Science.gov

Sample records for sulfate soil analysis

  1. Liberation of sulfate from sulfate esters by soils.

    PubMed Central

    Houghton, C; Rose, R A

    1976-01-01

    When incubated with acid, alkaline, and neutral soils, a variety of synthetic sulfate esters representing the various classes of these compounds was hydrolyzed by enzymes, probably of microbial origin. The appearance of sulfate in the soil water occurred immediately after introduction into the soils with some esters, whereas with others it occurred only after lag periods. Heat treatment destroyed the hydrolytic acitivity in the soils. The ester sulfate groups present in humic acid extracted from the soil appeared to be resistant to hydrolysis by a variety of sulfohydrolases extracted from bacteria and other organisms. Images PMID:938044

  2. Ferric sulfate montmorillonites as Mars soil analogs

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.

    1993-01-01

    Spectroscopic analyses have shown that Fe(3+)-doped smectites prepared in the laboratory exhibit important similarities to the soils on Mars. Ferrihydrite in these smectites has features in the visible to near-infrared region that resemble the energies and band-strengths of features in reflectance spectra observed for several bright regions on Mars. Ferric - sulfate - montmorillonite samples have been prepared more recently because they are a good compositional match with the surface material on Mars as measured by Viking. Reflectance spectra of montmorillonite doped with ferric sulfate in the interlayer regions include a strong 3 micron band that persists under dry conditions. This is in contrast to spectra of similarly prepared ferric-doped montmorillonites, which exhibit a relatively weaker 3 micron band under comparable dry environmental conditions. Presented here are reflectance spectra of a suite of ferric-sulfate exchanged montmorillonites prepared with variable ferric sulfate concentrations and variable pH conditions.

  3. Sulfate reduction in freshwater wetland soils and the effects of sulfate and substrate loading

    SciTech Connect

    Feng, J.; Hsieh, Y.P.

    1998-07-01

    Elevated sulfate and organic C loadings in freshwater wetlands could stimulate dissimilatory sulfate reduction that oxidizes organic C, produces hydrogen sulfide and alkalinity, and sequesters trace metals. The authors determined the extent of sulfate reduction in two freshwater wetland soils, that is black gum (Nyssa biflona) swamp soils and titi (Cliftonia monophylla) swamp soils, in northern Florida. They also investigated the potential of sulfate reduction in the wetland soils by adding sulfate, organic substrate, and lime. Sulfate reduction was found to be an active process in both swamp soils without any amendment, where the pore water pH was as low as 3.6 and sulfate concentration was as low as 5 mg L{sup {minus}1}. Without amendment, 11 to 14% of organic C was oxidized through sulfate reduction in the swamp soils. Sulfate loading, liming, and substrate addition significantly increased sulfate reduction in the black gum swamp soil, but none of those treatments increase sulfate reduction in the titi swamp soil. The limiting factor for sulfate reduction in the titi swamp soil were likely texture and soil aggregate related properties. The results suggested that wastewater loading may increase sulfate reduction in some freshwater wetlands such as the black swamps while it has no stimulating effect on other wetlands such as the titi swamps.

  4. Ferric sulfates on Mars: A combined mission data analysis of salty soils at Gusev crater and laboratory experimental investigations

    NASA Astrophysics Data System (ADS)

    Wang, Alian; Ling, Z. C.

    2011-03-01

    A temporal visible near-infrared (VIS-NIR) spectral variation was observed from Tyrone yellowish salty soils based on seven periodic Pancam 13 filter observations made by the Spirit rover. The major change was the reduction of spectral slope from 434 nm to 753 nm. Based on the results from a set of systematic laboratory experiments on the stability field and phase transition pathway of typical ferric sulfates, we suggest that the strong dehydration processes of ferricopiapite, either through amorphization or chemical alteration, could be the reasons for the spectral changes of Tyrone yellowish salty soils, excavated from a deep trench. The change of soil property suggests that they were originally not in equilibrium with the surface atmospheric conditions, that there is a relative humidity (RH) gradient existing in the upper few tens of centimeters depth below the surface. A layer of salt-rich regolith beneath the surface will change the underground temperature profile, especially to keep a low-temperature zone with a small temperature oscillation (than diurnal cycle at surface) in a salt-enriched regolith layer. This temperature profile will provide a relatively high RH and small RH variation and thus will facilitate the preservation of hydrous sulfates with high degree of hydration during the moderate obliquity period on Mars. Additionally, the sulfates with high degrees of hydration are excellent RH buffers in a local environment. The subsurface hydrous sulfates can be the sources for high level of water-equivalent hydrogen found at two large equatorial regions on Mars by Neutron Spectrometer on Mars Odyssey Orbiter.

  5. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    PubMed

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems. PMID:26901075

  6. Glufosinate and Ammonium Sulfate Inhibits Atrazine Degradation in Adapted Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The co-application of glufosinate with nitrogen fertilizers may alter atrazine co-metabolism, thereby extending the herbicide’s residual weed control in adapted soils. The objective of this study was to assess the effects of glufosinate, ammonium sulfate, and the combination of glufosinate and ammo...

  7. Calcium sulfate crystallization along citrus root channels in a Florida soil exhibiting acid sulfate properties

    SciTech Connect

    Syslo, S.K.; Myhre, D.L.; Harris, W.G.

    1988-02-01

    The authors observed euhedral crystals in Manatee soil in a citrus grove in St. Lucie County, Florida. The material was identified as gypsum (CaSO/sub 4/ /times/ 2H/sub 2/O) using x-ray diffraction and infrared spectra. Photomicrography and scanning electron microscopy revealed that gypsum accumulated both in old root channels and within citrus root tissue of the Btg horizon. The subsurface horizons had elevated sulfate levels, a low initial pH, a drop (0.5 unit) in pH upon air-drying. Electrical conductivity paralleled the concentration of water-soluble sulfate. High levels of calcium and sulfate occurred for horizons above the water table. This accumulation is attributed to groundwater bearing these ions and subsequently discharging them to the overlying soil. Dead citrus roots appear to act as wicks to aid water transfer from lower to higher horizons. The roots and their empty channels provide spaces in which the gypsum can precipitate if the concentrations of calcium and sulfate in the evaporating groundwater exceed the solubility product of gypsum.

  8. Bioremediation of coal contaminated soil under sulfate-reducing condition.

    PubMed

    Kuwano, Y; Shimizu, Y

    2006-01-01

    The objective of this study was to investigate the biodegradation of coal-derived hydrocarbons, especially high molecular weight (HMW) components, under anaerobic conditions. For this purpose biodegradation experiments were performed, using specifically designed soil column bioreactors. For the experiment, coal-contaminated soil was prepared, which contains high molecular weight hydrocarbons at high concentration (approx. 55.5 mgC g-drysoil(-1)). The experiment was carried out in two different conditions: sulfate reducing (SR) condition (SO4(2-) = 10 mmol l(-1) in the liquid medium) and control condition (SO4(2-)<0.5 mmol l(-1)). Although no degradation was observed under the control condition, the resin fraction decreased to half (from 6,541 to 3,386 mgC g-soil(-1)) under SR condition, with the concomitant increase of two PAHs (phenanthrene and fluoranthene, 9 and 2.5 times, respectively). From these results, we could conclude that high molecular hydrocarbons were biodegradable and transformed to low molecular weight PAHs under the sulfate-reducing condition. Since these PAHs are known to be biologically degraded under aerobic condition, a serial combination of anaerobic (sulfate reducing) and then aerobic bioremediations could be effective and useful for the soil pollution by petroleum and/or coal derived hydrocarbons. PMID:16457179

  9. The use of ion exchange membranes for isotope analyses on soil water sulfate: laboratory experiments.

    PubMed

    Kwon, Jang-Soon; Mayer, Bernhard; Yun, Seong-Taek; Nightingale, Michael

    2008-01-01

    To investigate the potential use of anion exchange membranes (plant root simulator [PRS] probes) for isotope investigations of the soil sulfur cycle, laboratory experiments were performed to examine the sulfate exchange characteristics and to determine the extent of sulfur and oxygen isotope fractionation during sulfate sorption and desorption on the probes in aqueous solutions and simulated soil solutions. The sulfate-exchange tests in aqueous solutions under varying experimental conditions indicated that the amount of sulfate exchanged onto PRS probes increased with increasing reaction time, initial sulfate concentration, and the number of probes used (= surface area), whereas the percentage of removal of available sulfate was constant irrespective of the initial sulfate concentration. The competition of nitrate and chloride in the solution lowered the amount of exchanged sulfate. The exchange experiments in a simulated soil under water-saturated and water-unsaturated conditions showed that a considerable proportion of the soil sulfate was exchanged by the PRS probes after about 10 d. There was no evidence for significant sulfur and oxygen isotope fractionation between soil sulfate and sulfate recovered from the PRS probes. Therefore, we recommend the use of PRS probes as an efficient and easy way to collect soil water sulfate for determination of its isotope composition. PMID:18268314

  10. Sulfate adsorption and surface precipitation on a volcanic ash soil (allophanic andisol).

    PubMed

    Ishiguro, Munehide; Makino, Tomoyuki; Hattori, Yasunobu

    2006-08-15

    Sulfate strongly adsorbs on metal oxides and soils with variable charges. However, its surface precipitation has not been clearly evaluated and its adsorption mechanism has been in dispute. In the present study, an allophanic andisol, a typical volcanic ash soil having both negative and positive variable charges, was used to identify the adsorption mechanism of sulfate. Sulfate adsorption isotherms were obtained by a batch method at pH values of 4, 5, 6, and 7 in a wide range of concentrations in an Na-H-SO(4)-OH system. Theoretical isotherms were applied to the measured values for the evaluation. The surface precipitation was detected by the measured adsorption isotherms, and the BET isotherm confirmed the presence of multilayer adsorption. Stronger and weaker adsorption sites were suggested by using the Langmuir isotherm for the monolayer adsorption. The adsorption energies obtained from the Langmuir equation and recent spectroscopic analysis suggested that the stronger adsorption corresponded to an inner-sphere surface complex and that the weaker adsorption corresponded to outer-sphere surface complexation. The BET and Langmuir equations showed three types of adsorption mechanisms for the sulfate adsorption on the soil. PMID:16750540

  11. Processes and fluxes during the initial stage of acid sulfate soil formation

    NASA Astrophysics Data System (ADS)

    Gröger, J.; Hamer, K.; Schulz, H. D.

    2009-04-01

    Acid sulfate soils occur over a wide range of climatic zones, mainly in coastal landscapes. In these soils, the release of sulfuric acid by the oxidation of pyrite generates a very acidic environment (e.g., DENT and PONS, 1995, PONS, 1973). Two major types of acid sulfate soils can be distinguished: In actual acid sulfate soils, the initially contained pyrite was at least partly oxidized. This resulted in a severe acidification of the soil. Potential acid sulfate soils are generally unoxidized and contain large amounts of pyrite. Upon oxidation, these soils will turn into actual acid sulfate soils. By excavation or lowering of the groundwater table, potential acid sulfate soils can be exposed to atmospheric oxygen. During oxidation the pH drops sharply to values below pH 4. This acidification promotes the release of various metals, e.g., alumina, iron and heavy metals. Additionally, large quantities of sulfate are released. In order to assess the effects of disturbances of potential acid sulfate soils, for example by excavations during construction works, several large scale column experiments were conducted with various types of potential acid sulfate soils from Northern Germany. In these experiments, the oxidation and initial profile development of pyritic fen peats and thionic fluvisols were studied over a period of 14 months. The study focused on leaching and the translocation of various metals in the soil profile. To study mobilization processes, element fluxes and the progress of acidification, soil water and leachate were analyzed for total element concentrations. Furthermore, several redox-sensitive parameters, e.g., Fe2+ and sulfide, were measured and changes to the initial solid phase composition were analyzed. Chemical equilibria calculations of the soil water were used to gain insights into precipitation processes of secondary products of pyrite oxidation and leaching products. The results of this study will support the assessment of risks deriving from

  12. Parameterization and evaluation of sulfate adsorption in a dynamic soil chemistry model.

    PubMed

    Martinson, Liisa; Alveteg, Mattias; Warfvinge, Per

    2003-01-01

    Sulfate adsorption was implemented in the dynamic, multi-layer soil chemistry model SAFE. The process is modeled by an isotherm in which sulfate adsorption is considered to be fully reversible and dependent on sulfate concentration as well as pH in soil solution. The isotherm was parameterized by a site-specific series of simple batch experiments at different pH (3.8-5.0) and sulfate concentration (10-260 micromol 1(-1)) levels. Application of the model to the Lake Gardsj6n roof covered site shows that including sulfate adsorption improves the dynamic behavior of the model and sulfate adsorption and desorption delay acidification and recovery of the soil. The modeled adsorbed pool of sulfate at the site reached a maximum level of 700 mmol/m(2) in the late 1980s, well in line with experimental data. PMID:12683988

  13. Criteria for Remote Sensing Detection of Sulfate Cemented Soils on Mars

    NASA Technical Reports Server (NTRS)

    Cooper, Christopher D.; Mustard, John F.

    2000-01-01

    Spectral measurements of loose and cemented mixtures of palagonitic soil and sulfates were made to determine whether cemented soils could be identified on Mars. Cemented MgSO4 mixtures exhibit an enhanced 9 micron sulfate fundamental compared to gypsum mixtures due to more diffuse and pervasive cementing.

  14. Soil Profile Sulfate in Irrigated Southern High Plains Cotton Fields and Ogallala Groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil Profile Sulfate in Irrigated Southern High Plains Cotton Fields and Ogallala Groundwater Abstract: Sulfate (SO4) is one of the most important anions in soils and groundwater in semiarid regions, including West Texas. Crops’ sulfur (S) requirement is about 10 to 20 % of the nitrogen (N) require...

  15. Effect of sulfate and carbonate minerals on particle-size distributions in arid soils

    USGS Publications Warehouse

    Goossens, Dirk; Buck, Brenda J.; Teng, Yuazxin; Robins, Colin; Goldstein, Harland L.

    2014-01-01

    Arid soils pose unique problems during measurement and interpretation of particle-size distributions (PSDs) because they often contain high concentrations of water-soluble salts. This study investigates the effects of sulfate and carbonate minerals on grain-size analysis by comparing analyses in water, in which the minerals dissolve, and isopropanol (IPA), in which they do not. The presence of gypsum, in particular, substantially affects particle-size analysis once the concentration of gypsum in the sample exceeds the mineral’s solubility threshold. For smaller concentrations particle-size results are unaffected. This is because at concentrations above the solubility threshold fine particles cement together or bind to coarser particles or aggregates already present in the sample, or soluble mineral coatings enlarge grains. Formation of discrete crystallites exacerbates the problem. When soluble minerals are dissolved the original, insoluble grains will become partly or entirely liberated. Thus, removing soluble minerals will result in an increase in measured fine particles. Distortion of particle-size analysis is larger for sulfate minerals than for carbonate minerals because of the much higher solubility in water of the former. When possible, arid soils should be analyzed using a liquid in which the mineral grains do not dissolve, such as IPA, because the results will more accurately reflect the PSD under most arid soil field conditions. This is especially important when interpreting soil and environmental processes affected by particle size.

  16. Formation of diphenylthioarsinic acid from diphenylarsinic acid under anaerobic sulfate-reducing soil conditions.

    PubMed

    Hisatomi, Shihoko; Guan, Ling; Nakajima, Mami; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2013-11-15

    Diphenylarsinic acid (DPAA) is a toxic phenylarsenical compound often found around sites contaminated with phenylarsenic chemical warfare agents, diphenylcyanoarsine or diphenylchloroarsine, which were buried in soil after the World Wars. This research concerns the elucidation of the chemical structure of an arsenic metabolite transformed from DPAA under anaerobic sulfate-reducing soil conditions. In LC/ICP-MS analysis, the retention time of the metabolite was identical to that of a major phenylarsenical compound synthesized by chemical reaction of DPAA and hydrogen sulfide. Moreover the mass spectra for the two compounds measured using LC/TOF-MS were similar. Subsequent high resolution mass spectral analysis indicated that two major ions at m/z 261 and 279, observed on both mass spectra, were attributable to C12H10AsS and C12H12AsSO, respectively. These findings strongly suggest that the latter ion is the molecular-related ion ([M+H](+)) of diphenylthioarsinic acid (DPTA; (C6H5)2AsS(OH)) and the former ion is its dehydrated fragment. Thus, our results reveal that DPAA can be transformed to DPTA, as a major metabolite, under sulfate-reducing soil conditions. Moreover, formation of diphenyldithioarsinic acid and subsequent dimerization were predicted by the chemical reaction analysis of DPAA with hydrogen sulfide. This is the first report to elucidate the occurrence of DPAA-thionation in an anaerobic soil. PMID:24007995

  17. Changes in water quality following tidal inundation of coastal lowland acid sulfate soil landscapes

    NASA Astrophysics Data System (ADS)

    Johnston, Scott G.; Bush, Richard T.; Sullivan, Leigh A.; Burton, Edward D.; Smith, Douglas; Martens, Michelle A.; McElnea, Angus E.; Ahern, R., , Col; Powell, Bernard; Stephens, Luisa P.; Wilbraham, Steve T.; van Heel, Simon

    2009-01-01

    This study examines the remediation of surface water quality in a severely degraded coastal acid sulfate soil landscape. The remediation strategy consisted of partial restoration of marine tidal exchange within estuarine creeks and incremental tidal inundation of acidified soils, plus strategic liming of drainage waters. Time-series water quality and climatic data collected over 5 years were analysed to assess changes in water quality due to this remediation strategy. A time-weighted rainfall function (TWR) was generated from daily rainfall data to integrate the effects of antecedent rainfall on shallow groundwater levels in a way that was relevant to acid export dynamics. Significant increases in mean pH were evident over time at multiple monitoring sites. Regression analysis at multiple sites revealed a temporal progression of change in significant relationships between mean daily electrical conductivity (EC) vs. mean daily pH, and TWR vs. mean daily pH. These data demonstrate a substantial decrease over time in the magnitude of creek acidification per given quantity of antecedent rainfall. Data also show considerable increase in soil pH (2-3 units) in formerly acidified areas subject to tidal inundation. This coincides with a decrease in soil pe, indicating stronger reducing conditions. These observations suggest a fundamental shift has occurred in sediment geochemistry in favour of proton-consuming reductive processes. Combined, these data highlight the potential effectiveness of marine tidal inundation as a landscape-scale acid sulfate soil remediation strategy.

