant. The introduction of SDS in the synthetic solution for PANI can improve the microstructure and conductivity of resultant thin film and greatly increase the catalytic activity of the as-prepared PANI film for I3- reduction. The DSSCs based on the resultant PANI CEs achieve a remarkable power conversion efficiency of 7.0%, about 95% of that based on conventional Pt CEs (7.4%). The results indicate that the PANI film prepared with SDS may substitute the expensive Pt as the CEs for DSSCs application.

  11. Sodium lauryl sulfate-ruthenium(II) interactions: Photogalvanic and photophysical behavior of Ru(II)-diimine complexes

    SciTech Connect

    Akasheh, T.S.; Al-Rawashdeh, N.A.F. )

    1990-11-15

    The photogalvanic and photophysical behavior of a number of mixed-ligand ruthenium(II) complexes of 2,2{prime}-bipyridine (bpy), 3,3{prime}-bipyradzine (bpd), 2-(2{prime}-pyridyl)quinoline (pyrq), 4,4{prime}-dimethyl-2,2{prime}-bipyridine (dmbpy), and 2,3-bis(2{prime}-pyridyl)pyrazine (dpp) is reported both in water and in sodium lauryl sulfate (SDS) solutions. The effect of SDS on the photogalvanic experiment is predominantly an enhancement and/or modification of the photochemical and electrochemical processes. Luminescence, lifetime measurements, and photochemical behavior are affected by SDS and are used to predict possible modes of micelle-complex interactions.

  12. Ultrafast photoinduced electron transfer from dimethylaniline to coumarin dyes in sodium dodecyl sulfate and triton X-100 micelles

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhadip; Mondal, Sudip Kumar; Sahu, Kalyanasis; Bhattacharyya, Kankan

    2007-05-01

    The primary steps of photoinduced electron transfer (PET) from N,N-dimethylaniline (DMA) to five coumarin dyes are studied in an anionic micelle [sodium dodecyl sulfate (SDS)] and a neutral micelle [triton X-100 (TX-100)] using femtosecond upconversion. The rate of PET in micelle is found to be highly nonexponential. In both the micelles, PET displays components much faster (10ps) than the slow components (180-2900ps) of solvation dynamics. The ultrafast components of electron transfer exhibit a bell-shaped dependence on the free energy change. This is similar to Marcus inversion. The rates of PET in TX-100 and SDS micelle are, in general, faster than those in cetyltrimethylammonium bromide (CTAB) micelle. In the SDS and TX-100 micelle, the Marcus inversion occurs at -?G0 0.7eV which is lower than that (1.2eV) in CTAB micelle. Possible causes of variation of PET in different micelles are discussed.

  13. Quantitation of yeast total proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer for uniform loading.

    PubMed

    Sheen, Hyukho

    2016-04-01

    Proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer are difficult to quantitate due to SDS and reducing agents being in the buffer. Although acetone precipitation has long been used to clean up proteins from detergents and salts, previous studies showed that protein recovery from acetone precipitation varies from 50 to 100% depending on the samples tested. Here, this article shows that acetone precipitates proteins highly efficiently from SDS-PAGE sample buffer and that quantitative recovery is achieved in 5 min at room temperature. Moreover, precipitated proteins are resolubilized with urea/guanidine, rather than with SDS. Thus, the resolubilized samples are readily quantifiable with Bradford reagent without using SDS-compatible assays. PMID:26796977

  14. High-impact polystyrene/halloysite nanocomposites prepared by emulsion polymerization using sodium dodecyl sulfate as surfactant.

    PubMed

    Lin, Yong; Ng, Kai Mo; Chan, Chi-Ming; Sun, Guoxing; Wu, Jingshen

    2011-06-15

    High-impact polystyrene (PS) nanocomposites filled with individually dispersed halloysite nanotubes (HNTs) were prepared by emulsion polymerization of styrene in the presence of HNTs with sodium dodecyl sulfate (SDS) as the emulsifier. The SDS is a good dispersing agent for HNTs in aqueous solution. The emulsion polymerization resulted in the formation of polystyrene nanospheres separating individual HNTs. Transmission electron microscopy revealed that the HNTs were uniformly dispersed in the PS matrix. Differential scanning calorimetry, Fourier-transform infrared spectroscopy and thermogravimetry were used to characterize the PS/HNT nanocomposites. The impact strength of the PS/HNTs nanocomposites was 300% higher than that of the neat PS. This paper presents a simple yet feasible method for the preparation of high-impact PS/halloysite nanocomposites. PMID:21458819

  15. Real-time monitoring the adsorption of sodium dodecyl sulfate on a hydrophobic surface using dual polarization interferometry.

    PubMed

    Duan, Ming; Wang, Hu; Fang, Shenwen; Liang, Ying

    2014-03-01

    The adsorption process of sodium dodecyl sulfate (SDS) at a hydrophobic layer was investigated by dual polarization interferometry (DPI), which provided the real-time information at solid/liquid interface. In dilute solution, the molecules adsorb at the surface as isotropic layer. With the increase in concentration, the molecules aggregate to form hemimicelles and the critical hemimicelles concentration (HMC) is 1 mM. The adsorption of SDS at C18 surface obeys two-step process. The competitive formations of micelles in solution and hemimicelles on C18 surface lead to particular adsorption behavior in higher concentration. We also proposed a four-stage adsorption model of SDS at C18 surface according to bulk concentration. PMID:24407689

  16. Prevention of acid drainage from stored coal. [Inhibition of bacterial action by treatment with a solution of sodium lauryl sulfate

    SciTech Connect

    Olem, H.; Bell, T.L.; Longaker, J.J.

    1983-06-01

    A method has been identified for controlling acid production and subsequent dissolution of toxic pollutants in drainage from coal storage piles. Results of laboratory and field experiments indicate that it may be possible to prevent, rather than treat, acid drainage by periodically applying an environmentally safe detergent formulation to the coal. These experiments showed that a mild solution of sodium lauryl sulfate (SLS) effectively blocks the activity of the bacteria that promote acid formation and chemical leaching. Drainage from coal treated once with 50 mg/L of SLS remained neutral for 60 days, about three times longer than the untreated control sample. An extrapolation of results to an industrial-scale application revealed that the cost of the SLS needed for a single application would likely be no more than $200 per acre of coal storage area ($500 per hectare ) or, expressed per unit weight of coal, $4,000 per million metric tons.

  17. The effect of caffeine on the reactions of the excited singlet state of pyrene in micellar sodium lauryl sulfate

    NASA Astrophysics Data System (ADS)

    Hashimoto, Shuichi; Thomas, J. Kerry

    1984-08-01

    The effect of caffeine on a few photo-induced reactions of pyrene in micellar sodium lauryl sulfate (NaLS) has been studied. In these systems caffeine complexes with the pyrene (K asso = 85 10 M -1 and also with the other reactants, e.g. Cu 2+ or TI +. The efficiencies of reactions which involve contact, i.e. pyrene excimer formation, and quenching by TI + ions to give the triplet state of pyrene, are significantly reduced in the presence of caffeine, due to geometric inhibitions formed by the complexation processes. The kinetics of photo-induced electron transfer, e.g. between excited pyrene and Cu 2+, are not affected. However, the subsequent reactions of the products are modified and the yield of ionic products is markedly increased.

  18. Micelle enhanced and native spectrofluorimetric methods for determination of sertindole using sodium dodecyl sulfate as sensitizing agent.

    PubMed

    El-Kosasy, Amira M; Hussein, Lobna A; Sedki, Nehal G; Salama, Nahla N

    2016-01-15

    Two stability indicating spectrofluorimetric methods were developed and validated for the determination of sertindole (SER) in the presence of its acid and oxidative degradates at ?ex 257nm and ?em 335nm. Method A was based on measuring the native fluorescence of SER using isopropanol as solvent. Method B was based on the enhancement of native fluorescence of SER quenched in aqueous media by using micellar microenvironment created by sodium dodecyl sulfate (SDS) anionic micelles using Britton Robinson Buffer (BRB) pH3.29 as solvent. Different factors affecting fluorescence intensity; both native and enhanced, were carefully studied to reach the optimum conditions of measurements. The proposed spectrofluorimetric methods were validated in accordance with ICH guidelines and were successfully applied for the determination of SER in bulk powder and pharmaceutical preparation with high sensitivity and stability indicating power. They were also statistically compared to the manufacturer methods with no significant difference in performance. PMID:26356788

  19. An improved sodium dodecyl sulfate-polyacrylamide gel electrophoresis system for the analysis of membrane protein complexes.

    PubMed

    Kashino, Y; Koike, H; Satoh, K

    2001-04-01

    Membrane protein complexes such as the reaction center complexes of oxygenic photosynthesis or the complex I of mitochondira are composed of many subunit polypeptides. To analyze their polypeptide compositions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), a wide range of molecular sizes has to be resolved, especially in the low molecular mass range. We have improved the traditional Tris/HCI buffer systems adopting a Tris/2-(N-morpholino)ethanesulfonic acid (MES) buffer system containing 6 M urea. This gel system was used with an 18-24% acrylamide gradient for the separation of polypeptides with molecular masses from below 5 kDa to over 100 kDa. This buffer system can also be applied to the usual uniform concentration of acrylamide gel and also to minislab gels. PMID:11358120

  20. Negative impact of bone-marrow-derived mesenchymal stem cells on dextran sulfate sodium-induced colitis

    PubMed Central

    Nam, Young-Sun; Kim, Nayoun; Im, Keon-Il; Lim, Jung-Yeon; Lee, Eun-Sol; Cho, Seok-Goo

    2015-01-01

    AIM: To investigate the effects of mesenchymal stem cells (MSCs) on dextran sulfate sodium-induced inflammatory bowel disease (IBD). METHODS: C57BL/6 mice were fed 3.5% (g/L) dextran sulfate sodium. On day seven, the mice received intraperitoneal injections of 1 106 MSCs. The survival rate, disease activity index values, and body weight, were monitored daily. On day ten, colon lengths and histopathologic changes were assessed. In addition, immunoregulatory changes following MSC administration were evaluated by determining the levels of effector T cell responses in the spleen and mesenteric lymph nodes, and the expression levels of inflammatory cytokines in homogenized colons. RESULTS: Intraperitoneal administration of MSCs did not prevent development of colitis and did not reduce the clinicopathologic severity of IBD. No significant difference was evident in either survival rate or disease activity index score between the control and MSC-treated group. Day ten-sacrificed mice exhibited no significant difference in either colon length or histopathologic findings. Indeed, the MSC-treated group exhibited elevated levels of interleukin (IL)-6 and transforming growth factor-?, and a reduced level of IL-10, in spleens, mesenteric lymph nodes, and homogenized colons. The IL-17 level was lower in the mesenteric lymph nodes of the MSC-treated group (P = 0.0126). In homogenized colons, the IL-17 and tumor necrosis factor-? (P = 0.0092) expression levels were also lower in the treated group. CONCLUSION: MSC infusion provided no significant histopathologic or clinical improvement, thus representing a limited therapeutic approach for IBD. Functional enhancement of MSCs is needed in further study. PMID:25717235

  1. Molecular dynamics simulation of interactions between a sodium dodecyl sulfate micelle and a poly(ethylene oxide) polymer.

    PubMed

    Shang, Barry Z; Wang, Zuowei; Larson, Ronald G

    2008-03-13

    We have performed atomistic molecular dynamics simulations of an anionic sodium dodecyl sulfate (SDS) micelle and a nonionic poly(ethylene oxide) (PEO) polymer in aqueous solution. The micelle consisted of 60 surfactant molecules, and the polymer chain lengths varied from 20 to 40 monomers. The force field parameters for PEO were adjusted by using 1,2-dimethoxymethane (DME) as a model compound and matching its hydration enthalpy and conformational behavior to experiment. Excellent agreement with previous experimental and simulation work was obtained through these modifications. The simulated scaling behavior of the PEO radius of gyration was also in close agreement with experimental results. The SDS-PEO simulations show that the polymer resides on the micelle surface and at the hydrocarbon-water interface, leading to a selective reduction in the hydrophobic contribution to the solvent-accessible surface area of the micelle. The association is mainly driven by hydrophobic interactions between the polymer and surfactant tails, while the interaction between the polymer and sulfate headgroups on the micelle surface is weak. The 40-monomer chain is mostly wrapped around the micelle, and nearly 90% of the monomers are adsorbed at low PEO concentration. Simulations were also performed with multiple 20-monomer chains, and gradual addition of polymer indicates that about 120 monomers are required to saturate the micelle surface. The stoichiometry of the resulting complex is in close agreement with experimental results, and the commonly accepted "beaded necklace" structure of the SDS-PEO complex is recovered by our simulations. PMID:18275181

  2. TREATMENT OF A SATURATED ZONE HEXAVALENT CHROMIUM SOURCE AREA USING A FERROUS SULFATE/SODIUM DITHIONITE MIXTURE: A FIELD PILOT STUDY

    EPA Science Inventory

    A field pilot study was conducted to evaluate the performance of a combined ferrous sulfate/sodium dithionite solution for in situ treatment of a saturated zone hexavalent chromium source area at a former ferrochromium alloy production facility in Charleston, S.C. The saturate...

  3. Acids in combination with sodium dodecyl sulfate caused quality deterioration of fresh-cut iceburg lettuce during storage in modified atmosphere package

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies showed that levulinic acid (LA) and sodium acid sulfate (SAS) were effective in inactivating human pathogens on fresh produce. The present study investigated the effects of LA and SAS in comparison with citric acid and chlorine on the inactivation of E. coli O157:H7 and the sensory qu...

  4. Preparative isolation of a cytotoxic principle of a forest mushroom Suillus luteus by sodium dodecyl sulfate based "salting-in" countercurrent chromatography.

    PubMed

    Yang, Zhi; Hu, Xueqian; Wu, Shihua

    2016-02-01

    In the course of screening new anticancer natural products, an edible forest mushroom Suillus luteus (L. Ex Franch). Gray was found to have potent cytotoxicity against several human cancer cells. However, the lipophilic sample made some countercurrent chromatography solvent systems emulsify, which caused difficulties in the separation of its cytotoxic components. Here, we found that the addition of an organic salt sodium dodecyl sulfate could efficiently shorten the settling time of the mushroom sample solutions by eliminating the emulsification of two-phase solvent systems. Moreover, we found that sodium dodecyl sulfate could play a new "salting-in" role and made the partition coefficients of the solutes decrease with the increased concentrations. Thus, a sodium dodecyl sulfate based salting-in countercurrent chromatography method has been successfully established for the first time for preparative isolation of a cytotoxic principle of the mushroom. The active component was identified as isosuillin. Whole results indicated that sodium dodecyl sulfate could be used as an efficient salting-in reagent for two-phase solvent system selection and targeted countercurrent chromatography isolation. It is very useful for current natural products isolation and drug discovery. PMID:26633851

  5. Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: switching from enteric coating release into biphasic profiles.

    PubMed

    Taha, Mutasem O; Nasser, Wissam; Ardakani, Adel; Alkhatib, Hatim S

    2008-02-28

    The aim of this research is to investigate the effects of sodium lauryl sulfate (SLS) on ionotropically cross-linked alginate beads. Different levels of SLS were mixed with sodium alginate and chlorpheniramine maleate (as loaded model drug). The resulting viscous solutions were dropped onto aqueous solutions of zinc or calcium ions for ionotropic curing. The generated beads were assessed by their drug releasing profiles, infrared and differential scanning colorimetery (DSC) traits. SLS was found to exert profound concentration-dependent impacts on the characteristics of zinc-crosslinked alginate beads such that moderate modifications in the levels of SLS switched drug release from enteric coating-like behavior to a biphasic release modifiable to sustained-release by the addition of minute amounts of xanthan gum. Calcium cross-linking failed to reproduce the same behavior, probably due to the mainly ionic nature of calcium-carboxylate bonds compared to the coordinate character of their zinc-carboxylate counterparts. Apparently, moderate levels of SLS repel water penetration into the beads, and therefore minimize chlorpheniramine release. However, higher SLS levels seem to discourage polymeric cross-linking and therefore allow biphasic drug release. PMID:17980979

  6. Control of pathogens in biofilms on the surface of stainless steel by levulinic acid plus sodium dodecyl sulfate.

    PubMed

    Chen, Dong; Zhao, Tong; Doyle, Michael P

    2015-08-17

    The efficacy of levulinic acid (LVA) plus sodium dodecyl sulfate (SDS) to remove or inactivate Listeria monocytogenes, Salmonella Typhimurium, and Shiga toxin-producing Escherichia coli (STEC) in biofilms on the surface of stainless steel coupons was evaluated. Five- or six-strain mixtures (ca. 9.0 log CFU/ml) of the three pathogens were separately inoculated on stainless steel coupons. After incubation at 21 °C for 72 h, the coupons were treated for 10 min by different concentrations of LVA plus SDS (0.5% LVA+0.05% SDS, 1% LVA+0.1% SDS, and 3% LVA+2% SDS) and other commonly used sanitizers, including a commercial quaternary ammonium-based sanitizer (150 ppm), lactic acid (3%), sodium hypochlorite (100 ppm), and hydrogen peroxide (2%). The pathogens grew in the biofilms to ca. 8.6 to 9.3 log CFU/coupon after 72 h of incubation. The combined activity of LVA with SDS was bactericidal in biofilms for cells of the three pathogens evaluated, with the highest concentrations (3% LVA+2% SDS) providing the greatest log reduction. Microscopic images indicated that the cells were detached from the biofilm matrix and the integrity of cell envelopes were decreased after the treatment of LVA plus SDS. This study is conducive to better understanding the antimicrobial behavior of LVA plus SDS to the foodborne pathogens within biofilms. PMID:25950851

  7. Analysis of partitioning of organic compounds and proteins in aqueous polyethylene glycol-sodium sulfate aqueous two-phase systems in terms of solute-solvent interactions.

    PubMed

    da Silva, Nuno R; Ferreira, Luisa A; Madeira, Pedro P; Teixeira, Jos A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2015-10-01

    Partition behavior of nine small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.5M osmolyte (sorbitol, sucrose, trehalose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate system, all in 0.01M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. It was found out that the partition coefficient of all compounds examined (including proteins) may be described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system differ from those in polyethylene glycol-dextran system. PMID:26342872

  8. The irreversible inactivation of two copper-dependent monooxygenases by sulfite: peptidylglycine alpha-amidating enzyme and dopamine beta-monooxygenase.

    PubMed

    Merkler, D J; Kulathila, R; Francisco, W A; Ash, D E; Bell, J

    1995-06-12

    Peptidylglycine alpha-amidating enzyme (alpha-AE) and dopamine beta-monooxygenase (D beta M), two copper-dependent monooxygenases that have catalytic and structural similarities, are irreversibly inactivated by sodium sulfite in a time- and concentration-dependent manner. Studies with alpha-AE show that the sulfite-mediated inactivation is dependent on the presence of redox active transition metals free in solution, with Cu(II) being the most effective in supporting the inactivation reaction. Sulfite inactivation of alpha-AE is specific for the monooxygenase reaction of this bifunctional enzyme and amidated peptides provide protection against the inactivation. Consequently, the sulfite-mediated inactivation of alpha-AE and D beta M most likely results from the transition metal-catalyzed oxidation of sulfite to the sulfite radical, SO3-. PMID:7540562

  9. The optical constants of several atmospheric aerosol species - Ammonium sulfate, aluminum oxide, and sodium chloride

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.; Khare, B. N.

    1976-01-01

    An investigation is conducted of problems which are related to a use of measured optical constants in the simulation of the optical constants of real atmospheric aerosols. The techniques of measuring optical constants are discussed, taking into account transmission measurements through homogeneous and inhomogeneous materials, the immersion of a material in a liquid of a known refractive index, the consideration of the minimum deviation angle of prism measurement, the interference of multiply reflected light, reflectivity measurements, and aspects of mathematical analysis. Graphs show the real and the imaginary part of the refractive index as a function of wavelength for aluminum oxide, NaCl, and ammonium sulfate. Tables are provided for the dispersion parameters and the optical constants.

  10. Adhesion of sodium dodecyl sulfate surfactant monolayers with TiO2 (rutile and anatase) surfaces

    SciTech Connect

    Darkins, Robert; Sushko, Maria L.; Liu, Jun; Duffy, Dorothy M.

    2013-09-17

    Surfactants are widely used as templates to control the nucleation and growth of nanostructured metal oxides such as titania. To gain insight into the origin of surfactant-titania interactions responsible for polymorph and orientation selection, we simulate the self-assembly of an anionic surfactant monolayer on various low-index titania surfaces and for a range of densities. We characterize the binding in each case and compute the adhesion energies, finding anatase (100) and rutile (110) to be the strongest-binding surfaces. The sodium counterions in the monolayer are found to dominate the adhesion. It is also observed that the assembly is directed predominantly by surface-monolayer electrostatic complementarity.

  11. Use of sulfate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases.

    PubMed

    Lens, P N L; Gastesi, R; Lettinga, G

    2003-06-01

    This paper describes a novel bioscrubber concept for biological flue gas desulfurization, based on the recycling of a cell suspension of sulfite/sulfate reducing bacteria between a scrubber and a sulfite/sulfate reducing hydrogen fed bioreactor. Hydrogen metabolism in sulfite/sulfate reducing cell suspensions was investigated using batch activity tests and by operating a completely stirred tank reactor (CSTR). The maximum specific hydrogenotrophic sulfite/sulfate reduction rate increased with 10% and 300%, respectively, by crushing granular inoculum sludge and by cultivation of this sludge as cell suspension in a CSTR. Operation of a sulfite fed CSTR (hydraulic retention time 4 days; pH 7.0; sulfite loading rate 0.5-1.5 g SO3(2-) l(-1) d(-1)) with hydrogen as electron donor showed that high (up to 1.6 g l(-1)) H2S concentrations can be obtained within 10 days of operation. H2S inhibition, however, limited the sulfite reducing capacity of the CSTR. Methane production by the cell suspension disappeared within 20 days reactor operation. The outcompetition of methanogens in excess of H2 can be attributed to CO2 limitation and/or to sulfite or sulfide toxicity. The use of cell suspensions opens perspectives for monolith or packed bed reactor configurations, which have a much lower pressure drop compared to air lift reactors, to supply H2 to sulfite/sulfate reducing bioreactors. PMID:12889613

  12. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  13. Sodium

    MedlinePLUS

    Table salt is made up of the elements sodium and chlorine - the technical name for salt is sodium chloride. Your body needs some sodium ... to healthy eating is choosing foods low in salt and sodium. Doctors recommend you eat less than ...

  14. Sulfite-mediated oxidation of myeloperoxidase to a free radical: immuno-spin trapping detection in human neutrophils.

    PubMed

    Ranguelova, Kalina; Rice, Annette B; Lardinois, Olivier M; Triquigneaux, Mathilde; Steinckwich, Natacha; Deterding, Leesa J; Garantziotis, Stavros; Mason, Ronald P

    2013-07-01

    Previous studies focused on catalyzed oxidation of (bi)sulfite, leading to the formation of the reactive sulfur trioxide (()SO3(-)), peroxymonosulfate ((-)O3SOO()), and sulfate (SO4(-)) anion radicals, which can damage target proteins and oxidize them to protein radicals. It is known that these very reactive sulfur- and oxygen-centered radicals can be formed by oxidation of (bi)sulfite by peroxidases. Myeloperoxidase (MPO), an abundant heme protein secreted from activated neutrophils that play a central role in host defense mechanisms, allergic reactions, and asthma, is a likely candidate for initiating the respiratory damage caused by sulfur dioxide. The objective of this study was to examine the oxidative damage caused by (bi)sulfite-derived free radicals in human neutrophils through formation of protein radicals. We used immuno-spin trapping and confocal microscopy to study the protein oxidations driven by sulfite-derived radicals. We found that the presence of sulfite can cause MPO-catalyzed oxidation of MPO to a protein radical in phorbol 12-myristate 13-acetate-activated human neutrophils. We trapped the MPO-derived radicals in situ using the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide and detected them immunologically as nitrone adducts in cells. Our present study demonstrates that myeloperoxidase initiates (bi)sulfite oxidation leading to MPO radical damage, possibly leading to (bi)sulfite-exacerbated allergic reactions. PMID:23376232

  15. Sulfite-Mediated Oxidation of Myeloperoxidase to a Free Radical: Immuno-Spin Trapping Detection in Human Neutrophils

    PubMed Central

    Ranguelova, Kalina; Rice, Annette B.; Lardinois, Olivier M.; Triquigneaux, Mathilde; Steinckwich, Natacha; Deterding, Leesa J.; Garantziotis, Stavros; Mason, Ronald P.

    2013-01-01

    Previous studies focused on catalyzed oxidation of (bi)sulfite, leading to the formation of reactive sulfur trioxide (SO3?), peroxymonosulfate (?O3SOO) and sulfate (SO4?) anion radicals, which can damage target proteins and oxidize them to protein radicals. It is known that these very reactive sulfur- and oxygen-centered radicals can be formed by oxidation of (bi)sulfite by peroxidases. Myeloperoxidase (MPO), an abundant heme protein secreted from activated neutrophils that play a central role in host defense mechanisms, allergic reactions and asthma, is a likely candidate for initiating the respiratory damage caused by sulfur dioxide. The objective of the present study is to examine the oxidative damage caused by (bi)sulfite-derived free radicals in human neutrophils through formation of protein radicals. We used immuno-spin trapping and confocal microscopy to study the protein oxidations driven by sulfite-derived radicals. We found that the presence of sulfite can cause MPO-catalyzed oxidation of MPO to a protein radical in phorbol 12-myristate 13-acetate (PMA)-activated human neutrophils. We trapped the MPO-derived radicals in situ using the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and detected them immunologically as nitrone adducts in cells. Our present study demonstrates that myeloperoxidase initiates (bi)sulfite oxidation leading to MPO radical damage possibly leading to (bi)sulfite-exacerbated allergic reactions. PMID:23376232

  16. Comparison of surfactant-assisted shotgun methods using acid-labile surfactants and sodium dodecyl sulfate for membrane proteome analysis.

    PubMed

    Wu, Fang; Sun, Difei; Wang, Nan; Gong, Yan; Li, Liang

    2011-07-18

    Three surfactant-assisted shotgun methods using acid labile surfactants, sodium-3-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)-methoxyl]-1-propanesulfonate (RapiGest) and 3-[3-(1,1-bisalkyloxyethyl)pyridin-1-yl]propane-1-sulfonate (PPS), and sodium dodecyl sulfate (SDS) were investigated for their applicability to membrane proteome analysis. It is shown that RapiGest is a preferred reagent for handling membrane proteomes of Escherichia coli and MCF7 cells for liquid chromatography tandem mass spectrometry (LC MS/MS) analysis of tryptic digests. The RapiGest method allowed identification of more peptides and proteins than the SDS and PPS methods and there was no apparent bias for the type of peptides and proteins identified by the RapiGest and SDS methods, while a slightly higher proportion of hydrophilic peptides and proteins were identified by the PPS method. The performance of the SDS and PPS methods is similar in terms of the numbers of peptides and proteins identified. Since the SDS method required the removal of SDS using a technique such as strong-cation exchange (SCX), we further investigated the effect of SCX on sample loss through analyzing the digest of an enriched E. coli membrane fraction as well as a standard protein, bovine serum albumin (BSA). The results showed that extensive sample loss (as much as 62%) was encountered during the SCX cleaning step. We then applied the RapiGest method in combination with two-dimensional LC MS/MS to characterize the E. coli membrane proteome. In total, 1626 unique proteins (5799 unique peptides) were identified with a peptide false discovery rate of 2.4%. About 60% of the identified proteins with known cellular locations were found to be membrane proteins. Among them, about 75% were integral membrane proteins. This work represents one of the most comprehensive profiles of E. coli membrane proteome generated by a proteomic technique. PMID:21645657

  17. The effect of sulfite and chronic restraint stress on brain lipid peroxidation and anti-oxidant enzyme activities.

    PubMed

    Derin, Narin; Yargio?lu, Piraye; Aslan, Mutay; Elmas, O?uz; Agar, Aysel; Aicigzel, Yakup

    2006-07-01

    Sulfites are used as anti-microbial and anti-oxidant agents in a variety of drugs, and function as a preservative in many food preparations. In addition to these effects, sulfites oxidize to sulfite radicals initiating lipid peroxidation. The objective of our study was to investigate the effect of restraint stress and sulfite on brain lipid peroxidation and anti-oxidant enzyme activities. Forty male Wistar rats, aged three months, were randomized to one of the following groups: control, restraint stress, sulfite-treated and restraint stress + sulfite-treated. Chronic restraint stress was applied for 21 days (1 h/day) and sodium metabisulfite (520 mg/kg per day) was given by gavage for the same period. Lipid peroxidation was measured using the thiobarbituric acid (TBA) fluorometric assay. TBA-reactive substances (TBARS) were found increased in all treatment groups when compared to the control group. Spectrophotometric measurement of copper/zinc superoxide dismutase (Cu/Zn SOD) and catalase (CAT) revealed decreased enzyme activities in rats exposed to restraint stress compared to control and sulfite-treated rats. GSH-Px activities were significantly decreased in the restraint stress and sulfite-treated rats compared with the control rats. GSH-Px activity measured in restraint stress + sulfite-treated rats was significantly lower than in the other groups. The presented data confirms the pro-oxidant activity of restraint stress and establishes that decreased anti-oxidant enzyme activities in restraint stress-treated rats enhances brain lipid peroxidation caused via the ingestion of sulfites. PMID:16924954

  18. Risk analysis of sulfites used as food additives in China.

    PubMed

    Zhang, Jian Bo; Zhang, Hong; Wang, Hua Li; Zhang, Ji Yue; Luo, Peng Jie; Zhu, Lei; Wang, Zhu Tian

    2014-02-01

    This study was to analyze the risk of sulfites in food consumed by the Chinese people and assess the health protection capability of maximum-permitted level (MPL) of sulfites in GB 2760-2011. Sulfites as food additives are overused or abused in many food categories. When the MPL in GB 2760-2011 was used as sulfites content in food, the intake of sulfites in most surveyed populations was lower than the acceptable daily intake (ADI). Excess intake of sulfites was found in all the surveyed groups when a high percentile of sulfites in food was in taken. Moreover, children aged 1-6 years are at a high risk to intake excess sulfites. The primary cause for the excess intake of sulfites in Chinese people is the overuse and abuse of sulfites by the food industry. The current MPL of sulfites in GB 2760-2011 protects the health of most populations. PMID:24625409

  19. Ion-enhanced fluorescence staining of sodium dodecyl sulfate-polyacrylamide gels using bis(8-p-toluidino-1-naphthalenesulfonate).