  18. Acid sulfate soils are an environmental hazard in Finland

    NASA Astrophysics Data System (ADS)

    Pihlaja, Jouni

    2016-04-01

    Acid sulfate soils (ASS) create significant threats to the environment on coastal regions of the Baltic Sea in Finland. The sediments were deposited during the ancient Litorina Sea phase of the Baltic Sea about 7500-4500 years ago. Finland has larger spatial extent of the ASS than any other European country. Mostly based on anthropogenic reasons (cultivation, trenching etc.) ASS deposits are currently being exposed to oxygen which leads to chemical reaction creating sulfuric acid. The acidic waters then dissolve metals form the soil. Acidic surface run off including the metals are then leached into the water bodies weakening the water quality and killing fish or vegetation. In constructed areas acidic waters may corrode building materials. Geological Survey of Finland (GTK) is mapping ASS deposits in Finland. The goal is to map a total of 5 million hectares of the potentially ASS affected region. It has been estimated that the problematic Litorina Sea deposits, which are situated 0-100 m above the recent Baltic Sea shoreline, cover 500 000 hectares area. There are several phases in mapping. The work begins at the office with gathering the existing data, interpreting airborne geophysical data and compiling a field working plan. In the field, quality of the soil is studied and in uncertain cases samples are taken to laboratory analyses. Also electrical conductivity and pH of soil and water are measured in the field. Laboratory methods include multielemental determinations with ICP-OES, analyses of grain size and humus content (LOI), and incubation. So far, approximately 60 % of the potential ASS affected regions in Finland are mapped. Over 15 000 sites have been studied in the field and 4000 laboratory analyses are done. The spatial database presented in the scale of 1: 250 000 can be viewed at the GTK's web pages (http://gtkdata.gtk.fi/hasu/index.html).

  19. Reclamation of acid sulfate soils using lime-stabilized biosolids.

    PubMed

    Orndorff, Zenah W; Daniels, W Lee; Fanning, Delvin S

    2008-01-01

    Excavation of sulfidic materials during construction has resulted in acid rock drainage (ARD) problems throughout Virginia. The most extensive documented uncontrolled disturbance at a single location is Stafford Regional Airport (SRAP) in Stafford, Virginia. Beginning in 1998, over 150 ha of sulfidic Coastal Plain sediments were disturbed, including steeply sloping cut surfaces and spoils placed into fills. Acid sulfate soils developed, and ARD generated on-site degraded metal and concrete structures and heavily damaged water quality with effects noted over 1 km downstream. The site was not recognized as sulfidic until 2001 when surface soil sampling revealed pH values ranging from 1.9 to 5.3 and peroxide potential acidity (PPA) values ranging from 1 to 42 Mg CaCO(3) per 1000 Mg material. In February 2002 a water quality program was established in and around the site to monitor baseline pH, EC, NO(3)-N, NH(4)-N, PO(4)-P, Fe, Al, Mn, and SO(4)-S, and initial pH values as low as 2.9 were noted in on-site receiving streams. In the spring and fall of 2002, the site was treated with variable rates of lime-stabilized biosolids, straw-mulch, and acid- and salt-tolerant legumes and grasses. By October 2002, the site was fully revegetated (> or = 90% living cover) with the exception of a few highly acidic outcrops and seepage areas. Surface soil sampling in 2003, 2004, and 2006 revealed pH values typically > 6.0. Water quality responded quickly to treatment, although short-term NH(4)(+) release occurred. Despite heavy loadings, no significant surface water P losses were observed. PMID:18574176

  20. Novel diffusive gradients in thin films technique to assess labile sulfate in soil.

    PubMed

    Hanousek, Ondrej; Mason, Sean; Santner, Jakob; Chowdhury, Md Mobaroqul Ahsan; Berger, Torsten W; Prohaska, Thomas

    2016-09-01

    A novel diffusive gradients in thin films (DGT) technique for sampling labile soil sulfate was developed, based on a strong basic anion exchange resin (Amberlite IRA-400) for sulfate immobilization on the binding gel. For reducing the sulfate background on the resin gels, photopolymerization was applied instead of ammonium persulfate-induced polymerization. Agarose cross-linked polyacrylamide (APA) hydrogels were used as diffusive layer. The sulfate diffusion coefficient in APA gel was determined as 9.83 × 10(-6) ± 0.35 × 10(-6) cm(2) s(-1) at 25 °C. The accumulated sulfate was eluted in 1 mol L(-1) HNO3 with a recovery of 90.9 ± 1.6 %. The developed method was tested against two standard extraction methods for soil sulfate measurement. The obtained low correlation coefficients indicate that DGT and conventional soil test methods assess differential soil sulfate pools, rendering DGT a potentially important tool for measuring labile soil sulfate. PMID:27491301

  1. Novel diffusive gradients in thin films technique to assess labile sulfate in soil

    PubMed Central

    Ahsan Chowdhury, Md Mobaroqul; Berger, Torsten W.; Prohaska, Thomas

    2016-01-01

    A novel diffusive gradients in thin films (DGT) technique for sampling labile soil sulfate was developed, based on a strong basic anion exchange resin (Amberlite IRA-400) for sulfate immobilization on the binding gel. For reducing the sulfate background on the resin gels, photopolymerization was applied instead of ammonium persulfate-induced polymerization. Agarose cross-linked polyacrylamide (APA) hydrogels were used as diffusive layer. The sulfate diffusion coefficient in APA gel was determined as 9.83 × 10−6 ± 0.35 × 10-6 cm2 s−1 at 25 °C. The accumulated sulfate was eluted in 1 mol L−1 HNO3 with a recovery of 90.9 ± 1.6 %. The developed method was tested against two standard extraction methods for soil sulfate measurement. The obtained low correlation coefficients indicate that DGT and conventional soil test methods assess differential soil sulfate pools, rendering DGT a potentially important tool for measuring labile soil sulfate. PMID:27491301

  2. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Edwards, J. O.; Mancinelli, R. L.; Froschl, H.

    1995-01-01

    Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mossbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mossbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mossbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the water

  3. Quantitative in situ determination of hydration of bright high-sulfate Martian soils

    NASA Astrophysics Data System (ADS)

    Campbell, J. L.; Gellert, R.; Lee, M.; Mallett, C. L.; Maxwell, J. A.; O'Meara, J. M.

    2008-04-01

    The total water content of soils and rocks encountered by the Spirit rover has been determined by a new analysis method applied to the existing data from the Alpha Particle X-Ray Spectrometer (APXS). This approach employs Monte Carlo simulation of the intensities of the photon scatter peaks in the APXS spectra, together with extraction of these intensities from the spectra. For any individual sample, the water detection limits (~6 wt %) and error bars are high due to low counting statistics in the spectra, but combining the data from a well-defined group of similar samples improves the error bars and lowers the limit. Thus typical basaltic surface soils are found to be essentially dry (<1 wt % water) and basaltic rocks are very close to dry (<3.5 wt % water). For four bright subsurface soils in Gusev Crater the water content lies in the range 6-18 wt % these soils contain sulfur at unusually high levels (>12 wt %, 30 wt % SO3) relative to the soils common at other landing sites. Mass balance mixing calculations of available cations infer the presence of Fe-, Mg-, and Ca-sulfates in these bright soils. Together with constraints from mineralogy, our results imply that highly hydrated ferric sulfates are the most important carrier of the bound water found in these four spots. In conjunction with the complementary available chemical and mineralogical information they reveal additional information about present bound water reservoirs on Mars, their mineralogy and their spatial and lateral distribution along the Spirit rover's traverse.

  4. Dissipation and transformation of 17B-estradiol-17-sulfate in soil-water systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogen conjugates are known to be precursors of endocrine-disrupting free estrogens, e.g. 17B-estradiol (E2) and estrone (E1), in the environment. This study investigated the fate of a sulfate conjugated estrogen, 17B-estradiol-17-sulfate (E2-17S), in agricultural soils using laboratory batch stu...

  5. Sorption and degradation of 17ß-estradiol-17-sulfate in sterilized soil-water systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To identify abiotic processes that govern the fate of a sulfate conjugated estrogen, 17ß-estradiol-17-sulfate (E2-17S), soil batch experiments were conducted to investigate the dissipation, sorption, and degradation of radiolabeled E2-17S under sterilized conditions. The aqueous dissipation half-liv...

  6. Microbial community potentially responsible for acid and metal release from an Ostrobothnian acid sulfate soil

    PubMed Central

    Wu, Xiaofen; Lim Wong, Zhen; Sten, Pekka; Engblom, Sten; Österholm, Peter; Dopson, Mark; Nakatsu, Cindy

    2013-01-01

    Soils containing an approximately equal mixture of metastable iron sulfides and pyrite occur in the boreal Ostrobothnian coastal region of Finland, termed ‘potential acid sulfate soil materials’. If the iron sulfides are exposed to air, oxidation reactions result in acid and metal release to the environment that can cause severe damage. Despite that acidophilic microorganisms catalyze acid and metal release from sulfide minerals, the microbiology of acid sulfate soil (ASS) materials has been neglected. The molecular phylogeny of a depth profile through the plough and oxidized ASS layers identified several known acidophilic microorganisms and environmental clones previously identified from acid- and metal-contaminated environments. In addition, several of the 16S rRNA gene sequences were more similar to sequences previously identified from cold environments. Leaching of the metastable iron sulfides and pyrite with an ASS microbial enrichment culture incubated at low pH accelerated metal release, suggesting microorganisms capable of catalyzing metal sulfide oxidation were present. The 16S rRNA gene analysis showed the presence of species similar to Acidocella sp. and other clones identified from acid mine environments. These data support that acid and metal release from ASSs was catalyzed by indigenous microorganisms adapted to low pH. PMID:23369102

  7. Spectroscopy of Loose and Cemented Sulfate-Bearing Soils: Implications for Duricrust on Mars

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher D.; Mustard, John F.

    2002-07-01

    The goal of this work is to determine the spectroscopic properties of sulfate in martian soil analogs over the wavelength range 0.3 to 25 μm (which is relevant to existing and planned remotely sensed data sets for Mars). Sulfate is an abundant component of martian soil (up to 9% SO 3 by weight) and apparently exists as a particulate in the soil but also as a cement. Although previous studies have addressed the spectroscopic identity of sulfates on Mars, none have used laboratory mixtures of materials with sulfates at the abundances measured by landed spacecraft, nor have any works considered the effect of salt-cementation on spectral properties of soil materials. For this work we created mixtures of a palagonitic soil (JSC Mars-1) and sulfates (MgSO 4 and CaSO 4·2H 2O). The effects of cementation were determined and separated from the effects of packing and hydration by measuring the samples as loose powders, packed powders, cemented materials, and disaggregated materials. The results show that the presence of particulate sulfate is best observed in the 4-5 μm region. Soils cemented with sulfate exhibit a pronounced restrahlen band between 8 and 9 μm as well as well-defined absorptions in the 4-5 μm region. Cementation effects are distinct from packing effects and disaggregation of cemented samples rapidly diminishes the strength of the restrahlen bands. The results of this study show that sulfate in loose materials is more detectable in the near infrared (4-5 μm) than in the thermal infrared (8-9 μm). However, cemented materials are easily distinguished from loose mixtures in the thermal infrared because of the high values of their absorption coefficient in this region. Together these results suggest that both wavelength regions are important for determining the spatial extent and physical form of sulfates on the surface of Mars.

  8. Potentiometric analysis using solutions of cerium sulfates

    SciTech Connect

    Pugin., G.V.; Pisarevskii, A.M.; Polozova, I.P.; Shults, M.M.

    1986-06-01

    In a previous work the authors outlined the bases of a new method of instrumental determination of the chemical oxygen consumption (COC): The analysis is performed within the framework of the umpire analysis of COC, but the consumption of the oxidizing agent is continuously recorded according to the change in the emf of the galvanic cell (glass pH-metric electrode; cerium (IV,III) sulfates, potassium bichromate, 7.5 M H/sub 2/SO/sub 4/; and glass redoximetric electrode EO-021. The authors contend that potentiometric recording permits not only a simplication of the determination of COC but also the removal of the rigid limitations on the time of boiling of the sample. Additional information may be obtained on the corresponding and difficultly oxidized substances in the sample to be analyzed. It is noted after a discussion of main peculiarities of the cell that the selection of the conditions of analysis is dictated largely by the requirements set in the determinations of COC which permits a number of shortcomings of the potentiometric method to be determined.

  9. Effectiveness of the bran media and bacteria inoculum treatments in increasing pH and reducing sulfur-total of acid sulfate soils

    NASA Astrophysics Data System (ADS)

    Taufieq, Nur Anny Suryaningsih; Rahim, Sahibin Abdul; Jamil, Habibah

    2013-11-01

    This study was carried out to determine the effectiveness ofsulfate reducing bacteria (SRB) in using bran as a source of food and energy, and to see the effectiveness of the bran media and bacteria inoculums treatments for pH and sulfur-total of acid sulfate reduction insoils. This study used two factors in group random designs with four treatments for bacteria inoculum of B1 (1%), B2 (5%), B3 (10%), B4 (15%) and two treatments for organic media (bran) of D1 (1:1) and D2 (1:19). Based on three replications, the combination resulted in a total of 24 treatments. Soil pH was measured using the Duddridge and Wainright method and determination of sulfate content in soil was conducted by the spectrophotometry method. The data obtained was analyzed for significance by Analysis of Variance and the Least Significant Difference Test. The pH of the initial acid sulfate soils ranged from 3 to 4 and the soil sulfur-total ranged from 1.4% to 10%. After mixing sulfate reducing bacteria with the bran mediaand incubated for four days, the pH of the acid sulfate soils increased from 3.67 to 4.20, while the soil sulfur-total contents had been reduced by 2.85% to 0.35%. This experiment has proven that an acid sulfate soil with low pH is a good growth medium for the sulfate reducing bacteria. The bestincubation period to achieve an effective bioremediation resultthrough sulfate percentage reduction by sulfate reducing bacteria was 10 days, while the optimum bran media dose was 1:19, and the bacteria inoculums dose was 10%.

  10. Sulfates hydrating bulk soil in the Martian low and middle latitudes

    NASA Astrophysics Data System (ADS)

    Karunatillake, S.; Wray, J. J.; Gasnault, O.; McLennan, S. M.; Rogers, A. D.; Squyres, S. W.; Boynton, W. V.; Skok, J. R.; Ojha, L.; Olsen, N.

    2014-11-01

    The evidence for sulfate-bearing strata, across Late-Noachian to Amazonian eons, suggests a central role for sulfates in acidity and salinity of Martian paleofluids and the planet's habitability. However, details remain unclear owing to shallow sampling and the limited ability of visible/near-infrared spectroscopy to distinguish among some sulfates. Using chemical data from the Mars Odyssey gamma ray spectrometer, including the sulfur map of Mars, we confirm the possibility of hydrous sulfates acting as key hydrates throughout the southern midlatitudinal soil at decimeter depths. An H2O:S molar ratio between 2.4 and 4.0 for 80% of the midlatitudes is also consistent with hydrous sulfate phases, including the many Fe sulfates hydrated in this range or mixtures of Ca and Mg sulfates. Nevertheless, hydrous Fe sulfates could explain our observations in a simpler manner relative to Ca/Mg mixtures. Furthermore, phyllosilicates, zeolites, amorphous phases, and H2O(s) do not seem to be strong candidates to explain the H-S variations. Consequently, we speculate that sulfates, as the primary contributor of H2O in bulk soil, may influence modern aqueous processes including warm-season slope lineae in the southern hemisphere.