    PubMed

    Horowitz, P M; Bowman, S

    1987-09-01

    A method for the sensitive fluorescent staining of sodium dodecyl sulfate (SDS) gels that extends the applicability and sensitivity of existing procedures has been developed. SDS-protein complexes are able to bind the noncovalent hydrophobic probe, bis(8-p-toluidino-1-naphthalenesulfonate) (bisANS) with an increase in quantum yield that is considerably larger than that observed with the commonly used monomeric form, 1-anilinonaphthalene-8-sulfonic acid (1,8-ANS). The quantum yield of bisANS bound to the SDS-protein complex is greatly enhanced by incubation with one of a number of cations including potassium and barium. The use of bisANS with metal ion enhancements provides a method for staining SDS gels that can be more sensitive than commonly used methods based on the binding of Coomassie blue, and provides a simple and rapid method for the detection and quantitation of proteins. The use of metal ion enhancements also greatly increases the sensitivity of staining methods based on the use of 1,8-ANS. The present method is much more sensitive than previous noncovalent, flourescent, postelectrophoresis stains, but it retains their considerable advantages of speed, simplicity, and the ability to perform secondary procedures on the separated materials. PMID:3425913

  20. A method for in-gel fluorescent visualization of proteins after native and sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    PubMed

    Pristov, Jelena Bogdanović; Opačić, Miloš; Dimitrijević, Milena; Babić, Nikolina; Spasojević, Ivan

    2015-07-01

    We have developed a simple one-step 30-min method for fluorescent visualization of proteins in native and sodium dodecyl sulfate polyacrylamide gel electrophoresis (PAGE) gels. The method is based on formation of strong fluorophores via potassium ferricyanide-provoked oxidation of tryptophan (Trp). Following PAGE, gels are soaked in water solution of potassium ferricyanide (100 mM) and NaOH (1 M) and are kept in the dark for 30 min. Gels are then transferred to water and scanned. The sensitivity of the method was slightly lower compared with standard Coomassie Brilliant Blue (CBB) staining. The method can be useful when rapid acquisition of data is of the essence. After preview, gels can be post-stained using the CBB protocol for further analysis. The intensity of fluorescence is dependent on Trp number, so the protocol might find application in the quantification of Trp residues as illustrated here. Importantly, there is room for improvement of the method. Namely, according to excitation-emission matrix analysis of stained protein bands, maximal fluorescence intensity (at 345/460 nm) was 3.5-fold higher compared with the settings that were available on a commercial imager (395/525 nm). As a supplement, we present an upgrade of the previously described method for in-gel detection of non-heme iron-binding proteins that also employs potassium ferricyanide. PMID:25862081

  1. Strawberry Phytochemicals Inhibit Azoxymethane/Dextran Sodium Sulfate-Induced Colorectal Carcinogenesis in Crj: CD-1 Mice

    PubMed Central

    Shi, Ni; Clinton, Steven K.; Liu, Zhihua; Wang, Yongquan; Riedl, Kenneth M.; Schwartz, Steven J.; Zhang, Xiaoli; Pan, Zui; Chen, Tong

    2015-01-01

    Human and experimental colon carcinogenesis are enhanced by a pro-inflammatory microenvironment. Pharmacologically driven chemopreventive agents and dietary variables are hypothesized to have future roles in the prevention of colon cancer by targeting these processes. The current study was designed to determine the ability of dietary lyophilized strawberries to inhibit inflammation-promoted colon carcinogenesis in a preclinical animal model. Mice were given a single i.p. injection of azoxymethane (10 mg kg−1 body weight). One week after injection, mice were administered 2% (w/v) dextran sodium sulfate in drinking water for seven days and then an experimental diet containing chemically characterized lyophilized strawberries for the duration of the bioassay. Mice fed control diet, or experimental diet containing 2.5%, 5.0% or 10.0% strawberries displayed tumor incidence of 100%, 64%, 75% and 44%, respectively (p < 0.05). The mechanistic studies demonstrate that strawberries reduced expression of proinflammatory mediators, suppressed nitrosative stress and decreased phosphorylation of phosphatidylinositol 3-kinase, Akt, extracellular signal-regulated kinase and nuclear factor kappa B. In conclusion, strawberries target proinflammatory mediators and oncogenic signaling for the preventive efficacies against colon carcinogenesis in mice. This works supports future development of fully characterized and precisely controlled functional foods for testing in human clinical trials for this disease. PMID:25763529

  2. Human and Environmental Toxicity of Sodium Lauryl Sulfate (SLS): Evidence for Safe Use in Household Cleaning Products.

    PubMed

    Bondi, Cara Am; Marks, Julia L; Wroblewski, Lauren B; Raatikainen, Heidi S; Lenox, Shannon R; Gebhardt, Kay E

    2015-01-01

    Environmental chemical exposure is a major concern for consumers of packaged goods. The complexity of chemical nomenclature and wide availability of scientific research provide detailed information but lends itself to misinterpretation by the lay person. For the surfactant sodium lauryl sulfate (SLS), this has resulted in a misunderstanding of the environmental health impact of the chemical and statements in the media that are not scientifically supported. This review demonstrates how scientific works can be misinterpreted and used in a manner that was not intended by the authors, while simultaneously providing insight into the true environmental health impact of SLS. SLS is an anionic surfactant commonly used in consumer household cleaning products. For decades, this chemical has been developing a negative reputation with consumers because of inaccurate interpretations of the scientific literature and confusion between SLS and chemicals with similar names. Here, we review the human and environmental toxicity profiles of SLS and demonstrate that it is safe for use in consumer household cleaning products. PMID:26617461

  3. Interaction of poly(ethylene oxide) with the sodium dodecyl sulfate micelle interface studied with nitroxide spin probes

    SciTech Connect

    Kang, Y.S.; Kevan, L. )

    1994-08-04

    Electron spin resonance (ESR) line widths of 5-, 7-, 12-, and 16-doxylstearic acid (x-DSA) and tempo nitroxides versus the concentration of poly(ethylene oxide) (PEO) in sodium dodecyl sulfate (SDS) micelles show different trends. The ESR line widths of 5-, 7-, and 16-DSA increase with increasing concentration of PEO, which is interpreted as due to increasing viscosity in the environment of the nitroxide spin probe. The tempo and 12-DSA line widths were independent of the concentration of PEO. The line width showed the highest value for 5-DSA and the lowest value of tempo. The line width of x-DSA decreases from 5-DSA to a minimum value for 12-DSA and then increases somewhat for 16-DSA. This is interpreted as bending of the alkyl chain to provide different locations for the nitroxide moiety relative to the micelle interface. The relative distances of the nitroxide moiety of [chi]-DSA from deuterated water at the SDS micelle interface was measured by deuterium electron spin echo modulation. The distances increased from 5-DSA to 12-DSA and then decreased for 16-DSA. The interpretation of the DSR line width trend is supported by the deuterium modulation depth trend. 28 refs., 5 figs., 2 tabs.

  4. Heat-killed VSL#3 Ameliorates Dextran Sulfate Sodium (DSS)-Induced Acute Experimental Colitis in Rats

    PubMed Central

    Sang, Li-Xuan; Chang, Bing; Dai, Cong; Gao, Nan; Liu, Wei-Xin; Jiang, Min

    2014-01-01

    To determine the effects of heat-killed VSL#3 (B. breve, B. longum and B. infantis; L. plantarum, L. bulgaricus, L. casei and L. acidophilus; S. salivarius subsp. thermophilus) therapy in the dextran sulfate sodium (DSS)-induced acute experimental colitis in rats. Acute experimental colitis was induced in rats by 5% DSS and freely drink for seven days. Beginning on Day 8, rats underwent gavage once daily for seven days with heat-killed probiotic VSL#3 (0.6 g/kg/day), colonic damage was evaluated histologically and biochemically seven days after gavage. Expression of inflammatory related mediators (STAT3, P-STAT3) and cytokines (IL-6, IL-23, TGFβ) in colonic tissue were detected. The results revealed that heat-killed and live VSL#3 have identical anti-inflammatory properties by the assessed DAI (disease activity index), colon length, histological tissue and MPO activity. Heat-killed and live VSL#3 results in reduced IL-6, IL-23, TGFβ, STAT3 and P-STAT3 expression in colonic tissue. Heat-killed and live VSL#3 have showed the similar anti-inflammatory activity by inhibiting IL-6/STAT3 pathway in the DSS-induced acute experimental colitis in rats. PMID:24451125

  5. Ingestion of low dose pyroglutamyl leucine improves dextran sulfate sodium-induced colitis and intestinal microbiota in mice.

    PubMed

    Wada, Sayori; Sato, Kenji; Ohta, Ryoko; Wada, Eri; Bou, Yukiho; Fujiwara, Miki; Kiyono, Tamami; Park, Eun Young; Aoi, Wataru; Takagi, Tomohisa; Naito, Yuji; Yoshikawa, Toshikazu

    2013-09-18

    Inflammatory bowel diseases (IBD) are based on chronic inflammation in the gastrointestinal tract. We previously found anti-inflammatory peptide pyroGlu-Leu in the enzymatic hydrolysate of wheat gluten. The objective of present study is to elucidate improvement of colitis by oral administration of pyroGlu-Leu in an animal model. Acute colitis was induced by dextran sulfate sodium (DSS), and various concentrations of pyroGlu-Leu were administrated by oral gavage for 7 days. A dose of 0.1 mg/kg body weight/day showed the most significant improvement. The pyroGlu-Leu concentration was significantly increased 24 h after oral administration both in the small intestine and the colon compared with the baseline. It was 20-fold higher in the small intestine than the colon. Administration of pyroGlu-Leu normalized population of Bacteroidetes and Firmicutes in the colon. These results indicate that pyroGlu-Leu has a potential therapeutic effect against IBD at a practical dose. PMID:23964746

  6. Ascorbic acid ameliorates oxidative stress and inflammation in dextran sulfate sodium-induced ulcerative colitis in mice

    PubMed Central

    Yan, Haiyan; Wang, Hongjuan; Zhang, Xiaoli; Li, Xiaoqin; Yu, Jing

    2015-01-01

    Ascorbic acid (AA) has been shown to exert beneficial effects, including mitigating oxidative stress and inhibiting inflammation. However, the preventative effect of vitamin C in chronic in?ammatory diseases such as in?ammatory bowel disease (IBD) remains unclear. In our study, we investigated the anti-in?ammatory effects of AA and possible mechanism involved in inhibiting dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Male C57BL/6 mice were randomly divided to three groups: control group, DSS group, and DSS plus ascorbic acid treated group. Several clinical and in?ammatory parameters as well as oxidative stress were evaluated. The results demonstrated that ascorbic acid signi?cantly reduced clinical signs, in?ammatory cytokines, myeloperoxidase (MPO) and malonaldehyde (MDA) activities, whereas the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were increased in DSS-induced mice. In addition, ascorbic acid was capable of inhibiting NF-?B, COX-2 and iNOS expression in the colonic. Taken together, these findings suggest that ascorbic acid contributes to the reduction of oxidative stress and in?ammatory response in DSS-induced colitis and exerts the potential to prevent and clinical treatment of in?ammatory bowel disease. PMID:26884937

  7. Microemulsion formation and phase behavior of anionic and cationic surfactants with sodium dodecyl sulfate and cetyltrimethylammonium bromide

    SciTech Connect

    Li, X.; Lin, E.; Zhao, G.; Xiao, T.

    1996-12-01

    The phase behavior and solubilization of multiphase microemulsions in mixed anionic-cationic surfactant systems were studied for fixed ratio of water-to-oil and surfactant-to-alcohol. In the mixed surfactants (sodium dodecyl sulfate + cetyltrimethylammonium bromide)/heptane/alcohol/water systems, microemulsions and birefringement phases are formed by adjusting the surfactant ratio {epsilon} and the cationic weight fraction {delta}. The bicontinuous (or w/o microemulsion) {yields} birefringement o/w microemulsion transition takes place and microemulsion domain enlarges with increasing {epsilon}. The optimum surfactant concentration {gamma} increases and the corresponding optimum {delta} decreases with increasing {epsilon} and both of them decrease with increasing the alcohol chain length butanol to hexanol. The birefringent region shrinks rapidly with increasing alcohol and/or CTAB weight fractions in total surfactant concentration. Conductivity measurements have been performed in the single-phase region of the system containing mixed surfactants and alcohols at 25 C. The conductivity results indicate where a transition takes place and which of these different types of phase structures may be in the single-phase of the system containing anionic-cationic mixed surfactants.

  8. Spontaneous Emulsification of Triolein Induced by Mixed Micellar Solutions of Sodium Polyoxyethylene Alkyl Ether Sulfate and Dodecyldimethyl Amine Oxide.

    PubMed

    Endo, Chika; Ito, Yoshiko; Akabane, Chika; Kaneko, Yukihiro; Sakai, Hideki

    2015-01-01

    A new mechanism of spontaneous emulsification without any salts or co-solvents is described, and is related to the dilatational behavior. Spontaneous emulsification can reduce the time required to remove oily soils from hard surfaces and enhance the detergency, because this type of emulsification requires no external mechanical work. In this paper, we focused on triolein, the main component of food oils and human sebum soil, and tried to induce spontaneous emulsification by using mixed micellar solutions of sodium polyoxyethylene alkyl ether sulfate and N, N-dimethyldodecylamine oxide (AES/DDAO). We characterized the dilatation of the oil/water interface using dynamic interfacial tension and elasticity measurements. This study confirmed that the degree of spontaneous emulsification can be enhanced by controlling the molar ratio of DDAO to AES. This enhancement can be attributed to an increased rate of decrease in the dynamic interfacial tension (i.e., a decreased interface dilatational elasticity), allowing for much greater suppression of the Marangoni effect. Further, we determined that one of the reasons for the decrease in the interface dilatational elasticity is the increasing number of micelles near the oil drop interface, which results from a decrease in the electrostatic repulsion between the micelles and the drop interface. Therefore, controlling the molar ratio of a mixed anionic/amphoteric surfactant solution is an effective way to induce spontaneous emulsification in the absence of salts or co-solvents. PMID:26250425

  9. Synergistic effects between sodium tripolyphosphate and zinc sulfate in corrosion inhibition for copper in neutral tap water

    SciTech Connect

    Feng, Y.; Siow, K.S.; Teo, W.K.; Tan, K.L.; Hsieh, A.K.

    1997-07-01

    The corrosion inhibition behavior of sodium tripolyphosphate (Na{sub 5}P{sub 3}O{sub 10}, or TPP) and zinc sulfate and the synergistic effects between them were studied for copper in neutral simulated tap water using electrochemical methods, x-ray photoelectron spectroscopy, and scanning electron microscopy. Zn{sup 2+} alone showed few inhibiting effects on copper corrosion. The film formed in the presence of Zn{sup 2+} was porous and composed mainly of cuprous oxide, which was similar in morphology and composition to films formed in the absence of the inhibitor. In the presence of TPP, a smooth and compact film, believed to be of Cu(II)-TPP compounds, formed on the copper surface. More protective films were formed in solutions containing TPP and Zn{sup 2+} as a blend. High zinc content (15% to 19%) was detected by XPS. Synergistic effects of TPP and Zn{sup 2+} were believed to result from formation of Zn(II)-TPP compounds that incorporated in the films, with Cu(II)-TPP in the upper layer and Cu{sub 2}O in the inner layer. The zinc compounds increased the anodic diffusion resistance of copper ions in the films and enhanced polarization of the cathodic reduction of dissolved oxygen.

  10. Beneficial effect of shikonin on experimental colitis induced by dextran sulfate sodium in BALB/c mice.

    PubMed

    Andújar, Isabel; Ríos, José Luis; Giner, Rosa María; Miguel Cerdá, José; Recio, María Del Carmen

    2012-01-01

    The naphthoquinone shikonin, a major component of the root of Lithospermum erythrorhizon, now is studied as an anti-inflammatory agent in the treatment of ulcerative colitis (UC). Acute UC was induced in Balb/C mice by oral administration of 5% dextran sodium sulfate (DSS). The disease activity index was evaluated, and a histologic study was carried out. Orally administered shikonin reduces induced UC in a dose-dependent manner, preventing the shortening of the colorectum and decreasing weight loss by 5% while improving the appearance of feces and preventing bloody stools. The disease activity index score was much lower in shikonin-treated mice than in the colitic group, as well as the myeloperoxidase activity. The expression of cyclooxygenase-2 was reduced by 75%, activation of NF-κB was reduced by 44%, and that of pSTAT-3 by 47%, as well as TNF-α, IL-1β, and IL-6 production. Similar results were obtained in primary macrophages culture. This is the first report of shikonin's ability to attenuate acute UC induced by DSS. Shikonin acts by blocking the activation of two major targets: NF-κB and STAT-3, and thus constitutes a promising potential therapeutic agent for the management of the inflammatory bowel disease. PMID:23346196

  11. Tanshinone IIA Protects against Dextran Sulfate Sodium- (DSS-) Induced Colitis in Mice by Modulation of Neutrophil Infiltration and Activation

    PubMed Central

    Liu, Xiaowei; He, Haiyue; Huang, Tingting; Lei, Zhen; Liu, Fuquan; An, Guangyu; Wen, Tao

    2016-01-01

    Neutrophils play a critical role in the initiation and maintenance of intestinal inflammation. However, conventional neutrophil-targeted therapies can impair normal host defense. Tanshinone IIA has been recently revealed to act directly on neutrophils. Hence, we aimed at investigating whether Tanshinone IIA can protect against experimental colitis through modulation of neutrophils. We induced colitis in C57BL/6 mice by giving 3% dextran sulfate sodium (DSS) orally, and meanwhile, we treated mice daily with Tanshinone IIA intraperitoneally. The severity of colitis was evaluated by calculating disease activity index (DAI) and histological parameters. Neutrophil infiltration and activation in the colons of mice were measured. Moreover, whether Tanshinone IIA has direct effects on neutrophil migration and activation was determined in vitro. Our data showed that Tanshinone IIA significantly ameliorated the severity of DSS-induced colitis in mice, evidenced by the reduced DAI and improved colonic inflammation. In addition, Tanshinone IIA decreased neutrophil infiltration of intestinal mucosa and activation and reduced colonic inflammatory cytokines in DSS-treated mice. Furthermore, Tanshinone IIA was demonstrated to significantly suppress neutrophil migration and activation. These results provide compelling evidence that Tanshinone IIA has a therapeutic potential for alleviating inflammatory colitis in mice, which is possibly mediated by the immunomodulation of neutrophils. PMID:26881040

  12. Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt.

    PubMed

    Hassan, P A; Fritz, Gerhard; Kaler, Eric W

    2003-01-01

    The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases. PMID:16256467

  13. Inhibition of vasoactive intestinal polypeptide (VIP) induces resistance to dextran sodium sulfate (DSS)-induced colitis in mice.

    PubMed

    Vu, John P; Million, Mulugeta; Larauche, Muriel; Luong, Leon; Norris, Joshua; Waschek, James A; Pothoulakis, Charalabos; Pisegna, Joseph R; Germano, Patrizia M

    2014-01-01

    VIP is highly expressed in the colon and regulates motility, vasodilatation, and sphincter relaxation. However, its role in the development and progress of colitis is still controversial. Our aim was to determine the participation of VIP on dextran sodium sulfate (DSS)-induced colonic mucosal inflammation using VIP(-/-) and WT mice treated with VIP antagonists. Colitis was induced in 32 adult VIP(-/-) and 14 age-matched WT litter-mates by giving 2.5 % DSS in the drinking water. DSS-treated WT mice were injected daily with VIP antagonists, VIPHyb (n?=?22), PG 97-269 (n?=?9), or vehicle (n?=?31). After euthanasia, colons were examined; colonic cytokines mRNA were quantified. VIP(-/-) mice were remarkably resistant to DSS-induced colitis compared to WT. Similarly, DSS-treated WT mice injected with VIPHyb (1 ?M) or PG 97-269 (1 nM) had significantly reduced clinical signs of colitis. Furthermore, colonic expression of IL-1?, TNF-?, and IL-6 was significantly lower in VIP(-/-) and VIPHyb or PG 97-269 compared to vehicle-treated WT. Genetic deletion of VIP or pharmacological inhibition of VIP receptors resulted in resistance to colitis. These data demonstrate a pro-inflammatory role for VIP in murine colitis and suggest that VIP antagonists may be an effective clinical treatment for human inflammatory bowel diseases. PMID:24395090

  14. Ablation of Doublecortin-Like Kinase 1 in the Colonic Epithelium Exacerbates Dextran Sulfate Sodium-Induced Colitis

    PubMed Central

    May, Randal; Chandrakesan, Parthasarathy; Madhoun, Mohammad; Ali, Naushad; Sureban, Sripathi M.; An, Guangyu; Schlosser, Michael J.; Houchen, Courtney W.

    2015-01-01

    Doublecortin-like kinase 1 (Dclk1), a microtubule-associated kinase, marks the fifth lineage of intestinal epithelial cells called tuft cells that function as tumor stem cells in Apc mutant models of colon cancer. In order to determine the role of Dclk1 in dextran sulfate sodium (DSS) induced colonic inflammation both intestinal epithelial specific Dclk1 deficient (VillinCre;Dclk1f/f) and control (Dclk1f/f) mice were fed 3% DSS in drinking water for 9 days, allowed to recover for 2 days, and killed. The clinical and histological features of DSS-induced colitis were scored and immunohistochemical, gene expression, pro-inflammatory cytokines/chemokines, and immunoblotting analyses were used to examine epithelial barrier integrity, inflammation, and stem and tuft cell features. In DSS-induced colitis, VillinCre;Dclk1f/f mice demonstrated exacerbated injury including higher clinical colitis scores, increased epithelial barrier permeability, higher levels of pro-inflammatory cytokines and chemokines, decreased levels of Lgr5, and dysregulated Wnt/b-Catenin pathway genes. These results suggest that Dclk1 plays an important role in regulating colonic inflammatory response and colonic epithelial integrity. PMID:26285154

  15. Dietary Geraniol by Oral or Enema Administration Strongly Reduces Dysbiosis and Systemic Inflammation in Dextran Sulfate Sodium-Treated Mice

    PubMed Central

    De Fazio, Luigia; Spisni, Enzo; Cavazza, Elena; Strillacci, Antonio; Candela, Marco; Centanni, Manuela; Ricci, Chiara; Rizzello, Fernando; Campieri, Massimo; Valerii, Maria C.

    2016-01-01

    (Trans)-3,7-Dimethyl-2,6-octadien-1-ol, commonly called geraniol (Ge-OH), is an acyclic monoterpene alcohol with well-known anti-inflammatory, antitumoral, and antimicrobial properties. It is widely used as a preservative in the food industry and as an antimicrobial agent in animal farming. The present study investigated the role of Ge-OH as an anti-inflammatory and anti-dysbiotic agent in the dextran sulfate sodium (DSS)-induced colitis mouse model. Ge-OH was orally administered to C57BL/6 mice at daily doses of 30 and 120 mg kg(−1) body weight, starting 6 days before DSS treatment and ending the day after DSS removal. Furthermore, Ge-OH 120 mg kg(−1) dose body weight was administered via enema during the acute phase of colitis to facilitate its on-site action. The results show that orally or enema-administered Ge-OH is a powerful antimicrobial agent able to prevent colitis-associated dysbiosis and decrease the inflammatory systemic profile of colitic mice. As a whole, Ge-OH strongly improved the clinical signs of colitis and significantly reduced cyclooxygenase-2 (COX-2) expression in colonocytes and in the gut wall. Ge-OH could be a powerful drug for the treatment of intestinal inflammation and dysbiosis. PMID:26973525

  16. Expression of Blimp-1 in dendritic cells modulates the innate inflammatory response in dextran sodium sulfate-induced colitis.

    PubMed

    Kim, Sun Jung; Goldstein, Jordan; Dorso, Kimberly; Merad, Miriam; Mayer, Lloyd; Crawford, James M; Gregersen, Peter K; Diamond, Betty

    2014-01-01

    A single nucleotide polymorphism of PRDM1, the gene encoding Blimp-1, is strongly associated with inflammatory bowel disease. Here, we demonstrate that Blimp-1 in CD103(+) dendritic cells (DCs) critically contributes to the regulation of macrophage homeostasis in the colon. Dextran sodium sulfate (DSS)-exposed Blimp-1(cko) mice with a deletion of Blimp-1 in CD103(+) DCs and CD11c(hi) macrophages exhibited severe inflammatory symptoms, pronounced weight loss, high mortality, robust infiltration of neutrophils in epithelial regions of the colon, an increased expression of proinflammatory cytokines and a significant decrease in CD103(+) DCs in the colon compared with DSS exposed wild-type (WT) mice. Purified colonic macrophages from Blimp-1(cko) mice expressed increased levels of matrix metalloproteinase 8, 9 and 12 mRNA. WT macrophages cocultured with colonic DCs but not bone marrow-derived DCs from Blimp-1(cko) produced increased matrix metalloproteinases in an interleukin (IL)-1?- and IL-6-dependent manner. Treatment of Blimp-1(cko) mice with anti-IL-1? and anti-IL-6 abrogated the exaggerated clinical response. Overall, these data demonstrate that Blimp-1 expression in DCs can alter an innate inflammatory response by modulating the activation of myeloid cells. This is a novel mechanism of contribution of Blimp-1 for the pathogenesis of inflammatory bowel diseases, implicating another therapeutic target for the development of inflammatory bowel disease. PMID:25826676

  17. Effect of sodium dodecyl sulfate on folding and thermal stability of acid-denatured cytochrome c: A spectroscopic approach

    PubMed Central

    Xu, Qi; Keiderling, Timothy A.

    2004-01-01

    The molten globule (MG) state can be an intermediate in the protein folding pathway; thus, its detailed description can help understanding protein folding. Sodium dodecyl sulfate (SDS), an anionic surfactant that is commonly used to mimic hydrophobic binding environments such as cell membranes, is known to denature some native state proteins, including horse cytochrome c (cyt c). In this article, refolding of acid denatured cyt c is studied under the influence of SDS to form MG-like states at both low concentration and above the critical micelle concentration using Fourier transform Infrared (FTIR) and ultraviolet and visible absorption as well as fluorescence and circular dichroism (CD). Thermal denaturation monitored with FTIR and CD shows distinct final high temperature states starting from MG-like states formed with different SDS/protein ratios. The results suggest that the SDS/protein ratio as well as the actual SDS (or protein) concentration affects structure and its thermal stability. Thermal denaturation monitored with CD and FTIR for cyt c at neutral pH but denatured with SDS showed that at a high SDS/protein ratio, the thermal behavior of MG-like states formed at low and neutral pH are quite similar. Based on the results obtained, the merits of two models of the proteinsurfactant structure are discussed for different SDS concentrations. PMID:15459332

  18. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate

    PubMed Central

    Lopez, Renata F.V.; Seto, Jennifer E.; Blankschtein, Daniel; Langer, Robert

    2010-01-01

    The potential of rigid nanoparticles to serve as transdermal drug carriers can be greatly enhanced by improving their skin penetration. Therefore, the simultaneous application of ultrasound and sodium lauryl sulfate (referred to as US/SLS) was evaluated as a skin pre-treatment method for enhancing the passive transdermal delivery of nanoparticles. We utilized inductively-coupled plasma mass spectrometry and an improved application of confocal microscopy to compare the delivery of 10- and 20-nm cationic, neutral, and anionic quantum dots (QDs) into US/SLS-treated and untreated pig split-thickness skin. Our findings include: (a) ~0.01% of the QDs penetrate the dermis of untreated skin (which we quantify for the first time), (b) the QDs fully permeate US/SLS-treated skin, (c) the two cationic QDs studied exhibit different extents of skin penetration and dermal clearance, and (d) the QD skin penetration is heterogeneous. We discuss routes of nanoparticle skin penetration and the application of the methods described herein to address conflicting literature reports on nanoparticle skin penetration. We conclude that US/SLS treatment significantly enhances QD transdermal penetration by 500–1300%. Our findings suggest that an optimum surface charge exists for nanoparticle skin penetration, and motivate the application of nanoparticle carriers to US/SLS-treated skin for enhanced transdermal drug delivery. PMID:20971504

  19. A Microfluidic Approach to Investigating a Synergistic Effect of Tobramycin and Sodium Dodecyl Sulfate on Pseudomonas aeruginosa Biofilms.

    PubMed

    Shin, Soojeong; Ahmed, Ishtiaq; Hwang, Jangsun; Seo, Youngmin; Lee, Eunwon; Choi, Jonghoon; Moon, Sangjun; Hong, Jong Wook

    2016-01-01

    In recent years, a microfluidic technology has contributed a significant role in biological research, specifically for the study of biofilms. Bacterial biofilms are a source of infections and contamination in the environment due to an extra polymeric matrix. Inadequate uses of antibiotics make the bacterial biofilms antibiotic resistant. Therefore, it is important to determine the effective concentration of antibiotics in order to eliminate bacterial biofilms. The present microfluidic study was carried out to analyze the activities of tobramycin and sodium dodecyl sulfate (SDS) against Pseudomonas aeruginosa biofilms with a continuous flow in order to achieve a greater delivery of the agents. The results show that a co-treatment of tobramycin and SDS significantly reduced the biomass of biofilms (by more than 99%) after 24 h. Tobramycin and SDS killed and detached bacteria in the cores of biofilms. Evidently, our data suggest that a microchannel would be effective for both quantitative and qualitative evaluations in order to test combinatorial effect of drugs and chemicals on a complexed biological system including biofilm. PMID:26753708

  20. Expression of Blimp-1 in Dendritic Cells Modulates the Innate Inflammatory Response in Dextran Sodium SulfateInduced Colitis

    PubMed Central

    Kim, Sun Jung; Goldstein, Jordan; Dorso, Kimberly; Merad, Miriam; Mayer, Lloyd; Crawford, James M; Gregersen, Peter K; Diamond, Betty

    2014-01-01

    A single nucleotide polymorphism of PRDM1, the gene encoding Blimp-1, is strongly associated with inflammatory bowel disease. Here, we demonstrate that Blimp-1 in CD103+ dendritic cells (DCs) critically contributes to the regulation of macrophage homeostasis in the colon. Dextran sodium sulfate (DSS)-exposed Blimp-1cko mice with a deletion of Blimp-1 in CD103+ DCs and CD11chi macrophages exhibited severe inflammatory symptoms, pronounced weight loss, high mortality, robust infiltration of neutrophils in epithelial regions of the colon, an increased expression of proinflammatory cytokines and a significant decrease in CD103+ DCs in the colon compared with DSS exposed wild-type (WT) mice. Purified colonic macrophages from Blimp-1cko mice expressed increased levels of matrix metalloproteinase 8, 9 and 12 mRNA. WT macrophages cocultured with colonic DCs but not bone marrowderived DCs from Blimp-1cko produced increased matrix metalloproteinases in an interleukin (IL)-1? and IL-6dependent manner. Treatment of Blimp-1cko mice with antiIL-1? and antiIL-6 abrogated the exaggerated clinical response. Overall, these data demonstrate that Blimp-1 expression in DCs can alter an innate inflammatory response by modulating the activation of myeloid cells. This is a novel mechanism of contribution of Blimp-1 for the pathogenesis of inflammatory bowel diseases, implicating another therapeutic target for the development of inflammatory bowel disease. PMID:25826676

  1. Increased Susceptibility to Dextran Sulfate Sodium-Induced Colitis in the Endoplasmic Reticulum Stress Transducer OASIS Deficient Mice

    PubMed Central

    Hino, Kenta; Saito, Atsushi; Asada, Rie; Kanemoto, Soshi; Imaizumi, Kazunori

    2014-01-01

    OASIS is a basic leucine zipper (bZIP) transmembrane transcription factor that is activated in response to endoplasmic reticulum (ER) stress. Previously, we showed that OASIS regulates final maturation of goblet cells in the large intestine. In the present study, to elucidate the roles of OASIS under pathophysiological conditions, we examined the stress response and inflammatory responses in Oasis deficient (Oasis?/?) mice exposed to dextran sulfate sodium (DSS) to induce colitis. A significant loss of body weight and an increase of mortality were observed in Oasis?/? mice with DSS-induced colitis compared with those in WT mice. The mucosa of the large intestine in Oasis?/? mice exhibited severe damage involving inflammatory cell infiltration. The expression levels of ER stress and apoptosis markers in intestinal epithelial cells were upregulated in Oasis?/? mice. These abnormalities were improved by treatment with tauroursodeoxycholic acid, a chemical chaperone that facilitates protein folding. Taken together, our findings demonstrate that OASIS plays important roles in protection of the large intestinal mucosa in DSS-induced colitis through attenuation of ER stress and inflammation. PMID:24498426

  2. Hexavalent molybdenum reduction to mo-blue by a sodium-dodecyl-sulfate-degrading Klebsiella oxytoca strain DRY14.

    PubMed

    Halmi, M I E; Zuhainis, S W; Yusof, M T; Shaharuddin, N A; Helmi, W; Shukor, Y; Syed, M A; Ahmad, S A

    2013-01-01

    Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30?mM, and 25C, respectively. The optimum phosphate concentration for molybdate reduction was 5?mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700?nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3?g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant. PMID:24383052

  3. Interleukin-6, but not the interleukin-6 receptor plays a role in recovery from dextran sodium sulfate-induced colitis

    PubMed Central

    SOMMER, JAN; ENGELOWSKI, ERIKA; BARAN, PAUL; GARBERS, CHRISTOPH; FLOSS, DOREEN M.; SCHELLER, JRGEN

    2014-01-01

    Interleukin (IL)-6-deficient, but not IL-6 receptor (IL-6R)-deficient mice present with a delayed skin wound healing phenotype. Since IL-6 solely signals via the IL-6R and glycoprotein 130 (gp130), Il-6r-deficient mice are expected to exhibit a similar phenotype as Il-6-deficient mice. However, p28 (IL-30) and ciliary neurotrophic factor (CNTF) have been identified as additional low-affinity ligands of the IL-6R/gp130/LIFR complex. IL-6 plays an inflammatory and regenerative role in inflammatory bowel disease (IBD). In the present study, we compared Il-6r-deficient mice with mice treated with neutralizing IL-6 monoclonal antibody (mAb) in a model of dextran sodium sulfate (DSS)-induced colitis. Our results, in agreement with those of previous reports, demonstrated that IL-6 mAbs slightly attenuated DSS-induced colitis during the regeneration phase. Il-6r-deficient mice and mice with tissue-specific deletion of the Il-6r in the myeloid cell lineage (LysMCre) with acute and chronic DSS-induced colitis were, however, indistinguishable from wild-type mice. Our data suggest that IL-6 and IL-6R have an additional role in colitis, apart from the IL-6/IL-6R classic and trans-signaling. PMID:24993179

  4. Live and heat-killed probiotic: effects on chronic experimental colitis induced by dextran sulfate sodium (DSS) in rats

    PubMed Central

    Sang, Li-Xuan; Chang, Bing; Wang, Bing-Yuan; Liu, Wei-Xin; Jiang, Min

    2015-01-01

    Although a series of studies have shown that VSL#3 (L plantarum, L Bulgaricus, L casei and L. acidophilus, B breve, B longum and B infantis and S salivarius subspecies thermophilus) can exert therapeutic effects on colitis, whether heat-killed VSL#3 also can exert similar effects has never been tested. The aim of the study was to investigate whether heat-killed VSL#3 exert therapeutic effects in chronic experimental colitis by inhibiting STAT3 pathway. Chronic experimental colitis was induced by dextran sulfate sodium (DSS) in rats. Rats underwent gavage once daily for seven days with heat-killed VSL#3 (0.6 g/kg/day). The disease activity index (DAI), histological score, colon length and myeloperoxidase (MPO) activity was observed. Expression of inflammatory related mediators (STAT3, P-STAT3) and cytokines (IL-6, IL-23) in colonic tissue were detected. The results showed that live and heat-killed VSL#3 have identical anti-inflammatory effects by the assessed DAI, colon length, histological score and MPO activity. Live and heat-killed VSL#3 results in reduced IL-6, IL-23, STAT3 and P-STAT3 expression in colonic tissue. Heat-killed VSL#3 have showed significant anti-inflammatory effects by suppressing STAT3 pathway. PMID:26884919

  5. Dextran sulfate sodium upregulates MAPK signaling for the uptake and subsequent intracellular survival of Brucella abortus in murine macrophages.