  11. Applying high resolution SyXRD analysis on sulfate attacked concrete field samples

    SciTech Connect

    Stroh, J.; Schlegel, M.-C.; Irassar, E.F.; Meng, B.; Emmerling, F.

    2014-12-15

    High resolution synchrotron X-ray diffraction (SyXRD) was applied for a microstructural profile analysis of concrete deterioration after sulfate attack. The cement matrices consist of ordinary Portland cement and different amounts of supplementary cementitious materials, such as fly ash, natural pozzolana and granulated blast furnace slag. The changes of the phase composition were determined along the direction of sulfate ingress. This approach allows the identification of reaction fronts and zones of different phase compositions and conclusions about the mechanisms of sulfate attack. Two reaction fronts were localized in the initial 4 mm from the sample surface. The mechanism of deterioration caused by the exposition in the sulfate-bearing soil is discussed. SyXRD is shown to be a reliable method for investigation of cementitious materials with aggregates embedded in natural environments.

  12. Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate.

    PubMed

    Chen, Dong; Szostak, Paul; Wei, Zongsu; Xiao, Ruiyang

    2016-01-01

    Nutrient loss from soil, especially phosphorous (P) from farmlands to natural water bodies via surface runoff or infiltration, have caused significant eutrophication problems. This is because dissolved orthophosphates are usually the limiting nutrient for algal blooms. Currently, available techniques to control eutrophication are surprisingly scarce. Calcium sulfate or gypsum is a common soil amendment and has a strong complexation to orthophosphates. The results showed that calcium sulfate reduced the amount of water extractable P (WEP) through soil incubation tests, suggesting less P loss from farmlands. A greater decrease in WEP occurred with a greater dosage of calcium sulfate. Compared to conventional coarse calcium sulfate, nano calcium sulfate further reduced WEP by providing a much greater specific surface area, higher solubility, better contact with the fertilizer and the soil particles, and superior dispersibility. The enhancement of the nano calcium sulfate for WEP reduction is more apparent for a pellet- than a powdered- fertilizer. At the dosage of Ca/P weight ratio of 2.8, the WEP decreased by 31±5% with the nano calcium sulfate compared to 20±5% decrease with the coarse calcium sulfate when the pellet fertilizer was used. Computation of the chemical equilibrium speciation shows that calcium hydroxyapatite has the lowest solubility. However, other mineral phases such as hydroxydicalcium phosphate, dicalcium phosphate dihydrate, octacalcium phosphate, and tricalcium phosphate might form preceding to calcium hydroxyapatite. Since calcium sulfate is the major product of the flue gas desulfurization (FGD) process, this study demonstrates a potential beneficial reuse and reduction of the solid FGD waste. PMID:26372940

  13. AIR DRYING AND PRETREATMENT EFFECTS ON SOIL SULFATE SORPTION

    EPA Science Inventory

    Drying, freezing, and refrigeration are commonly employed to facilitate the handling and storage of soil samples on which chemical, biological and physical analyses are to be performed. hese laboratory protocol have the potential to alter soil chemical characteristics and may res...

  14. Phytotoxicity of heptachlor and endosulfan sulfate contaminants in soils to economic crops.

    PubMed

    Somtrakoon, Khanitta; Pratumma, Sununta

    2012-11-01

    The intensive use of organochlorine in the past decades has resulted in contamination of soil worldwide. The phytotoxicity of two organochlorine pesticide, endosulfan sulfate and heptachlor, on the early growth stage of sweet corn (Zea mays), waxy corn (Zea mays) cowpea (Vigna sinensis), cucumber (Cucumis sativus) and water morning glory (Ipomoea aquatica) were studied. In the range of concentration found in Thai agricultural soil, 0.4-40 mg kg(-1) of each pesticide, did not affect the percentage of seed germination. Heptachlor seemed to affect the shoot and root length of test plants more than endosulfan sulfate. The combined effect of both pesticides to corn seedling growth was tested. There was no significant effect on combined treatment of both pesticides to corn growth. The 0.4-40 mg kg(-1) concentration of endosulfan sulfate and heptachlor did not produced significant effect on early growth of plants. PMID:23741808

  15. Impact of mitigation strategies on acid sulfate soil chemistry and microbial community.

    PubMed

    Wu, Xiaofen; Sten, Pekka; Engblom, Sten; Nowak, Pawel; Österholm, Peter; Dopson, Mark

    2015-09-01

    Potential acid sulfate soils contain reduced iron sulfides that if oxidized, can cause significant environmental damage by releasing large amounts of acid and metals. This study examines metal and acid release as well as the microbial community capable of catalyzing metal sulfide oxidation after treating acid sulfate soil with calcium carbonate (CaCO3) or calcium hydroxide (Ca(OH)2). Leaching tests of acid sulfate soil samples were carried out in the laboratory. The pH of the leachate during the initial flushing with water lay between 3.8 and 4.4 suggesting that the jarosite/schwertmannite equilibrium controls the solution chemistry. However, the pH increased to circa 6 after treatment with CaCO3 suspension and circa 12 after introducing Ca(OH)2 solution. 16S rRNA gene sequences amplified from community DNA extracted from the untreated and both CaCO3 and Ca(OH)2 treated acid sulfate soils were most similar to bacteria (69.1% to 85.7%) and archaea (95.4% to 100%) previously identified from acid and metal contaminated environments. These species included a Thiomonas cuprina-like and an Acidocella-like bacteria as well as a Ferroplasma acidiphilum-like archeon. Although the CaCO3 and Ca(OH)2 treatments did not decrease the proportion of microorganisms capable of accelerating acid and metal release, the chemical effects of the treatments suggested their reduced activity. PMID:25933291

  16. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application

    NASA Astrophysics Data System (ADS)

    Elisa, A. A.; Ninomiya, S.; Shamshuddin, J.; Roslan, I.

    2016-03-01

    In response to human population increase, the utilization of acid sulfate soils for rice cultivation is one option for increasing production. The main problems associated with such soils are their low pH values and their associated high content of exchangeable Al, which could be detrimental to crop growth. The application of soil amendments is one approach for mitigating this problem, and calcium silicate is an alternative soil amendment that could be used. Therefore, the main objective of this study was to ameliorate soil acidity in rice-cropped soil. The secondary objective was to study the effects of calcium silicate amendment on soil acidity, exchangeable Al, exchangeable Ca, and Si content. The soil was treated with 0, 1, 2, and 3 Mg ha-1 of calcium silicate under submerged conditions and the soil treatments were sampled every 30 days throughout an incubation period of 120 days. Application of calcium silicate induced a positive effect on soil pH and exchangeable Al; soil pH increased from 2.9 (initial) to 3.5, while exchangeable Al was reduced from 4.26 (initial) to 0.82 cmolc kg-1. Furthermore, the exchangeable Ca and Si contents increased from 1.68 (initial) to 4.94 cmolc kg-1 and from 21.21 (initial) to 81.71 mg kg-1, respectively. Therefore, it was noted that calcium silicate was effective at alleviating Al toxicity in acid sulfate, rice-cropped soil, yielding values below the critical level of 2 cmolc kg-1. In addition, application of calcium silicate showed an ameliorative effect as it increased soil pH and supplied substantial amounts of Ca and Si.

  17. IMPROVEMENT AND EVALUATION OF METHODS FOR SULFATE ANALYSIS

    EPA Science Inventory

    A simpler and faster procedure for the manual turbidimetric analysis of sulfate has been developed and evaluated. This method as well as a turbidimetric procedure using SulfaVer(R), automated methylthymol blue (MTB) procedures for analysis in the 0-100 micrograms/ml and 0-10 micr...

  18. Persistent endosulfan sulfate is found with highest abundance among endosulfan I, II, and sulfate in German forest soils.

    PubMed

    Bussian, Bernd M; Pandelova, Marchela; Lehnik-Habrink, Petra; Aichner, Bernhard; Henkelmann, Bernhard; Schramm, Karl-Werner

    2015-11-01

    Endosulfan - an agricultural insecticide and banned by Stockholm Convention - is produced as a 2:1 to 7:3 mixture of isomers endosulfan I (ESI) and endosulfan II (ESII). Endosulfan is transformed under aerobic conditions into endosulfan sulfate (ESS). The study shows for 76 sampling locations in German forests that endosulfan is abundant in all samples with an opposite ratio between the ESI and ESII than the technical product, where the main metabolite ESS is found with even higher abundance. The ratio between ESI/ESII and ESS show clear dependence on the type of stands (coniferous vs. deciduous) and humus type and increases from deciduous via mixed to coniferous forest stands. The study argues for a systematic monitoring of ESI, ESII, and ESS and underlines the need for further research, specifically on the fate of endosulfan including biomagnifications and bioaccumulation in soil. PMID:26319511

  19. Response of the sulfate-reducing community to the re-establishment of estuarine conditions in two contrasting soils: a mesocosm approach.

    PubMed

    Miletto, Marzia; Loeb, Roos; Antheunisse, A Martjin; Bodelier, Paul L E; Laanbroek, Hendrikus J

    2010-01-01

    We studied the response of the sulfate-reducing prokaryote (SRP) communities to the experimental variation of salinity and tide in an outdoor mesocosm setup. Intact soil monoliths were collected at two areas of the Haringvliet lagoon (The Netherlands): one sampling location consisted of agricultural grassland, drained and fertilized for at least the last century; the other of a freshwater marshland with more recent sea influence. Two factors, i.e., "salinity" (freshwater/oligohaline) and "tide" (nontidal/tidal), were tested in a full-factorial design. Soil samples were collected after 5 months (June-October). Dissimilatory (bi)sulfite reductase beta subunit-based denaturing gradient gel electrophoresis (dsrB-DGGE) analysis revealed that the SRP community composition in the agricultural grassland and in the freshwater marshland was represented mainly by microorganisms related to the Desulfobulbaceae and the Desulfobacteraceae, respectively. Desulfovibrio-related dsrB were detected only in the tidal treatments; Desulfomonile-related dsrB occurrence was related to the presence of oligohaline conditions. Treatments did have an effect on the overall SRP community composition of both soils, but not on the sulfate depletion rates in sulfate-amended anoxic slurry incubations. However, initiation of sulfate reduction upon sulfate addition was clearly different between the two soils. PMID:19953240

  20. The availability and mobility of arsenic and antimony in an acid sulfate soil pasture system.

    PubMed

    Tighe, Matthew; Lockwood, Peter V; Ashley, Paul M; Murison, Robert D; Wilson, Susan C

    2013-10-01

    The Macleay floodplain on the north coast of New South Wales, Australia, has surface soil concentrations of up to 40 mg kg(-1) arsenic (As) and antimony (Sb), due to historical mining practices in the upper catchment. The floodplain also contains areas of active and potential acid sulfate soils (ASS). Some of these areas are purposely re-flooded to halt oxidation processes, but the effect of this management on the metalloid mobility and phytoavailability of the metalloids present is unknown. This study investigated the changes to soil solution As and Sb, associations of metalloids with soil solid phases, and uptake into two common pasture species following 20 weeks of flooding in a controlled environment. The effect of an ASS subsoil was also investigated. The soil solution concentration and availability of the metalloids was in some instances higher in the floodplain soils than would generally be expected in soils with comparable contamination. There appeared to be few changes to soil solution concentrations or phase associations with flooding in this short term study, due to the high acid buffering and poise of the investigated soils. A strong relationship was found between the relative uptake of Sb into pastures and the oxalate extractable Fe in the soil, which was taken as a proxy for non-crystalline iron (Fe) hydroxides. This relationship was dependent on flooding and was absent for As. Further targeted investigations into metalloid speciation kinetics and the stability of soil solid phases with flooding management are recommended. PMID:23792257

  1. Decomposition of Copper (II) Sulfate Pentahydrate: A Sequential Gravimetric Analysis.

    ERIC Educational Resources Information Center

    Harris, Arlo D.; Kalbus, Lee H.

    1979-01-01

    Describes an improved experiment of the thermal dehydration of copper (II) sulfate pentahydrate. The improvements described here are control of the temperature environment and a quantitative study of the decomposition reaction to a thermally stable oxide. Data will suffice to show sequential gravimetric analysis. (Author/SA)

  2. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    PubMed

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of < or =142 +/- 20 nmol cm(-3) day(-1). Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined < or =100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching < or =1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems. PMID:20363796

  3. Analysis of Saprolegnia parasitica Transcriptome following Treatment with Copper Sulfate

    PubMed Central

    Ye, Xin; Sun, Qi; Yuan, Hai-Lan; Liang, Nan; Fang, Wen-Hong; Li, Hao-Ran; Yang, Xian-Le

    2016-01-01

    Background Massive infection caused by oomycete fungus Saprolegnia parasitica is detrimental to freshwater fish. Recently, we showed that copper sulfate demonstrated good efficacy for controlling S. parasitica infection in grass carp. In this study, we investigated the mechanism of inhibition of S. parasitica growth by copper sulfate by analyzing the transcriptome of copper sulfate—treated S. parasitica. To examine the mechanism of copper sulfate inhibiting S. parasitica, we utilized RNA-seq technology to compare differential gene expression in S. parasitica treated with or without copper sulfate. Results The total mapped rates of the reads with the reference genome were 90.50% in the control group and 73.50% in the experimental group. In the control group, annotated splice junctions, partial novel splice junctions and complete novel splice junctions were about 83%, 3% and 14%, respectively. In the treatment group, the corresponding values were about 75%, 6% and 19%. Following copper sulfate treatment, a total 310 genes were markedly upregulated and 556 genes were markedly downregulated in S. parasitica. Material metabolism related GO terms including cofactor binding (33 genes), 1,3-beta-D-glucan synthase complex (4 genes), carboxylic acid metabolic process (40 genes) were the most significantly enriched. KEGG pathway analysis also determined that the metabolism-related biological pathways were significantly enriched, including the metabolic pathways (98 genes), biosynthesis of secondary metabolites pathways (42 genes), fatty acid metabolism (13 genes), phenylalanine metabolism (7 genes), starch and sucrose metabolism pathway (12 genes). The qRT-PCR results were largely consistent with the RNA-Seq results. Conclusion Our results indicate that copper sulfate inhibits S. parasitica growth by affecting multiple biological functions, including protein synthesis, energy biogenesis, and metabolism. PMID:26895329

  4. EFFECT OF SIMULATED SULFURIC ACID RAIN ON THE CHEMISTRY OF A SULFATE-ADSORBING FOREST SOIL

    EPA Science Inventory

    Simulated H2SO4 rain (pH 3.0, 3.5, 4.0) or control rain (pH 5.6) was applied for 3.5 yr to large lysimeter boxes containing a sulfate-adsorbing forest soil and either red alder (Alnus rubra) or sugar maple (Acer saccharum) seedlings. After removal of the plants and the litter lay...

  5. Modeling coupled sorption and transformation of 17β-estradiol-17-sulfate in soil-water systems

    NASA Astrophysics Data System (ADS)

    Bai, Xuelian; Shrestha, Suman L.; Casey, Francis X. M.; Hakk, Heldur; Fan, Zhaosheng

    2014-11-01

    Animal manure is the primary source of exogenous free estrogens in the environment, which are known endocrine-disrupting chemicals to disorder the reproduction system of organisms. Conjugated estrogens can act as precursors to free estrogens, which may increase the total estrogenicity in the environment. In this study, a comprehensive model was used to simultaneously simulate the coupled sorption and transformation of a sulfate estrogen conjugate, 17β-estradiol-17-sulfate (E2-17S), in various soil-water systems (non-sterile/sterile; topsoil/subsoil). The simulated processes included multiple transformation pathways (i.e. hydroxylation, hydrolysis, and oxidation) and mass transfer between the aqueous, reversibly sorbed, and irreversibly sorbed phases of all soils for E2-17S and its metabolites. The conceptual model was conceived based on a series of linear sorption and first-order transformation expressions. The model was inversely solved using finite difference to estimate process parameters. A global optimization method was applied for the inverse analysis along with variable model restrictions to estimate 36 parameters. The model provided a satisfactory simultaneous fit (R2adj = 0.93 and d = 0.87) of all the experimental data and reliable parameter estimates. This modeling study improved the understanding on fate and transport of estrogen conjugates under various soil-water conditions.

  6. Soil Remediation of an Arsenic-Contaminated Site With Ferrous Sulfate and Type V Portland Cement

    NASA Astrophysics Data System (ADS)

    Illera, V.; O'Day, P. A.; Rivera, N.; Root, R.; Rafferty, M. T.; Vlassopoulos, D.

    2005-12-01

    High levels of arsenic are present in a site adjacent to San Francisco Bay (in East Palo Alto, CA) as a consequence of the activity of a former pesticide manufacturing plant. Most of the readily accessible arsenic at the site has been removed by remedial excavation and surface capping. In-situ fixation of residual arsenic was performed close to the source about 10 years ago where arsenic values in capped soils ranged from 500 to 5000 mg kg-1. The fixation method consisted of the addition of ferrous sulfate (3% w/w), type V Portland cement (10% w/w) and water. Both products were mixed with the contaminated soil to a treatment depth between 1.5 and 9 meters. The treated soil was then capped to prevent weathering. This long-term amended soil offers an opportunity to compare the processes that prevent microbial arsenic reduction and control the immobilization of arsenic in the treated soils versus natural soils, and to study the aging effects of arsenic sorption. Solid phase characterization of soil samples from both the field and controlled laboratory experiments were carried out to study the speciation and bioavailability of arsenic and to ascertain the mechanisms of the arsenic immobilization in the treated soil. These methods included physical description by field observations, X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy, total elemental concentrations, and solid phase fractionation by sequential extraction. Both synchrotron X-ray absorption spectroscopy (XAS) and XRD measurements were used to determine oxidation state of arsenic and iron and host phases present in the soil. The remedial treatment was successful in immobilizing the arsenic in the contaminated soil, and decreasing its leachability. Measurements taken at short aging times (during the first month) showed that the treatment was effective in reducing leachable arsenic as evidenced by the TCLP wet test (< 5 mg l-1 leached). The field amendment influenced

  7. Spatial Distribution of Sulfate and the Formation of Ettringite in Lime-Amended Soils of Central Texas

    NASA Astrophysics Data System (ADS)

    Kuo, L.; Markley, C. T.; Herbert, B. E.; Little, D. N.

    2004-12-01

    During road construction, the use of calcium-based stabilizers, such as calcium oxide (lime), in sulfate-bearing clay soils has historically lead to distress and heave due to the formation of ettringite and possibly thaumasite. Ettringite (Ca6(Al(OH)6)2(SO4)3*26H2O) is a hydrous calcium alumino-sulfate mineral that precipitates in environments with high pH and high sulfate activity. Field surveys of soil conductivity quantified using electromagnetics (EM31), geochemical characterization of soils, geochemical modeling of ettringite precipitation in lime-amended soils, and landscape characterization using existing geospatial databases were coupled to prediction the potential for ettringite formation along the SH 130 corridor, a new toll road being constructed in central Texas. Electromagnetic surveys of soil conductivities were conducted at two sites near HWY 290 and HWY 79, in the SH 130 corridor. Soil conductivities at the two sites were correlated extractable SO42- and other soil properties (extractable Al, Ca, and Mg) quantified by water extracts at two pHs (pH 8-9 and 12). At the HWY 290 site, the soil conductivity ranged from 111 to 184 ms/m, while the conductivity ranged from 34-48 ms/m at the HWY 79 site. The concentration of extractable SO42- in HWY 290 and HWY 79 sites are up to 7269 mg/kg and 406 mg/kg, respectively. Soils at these sites are dominated by smectitic clay with relatively high amounts of carbonate. Information from STATSGO, the USDA soil database, and the comparisons between the results of the field surveys and laboratory soil analyses show that variations in sulfate levels at the two sites are strongly influenced by topography. The HWY 79 site is fairly level and there are only very weak trends in the sulfate composition of the soils. The HWY 290 site, on the other hand, is fairly hilly, with a dry stream channel, whose soil and sediments exhibited very high sulfate concentrations. The strong topographic slope influences hydrologic flow

  8. Hyphenated techniques for the analysis of heparin and heparan sulfate

    PubMed Central

    Yang, Bo; Solakyildirim, Kemal; Chang, Yuqing

    2011-01-01

    The elucidation of the structure of glycosaminoglycan has proven to be challenging for analytical chemists. Molecules of glycosaminoglycan have a high negative charge and are polydisperse and microheterogeneous, thus requiring the application of multiple analytical techniques and methods. Heparin and heparan sulfate are the most structurally complex of the glycosaminoglycans and are widely distributed in nature. They play critical roles in physiological and pathophysiological processes through their interaction with heparin-binding proteins. Moreover, heparin and low-molecular weight heparin are currently used as pharmaceutical drugs to control blood coagulation. In 2008, the health crisis resulting from the contamination of pharmaceutical heparin led to considerable attention regarding their analysis and structural characterization. Modern analytical techniques, including high-performance liquid chromatography, capillary electrophoresis, mass spectrometry, and nuclear magnetic resonance spectroscopy, played critical roles in this effort. A successful combination of separation and spectral techniques will clearly provide a critical advantage in the future analysis of heparin and heparan sulfate. This review focuses on recent efforts to develop hyphenated techniques for the analysis of heparin and heparan sulfate. PMID:20853165

  9. Soil-derived sulfate in atmospheric dust particles at Taklimakan desert

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Zhang, Daizhou; Cao, Junji; Xu, Hongmei; An, Zhisheng

    2012-12-01

    Dust-associated sulfate is believed to be a key species which can alter the physical and chemical properties of dust particles in the atmosphere. Its occurrence in the particles has usually been considered to be the consequence of particles' aging in the air although it is present in some crustal minerals. Our observation at the north and south edge of Taklimakan desert, one of the largest dust sources in the Northern Hemisphere, during a dust episode in April 2008 revealed that sulfate in atmospheric dust samples most likely originated directly from surface soil. Its TSP, PM10 and PM2.5 content was proportional to samples' mass and comprised steadily about 4% in the differently sized samples, the ratio of elemental sulfur to iron was approximately constant 0.3, and no demonstrable influence of pollutants from fossil fuel combustion and biomass burning was detected. These results suggest that sulfate could be substantially derived from surface soil at the desert area and the lack of awareness of this origin may impede accurate results in any investigation of atmospheric sulfur chemistry associated with Taklimakan dust and its subsequent local, regional and global effects on the atmosphere.

  10. Arsenic immobilization in the contaminated soil using poorly crystalline Fe-oxyhydroxy sulfate.

    PubMed

    Yang, Zhihui; Liu, Lin; Chai, Liyuan; Liao, Yingping; Yao, Wenbin; Xiao, Ruiyang

    2015-08-01

    A low crystalline Fe-oxyhydroxy sulfate (FeOS) was used to immobilize arsenic (As) in soils in this study. The effects of FeOS amount, treatment time and soil moisture on As immobilization were investigated. The results showed that water-soluble and NaHCO3-extractable As were immobilized by 53.4-99.8 and 13.8-73.3% respectively, with 1-10% of FeOS addition. The highest immobilization of water-soluble (98.5%) and NaHCO3-extractable arsenic (47.2%) was achieved under condition of 4% of FeOS and 80% of soil moisture. Further, more amounts of FeOS addition resulted in less time requirement for As immobilization. Sequential chemical extraction experiment revealed that easily mobile arsenic phase was transferred to less mobile phase. The FeOS-bonded As may play a significant role in arsenic immobilization. Under leaching with simulated acid rain at 60 times pore volumes, accumulation amount of As release from untreated soil and soil amended with FeOS were 98.4 and 1.2 mg, respectively, which correspond to 7.69 and 0.09% of total As amounts in soil. The result showed that the low crystalline FeOS can be used as a suitable additive for arsenic immobilization in soils. PMID:25911284

  11. m-Xylylenediaminium sulfate: crystal structure and Hirshfeld surface analysis

    PubMed Central

    Guesmi, Afef; Gatfaoui, Sofian; Roisnel, Thierry; Marouani, Houda

    2016-01-01

    The crystal structure of the title salt {systematic name: [1,3-phenyl­enebis(methyl­ene)]bis­(aza­nium) sulfate}, C8H14N2 2+·SO4 2−, consists of infinite (100) sheets of alternating organic and inorganic entities The m-xylylenediaminium cations are linked to the sulfate anions by N—H⋯O and asymmetric bifurcated N—H⋯(O,O) hydrogen bonds, generating a three-dimensional network. A weak C—H⋯O inter­action also occurs. The Hirshfeld surface analysis and the two-dimensional fingerprint maps indicate that the packing is dominated by H⋯O/O⋯H and H⋯H contacts. PMID:27308040

  12. m-Xylylenediaminium sulfate: crystal structure and Hirshfeld surface analysis.

    PubMed

    Guesmi, Afef; Gatfaoui, Sofian; Roisnel, Thierry; Marouani, Houda

    2016-06-01

    The crystal structure of the title salt {systematic name: [1,3-phenyl-enebis(methyl-ene)]bis-(aza-nium) sulfate}, C8H14N2 (2+)·SO4 (2-), consists of infinite (100) sheets of alternating organic and inorganic entities The m-xylylenediaminium cations are linked to the sulfate anions by N-H⋯O and asymmetric bifurcated N-H⋯(O,O) hydrogen bonds, generating a three-dimensional network. A weak C-H⋯O inter-action also occurs. The Hirshfeld surface analysis and the two-dimensional fingerprint maps indicate that the packing is dominated by H⋯O/O⋯H and H⋯H contacts. PMID:27308040

  13. Separation and quantitative analysis of alkyl sulfate ethoxymers by HPLC.

    PubMed

    Morvan, Julien; Hubert-Roux, Marie; Agasse, Valérie; Cardinael, Pascal; Barbot, Florence; Decock, Gautier; Bouillon, Jean-Philippe

    2008-01-01

    Separation of alkyl sulfate ethoxymers is investigated on various high-performance liquid chromatography (HPLC) stationary phases: Acclaim C18 Surfactant, Surfactant C8, and Hypercarb. For a fixed alkyl chain length, ethoxymers are eluted in the order of increasing number of ethoxylated units on Acclaim C18 Surfactant, whereas a reversed elution order is observed on Surfactant C8 and Hypercarb. Moreover, on an Acclaim C18 Surfactant column, non-ethoxylated compounds are eluted in their ethoxymers distribution and the use of sodium acetate additive in mobile phase leads to a co-elution of ethoxymers. HPLC stationary phases dedicated to surfactants analysis are evaluated by means of the Tanaka test. Surfactant C8 presents a great silanol activity whereas Acclaim C18 Surfactant shows a high steric selectivity. For alkyl sulfates, linearity of the calibration curve and limits of detection and quantitation are evaluated. The amount of sodium laureth sulfate raw material found in commercial body product is in agreement with the specification of the manufacturer. PMID:19007494

  14. The relation between soil sulfate concentration and proanthocyanidin content of Selliguea feei Bory from around Ratu crater, Mount Tangkuban Perahu

    NASA Astrophysics Data System (ADS)

    Novianti, Vivi; Choesin, Devi N.

    2014-03-01

    Proanthocyanidin is a chemical compound with a basic flavan-3-ol structure formed from flavonoid secondary metabolism in plants, with potential for human use because of its anti-hypertension, analgesic, anti-inflammatory and antioxidant activities. Considering the fact that S. feei contains proanthocynidin and grows abundantly around Ratu Crater, Mount Tangkuban Perahu, which actively emits S02 gas, this study aimed to see the relation between soil sulfate concentration and proanthocyanidin content in leaves and rhizomes of S. feei. Field sampling was conducted in 1 m2 plots at elevations of 1400, 1600 m above sea level (100 m distance from sulfur source), 1700, 1800 and 1900 m a.s.l. (75 m from sulfur source). Measurements included soil sulfate concentration, proanthocyanidin content of rhizomes and leaves, and environmental factors. An experiment was conducted by planting S. feei from the field into polybags which were then given treatments of sterile plant media with varying sulfate concentrations (0 ppm, 100 ppm, 250 ppm, 400 ppm, 600 ppm, and 800 ppm). Proanthocyanidin content of S. feei leaves and rhizomes were measured on the third, sixth and ninth week. Soil sulfate concentrations were found to be very high (428.22 - 992.91 ppm) with values increasing according to altitude. Proanthocyanidin content in rhizomes were higher than in leaves, in both field and experimental data. Soil sulfate concentrations correlated positively and significantly with proanthocyanidin content in rhizomes of S. feei. As in the field, experimental results indicated no correlation or relation between soil sulfate concentration and proanthocyanidin content in leaves. Besides soil sulfate concentration, environmental factors have a role in incresing peoanthocyanidin content of S.feei. Proanthocyanidin content of S.feei rhizomes could be classified as being very high, thus having potential to be developed as raw material in medicine and food industries.

  15. Modeling Sorption and Degradation of 17β-Estradiol-17-Sulfate in Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Bai, X.; Casey, F. X.; Hakk, H.; Shrestha, S. L.; DeSutter, T.; Khan, E.; Oduor, P. G.

    2011-12-01

    The natural steroid hormone, 17β-estradiol (E2), can be an endocrine disruptor at part-per trillion levels. Laboratory studies indicate a low potential for E2 persistence and mobility in the environment; however, field studies consistently indicate the presence of E2 and its primary metabolite, estrone, at levels sufficiently high to impact water quality. To facilitate urine excretion, animals may release E2 as a sulfated conjugate, which would have a higher aqueous solubility than the parent compound. We hypothesize that E2 conjugates contribute to the detection of free estrogens in the environment. The objective of this study was to determine the sorption, degradation, and mobility of a model conjugate, 17β-estradiol-17-sulfate (E2-17S), in agricultural soils. Radiolabeled E2-17S ([14C]E2-17S) was chemically synthesized in a three-step process, and then batch experiments were conducted in natural and sterile soils. Additionally, soil organic carbon (OC) was varied (1.29 and 0.26%) to investigate its effect on the fate of [14C]E2-17S. Liquid scintillation counting (LSC) was used in concert with high performance liquid chromatography (HPLC) to detect and quantitate parent compound and metabolites of E2-17S in the aqueous and bound phases. Residual soil was combusted to determine non-extractable levels of 14C. The E2-17S was relatively stable in the aqueous phase for natural and sterile soils. Mono- and di- hydroxyl E2-17S were detected as metabolites of E2-17S in the aqueous phase above both sterile and natural soil. Deconjugation to form E2 was not observed in aqueous phase; however, E2 and estrone were extracted from both natural and sterile soils. A conceptual model was developed to simulate and identify the fate and transport processes of E2-17S. Organic carbon was found to be an important factor affecting the sorption and degradation of E2-17S in soils.

  16. Microbial Sulfate Reduction at Cold Seeps Based on Analysis of Carbonate Associated Sulfate

    NASA Astrophysics Data System (ADS)

    Feng, D.; Peng, Y.

    2014-12-01

    Microbial sulfate reduction and coupled anaerobic oxidation of methane (AOM) are the dominant biogeochemical processes occurring at cold seeps in marine settings. These processes not only support the growth of chemosynthetic communities but also promote the precipitation of authigenic carbonates. However, investigations of microbial sulfate reduction have been conducted only using porewaters or seep-related barites. The fact is that many seeps are either inactive or do not precipitate any barite minerals. Thus, little is known about the microbial sulfate reduction at these seep environments. The occurrence of authigenic carbonate has been documented at almost all cold seep sites, which provide a unique opportunity to investigate the microbial sulfate reduction using such carbonate. The presentation is focused on the concentrations and isotopic signatures of carbonate associated sulfate (CAS). The aim of the project is to determine the role of sulfate and sulfate reduction during carbonate precipitation at cold seeps. The CAS concentrations are 67-537 ppm in high-Mg calcite, 51-181 ppm in low-Mg calcite, and 116-565 in aragonite. The δ34SCAS and δ18OCAS also vary considerably, ranging from 21.9‰ to 56.2‰ (V-CDT) and from 10.1‰ to 24.8‰ (V-SMOW), respectively. On δ34SCAS versus δ18OCAS plots, both aragonite and calcite show linear trends that project down toward those of open seawater sulfate. The trends suggest that sulfate has been isotopically modified to various degrees in pore fluids before being incorporated into carbonate lattice. The much narrower δ34SCAS and δ18OCAS ranges for aragonite than for calcite suggests a much "pickier" condition for aragonite formation during early diagenesis. Our results suggest that concentration and isotopic composition of CAS in seep carbonates may be controlled by the supply of pore-water sulfate during carbonate precipitation. The reliability of CAS in carbonate of early diagenetic origin as a proxy of

  17. Annual sulfate budgets for Dutch lowland peat polders: The soil is a major sulfate source through peat and pyrite oxidation

    NASA Astrophysics Data System (ADS)

    Vermaat, Jan E.; Harmsen, Joop; Hellmann, Fritz A.; van der Geest, Harm G.; de Klein, Jeroen J. M.; Kosten, Sarian; Smolders, Alfons J. P.; Verhoeven, Jos T. A.; Mes, Ron G.; Ouboter, Maarten

    2016-02-01

    Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species. Potential limitation of these plants to areas with low sulfate was analyzed with a spatial match-up of two large databases. The peat polders are generally used for dairy farming or nature conservation, and have considerable areas of shallow surface water (mean 16%, range 6-43%). As a consequence of continuous drainage, the peat in these polders mineralizes causing subsidence rates generally ranging between 2 and 10 mm y-1. Together with pyrite oxidation, this peat mineralization the most important internal source of sulfate, providing an estimated 96 kg SO4 ha-1 mm-1 subsidence y-1. External sources are precipitation and water supplied during summer to compensate for water shortage, but these were found to be minor compared to internal release. The most important output flux is discharge of excess surface water during autumn and winter. If only external fluxes in and out of a polder are evaluated, inputs average 37 ± 9 and exports 169 ± 17 kg S ha-1 y-1. During summer, when evapotranspiration exceeds rainfall, sulfate accumulates in the unsaturated zone, to be flushed away and drained off during the wet autumn and winter. In some polders, upward seepage from early Holocene, brackish sediments can be a source of sulfate. Peat polders export sulfate to the regional water system and the sea during winter drainage. The available sulfate probably only plays a minor role in the oxidation of peat: we estimate that this is less than 10% whereas aerobic mineralization is the most important. Most surface waters in these polders have high sulfate concentrations, which generally decline during the growing season when aquatic sediments are a sink. In the sediment, this sulfur is

  18. The Soil Chemical Response to Decreases in Atmospheric Sulfate deposition Across the Northeastern United States

    NASA Astrophysics Data System (ADS)

    McHale, M. R.; Siemion, J.; Lawrence, G. B.; Mast, A.