    PubMed

    Reyes, Alisha Wehdnesday Bernardo; Arayan, Lauren Togonon; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Min, WonGi; Lee, Hu Jang; Kim, Dong Hee; Chang, Hong Hee; Kim, Suk

    2016-02-01

    Brucellosis is one of the major zoonoses worldwide that inflicts important health problems in animal and human. Here, we demonstrated that dextran sulfate sodium (DSS) significantly increased adhesion of Brucella (B.) abortus in murine macrophages compared to untreated cells. Even without infection, Brucella uptake into macrophages increased and F-actin reorganization was induced compared with untreated cells. Furthermore, DSS increased the phosphorylation of MAPKs (ERK1/2 and p38α) in Brucella-infected, DSS-treated cells compared with the control cells. Lastly, DSS markedly increased the intracellular survival of Brucella abortus in macrophages by up to 48 h. These results suggest that DSS enhanced the adhesion and phagocytosis of B. abortus into murine macrophages by stimulating the MAPK signaling proteins phospho-ERK1/2 and p38α and that DSS increased the intracellular survival of B. abortus by inhibiting colocalization of Brucella-containing vacuoles (BCVs) with the late endosome marker LAMP-1. This study emphasizes the enhancement of the phagocytic and intracellular modulatory effects of DSS, which may suppress the innate immune system and contribute to prolonged Brucella survival and chronic infection. PMID:26626959

  6. Hexavalent Molybdenum Reduction to Mo-Blue by a Sodium-Dodecyl-Sulfate-Degrading Klebsiella oxytoca Strain DRY14

    PubMed Central

    Halmi, M. I. E.; Zuhainis, S. W.; Yusof, M. T.; Shaharuddin, N. A.; Helmi, W.; Shukor, Y.; Syed, M. A.; Ahmad, S. A.

    2013-01-01

    Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30?mM, and 25C, respectively. The optimum phosphate concentration for molybdate reduction was 5?mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700?nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3?g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant. PMID:24383052

  7. Caspase-11 is expressed in the colonic mucosa and protects against dextran sodium sulfate-induced colitis.

    PubMed

    Demon, D; Kuchmiy, A; Fossoul, A; Zhu, Q; Kanneganti, T-D; Lamkanfi, M

    2014-11-01

    Ulcerative colitis and Crohn's disease are major inflammatory syndromes that affect millions of patients. Caspase-11 confers protection against Gram-negative enteropathogens, but its role during colitis is unknown. Here, we show that caspase-11 was constitutively expressed in the colon, and that caspase-11-deficient (caspase-11(-/-)) mice were hypersusceptible to dextran sodium sulfate (DSS)-induced colitis. Notably, pro-inflammatory Prevotella species were strongly reduced in the gut microbiota of caspase-11(-/-) mice. Co-housing with wild-type mice leveled Prevotella contents, but failed to protect caspase-11(-/-) mice from increased susceptibility to DSS-induced colitis. We therefore addressed the role of caspase-11 in immune signaling. DSS-induced tissue damage and inflammatory cell infiltration in the gut were markedly increased in caspase-11−/− mice, while release of the pyroptosis/necroptosis marker HMGB1 was abolished [Corrected]. Moreover, caspase-11(-/-) mice showed normal or increased production of mature interleukin (IL)-1β and IL-18, whereas IL-1β and IL-18 secretion was blunted in animals lacking both caspases 1 and 11. In conclusion, we showed that caspase-11 shapes the gut microbiota composition, and that caspase-11(-/-) mice are highly susceptible to DSS-induced colitis. Moreover, DSS-induced inflammasome activation relied on caspase-1, but not caspase-11. These results suggest a role for other caspase-11 effector mechanisms such as pyroptosis in protection against intestinal inflammation. PMID:24850431

  8. Direct observation of chemical oscillation at a water/nitrobenzene interface with a sodium-alkyl-sulfate system.

    PubMed

    Ikezoe, Yasuhiro; Ishizaki, Sadahiro; Yui, Hiroharu; Fujinami, Masanori; Sawada, Tsuguo

    2004-03-01

    The oscillation of the interfacial tension and electrical potential at a water/nitrobenzene interface was observed with homologous anionic surfactant molecules, sodium-alkyl-sulfates. Concerning small molecules with a short hydrophobic carbon chain, the oscillation period and amplitude decreased with a decrease of the length of the alkyl chain. On the other hand, when surfactant molecules with a long hydrophobic carbon chain were used, no remarkable periodic oscillation occurred after the first oscillation. In all systems, an interfacial flow by Marangoni convection was observed when the oscillation took place. By monitoring the movement of carbon powder scattered on the liquid/liquid interface with a CCD camera, we could observe that the liquid/liquid interface expanded outward from the area on which the surfactant molecules adsorbed when the oscillation occurred. When the small molecule was used, the speed of expansion of the interface (flow speed) was small and shrinkage followed by expansion of the interface repeatedly occurred. However, when the large molecule was used, the flow speed was large and expansion occurred only one time. These results show that hydrodynamic factors and surface activities are important in chemical oscillation systems. PMID:15068283

  9. Human and Environmental Toxicity of Sodium Lauryl Sulfate (SLS): Evidence for Safe Use in Household Cleaning Products

    PubMed Central

    Bondi, Cara AM; Marks, Julia L; Wroblewski, Lauren B; Raatikainen, Heidi S; Lenox, Shannon R; Gebhardt, Kay E

    2015-01-01

    Environmental chemical exposure is a major concern for consumers of packaged goods. The complexity of chemical nomenclature and wide availability of scientific research provide detailed information but lends itself to misinterpretation by the lay person. For the surfactant sodium lauryl sulfate (SLS), this has resulted in a misunderstanding of the environmental health impact of the chemical and statements in the media that are not scientifically supported. This review demonstrates how scientific works can be misinterpreted and used in a manner that was not intended by the authors, while simultaneously providing insight into the true environmental health impact of SLS. SLS is an anionic surfactant commonly used in consumer household cleaning products. For decades, this chemical has been developing a negative reputation with consumers because of inaccurate interpretations of the scientific literature and confusion between SLS and chemicals with similar names. Here, we review the human and environmental toxicity profiles of SLS and demonstrate that it is safe for use in consumer household cleaning products. PMID:26617461

  10. Use of sodium dodecyl sulfate-polymyxin B-sucrose medium for isolation of Vibrio vulnificus from shellfish.

    PubMed

    Bryant, R G; Jarvis, J; Janda, J M

    1987-07-01

    The differential and selective sodium dodecyl sulfate-polymyxin B-sucrose medium (SPS) of Kitaura et al. (T. Kitaura, S. Doke, I. Azuma, M. Imaida, K. Miyano, K. Harada, and E. Yabuuchii, FEMS Microbiol. Lett. 17:205-209, 1983), which highlights alkylsulfatase activity, was evaluated for its potential use in the direct isolation and enumeration of Vibrio vulnificus from shellfish. V. vulnificus was detected by this method in six of nine shellfish samples collected from diverse geographic locales during the summer of 1986. Direct enumeration of V. vulnificus at 7.0 X 10(2) to 2.2 X 10(4) CFU/g of shellfish was achieved on SPS agar. All sample results were confirmed in parallel examinations by using conventional glucose-salt-Teepol (Shell Oil Co.) broth and alkaline peptone water enrichment with plating onto thiosulfate-citrate-bile salts-sucrose agar. Additionally, alkylsulfatase activity was evaluated in vitro for 97 strains representing 14 Vibrio spp. V. vulnificus and Vibrio cholerae-01 were the only species consistently found to possess this activity. The range of plating efficiencies for random V. vulnificus strains analyzed on SPS was 11 to 74% (mean, 39%). The use of SPS shows great promise for the study of shellfish and other environmental sources for V. vulnificus. PMID:3662506

  11. Heat-killed VSL#3 ameliorates dextran sulfate sodium (DSS)-induced acute experimental colitis in rats.

    PubMed

    Sang, Li-Xuan; Chang, Bing; Dai, Cong; Gao, Nan; Liu, Wei-Xin; Jiang, Min

    2014-01-01

    To determine the effects of heat-killed VSL#3 (B. breve, B. longum and B. infantis; L. plantarum, L. bulgaricus, L. casei and L. acidophilus; S. salivarius subsp. thermophilus) therapy in the dextran sulfate sodium (DSS)-induced acute experimental colitis in rats. Acute experimental colitis was induced in rats by 5% DSS and freely drink for seven days. Beginning on Day 8, rats underwent gavage once daily for seven days with heat-killed probiotic VSL#3 (0.6 g/kg/day), colonic damage was evaluated histologically and biochemically seven days after gavage. Expression of inflammatory related mediators (STAT3, P-STAT3) and cytokines (IL-6, IL-23, TGF?) in colonic tissue were detected. The results revealed that heat-killed and live VSL#3 have identical anti-inflammatory properties by the assessed DAI (disease activity index), colon length, histological tissue and MPO activity. Heat-killed and live VSL#3 results in reduced IL-6, IL-23, TGF?, STAT3 and P-STAT3 expression in colonic tissue. Heat-killed and live VSL#3 have showed the similar anti-inflammatory activity by inhibiting IL-6/STAT3 pathway in the DSS-induced acute experimental colitis in rats. PMID:24451125

  12. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis.

    PubMed

    Qiu, Xinyun; Zhang, Feng; Yang, Xi; Wu, Na; Jiang, Weiwei; Li, Xia; Li, Xiaoxue; Liu, Yulan

    2015-01-01

    Intestinal fungi are increasingly believed to greatly influence gut health. However, the effects of fungi on intestinal inflammation and on gut bacterial constitution are not clear. Here, based on pyrosequencing method, we reveal that fungal compositions vary in different intestinal segments (ileum, cecum, and colon), prefer different colonization locations (mucosa and feces), and are remarkably changed during intestinal inflammation in dextran sulfate sodium (DSS)-colitis mouse models compare to normal controls: Penicillium, Wickerhamomyces, Alternaria, and Candida are increased while Cryptococcus, Phialemonium, Wallemia and an unidentified Saccharomycetales genus are decreased in the guts of DSS-colitis mice. Fungi-depleted mice exhibited aggravated acute DSS-colitis associated with gain of Hallella, Barnesiella, Bacteroides, Alistipes, and Lactobacillus and loss of butyrate-producing Clostridium XIVa, and Anaerostipes compare with normal control. In contrast, bacteria-depleted mice show attenuated acute DSS-colitis. Mice with severely chronic recurrent DSS-colitis show increased plasma (1,3)-?-D-glucan level and fungal translocation into the colonic mucosa, mesenteric lymph nodes and spleen. This work demonstrate the different roles of fungi in acute and chronic recurrent colitis: They are important counterbalance to bacteria in maintaining intestinal micro-ecological homeostasis and health in acutely inflamed intestines, but can harmfully translocate into abnormal sites and could aggravate disease severity in chronic recurrent colitis. PMID:26013555

  13. Skin deposition and permeation of finasteride in vitro: effects of propylene glycol, ethanol and sodium lauryl sulfate.

    PubMed

    Limpongsa, Ekapol; Jaipakdee, Napaphak; Pongjanyakul, Thaned

    2014-08-27

    Abstract The objective of this study was to investigate the effects of propylene glycol (PG), ethanol (EtOH) and sodium lauryl sulfate (SLS) on the in vitro deposition and permeation of finasteride (FNS). A side-by-side diffusion cell mounted with a pig ear skin and a saturated solution of FNS in PG (10, 20%?v/v), EtOH (10, 20%?v/v) or SLS (0.5, 1%?w/v) vehicles were used. Incorporation of PG, EtOH or SLS caused a significant increase in FNS solubility both in the solution and on the skin with SLS?>?EtOH?>?PG. The results obtained from skin deposition studies showed that the FNS deposition rate and time increased in the same order as that of the solubility. The deposition kinetics of FNS solubilized in PG, EtOH and SLS vehicles followed either zero-order, square-root-of-time or pseudo-first-order kinetic models depending on the type and concentration of the enhancer. The permeation studies demonstrated that FNS permeation fluxes were enhanced only by EtOH vehicles. These results suggest that PG and SLS could be used as deposition enhancers, while EtOH could be the effective permeation enhancer of FNS. The obtained results can be used as the considerable insights for formulating the topical and transdermal products of FNS. PMID:25162771

  14. Oral administration of hen egg white ovotransferrin attenuates the development of colitis induced by dextran sodium sulfate in mice.

    PubMed

    Kobayashi, Yutaro; Rupa, Prithy; Kovacs-Nolan, Jennifer; Turner, Patricia V; Matsui, Toshiro; Mine, Yoshinori

    2015-02-11

    Ovotransferrin (OVT), one of the major hen egg white proteins, was shown to possess antimicrobial and antioxidant activities in vitro. However, there is no information regarding the in vivo preventative effect in chronic inflammatory diseases such as inflammatory bowel disease (IBD). The aim of the present study is to evaluate the anti-inflammatory effects of OVT in a mouse model of dextran sodium sulfate (DSS)-induced colitis. OVT (50 or 250 mg/kg BW) was given orally for 14 days to female BALB/c mice, and 5% DSS (MW 36-50 kDa) was used to induce acute colitis (days 7-14) via drinking water. The current in vivo study demonstrated that OVT significantly reduced clinical signs, weight loss, shortening of the colon, and inflammatory cytokine markers of disease. The histopathological analysis of the colon revealed that OVT reduced histological scores. These results indicate that the use of OVT may be a potential promising candidate for the prevention of IBD. PMID:25602920

  15. Strawberry phytochemicals inhibit azoxymethane/dextran sodium sulfate-induced colorectal carcinogenesis in Crj: CD-1 mice.

    PubMed

    Shi, Ni; Clinton, Steven K; Liu, Zhihua; Wang, Yongquan; Riedl, Kenneth M; Schwartz, Steven J; Zhang, Xiaoli; Pan, Zui; Chen, Tong

    2015-03-01

    Human and experimental colon carcinogenesis are enhanced by a pro-inflammatory microenvironment. Pharmacologically driven chemopreventive agents and dietary variables are hypothesized to have future roles in the prevention of colon cancer by targeting these processes. The current study was designed to determine the ability of dietary lyophilized strawberries to inhibit inflammation-promoted colon carcinogenesis in a preclinical animal model. Mice were given a single i.p. injection of azoxymethane (10 mg kg-1 body weight). One week after injection, mice were administered 2% (w/v) dextran sodium sulfate in drinking water for seven days and then an experimental diet containing chemically characterized lyophilized strawberries for the duration of the bioassay. Mice fed control diet, or experimental diet containing 2.5%, 5.0% or 10.0% strawberries displayed tumor incidence of 100%, 64%, 75% and 44%, respectively (p < 0.05). The mechanistic studies demonstrate that strawberries reduced expression of proinflammatory mediators, suppressed nitrosative stress and decreased phosphorylation of phosphatidylinositol 3-kinase, Akt, extracellular signal-regulated kinase and nuclear factor kappa B. In conclusion, strawberries target proinflammatory mediators and oncogenic signaling for the preventive efficacies against colon carcinogenesis in mice. This works supports future development of fully characterized and precisely controlled functional foods for testing in human clinical trials for this disease. PMID:25763529

  16. Quantification of AAV particle titers by infrared fluorescence scanning of coomassie-stained sodium dodecyl sulfate-polyacrylamide gels.

    PubMed

    Kohlbrenner, Erik; Henckaerts, Els; Rapti, Kleopatra; Gordon, Ronald E; Linden, R Michael; Hajjar, Roger J; Weber, Thomas

    2012-06-01

    Adeno-associated virus (AAV)-based vectors have gained increasing attention as gene delivery vehicles in basic and preclinical studies as well as in human gene therapy trials. Especially for the latter two-for both safety and therapeutic efficacy reasons-a detailed characterization of all relevant parameters of the vector preparation is essential. Two important parameters that are routinely used to analyze recombinant AAV vectors are (1) the titer of viral particles containing a (recombinant) viral genome and (2) the purity of the vector preparation, most commonly assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by silver staining. An important, third parameter, the titer of total viral particles, that is, the combined titer of both genome-containing and empty viral capsids, is rarely determined. Here, we describe a simple and inexpensive method that allows the simultaneous assessment of both vector purity and the determination of the total viral particle titer. This method, which was validated by comparison with established methods to determine viral particle titers, is based on the fact that Coomassie Brilliant Blue, when bound to proteins, fluoresces in the infrared spectrum. Viral samples are separated by SDS-PAGE followed by Coomassie Brilliant Blue staining and gel analysis with an infrared laser-scanning device. In combination with a protein standard, our method allows the rapid and accurate determination of viral particle titers simultaneously with the assessment of vector purity. PMID:22816378

  17. Modifying effect of imidazolium-based ionic liquids on surface activity and self-assembled nanostructures of sodium dodecyl sulfate.

    PubMed

    Javadian, Soheila; Nasiri, Fayezeh; Heydari, Akbar; Yousefi, Ali; Shahir, Afshin Asadzadeh

    2014-04-17

    The effect of four cationic ionic liquids (ILs), 1-butyl-3-methylimidazolium chloride (BMImCl), 1-butyl-3-methylimidazolium bromide (BMImBr), 1-hexyl-3-methylimidazolium chloride (HMImCl), and 1-hexyl-3-methyl-imidazolium bromide (HMImBr) on surface activity and micellization of an anionic surfactant, sodium dodecyl sulfate (SDS), is studied. The thermodynamic data on micellization and surface adsorption are obtained from tensiometry and conductometry. The applicability of UV-visible spectroscopy to study of SDS/IL systems is also investigated using Crystal Violet as the probe. Cyclic voltammetry, dynamic light scattering, and TEM imaging are employed to investigate the size and morphology of aggregates. According to the findings, addition of butyl-chained ILs to aqueous SDS results in only a slight gradual increase in average aggregate size whereas the size of SDS assemblies are dramatically increased upon addition of hexyl-chained ILs. It is proposed that BMIm(+) cations of the IL undergo Coulombic attractive interactions with anionic headgroups adsorbed at the micellar surface in aqueous SDS whereas HMIm(+) interact through hydrophobic chain-chain attractions as well. Thus, mixed micellization results in formation of vesicles. A micellar phase change from vesicles to micelles takes place at higher [SDS]/[IL] ratios. All of these processes are successfully tracked by the employed techniques. PMID:24635046

  18. A Picrorhiza kurroa Derivative, Picroliv, Attenuates the Development of Dextran-Sulfate-Sodium-Induced Colitis in Mice

    PubMed Central

    Zhang, De-Kui; Yu, Jian-Jie; Li, Yu-Min; Wei, Li-Na; Yu, Yi; Feng, Yan-Hu; Wang, Xiang

    2012-01-01

    Background. Free radicals and proinflammatory cytokines have been shown to play a critical role in the pathogenesis of ulcerative colitis (UC). Picroliv, a Picrorhiza kurroa derivative, has been demonstrated to have antioxidant and anti-inflammatory effect. The purpose of the study was to investigate the effects of picroliv on experimental model of UC in mice. Materials and Methods. Picroliv was administrated orally by gavage to mice with colitis induced by dextran sulfate sodium (DSS). Disease activity index (DAI), colon length, and histology score were observed. Myeloperoxidase (MPO) activity, and SOD, MDA concentrations were measured by enzyme-linked immunosorbent assay (ELISA) while the expression of cytokine mRNAs was studied by real-time-quantitative polymerase chain reaction and also ELISA. The expression of NF-?B p65 was observed by immunohistochemistry staining and western blotting. Results. A significant improvement was observed in DAI and histological score in mice treated with picroliv, and incerased MPO activity, MDA concentrations, and the expression of IL-1?, TNF-?, and NF-?B p65 in mice with DSS-induced colitis were significantly reduced while decreased SOD level increased following administration of picroliv. Conclusion. The administration of picroliv leads to an amelioration of DSS-induced colitis, suggesting administration of picroliv may provide a therapeutic approach for UC. PMID:23125487

  19. Evaluation of the Role of Sodium Tetradecyl Sulfate as a Sclerosant in the Treatment of Primary Hydrocele.

    PubMed

    Musa, Osman; Roy, Arijit; Ansari, Nisar Ahmad; Sharan, Jagadamba

    2015-12-01

    The present study was carried out with an aim to perform a prospective study to establish the role of sodium tetradecyl sulfate (3 %) (STDS) as a safe and effective sclerosant in the management of primary hydrocele. Sclerotherapy was performed with 3 % STDS on an outdoor basis. The amount of sclerosant injected depended on the amount of fluid drained. All patients were given prophylactic antibiotics. Patients were clinically reassessed at 1 week, 1 month, 3 months, and 6 months and earlier if complications occur. The data were analyzed using Statistical Package for Social Sciences Version 15.0. The data have been represented as frequencies and percentages. Chi-square test was used to compare the data. A total of 57 patients with primary vaginal hydrocele gave consent for being enrolled in the study. The age of patients ranged from 18 to 65 years with a mean age of 35.72 ± 13.18 years. The success rate at the end of the study was observed to be 84.2 %. As regards patient satisfaction, in present study, in a limited time period of follow up, all the patients who had a successful procedure were satisfied. Overall, sclerotherapy was observed to be a relatively cost-effective (including both direct and indirect costs) procedure with low complications, high satisfaction, and a high success rate within the limited period of follow-up. PMID:26730040

  20. About the singular behavior of the ionic condensation of sodium chondroitin sulfate: Conductivity study in water and water dioxane mixture

    NASA Astrophysics Data System (ADS)

    M'halla, Jalel; Besbes, Rafik; Bouazzi, Ramzi; Boughammoura, Sondes

    2006-01-01

    In this work, we generalized the (Bjerrum-Debye-Fuoss-MSA) double layer model to an ellipsoidal polyion (chondroitin sulfate) of (∣ Zs∣ e) structural charge, Ls structural length, R minor axe and ( R2 + L2/4) 1/2 major axe. With L ⩽ Ls. Na + counter ions are distributed on the contact (or condensed) layer and on the Debye layer (ionic atmosphere). Both layers are ellipsoidal equipotentials of, respectively, R and d minor axes and are concentric to the polyion. With d = ( R + 1/2 Γ), Γ is the Debye-MSA screen parameter. The equilibrium distribution of Na + ions is derived from a "two states" statistical approach, leading to a general implicit expression for the rate of condensation (1 - α). The generality of this formula results from the fact that it takes into account the finite size of the polyion ( L ≠ ∞ and R ≠ 0) and allows to calculate α for different conformations of the polyion: (ellipsoidal L ≠ 0, cylindrical: L = Ls, spherical: L → 0, and Manning's model: RL-1 → 0). The main conclusion of this model is that, α obeys to the Ostwald's principle of dilution ( α → 1 when CNa+ → 0). This result is contrary to Manning's theory, for which α is a constant αM independent on the concentration Ci: αM = bS/(∣ Zi∣ Lb), with bS = Ls/∣ Zs∣ and Lb = e2/( ɛkT) is the Bjerrum length. However, our analysis shows that the rate of variation: (∂ α/∂ Ci) in a given range of concentration, depends on the structural parameter bS. Indeed, the critical Manning condition ( α-1αM = 1, ⇒(∂ α/∂ Ci) ≈ 0), is compatible with the general following "rod-like model" approximation: (1-α)≈|Zi|(πbS)[4πZi2Lb][αCiR2];withbS″=αM-1 only for some peculiar values of bS and Lb (i.e., dielectric constant: ɛ). In water at 25 °C ( ɛ = 78.3), this singular behavior occurs for a range of a relative low or moderate concentration for some polyelectrolytes of bS structural parameter of about 5.8 Å. This is the case of sodium chondroitin sulfate in water ( bS = 5.72 Å). The addition of dioxane increases Lb, consequently, α is shifted from its Manning's value. In order to verify this dioxane effect, we have compared experimental equivalent conductibilities Λexp of sodium chondroitin sulfate in water ( no shift) and water-dioxane (60 wt%) mixture ( positive shift), to their theoretical values ΛM, ΛcthandΛsth corresponding, respectively, to the Manning, cylindrical and spherical models. This comparison allows also, to explain the conformation "chosen" by the polyion, in order to minimizing the friction effects (due to: viscosity; ionic and dielectric relaxations) and therefore, to optimize its mobility by the shift of its rate of ionic condensation α.

  1. Diagnostic use of an analysis of urinary proteins by a practicable sodium dodecyl sulfate-electrophoresis method and rapid two-dimensional electrophoresis.

    PubMed

    Lapin, A; Gabl, F; Kopsa, H

    1989-01-01

    Two methods suitable for routine clinical analyses of urinary proteins are presented and compared. The first is a horizontal sodium dodecyl sulfate-polyacrylamide gel electrophoresis technique, suitable for simultaneous analysis of 20 native urinary samples. This method uses polyacrylamide gradient gels, prepared with a laboratory-built gel casting device. The second method is a rapid two-dimensional electrophoresis procedure, combining cellulose acetate electrophoresis and sodium dodecyl sulfate-electrophoresis. The first step uses a routine system (Chemetron), the second separation step followed by staining with Coomassie Brilliant Blue R is performed on the PhastSystem. The resulting two-dimensional patterns reveal urinary proteins distributed according to the 5-zone pattern of native proteins (albumin, alpha-1, alpha-2, beta, gamma-globulin) as well as to the logarithm of their molecular weights. Examples of (routine) diagnoses with a special interest in the monitoring of kidney transplant patients are shown. PMID:2806208

  2. How are Atypical Sulfite Dehydrogenases Linked to Cell Metabolism? Interactions between the SorT Sulfite Dehydrogenase and Small Redox Proteins

    PubMed Central

    Ulrike, Kappler

    2011-01-01

    Sulfite dehydrogenases (SDHs) are enzymes that catalyze the oxidation of the toxic and mutagenic compound sulfite to sulfate, thereby protecting cells from adverse effects associated with sulfite exposure. While some bacterial SDHs that have been characterized to date are able to use cytochrome c as an electron acceptor, the majority of these enzymes prefer ferricyanide as an electron acceptor and have therefore been termed atypical SDHs. Identifying the natural electron acceptor of these enzymes, however, is crucial for understanding how the atypical SDHs are integrated into cell metabolism. The SorT sulfite dehydrogenase from Sinorhizobium meliloti is a representative of this enzyme type and we have investigated the interactions of SorT with two small redox proteins, a cytochrome c and a Cu containing pseudoazurin, that are encoded in the same operon and are co-transcribed with the sorT gene. Both potential acceptor proteins have been purified and characterized in terms of their biochemical and electrochemical properties, and interactions and enzymatic studies with both the purified SorT sulfite dehydrogenase and components of the respiratory chain have been carried out. We were able to show for the first time that an atypical sulfite dehydrogenase can couple efficiently to a cytochrome c isolated from the same organism despite being unable to efficiently reduce horse heart cytochrome c, however, at present the role of the pseudoazurin in SorT electron transfer is unclear, but it is possible that it acts as an intermediate electron shuttle between. The SorT system appears to couple directly to the respiratory chain, most likely to a cytochrome oxidase. PMID:21833314

  3. Metachromatic staining patterns of basic proline-rich proteins from rat and human saliva in sodium dodecyl sulfate-polyacrylamide gels.

    PubMed

    Humphreys-Beher, M G; Wells, D J

    1984-01-01

    A series of basic proteins, rich in proline, were isolated from the salivary secretions of humans and rats. These proteins underwent metachromasia after staining with Coomassie brilliant blue R-250 in sodium dodecyl sulfate-polyacrylamide gels. The technique of destaining gels in several changes of 10% acetic acid after a 30-min staining period is a rapid method of general utility for the identification of proline-rich proteins from total cell lysates from other sources besides saliva. PMID:6085627

  4. Highly sensitive method for specific, brief, and economical detection of glycoproteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis by the synthesis of a new hydrazide derivative.

    PubMed

    Cong, Weitao; Zhou, Ayi; Liu, Zhiguo; Shen, Jiayi; Zhou, Xuan; Ye, Weijian; Zhu, Zhongxin; Zhu, Xinliang; Lin, Jianjun; Jin, Litai

    2015-02-01

    A new hydrazide derivative was synthesized and used for the first time as a specific, brief, and economical probe to selectively visualize glycoproteins in 1-D and 2-D sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with high sensitivity. The detection limit of the newly developed staining method is 2- and 4-fold higher than that of the widely used Pro-Q Emerald 300 and 488 stains, respectively. PMID:25565298

  5. Identification of coagulase-negative staphylococci by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and rRNA restriction patterns.

    PubMed Central

    Pennington, T H; Harker, C; Thomson-Carter, F

    1991-01-01

    A total of 1,417 staphylococcal and micrococcal strains were collected from the beards and scalps of 10 subjects over a period of 8 months. Sixteen strains identified as Staphylococcus epidermidis with an API system had distinctive yellow colonies on nutrient agar plates and sodium dodecyl sulfate-polyacrylamide gel electrophoresis whole-cell polypeptide profiles similar to those of Staphylococcus capitis; this identification was confirmed by analysis of rRNA gene restriction patterns. Images PMID:1706732

  6. Partial replacement of dietary linoleic acid with long chain n-3 polyunsaturated fatty acids protects against dextran sulfate sodium-induced colitis in rats.

    PubMed

    Tyagi, Anupama; Kumar, Uday; Santosh, Vadakattu Sai; Reddy, Suryam; Mohammed, Saazida Bhanu; Ibrahim, Ahamed

    2014-12-01

    Imbalances in the dietary n-6 and n-3 polyunsaturated fatty acids have been implicated in the increased prevalence of inflammatory bowel disease. This study investigated the effects of substitution of linoleic acid with long chain n-3 polyunsaturated fatty acids and hence decreasing n-6:n-3 fatty acid ratio on inflammatory response in dextran sulfate sodium induced colitis. Male weanling Sprague Dawley rats were fed diets with n-6:n-3 fatty acid in the ratios of 215,50,10 or 5 for 3 months and colitis was induced by administration of dextran sulfate sodium in drinking water during last 11 days. Decreasing the dietary n-6:n-3 fatty acid ratio to 10 and 5 significantly attenuated the severity of colitis as evidenced by improvements in clinical symptoms, reversal of shortening of colon length, reduced severity of anemia, preservation of colonic architecture as well as reduced colonic mucosal myeloperoxidase activity. This protection was associated with suppression of colonic mucosal proinflammatory mediators such as TNF?, IL-1? and nitric oxide. These findings suggest that long chain n-3 polyunsaturated fatty acids at a level of 3.0 g/kg diet (n-6:n-3 ratio of 10) prevents dextran sulfate sodium induced colitis by suppressing the proinflammatory mediators. PMID:25451558

  7. Ability of sat-1 to transport sulfate, bicarbonate, or oxalate under physiological conditions.

    PubMed

    Krick, Wolfgang; Schnedler, Nina; Burckhardt, Gerhard; Burckhardt, Birgitta C

    2009-07-01

    Tubular reabsorption of sulfate is achieved by the sodium-dependent sulfate transporter, NaSi-1, located at the apical membrane, and the sulfate-anion exchanger, sat-1, located at the basolateral membrane. To delineate the physiological role of rat sat-1, [(35)S]sulfate and [(14)C]oxalate uptake into sat-1-expressing oocytes was determined under various experimental conditions. Influx of [(35)S]sulfate was inhibited by bicarbonate, thiosulfate, sulfite, and oxalate, but not by sulfamate and sulfide, in a competitive manner with K(i) values of 2.7 +/- 1.3 mM, 101.7 +/- 9.7 microM, 53.8 +/- 10.9 microM, and 63.5 +/- 38.7 microM, respectively. Vice versa, [(14)C]oxalate uptake was inhibited by sulfate with a K(i) of 85.9 +/- 9.5 microM. The competitive type of inhibition indicates that these compounds are most likely substrates of sat-1. Physiological plasma bicarbonate concentrations (25 mM) reduced sulfate and oxalate uptake by more than 75%. Simultaneous application of sulfate, bicarbonate, and oxalate abolished sulfate as well as oxalate uptake. These data and electrophysiological studies using a two-electrode voltage-clamp device provide evidence that sat-1 preferentially works as an electroneutral sulfate-bicarbonate or oxalate-bicarbonate exchanger. In kidney proximal tubule cells, sat-1 likely completes sulfate reabsorption from the ultrafiltrate across the basolateral membrane in exchange for bicarbonate. In hepatocytes, oxalate extrusion is most probably mediated either by an exchange for sulfate or bicarbonate. PMID:19369292

  8. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    SciTech Connect

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  9. Merit of quinacrine in the decrease of ingested sulfite-induced toxic action in rat brain.

    PubMed

    Kencebay, Ceren; Derin, Narin; Ozsoy, Ozlem; Kipmen-Korgun, Dijle; Tanriover, Gamze; Ozturk, Nihal; Basaranlar, Goksun; Yargicoglu-Akkiraz, Piraye; Sozen, Berna; Agar, Aysel

    2013-02-01

    We aimed at investigating the effects of sulfite-induced lipid peroxidation and apoptosis mediated by secretory phospholipase A2 (sPLA2) on somatosensory evoked potentials (SEP) alterations in rats. Thirty male albino Wistar rats were randomized into three experimental groups as follows; control (C), sodium metabisulfite treated (S), sodium metabisulfite+quinacrine treated (SQ). Sodium metabisulfite (100 mg/kg/day) was given by gastric gavage for 5 weeks and 10 mg/kg/day quinacrine was applied as a single dose of intraperitoneal injection for the same period. The latencies of SEP components were significantly prolonged in the S group and returned to control levels following quinacrine administration. Plasma-S-sulfonate level was increased in S and SQ groups. TBARS levels in the S group were significantly higher than those detected in controls. Quinacrine significantly decreased brain TBARS levels in the SQ group compared with the S group. Quinacrine treatment did not have an effect on the increased sPLA2 level of the sulfite administered group. Immunohistochemistry showed that sulfite caused an increase in caspase-3 and TUNEL positive cells, restored to control levels via quinacrine administration. This study showed that sPLA2 might play a role in ingested sulfite-induced SEP alterations, oxidative stress, apoptotic cell death and DNA damage in the brain. PMID:23168241

  10. Supersaturated polymeric micelles for oral cyclosporine A delivery: The role of Soluplus-sodium dodecyl sulfate complex.

    PubMed

    Xia, Dengning; Yu, Hongzhen; Tao, Jinsong; Zeng, Jianrong; Zhu, Quanlei; Zhu, Chunliu; Gan, Yong

    2016-05-01

    Our previous study demonstrated that the retention of drug in the hydrophobic core of Soluplus micelle greatly impeded drug absorption from gastrointestinal tract. Using supersaturated polymeric micelles can improve drug release, however, insufficient maintaining of supersaturation of drug is still unfavorable for drug absorption. Here, we report adding small amount of small molecule, sodium dodecyl sulfate (SDS), to Soluplus solution can form a Soluplus-SDS complex. This complex not only showed a higher solubilization capability for the model drug cyclosporine A (CsA), but also maintained a longer period of and higher supersaturation than was achieved with Soluplus alone. The Soluplus-SDS interactions were characterized by analyzing surface tension, small-angle X-ray scattering (SAXS), fluorescence spectra, and nuclear magnetic resonance spectroscopy. The results demonstrated that the formation of Soluplus-SDS complex via SDS adsorption on hydrophobic segments of Soluplus, which have more hydrophobic domain than that of Soluplus micelle, contributed significantly to the solubilization and stabilization of supersaturated CsA. Using this amphiphilic copolymer-small molecule surfactant system, the cellular uptake and rat in vivo absorption of CsA were more effectively achieved than pure Soluplus. The area under the plasma concentration-time curve (AUC) and the maximal plasma concentration (Cmax) achieved by CsA-loaded Soluplus-SDS complex were 1.58- and 1.8-times higher than the corresponding values for CsA-loaded pure Soluplus, respectively. This study highlighted the benefits of Soluplus-SDS complex for optimizing the solubilization and oral absorption of a drug with low aqueous solubility. PMID:26866892

  11. ?-Caryophyllene Inhibits Dextran Sulfate Sodium-Induced Colitis in Mice through CB2 Receptor Activation and PPAR? Pathway

    PubMed Central

    Bento, Allisson Freire; Marcon, Rodrigo; Dutra, Rafael Cypriano; Claudino, Rafaela Franco; Cola, Mara; Pereira Leite, Daniela Ferraz; Calixto, Joo B.

    2011-01-01

    Cannabinoid receptor 2 (CB2) activation is suggested to trigger the peroxisome proliferator-activated receptor-? (PPAR?) pathway, and agonists of both receptors improve colitis. Recently, the plant metabolite (E)-?-caryophyllene (BCP) was shown to bind to and activate CB2. In this study, we examined the anti-inflammatory effect of BCP in dextran sulfate sodium (DSS)-induced colitis and analyzed whether this effect was mediated by CB2 and PPAR?. Oral treatment with BCP reduced disease activity, colonic macro- and microscopic damage, myeloperoxidase and N-acetylglucosaminidase activities, and levels and mRNA expression of colonic tumor necrosis factor-?, IL-1?, interferon-?, and keratinocyte-derived chemokine. BCP treatment also inhibited the activation of extracellular signal-regulated kinase 1/2, nuclear factor ?B, I?B-kinase ?/?, cAMP response element binding and the expression of caspase-3 and Ki-67. Moreover, BCP enhanced IL-4 levels and forkhead box P3 mRNA expression in the mouse colon and reduced cytokine levels (tumor necrosis factor-?, keratinocyte-derived chemokine, and macrophage-inflammatory protein-2) in a culture of macrophages stimulated with lipopolysaccharide. The use of the CB2 antagonist AM630 or the PPAR? antagonist GW9662 significantly reversed the protective effect of BCP. Confirming our results, AM630 reversed the beneficial effect of BCP on pro-inflammatory cytokine expression in IEC-6 cells. These results demonstrate that the anti-inflammatory effect of BCP involves CB2 and the PPAR? pathway and suggest BCP as a possible therapy for the treatment of inflammatory bowel disease. PMID:21356367

  12. The structures of complexes between polyethylene imine and sodium dodecyl sulfate in D2O: a scattering study.

    PubMed

    Bastardo, L A; Garamus, V M; Bergstrm, M; Claesson, P M

    2005-01-13

    The association between a highly branched polyelectrolyte with ionizable groups, polyethylene imine (PEI), and an anionic surfactant, sodium dodecyl sulfate (SDS), has been investigated at two pH values, using small-angle neutron and light scattering. The scattering data allow us to obtain a detailed picture of the association structures formed. Small-angle neutron scattering (SANS) measurements in solutions containing highly charged PEI at low pH and low SDS concentrations indicate the presence of disklike aggregates. The aggregates change to a more complex three-dimensional structure with increasing surfactant concentration. One pronounced feature in the scattering curves is the presence of a Bragg-like peak at high q-values observed at a surfactant concentration of 4.2 mM and above. This scattering feature is attributed to the formation of a common well-ordered PEI/SDS structure, in analogue to what has been reported for other polyelectrolyte-surfactant systems. Precipitation occurred at the charge neutralization point, and X-ray diffraction measurements on the precipitate confirmed the existence of an ordered structure within the PEI/SDS aggregates, which was identified as a lamellar internal organization. Polyethylene imine has a low charge density in alkaline solutions. At pH 10.1 and under conditions where the surfactant was contrast matched, the SANS scattering curves showed only small changes with increasing surfactant concentration. This suggests that the polymer acts as a template onto which the surfactant molecules aggregate. Data from both static light scattering and SANS recorded under conditions where SDS and to a lower degree PEI contribute to the scattering were found to be consistent with a structure of stacked elliptic bilayers. These structures increased in size and became more compact as the surfactant concentration was increased up to the charge neutralization point. PMID:16851000

  13. Multifunctional activity of a small tellurium redox immunomodulator compound, AS101, on dextran sodium sulfate-induced murine colitis.

    PubMed

    Halpert, Gilad; Eitan, Tom; Voronov, Elena; Apte, Ron N; Rath-Wolfson, Lea; Albeck, Michael; Kalechman, Yona; Sredni, Benjamin

    2014-06-13

    Inflammatory bowel diseases (IBDs) are a group of idiopathic, chronic immune-mediated diseases characterized by an aberrant immune response, including imbalances of inflammatory cytokine production and activated innate and adaptive immunity. Selective blockade of leukocyte migration into the gut is a promising strategy for the treatment of IBD. This study explored the effect of the immunomodulating tellurium compound ammonium trichloro (dioxoethylene-o,o') tellurate (AS101) on dextran sodium sulfate (DSS)-induced murine colitis. Both oral and intraperitoneal administration of AS101 significantly reduced clinical manifestations of IBD. Colonic inflammatory cytokine levels (IL-17 and IL-1β) were significantly down-regulated by AS101 treatment, whereas IFN-γ was not affected. Neutrophil and α4β7(+) macrophage migration into the tissue was inhibited by AS101 treatment. Adhesion of mesenteric lymph node cells to mucosal addressin cell adhesion molecule (MAdCAM-1), the ligand for α4β7 integrin, was blocked by AS101 treatment both in vitro and in vivo. DSS-induced destruction of colonic epithelial barrier/integrity was prevented by AS101, via up-regulation of colonic glial-derived neurotrophic factor, which was found previously to regulate the intestinal epithelial barrier through activation of the PI3K/AKT pathway. Indeed, the up-regulation of glial-derived neurotrophic factor by AS101 was associated with increased levels of colonic pAKT and BCL-2 and decreased levels of BAX. Furthermore, AS101 treatment reduced colonic permeability to Evans blue and decreased colonic TUNEL(+) cells. Our data revealed multifunctional activities of AS101 in the DSS-induced colitis model via anti-inflammatory and anti-apoptotic properties. We suggest that treatment with the small, nontoxic molecule AS101 may be an effective early therapeutic approach for controlling human IBD. PMID:24764299

  14. Fluorescence detection of proteins in sodium dodecyl sulfate-polyacrylamide gels using environmentally benign, nonfixative, saline solution.

    PubMed

    Steinberg, T H; Lauber, W M; Berggren, K; Kemper, C; Yue, S; Patton, W F

    2000-02-01

    SYPRO Tangerine stain is an environmentally benign alternative to conventional protein stains that does not require solvents such as methanol or acetic acid for effective protein visualization. Instead, proteins can be stained in a wide range of buffers, including phosphate-buffered saline or simply 150 mM NaCl using an easy, one-step procedure that does not require destaining. Stained proteins can be excited by ultraviolet light of about 300 nm or with visible light of about 490 nm. The fluorescence emission maximum of the dye is approximately 640 nm. Noncovalent binding of SYPRO Tangerine dye is mediated by sodium dodecyl sulfate (SDS) and to a lesser extent by hydrophobic amino acid residues in proteins. This is in stark contrast to acidic silver nitrate staining, which interacts predominantly with lysine residues or Coomassie Blue R, which in turn interacts primarily with arginine and lysine residues. The sensitivity of SYPRO Tangerine stain is similar to that of the SYPRO Red and SYPRO Orange stains - about 4-10 ng per protein band. This detection sensitivity is comparable to colloidal Coomassie blue staining and rapid silver staining procedures. Since proteins stained with SYPRO Tangerine dye are not fixed, they can easily be eluted from gels or utilized in zymographic assays, provided that SDS does not inactivate the protein of interest. This is demonstrated with in-gel detection of rabbit liver esterase activity using alpha-naphthyl acetate and Fast Blue BB dye as well as Escherichia coli beta-glucuronidase activity using ELF-97 beta-D-glucuronide. The dye is also suitable for staining proteins in gels prior to their transfer to membranes by electroblotting. Gentle staining conditions are expected to improve protein recovery after electroelution and to reduce the potential for artifactual protein modifications such as the alkylation of lysine and esterification of glutamate residues, which complicate interpretation of peptide fragment profiles generated by mass spectrometry. PMID:10726749

  15. Sodium dodecyl sulfate-modified electrochemical paper-based analytical device for determination of dopamine levels in biological samples.

    PubMed

    Rattanarat, Poomrat; Dungchai, Wijitar; Siangproh, Weena; Chailapakul, Orawon; Henry, Charles S

    2012-09-26

    We report the development of an electrochemical paper-based analytical device (ePAD) for the selective determination of dopamine (DA) in model serum sample. The ePAD device consists of three layers. In the top layer, SU-8 photoresist defines a hydrophilic sample application spot on the filter paper. The middle layer was made from transparency film and contained two holes, one for sample preconcentration and the other for the surfactant to allow transfer to the third layer. A screen-printed carbon electrode formed the bottom layer and was used for electrochemical measurements. In the absence of the anionic surfactant, sodium dodecyl sulfate (SDS), the oxidation peaks of DA, ascorbic acid (AA) and uric acid (UA) overlapped. With the addition of SDS, the DA oxidation peak shifted to more negative values and was clearly distinguishable from AA and UA. The oxidation potential shift was presumably due to preferential electrostatic interactions between the cationic DA and the anionic SDS. Indeed, whilst the SDS-modified paper improved the DA current five-fold, the non-ionic Tween-20 and cationic tetradecyltrimethylammonium bromide surfactants had no effect or reduced the current, respectively. Furthermore, only the SDS-modified paper showed the selective shift in oxidation potential for DA. DA determination was carried out using square-wave voltammetry between -0.2 and 0.8 V vs. Ag/AgCl, and this ePAD was able to detect DA over a linear range of 1-100 μM with a detection limit (S/N=3) of 0.37 μM. The ePAD seems suitable as a low cost, easy-to-use, portable device for the selective quantitation of DA in human serum samples. PMID:22935367

  16. Lysate of Probiotic Lactobacillus plantarum K8 Modulate the Mucosal Inflammatory System in Dextran Sulfate Sodium-induced Colitic Rats

    PubMed Central

    Shin, Jae-Ho; Kim, Ji Yeon

    2014-01-01

    Inflammatory bowel disease (IBD) is caused by dysregulation of colon mucosal immunity and mucosal epithelial barrier function. Recent studies have reported that lipoteichoic acid (LTA) from Lactobacillus plantarum K8 reduces excessive production of pro-inflammatory cytokine. In this study, we investigated the preventive effects of lysate of Lb. plantarum K8 in dextran sulfate sodium (DSS)-induced colitis. Male Sprague-Dawley rats were orally pretreated with lysate of Lb. plantarum K8 (low dose or high dose) or live Lb. plantarum K8 prior to the induction of colitis using 4% DSS. Disease progression was monitored by assessment of disease activity index (DAI). Histological changes of colonic tissues were evaluated by hematoxylin and eosin (HE) staining. Tumor necrosis factor-alpha (TNF-?), interleukin-6 (IL-6) levels were measured using enzyme-linked immunosorbent assay (ELISA). The colon mRNA expressions of TNF-?, IL-6, and toll like receptor-2 (TLR-2) were examined by quantitative real-time-transcription polymerase chain reaction (qPCR). Lysate of Lb. plantarum K8 suppressed colon shortening, edema, mucosal damage, and the loss of DSS-induced crypts. The groups that received lysate of Lb. plantarum K8 exhibited significantly decreased levels of the pro-inflammatory cytokines TNF-? and IL-6 in the colon. Interestingly, colonic expression of toll like receptor-2 mRNA in the high-dose lysate of Lb. plantarum K8 group increased significantly. Our study demonstrates the protective effects of oral lysate of Lb. plantarum K8 administration on DSS-induced colitis via the modulation of pro-inflammatory mediators of the mucosal immune system.

  17. Dextran sulfate sodium-induced colitis-associated neoplasia: a promising model for the development of chemopreventive interventions.

    PubMed

    Clapper, Margie Lee; Cooper, Harry Stanley; Chang, Wen-Chi Lee

    2007-09-01

    Individuals diagnosed with ulcerative colitis face a significantly increased risk of developing colorectal dysplasia and cancer during their lifetime. To date, little attention has been given to the development of a chemopreventive intervention for this high-risk population. The mouse model of dextran sulfate sodium (DSS) - induced colitis represents an excellent preclinical system in which to both characterize the molecular events required for tumor formation in the presence of inflammation and assess the ability of select agents to inhibit this process. Cyclic administration of DSS in drinking water results in the establishment of chronic colitis and the development of colorectal dysplasias and cancers with pathological features that resemble those of human colitis-associated neoplasia. The incidence and multiplicity of lesions observed varies depending on the mouse strain used (ie, Swiss Webster, C57BL/6J, CBA, ICR) and the dose (0.7%-5.0%) and schedule (1-15 cycles with or without a subsequent recovery period) of DSS. The incidence of neoplasia can be increased and its progression to invasive cancer accelerated significantly by administering DSS in combination with a known colon carcinogen (azoxymethane (AOM), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-1- methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)) or iron. More recent induction of colitis-associated neoplasia in genetically defined mouse strains has provided new insight into the role of specific genes (ie, adenomatous polyposis coli (Apc), p53, inducible nitric oxide synthase (iNOS), Msh2) in the development of colitis-associated neoplasias. Emerging data from chemopreventive intervention studies document the efficacy of several agents in inhibiting DSS-induced neoplasia and provide great promise that colitis-associated colorectal neoplasia is a preventable disease. PMID:17723178

  18. Characterization of Finnish Borrelia burgdorferi sensu lato isolates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and with monoclonal antibodies.

    PubMed Central

    Tuomi, J; Rantamki, L K; Tanskanen, R; Junttila, J

    1995-01-01

    Thirty-seven Borrelia burgdorferi strains, isolated in 1992 from Ixodes ricinus in Finland, were investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and by immunoblotting and indirect immunofluorescence assay (IFA) with five to nine monoclonal antibodies (MAbs). By SDS-PAGE results and reactivities to MAbs H3TS, J 8.3, I 17.3, and D6, the 37 isolates were assigned to the species B. burgdorferi sensu stricto (n = 7), Borrelia afzelii (n = 17), or Borrelia garinii (n = 13). Twenty more isolates examined only by IFA and with part of the MAbs were distributed as follows: 9 B. burgdorferi sensu stricto and 11 other species. Among 16 of 37 isolates displaying a SDS-PAGE patterns considered typical of that of B. garinii, 3 were negative by the test with MAb D6; the rest were positive. The three MAb D6-negative isolates reacted with MAb J 8.3 but not with MAb I 17.3. It is suggested that these isolates of a previously undescribed type represent atypical B. afzelii strains deficient in the expression of OspB proteins. The misleading species designation by the SDS-PAGE result is described. The IFA results were generally consistent with those obtained by immunoblotting. The exception was for 3 of 29 isolates that were positive with MAb H5332 by immunoblotting but that were IFA negative. In the present material of 57 strains, all 16 B. burgdorferi sensu stricto isolates originated from the Aland Islands. B. afzelii and B. garinii were isolated from all three regions where ticks were collected. The distributive difference seems to offer a basis for comparative clinico-epidemiological studies of Lyme borreliosis. PMID:7559935

  19. Efficacy of levulinic acid-sodium dodecyl sulfate against Encephalitozoon intestinalis, Escherichia coli O157:H7, and Cryptosporidium parvum.

    PubMed

    Ortega, Ynes R; Torres, Maria P; Tatum, Jessica M

    2011-01-01

    Foodborne parasites are characterized as being highly resistant to sanitizers used by the food industry. In 2009, a study reported the effectiveness of levulinic acid in combination with sodium dodecyl sulfate (SDS) in killing foodborne bacteria. Because of their innocuous properties, we studied the effects of levulinic acid and SDS at various concentrations appropriate for use in foods, on the viability of Cryptosporidium parvum and Encephalitozoon intestinalis. The viability of Cryptosporidium and E. intestinalis was determined by in vitro cultivation using the HCT-8 and RK-13 cell lines, respectively. Two Escherichia coli O157:H7 isolates were also used in the present study: strain 932 (a human isolate from a 1992 Oregon meat outbreak) and strain E 0018 (isolated from calf feces). Different concentrations and combinations of levulinic acid and SDS were tested for their ability to reduce infectivity of C. parvum oocysts (10(5)), E. intestinalis spores (10(6)), and E. coli O157:H7 (10(7)/ml) when in suspension. Microsporidian spores were treated for 30 and 60 min at 20 2C. None of the combinations of levulinic acid and SDS were effective at inactivating the spores or oocysts. When Cryptosporidium oocysts were treated with higher concentrations (3% levulinic acid-2% SDS and 2% levulinic acid-1% SDS) for 30, 60, and 120 min, viability was unaffected. E. coli O157:H7, used as a control, was highly sensitive to the various concentrations and exposure times tested. SDS and levulinic acid alone had very limited effect on E. coli O157:H7 viability, but in combination they were highly effective at 30 and 60 min of incubation. In conclusion, Cryptosporidium and microsporidia are not inactivated when treated for various periods of time with 2% levulinic acid-1% SDS or 3% levulinic acid-2% SDS at 20C, suggesting that this novel sanitizer cannot be used to eliminate parasitic contaminants in foods. PMID:21219777

  20. The Sasa quelpaertensis Leaf Extract Inhibits the Dextran Sulfate Sodium-induced Mouse Colitis Through Modulation of Antioxidant Enzyme Expression

    PubMed Central

    Yeom, Yiseul; Kim, Yuri

    2015-01-01

    Background: Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease. The objective of this study is to investigate the protective effect of Sasa quelpaertensis leaf extract (SQE) against oxidative stress in mice with dextran sulfate sodium (DSS)-induced colitis. Methods: Mice were treated with SQE (100 mg/kg or 300 mg/kg body weight) by gavage in advance two weeks before inflammation was induced. Then, the mice were administered with 2.5% DSS in drinking water for 7 days and normal drinking water for 7 days between two DSS treatment. Disease activity index values, gut motility, and severity of the resulting oxidative DNA damage were analyzed. The antioxidant effect of SQE was evaluated by measuring malondialdehyde (MDA) and superoxide dismutase (SOD) activity in plasma samples. Catalase activity and expressions levels of glutathione peroxidase 1 (Gpx1), SOD1, and SOD2 were also detected in colon tissues. Results: Administration of SQE significantly reduced the severity of DSS-induced colitis compared to the control (Ctrl) group. Levels of 8-oxo-dG, an oxidative DNA damage marker, were significantly lower in the SQE group compared to the untreated DSS Ctrl group. In the SQE (300 mg/kg) group, MDA levels were significantly lower, while SOD and catalase activity levels in the plasma samples were significantly higher compared with the DSS Ctrl group. The expression levels of the antioxidant enzymes, SOD2 and Gpx1, were significantly higher, while the levels of SOD 1 expression were lower, in the colon tissues of the DSS Ctrl group compared with those of the Ctrl group. In contrast, administration of SQE significantly down-regulated SOD2 and Gpx1 expressions and up-regulated SOD1 expression. Conclusions: These results indicate that SQE efficiently suppresses oxidative stress in DSS-induced colitis in mice, and its action is associated with the regulation of antioxidant enzymes. PMID:26151047

  1. Sodium Dodecyl Sulfate and C31G as Microbicidal Alternatives to Nonoxynol 9: Comparative Sensitivity of Primary Human Vaginal Keratinocytes

    PubMed Central

    Krebs, Fred C.; Miller, Shendra R.; Catalone, Bradley J.; Welsh, Patricia A.; Malamud, Daniel; Howett, Mary K.; Wigdahl, Brian

    2000-01-01

    A broad-spectrum vaginal microbicide must be effective against a variety of sexually transmitted disease pathogens and be minimally toxic to the cell types found within the vaginal epithelium, including vaginal keratinocytes. We assessed the sensitivity of primary human vaginal keratinocytes to potential topical vaginal microbicides nonoxynol-9 (N-9), C31G, and sodium dodecyl sulfate (SDS). Direct immunofluorescence and fluorescence-activated cell sorting analyses demonstrated that primary vaginal keratinocytes expressed epithelial cell-specific keratin proteins. Experiments that compared vaginal keratinocyte sensitivity to each agent during a continuous, 48-h exposure demonstrated that primary vaginal keratinocytes were almost five times more sensitive to N-9 than to either C31G or SDS. To evaluate the effect of multiple microbicide exposures on cell viability, primary vaginal keratinocytes were exposed to N-9, C31G, or SDS three times during a 78-h period. In these experiments, cells were considerably more sensitive to C31G than to N-9 or SDS at lower concentrations within the range tested. When agent concentrations were chosen to result in an endpoint of 25% viability after three daily exposures, each exposure decreased cell viability at the same constant rate. When time-dependent sensitivity during a continuous 48-h exposure was examined, exposure to C31G for 18 h resulted in losses in cell viability not caused by either N-9 or SDS until at least 24 to 48 h. Cumulatively, these results reveal important variations in time- and concentration-dependent sensitivity to N-9, C31G, or SDS within populations of primary human vaginal keratinocytes cultured in vitro. These investigations represent initial steps toward both in vitro modeling of the vaginal microenvironment and studies of factors that impact the in vivo efficacy of vaginal topical microbicides. PMID:10858360

  2. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis.

    PubMed

    Kang, Chil-Sung; Ban, Mingi; Choi, Eun-Jeong; Moon, Hyung-Geun; Jeon, Jun-Sung; Kim, Dae-Kyum; Park, Soo-Kyung; Jeon, Seong Gyu; Roh, Tae-Young; Myung, Seung-Jae; Gho, Yong Song; Kim, Jae Gyu; Kim, Yoon-Keun

    2013-01-01

    Gut microbiota play an important part in the pathogenesis of mucosal inflammation, such as inflammatory bowel disease (IBD). However, owing to the complexity of the gut microbiota, our understanding of the roles of commensal and pathogenic bacteria in the maintenance of immune homeostasis in the gut is evolving only slowly. Here, we evaluated the role of gut microbiota and their secreting extracellular vesicles (EV) in the development of mucosal inflammation in the gut. Experimental IBD model was established by oral application of dextran sulfate sodium (DSS) to C57BL/6 mice. The composition of gut microbiota and bacteria-derived EV in stools was evaluated by metagenome sequencing using bacterial common primer of 16S rDNA. Metagenomics in the IBD mouse model showed that the change in stool EV composition was more drastic, compared to the change of bacterial composition. Oral DSS application decreased the composition of EV from Akkermansia muciniphila and Bacteroides acidifaciens in stools, whereas increased EV from TM7 phylum, especially from species DQ777900_s and AJ400239_s. In vitro pretreatment of A. muciniphila-derived EV ameliorated the production of a pro-inflammatory cytokine IL-6 from colon epithelial cells induced by Escherichia coli EV. Additionally, oral application of A. muciniphila EV also protected DSS-induced IBD phenotypes, such as body weight loss, colon length, and inflammatory cell infiltration of colon wall. Our data provides insight into the role of gut microbiota-derived EV in regulation of intestinal immunity and homeostasis, and A. muciniphila-derived EV have protective effects in the development of DSS-induced colitis. PMID:24204633

  3. Resolvin E1, an endogenous lipid mediator derived from eicosapentaenoic acid, prevents dextran sulfate sodium induced colitis

    PubMed Central

    Ishida, Tsukasa; Yoshida, Masaru; Arita, Makoto; Nishitani, Yosuke; Nishiumi, Shin; Masuda, Atsuhiro; Mizuno, Shigeto; Takagawa, Tetsuya; Morita, Yoshinori; Kutsumi, Hiromu; Inokuchi, Hideto; Serhan, Charles N; Blumberg, Richard S.; Azuma, Takeshi

    2011-01-01

    Background Resolvin E1 (RvE1), an endogenous lipid mediator derived from eicosapentaenoic acid (EPA), has been identified in local inflammation during the healing stage. RvE1 reduces inflammation in several types of animal models including peritonitis and retinopathy, and blocks human neutrophil transendothelial cell migration. The RvE1 receptor ChemR23 is expressed on myeloid cells such as macrophages and dendritic cells. The aim of this study was to determine whether RvE1 regulates colonic inflammation when the innate immune response of macrophages plays a key role in the pathogenesis and tissue damage. Methods/Results RvE1 receptor, ChemR23, was expressed in mouse peritoneal macrophages as defined by flow cytometry. Peritoneal macrophages were pretreated with RvE1, followed by lipopolysaccharide (LPS) stimulation whereupon of the transcriptional levels of proinflammatory cytokines were analyzed. RvE1 treatment led to the inhibition of proinflammatory cytokines including TNF-? and IL-12p40. In HEK293 cells, pretreatment with RvE1 inhibited TNF-?-induced nuclear translocation of NF-?B in a ChemR23 dependent manner. These results suggested that RvE1 could regulate pro-inflammatory responses of macrophages expressing ChemR23. Therefore, we investigated the beneficial effects of RvE1 in dextran sulfate sodium (DSS) induced colitis. RvE1 treatment led to amelioration of colonic inflammation. Conclusions These results indicate that RvE1 suppresses pro-inflammatory responses of macrophages. RvE1 and its receptor may therefore be useful as therapeutic targets in the treatment of human inflammatory bowel disease (IBD) and other inflammatory disorders. PMID:19572372

  4. Protective role of G-CSF in dextran sulfate sodium-induced acute colitis through generating gut-homing macrophages.

    PubMed

    Meshkibaf, Shahab; Martins, Andrew J; Henry, Garth T; Kim, Sung Ouk

    2016-02-01

    Granulocyte colony-stimulating factor (G-CSF) is a pleiotropic cytokine best known for its role in promoting the generation and function of neutrophils. G-CSF is also found to be involved in macrophage generation and immune regulation; however, its in vivo role in immune homeostasis is largely unknown. Here, we examined the role of G-CSF in dextran sulfate sodium (DSS)-induced acute colitis using G-CSF receptor-deficient (G-CSFR(-/-)) mice. Mice were administered with 1.5% DSS in drinking water for 5days, and the severity of colitis was measured for the next 5days. GCSFR(-/-) mice were more susceptible to DSS-induced colitis than G-CSFR(+/+) or G-CSFR(-/+) mice. G-CSFR(-/-) mice harbored less F4/80(+) macrophages, but a similar number of neutrophils, in the intestine. In vitro, bone marrow-derived macrophages prepared in the presence of both G-CSF and macrophage colony-stimulating factor (M-CSF) (G-BMDM) expressed higher levels of regulatory macrophage markers such as programmed death ligand 2 (PDL2), CD71 and CD206, but not in arginase I, transforming growth factor (TGF)-?, Ym1 (chitinase-like 3) and FIZZ1 (found in inflammatory zone 1), and lower levels of inducible nitric oxide synthase (iNOS), CD80 and CD86 than bone marrow-derived macrophages prepared in the presence of M-CSF alone (BMDM), in response to interleukin (IL)-4/IL-13 and lipopolysaccharide (LPS)/interferon (IFN)-?, respectively. Adoptive transfer of G-BMDM, but not BMDM, protected G-CSFR(-/-) mice from DSS-induced colitis, and suppressed expression of tumor necrosis factor (TNF)-?, IL-1? and iNOS in the intestine. These results suggest that G-CSF plays an important role in preventing colitis, likely through populating immune regulatory macrophages in the intestine. PMID:26687628

  5. Alanyl-glutamine administration suppresses Th17 and reduces inflammatory reaction in dextran sulfate sodium-induced acute colitis.