    2012-12-01

    Data from National Atmospheric Deposition (NADP) stations show that since implementation of the Clean Air Act Amendments of 1990 there has been a steady decline in sulfate and nitrate concentrations in precipitation across the northeastern United States. Those decreases have become more pronounced during the last 10 years. There have also been decreasing trends in sulfate and less so nitrate stream-water concentrations during the same period at 3 U.S. Geological Survey Hydrologic Benchmark Network stream gaging stations. These stations are co-located with NADP stations in western Pennsylvania (Young Woman's Creek, YWC), the Catskill Mountains of New York (Neversink River, NR), and in northwestern Maine (Wild River, WR). Precipitation was most acidic at YWC (mean pH in 2010 of 4.68 at YWC, 4.88 at NR, and 4.97 at WR) while stream water was most acidic at WR (mean pH from 1999 to 2010 of 6.08 at WR, 6.19 at NR, and 6.72 at YWC). Soil samples were collected at each site in 2001 and again 10 years later in 2011 in the A and upper B-horizons at two to three locations in each watershed, at an upslope location, a mid-slope location, and in the case of NR also at a lower slope location. Replicate samples were collected from 5 pits at each site. At YWC the site with the lowest precipitation pH and the highest stream-water pH there were clear changes in soil acidity during the last 10 years. There was a decrease in soil pH of 0.7 pH units in the A-horizon of ridge top soils and 0.2 pH units in the mid slope soils while pH increased a mean of 0.2 pH units at both locations in the B-horizon. At NR, the site with intermediate precipitation and stream-water pH, there was a general decrease in soil pH in the A-horizon at the ridge top, mid slope, and lower slope locations although those changes were not as pronounced as those from YWC. Although B-horizon soil pH increased at the ridge top site in NR there were no clear changes in acidity of the mid or lower slope locations. At

  19. Functional analysis of diastrophic dysplasia sulfate transporter. Its involvement in growth regulation of chondrocytes mediated by sulfated proteoglycans.

    PubMed

    Satoh, H; Susaki, M; Shukunami, C; Iyama, K; Negoro, T; Hiraki, Y

    1998-05-15

    Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene constitute a family of recessively inherited osteochondrodysplasias including achondrogenesis type 1B, atelosteogenesis type II, and diastrophic dysplasia. However, the functional properties of the gene product have yet to be elucidated. We cloned rat DTDST cDNA from rat UMR-106 osteoblastic cells. Northern blot analysis suggested that cartilage and intestine were the major expression sites for DTDST mRNA. Analysis of the genomic sequence revealed that the rat DTDST gene was composed of at least five exons. Two distinct transcripts were expressed in chondrocytes due to alternative utilization of the third exon, corresponding to an internal portion of the 5'-untranslated region of the cDNA. Injection of rat and human DTDST cRNA into Xenopus laevis oocytes induced Na+-independent sulfate transport. Transport activity of the expressed DTDST was markedly inhibited by extracellular chloride and bicarbonate. In contrast, canalicular Na+-independent sulfate transporter Sat-1 required the presence of extracellular chloride in the cRNA-injected oocytes. The activity profile of sulfate transport in growth plate chondrocytes was studied in the extracellular presence of various anions and found substantially identical to DTDST expressed in oocytes. Thus, sulfate transport of chondrocytes is dominantly dependent on the DTDST system. Finally, we demonstrate that undersulfation of proteoglycans by the chlorate treatment of chondrocytes significantly impaired growth response of the cells to fibroblast growth factor, suggesting a role for DTDST in endochondral bone formation. PMID:9575183

  20. Sulfur-accumulating plants convert sulfate salts from soils into environmentally resilient biominerals

    NASA Astrophysics Data System (ADS)

    Robson, Thomas; Reid, Nathan; Stevens, Jason; Dixon, Kingsley

    2016-04-01

    Sulfur-accumulator plants (thiophores), which accumulate atypically high sulfur and calcium concentrations in their aerial biomass, may be suitable for revegetating and phytostabilising reactive sulfur-enriched substrates such as mine tailings, acid-sulfate soils and polluted soils. We present biogeochemical insights on thiophores from the Australian Great Sandy Desert, which accumulate up to 40 times as much sulfur (2-5 %S) versus comparator species. X-ray microanalyses revealed this accumulation relates to peculiar gypsum-like mineralisation throughout their foliage, illustrating a mechanism for sulfate removal from soils and sequestration as sparingly soluble biominerals. However, we did not know whether these species treat the excess Ca/S as a waste to be shed with senescent litter and, if so, how resilient these 'biominerals' are to photo-biodegradation once shed and so to what extent the accumulated elements are recycled back into the reactive/bioavailable sulfate reservoir. To address these questions, we sampled four foliage (phyllode) fractions from ten individuals of the thiophore, Acacia bivenosa: healthy mature phyllodes, senescent phyllodes on the branch, recently shed and older, more degraded ground litter. We selected two thiophores (A. bivenosa and A. robeorum) and a non-thiophore (A. ancistrocarpa) for detailed soil/regolith studies. Samples were collected from trenches bisected by each tree, taken from varying depth (20-500 mm) and distance from the stem (0.1-5 m). Dried foliage was cleaned, sectioned for SEM-EDXS examination and elemental compositions of foliage and soils were determined (microwave-assisted acid digestion + ICP-OES/MS). Each species generated a 'halo' of elevated S/Ca in the soil immediately beneath their crowns, although that of A. ancistrocarpa was of minor magnitude. These anomalies were confined to shallow soil (20-50 mm i.e. influenced by litter), suggesting limited S/Ca re-mobilisation from the litter. Foliar elemental

  1. Relationships among iron, aluminum, carbon, and sulfate in a variety of forest soils

    SciTech Connect

    Johnson, D.W.; Todd, D.E.

    1983-01-01

    Among several soil properties tested, percent Fe/sub c/ (i.e., Fe by citrate-dithionite minus oxalate extraction) was the single parameter most closely related to SO/sub 4//sup 2 -/ adsorption properties in a variety of forest soils. There were exceptions to this general relationship, however, and a combination of percent C, citrate-dithionite, and oxalate extractions for both Fe and Al appear most promising in predicting sulfate adsorption. Percent clay, pH, and pyrophosphate-extractable Fe + Al were either insignificantly or inconsistently related to SO/sub 4//sup 2 -/ adsorption. Because organic matter had a decidedly negative influence upon SO/sub 4//sup 2 -/ adsorption, surface soils and B horizons of Spodosols (and highly podzolized soils) had relatively poor SO/sub 4//sup 2 -/ adsorption properties, even when their dithionite-extractable Fe values were high. Organic matter also reduced Fe crystallinity (i.e., increased Fe/sub c//Fe/sub d/, or the ratio of oxalate to dithionite Fe), and the results of this study suggest that crystalline rather than amorphous, inorganic Fe (i.e., oxalate minus pyrophosphate Fe) is most highly correlated with adsorbed, water-insoluble SO/sub 4//sup 2 -/.

  2. Possible Association of Ferrous Phosphates and Ferric Sulfates in S-rich Soil on Mars

    NASA Astrophysics Data System (ADS)

    Mao, J.; Schroeder, C.; Haderlein, S.

    2012-12-01

    NASA Mars Exploration Rover (MER) Spirit explored Gusev Crater to look for signs of ancient aqueous activity, assess past environmental conditions and suitability for life. Spirit excavated light-toned, S-rich soils at several locations. These are likely of hydrothermal, possibly fumarolic origin. At a location dubbed Paso Robles the light-toned soil was also rich in P - a signature from surrounding rock. While S is mainly bound in ferric hydrated sulfates [1], the mineralogy of P is ill-constrained [2]. P is a key element for life and its mineralogy constrains its availability. Ferrous phases observed in Paso Robles Mössbauer spectra may represent olivine and pyroxene from surrounding basaltic soil [1] or ferrous phosphate minerals [3]. Phosphate is well-known to complex and stabilize Fe 2+ against oxidation to Fe 3+ . Schröder et al. [3] proposed a formation pathway of ferrous phosphate/ferric sulfate associations: sulfuric acid reacts with basalt containing apatite, forming CaSO4 and phosphoric acid. The phosphoric and/or excess sulfuric acid reacts with olivine, forming Fe2+-phosphate and sulfate. The phosphate is less soluble and precipitates. Ferrous sulfate remains in solution and is oxidized as pH increases. To verify this pathway, we dissolved Fe2+-chloride and Na-phosphate salts in sulfuric acid inside an anoxic glovebox. The solution was titrated to pH 6 by adding NaOH when a first precipitate formed, which was ferrous phosphate according to Mössbauer spectroscopy (MB). At that point the solution was removed from the glovebox and allowed to evaporate in the presence of atmospheric oxygen, leading to the oxidation of Fe2+. The evaporation rate was controlled by keeping the suspensions at different temperatures; pH was monitored during the evaporation process. The final precipitates were analyzed by MB and X-Ray Fluorescence (XRF), comparable to MER MB and Alpha Particle X-ray Spectrometer instrument datasets, and complementary techniques such as X

  3. Mineralogical, chemical, organic and microbial properties of subsurface soil cores from Mars Desert Research Station (Utah, USA): Phyllosilicate and sulfate analogues to Mars mission landing sites

    NASA Astrophysics Data System (ADS)

    Stoker, Carol R.; Clarke, Jonathan; Direito, Susana O. L.; Blake, David; Martin, Kevin R.; Zavaleta, Jhony; Foing, Bernard

    2011-07-01

    We collected and analysed soil cores from four geologic units surrounding Mars Desert Research Station (MDRS) Utah, USA, including Mancos Shale, Dakota Sandstone, Morrison formation (Brushy Basin member) and Summerville formation. The area is an important geochemical and morphological analogue to terrains on Mars. Soils were analysed for mineralogy by a Terra X-ray diffractometer (XRD), a field version of the CheMin instrument on the Mars Science Laboratory (MSL) mission (2012 landing). Soluble ion chemistry, total organic content and identity and distribution of microbial populations were also determined. The Terra data reveal that Mancos and Morrison soils are rich in phyllosilicates similar to those observed on Mars from orbital measurements (montmorillonite, nontronite and illite). Evaporite minerals observed include gypsum, thenardite, polyhalite and calcite. Soil chemical analysis shows sulfate the dominant anion in all soils and SO4>>CO3, as on Mars. The cation pattern Na>Ca>Mg is seen in all soils except for the Summerville where Ca>Na. In all soils, SO4 correlates with Na, suggesting sodium sulfates are the dominant phase. Oxidizable organics are low in all soils and range from a high of 0.7% in the Mancos samples to undetectable at a detection limit of 0.1% in the Morrison soils. Minerals rich in chromium and vanadium were identified in Morrison soils that result from diagenetic replacement of organic compounds. Depositional environment, geologic history and mineralogy all affect the ability to preserve and detect organic compounds. Subsurface biosphere populations were revealed to contain organisms from all three domains (Archaea, Bacteria and Eukarya) with cell density between 3.0×106 and 1.8×107 cells ml-1 at the deepest depth. These measurements are analogous to data that could be obtained on future robotic or human Mars missions and results are relevant to the MSL mission that will investigate phyllosilicates on Mars.

  4. Exchangeable and secondary mineral reactive pools of aluminium in coastal lowland acid sulfate soils.

    PubMed

    Yvanes-Giuliani, Yliane A M; Waite, T David; Collins, Richard N

    2014-07-01

    The use of coastal floodplain sulfidic sediments for agricultural activities has resulted in the environmental degradation of many areas worldwide. The generation of acidity and transport of aluminium (Al) and other metals to adjacent aquatic systems are the main causes of adverse effects. Here, a five-step sequential extraction procedure (SEP) was applied to 30 coastal lowland acid sulfate soils (CLASS) from north-eastern New South Wales, Australia. This enabled quantification of the proportion of aluminium present in 'water-soluble', 'exchangeable', 'organically-complexed', 'reducible iron(III) (oxyhydr)oxide/hydroxysulfate-incorporated' and 'amorphous Al mineral' fractions. The first three extractions represented an average of 5% of 'aqua regia' extractable Al and their cumulative concentrations were extremely high, reaching up to 4000 mg·kg(-1). Comparison of Al concentrations in the final two extractions indicated that 'amorphous Al minerals' are quantitatively a much more important sink for the removal of aqueous Al derived from the acidic weathering of these soils than reducible Fe(III) minerals. Correlations were observed between soil pH, dissolved and total organic carbon (DOC and TOC) and Al concentrations in organic carbon-rich CLASS soil horizons. These results suggest that complexation of Al by dissolved organic matter significantly increases soluble Al concentrations at pH values >5.0. As such, present land management practices would benefit with redefinition of an 'optimal' soil from pH ≥5.5 to ~4.8 for the preservation of aquatic environments adjacent to organic-rich CLASS where Al is the sole or principle inorganic contaminant of concern. Furthermore, it was observed that currently-accepted standard procedures (i.e. 1 M KCl extraction) to measure exchangeable Al concentrations in these types of soils severely underestimate exchangeable Al and a more accurate representation may be obtained through the use of 0.2 M CuCl2. PMID:24727041

  5. Reactive transport controls on sandy acid sulfate soils and impacts on shallow groundwater quality

    NASA Astrophysics Data System (ADS)

    Salmon, S. Ursula; Rate, Andrew W.; Rengel, Zed; Appleyard, Steven; Prommer, Henning; Hinz, Christoph

    2014-06-01

    Disturbance or drainage of potential acid sulfate soils (PASS) can result in the release of acidity and degradation of infrastructure, water resources, and the environment. Soil processes affecting shallow groundwater quality have been investigated using a numerical code that integrates (bio)geochemical processes with water, solute, and gas transport. The patterns of severe and persistent acidification (pH < 4) in the sandy, carbonate-depleted podzols of a coastal plain could be reproduced without calibration, based on oxidation of microcrystalline pyrite after groundwater level decrease and/or residual groundwater acidity, due to slow vertical solute transport rates. The rate of acidification was limited by gas phase diffusion of oxygen and hence was sensitive to soil water retention properties and in some cases also to oxygen consumption by organic matter mineralization. Despite diffusion limitation, the rate of oxidation in sandy soils was rapid once pyrite-bearing horizons were exposed, even to a depth of 7.5 m. Groundwater level movement was thus identified as an important control on acidification, as well as the initial pyrite content. Increase in the rate of Fe(II) oxidation lead to slightly lower pH and greater accumulation of Fe(III) phases, but had little effect on the overall amount of pyrite oxidized. Aluminosilicate (kaolinite) dissolution had a small pH-buffering effect but lead to the release of Al and associated acidity. Simulated dewatering scenarios highlighted the potential of the model for risk assessment of (bio)geochemical impacts on soil and groundwater over a range of temporal and spatial scales.