    PubMed

    Hou, Yu-Chen; Liu, Jun-Jen; Pai, Man-Hui; Tsou, Shung-Sheng; Yeh, Sung-Ling

    2013-09-01

    T helper (Th) cells play a major role in the pathogenesis of inflammatory bowel disease (IBD). Glutamine (Gln) is known to have immunomodulatory effects in metabolic stressed conditions. This study investigated the effects of post-treatment of alanyl-glutamine (Ala-Gln) on Th cell-associated cytokine expressions and inflammatory reaction in dextran sulfate sodium (DSS)-induced colitis. C57BL/6 mice received distilled water containing 3% DSS for 5 days to induce colitis, whereas the normal control (NC) group received distilled water. After induction of colitis, one of the colitis groups (DG) was intraperitoneally injected with an Ala-Gln solution (0.5 g Gln/kg/d), and the saline DSS group (DS) received an identical volume of saline. After treatment for 3 days, mice were sacrificed, and the blood and tissue samples were collected for further analysis. DSS colitis resulted in higher percentages of blood interleukin (IL)-17-secreting Th cells and greater expression of Th cell-associated cytokine messenger RNA (mRNA) in the mesenteric lymph nodes (MLN). Also, luminal immunoglobin (Ig) G, keratinocyte-derived chemokine, and macrophage chemoattractant protein-1 levels were higher in the DS group than the NC group, whereas these parameters did not differ between the DG and NC groups. The DG group had lower blood IL-17A, 17F, MLN IL-17 mRNA and macrophage percentage in the peritoneal lavage fluid than those of the DS group. These results suggest that post-treatment with Ala-Gln suppressed Th17-associated cytokine expressions, reduced macrophage infiltration into the peritoneal cavity and decreased pro-inflammatory cytokine production in the colon, thus may have attenuated inflammatory response in DSS-induced colitis. PMID:23721689

  6. Simulation of blood oxygenation in capillary membrane oxygenators using modified sulfite solution.

    PubMed

    Tabesh, Hadi; Amoabediny, Ghasem; Rasouli, Ali; Ramedani, Arash; Poorkhalil, Ali; Kashefi, Ali; Mottaghy, Khosrow

    2014-12-01

    Blood oxygenation is the main performance characteristic of capillary membrane oxygenators (CMOs). Handling of natural blood in in vitro investigations of CMOs is quite complex and time-consuming. Since the conventional blood analog fluids (e.g. water/glycerol) lack a substance with an affinity to capture oxygen comparable to hemoglobin's affinity, in this study a novel approach using modified sulfite solution is proposed to address this challenge. The solution comprises sodium sulfite as a component, simulating the role of hemoglobin in blood oxygenation. This approach is validated by OTR (oxygen transfer rate) measured using native porcine blood, in two types of commercially available CMOs. Consequently, the number of complicated natural blood investigations in the evolution procedure of newly developed oxygenators would considerably decrease. Moreover, the reassessing of failed devices, in clinics, would be performed more precisely using a modified sulfite solution than simple water/glycerol testing. PMID:25159916

  7. The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent

    NASA Astrophysics Data System (ADS)

    Amini, R.; Sarabi, A. A.

    2011-06-01

    Sodium nitrite has been used as an accelerating agent in phosphating bath to improve its properties. However, it is well known that sodium nitrite is a carcinogenic component in phosphating sludge. In this study, it has been aimed to replace sodium nitrite by an environmentally friendly accelerating agent. To this end, sodium dodecyl sulfate (SDS) was used in phosphating bath to improve the phosphate coating formation on an AZ31 magnesium alloy. The effect of SDS/sodium nitrite ratio on the phosphated samples properties was also studied. Using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), direct current (DC) polarization and electrochemical impedance spectroscopy (EIS) the properties of phosphated magnesium samples were studied. Results showed uniform phosphate coating formation on the magnesium sample mostly in hopeite phase composition. In addition, a denser and less permeable coating can be obtained at these conditions. The corrosion resistance of the phosphated samples was superiorly improved using higher SDS concentration in the phosphating bath.

  8. Interactions between hydrophobically modified alkali-swellable emulsion polymers and sodium dodecyl sulfate probed by fluorescence and rheology.

    PubMed

    Chen, Shaohua; Siu, Howard; Duhamel, Jean

    2014-01-01

    The interactions between a pyrene-labeled hydrophobically modified alkali-swellable emulsion (Py-HASE) polymer and the anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution were investigated with a fluorometer, a rheometer, and a combination of both instruments to probe the fluorescence of the polymer while the solution was being sheared. Different amounts of SDS were added to two solutions with Py-HASE concentrations of 8 and 57 g/L. The pyrene monomer and excimer decays of the Py-HASE solutions were acquired and globally fitted according to the fluorescence blob model (FBM) and the model free (MF) analysis. Both models yielded the same molar fractions of pyrenes that were isolated, aggregated, or forming excimer by diffusion. The average number of pyrenes per micelle, , was determined according to the FBM and found to equal 2.0 at the SDS concentration corresponding to a maximum in solution viscosity. For a Py-HASE concentration of 57 g/L, the solution viscosities at different SDS concentrations were measured from the Newtonian plateau regions and were found to peak at an SDS concentration of 11 mM. The steady-state fluorescence spectra were acquired at SDS concentrations of 0.1, 6.0, 11.1, and 17 mM while the 57 g/L Py-HASE solution was sheared. Although the solutions of Py-HASE and SDS were found to shear-thin substantially with the solution viscosity decreasing by up to 4 orders of magnitude, no change was observed in the fluorescence spectra acquired at shear rates ranging from 0.005 to 500 s(-1). The overlap of the fluorescence spectra under conditions where the solution viscosity decreased by 4 orders of magnitude suggested that the rearrangement of the hydrophobes from inter- to intramolecular associations that leads to shear-thinning occurs on a time scale that is much faster than that over which the rheology experiments are being conducted. PMID:24364758

  9. Effects of multi-walled carbon nanotubes on mineralization and mobility of nonylphenol and sodium dodecyl sulfate in agricultural soils

    NASA Astrophysics Data System (ADS)

    Lillotte, Julia; Marschner, Bernd; Stumpe, Britta

    2014-05-01

    Nanotechnology is one of the major scientific research fields in this decade. One of the most wide-spread nanomaterials are carbon based nanoparticles (CNPs) which are increasingly be used in industry. Several studies shows that CNPs are interacting with other chemical compounds and organic pollutants in the environment. It is assumed that the interactions between CNPs and organic pollutants are affected by solution and aggregate behavior. Based on the knowledge of the behavior of CNPs and organic pollutants in aquatic systems the interactions of CNPs and organic pollutants in agricultural soils have to be studied. As organic pollutants two environmental substances, nonylphenol (NP) and sodium dodecyl sulfate (SDS) were selected as model substances. They occur frequently in aqueous systems and also show different solubility behavior. As CNP representatives, two different multi-walled carbon nanotubes (MWNT) were selected. They differed either in length or outer diameter. Conclusions therefrom are to be closed the influence of length and diameter of the sorption capacity of different organic pollutants. In addition, two agricultural soils (sandy and silty soil) and one forest soil (sandy soil) were chosen. Mineralization and sorption experiments were conducted to provide information about the degradation of organic pollutants in presence of multi-walled carbon nanotubes in soils. To analyze the CNPs mineralization potential, peroxidase activity was measured. Further extraction experiments were conducted to detect the extractable part of organic pollutants. The results show that the surface area of the MWNT has a significant impact on the sorption behav-ior of NP and SDS in soils. The sorption of NP and SDS is much higher than without MWNT. However, the properties of the organic pollutants (different water solubility and hydrophobicity) are equally important and should be noted. The degradation of both pollutants is influenced by MWNT. Due to the strong sorption of NP and SDS on the MWNT, the degradation of these pollutants in soils, is slower than without MWNT. The peroxidase activity did not contribute to NP and SDS degradation. But the peroxidase activity in agricultural soils is higher than in forest soils. The extractable fraction of NP and SDS is very low and amounts to a maximum of 2 %. Due to the lower degradation of NP and SDS in the presence of MWNT a longer retention of the substances in the soils and potential toxic effects for humans and animals, as a result of plant uptake may be taken into account.

  10. Different Effects of Three Selected Lactobacillus Strains in Dextran Sulfate Sodium-Induced Colitis in BALB/c Mice

    PubMed Central

    Cui, Yi; Wei, Hongyun; Lu, Fanggen; Liu, Xiaowei; Liu, Deliang; Gu, Li; Ouyang, Chunhui

    2016-01-01

    Aim To analyze the changes of different Lactobacillus species in ulcerative colitis patients and to further assess the therapeutic effects of selected Lactobacillus strains on dextran sulfate sodium (DSS)-induced experimental colitis in BALB/c mice. Methods Forty-five active ulcerative colitis (UC) patients and 45 population-based healthy controls were enrolled. Polymerase chain reaction (PCR) amplification and real-time PCR were performed for qualitative and quantitative analyses, respectively, of the Lactobacillus species in UC patients. Three Lactobacillus strains from three species were selected to assess the therapeutic effects on experimental colitis. Sixty 8-week-old BALB/c mice were divided into six groups. The five groups that had received DSS were administered normal saline, mesalazine, L. fermentum CCTCC M206110 strain, L. crispatus CCTCC M206119 strain, or L. plantarum NCIMB8826 strain. We assessed the severity of colitis based on disease activity index (DAI), body weight loss, colon length, and histologic damage. Results The detection rate of four of the 11 Lactobacillus species decreased significantly (P < 0.05), and the detection rate of two of the 11 Lactobacillus species increased significantly (P < 0.05) in UC patients. Relative quantitative analysis revealed that eight Lactobacillus species declined significantly in UC patients (P < 0.05), while three Lactobacillus species increased significantly (P < 0.05). The CCTCC M206110 treatment group had less weight loss and colon length shortening, lower DAI scores, and lower histologic scores (P < 0.05), while the CCTCC M206119 treatment group had greater weight loss and colon length shortening, higher histologic scores, and more severe inflammatory infiltration (P < 0.05). NCIMB8826 improved weight loss and colon length shortening (P < 0.05) with no significant influence on DAI and histologic damage in the colitis model. Conclusions Administration of an L. crispatus CCTCC M206119 supplement aggravated DSS-induced colitis. L. fermentum CCTCC M206110 proved to be effective at attenuating DSS-induced colitis. The potential probiotic effect of L. plantarum NCIMB8826 on UC has yet to be assessed. PMID:26840426

  11. Fed-batch cultivation of the marine bacterium Sulfitobacter pontiacus using immobilized substrate and purification of sulfite oxidase by application of membrane adsorber technology.

    PubMed

    Muffler, Kai; Ulber, Roland

    2008-03-01

    Sulfitobacter pontiacus, a gram-negative heterotrophic bacterium isolated from the Black Sea is well known to produce a soluble AMP-independent sulfite oxidase (sulfite: acceptor oxidoreductase) of high activity. Such an enzyme can be of great help in establishing biosensor systems for detection of sulfite in food and beverages considering the high sensitivity of biosensors and the increasing demand for such biosensor devices. For obtaining efficient amounts of the enzyme, an induction of its biosynthesis by supplementing sufficient concentrations of sodium sulfite to the fermentation broth is required. Owing to the fact that a high initial concentration of sodium sulfite decreases dramatically the enzyme expression, different fed-batch strategies can be applied to circumvent such inhibition or repression of the enzyme respectively. By the use of sulfite species immobilized in polyvinyl alcohol gels, an approach to the controlled and continuous feeding of sulfite to the cultivation media could be established to diminish inhibitory concentrations. Furthermore, the purification of the enzyme is described by using membrane adsorber technology. PMID:17705251

  12. 40 CFR 430.40 - Applicability; description of the dissolving sulfite subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dissolving sulfite subcategory. 430.40 Section 430.40 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Dissolving Sulfite Subcategory § 430.40 Applicability; description of the dissolving sulfite... at dissolving sulfite mills....

  13. 40 CFR 430.40 - Applicability; description of the dissolving sulfite subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dissolving sulfite subcategory. 430.40 Section 430.40 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Dissolving Sulfite Subcategory § 430.40 Applicability; description of the dissolving sulfite... at dissolving sulfite mills....

  14. A study of molecular complex formation between propyl gallate and ascorbic acid in the microemulsion phase of sodium dodecyl sulfate, pentanol and water system.

    PubMed

    Szymula, M; Radzki, S

    2004-06-01

    The association between two water-soluble antioxidants, i.e. ascorbic acid and propyl gallate have been studied by absorption spectroscopy in microemulsion formed in sodium dodecyl sulfate/pentanol/water micellar system. It has been shown that propyl gallate forms 1:1 molecular complex with ascorbic acid in every solution. Evolution of the absorption spectra during the study of molecular complex formation goes through well-defined isosbestic points. The association constants were calculated using curve-fitting procedure. The observed interactions are stronger in the less polar solvents. PMID:15261038

  15. A new probe of solvent accessibility of bound photosensitizers. 1. Ruthenium(II) and osmium(II) photosensitizers in sodium lauryl sulfate micelles

    SciTech Connect

    Hauenstein, B.L. Jr.; Dressick, W.J.; Buell, S.L.; Demas, J.N.; DeGraff, B.A.

    1983-06-29

    A new method of measuring solvent accessibility of photosensitizers bound to organized media is presented. In particular, the solvent accessibility of a series of ruthenium(II) and osmium(II) photosensitizers bound to sodium lauryl sulfate micelles has been determined. The method takes advantage of the large solvent deuterium effect on the excited-state lifetimes of these complexes. The solvent accessibility of the bound complexes correlates with the hydrophobicity of the ligands. The potential application of this method to a variety of other systems is mentioned.

  16. Isolation and characterization of sulfite oxidase from Alligator mississipiensis

    SciTech Connect

    Robbins, A.; Neame, P.J.; Barber, M.J. )

    1991-03-11

    Sulfite oxidase has been isolated from fresh alligator liver using ammonium sulfate and acetone fractionation, DEAE chromatography and FPLC on Mono Q. The enzyme is dimeric and exhibits a subunit M. Wt. of approximately 58 kDa, larger than that of chicken SO. EPR spectroscopy of the partially-reduced enzyme revealed a single Mo(V) species while visible spectroscopy revealed the presence of cytochrome b{sub 557}. Maximal activities were obtained at pH 8 and 9, respectively. K{sub m}'s for SO{sub 3}{sup 2 {minus}}, cyt. c and Fe(CN){sub 6}{sup 3 {minus}} were 23.5 uM, 2.9 uM and 8.0 uM, respectively. Sequencing of peptides obtained by endoprotease K digestion indicated regions of extensive sequence similarity to chicken and rat enzymes in both heme and Mo-pterin domains. Regions of sequence dissimilarity were also found.

  17. Applications of pulsed EPR spectroscopy to structural studies of sulfite oxidizing enzymes

    SciTech Connect

    Klein, Eric L.; Astashkin, Andrei V.; Raitsimring, Arnold; Enemark, John H.

    2013-01-01

    Sulfite oxidizing enzymes (SOEs), including sulfite oxidase (SO) and bacterial sulfite dehydrogenase (SDH), catalyze the oxidation of sulfite (SO32?) to sulfate (SO42?). The active sites of SO and SDH are nearly identical, each having a 5-coordinate, pseudo-square-pyramidal Mo with an axial oxo ligand and three equatorial sulfur donor atoms. One sulfur is from a conserved Cys residue and two are from a pyranopterindithiolene (molybdopterin, MPT) cofactor. The identity of the remaining equatorial ligand, which is solvent-exposed, varies during the catalytic cycle. Numerous in vitro studies, particularly those involving electron paramagnetic resonance (EPR) spectroscopy of the Mo(V) states of SOEs, have shown that the identity and orientation of this exchangeable equatorial ligand depends on the buffer pH, the presence and concentration of certain anions in the buffer, as well as specific point mutations in the protein. Until very recently, however, EPR has not been a practical technique for directly probing specific structures in which the solvent-exposed, exchangeable ligand is an O, OH?, H2O, SO32?, or SO42? group, because the primary O and S isotopes (16O and 32S) are magnetically silent (I = 0). This review focuses on the recent advances in the use of isotopic labeling, variable-frequency high resolution pulsed EPR spectroscopy, synthetic model compounds, and DFT calculations to elucidate the roles of various anions, point mutations, and steric factors in the formation, stabilization, and transformation of SOE active site structures.

  18. Applications of pulsed EPR spectroscopy to structural studies of sulfite oxidizing enzymes?

    PubMed Central

    Klein, Eric L.; Astashkin, Andrei V.; Raitsimring, Arnold M.; Enemark, John H.

    2012-01-01

    Sulfite oxidizing enzymes (SOEs), including sulfite oxidase (SO) and bacterial sulfite dehydrogenase (SDH), catalyze the oxidation of sulfite (SO32?) to sulfate (SO42?). The active sites of SO and SDH are nearly identical, each having a 5-coordinate, pseudo-square-pyramidal Mo with an axial oxo ligand and three equatorial sulfur donor atoms. One sulfur is from a conserved Cys residue and two are from a pyranopterindithiolene (molybdopterin, MPT) cofactor. The identity of the remaining equatorial ligand, which is solvent-exposed, varies during the catalytic cycle. Numerous in vitro studies, particularly those involving electron paramagnetic resonance (EPR) spectroscopy of the Mo(V) states of SOEs, have shown that the identity and orientation of this exchangeable equatorial ligand depends on the buffer pH, the presence and concentration of certain anions in the buffer, as well as specific point mutations in the protein. Until very recently, however, EPR has not been a practical technique for directly probing specific structures in which the solvent-exposed, exchangeable ligand is an O, OH?, H2O, SO32?, or SO42? group, because the primary O and S isotopes (16O and 32S) are magnetically silent (I = 0). This review focuses on the recent advances in the use of isotopic labeling, variable-frequency high resolution pulsed EPR spectroscopy, synthetic model compounds, and DFT calculations to elucidate the roles of various anions, point mutations, and steric factors in the formation, stabilization, and transformation of SOE active site structures. PMID:23440026

  19. Effect of Sodium Lauryl Sulfate-Fumaric Acid Coupled Addition on the In Vitro Rumen Fermentation with Special Regard to Methanogenesis

    PubMed Central

    Abdl-Rahman, M. A.; Sawiress, F. A. R.; Abd El-Aty, A. M.

    2010-01-01

    The aim of the current study was to evaluate the effect of sodium lauryl sulfate-fumaric acid coupled addition on in vitro methangenesis and rumen fermentation. Evaluation was carried out using in vitro gas production technique. Ruminal contents were collected from five steers immediately after slaughtering and used for preparation of inoculums of mixed rumen microorganisms. Rumen fluid was then mixed with the basal diet of steers and used to generate four treatments, negative control (no additives), sodium lauryl sulfate (SLS) treated, fumaric acid treated, and SLS-fumaric acid coupled addition treated. The results revealed that, relative to control, efficiency in reduction of methanogenesis was as follows: coupled addition > SLS-addition > fumaric acid addition. Both SLS-addition and SLS-fumaric acid coupled addition demonstrated a decremental effect on ammonia nitrogen (NH3N), total short chain volatile fatty acids (SCVFAs) concentrations and the amount of substrate degraded, and an increment effect on microbial mass and microbial yield (YATP). Nevertheless, fumaric acid did not alter any of the previously mentioned parameters but induced a decremental effect on NH3N. Furthermore, both fumaric acid and SLS-fumaric acid coupled addition increased propionate at the expense of acetate and butyrate, while, defaunation increased acetate at the expense of propionate and butyrate. The pH value was decreased by all treatments relative to control, while, cellulase activity did not differ by different treatments. The current study can be promising strategies for suppressing ruminal methane emissions and improving ruminants feed efficiency. PMID:20445794

  20. An experimental model of colitis induced by dextran sulfate sodium from acute progresses to chronicity in C57BL/6: correlation between conditions of mice and the environment

    PubMed Central

    Taghipour, Niloofar; Molaei, Mahsa; Mosaffa, Nariman; Rostami-Nejad, Mohammad; Asadzadeh Aghdaei, Hamid; Anissian, Ali; Azimzadeh, Pedram; Zali, Mohammad Reza

    2016-01-01

    Aim: To induce acute colitis progresses to chronicity in C57BL/6 mice by dextran sulfate sodium. Background: Murine models are essential tools to understand IBD pathogenesis. Among different types of chemically induced colitis models, the dextran sulfate sodium (DSS)-induced colitis model is the most common model of IBD, due to its simplicity. Patients and methods: Male C57BL/6 mice 6–8 weeks old, were collected and matched by age with controls. C57BL/6 mice treated with 2 cycles of 3.5% DSS for 4 days and 4 days of pure water between each cycle. After that, mice were sacrificed and the entire colon was removed. Small sections of the colon were fixed in formaldehyde, embedded in paraffin and sectioned with a microtome. Sections were stained with hematoxylin eosin to analyses the degree of inflammation. Results: After the first cycle oral administration of DSS, mice with severe and visible rectal bleeding and diarrhea entered into the acute phase. After day 4-5, bleeding and diarrhea were improved and mice entered into the chronic phase with peak levels of weight loss. Macroscopically, the inflammation was predominantly located in the distal colon. Microscopically, examination of the distal colon sections showed a decrease number of goblet cells, loss of crypts, signs of surface epithelial regeneration and moderate to severe infiltration of inflammatory cells in the mucosa. Conclusion: In order to achieve an experimental colitis model, our protocol is recommended for future therapies in IBD experimental modeling. PMID:26744614

  1. Development of a basal diet to study broiler chicken responses to the sulfur-containing amino acids and sodium sulfate.

    PubMed

    Tillman, P B; Pesti, G M

    1985-07-01

    Three experiments were conducted to develop a basal diet limiting in the sulfur-containing amino acids and with adequate sodium. Twelve hundred commercial male broiler chicks were grown to 3 weeks of age in battery brooders. Chicks were fed a diet of a corn-soybean meal-poultry oil containing .38% methionine, .74% total sulfur-containing amino acids, and .10% sodium. The first two experiments, pooled for statistical analyses, showed that supplementation with .25% L-methionine significantly increased chick growth over the basal (496 vs. 465 g; P = .034) as did sodium supplementation (518 vs. 465 g; P less than .001). The best growth rate occurred when L-methionine and sodium chloride (NaCl) were supplemented together at .25 and .33%, respectively (579 g gained). The response from NaCl was demonstrated to be due to the sodium and not the chlorine by comparison to responses from potassium chloride (KCl) and sodium carbonate (Na2CO3) supplementation. It is suggested that two "first-limiting" nutrients, methionine and sodium, exist for chicks fed this particular diet. In Experiment 3, a response surface was determined with supplemental sodium (as NaCl) and L-methionine each varying from 0 to .20% (.10 to .30% total sodium and .38 to .58% total methionine). It was concluded that .20% total sodium is adequate to maximize growth and feed efficiency (.20% better than .13%, no different from .27%). Similarly, .17% supplemental methionine (.55% total) appears to be adequate (.17% better than .10%; .20% not better than .17%) with no supplemental choline. PMID:4022905

  2. Developmental toxicity evaluations of whole mixtures of disinfection by-products using concentrated drinking water in rats: gestational and lactational effects of sulfate and sodium.

    PubMed

    Narotsky, Michael G; Pressman, Jonathan G; Miltner, Richard J; Speth, Thomas F; Teuschler, Linda K; Rice, Glenn E; Richardson, Susan D; Best, Deborah S; McDonald, Anthony; Hunter, E Sidney; Simmons, Jane Ellen

    2012-06-01

    A developmental toxicity bioassay was used in three experiments to evaluate water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135-fold by reverse osmosis; select lost disinfection by-products were spiked back. Concentrate was provided as drinking water to Sprague-Dawley and F344 rats from gestation day 6 to postnatal day 6. Maternal serum levels of luteinizing hormone on gestation day 10 were unaffected by treatment for both strains. Treated dams had increased water consumption, and increased incidences of polyuria, diarrhea, and (in Sprague-Dawley rats) red perinasal staining. Pup weights were reduced. An increased incidence of eye defects was seen in F344 litters. Chemical analysis of the concentrate revealed high sodium (6.6 g/l) and sulfate (10.4 g/l) levels. To confirm that these chemicals caused polyuria and osmotic diarrhea, respectively, Na₂SO₄ (5-20 g/l) or NaCl (16.5 g/l) was provided to rats in drinking water. Water consumption was increased at 5- and 10-g Na₂SO₄/l and with NaCl. Pup weights were reduced at 20-g Na₂SO₄/l. Dose-related incidences and severity of polyuria and diarrhea occurred in Na₂SO₄-treated rats; perinasal staining was seen at 20 g/l. NaCl caused polyuria and perinasal staining, but not diarrhea. Subsequently, water was concentrated ∼120-fold and sulfate levels were reduced by barium hydroxide before chlorination, yielding lower sodium (≤1.5 g/l) and sulfate (≤2.1 g/l) levels. Treatment resulted in increased water consumption, but pup weight and survival were unaffected. There were no treatment-related clinical findings, indicating that mixtures produced by the second method are suitable for multigenerational testing. PMID:22495758

  3. Structures of complexes of octahaem cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens with sulfite and cyanide.

    PubMed

    Trofimov, Anton A; Polyakov, Konstantin M; Boyko, Konstantin M; Tikhonova, Tamara V; Safonova, Tatyana N; Tikhonov, Alexey V; Popov, Alexandre N; Popov, Vladimir O

    2010-10-01

    The structures of complexes of octahaem cytochrome c nitrite reductase from the bacterium Thioalkalivibrio nitratireducens (TvNiR) with the substrate sulfite (1.4 resolution; R(cryst) = 0.126) and the inhibitor cyanide (1.55 resolution; R(cryst) = 0.148) have been established. The complex with sulfite was prepared by the reduction of the protein crystal with sodium dithionite. The sulfite ion is bound to the iron ion of the catalytic haem through the S atom. The Fe-S distance is 2.24 . The structure of the cyanide complex with full occupancy of the ligand site was established for the first time for cytochrome c nitrite reductases. The cyanide ion is bound to the catalytic haem iron through the C atom. The Fe-C distance is 1.91 and the Fe-C-N angle is 171. The sulfite reductase activity of TvNiR was measured at different pH values. The activity is 0.02?mol of HS(-) per minute per milligram at pH 7.0; it decreases with increasing pH and is absent at pH 9.0. PMID:20944237

  4. Value-Added Products From FGD Sulfite-Rich Scrubber Materials

    SciTech Connect

    Vivak M. Malhotra

    2006-09-30

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber materials are produced every year in the USA. In fact, at present, the production of wet sulfite-rich scrubber cake outstrips the production of wet sulfate-rich scrubber cake by about 6 million tons per year. However, most of the utilization focus has centered on FGD gypsum. Therefore, we have recently initiated research on developing new strategies for the economical, but environmentally-sound, utilization of sulfite-rich scrubber material. In this exploratory project (Phase I), we attempted to ascertain whether it is feasible to develop reconstituted wood replacement products from sulfite-rich scrubber material. In pursuit of this goal, we characterized two different wet sulfite-rich scrubber materials, obtained from two power plants burning Midwestern coal, for their suitability for the development of value-added products. The overall strategy adopted was to fabricate composites where the largest ingredient was scrubber material with additional crop materials as additives. Our results suggested that it may be feasible to develop composites with flexural strength as high as 40 MPa (5800 psi) without the addition of external polymers. We also attempted to develop load-bearing composites from scrubber material, natural fibers, and phenolic polymer. The polymer-to-solid ratio was limited to {le} 0.4. The formulated composites showed flexural strengths as high as 73 MPa (10,585 psi). We plan to harness the research outcomes from Phase I to develop parameters required to upscale our value-added products in Phase II.

  5. Comparison of microenvironments of aqueous sodium dodecyl sulfate micelles in the presence of inorganic and organic salts: a time-resolved fluorescence anisotropy approach.

    PubMed

    Dutt, G B

    2005-11-01

    Microenvironments of aqueous sodium dodecyl sulfate (SDS) micelles was examined in the presence of additives such as sodium chloride and p-toluidine hydrochloride (PTHC) by monitoring the fluorescence anisotropy decays of two hydrophobic probes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and coumarin 6 (C6). It has been well-established that SDS micelles undergo a sphere-to-rod transition and that their mean hydrodynamic radius increases from 19 to 100 A upon the addition of 0.0-0.7 M NaCl at 298 K. A similar size and shape transition is induced by PTHC at concentrations that are 20 times lower compared to that of NaCl. This study was undertaken to find out how the microviscosity of the micelles is influenced under these circumstances. It was noticed that the microviscosity of the SDS/NaCl system increased by approximately 45%, whereas there was a less than 10% variation in the microviscosity of the SDS/PTHC system. The large increase in the microviscosity of the former system with salt concentration has been rationalized on the basis of the high concentration of sodium ions in the headgroup region of the micelles and their ability to strongly coordinate with the water present in this region, which decreases the mobility of the probe molecules. PMID:16262297

  6. VOLATILE COMPONENT RECOVERY FROM SULFITE EVAPORATOR CONDENSATE

    EPA Science Inventory

    This study is on the operation and modification of a demonstration unit to remove sulfur dioxide, methanol, furfural, and acetic acid from its sulfite evaporator condensate. This unit consisted of a steam stripper, vent tank SO2 recovery, activated carbon adsorption columns, and ...

  7. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases.

    PubMed

    Mller, Albert Leopold; Kjeldsen, Kasper Urup; Rattei, Thomas; Pester, Michael; Loy, Alexander

    2015-05-01

    The energy metabolism of essential microbial guilds in the biogeochemical sulfur cycle is based on a DsrAB-type dissimilatory (bi)sulfite reductase that either catalyzes the reduction of sulfite to sulfide during anaerobic respiration of sulfate, sulfite and organosulfonates, or acts in reverse during sulfur oxidation. Common use of dsrAB as a functional marker showed that dsrAB richness in many environments is dominated by novel sequence variants and collectively represents an extensive, largely uncharted sequence assemblage. Here, we established a comprehensive, manually curated dsrAB/DsrAB database and used it to categorize the known dsrAB diversity, reanalyze the evolutionary history of dsrAB and evaluate the coverage of published dsrAB-targeted primers. Based on a DsrAB consensus phylogeny, we introduce an operational classification system for environmental dsrAB sequences that integrates established taxonomic groups with operational taxonomic units (OTUs) at multiple phylogenetic levels, ranging from DsrAB enzyme families that reflect reductive or oxidative DsrAB types of bacterial or archaeal origin, superclusters, uncultured family-level lineages to species-level OTUs. Environmental dsrAB sequences constituted at least 13 stable family-level lineages without any cultivated representatives, suggesting that major taxa of sulfite/sulfate-reducing microorganisms have not yet been identified. Three of these uncultured lineages occur mainly in marine environments, while specific habitat preferences are not evident for members of the other 10 uncultured lineages. In summary, our publically available dsrAB/DsrAB database, the phylogenetic framework, the multilevel classification system and a set of recommended primers provide a necessary foundation for large-scale dsrAB ecology studies with next-generation sequencing methods. PMID:25343514

  8. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases

    PubMed Central

    Müller, Albert Leopold; Kjeldsen, Kasper Urup; Rattei, Thomas; Pester, Michael; Loy, Alexander

    2015-01-01

    The energy metabolism of essential microbial guilds in the biogeochemical sulfur cycle is based on a DsrAB-type dissimilatory (bi)sulfite reductase that either catalyzes the reduction of sulfite to sulfide during anaerobic respiration of sulfate, sulfite and organosulfonates, or acts in reverse during sulfur oxidation. Common use of dsrAB as a functional marker showed that dsrAB richness in many environments is dominated by novel sequence variants and collectively represents an extensive, largely uncharted sequence assemblage. Here, we established a comprehensive, manually curated dsrAB/DsrAB database and used it to categorize the known dsrAB diversity, reanalyze the evolutionary history of dsrAB and evaluate the coverage of published dsrAB-targeted primers. Based on a DsrAB consensus phylogeny, we introduce an operational classification system for environmental dsrAB sequences that integrates established taxonomic groups with operational taxonomic units (OTUs) at multiple phylogenetic levels, ranging from DsrAB enzyme families that reflect reductive or oxidative DsrAB types of bacterial or archaeal origin, superclusters, uncultured family-level lineages to species-level OTUs. Environmental dsrAB sequences constituted at least 13 stable family-level lineages without any cultivated representatives, suggesting that major taxa of sulfite/sulfate-reducing microorganisms have not yet been identified. Three of these uncultured lineages occur mainly in marine environments, while specific habitat preferences are not evident for members of the other 10 uncultured lineages. In summary, our publically available dsrAB/DsrAB database, the phylogenetic framework, the multilevel classification system and a set of recommended primers provide a necessary foundation for large-scale dsrAB ecology studies with next-generation sequencing methods. PMID:25343514

  9. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation.

    PubMed

    Santos, Andr A; Venceslau, Sofia S; Grein, Fabian; Leavitt, William D; Dahl, Christiane; Johnston, David T; Pereira, Ins A C

    2015-12-18

    Microbial sulfate reduction has governed Earth's biogeochemical sulfur cycle for at least 2.5 billion years. However, the enzymatic mechanisms behind this pathway are incompletely understood, particularly for the reduction of sulfite-a key intermediate in the pathway. This critical reaction is performed by DsrAB, a widespread enzyme also involved in other dissimilatory sulfur metabolisms. Using in vitro assays with an archaeal DsrAB, supported with genetic experiments in a bacterial system, we show that the product of sulfite reduction by DsrAB is a protein-based trisulfide, in which a sulfite-derived sulfur is bridging two conserved cysteines of DsrC. Physiological studies also reveal that sulfate reduction rates are determined by cellular levels of DsrC. Dissimilatory sulfate reduction couples the four-electron reduction of the DsrC trisulfide to energy conservation. PMID:26680199

  10. The role of 2-methyl-2, 4-pentanediol in sodium dodecyl sulfate micelle dissociation unveiled by dynamic light scattering and molecular dynamics simulations.

    PubMed

    Roussel, Guillaume; Rouse, Sarah L; Sansom, Mark S P; Michaux, Catherine; Perpte, Eric A

    2014-02-01

    The development of efficient protein refolding techniques remains a challenge in biotechnology. In that context, it has recently been reported that the addition of 2-methyl-2, 4-pentanediol (MPD) to sodium dodecyl sulfate (SDS) allows the renaturation of both soluble and membrane proteins. The present work combines experimental (dynamic light scattering; DLS) and theoretical (molecular dynamics) approaches to study the molecular basis of the association between SDS and MPD, in order to understand its relevance in the refolding process. DLS shows the micelle dissociation in the presence of molar concentrations of MPD, and simulations reveal that this process results from a screening of the negative charge on the SDS headgroup and a minimization of the solvent (water) accessibility of the detergent tail. This suggests a mechanism whereby the combination of these effects leads to the shift from a "harsh" to a "gentle" detergent behavior, which in turn promotes a productive refolding of the protein. PMID:24252232

  11. PAS-FTIR and FT-Raman qualitative characterization of sodium dodecyl sulfate interaction with an alternative stratum corneum model membrane.

    PubMed

    Baby, A R; Lacerda, A C L; Kawano, Y; Velasco, M V R; Kaneko, T M

    2007-10-01

    The interaction of the surfactant sodium dodecyl sulfate with the stratum corneum (SC) of shed snake skin from Bothrops jararaca, used as a model membrane, was characterized qualitatively by FT-Raman and infrared photoacoustic (PAS-FTIR) spectroscopy, used as analytical tools. Surfactant solutions were 50.0 g x l(-1) and 2.34 g x l(-1) with treatment intervals of 4, 8 and 12 h. The employment of FT-Raman and PAS-FTIR indicated increased hydration of the SC with alteration of the tissue topography. The interaction of the SC with surfactant was increased by the tape-stripping process. The consequent exposure of the internal layers of the tissue intensified the effect of the anionic surfactant, indicating that this layer acted as an additional barrier. PMID:18236773

  12. The Effect of Sodium Dodecyl Sulfate (SDS) and Cetyltrimethylammonium Bromide (CTAB) on the Properties of ZnO Synthesized by Hydrothermal Method

    PubMed Central

    Ramimoghadam, Donya; Hussein, Mohd Zobir Bin; Taufiq-Yap, Yun Hin

    2012-01-01

    ZnO nanostructures were synthesized by hydrothermal method using different molar ratios of cetyltrimethylammonium bromide (CTAB) and Sodium dodecyl sulfate (SDS) as structure directing agents. The effect of surfactants on the morphology of the ZnO crystals was investigated by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. The results indicate that the mixture of cationic-anionic surfactants can significantly modify the shape and size of ZnO particles. Various structures such as flakes, sheets, rods, spheres, flowers and triangular-like particles sized from micro to nano were obtained. In order to examine the possible changes in other properties of ZnO, characterizations like powder X-ray diffraction (PXRD), thermogravimetric and differential thermogravimetric analysis (TGA-DTG), FTIR, surface area and porosity and UV-visible spectroscopy analysis were also studied and discussed. PMID:23202952

  13. Sensitive silver staining of protein in sodium dodecyl sulfate-polyacrylamide gels using an azo dye, calconcarboxylic acid, as a silver-ion sensitizer.

    PubMed

    Jin, Li-Tai; Hwang, Sun-Young; Yoo, Gyurng-Soo; Choi, Jung-Kap

    2004-08-01

    A highly sensitive silver staining method for detecting proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was developed. It is based on the silver nitrate staining method but also employs an azo dye, calconcarboxylic acid (NN), as a silver-ion sensitizer. It increases silver binding on protein bands or spots by the formation of a silver-dye complex and also increases the reducing power of silver ions to metallic silver by NN itself with formaldehyde. After a 2 h gel fixing step, the protocol including sensitization, silver-ion impregnation, and reduction steps can be completed in 1 h. The sensitivity is superior to that of silver stain with glutardialdehyde as a silver-ion sensitizer. The detection limit of NN-silver stain is 0.05-0.2 ng protein. Considering the high sensitivity without using glutardialdehyde, the NN-silver stain would be useful for routine silver staining of proteins. PMID:15300767

  14. Intramuscular Cobinamide Sulfite in a Rabbit Model of Sub-Lethal Cyanide Toxicity

    PubMed Central

    Brenner, Matthew; Kim, Jae G.; Mahon, Sari B.; Lee, Jangwoen; Kreuter, Kelly A.; Blackledge, William; Mukai, David; Patterson, Steve; Mohammad, Othman; Sharma, Vijay S.; Boss, Gerry R.

    2009-01-01

    Objective To determine the ability of an intramuscular cobinamide sulfite injection to rapidly reverse the physiologic effects of cyanide toxicity. Background Exposure to cyanide in fires and industrial exposures and intentional cyanide poisoning by terrorists leading to mass casualties is an ongoing threat. Current treatments for cyanide poisoning must be administered intravenously, and no rapid treatment methods are available for mass casualty cyanide exposures. Cobinamide is a cobalamin (vitamin B12) analog with an extraordinarily high affinity for cyanide that is more water-soluble than cobalamin. We investigated the use of intramuscular cobinamide sulfite to reverse cyanide toxicity induced physiologic changes in a sublethal cyanide exposure animal model. Methods New Zealand white rabbits were given 10 mg sodium cyanide intravenously over 60 minutes. Quantitative diffuse optical spectroscopy and continuous wave near infrared spectroscopy monitoring of tissue oxy- and deoxyhemoglobin concentrations were performed concurrently with blood cyanide level measurements and cobinamide levels. Immediately after completion of the cyanide infusion, the rabbits were injected intramuscularly with cobinamide sulfite (n=6) or inactive vehicle (controls, n=5). Results Intramuscular administration led to rapid mobilization of cobinamide and was extremely effective at reversing the physiologic effects of cyanide on oxyhemoglobin and deoxyhemoglobin extraction. Recovery time to 63% of their baseline values in the central nervous system was in a mean of 1032 minutes in the control group and 9 minutes in the cobinamide group with a difference of 1023 minutes (95% confidence interval [CI] 116, 1874 minutes). In muscle tissue, recovery times were 76 and 24 minutes with a difference of 52 minutes (95% CI 7, 98min). Red blood cell cyanide levels returned towards normal significantly faster in cobinamide sulfite-treated animals than in control animals. Conclusions Intramuscular cobinamide sulfite rapidly and effectively reverses the physiologic effects of cyanide poisoning, suggesting that a compact cyanide antidote kit can be developed for mass casualty cyanide exposures. PMID:20045579

  15. The complement anaphylatoxin C3a receptor (C3aR) contributes to the inflammatory response in dextran sulfate sodium (DSS)-induced colitis in mice.

    PubMed

    Wende, Elisabeth; Laudeley, Robert; Bleich, Andr; Bleich, Eva; Wetsel, Rick A; Glage, Silke; Klos, Andreas

    2013-01-01

    Inflammatory bowel diseases are a critical public health issue, and as treatment options remain limited, there is a need to unravel the underlying pathomechanisms in order to identify new therapeutic targets. Complement activation was found in patients suffering from inflammatory bowel disease, and the complement anaphylatoxin C5a and its receptor C5aR have been implicated in disease pathogenesis in animal models of bowel inflammation. To further characterize complement-related pathomechanisms in inflammatory bowel disease, we have investigated the role of the anaphylatoxin C3a receptor in acute dextran sulfate sodium-induced colitis in mice. For this, colitis was induced in C3a receptor-deficient BALB/c and C57BL/6 mice, and disease severity was evaluated by clinical and histological examination, and by measuring the mRNA expression or protein levels of inflammatory mediators in the tissue. C3a receptor deficiency was partially protective in BALB/c mice, which had significantly reduced weight loss, clinical and histological scores, colon shortening, and CXCL-1/KC mRNA, myeloperoxidase and interleukin-6 tissue levels compared to the corresponding wild type mice. In C57BL/6 mice the differences between wild type and C3a receptor-deficient animals were much smaller and reached no significance. Our data demonstrate that the contribution of C3a receptor to disease pathogenesis and severity of dextran sulfate sodium-induced colitis in mice depends on the genetic background. Further studies will be required to clarify whether targeting of C3a receptor, possibly in combination with C5a receptor, might be considered as a therapeutic strategy for inflammatory bowel disease. PMID:23638016

  16. Determination of total sulfite in shrimp, potatoes, dried pineapple, and white wine by flow injection analysis: collaborative study.

    PubMed

    Sullivan, J J; Hollingworth, T A; Wekell, M M; Meo, V A; Saba, H H; Etemad-Moghadam, A; Eklund, C; Phillips, J G; Gump, B H

    1990-01-01

    A method for the determination of total sulfite in shrimp, potatoes, dried pineapple, and white wine by flow injection analysis (FIA) was collaboratively studied by 8 laboratories. In the method, the sample solution is reacted with sodium hydroxide to liberate aldehyde-bound sulfite. The sample stream is acidified to produce SO2 gas, which diffuses across a Teflon membrane in the gas diffusion cell into a flowing stream of malachite green. The degree of discoloration of the malachite green is proportional to the amount of sulfite in the sample solution. Red wine was included in the study but interlaboratory precision for these samples was not satisfactory and correlation with Monier-Williams results was poor. The present method is not recommended for use with these samples. For shrimp, potatoes, dried pineapple, and white wine, average reproducibility (RSDR) of results was 25% for samples at 10 ppm SO2 and 10% for samples at greater than 50 ppm. Overall average reproducibility was 14%. Recoveries of sulfite added to samples averaged 80%. Comparison of FIA with the Monier-Williams method indicated comparable results by the 2 methods. The FIA method has been adopted official first action for determination of greater than or equal to 5 ppm total sulfite in shrimp, potatoes, dried pineapple, and white wine. PMID:2312511

  17. Interaction of quinine sulfate with anionic micelles of sodium dodecylsulfate: A time-resolved fluorescence spectroscopy at different pH

    NASA Astrophysics Data System (ADS)

    Joshi, Sunita; Pant, Debi D.

    2015-09-01

    Photophysical behavior and rotational relaxation dynamics of quinine sulfate (QS) in anionic surfactant, sodium dodecylsulfate (SDS) at different pH have been studied using steady state and time resolved fluorescence spectroscopy. It has been observed that the cationic form of quinine sulfate (at pH 2) forms a fluorescent ion pair complex with the surfactant molecules at lower concentrations of surfactant. However, for higher concentrations of SDS, the probe molecules bind strongly with the micelles and reside at the water-micelle interface. At pH 7, QS is singly protonated in bulk aqueous solution. At lower concentrations of SDS aggregation between probe and surfactant molecules has been observed. However, for higher concentrations of SDS, an additional fluorescence peak corresponding to dicationic form of QS appears and this has been attributed to double protonation of the QS molecule in micellar solution. At pH 7, in the presence of SDS micelles, the photophysical properties of QS showed substantial changes compared to that in the bulk water solution. At pH 12, an increase in fluorescence intensity and lifetime has been observed and this has been attributed to the increase in radiative rate due to the incorporation of QS at the micelle-water interface. The local pH at micellar surface has been found different from the pH of bulk solution.

  18. Determination of sulfite with emphasis on biosensing methods: a review.

    PubMed

    Pundir, Chandra Shekhar; Rawal, Rachna

    2013-04-01

    Sulfite is used as a preservative in a variety of food and pharmaceutical industries to inhibit enzymatic and nonenzymatic browning and in brewing industries as an antibacterial and antioxidizing agent. Convenient and reproducible analytical methods employing sulfite oxidase are an attractive alternative to conventional detection methods. Sulfite biosensors are based on measurement of either O2 or electrons generated from splitting of H2O2 or heat released during oxidation of sulfite by immobilized sulfite oxidase. Sulfite biosensors can be grouped into 12 classes. They work optimally within 2 to 900 s, between pH 6.5 and 9.0, 25 and 40 C, and in the range from 0 to 50,000 ?M, with detection limit between 0.2 and 200 ?M. Sulfite biosensors measure sulfite in food, beverages, and water and can be reused 100-300 times over a period of 1-240 days. The review presents the principles, merits, and demerits of various analytical methods for determination of sulfite, with special emphasis on sulfite biosensors. PMID:23392406

  19. Pattern formation in the thiourea-iodate-sulfite system: Spatial bistability, waves, and stationary patterns

    NASA Astrophysics Data System (ADS)

    Horvth, Judit; Szalai, Istvn; De Kepper, Patrick

    2010-06-01

    We present a detailed study of the reaction-diffusion patterns observed in the thiourea-iodate-sulfite (TuIS) reaction, operated in open one-side-fed reactors. Besides spatial bistability and spatio-temporal oscillatory dynamics, this proton autoactivated reaction shows stationary patterns, as a result of two back-to-back Turing bifurcations, in the presence of a low-mobility proton binding agent (sodium polyacrylate). This is the third aqueous solution system to produce stationary patterns and the second to do this through a Turing bifurcation. The stationary pattern forming capacities of the reaction are explored through a systematic design method, which is applicable to other bistable and oscillatory reactions. The spatio-temporal dynamics of this reaction is compared with that of the previous ferrocyanide-iodate-sulfite mixed Landolt system.

  20. Labile sulfide and sulfite in phytochelatin complexes

    SciTech Connect

    Eannetta, N.T.; Steffens, J.C. )

    1989-04-01

    Heavy metals such as cadmium induce tomato cell cultures to synthesize the metal binding polypeptides ({gamma}-Glu-Cys){sub 3} and ({gamma}-Glu-Cys){sub 4}-Gly (phytochelatins). Tomato cells selected for growth on normally lethal concentrations of CdCl{sub 2} synthesize higher quantities of these polypeptides. Cd{sup r} cells are not cross-resistant to other heavy metals, and recent work suggests that metal detoxification by these peptides may be Cd-specific. The occurrence of labile sulfur as a component of the metal complex raises questions concerning possible functions of phytochelatins besides that of Cd binding. The presence of acid-labile sulfide ion in phytochelatin complexes has been reported by several groups. We report the additional finding that labile sulfite is also present in these complexes and in higher amounts than sulfide. Sulfide and sulfite are both released from the metal binding complex by acidification or by treatment with EDTA.

  1. Differential sensitivity of duckweeds (Lemnaceae) to sulfite: I. Carbon assimilation and frond replication rate as factors influencing sulfite phytotoxicity

    SciTech Connect

    Takemoto, B.K.; Noble, R.D.

    1986-01-01

    The thiol content and hydrogen sulfide emission responses of duckweeds (Lemnaceae) differentially sensitive to sulfite enrichment were studied, at two levels of irradiance. The objectives were to examine the relationship of selected parameters of sulfite metabolism to sulfite sensitivity, and the role of light level on modifying sulfite metabolic responses and duckweed sulfite sensitivity. Under low light, thiol contents were increased 30 to 40% by sulfite in all three duckweeds examined. Hydrogen sulfide was emitted by all three species, and emission rates were up to four times higher in the sulfite tolerant duckweed Lemna valdiviana. Under high light, sulfite increased thiol contents by an average of 40% in L. valdiviana and Spirodela oligorhiza, but only 20% in Lemna gibba. The greater light enhancement of thiol content exhibited by L. valdiviana and S. oligorhiza may be indicative of larger or more numerous sulfur sinks. Hydrogen sulfide emission rates were also enhanced under high light, and L. gibba exhibited a 17% increase relative to its low light rate. In comparison, L. valdiviana and S. oligorhiza exhibited 55% and 60% increases, respectively. The ability to form elevated internal thiols and hydrogen sulfide were found to be important to sulfite tolerance in duckweeds. Enhancement of both processes under high light may contribute to increased tolerance of sulfite in L. gibba and S. oligorhiza. It is hypothesized that thiol production and hydrogen sulfide emission are important sulfite detoxification processes in duckweeds, and enhancement of sulfite detoxification is fundamental to the modification of duckweed sulfite sensitivity by the photoenvironment. 25 refs., 3 tabs.

  2. Ion Association in Hydrothermal Sodium Sulfate Solutions Studied by Modulated FT-IR-Raman Spectroscopy and Molecular Dynamics.

    PubMed

    Reimer, Joachim; Steele-MacInnis, Matthew; Wambach, Jörg M; Vogel, Frédéric

    2015-07-30

    Saline aqueous solutions at elevated pressures and temperatures play an important role in processes such as supercritical water oxidation (SCWO) and supercritical water gasification (SCWG), as well as in natural geochemical processes in Earth and planetary interiors. Some solutions exhibit a negative temperature coefficient of solubility at high temperatures, thereby leading to salt precipitation with increasing temperature. Using modulated FT-IR Raman spectroscopy and classical molecular dynamics simulations (MD), we studied the solute speciation in solutions of 10 wt % Na2SO4, at conditions close to the saturation limit. Our experiments reveal that ion pairing and cluster formation are favored as solid saturation is approached, and ionic clusters form prior to the precipitation of solid sulfate. The proportion of such clusters increases as the phase boundary is approached either by decreasing pressure or by increasing temperature in the vicinity of the three-phase (vapor-liquid-solid) curve. PMID:26125627

  3. Stable isotope studies of vent fluids and chimney minerals, southern Juan de Fuca Ridge: Sodium metasomatism and seawater sulfate reduction

    SciTech Connect

    Shanks W.C. III; Seyfried W.E. Jr.

    1987-10-10

    Sulfur isotope values (delta/sup 34/S) or H/sub 2/S in vent fluids from the southern Juan de Fuca Ridge hydrothermal sites range from 4.0 to 7.4% and are variably /sup 34/S-enriched with respect to coexisting inner wall chimney sulfides. Chimney sulfides range from 1.6 to 5.7%. The chimneys consist of Fe-sphalerite zoned to inner zinc sulfide and chalcopyrite ( +- isocubanite)-pyrrhotite lining channels. Sulfide from inner walls of type A chimneys have the lightest delta/sup 34/S values. Type B chimneys (porous, unzoned, low-Fe-sphalerite) have the isotopically heaviest chimney sulfides and occur at vent sites distal to the along-axis shallow point of the ridge crest, hence distal to the magma chamber. These variations are largely ascribed to sulfate reduction by ferrous iron in the hydrothermal fluid in chimneys of substrate mounds, probably due to transitory entrainment of ambient sulfate-bearing seawater. The delta/sup 18/O values of end-member hydrothermal fluids range from 0.6 to 0.8%, significantly lower than the delta/sup 18/O values at 21 /sup 0/N vent fluids. The deltaD values of the fluid samples range from -2.5 to 0.5%. Isotopic differences from the 21 /sup 0/N fluids may be due to slightly higher water/rock ratios, approximately 1.0, in the southern Juan de Fuca Ridge hydrothermal system. Admixture of a small amount of residual brine from an earlier phase separation even may have contributed water with low deltaD values.

  4. Carbon Monoxide-Reacting Pigment from Desulfotomaculum nigrificans and Its Possible Relevance to Sulfite Reduction

    PubMed Central

    Trudinger, P. A.

    1970-01-01

    The separation of an autoxidizable brown pigment, P582, from Desulfotomaculum nigrificans is described. It reacted with Na2S2O4 and was characterized by absorption maxima in the oxidized state at 392, 582, and 700 nm. In the presence of Na2S2O4, P582 formed complexes with CO and, under alkaline conditions, pyridine. There was no reaction with cyanide. The molecular weight of P582 was approximately 145,000, and the purest preparations contained Fe, Zn, and acid-labile sulfide but not Cu, Mo, or Mn. Preparations of P582 catalyzed the reduced methyl viologen (MVH)-linked reduction of sulfite, hydroxylamine, and nitrite but not of sulfate, thiosulfate, or nitrate. Reduced pyridine nucleotides did not substitute for MVH. A major product of the MVH-sulfite reaction was sulfide. CO partially inhibited the enzymatic activities. Sulfite, hydroxylamine, and nitrite and CO caused changes in the spectrum of Na2S2O4-reduced P582. Fe2+-chelating reagents reacted with part of the Fe of P582 and caused partial losses of labile sulfide and enzymatic activity. The spectral and CO-reacting properties of P582 were, however, unaffected by chelating agents. The reaction between P582 and chelating agents was stimulated by reducing agents. PMID:5473884

  5. Determination of total sulfite in wine by ion chromatography after in-sample oxidation.

    PubMed

    Koch, Matthias; Kppen, Robert; Siegel, David; Witt, Angelika; Nehls, Irene

    2010-09-01

    Sulfur dioxide (SO2) or sulfites are the most common preservatives used in winemaking. The level of total SO2 is subject to regulation. Currently, the regulatory determination of total SO2 (including sulfites) is done by the optimized Monier-Williams (OMW) method, which includes time-consuming distillation and titration steps. This paper describes the development and application of an alternative, rapid, straightforward, and reliable method for the determination of total sulfite in wine. In this method, a simple oxidation step using alkaline hydrogen peroxide (H2O2) solution is followed by ion chromatographic (IC) analysis of sulfate coupled with conductometric detection. Thirteen wines were analyzed in order to compare the in-sample oxidation method with the OMW-procedure. A t-test revealed satisfying compliance regarding sample preparation, i.e., alkaline H2O2 treatment and acidic distillation (OMW method). Comparable results were also obtained between IC analysis and acid/base titration. Our results indicate that the novel method (limit of quantification: 4 mg SO2 L(-1)) is well suited for the cost-efficient monitoring of regulatory limits. PMID:20690603

  6. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production.

    PubMed

    Cordente, Antonio G; Heinrich, Anthony; Pretorius, Isak S; Swiegers, Jan H

    2009-05-01

    The production of hydrogen sulfide (H(2)S) during fermentation is a common and significant problem in the global wine industry as it imparts undesirable off-flavors at low concentrations. The yeast Saccharomyces cerevisiae plays a crucial role in the production of volatile sulfur compounds in wine. In this respect, H(2)S is a necessary intermediate in the assimilation of sulfur by yeast through the sulfate reduction sequence with the key enzyme being sulfite reductase. In this study, we used a classical mutagenesis method to develop and isolate a series of strains, derived from a commercial diploid wine yeast (PDM), which showed a drastic reduction in H(2)S production in both synthetic and grape juice fermentations. Specific mutations in the MET10 and MET5 genes, which encode the catalytic alpha- and beta-subunits of the sulfite reductase enzyme, respectively, were identified in six of the isolated strains. Fermentations with these strains indicated that, in comparison with the parent strain, H(2)S production was reduced by 50-99%, depending on the strain. Further analysis of the wines made with the selected strains indicated that basic chemical parameters were similar to the parent strain except for total sulfite production, which was much higher in some of the mutant strains. PMID:19236486

  7. Composition of sulfited potatoes: comparison with fresh and frozen potatoes.

    PubMed

    Chalom, S; Elrezzi, E; Pea, P; Astiarsarn, I; Bello, J

    1995-02-01

    The content in moisture, fat, protein, carbohydrate, fibre and vitamin C was analyzed in three commercial types of potatoes: sulfited (treated with E223), frozen potatoes (pre-fried) and fresh potatoes (not processed). The composition of sulfited potatoes does not usually appear in food composition tables. Our results showed significant differences in the content of carbohydrates and fibre between sulfited and fresh potatoes. The content of vitamin C in sulfited potatoes, which is similar to that of frozen potatoes, was shown to be approximately half of that found in fresh potatoes. PMID:7792261

  8. Factors Supporting Cysteine Tolerance and Sulfite Production in Candida albicans

    PubMed Central

    Hennicke, Florian; Grumbt, Maria; Lermann, Ulrich; Ueberschaar, Nico; Palige, Katja; Bttcher, Bettina; Jacobsen, Ilse D.; Staib, Claudia; Morschhuser, Joachim; Monod, Michel; Hube, Bernhard; Hertweck, Christian

    2013-01-01

    The amino acid cysteine has long been known to be toxic at elevated levels for bacteria, fungi, and humans. However, mechanisms of cysteine tolerance in microbes remain largely obscure. Here we show that the human pathogenic yeast Candida albicans excretes sulfite when confronted with increasing cysteine concentrations. Mutant construction and phenotypic analysis revealed that sulfite formation from cysteine in C. albicans relies on cysteine dioxygenase Cdg1, an enzyme with similar functions in humans. Environmental cysteine induced not only the expression of the CDG1 gene in C. albicans, but also the expression of SSU1, encoding a putative sulfite efflux pump. Accordingly, the deletion of SSU1 resulted in enhanced sensitivity of the fungal cells to both cysteine and sulfite. To study the regulation of sulfite/cysteine tolerance in more detail, we screened a C. albicans library of transcription factor mutants in the presence of sulfite. This approach and subsequent independent mutant analysis identified the zinc cluster transcription factor Zcf2 to govern sulfite/cysteine tolerance, as well as cysteine-inducible SSU1 and CDG1 gene expression. cdg1? and ssu1? mutants displayed reduced hypha formation in the presence of cysteine, indicating a possible role of the newly proposed mechanisms of cysteine tolerance and sulfite secretion in the pathogenicity of C. albicans. Moreover, cdg1? mutants induced delayed mortality in a mouse model of disseminated infection. Since sulfite is toxic and a potent reducing agent, its production by C. albicans suggests diverse roles during host adaptation and pathogenicity. PMID:23417561

  9. 40 CFR 430.40 - Applicability; description of the dissolving sulfite subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dissolving sulfite subcategory. 430.40 Section 430.40 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.40 Applicability; description of the dissolving... production of pulp at dissolving sulfite mills....

  10. 40 CFR 430.40 - Applicability; description of the dissolving sulfite subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dissolving sulfite subcategory. 430.40 Section 430.40 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.40 Applicability; description of the dissolving... production of pulp at dissolving sulfite mills....

  11. 40 CFR 430.40 - Applicability; description of the dissolving sulfite subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dissolving sulfite subcategory. 430.40 Section 430.40 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.40 Applicability; description of the dissolving... production of pulp at dissolving sulfite mills....

  12. [Sulfite oxidase activity deficiency caused by cofactor molybdenum deficiency: A case of early severe encephalopathy].

    PubMed

    Durousset, C; Gay, C; Magnin, S; Acquaviva, C; Patural, H

    2016-03-01

    Neonatal seizure incidence is approximately 3.5/1000live births. Inborn metabolic diseases account for approximately 1-4% of neonatal seizure cases. Among them, the catabolism anomaly of sulfite to sulfate caused by sulfite oxidase or cofactor molybdenum deficiency (MoCD) is a rare metabolic disorder in which neurological damage is similar to that found in neonatal asphyxia. We report the case of a newborn child with a MoCD. Born of related parents, this child had intrauterine growth retardation predominating on size diagnosed in the third trimester of pregnancy. After an uneventful birth, he presented convulsions at the 12th hour of life, confirmed by an electroencephalogram. Anticonvulsants and adjuvant treatments were ineffective; the child then required intubation at day 5of life. The initial biological assessment found an elevated blood lactate level and the chromatography of amino acids showed a significant decrease of cystine and the abnormal presence of sulfocysteine, suggestive of a lack of sulfite oxidase activity. The uric acid level measured secondarily was low, suggesting a MoCD. Brain MRI was performed at day 5for diffuse ischemic injury of different ages. After limiting acute care, the child died at day 14of life. The genetic study of the child found a homozygous mutation c.564+1G>A in the MOCS2gene, confirming the diagnosis of MoCD, present in the heterozygous state in both parents. Investigations in a logical sequence quickly suggested the MoCD diagnosis in presence of a low plasma concentration of cysteine, the abnormal presence of sulfocysteine, and low uric acid levels. The diagnosis of sulfite oxidase deficiency was made. Until now, no treatment has proven effective but a new treatment appears to be effective in cases with a MOCS1mutation. PMID:26775885

  13. Sodium lauryl sulfate enhances nickel penetration through guinea-pig skin. Studies with energy dispersive X-ray microanalysis

    SciTech Connect

    Lindberg, M.; Sagstroem, S.R.; Roomans, G.M.; Forslind, B.

    1989-03-01

    The effect of sodium lauryl sulphate (SLS), a common ingredient of detergents, on the penetration of nickel through the stratum corneum in the guinea-pig skin model was studied with energy dispersive X-ray microanalysis (EDX) to evaluate the barrier-damaging properties of this common detergent. The EDX technique allows a simultaneous determination of physiologically important elements, e.g., Na, Mg, P, Cl, K, Ca and S in addition to Ni at each point of measurement in epidermal cell strata. Our results show that SLS reduces the barrier function to Ni-ion penetration of the stratum corneum. In addition we have shown that EDX allows analysis of the influence of different factors involved in nickel penetration through the skin by giving data on the physiological effects on the epidermal cells caused by the applied substances.