  6. Plant Uptake and Distribution of Endosulfan and Its Sulfate Metabolite Persisted in Soil

    PubMed Central

    Hwang, Jeong-In; Lee, Sung-Eun; Kim, Jang-Eok

    2015-01-01

    The distributions of endosulfan (ED) residues (α-, β-isomers, and sulfate-metabolite) in cucumbers grown in soils treated with ED at concentrations of 20 and 40 mg kg-1 were assessed using indoor and outdoor experiments. In all treatments, degradation rates of the α-isomer in soils were higher than that of the β-isomer. In the indoor tests, uptake amounts of total ED by cucumbers, after 15 d of growth, were 7.8 and 14.5 mg kg-1 in 20 and 40 mg kg-1-treated pots, respectively. For growth time from 15 to 30 d, uptake amounts in 20 and 40 mg kg-1-treated pots were 3.8 and 7.9 mg kg-1, respectively. Outdoor tests resulted in smaller ED residues in cucumbers than those in indoor tests. In both indoor and outdoor tests, ED residues absorbed were highest in roots, and the α-isomer was the more frequently absorbed isomer. These results will be useful for determining management criteria for soil persistent pesticides. PMID:26529511

  7. Crystal structure, thermal analysis and IR spectrometric investigation of the tris(2,6-diaminopyridinium) hydrogen sulfate sulfate monohydrate

    NASA Astrophysics Data System (ADS)

    Saïd, Salem; Elleuch, Slim; Ślepokura, Katarzyna; Lis, Tadeusz; Naïli, Houcine

    2016-06-01

    The crystals of new inorganic-organic hybrid material tris(2,6-diaminopyridinium) hydrogen sulfate sulfate monohydrate (C5H8N3)3(HSO4)(SO4)·H2O, were grown by slow evaporation technique in aqueous solution. The title compound has been prepared and characterized by X-ray diffraction, IR spectroscopy and thermal analysis. The complex crystallizes in the triclinic system, space group P 1 bar , with the following cell parameters a = 8.051(3)Å, b = 10.646(4)Å, c = 14.138(6)Å, α = 73.23(3)°, β = 79.28(3)°, γ = 82.28(3)°, V = 1135.8(8)Å3 and Z = 2, T = 100 K. The crystal is built up from hydrogen sulfate anions HSO4-, sulfate anions SO42-, protonated cations (C5H8N3)+ and water molecules. In this compound, hydrogen bonding and π⋯π interactions play crucial roles in forming interesting structural patterns. Thermal analysis indicates that (C5H8N3)3(HSO4)(SO4)·H2O does not experience any structural phase transition in the temperature range measured from 25 to 700 °C. Therefore, the properties of the new phase are inconsistent with the characteristic features of the superprotonic family M3H(SO4)2.

  8. Identifying sources of acidity and spatial distribution of acid sulfate soils in the Anglesea River catchment, southern Australia

    NASA Astrophysics Data System (ADS)

    Wong, Vanessa; Yau, Chin; Kennedy, David

    2015-04-01

    Globally, coastal and estuarine floodplains are frequently underlain by sulfidic sediments. When exposed to oxygen, sulfidic sediments oxidise to form acid sulfate soils, adversely impacting on floodplain health and adjacent aquatic ecoystems. In eastern Australia, our understanding of the formation of these coastal and estuarine floodplains, and hence, spatial distribution of acid sulfate soils, is relatively well established. These soils have largely formed as a result of sedimentation of coastal river valleys approximately 6000 years BP when sea levels were one to two metres higher. However, our understanding of the evolution of estuarine systems and acid sulfate soil formation, and hence, distribution, in southern Australia remains limited. The Anglesea River, in southern Australia, is subjected to frequent episodes of poor water quality and low pH resulting in closure of the river and, in extreme cases, large fish kill events. This region is heavily reliant on tourism and host to a number of iconic features, including the Great Ocean Road and Twelve Apostles. Poor water quality has been linked to acid leakage from mining activities and Tertiary-aged coal seams, peat swamps and acid sulfate soils in the region. However, our understanding of the sources of acidity and distribution of acid sulfate soils in this region remains poor. In this study, four sites on the Anglesea River floodplain were sampled, representative of the main vegetation communities. Peat swamps and intertidal marshes were both significant sources of acidity on the floodplain in the lower catchment. However, acid neutralising capacity provided by carbonate sands suggests that there are additional sources of acidity higher in the catchment. This pilot study has highlighted the complexity in the links between the floodplain, upper catchment and waterways with further research required to understand these links for targeted acid management strategies.

  9. δ34S and Δ33S records of Paleozoic seawater sulfate based on the analysis of carbonate associated sulfate

    NASA Astrophysics Data System (ADS)

    Wu, Nanping; Farquhar, James; Strauss, Harald

    2014-08-01

    This study updates the δ34S and Δ33S temporal records of Paleozoic and early Mesozoic seawater sulfate using analysis of carbonate associated sulfate of biogenic and whole rock carbonate. The time resolution of carbonate samples studied here is on the order of millions of years which is longer than the timescale for homogenization of seawater sulfate-sulfur (one tenth of a million years), but is comparable to the timescale for isotope evolution of sulfate in the oceans. This δ34S record confirms the long-term decreasing trend that is discernible over the 250 million year timescale of sampling, and the Δ33S record of seawater sulfate for the Paleozoic is consistent with an average value of -0.002±0.004‰ (2σ, 540-251 Ma) that is distinct from the positive Δ33S observed today and inferred for the rest of the Cenozoic. Both δ34S and Δ33S records of seawater sulfate suggest the presence of shorter-timescale variations that occur on timescales of tens of millions of years, arguably driven by changes in intensity of sulfide oxidation in cycling of sulfur and/or by rapid changes in sulfur influx to the oceans and its associated sulfur isotopes. The Permian-Triassic boundary marks a transition in co-trajectories of δ34S and Δ33S from in-phase to anti-phase. The biogeochemical forcing that causes this is unclear. This newly calibrated record remains consistent with an earlier assertion (Wu et al., 2010) that the sulfur isotope fractionation (Δ34SSW-PY) between oceanic sulfate (δ34SSW) and coeval sedimentary pyrite (δ34SPY) was smaller during the Paleozoic than in the Cenozoic, and reached lowest values during the Carboniferous. The δ34SIN and Δ33SIN estimates of influx sulfur to the oceans afforded by the isotope mass balance model for each geologic period throughout the Paleozoic reveal a change from higher positive values of δ34SIN (more negative values of Δ33SIN, approximately -0.030‰) to lower positive values of δ34SIN (slightly negative values of

  10. Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi.

    PubMed

    Bochenek, Michal; Etherington, Graham J; Koprivova, Anna; Mugford, Sam T; Bell, Thomas G; Malin, Gill; Kopriva, Stanislav

    2013-08-01

    The response to sulfate deficiency of plants and freshwater green algae has been extensively analysed by system biology approaches. By contrast, seawater sulfate concentration is high and very little is known about the sulfur metabolism of marine organisms. Here, we used a combination of metabolite analysis and transcriptomics to analyse the response of the marine microalga Emiliania huxleyi as it acclimated to sulfate limitation. Lowering sulfate availability in artificial seawater from 25 to 5 mM resulted in significant reduction in growth and intracellular concentrations of dimethylsulfoniopropionate and glutathione. Sulfate-limited E. huxleyi cells showed increased sulfate uptake but sulfate reduction to sulfite did not seem to be regulated. Sulfate limitation in E. huxleyi affected expression of 1718 genes. The vast majority of these genes were upregulated, including genes involved in carbohydrate and lipid metabolism, and genes involved in the general stress response. The acclimation response of E. huxleyi to sulfate deficiency shows several similarities to the well-described responses of Arabidopsis and Chlamydomonas, but also has many unique features. This dataset shows that even though E. huxleyi is adapted to constitutively high sulfate concentration, it retains the ability to re-program its gene expression in response to reduced sulfate availability. PMID:23692606

  11. Consequences of Aluminum or Ferrous Sulfate Amended Poultry Litter on Concentrations of Aluminum in Plants and Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amending poultry litter with aluminum sulfate (alum) reduces phosphorous (P) runoff and ammonia volatilization but its effects on soil pH are not completely researched. Greenhouse pot experiments with cotton (Gossypium hirsutum L.) and soybean (Glycine max. L. Merr) as test crops were conducted with...

  12. Biochemical and Molecular Characterization of Potential Phosphate-Solubilizing Bacteria in Acid Sulfate Soils and Their Beneficial Effects on Rice Growth

    PubMed Central

    Panhwar, Qurban Ali; Naher, Umme Aminun; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

    2014-01-01

    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmolc kg−1, respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils. PMID:25285745

  13. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Shamshuddin, Jusop; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

    2014-01-01

    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c) kg(-1), respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils. PMID:25285745

  14. Quantitative Analysis of Sulfate in Water by Indirect EDTA Titration

    ERIC Educational Resources Information Center

    Belle-Oudry, Deirdre

    2008-01-01

    The determination of sulfate concentration in water by indirect EDTA titration is an instructive experiment that is easily implemented in an analytical chemistry laboratory course. A water sample is treated with excess barium chloride to precipitate sulfate ions as BaSO[subscript 4](s). The unprecipitated barium ions are then titrated with EDTA.…

  15. Nitrous Oxide and Methane Fluxes Following Ammonium Sulfate and Vinasse Application on Sugar Cane Soil.

    PubMed

    Paredes, Debora da S; Alves, Bruno J R; dos Santos, Marco A; Bolonhezi, Denizart; Sant'Anna, Selenobaldo A C; Urquiaga, Segundo; Lima, Magda A; Boddey, Robert M

    2015-09-15

    This study aimed to quantify nitrous oxide (N2O) and methane (CH4) emission/sink response from sugar cane soil treated with fertilizer nitrogen (N) and vinasse applied separately or in sequence, the latter being investigated with regard to the time interval between applications for a possible effect on emissions. The study was carried out in a traditional area of unburned sugar cane in São Paulo state, Brazil. Two levels of N fertilization (0 and 100 kg N ha(-1)) with no added vinasse and combined with vinasse additions at different times (100 m(-3) ha(-1) at 3 and 15 days after N fertilization) were evaluated. Methane and N2O fluxes were monitored for 211 days. On average, the soil was a sink for CH4, which was not affected by the treatments. Emissions of N2O were induced by N fertilizer and vinasse applications. For ammonium sulfate, 0.6% of the added N was emitted as N2O, while for vinasse, this ranged from 1.0 to 2.2%. Changes in N2O fluxes were detected the day after application of vinasse on the N fertilized areas, but although the emission factor (EF) was 34% greater, the EF was not significantly different from fertilizer N alone. Nevertheless, we recommend to not apply vinasse after N fertilization to avoid boosting N2O emissions. PMID:26295867

  16. Proteomic Analysis of Potential Keratan Sulfate, Chondroitin Sulfate A, and Hyaluronic Acid Molecular Interactions

    PubMed Central

    Zhang, Yuntao; Tasheva, Elena S.; Conrad, Gary W.

    2010-01-01

    Purpose. Corneal stroma extracellular matrix (ECM) glycosaminoglycans (GAGs) include keratan sulfate (KS), chondroitin sulfate A (CSA), and hyaluronic acid (HA). Embryonic corneal keratocytes and sensory nerve fibers grow and differentiate according to chemical cues they receive from the ECM. This study asked which of the proteins that may regulate keratocytes or corneal nerve growth cone immigration interact with corneal GAGs. Methods. Biotinylated KS (bKS), CSA (bCSA), and HA (bHA) were prepared and used in microarray protocols to assess their interactions with 8268 proteins and a custom microarray of 85 extracellular epitopes of nerve growth-related proteins. Surface plasmon resonance (SPR) was performed with bKS and SLIT2, and their ka, kd, and KD were determined. Results. Highly sulfated KS interacted with 217 microarray proteins, including 75 kinases, several membrane or secreted proteins, many cytoskeletal proteins, and many nerve function proteins. CSA interacted with 24 proteins, including 10 kinases and 2 cell surface proteins. HA interacted with 6 proteins, including several ECM-related structural proteins. Of 85 ECM nerve-related epitopes, KS bound 40 proteins, including SLIT, 2 ROBOs, 9 EPHs, 8 Ephrins (EFNs), 8 semaphorins (SEMAs), and 2 nerve growth factor receptors. CSA bound nine proteins, including ROBO2, 2 EPHs, 1 EFN, two SEMAs, and netrin 4. HA bound no ECM nerve-related epitopes. SPR confirmed that KS binds SLIT2 strongly. The KS core protein mimecan/osteoglycin bound 15 proteins. Conclusions. Corneal stromal GAGs bind, and thus could alter the availability or conformation of, many proteins that may influence keratocyte and nerve growth cone behavior in the cornea. PMID:20375348

  17. Sulfation of benzyl alcohol by the human cytosolic sulfotransferases (SULTs): a systematic analysis.

    PubMed

    Zhang, Lingtian; Kurogi, Katsuhisa; Liu, Ming-Yih; Schnapp, Alaina M; Williams, Frederick E; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2016-09-01

    The aim of the present study was to identify human cytosolic sulfotransferases (SULTs) that are capable of sulfating benzyl alcohol and to examine whether benzyl alcohol sulfation may occur in cultured human cells as well as in human organ homogenates. A systematic analysis revealed that of the 13 known human SULTs, SULT1A1 SULT1A2, SULTA3, and SULT1B1 are capable of mediating the sulfation of benzyl alcohol. The kinetic parameters of SULT1A1 that showed the strongest benzyl alcohol-sulfating activity were determined. HepG2 human hepatoma cells were used to demonstrate the generation and release of sulfated benzyl alcohol under the metabolic settings. Moreover, the cytosol or S9 fractions of human liver, lung, kidney and small intestine were examined to verify the presence of benzyl alcohol sulfating activity in vivo. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26663444

  18. Sulfation of afimoxifene, endoxifen, raloxifene, and fulvestrant by the human cytosolic sulfotransferases (SULTs): A systematic analysis.

    PubMed

    Hui, Ying; Luo, Lijun; Zhang, Lingtian; Kurogi, Katsuhisa; Zhou, Chunyang; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2015-07-01

    Previous studies demonstrated that sulfate conjugation is involved in the metabolism of three commonly used breast cancer drugs, tamoxifen, raloxifene and fulvestrant. The current study was designed to systematically identify the human cytosolic sulfotransferases (SULTs) that are capable of sulfating raloxifene, fulvestrant, and two active metabolites of tamoxifen, afimoxifene and endoxifen. A systematic analysis using 13 known human SULTs revealed SULT1A1 and SULT1C4 as the major SULTs responsible for the sulfation of afimoxifene, endoxifen, raloxifene and fulvestrant. Kinetic parameters of these two human SULTs in catalyzing the sulfation of these drug compounds were determined. Sulfation of afimoxifene, endoxifen, raloxifene and fulvestrant under metabolic conditions was examined using HepG2 human hepatoma cells and MCF-7 breast cancer cells. Moreover, human intestine, kidney, liver, and lung cytosols were examined to verify the presence of afimoxifene/endoxifen/raloxifene/fulvestrant-sulfating activity. PMID:26169578

  19. Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. Merlot growing on zinc deficient soil.

    PubMed

    Song, Chang-Zheng; Liu, Mei-Ying; Meng, Jiang-Fei; Chi, Ming; Xi, Zhu-Mei; Zhang, Zhen-Wen

    2015-01-01

    The effect of foliage sprayed zinc sulfate on berry development of Vitis vinifera cv. Merlot growing on arid zone Zn-deficient soils was investigated over two consecutive seasons, 2013 and 2014. Initial zinc concentration in soil and vines, photosynthesis at three berry developmental stages, berry weight, content of total soluble solids, titratable acidity, phenolics and expression of phenolics biosynthetic pathway genes throughout the stages were measured. Foliage sprayed zinc sulfate showed promoting effects on photosynthesis and berry development of vines and the promotion mainly occurred from veraison to maturation. Zn treatments enhanced the accumulation of total soluble solids, total phenols, flavonoids, flavanols, tannins and anthocyanins in berry skin, decreasing the concentration of titratable acidity. Furthermore, foliage sprayed zinc sulfate could significantly influence the expression of phenolics biosynthetic pathway genes throughout berry development, and the results of expression analysis supported the promotion of Zn treatments on phenolics accumulation. This research is the first comprehensive and detailed study about the effect of foliage sprayed Zn fertilizer on grape berry development, phenolics accumulation and gene expression in berry skin, providing a basis for improving the quality of grape and wine in Zn-deficient areas. PMID:25648596

  20. SAMPLING AND ANALYSIS OF ATMOSPHERIC SULFATES AND RELATED SPECIES

    EPA Science Inventory

    Sampling and analytical methods to measure atmospheric concentrations of sulfur, sulfates and related species are compared for aerosols collected in New York City, Philadelphia, PA., South Charleston, WV., St. Louis, MO., Glendora, CA., and Portland, OR. For the aerosol sampling,...

  1. Toxic effects of two acid sulfate soils from the Dabaoshan Mine on Corymbia citriodora var.variegata and Daphnia carinata.