  14. Effects on the development of offspring of female mice exposed to platinum sulfate or sodium hexachloroplatinate during pregnancy or lactation

    SciTech Connect

    D'Agostino, R.B.; Lown, B.A.; Morganti, J.B.; Chapin, E.; Massaro, E.J.

    1984-01-01

    On d 7 or 12 of gestation or on d 2 postpartum, Swiss ICR dams were administered either (1) a single intragastric dose of Pt(SO/sub 4/) at the LD1 level or dilute H/sub 2/SO/sub 4/ at an equivalent volume, pH, and sulfate content, or (2) a single subcutaneous dose of Na/sub 2/PtCl/sub 6/ or phosphate-buffered saline at an equivalent volume and pH. To differentiate prenatal from postnatal effects of the compounds on the offspring, a full cross-fostering design was employed. Rate of growth (as a function of weight gain) and gross activity of the neonates were assessed on d 8 or 13 postpartum. On d 60-65 postpartum, open-field behavior (ambulations and rearings), rotarod performance, and passive avoidance learning of the adult offspring were investigated. Exposure to Pt(SO/sub 4/)/sub 2/ resulted in reduced offspring weight from d 8 to 45 postpartum, whereas the major effect of Na/sub 2/PtCl/sub 6/ was a reduction in activity level of the offspring of mothers exposed on d 12 of gestation. 18 references, 2 figures, 2 tables.

  15. Degradation of yttria-stabilized zirconia thermal barrier coatings by vanadium pentoxide, phosphorous pentoxide, and sodium sulfate

    SciTech Connect

    Mohan, P.; Yuan, B.; Patterson, T.; Desai, V.H.; Sohn, Y.H.

    2007-11-15

    The presence of vanadium, phosphorus, and sodium impurities in petcoke and coal/petcoke blends used in integrated gasification combined cycle (IGCC) plants warrants a clear understanding of high-temperature material degradation for the development of fuel-flexible gas turbines. In this study, degradation reactions of free-standing air plasma-sprayed (APS) yttria-stabilized zirconia (YSZ) in contact with V{sub 2}O{sub 5}, P{sub 2}O{sub 5}, and Na{sub 2}SO{sub 4} were investigated at temperatures up to 1200{sup o}C. Phase transformations and microstructural development were examined using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Molten V{sub 2}O{sub 5} reacted with solid YSZ to form ZrV{sub 2}O{sub 7} at temperatures below 747{sup o}C. However, at temperatures above 747{sup o}C, molten V{sub 2}O{sub 5} reacted with YSZ to form yttrium vanadate (YVO{sub 4}). The formation of YVO{sub 4} led to the depletion of the Y2O{sub 3} stabilizer and deleterious transformation to the monoclinic ZrO{sub 2} phase. In addition, studies on YSZ degradation by Na{sub 2}SO{sub 4} and a Na{sub 2}SO{sub 4}+V{sub 2}O{sub 5} mixture (50-50 mol%) showed that Na{sub 2}SO{sub 4} itself had no effect on the degradation of YSZ. However, in the presence of V{sub 2}O{sub 5} at high temperatures, Na{sub 2}SO{sub 4} forms vanadate compounds having a lower melting point such as sodium metavanadate (610{sup o}C), which was found to degrade YSZ by the formation of YVO{sub 4} at a relatively lower temperature of 700{sup o}C. P{sub 2}O{sub 5} was found to react with APS YSZ by the formation of ZrP{sub 2}O{sub 7} at all the temperatures studied. At temperatures as low as 200{sup o}C and as high as 1200{sup o}C, molten P{sub 2}O{sub 5} was observed to react with solid YSZ to yield ZrP{sub 2}O{sub 7}, which led to the depletion of ZrO{sub 2} in YSZ that promoted the formation of the fluorite-cubic ZrO{sub 2} phase.

  16. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    SciTech Connect

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  17. Oleanolic acid ameliorates dextran sodium sulfate-induced colitis in mice by restoring the balance of Th17/Treg cells and inhibiting NF-?B signaling pathway.

    PubMed

    Kang, Geum-Dan; Lim, Sumin; Kim, Dong-Hyun

    2015-12-01

    In a preliminary experiment, it was found that oleanolic acid (OA), which is widely distributed in food and medicinal plants, inhibited interleukin (IL)-6/tumor growth factor beta-induced differentiation of splenic T cells into Th17 cells. Moreover, OA induced the differentiation of splenic T cells into Treg cells. Therefore, we examined the anti-inflammatory effect of OA in mice with dextran sodium sulfate (DSS)-induced colitis. Oral administration of OA significantly inhibited DSS-induced colon shortening, macroscopic score, and myeloperoxidase activity. Treatment with OA inhibited DSS-induced differentiation to Th17 cells and downregulated the expression of ROR?t and IL-17 in the lamina propria of colon and Treg cell differentiation and Foxp3 and IL-10 expression were increased. OA treatment increased the DSS-suppressed expression of tight junction proteins such as ZO-1, occludin, and claudin-1 in the colon. Moreover, OA treatment inhibited DSS-induced expression of tumor necrosis factor-?, interleukin (IL)-1?, and IL-17, the activation of NF-?B and mitogen-activated protein kinases, and increased IL-10 expression. OA also inhibited the activation of NF-?B and expression of proinflammatory cytokines in LPS-stimulated peritoneal macrophages. These findings suggest that OA may ameliorate inflammatory diseases such as colitis by inhibiting Th17 cell differentiation and increasing Treg cell differentiation. PMID:26514300

  18. Dextran sulfate sodium-induced colitis alters stress-associated behaviour and neuropeptide gene expression in the amygdala-hippocampus network of mice

    PubMed Central

    Reichmann, Florian; Hassan, Ahmed Mostafa; Farzi, Aitak; Jain, Piyush; Schuligoi, Rufina; Holzer, Peter

    2015-01-01

    Psychological stress causes disease exacerbation and relapses in inflammatory bowel disease (IBD) patients. Since studies on stress processing during visceral inflammation are lacking, we investigated the effects of experimental colitis as well as psychological stress on neurochemical and neuroendocrine changes as well as behaviour in mice. Dextran sulfate sodium (DSS)-induced colitis and water avoidance stress (WAS) were used as mouse models of colitis and mild psychological stress, respectively. We measured WAS-associated behaviour, gene expression and proinflammatory cytokine levels within the amygdala, hippocampus and hypothalamus as well as plasma levels of cytokines and corticosterone in male C57BL/6N mice. Animals with DSS-induced colitis presented with prolonged immobility during the WAS session, which was associated with brain region-dependent alterations of neuropeptide Y (NPY), NPY receptor Y1, corticotropin-releasing hormone (CRH), CRH receptor 1, brain-derived neurotrophic factor and glucocorticoid receptor gene expression. Furthermore, the combination of DSS and WAS increased interleukin-6 and growth regulated oncogene-? levels in the brain. Altered gut-brain signalling in the course of DSS-induced colitis is thought to cause the observed distinct gene expression changes in the limbic system and the aberrant molecular and behavioural stress responses. These findings provide new insights into the effects of stress during IBD. PMID:26066467

  19. Anti-Colitic Effects of Kanjangs (Fermented Soy Sauce and Sesame Sauce) in Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Lim, Yaung-Iee

    2014-01-01

    Abstract This study was conducted to investigate the preventive effects of different kanjangs (Korean soy sauces), including acid-hydrolyzed soy sauce (AHSS), fermented soy sauce (FSS), and fermented sesame sauce (FSeS), on 2% dextran sulfate sodium (DSS)-induced ulcerative colitis in C57BL/6J mice. The fermented sauces, particularly FSeS, significantly suppressed DSS-induced body weight loss, increased colon length, and decreased colon weight/length ratios. Histological observations suggested that the fermented sauces prevented edema, mucosal damage, and the loss of crypts induced by DSS compared to the control mice and animals fed AHSS. FSeS and FSS decreased the serum levels of tumor necrosis factor-? (TNF-?), interferon-? (IFN-?), interleukin (IL)-6, and IL-17?. mRNA expression of these cytokines as well as that of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in colon mucosa was also inhibited by the two sauces. Our results suggest that fermented sauces, especially FSeS, exert an anticolitic effect partially by reducing the serum levels of proinflammatory cytokines and inhibiting the mRNA expression of these factors in the colon tissue of mice treated with DSS. However, AHSS did not protect against DSS-induced colitis. In addition, low-dose treatment (4?mL/kg) with the fermented sauces resulted in greater anticolitic effects than consumption of a high quantity (8?mL/kg) of the sauces. PMID:25188463

  20. Temperature-dependent phase transition and desorption free energy of sodium dodecyl sulfate at the water/vapor interface: approaches from molecular dynamics simulations.

    PubMed

    Chen, Meng; Lu, Xiancai; Liu, Xiandong; Hou, Qingfeng; Zhu, Youyi; Zhou, Huiqun

    2014-09-01

    Adsorption of surfactants at the water/vapor interface depends upon their chemical potential at the interface, which is generally temperature-dependent. Molecular dynamics simulations have been performed to reveal temperature influences on the microstructure of sodium dodecyl sulfate (SDS) molecule adsorption layer. At room temperature, SDS molecules aggregate at the interface, being in a liquid-expanded phase, whereas they tend to spread out and probably transit to a gaseous phase as the temperature increases to above 318 K. This phase transition has been confirmed by the temperature-dependent changes in two-dimensional array, tilt angles, and immersion depths to the aqueous phase of SDS molecules. The aggregation of SDS molecules accompanies with larger immersion depths, more coordination of Na(+) ions, and less coordination of water. Desorption free energy profiles show that higher desorption free energy appears for SDS molecules at the aggregate state at low temperatures, but no energy barrier is observed. The shapes of desorption free energy profiles depend upon the distribution of SDS at the interface, which, in turn, is related to the phase state of SDS. Our study sheds light on the development of adsorption thermodynamics and kinetics theories. PMID:25127193

  1. Electron spin echo modulation study of sodium dodecyl sulfate and dodecyltrimethylammonium bromide micellar solutions in the presence of urea: Evidence for urea interaction at the micellar surface

    SciTech Connect

    Baglioni, P. ); Ferroni, E. ); Kevan, L. )

    1990-05-17

    Electron spin echo studies have been carried out for a series of x-doxylstearic acid (x-DSA, x = 5,7,10,12,16) and 4-octanoyl-2,2,6,6-tetramethylpiperidine-1-oxy (C{sub 8}-TEMPO) spin probes in micellar solutions of anionic sodium dodecyl sulfate (SDS) and cationic dodecyltrimethylammonium bromide (DTAB) in D{sub 2}O and in the presence of 2 or 6 M urea or urea-d{sub 4}. Modulation effects due to the interaction of the unpaired electron with urea and water deuteriums show that urea does not affect the bent conformation of the x-DSA probe in the micelle. The analysis of the deuterium modulation depth and the Fourier transformation of the two-pulse electron spin echo spectra show that urea interacts with the surfactant polar headgroups at the micelle surface. These results support recent molecular dynamics and Monte Carlo calculations of micellar systems and are in agreement with direct interaction of urea at micellar surfaces in which it replaces some water molecules in the surface region.

  2. A rapid method of species identification of wild chironomids (Diptera: Chironomidae) via electrophoresis of hemoglobin proteins in sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE).

    PubMed

    Oh, J T; Epler, J H; Bentivegna, C S

    2014-10-01

    Studying aquatic benthic macroinvertebrates (BMIs) in the field requires accurate taxonomic identification, which can be difficult and time consuming. Conventionally, head capsule morphology has been used to identify wild larvae of Chironomidae. However, due to the number of species and possible damage and/or deformity of their head capsules, another supporting approach for identification is needed. Here, we provide hemoglobin (Hb) protein in hemolymph of chironomids as a new biomarker that may help resolve some of the ambiguities and difficulties encountered during taxonomic identification. Chironomids collected from two locations in Maine and New Jersey, USA were identified to the genus level and in some cases to the species-level using head capsule and body morphologies. The head capsule for a particular individual was then associated with a corresponding Hb protein profile generated from sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Distinct Hb profiles were observed from one group (Thienemannimyia) and four genera (Chironomus, Cricotopus, Dicrotendipes, and Glyptotendipes) of chironomids. Several species were polymorphic, having more than one Hb profile and/or having bands of the same size as those of other species. However, major bands and the combination of bands could distinguish individuals at the genus and sometimes species-level. Overall, this study showed that Hb profiles can be used in combination with head capsule morphology to identify wild chironomids. PMID:24923437

  3. Transport Pathways and Enhancement Mechanisms within Localized and Non-Localized Transport Regions in Skin Treated with Low-Frequency Sonophoresis and Sodium Lauryl Sulfate

    PubMed Central

    Polat, Baris E.; Figueroa, Pedro L.; Blankschtein, Daniel; Langer, Robert

    2011-01-01

    Recent advances in transdermal drug delivery utilizing low-frequency sonophoresis (LFS) and sodium lauryl sulfate (SLS) have revealed that skin permeability enhancement is not homogenous across the skin surface. Instead, highly perturbed skin regions, known as localized transport regions (LTRs), exist. Despite these findings, little research has been conducted to identify intrinsic properties and formation mechanisms of LTRs and the surrounding less-perturbed non-LTRs. By independently analyzing LTR, non-LTR, and total skin samples treated at multiple LFS frequencies, we found that the pore radii (rpore) within non-LTRs are frequency-independent, ranging from 18.2 – 18.5 Å, but significantly larger than rpore of native skin samples (13.6 Å). Conversely, rpore within LTRs increases significantly with decreasing frequency from 161 Å, to 276 Å, and to ∞ (>300Å) for LFS/SLS-treated skin at 60 kHz, 40 kHz, and 20 kHz, respectively. Our findings suggest that different mechanisms contribute to skin permeability enhancement within each skin region. We propose that the enhancement mechanism within LTRs is the frequency-dependent process of cavitation-induced microjet collapse at the skin surface, while the increased rpore values in non-LTRs are likely due to SLS perturbation, with enhanced penetration of SLS into the skin resulting from the frequency-independent process of microstreaming. PMID:20740667

  4. Flame atomic absorption spectrometric determination of trace amounts of heavy metal ions after solid phase extraction using modified sodium dodecyl sulfate coated on alumina.

    PubMed

    Ghaedi, Mehrorang; Niknam, Khodabakhsh; Shokrollahi, Ardeshir; Niknam, Ebrahim; Rajabi, Hamid Reza; Soylak, Mustafa

    2008-06-30

    A sensitive and selective solid phase extraction procedure for the determination of traces of Cu(II), Zn(II), Pb(II) and Fe(III) has been developed. An alumina-sodium dodecyl sulfate (SDS) coated on with meso-phenyl bis(indolyl) methane (MPBIM) was used for preconcentration and determination of Cu(II), Zn(II), Pb(II) and Fe(III) ions by flame atomic absorption spectrometry. The analyte ions were adsorbed quantitatively on adsorbent due to their complexation with MPBIM. Adsorbed metals were quantitatively eluted using 6 mL of 4 mol L(-1) nitric acid. The effects of parameters such as pH, amount of alumina, amount of MBITP, flow rate, type and concentration of eluting agent were examined. The effects of interfering ions on the separation-preconcentration of analytes were also investigated. The relative standard deviation of the method was found to be less than 3.0%. The presented procedure was successfully applied for determination of analytes in real samples. PMID:18155354

  5. Comparative immune responses to native cell envelope antigens and the hot sodium dodecyl sulfate insoluble fraction (PG) of Brucella abortus in cattle and mice.

    PubMed

    Winter, A J; Rowe, G E

    1988-03-01

    Brucella abortus vaccines composed of native cell envelopes or outer membrane proteins of smooth strain 2308 were compared with a vaccine (PG) composed of the insoluble residue of strain 2308 cell envelopes which had been extracted with hot sodium dodecyl sulfate. Vaccines were given by injection in an oil base adjuvant containing trehalose dimycolate and muramyl dipeptide or without adjuvant. Mice vaccinated with 30 micrograms native cell envelopes or PG and challenged 4 weeks later with virulent B. abortus strain 2308 displayed equivalent levels of protective immunity at 1 and 4 weeks post-infection. Heifers were vaccinated with 5 mg of antigens in adjuvant; PG was also administered without adjuvant. Humoral and cell mediated immune (CMI) responses were tested at monthly intervals. PG without adjuvant induced negligible immune responses. Native cell envelope antigens induced significantly higher titers of whole cell agglutinins over a 3-month period than did PG, although revaccination with PG in adjuvant enhanced the production of agglutinins and both vaccines induced antibodies to the O polysaccharide. Lymphocyte blastogenesis responses and delayed hypersensitivity reactions to porin and group 3 proteins were stimulated by both native and PG vaccines, and the magnitude of the responses did not differ significantly between the treatment groups. These vaccines were therefore comparable in their capacity to induce protective immunity in mice and CMI responses in cattle, whereas antibody responses induced by PG in cattle were generally lower. These findings provide a basis for evaluation of nonliving B. abortus vaccines in cattle. PMID:3133872

  6. Chemical and physical stability of citral and limonene in sodium dodecyl sulfate-chitosan and gum arabic-stabilized oil-in-water emulsions.

    PubMed

    Djordjevic, Darinka; Cercaci, Luisito; Alamed, Jean; McClements, D Julian; Decker, Eric A

    2007-05-01

    Citral and limonene are the major flavor components of citrus oils. Both of these compounds can undergo chemical degradation leading to loss of flavor and the formation of undesirable off-flavors. Engineering the interface of emulsion droplets with emulsifiers that inhibit chemical reactions could provide a novel technique to stabilize citral and limonene. At present, emulsified flavor oils are usually stabilized by gum arabic (GA), which is a naturally occurring polysaccharide-protein complex. The objective of this study was to examine if citral and limonene were more stable in emulsions stabilized with a sodium dodecyl sulfate (SDS)-chitosan complex than GA. Citral degraded less in GA-stabilized than in SDS-chitosan-stabilized emulsions at pH 3.0. However, SDS-chitosan-stabilized emulsions were more effective at retarding the formation of the citral oxidation product, p-cymene, than GA-stabilized emulsions. Limonene degradation and the formation of limonene oxidation products, limonene oxide and carvone, were lower in the SDS-chitosan- than GA-stabilized emulsions at pH 3.0. The ability of an SDS-chitosan multilayer emulsifier system to inhibit the oxidative deterioration of citral and limonene could be due to the formation of a cationic and thick emulsion droplet interface that could repel prooxidative metals, thus decreasing prooxidant-lipid interactions. PMID:17419641

  7. Sodium Lauryl Sulfate Increases the Efficacy of a Topical Formulation of Foscarnet against Herpes Simplex Virus Type 1 Cutaneous Lesions in Mice

    PubMed Central

    Piret, Jocelyne; Dsormeaux, Andr; Cormier, Hlne; Lamontagne, Julie; Gourde, Pierrette; Juhsz, Julianna; Bergeron, Michel G.

    2000-01-01

    The influence of sodium lauryl sulfate (SLS) on the efficacies of topical gel formulations of foscarnet against herpes simplex virus type 1 (HSV-1) cutaneous infection has been evaluated in mice. A single application of the gel formulation containing 3% foscarnet given 24 h postinfection exerted only a modest effect on the development of herpetic skin lesions. Of prime interest, the addition of 5% SLS to this gel formulation markedly reduced the mean lesion score. The improved efficacy of the foscarnet formulation containing SLS could be attributed to an increased penetration of the antiviral agent into the epidermis. In vitro, SLS decreased in a concentration-dependent manner the infectivities of herpesviruses for Vero cells. SLS also inhibited the HSV-1 strain F-induced cytopathic effect. Combinations of foscarnet and SLS resulted in subsynergistic to subantagonistic effects, depending on the concentration used. Foscarnet in phosphate-buffered saline decreased in a dose-dependent manner the viability of cultured human skin fibroblasts. This toxic effect was markedly decreased when foscarnet was incorporated into the polymer matrix. The presence of SLS in the gel formulations did not alter the viabilities of these cells. The use of gel formulations containing foscarnet and SLS could represent an attractive approach to the treatment of herpetic mucocutaneous lesions, especially those caused by acyclovir-resistant strains. PMID:10952566

  8. Efficacies of Gel Formulations Containing Foscarnet, Alone or Combined with Sodium Lauryl Sulfate, against Establishment and Reactivation of Latent Herpes Simplex Virus Type 1

    PubMed Central

    Piret, Jocelyne; Lamontagne, Julie; Dsormeaux, Andr; Bergeron, Michel G.

    2001-01-01

    The influence of sodium lauryl sulfate (SLS) on the efficacies of gel formulations of foscarnet against herpes simplex virus type 1 (HSV-1) cutaneous lesions and on the establishment and reactivation of latent virus has been evaluated in a murine model of orofacial infection. Topical treatments were given twice daily for 3 days and were initiated at 6, 24, and 48 h after virus inoculation. The gel formulation that contained both 3% foscarnet and 5% SLS and that was administered within 48 h postinfection reduced the rate of development of herpetic skin lesions. This formulation also significantly decreased the viral content in skin tissues and in ipsilateral trigeminal ganglia when it was given within 24 and 6 h postinfection, respectively. A lower level of efficacy was observed for the gel formulation containing 3% foscarnet alone. Of prime interest, the gel formulation containing 5% SLS reduced significantly the mortality rate among mice in a zosteriform model of infection. Both formulations of foscarnet had no effect on the mean titers of reactivated virus in explant cultures of ipsilateral and contralateral trigeminal ganglia from latently infected mice. The use of a gel formulation containing combinations of foscarnet and SLS could represent an attractive approach for the treatment of herpetic mucocutaneous infections. PMID:11257012

  9. Molecular mechanism of catalase activity change under sodium dodecyl sulfate-induced oxidative stress in the mouse primary hepatocytes(†).

    PubMed

    Wang, Jing; Wang, Jiaxi; Xu, Chi; Liu, Rutao; Chen, Yadong

    2016-04-15

    Sodium dodecyl sulfate (SDS) contributes to adverse effects of organisms probably because of its ability to induce oxidative stress via changing the activity of antioxidant enzyme catalase (CAT). But the underlying molecular mechanisms still remain unclear. This study characterized the harmful effects of SDS-induced oxidative stress on the mouse primary hepatocytes as well as the structure and function of CAT molecule and investigated the underlying molecular mechanism. After 12h SDS (0.1μM to 0.2mM) exposure, no significant change was observed in CAT activity of the hepatocytes. After 0.5 and 0.8mM SDS exposure, the state of oxidative stress stimulated CAT production in the hepatocytes. The inhibition of CAT activity induced by directly interacting with SDS was unable to catch the synthesis of CAT and therefore resulted in the increased activity and elevated ROS level. Further molecular experiments showed that SDS prefers to bind to the interface with no direct effect on the active site and the structure of heme groups of CAT molecule. When the sites in the interface is saturated, SDS interacts with VAL 73, HIS 74, ASN 147 and PHE 152, the key residues of the enzyme activity, and leads to the decrease of CAT activity. PMID:26780704

  10. Variation and Genomic Localization of Genes Encoding DROSOPHILA MELANOGASTER Male Accessory Gland Proteins Separated by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis

    PubMed Central

    Whalen, Michael; Wilson, Thomas G.

    1986-01-01

    Accessory gland proteins from Drosophila melanogaster males have been separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis into nine major bands. When individual males from 175 strains were examined, considerable polymorphism for nearly one-half of the major protein bands was seen, including null alleles for three bands. Variation was observed not only among long-established laboratory strains but also among stocks recently derived from natural populations. There was little difference in the amount of variation between P and M strains, indicating that P element mutagenesis is not a factor producing the variation. Codominant expression of variants for each of five bands was found in heterozygotes, suggesting structural gene variation and not posttranslational modification variation. Stocks carrying electrophoretic variants of four of the major proteins were used to map the presumed structural genes for these proteins; the loci were found to be dispersed on the second chromosome. Since males homozygous for variant proteins were fertile, the polymorphism seems to have little immediate effect on successful sperm transfer. We propose that a high degree of polymorphism can be tolerated because these proteins play a nutritive rather than enzymatic role in Drosophila reproduction. PMID:3095182

  11. Analysis of Streptomyces coelicolor membrane proteome using two-dimensional native/native and native/sodium dodecyl sulfate gel electrophoresis.

    PubMed

    Li, Fuhou; Liang, Jingdan; Wang, Weixia; Zhou, Xiufen; Deng, Zixin; Wang, Zhijun

    2014-11-15

    Analysis of the oligomeric state of a protein may provide insights into its physiological functions. Because membrane proteins are considered to be the workhorses of energy generation and polypeptide and nutrient transportation, in this study we characterized the membrane-associated proteome of Streptomyces coelicolor by two-dimensional (2D) blue native/sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), high-resolution clear native/native PAGE, and native/SDS-PAGE. A total of 77 proteins were identified, and 20 proteins belonging to 15 complexes were characterized. Moreover, the resolution of high-resolution clear native/SDS-PAGE is much higher than that of blue native/SDS-PAGE. OBP (SCO5477) and BldKB (SCO5113) were identified as the main protein spots from the membrane fractions of S. coelicolor M145, suggesting that these two proteins are involved in extracellular peptide transportation. These two transporters exhibited multiple oligomeric states in the native PAGE system, which may suggest their multiple physiological functions in the development of S. coelicolor. PMID:25150108

  12. In-tube magnetic solid phase microextraction of some fluoroquinolones based on the use of sodium dodecyl sulfate coated Fe3O4 nanoparticles packed tube.

    PubMed

    Manbohi, Ahmad; Ahmadi, Seyyed Hamid

    2015-07-23

    In-tube magnetic solid phase microextraction (in-tube MSPME) of fluoroquinolones from water and urine samples based on the use of sodium dodecyl sulfate (SDS) coated Fe3O4 nanoparticles packed tube has been reported. After the preparation of Fe3O4 nanoparticles (NPs) by a batch synthesis, these NPs were introduced into a stainless steel tube by a syringe and then a strong magnet was placed around the tube, so that the Fe3O4 NPs were remained in the tube and the tube was used in the in-tube SPME-HPLC/UV for the analysis of fluoroquinolones in water and urine samples. Plackett-Burman design was employed for screening the variables significantly affecting the extraction efficiency. Then, the significant factors were more investigated by Box-Behnken design. Calibration curves were linear (R(2)>0.990) in the range of 0.1-1000?gL(-1) for ciprofloxacin (CIP) and 0.5-500?gL(-1) for enrofloxacin (ENR) and ofloxacin (OFL), respectively. LODs for all studied fluoroquinolones ranged from 0.01 to 0.05?gL(-1). The main advantages of this method were rapid and easy automation and analysis, short extraction time, high sensitivity, possibility of fully sorbent collection after analysis, wide linear range and no need to organic solvents in extraction. PMID:26231896

  13. Inhibitory effects of resistant starch (RS3) as a carrier for stachyose on dextran sulfate sodium-induced ulcerative colitis in C57BL/6 mice

    PubMed Central

    QIAN, YU; ZHAO, XIN; SONG, JIA-LE; ZHU, KAI; SUN, PENG; LI, GUI-JIE; WANG, RUI; KAN, JIAN-QUAN

    2013-01-01

    The aim of this study was to determine the effects of resistant starch 3 (RS3) as a carrier for stachyose on dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice. RS3 microspheres carrying stachyose (RS3 + stachyose) were produced and evaluated as a potentially improved colitis therapy for this study. The body weights of the mice treated with RS3 + stachyose were higher compared with those of DSS-treated control mice. RS3 + stachyose reduced the levels of the serum pro-inflammatory cytokines IL-6 and TNF-α to a greater extent compared with the same concentration of stachyose combined with ordinary starch (stachyose + starch). Histopathological examination of sections of colon tissues showed that the RS3 + stachyose group recovered well from colitis; however, the tissue sections of the stachyose + starch group presented necrosis to a more serious degree. These results suggest that stachyose with an RS3 carrier has better preventative effects on colitis than stachyose alone in mice. PMID:24223664

  14. A simple, rapid, and sensitive method for analysis of SYPRO Red labeled sodium dodecyl sulfate-protein complexes by capillary electrophoresis with laser-induced fluorescence.

    PubMed

    Chiu, Tai-Chia; Lin, Yang-Wei; Huang, Chih-Ching; Chrambach, Andreas; Chang, Huan-Tsung

    2003-06-01

    We describe a segmental filling method for the analysis of SYPRO Red labeled sodium dodecyl sulfate (SDS)-proteins (SRSPs) by capillary electrophoresis-laser induced fluorescence (CE-LIF) with electroosmotic counterflow of poly(ethylene oxide) (PEO). It is shown that SDS and salt play a crucial role in determining the fluorescence intensity of the SRSP. Although the fluorimetric measurements reveal that the SRSPs fluoresce strongly in Tris-borate (TB) buffer containing 0.1% SDS and high concentrations of NaCl (100 mM), these conditions are not appropriate to CE in view of Joule heating. To overcome that impediment, we applied a plug of 0.1% SDS (1/5 to 1/3 of the injection volume) prior to injection of samples (0.64 microL) prepared in TB buffer containing 50 mM NaCl and SYPRO Red. When using a background electrolyte of 0.6% PEO in TB buffer containing NaCl, electroosmotic counterflow of the analytes allows one to concentrate large sample volumes (up to 1/3 of effective capillary length) in 21 min, with detection of 0.35 and 0.10 nM for bovine serum albumin and casein, respectively. With a linear dynamic range from 10 nM to 5 microM, this method provides the capability of determining the concentration of casein in cow's milk as 0.45 +/- 0.03 mM (n = 5). PMID:12783449

  15. Sodium sulfate-induced corrosion of pure nickel and superalloy Udimet 700 in a high velocity burner rig at 900 C

    NASA Technical Reports Server (NTRS)

    Misra, A. K.

    1987-01-01

    Sodium sulfate-induced corrosion of pure nickel and a commercial nickel-base superalloy, Udimet 700 (U-700), were studied at 900 C in a Mach 0.3 burner rig with different Na levels in the combustor. The corrosion rate of Ni was independent of the Na level in the combustor and considerably lower than that measured in laboratory salt spray tests. The lower rates are associated with the deposition of only a small amount of Na2SO4 on the surface of the NiO scale. Corrosion of U-700 was observed to occur in two stages. During the first stage, the corrosion proceeds by reaction of Cr2O3 scale with the Na2SO4 and evaporation of the Na2CrO4 reaction product from the surface of the corroding sample. Cr depletion in the alloy occurs and small sulfide particles are formed in the Cr depletion zone. Extensive sulfidation occurs during the second state of corrosion, and a thick scale forms. The relationship between the corrosion rate of U-700 and the Na level in the combustor gives a good correlation in the range of 0.3 to 1.5 ppm by weight Na. Very low levels of Na in the combustor cause accelerated oxidation of U-700 without producing the typical hot corrosion morphology.

  16. Polyphenol-rich sorghum brans alter colon microbiota and impact species diversity and species richness after multiple bouts of dextran sodium sulfate-induced colitis.