    PubMed

    Liu, Y; Lin, C; Ma, Y; Lu, W; Wu, Y; Huang, S; Zhu, L; Li, J; Chen, A

    2009-07-30

    Acidic, metal-stressed conditions encountered in the acid sulfate soils significantly inhibited the growth of Corymbia citriodora var.variegata, possibly due to the reduced rate of photosynthesis and plant root activity. However, the plant's self-protection mechanism to counteract stress-induced cellular damage by reactive oxygen species still functioned well even at a soil pH as low as 2.81. This may explain the high tolerance of this plant species to the extremely acidic environments. The observed phytotoxicity symptoms were not accompanied by elevated concentrations of heavy metals in the plant tissues, suggesting that heavy metal levels in plant tissue alone are not valid indications of phytotoxicity to the tested plant species. Leachates from the acid sulfate soils had strong toxicity to Daphnia carinata. Median lethal dilution factor (LDF50) was much higher for the leachate from the highly acidic acid sulfate soils (ASS) than that from the mildly acidic ASS. Although the concentration of various metals markedly decreased with increasing number of leaching cycle, leachate toxicity to Daphnia carinata did not decrease accordingly. This suggests that levels of heavy metals and Al in the leachate are not good indicators of the mine water biotoxicity. PMID:19157696

  2. Bacterial Growth at the High Concentrations of Magnesium Sulfate Found in Martian Soils

    PubMed Central

    Crisler, J.D.; Newville, T.M.; Chen, F.; Clark, B.C.

    2012-01-01

    Abstract The martian surface environment exhibits extremes of salinity, temperature, desiccation, and radiation that would make it difficult for terrestrial microbes to survive. Recent evidence suggests that martian soils contain high concentrations of MgSO4 minerals. Through warming of the soils, meltwater derived from subterranean ice-rich regolith may exist for an extended period of time and thus allow the propagation of terrestrial microbes and create significant bioburden at the near surface of Mars. The current report demonstrates that halotolerant bacteria from the Great Salt Plains (GSP) of Oklahoma are capable of growing at high concentrations of MgSO4 in the form of 2 M solutions of epsomite. The epsotolerance of isolates in the GSP bacterial collection was determined, with 35% growing at 2 M MgSO4. There was a complex physiological response to mixtures of MgSO4 and NaCl coupled with other environmental stressors. Growth also was measured at 1 M concentrations of other magnesium and sulfate salts. The complex responses may be partially explained by the pattern of chaotropicity observed for high-salt solutions as measured by agar gelation temperature. Select isolates could grow at the high salt concentrations and low temperatures found on Mars. Survival during repetitive freeze-thaw or drying-rewetting cycles was used as other measures of potential success on the martian surface. Our results indicate that terrestrial microbes might survive under the high-salt, low-temperature, anaerobic conditions on Mars and present significant potential for forward contamination. Stringent planetary protection requirements are needed for future life-detection missions to Mars. Key Words: Analogue—Mars—Planetary protection—Salts—Life in extreme environments. Astrobiology 12, 98–106. PMID:22248384

  3. Bacterial growth at the high concentrations of magnesium sulfate found in martian soils.

    PubMed

    Crisler, J D; Newville, T M; Chen, F; Clark, B C; Schneegurt, M A

    2012-02-01

    The martian surface environment exhibits extremes of salinity, temperature, desiccation, and radiation that would make it difficult for terrestrial microbes to survive. Recent evidence suggests that martian soils contain high concentrations of MgSO₄ minerals. Through warming of the soils, meltwater derived from subterranean ice-rich regolith may exist for an extended period of time and thus allow the propagation of terrestrial microbes and create significant bioburden at the near surface of Mars. The current report demonstrates that halotolerant bacteria from the Great Salt Plains (GSP) of Oklahoma are capable of growing at high concentrations of MgSO₄ in the form of 2 M solutions of epsomite. The epsotolerance of isolates in the GSP bacterial collection was determined, with 35% growing at 2 M MgSO₄. There was a complex physiological response to mixtures of MgSO₄ and NaCl coupled with other environmental stressors. Growth also was measured at 1 M concentrations of other magnesium and sulfate salts. The complex responses may be partially explained by the pattern of chaotropicity observed for high-salt solutions as measured by agar gelation temperature. Select isolates could grow at the high salt concentrations and low temperatures found on Mars. Survival during repetitive freeze-thaw or drying-rewetting cycles was used as other measures of potential success on the martian surface. Our results indicate that terrestrial microbes might survive under the high-salt, low-temperature, anaerobic conditions on Mars and present significant potential for forward contamination. Stringent planetary protection requirements are needed for future life-detection missions to Mars. PMID:22248384

  4. Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Radziah, Othman; Shamshuddin, Jusop; Razi, Ismail Mohd

    2015-01-01

    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase. PMID:25710843

  5. Improved detection of coastal acid sulfate soil hotspots through biomonitoring of metal(loid) accumulation in water lilies (Nymphaea capensis).

    PubMed

    Stroud, Jacqueline L; Collins, Richard N

    2014-07-15

    Anthropogenically disturbed coastal acid sulfate soils along the east coast of Australia, and worldwide, periodically result in the discharge of acid waters containing high concentrations of metals. Identifying priority sites (hotspots) within a catchment for acid sulfate soil remediation activities typically involves long-term monitoring of drainwater chemistry, including the capture of data on unpredictable rain-induced groundwater discharge events. To improve upon this monitoring approach, this study investigated using the water lily (Nymphaea capensis) as a biomonitor of drainage waters to identify hotspots in three acid sulfate soil impacted catchments (83 km(2)) in north-eastern New South Wales, Australia. In one catchment where the location of hotspots was known, water lily lamina concentrations of a suite of metal(loid)s were significantly (p<0.05) higher than plants collected from an unpolluted 'reference' drainage channel, thus validating the concept of using this species as a biomonitor. A catchment-scale water lily sampling program undertaken in catchments with unidentified hotspots revealed within catchment variation of plant metal concentrations up to 70-fold. High resolution maps produced from these results, therefore, provided strong evidence for the location of potential hotspots which were confirmed with measurements of drainwater chemistry during rain-induced groundwater discharge events. Median catchment lily accumulation was ca. 160 mg Al kg(-1) and 1,300 mg Fe kg(-1), with hotspots containing up to 6- and 10-fold higher Al and Fe concentrations. These findings suggest that biomonitoring with N. capensis can be an important tool to rapidly identify priority sites for remediation in acid sulfate soil impacted landscapes. PMID:24805963

  6. Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS) environment: implications for passive bioremediation by tidal inundation

    PubMed Central

    Ling, Yu-Chen; Bush, Richard; Grice, Kliti; Tulipani, Svenja; Berwick, Lyndon; Moreau, John W.

    2015-01-01

    Coastal acid sulfate soils (CASS) constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of “passive” CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from 10 depths ranging from 0 to 20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia). Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical, and lithological factors. The results illustrate spatial overlap, or close association, of iron-, and sulfate-reducing bacteria (SRB) in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling. PMID:26191042

  7. Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS) environment: implications for passive bioremediation by tidal inundation.

    PubMed

    Ling, Yu-Chen; Bush, Richard; Grice, Kliti; Tulipani, Svenja; Berwick, Lyndon; Moreau, John W

    2015-01-01

    Coastal acid sulfate soils (CASS) constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of "passive" CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from 10 depths ranging from 0 to 20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia). Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical, and lithological factors. The results illustrate spatial overlap, or close association, of iron-, and sulfate-reducing bacteria (SRB) in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling. PMID:26191042

  8. Sulfate attack on concrete with mineral admixtures

    SciTech Connect

    Irassar, E.F.; Di Maio, A.; Batic, O.R.

    1996-01-01

    The sulfate resistance of concretes containing fly ash, natural pozzolan and slag is investigated in a field test in which concrete specimens were half-buried in sulfate soil for five years. Mineral admixtures were used as a partial replacement for ordinary portland cement (C{sub 3}A = 8.5%), and the progress of sulfate attack was evaluated by several methods (visual rating, loss in mass, dynamic modulus, strength, X-ray analysis). Results of this study show that mineral admixtures improved the sulfate resistance when the concrete is buried in the soil. However, concretes with high content of mineral admixtures exhibit a greater surface scaling over soil level due to the sulfate salt crystallization. In this zone, capillary suction of concrete is the main mechanism of water and salt transportation. Concrete with 20% fly ash provides an integral solution for half-buried structures.

  9. Harmful algal bloom removal and eutrophic water remediation by commercial nontoxic polyamine-co-polymeric ferric sulfate-modified soils.

    PubMed

    Dai, Guofei; Zhong, Jiayou; Song, Lirong; Guo, Chunjing; Gan, Nanqin; Wu, Zhenbin

    2015-07-01

    Harmful algal bloom has posed great threat to drinking water safety worldwide. In this study, soils were combined with commercial nontoxic polyamine poly(epichlorohydrin-dimethylamine) (PN) and polymeric ferric sulfate (PFS) to obtain PN-PFS soils for Microcystis removal and eutrophic water remediation under static laboratory conditions. High pH and temperature in water could enhance the function of PN-PFS soil. Algal removal efficiency increased as soil particle size decreased or modified soil dose increased. Other pollutants or chemicals (such as C, P, and organic matter) in eutrophic water could participate and promote algal removal by PN-PFS soil; these pollutants were also flocculated. During PN-PFS soil application in blooming field samples, the removal efficiency of blooming Microcystis cells exceeded 99 %, the cyanotoxin microcystins reduced by 57 %. Water parameters (as TP, TN, SS, and SPC) decreased by about 90 %. CODMn, PO4-P, and NH4-N also sharply decreased by >45 %. DO and ORP in water improved. Netting and bridging effects through electrostatic attraction and complexation reaction could be the two key mechanisms of Microcystis flocculation and pollutant purification. Considering the low cost of PN-PFS soil and its nontoxic effect on the environment, we proposed that this soil combination could be applied to remove cyanobacterial bloom and remediate eutrophic water in fields. PMID:25752635

  10. Molecular cloning and functional analysis of SUT-1, a sulfate transporter from human high endothelial venules

    PubMed Central

    Girard, Jean-Philippe; Baekkevold, Espen S.; Feliu, Jacques; Brandtzaeg, Per; Amalric, François

    1999-01-01

    High endothelial venules (HEV) are specialized postcapillary venules found in lymphoid organs and chronically inflamed tissues that support high levels of lymphocyte extravasation from the blood. One of the major characteristics of HEV endothelial cells (HEVEC) is their capacity to incorporate large amounts of sulfate into sialomucin-type counter-receptors for the lymphocyte homing receptor L-selectin. Here, we show that HEVEC express two functional classes of sulfate transporters defined by their differential sensitivity to the anion-exchanger inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS), and we report the molecular characterization of a DIDS-resistant sulfate transporter from human HEVEC, designated SUT-1. SUT-1 belongs to the family of Na+-coupled anion transporters and exhibits 40–50% amino acid identity with the rat renal Na+/sulfate cotransporter, NaSi-1, as well as with the human and rat Na+/dicarboxylate cotransporters, NaDC-1/SDCT1 and NaDC-3/SDCT2. Functional expression studies in cRNA-injected Xenopus laevis oocytes showed that SUT-1 mediates high levels of Na+-dependent sulfate transport, which is resistant to DIDS inhibition. The SUT-1 gene mapped to human chromosome 7q33. Northern blotting analysis revealed that SUT-1 exhibits a highly restricted tissue distribution, with abundant expression in placenta. Reverse transcription–PCR analysis indicated that SUT-1 and the diastrophic dysplasia sulfate transporter (DTD), one of the two known human DIDS-sensitive sulfate transporters, are coexpressed in HEVEC. SUT-1 and DTD could correspond, respectively, to the DIDS-resistant and DIDS-sensitive components of sulfate uptake in HEVEC. Together, these results demonstrate that SUT-1 is a distinct human Na+-coupled sulfate transporter, likely to play a major role in sulfate incorporation in HEV. PMID:10535998

  11. Solid-solution partitioning and thionation of diphenylarsinic acid in a flooded soil under the impact of sulfate and iron reduction.

    PubMed

    Zhu, Meng; Tu, Chen; Hu, Xuefeng; Zhang, Haibo; Zhang, Lijuan; Wei, Jing; Li, Yuan; Luo, Yongming; Christie, Peter

    2016-11-01

    Diphenylarsinic acid (DPAA) is a major organic arsenic (As) compound derived from abandoned chemical weapons. The solid-solution partitioning and transformation of DPAA in flooded soils are poorly understood but are of great concern. The identification of the mechanisms responsible for the mobilization and transformation of DPAA may help to develop effective remediation strategies. Here, soil and Fe mineral incubation experiments were carried out to elucidate the partitioning and transformation of DPAA in anoxic (without addition of sulfate or sodium lactate) and sulfide (with the addition of sulfate and sodium lactate) soil and to examine the impact of sulfate and Fe(III) reduction on these processes. Results show that DPAA was more effectively mobilized and thionated in sulfide soil than in anoxic soil. At the initial incubation stages (0-4weeks), 6.7-74.5% of the total DPAA in sulfide soil was mobilized likely by sorption competition with sodium lactate. At later incubation stage (4-8weeks), DPAA was almost completely released into the solution likely due to the near-complete Fe(III) reduction. Scanning transmission X-ray microscopy (STXM) results provide further direct evidence of elevated DPAA release coupled with Fe(III) reduction in sulfide environments. The total DPAA fraction decreased significantly to 24.5% after two weeks and reached 3.4% after eight weeks in sulfide soil, whereas no obvious elimination of DPAA occurred in anoxic soil at the initial two weeks and the total DPAA fraction decreased to 10.9% after eight weeks. This can be explained in part by the enhanced mobilization of DPAA and sulfate reduction in sulfide soil compared with anoxic soil. These results suggest that under flooded soil conditions, Fe(III) and sulfate reduction significantly promote DPAA mobilization and thionation, respectively, and we suggest that it is essential to consider both sulfate and Fe(III) reduction to further our understanding of the environmental fate of DPAA

  12. CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING

    SciTech Connect

    Fox, K.; Marra, J.

    2014-08-14

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making it difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations

  13. Release of trace metals, sulfate and complexed cyanide from soils contaminated with gas-purifier wastes: a microcosm study.

    PubMed

    Rennert, T; Mansfeldt, T

    2006-01-01

    Deposited gas-purifier wastes are commonly contaminated with trace metals, sulfate and cyanide (CN) compounds. We investigated their release from three soils contaminated with gas-purifier wastes into solution in microcosm experiments under varying redox conditions (E(H) 170-620 mV). The soils differed in pH (2.2; 4.9; 7.4) and featured low amounts of trace metals, but large amounts of total S and total CN. The pH governed trace metal release in the case of the acidic soil and CN release in the case of the slightly alkaline soil. The redox potential controlled trace metal and CN release in the case of the moderately acidic soil. Sources of dissolved SO(4)(2-) were dissolution of gypsum, desorption from Fe oxides and probably oxidation of elemental S. The geochemical behaviors of trace metals (soluble under acidic and reducing conditions) and CN (soluble under alkaline and oxidizing conditions) were diametrically opposed. PMID:16019115

  14. Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers

    SciTech Connect

    Miletto, M.; Williams, K.H.; N'Guessan, A.L.; Lovley, D.R.

    2011-04-01

    Elucidating the in situ metabolic activity of phylogenetically diverse populations of sulfate-reducing microorganisms that populate anoxic sedimentary environments is key to understanding subsurface ecology. Previous pure culture studies have demonstrated that transcript abundance of dissimilatory (bi)sulfite reductase genes is correlated with the sulfate reducing activity of individual cells. To evaluate whether expression of these genes was diagnostic for subsurface communities, dissimilatory (bi)sulfite reductase gene transcript abundance in phylogenetically distinct sulfate-reducing populations was quantified during a field experiment in which acetate was added to uranium-contaminated groundwater. Analysis of dsrAB sequences prior to the addition of acetate indicated that Desulfobacteraceae, Desulfobulbaceae, and Syntrophaceae-related sulfate reducers were the most abundant. Quantifying dsrB transcripts of the individual populations suggested that Desulfobacteraceae initially had higher dsrB transcripts per cell than Desulfobulbaceae or Syntrophaceae populations, and that the activity of Desulfobacteraceae increased further when the metabolism of dissimilatory metal reducers competing for the added acetate declined. In contrast, dsrB transcript abundance in Desulfobulbaceae and Syntrophaceae remained relatively constant, suggesting a lack of stimulation by added acetate. The indication of higher sulfate-reducing activity in the Desulfobacteraceae was consistent with the finding that Desulfobacteraceae became the predominant component of the sulfate-reducing community. Discontinuing acetate additions resulted in a decline in dsrB transcript abundance in the Desulfobacteraceae. These results suggest that monitoring transcripts of dissimilatory (bi)sulfite reductase genes in distinct populations of sulfate reducers can provide insight into the relative rates of metabolism of different components of the sulfate-reducing community and their ability to respond to

  15. Molecular Analysis of the Metabolic Rates of Discrete Subsurface Populations of Sulfate Reducers▿

    PubMed Central

    Miletto, M.; Williams, K. H.; N'Guessan, A. L.; Lovley, D. R.