    PubMed

    Ritchie, Lauren E; Sturino, Joseph M; Carroll, Raymond J; Rooney, Lloyd W; Azcarate-Peril, M Andrea; Turner, Nancy D

    2015-03-01

    The microbiota affects host health, and dysbiosis is involved in colitis. Sorghum bran influences butyrate concentrations during dextran sodium sulfate (DSS) colitis, suggesting microbiota changes. We aimed to characterize the microbiota during colitis, and ascertain if polyphenol-rich sorghum bran diets mitigate these effects. Rats (n = 80) were fed diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins), or Hi Tannin black (both) sorghum bran. Inflammation was induced three times using 3% DSS for 48 h (40 rats, 2 week separation), and the microbiota characterized by pyrosequencing. The Firmicutes/Bacteroidetes ratio was higher in Cellulose DSS rats. Colonic injury negatively correlated with Firmicutes, Actinobacteria, Lactobacillales and Lactobacillus, and positively correlated with Unknown/Unclassified. Post DSS#2, richness was significantly lower in Sumac and Hi Tannin black. Post DSS#3 Bacteroidales, Bacteroides, Clostridiales, Lactobacillales and Lactobacillus were reduced, with no Clostridium identified. Diet significantly affected Bacteroidales, Bacteroides, Clostridiales and Lactobacillus post DSS#2 and #3. Post DSS#3 diet significantly affected all genus, including Bacteroides and Lactobacillus, and diversity and richness increased. Sumac and Hi Tannin black DSS had significantly higher richness compared to controls. Thus, these sorghum brans may protect against alterations observed during colitis including reduced microbial diversity and richness, and dysbiosis of Firmicutes/Bacteroidetes. PMID:25764457

  17. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    NASA Astrophysics Data System (ADS)

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-04-01

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2-10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30-50 has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  18. Role of ?-lipoic acid in dextran sulfate sodium-induced ulcerative colitis in mice: studies on inflammation, oxidative stress, DNA damage and fibrosis.

    PubMed

    Trivedi, P P; Jena, G B

    2013-09-01

    Ulcerative colitis affects many people worldwide. Inflammation and oxidative stress play a vital role in its pathogenesis. Previously, we reported that ulcerative colitis leads to systemic genotoxicity in mice. The present study was aimed at elucidating the role of ?-lipoic acid in ulcerative colitis-associated local and systemic damage in mice. Experimental colitis was induced using 3%w/v dextran sulfate sodium in drinking water for 2 cycles. ?-Lipoic acid was administered in a co-treatment (20, 40, 80 mg/kg bw) and post-treatment (80 mg/kg bw) schedule. Various biochemical parameters, histological evaluation, comet and micronucleus assays, immunohistochemistry and western blot analysis were employed to evaluate the effect of ?-lipoic acid in mice with ulcerative colitis. The protective effect of ?-lipoic acid was mediated through the modulation of nuclear factor kappa B, cyclooxygenase-2, interleukin 17, signal transducer and activator of transcription 3, nuclear erythroid 2-related factor 2, NADPH: quinone oxidoreductase-1, matrix metalloproteinase-9 and connective tissue growth factor. Further, ulcerative colitis led to an increased gut permeability, plasma lipopolysaccharide level, systemic inflammation and genotoxicity in mice, which was reduced with ?-lipoic acid treatment. The present study identifies the underlying mechanisms involved in ?-lipoic acid-mediated protection against ulcerative colitis and the associated systemic damage in mice. PMID:23793040

  19. Enhanced Binding of Phenosafranin to Triblock Copolymer F127 Induced by Sodium Dodecyl Sulfate: A Mixed Micellar System as an Efficient Drug Delivery Vehicle.

    PubMed

    Mondal, Ramakanta; Ghosh, Narayani; Mukherjee, Saptarshi

    2016-03-24

    In this study, we explored the interaction of a cationic phenazinium dye, phenosafranin (PSF, here used as a model drug), with pluronic block copolymer F127, both in the presence and in the absence of the anionic surfactant sodium dodecyl sulfate (SDS), which forms mixed micelles with F127. We applied both steady-state and time-resolved spectroscopic techniques, along with isothermal titration calorimetry (ITC), to demonstrate the binding of the probe PSF to both the pluronic and F127/SDS mixed micelles. Dynamic light scattering (DLS) study revealed that, upon interaction with SDS, the hydrodynamic diameter (dH) of F127 micelles decreased due to the formation of the mixed micelles. The PSF penetrated to the more hydrophobic interior of the mixed micellar system as compared to F127 micelles alone. Micropolarity and fluorescence-quenching experiments revealed that PSF is more deeply seated in the case of F127/SDS mixed micelles. Through a partition coefficient, lifetime measurements, and time-resolved anisotropy experiments, we also established that the partitioning of the probe within the F127 micelles in the presence of SDS is almost double than that in its absence. ITC data corroborates the fact that the binding of PSF is the strongest and most thermodynamically favorable when mixed micelles are formed, which enables our system to serve as an excellent drug delivery vehicle when compared to F127 alone. PMID:26936205

  20. Inactivation of Escherichia coli O157:H7 and Salmonella typhimurium DT 104 on alfalfa seeds by levulinic acid and sodium dodecyl sulfate.

    PubMed

    Zhao, Tong; Zhao, Ping; Doyle, Michael P

    2010-11-01

    Studies were conducted to determine the best concentration and exposure time for treatment of alfalfa seeds with levulinic acid plus sodium dodecyl sulfate (SDS) to inactivate Escherichia coli O157:H7 and Salmonella without adversely affecting seed germination. Alfalfa seeds inoculated with a five-strain mixture of E. coli O157:H7 or Salmonella Typhimurium were dried in a laminar flow hood at 21C for up to 72 h. Inoculated alfalfa seeds dried for 4 h then treated for 5 min at 21C with 0.5% levulinic acid and 0.05% SDS reduced the population of E. coli O157:H7 and Salmonella Typhimurium by 5.6 and 6.4 log CFU/g, respectively. On seeds dried for 72 h, treatment with 0.5% levulinic acid and 0.05% SDS for 20 min at 21C reduced E. coli O157:H7 and Salmonella Typhimurium populations by 4 log CFU/g. Germination rates of alfalfa seeds treated with 0.5% levulinic acid plus 0.05% SDS for up to 1 h at 21C were compared with a treatment of 20,000 ppm of calcium hypochlorite or tap water only. Treatment of alfalfa seeds with 0.5% levulinic acid plus 0.05% SDS for 5 min at 21C resulted in a >3.0-log inactivation of E. coli O157:H7 and Salmonella. PMID:21219712

  1. Electrophoretic analysis of proteinases in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized radiolabeled protein substrates: Application to proenkephalin processing enzymes

    SciTech Connect

    Irvine, J.W.; Roberts, S.F.; Lindberg, I. )

    1990-10-01

    A novel method is described for the zymographic analysis of proteinases in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized radiolabeled protein substrates such as ({sup 35}S)methionine-labeled proenkephalin or {sup 125}I-labeled proinsulin. After electrophoresis the enzyme is reactivated and cleaves the radiolabeled in situ substrate into smaller peptides. These small peptides are able to diffuse out of the gel, leaving clear areas against a dark background when visualized by autoradiography. The technique can be used to detect as little as 200 fg of trypsin using only 50 ng (1.25 microCi) of ({sup 35}S)proenkephalin. Soluble- and membrane-bound adrenal trypsin-like enzyme were isolated from bovine adrenal chromaffin granules. Both proteinases cleaved ({sup 35}S)methionine-labeled proenkephalin but not {sup 125}I-labeled proinsulin. Moreover, both had a Mr of approximately 30,000. The potential of this technique for general use is discussed. An additional method using the synthetic fluorogenic substrate t-butoxycarbonyl Glu-Lys-Lys aminomethylcoumarin is also described.

  2. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate (SDS)-coated nano-magnets for the spectrophotometric determination of Fingolomid in biological fluids

    NASA Astrophysics Data System (ADS)

    Azari, Zhila; Pourbasheer, Eslam; Beheshti, Abolghasem

    2016-01-01

    In this study, mixed hemimicelles solid-phase extraction (SPE) based on sodium dodecyl sulfate (SDS)-coated nano-magnets Fe3O4 was investigated as a novel method for the separation and determination of Fingolimod (FLM) in water, urine and plasma samples prior to spectrophotometeric determination. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory extraction recoveries can be produced. The main factors affecting the adsolubilization of analysts, such as pH, surfactant and adsorbent amounts, ionic strength, extraction time and desorption conditions were studied and optimized. Under the selected conditions, FLM has been quantitatively extracted. The accuracy of the method was evaluated by recovery measurements on spiked samples, and good recoveries of 96%, 95% and 88% were observed for water, urine and plasma respectively. Proper linear behaviors over the investigated concentration ranges of 2-26, 2-17 and 2-13 mg/L with good coefficients of determination, 0.998, 0.997 and 0.995 were achieved for water, urine and plasma samples, respectively. To the best of our knowledge, this is the first time that a mixed hemimicelles SPE method based on magnetic separation and nanoparticles has been used as a simple and sensitive method for monitoring of FLM in water and biological samples.

  3. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate (SDS)-coated nano-magnets for the spectrophotometric determination of Fingolomid in biological fluids.

    PubMed

    Azari, Zhila; Pourbasheer, Eslam; Beheshti, Abolghasem

    2016-01-15

    In this study, mixed hemimicelles solid-phase extraction (SPE) based on sodium dodecyl sulfate (SDS)-coated nano-magnets Fe3O4 was investigated as a novel method for the separation and determination of Fingolimod (FLM) in water, urine and plasma samples prior to spectrophotometeric determination. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory extraction recoveries can be produced. The main factors affecting the adsolubilization of analysts, such as pH, surfactant and adsorbent amounts, ionic strength, extraction time and desorption conditions were studied and optimized. Under the selected conditions, FLM has been quantitatively extracted. The accuracy of the method was evaluated by recovery measurements on spiked samples, and good recoveries of 96%, 95% and 88% were observed for water, urine and plasma respectively. Proper linear behaviors over the investigated concentration ranges of 2-26, 2-17 and 2-13 mg/L with good coefficients of determination, 0.998, 0.997 and 0.995 were achieved for water, urine and plasma samples, respectively. To the best of our knowledge, this is the first time that a mixed hemimicelles SPE method based on magnetic separation and nanoparticles has been used as a simple and sensitive method for monitoring of FLM in water and biological samples. PMID:26439525

  4. Dead Nano-Sized Lactobacillus plantarum Inhibits Azoxymethane/Dextran Sulfate Sodium-Induced Colon Cancer in Balb/c Mice.

    PubMed

    Lee, Hyun Ah; Kim, Hyunung; Lee, Kwang-Won; Park, Kun-Young

    2015-12-01

    The chemopreventive effects of dead nano-sized Lactobacillus plantarum (nLp) on colon carcinogenesis, induced by dextran sulfate sodium and azoxymethane, were evaluated using Balb/c mice and compared with the effects of pure live L. plantarum (pLp). nLp is a dead shrunken form of L. plantarum derived from kimchi and has a particle size of 0.5-1.0 ?m. Animals fed nLp showed less weight loss, longer colons, lower colon weight/length ratios, and fewer colonic tumors compared with pLp. In addition, the administration of nLp significantly reduced the expression of inflammatory markers, mediated the expression of cell cycle and apoptotic markers in colon tissues, and elevated fecal IgA levels more than pLp. Accordingly, the present study shows that the anticolorectal cancer activities of nLp are greater than those of pLp and suggests this is due to the suppression of inflammation, the induction of cell cycle arrest and apoptosis, and enhanced IgA secretion. PMID:26595186

  5. Immunoprotective Effect of Probiotic Dahi Containing Lactobacillus acidophilus and Bifidobacterium bifidum on Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice.

    PubMed

    Jadhav, Sagar R; Shandilya, Umesh Kr; Kansal, Vinod K

    2012-03-01

    In the present study, probiotic Dahi (LaBb Dahi) containing Lactobacillus acidophilus LaVK2 and Bifidobacterium bifidum BbVK3 was selected as a probiotic therapy to investigate its protective effect on dextran sodium sulfate (DSS)-induced ulcerative colitis model in mice that mimics the picture in human. LaBb Dahi was prepared by co-culturing Dahi bacteria (Lactococcus lactis ssp. cremoris NCDC-86 and Lactococcus lactis ssp. lactis biovar diacetylactis NCDC-60) along with selected strain of L. acidophilus LaVK2 and B. bifidum BbVK3 in buffalo milk (3% fat). Four groups of swiss albino male mice (12 each) were fed buffalo milk (3% fat), buffalo milk (3% fat) plus DSS, Dahi plus DSS, and LaBb Dahi plus DSS, respectively, for 17days with basal diet. The myeloperoxidase (MPO) activity, levels of tumor necrosis factor-? (TNF-?), interleukin-6 (IL-6) and interferon (IFN-?) were assessed as inflammatory markers, and the histopathological picture of the colon of mice was studied. DSS-induced colitis appeared to induce significant increase in MPO activity, levels of TNF-?, IL-6 and IFN-?. Feeding with LaBb Dahi offered significant reduction in MPO activity, levels of TNF-?, IL-6 and IFN-? when compared to either buffalo milk group or group III (Dahi). The present study suggests that LaBb probiotic Dahi can be used to combat DSS-induced biochemical and histological changes and to achieve more effective treatment for ulcerative colitis. PMID:26781733

  6. Effect of sodium dodecyl sulfate (SDS) on stress response in the Mediterranean mussel (Mytilus Galloprovincialis): regulatory volume decrease (Rvd) and modulation of biochemical markers related to oxidative stress.

    PubMed

    Messina, Concetta Maria; Faggio, Caterina; Laudicella, Vincenzo Alessandro; Sanfilippo, Marilena; Trischitta, Francesca; Santulli, Andrea

    2014-12-01

    In this study the effects of an anionic surfactant, sodium dodecyl sulfate (SDS), are assessed on the Mediterranean mussel (Mytilus galloprovincialis), exposed for 18 days at a concentration ranging from 0.1 mg/l to 1 mg/l. The effects are monitored using biomarkers related to stress response, such as regulatory volume decrease (RVD), and to oxidative stress, such as reactive oxygen species (ROS), endogenous antioxidant systems and Hsp70 levels. The results demonstrate that cells from the digestive gland of M. galloprovincialis, exposed to SDS were not able to perform the RVD owing to osmotic stress. Further, SDS causes oxidative stress in treated organisms, as demonstrated by the increased ROS production, in comparison to the controls (p<0.05). Consequently, two enzymes involved in ROS scavenging, superoxide dismutase (SOD) and catalase (CAT) have higher activities and the proportion of oxidized glutathione (GSSG) is higher in hepatopancreas and mantle of treated animals, compared to untreated animals (p<0.05). Furthermore Hsp70 demonstrates an up-regulation in all the analyzed tissues of exposed animals, attesting the stress status induced by the surfactant with respect to the unexposed animals. The results highlight that SDS, under the tested concentrations, exerts a toxic effect in mussels in which the disruption of the osmotic balance follows the induction of oxidative stress. PMID:25456223

  7. Orally administered lactoperoxidase ameliorates dextran sulfate sodium-induced colitis in mice by up-regulating colonic interleukin-10 and maintaining peripheral regulatory T cells.

    PubMed

    Shin, Kouichirou; Horigome, Ayako; Yamauchi, Koji; Yaeshima, Tomoko; Iwatsuki, Keiji

    2009-11-01

    We previously demonstrated orally administered bovine lactoperoxidase (LPO) ameliorated dextran sulfate sodium-induced colitis in mice. Here, we examine the mechanism of action of LPO. Three days after colitis induction, expression of interferon-gamma mRNA in colonic tissue was significantly decreased in mice administered LPO; while mRNA expression of interleukin (IL)-10 and regulatory T cell (Treg) marker, Foxp3, were significantly increased. The proportion of CD4+CD25+ Tregs in peripheral CD4+ T cells was also significantly elevated when LPO was administered. Nine days after colitis induction, the severity of colitis symptoms, including body weight loss and colon shortening, was reduced and expression of IL-10 mRNA was increased in mice administered LPO. The proportion of CD4+CD25+ Tregs in peripheral leukocytes was also significantly elevated when LPO was administered. These results suggest LPO ameliorates colitis by up-regulating colonic anti-inflammatory cytokines and maintaining peripheral regulatory T cells. PMID:19723594

  8. Polyphenol-rich sorghum brans alter colon microbiota and impact species diversity and species richness after multiple bouts of dextran sodium sulfate-induced colitis

    PubMed Central

    Ritchie, Lauren E.; Sturino, Joseph M.; Carroll, Raymond J.; Rooney, Lloyd W.; Azcarate-Peril, M. Andrea; Turner, Nancy D.

    2015-01-01

    The microbiota affects host health, and dysbiosis is involved in colitis. Sorghum bran influences butyrate concentrations during dextran sodium sulfate (DSS) colitis, suggesting microbiota changes. We aimed to characterize the microbiota during colitis, and ascertain if polyphenol-rich sorghum bran diets mitigate these effects. Rats (n = 80) were fed diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins), or Hi Tannin black (both) sorghum bran. Inflammation was induced three times using 3% DSS for 48 h (40 rats, 2 week separation), and the microbiota characterized by pyrosequencing. The Firmicutes/Bacteroidetes ratio was higher in Cellulose DSS rats. Colonic injury negatively correlated with Firmicutes, Actinobacteria, Lactobacillales and Lactobacillus, and positively correlated with Unknown/Unclassified. Post DSS#2, richness was significantly lower in Sumac and Hi Tannin black. Post DSS#3 Bacteroidales, Bacteroides, Clostridiales, Lactobacillales and Lactobacillus were reduced, with no Clostridium identified. Diet significantly affected Bacteroidales, Bacteroides, Clostridiales and Lactobacillus post DSS#2 and #3. Post DSS#3 diet significantly affected all genus, including Bacteroides and Lactobacillus, and diversity and richness increased. Sumac and Hi Tannin black DSS had significantly higher richness compared to controls. Thus, these sorghum brans may protect against alterations observed during colitis including reduced microbial diversity and richness, and dysbiosis of Firmicutes/Bacteroidetes. PMID:25764457

  9. Aggregation behavior of sodium lauryl ether sulfate with a positively bicharged organic salt and effects of the mixture on fluorescent properties of conjugated polyelectrolytes.

    PubMed

    Tang, Yongqiang; Liu, Zhang; Zhu, Linyi; Han, Yuchun; Wang, Yilin

    2015-02-24

    The aggregation behavior of anionic single-chain surfactant sodium lauryl ether sulfate containing three ether groups (SLE3S) with positively bicharged organic salt 1,2-bis(2-benzylammoniumethoxy)ethane dichloride (BEO) has been investigated in aqueous solution, and the effects of the BEO/SLE3S aggregate transitions on the fluorescent properties of anionic conjugated polyelectrolyte MPS-PPV with a larger molecular weight and cationic conjugated oligoelectrolyte DAB have been evaluated. Without BEO, SLE3S does not affect the fluorescent properties of MPS-PPV and only affects the fluorescent properties of DAB at a higher SLE3S concentration. With the addition of BEO, SLE3S and BEO form gemini-like surfactant (SLE3S)2-BEO. When the BEO/SLE3S molar ratio is fixed at 0.25, with increasing the BEO/SLE3S concentration, the BEO/SLE3S mixture forms large, loosely arranged aggregates and then transforms to closely packed spherical aggregates and finally to long thread-like micelles. The photoluminescence (PL) intensity of MPS-PPV varies with the morphologies of the BEO/SLE3S aggregates, while the PL intensity of DAB is almost independent of the aggregate morphologies. The results demonstrate that gemini-like surfactants formed through intermolecular interactions can effectively adjust the fluorescent properties of conjugated polyelectrolytes. PMID:25641198

  10. The effects of dodecyl maltoside and sodium dodecyl sulfate surfactants on the stability and aggregation of recombinant interferon Beta-1b.

    PubMed

    Haji Abdolvahab, Mohadeseh; Fazeli, Ahmad; Fazeli, Mohammad Reza; Brinks, Vera; Schellekens, Huub

    2014-11-01

    Aggregation often occurs during manufacturing and storage of protein drugs. Detergents such as sodium dodecyl sulfate are commonly used to prevent aggregation but need to be eliminated before final formulation for safety reasons. We studied the ability of dodecylmaltoside (DDM), a nontoxic alkyl saccharide surfactant, to reduce aggregation and increase the stability of interferon beta-1b (IFN)-?-1b. An increase of 8C in the Tm of IFN-?-1b was observed when 0.1% of DDM was present in the protein solution. The absorption of DDM on hydrophobic surfaces of IFN-?-1b enables the surface to become hydrophilic and non-ionic, and increases the stability of the protein. 0.1% DDM also results in a 62% increase in helical and a 25% decrease in ?-sheet structures. 0.1% DDM not only suppresses aggregate formation but also improves IFN-?-1b solubilization. Furthermore, we have showed the protective effect of DDM on the anti-viral activity of IFN-?-1b in solution. PMID:24956236

  11. Petal-shaped poly(3,4-ethylenedioxythiophene)/sodium dodecyl sulfate-graphene oxide intercalation composites for high-performance electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Zhou, Haihan; Han, Gaoyi; Fu, Dongying; Chang, Yunzhen; Xiao, Yaoming; Zhai, Hua-Jin

    2014-12-01

    A facile and one-step electrochemical codeposition method is introduced for incorporating graphene oxide (GO) into poly(3,4-ethylenedioxythiophene) (PEDOT) films in the presence of sodium dodecyl sulfate (SDS). The as-prepared PEDOT/SDS-GO composites are characterized using scanning electron microscope, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The results show that PEDOT/SDS-GO composites possessing a unique petal-shaped morphology have been prepared successfully and exhibit an intercalated microstructure. With the purpose of electrochemical energy storage, the properties of electrochemical capacitance for composites have also been investigated with cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy tests. The electrochemical test results manifest the PEDOT/SDS-GO composites have superior capacitive behaviors and cyclic stability, and a high areal capacitance of 79.6 mF cm-2 is achieved at 10 mV s-1 cyclic voltammetry scan. Furthermore, the PEDOT/SDS-GO composites exhibit more superior capacitive performance than that of PEDOT/SDS, indicating the incorporation of GO into the composites effectively boosts the capacitive performance of PEDOT-based supercapacitor electrodes. We consider that this research further extends the application of GO and the composites prepared can be developed as the candidate for the fabrication of low-cost, high-performance supercapacitors for energy storage.

  12. Highly sensitive and simple fluorescence staining of proteins in sodium dodecyl sulfate-polyacrylamide-based gels by using hydrophobic tail-mediated enhancement of fluorescein luminescence.

    PubMed

    Kang, Chulhun; Kim, Hyun Jung; Kang, Donghoon; Jung, Duk Young; Suh, Myungkoo

    2003-10-01

    Fluorescein has an extremely low luminescence intensity in acidic aqueous media. However, when it was bound to proteins, subsequent increase of luminescence intensity took place. Furthermore, when a hydrophobic tail, such as aliphatic hydrocarbons, was introduced to fluorescein, more dramatic increase of luminescence intensity was observed upon binding to proteins. In the present study, by utilizing this luminescence enhancement, three hydrophobic fluorescein dyes (5-dodecanoyl amino fluorescein, 5-hexadecanoyl amino fluorescein, and 5-octadecanoyl amino fluorescein) were examined as noncovalent fluorescent stains of protein bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Effective incorporation of the dyes to proteins in gels was accomplished either simply by adding dyes at the protein fixation step, or by treating gels with a staining solution after the fixation. The sensitivity of this staining method using the fluorescein derivatives was approximately 1 ng/band for most proteins. For some cases, protein bands containing as low as 0.1 ng were successfully visualized. In addition, the detection sensitivity showed much less protein-to-protein variation than silver staining. This new staining method was also successfully applied to two-dimensional electrophoresis of rat brain proteins. Its overall sensitivity was comparable to that of silver staining. PMID:14595675

  13. Sasa quelpaertensis leaf extract suppresses dextran sulfate sodium-induced colitis in mice by inhibiting the proinflammatory mediators and mitogen-activated protein kinase phosphorylation.

    PubMed

    Kim, Kyung-Mi; Kim, Yoo-Sun; Lim, Ji Ye; Min, Soo Jin; Shin, Jae-Ho; Ko, Hee-Chul; Kim, Se-Jae; Lim, Yunsook; Kim, Yuri

    2014-10-01

    Sasa quelpaertensis leaves exert anti-inflammatory and anticarcinogenic effects, although it remains unclear whether these leaves can suppress inflammation-related intestinal diseases. This study hypothesized that Sasa quelpaertensis leaf extract (SQE) exerts a protective effect against inflammation in a dextran sulfate sodium (DSS)-induced colitis mouse model. Therefore, colon tissues of DSS-induced colitis mice that were treated with SQE were assayed for levels of proinflammatory markers, mitogen-activated protein kinase signaling, and activation of nuclear factor ?B. For this purpose, mice were pretreated with SQE (100 mg/kg or 300 mg/kg body weight) by gavage for a 2-week period. Mice then received either SQE or sulfasalazine (100 mg/kg body weight) with 2.5% DSS in drinking water for 7 days twice daily and 7 days of tap water ad libitum between DSS treatment. Treatment with SQE was found to attenuate the severity of DSS-induced colitis, as assessed by disease activity index scores, shrinkage of colon length, and histopathologic changes. SQE reduced DSS-induced proliferation in distal colon tissues. It also significantly suppressed levels of tumor necrosis factor-? in serum and colon tissues, nitric oxide synthase, cyclooxygenase, and levels of phosphorylated c-Jun N-terminal kinases, p38, extracellular-signal-regulated kinases 1/2, and I?B? in colon tissues. To our knowledge, this is the first study to demonstrate that SQE supplementation can exert an anti-inflammatory effect on experimental chronic colitis. PMID:25287291

  14. Anomalous electrophoretic behavior of a chitinase isoform from grape berries and wine in glycol chitin-containing sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels.

    PubMed

    Vincenzi, Simone; Curioni, Andrea

    2005-01-01

    An anomalous electrophoretic behavior of a chitinase isoform present in both grape (Vitis vinifera L.) berries and wine was observed in glycol chitin-containing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels. A progressive shift of the relative molecular mass M(r) of the enzyme (from approximately 30,500 up to approximately 57,700) with increasing glycol chitin concentration in the gels up to 0.1% was revealed when samples were electrophoresed under nonreducing conditions, whereas the presence of glycol chitin had no effects when samples were reduced before SDS-PAGE separation. The M(r) of other grape and wine chitinase isoforms as well as that of the chitinase from pomegranate (Punica granatum L.) fruit was unaffected by the presence of the substrate in the gel under both reducing and nonreducing conditions. Since the enzymes were inactive during the electrophoretic separation, it is likely that the retarding effect of glycol chitin observed specifically for the unreduced chitinase band from grape and wine was due to an interaction between the substrate and a chitin-binding domain different from the catalytic site, such as that typical of class I and class IV chitinases. PMID:15624140

  15. NMR studies of new arginine vasopressin analogs modified with alpha-2-indanylglycine enantiomers at position 2 bound to sodium dodecyl sulfate micelles.

    PubMed

    Lubecka, Emilia; Kwiatkowska, Anna; Ciarkowski, Jerzy; Sikorska, Emilia

    2010-10-01

    In this paper, we use NMR spectroscopy and molecular modeling to examine four new vasopressin analogs modified with alpha-2-indanylglycine (Igl) at position 2, [L-Igl(2)]AVP (I), [D-Igl(2)]AVP (II), [Mpa(1),L-Igl(2)]AVP (III) and [Mpa(1),D-Igl(2)]AVP (IV), embedded in a sodium dodecyl sulfate (SDS) micelle. All the analogs display antiuterotonic activity. In addition, the analogs with D-Igl reveal antipressor properties. Each analog exhibits the tendency to adopt beta-turns at positions 2, 3 and/or 3, 4, which is characteristic of oxytocin-like peptides. Mutual arrangement of aromatic residues at positions 2 and 3 has been found to be crucial for binding antagonists with the OT and V(1a) receptors. The orientation of the Gln(4) side chain seems to be important for the V(1a) receptor affinity. In each of the peptides studied, the Gln(4) side chain is folded back over the ring moiety. However, it lies on the opposite face of the tocin moiety in analogs with L and D enantiomers of Igl. PMID:20598431

  16. Hippocampal neuron number loss in rats exposed to ingested sulfite.

    PubMed

    Akdogan, Ilgaz; Kocamaz, Erdogan; Kucukatay, Vural; Yonguc, Nilufer Goksin; Ozdemir, Mehmet Bulent; Murk, William

    2011-10-01

    Sulfite, which is continuously formed in the body during metabolism of sulfur-containing amino acids, is commonly used in preservatives. It has been shown that there are toxic effects of sulfite on many cellular components. The aim of this study was to investigate the possible toxic effects of sulfite on pyramidal neurons by counting cell numbers in CA1 and CA2-CA3 subdivisions of the rat hippocampus. For this purpose, male albino rats were divided into a control group and a sulfite group (25 mg/kg). Sulfite was administered to the animals via drinking water for 8 weeks. At the end of the experimental period, brains were removed and neurons were estimated in total and in a known fraction of CA1 and CA2-CA3 subdivisions of the left hippocampus by using the optical fractionator method--a stereological method. Results showed that sulfite treatment caused a significant decrease in the total number of pyramidal neurons in three subdivisions of the hippocampus (CA1 and CA2-CA3) in the sulfite group compared with the control group (p < 0.05, Mann Whitney U test). It was concluded that exogenous administration of sulfite causes loss of pyramidal neurons in CA1 and CA2-CA3 subdivisions of the rat hippocampus. PMID:21511899

  17. 21 CFR 130.9 - Sulfites in standardized food.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51, and the refinements of the... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Sulfites in standardized food. 130.9 Section 130.9... FOR HUMAN CONSUMPTION FOOD STANDARDS: GENERAL General Provisions § 130.9 Sulfites in standardized...

  18. 21 CFR 130.9 - Sulfites in standardized food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51, and the refinements of the... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Sulfites in standardized food. 130.9 Section 130.9... FOR HUMAN CONSUMPTION FOOD STANDARDS: GENERAL General Provisions § 130.9 Sulfites in standardized...

  19. 21 CFR 130.9 - Sulfites in standardized food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51, and the refinements of the... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Sulfites in standardized food. 130.9 Section 130.9... FOR HUMAN CONSUMPTION FOOD STANDARDS: GENERAL General Provisions § 130.9 Sulfites in standardized...

  20. White and dark kidney beans reduce colonic mucosal damage and inflammation in response to dextran sodium sulfate.

    PubMed

    Monk, Jennifer M; Zhang, Claire P; Wu, Wenqing; Zarepoor, Leila; Lu, Jenifer T; Liu, Ronghua; Pauls, K Peter; Wood, Geoffrey A; Tsao, Rong; Robinson, Lindsay E; Power, Krista A

    2015-07-01

    Common beans are a rich source of nondigestible fermentable components and phenolic compounds that have anti-inflammatory effects. We assessed the gut-health-promoting potential of kidney beans in healthy mice and their ability to attenuate colonic inflammation following dextran sodium sulphate (DSS) exposure (via drinking water, 2% DSS w/v, 7 days). C57BL/6 mice were fed one of three isocaloric diets: basal diet control (BD), or BD supplemented with 20% cooked white (WK) or dark red kidney (DK) bean flour for 3 weeks. In healthy mice, anti-inflammatory microbial-derived cecal short chain fatty acid (SCFA) levels (acetate, butyrate and propionate), colon crypt height and colonic Mucin 1 (MUC1) and Resistin-like Molecule beta (Relmβ) mRNA expression all increased in WK- and DK-fed mice compared to BD, indicative of enhanced microbial activity, gut barrier integrity and antimicrobial defense response. During colitis, both bean diets reduced (a) disease severity, (b) colonic histological damage and (c) increased mRNA expression of antimicrobial and barrier integrity-promoting genes (Toll-like Receptor 4 (TLR4), MUC1-3, Relmβ and Trefoil Factor 3 (TFF3)) and reduced proinflammatory mediator expression [interleukin (IL)-1β, IL-6, interferon (IFN)γ, tumor necrosis factor (TNF)α and monocyte chemoattractant protein-1], which correlated with reduced colon tissue protein levels. Further, bean diets exerted a systemic anti-inflammatory effect during colitis by reducing serum levels of IL-17A, IFNγ, TNFα, IL-1β and IL-6. In conclusion, both WK and DK bean-supplemented diets enhanced microbial-derived SCFA metabolite production, gut barrier integrity and the microbial defensive response in the healthy colon, which supported an anti-inflammatory phenotype during colitis. Collectively, these data demonstrate a beneficial colon-function priming effect of bean consumption that mitigates colitis severity. PMID:25841250