    2011-01-01

    Elucidating the in situ metabolic activity of phylogenetically diverse populations of sulfate-reducing microorganisms that populate anoxic sedimentary environments is key to understanding subsurface ecology. Previous pure culture studies have demonstrated that the transcript abundance of dissimilatory (bi)sulfite reductase genes is correlated with the sulfate-reducing activity of individual cells. To evaluate whether expression of these genes was diagnostic for subsurface communities, dissimilatory (bi)sulfite reductase gene transcript abundance in phylogenetically distinct sulfate-reducing populations was quantified during a field experiment in which acetate was added to uranium-contaminated groundwater. Analysis of dsrAB sequences prior to the addition of acetate indicated that Desulfobacteraceae, Desulfobulbaceae, and Syntrophaceae-related sulfate reducers were the most abundant. Quantifying dsrB transcripts of the individual populations suggested that Desulfobacteraceae initially had higher dsrB transcripts per cell than Desulfobulbaceae or Syntrophaceae populations and that the activity of Desulfobacteraceae increased further when the metabolism of dissimilatory metal reducers competing for the added acetate declined. In contrast, dsrB transcript abundance in Desulfobulbaceae and Syntrophaceae remained relatively constant, suggesting a lack of stimulation by added acetate. The indication of higher sulfate-reducing activity in the Desulfobacteraceae was consistent with the finding that Desulfobacteraceae became the predominant component of the sulfate-reducing community. Discontinuing acetate additions resulted in a decline in dsrB transcript abundance in the Desulfobacteraceae. These results suggest that monitoring transcripts of dissimilatory (bi)sulfite reductase genes in distinct populations of sulfate reducers can provide insight into the relative rates of metabolism of different components of the sulfate-reducing community and their ability to respond to

  16. In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010

    NASA Astrophysics Data System (ADS)

    Harris, E.; Sinha, B.; van Pinxteren, D.; Schneider, J.; Poulain, L.; Collett, J.; D'Anna, B.; Fahlbusch, B.; Foley, S.; Fomba, K. W.; George, C.; Gnauk, T.; Henning, S.; Lee, T.; Mertes, S.; Roth, A.; Stratmann, F.; Borrmann, S.; Hoppe, P.; Herrmann, H.

    2014-01-01

    In-cloud production of sulfate modifies the aerosol size distribution, with important implications for the magnitude of indirect and direct aerosol cooling and the impact of SO2 emissions on the environment. We investigate which sulfate sources dominate the in-cloud addition of sulfate to different particle classes as an air parcel passes through an orographic cloud. Sulfate aerosol, SO2 and H2SO4 were collected upwind, in-cloud and downwind of an orographic cloud for three cloud measurement events during the Hill Cap Cloud Thuringia campaign in Autumn, 2010 (HCCT-2010). Combined SEM and NanoSIMS analysis of single particles allowed the δ34S of particulate sulfate to be resolved for particle size and type. The most important in-cloud SO2 oxidation pathway at HCCT-2010 was aqueous oxidation catalysed by transition metal ions (TMI catalysis), which was shown with single particle isotope analyses to occur primarily in cloud droplets nucleated on coarse mineral dust. In contrast, direct uptake of H2SO4(g) and ultrafine particulate were the most important sources modifying fine mineral dust, increasing its hygroscopicity and facilitating activation. Sulfate addition to "mixed" particles (secondary organic and inorganic aerosol) and coated soot was dominated by in-cloud aqueous SO2 oxidation by H2O2 and direct uptake of H2SO4(g) and ultrafine particle sulfate, depending on particle size mode and time of day. These results provide new insight into in-cloud sulfate production mechanisms, and show the importance of single particle measurements and models to accurately assess the environmental effects of cloud processing.

  17. In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010

    NASA Astrophysics Data System (ADS)

    Harris, E.; Sinha, B.; van Pinxteren, D.; Schneider, J.; Poulain, L.; Collett, J.; D'Anna, B.; Fahlbusch, B.; Foley, S.; Fomba, K. W.; George, C.; Gnauk, T.; Henning, S.; Lee, T.; Mertes, S.; Roth, A.; Stratmann, F.; Borrmann, S.; Hoppe, P.; Herrmann, H.

    2014-04-01

    In-cloud production of sulfate modifies aerosol size distribution, with important implications for the magnitude of indirect and direct aerosol cooling and the impact of SO2 emissions on the environment. We investigate which sulfate sources dominate the in-cloud addition of sulfate to different particle classes as an air parcel passes through an orographic cloud. Sulfate aerosol, SO2 and H2SO4 were collected upwind, in-cloud and downwind of an orographic cloud for three cloud measurement events during the Hill Cap Cloud Thuringia campaign in autumn 2010 (HCCT-2010). Combined SEM and NanoSIMS analysis of single particles allowed the δ34S of particulate sulfate to be resolved for particle size and type. The most important in-cloud SO2 oxidation pathway at HCCT-2010 was aqueous oxidation catalysed by transition metal ions (TMI catalysis), which was shown with single particle isotope analyses to occur primarily in cloud droplets nucleated on coarse mineral dust. In contrast, direct uptake of H2SO4 (g) and ultrafine particulate were the most important sources modifying fine mineral dust, increasing its hygroscopicity and facilitating activation. Sulfate addition to "mixed" particles (secondary organic and inorganic aerosol) and coated soot was dominated by in-cloud aqueous SO2 oxidation by H2O2 and direct uptake of H2SO4 (g) and ultrafine particle sulfate, depending on particle size mode and time of day. These results provide new insight into in-cloud sulfate production mechanisms, and show the importance of single particle measurements and models to accurately assess the environmental effects of cloud processing.

  18. The fate of sulfate in acidified pig slurry during storage and following application to cropped soil.

    PubMed

    Eriksen, Jørgen; Sørensen, Peter; Elsgaard, Lars

    2008-01-01

    Acidification of slurry with sulfuric acid is a recent agricultural practice that may serve a double purpose: reducing ammonia emission and ensuring crop sulfur sufficiency. We investigated S transformations in untreated and acidified pig slurry stored for up to 11 mo at 2, 10, or 20 degrees C. Furthermore, the fertilizer efficiency of sulfuric acid in acidified slurry was investigated in a pot experiment with spring barley. The sulfate content from acidification with sulfuric acid was relatively stable and even after 11 mo of storage the majority was in the plant-available sulfate form. Microbial sulfate reduction during storage of acidified pig slurry was limited, presumably due to initial pH effects and a limitation in the availability of easily degradable organic matter. Sulfide accumulation was observed during storage but the sulfide levels in acidified slurry did not exceed those of the untreated slurry for several months after addition. The S fertilizer value of the acidified slurry was considerable as a result of the stable sulfate pool during storage. The high content of inorganic S in the acidified slurry may potentially lead to development of odorous volatile sulfur-containing compounds and investigations are needed into the relationship between odor development and the C and S composition of the slurry. PMID:18178902

  19. Effects of multi-walled carbon nanotubes on mineralization and mobility of nonylphenol and sodium dodecyl sulfate in agricultural soils

    NASA Astrophysics Data System (ADS)

    Lillotte, Julia; Marschner, Bernd; Stumpe, Britta

    2014-05-01

    Nanotechnology is one of the major scientific research fields in this decade. One of the most wide-spread nanomaterials are carbon based nanoparticles (CNPs) which are increasingly be used in industry. Several studies shows that CNPs are interacting with other chemical compounds and organic pollutants in the environment. It is assumed that the interactions between CNPs and organic pollutants are affected by solution and aggregate behavior. Based on the knowledge of the behavior of CNPs and organic pollutants in aquatic systems the interactions of CNPs and organic pollutants in agricultural soils have to be studied. As organic pollutants two environmental substances, nonylphenol (NP) and sodium dodecyl sulfate (SDS) were selected as model substances. They occur frequently in aqueous systems and also show different solubility behavior. As CNP representatives, two different multi-walled carbon nanotubes (MWNT) were selected. They differed either in length or outer diameter. Conclusions therefrom are to be closed the influence of length and diameter of the sorption capacity of different organic pollutants. In addition, two agricultural soils (sandy and silty soil) and one forest soil (sandy soil) were chosen. Mineralization and sorption experiments were conducted to provide information about the degradation of organic pollutants in presence of multi-walled carbon nanotubes in soils. To analyze the CNPs mineralization potential, peroxidase activity was measured. Further extraction experiments were conducted to detect the extractable part of organic pollutants. The results show that the surface area of the MWNT has a significant impact on the sorption behav-ior of NP and SDS in soils. The sorption of NP and SDS is much higher than without MWNT. However, the properties of the organic pollutants (different water solubility and hydrophobicity) are equally important and should be noted. The degradation of both pollutants is influenced by MWNT. Due to the strong sorption of

  20. Bioinformatic Analysis of the Human Recombinant Iduronate 2-Sulfate Sulfatase

    PubMed Central

    Morales-Álvarez, Edwin D.; Rivera-Hoyos, Claudia M.; Landázuri, Patricia; Poutou-Piñales, Raúl A.; Pedroza-Rodríguez, Aura M.

    2016-01-01

    Mucopolysaccharidosis type II is a human recessive disease linked to the X chromosome caused by deficiency of lysosomal enzyme Iduronate 2-Sulfate Sulfatase (IDS), which leads to accumulation of glycosaminoglycans in tissues and organs. The human enzyme has been expressed in Escherichia coli and Pichia pastoris in attempt to develop more successful expression systems that allow the production of recombinant IDS for Enzyme Replacement Therapy (ERT). However, the preservation of native signal peptide in the sequence has caused conflicts in processing and recognition in the past, which led to problems in expression and enzyme activity. With the main object being the improvement of the expression system, we eliminate the native signal peptide of human recombinant IDS. The resulting sequence showed two modified codons, thus, our study aimed to analyze computationally the nucleotide sequence of the IDSnh without signal peptide in order to determine the 3D structure and other biochemical properties to compare them with the native human IDS (IDSnh). Results showed that there are no significant differences between both molecules in spite of the two-codon modifications detected in the recombinant DNA sequence. PMID:27335624

  1. Following the enzymatic digestion of chondroitin sulfate by a simple GPC analysis.

    PubMed

    Silva, Carla; Novoa-Carballal, Ramon; Reis, Rui L; Pashkuleva, Iva

    2015-07-23

    We describe the use of gel permeation chromatography (GPC) setup with four size exclusion columns for analysis of enzymatically digested glycosaminoglycans (GAGs). This setup provides information about the molecular weight (Mw) and concentration of all species (low and high Mw) present in the digests in a single measurement. The data about the fraction with high Mw (often omitted in the analysis of GAG digests) provide direct evidence about the mechanisms of action of the enzymes. We proved the feasibility of this methodology by applying it to chondroitin sulfate (CS) substrates with different molecular weight and sulfation pattern and using different enzymes (hyaluronidase and chondroitinase). NMR analysis of the obtained digests fractionated by ultrafiltration confirmed the results obtained by GPC setup and reveal further details about the degradation mechanisms: (i) both enzymes preferentially attack 4-sulfated chondroitin and (ii) additionally to the well documented endolytic activity of hyaluronidase we also observed a low lyase activity for this enzyme reflected in the detected minor exolytic breakage. Finally, we demonstrate that CS with medium molecular weight (12-60kDa) which is sulfated mainly at 6-position can be obtained in good yields by enzymatic digestion and following ultrafiltration. PMID:26231907

  2. Algal degradation of a known endocrine disrupting insecticide, alpha-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil.

    PubMed

    Sethunathan, N; Megharaj, M; Chen, Z L; Williams, B D; Lewis, Gareth; Naidu, R

    2004-05-19

    The role of algae in the persistence, transformation, and bioremediation of two endocrine disrupting chemicals, alpha-endosulfan (a cyclodiene insecticide) and its oxidation product endosulfan sulfate, in soil (incubated under light or in darkness) and a liquid medium was examined. Incubation of soil under light dramatically decreased the persistence of alpha-endosulfan and enhanced its transformation to endosulfan sulfate, over that of dark-incubated soil samples, under both nonflooded and flooded conditions. This enhanced degradation of soil-applied alpha-endosulfan was associated with profuse growth of indigenous phototrophic organisms such as algae in soil incubated under light. Inoculation of soil with green algae, Chlorococcum sp. or Scenedesmus sp., further enhanced the degradation of alpha-endosulfan. The role of algae in alpha-endosulfan degradation was convincingly demonstrated when these algae degraded alpha-endosulfan to endosulfan sulfate, the major metabolite, and endosulfan ether, a minor metabolite, in a defined liquid medium. When a high density of the algal inoculum was used, both metabolites appeared to undergo further degradation as evident from their accumulation only in small amounts and the appearance of an endosulfan-derived aldehyde. Interestingly, beta-endosulfan was detected during degradation of alpha-endosulfan by high density algal cultures. These algae were also capable of degrading endosulfan sulfate but to a lesser extent than alpha-endosulfan. Evidence suggested that both alpha-endosulfan and endosulfan sulfate were immediately sorbed by the algae from the medium, which then effected their degradation. Biosorption, coupled with their biotransformation ability, especially at a high inoculum density, makes algae effective candidates for remediation of alpha-endosulfan-polluted environments. PMID:15137849

  3. Facile analysis of contents and compositions of the chondroitin sulfate/dermatan sulfate hybrid chain in shark and ray tissues.

    PubMed

    Takeda, Naoko; Horai, Sawako; Tamura, Jun-ichi

    2016-04-01

    The chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chain was extracted from specific tissues of several kinds of sharks and rays. The contents and sulfation patterns of the CS/DS hybrid chain were precisely analyzed by digestion with chondroitinases ABC and AC. All samples predominantly contained the A- and C-units. Furthermore, all samples characteristically contained the D-unit. Species-specific differences were observed in the contents of the CS/DS hybrid chain, which were the highest in Mako and Blue sharks and Sharpspine skates, but were lower in Hammerhead sharks. Marked differences were observed in the ratio of the C-unit/A-unit between sharks and rays. The contents of the CS/DS hybrid chain and the ratio of the C-unit/A-unit may be related to an oxidative stress-decreasing ability. PMID:26986023

  4. REPRESENTATIVE SAMPLING AND ANALYSIS OF HETEROGENEOUS SOILS

    EPA Science Inventory

    Standard sampling and analysis methods for hazardous substances in contaminated soils currently are available and routinely employed. Standard methods inherently assume a homogeneous soil matrix and contaminant distribution; therefore only small sample quantities typically are p...

  5. Germination and Seedling Growth of Perennial Ryegrass in Acid Sulfate Soil Treated by Pyrite Nano-Encapsulation

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, J.; Yi, J.; Kim, T.

    2007-05-01

    The trial pot experiment was conducted to validate the effect of encapsulation in reduction of acid rock drainage. Six different treatments were performed: A = control, four times spraying of distilled water; B = four times of 0.01 M H2O2; C = once-encapsulated and three times spraying of distilled water; D = twice-encapsulated and twice spraying of distilled water; E = three times-encapsulated and once spraying of distilled water and F = four times-encapsulated for the acid sulfate soil with pyrite bearing andesite powder and sand. After the encapsulation treatment, the perennial ryegrass (Loium perenne) was sowed to evaluate germination rate and growth for three months. The leachate was examined for the chemical properties. The leachate from the A pot (control) is characterized as acidic (pH below 3) and high concentrations of SO4-2: 12,022 mg/L, Al: 85.8 mg/L and Mn: 34.1 mg/L which can be toxic effect to the plant growth. However, the leachate from encapsulated pots showed near neutral (pH 6 to 7) and low concentrations of SO4-2 (below 3,000 mg/L), Al (below 45mg/L) and Mn (24 gm/L). The frequency of encapsulation treatment is related to reduction of acidic drainage. It was hard to identify the significant difference of the seed germination rate of ryegrass between the treatments, although root and shoot growth showed three times difference between the control (1.90g/pot) and four times encapsulated treatment (6.33g/pot) after 2 month growth. It is suggested that encapsulation of pyrite in acid sulfate soil causes the reduction of acidic drainage resulting in the higher growth of herbaceous plants.

  6. Wavelet-based image analysis system for soil texture analysis

    NASA Astrophysics Data System (ADS)

    Sun, Yun; Long, Zhiling; Jang, Ping-Rey; Plodinec, M. John

    2003-05-01

    Soil texture is defined as the relative proportion of clay, silt and sand found in a given soil sample. It is an important physical property of soil that affects such phenomena as plant growth and agricultural fertility. Traditional methods used to determine soil texture are either time consuming (hydrometer), or subjective and experience-demanding (field tactile evaluation). Considering that textural patterns observed at soil surfaces are uniquely associated with soil textures, we propose an innovative approach to soil texture analysis, in which wavelet frames-based features representing texture contents of soil images are extracted and categorized by applying a maximum likelihood criterion. The soil texture analysis system has been tested successfully with an accuracy of 91% in classifying soil samples into one of three general categories of soil textures. In comparison with the common methods, this wavelet-based image analysis approach is convenient, efficient, fast, and objective.

  7. Soil Characterization Using CCSEM Analysis

    NASA Astrophysics Data System (ADS)

    Rogers, R.; Hunt, A.

    2014-12-01

    An investigation is underway to determine elemental compounds of African Soils. Soil samples were taken from four territories in the Sahel and Saharan region of Africa and analyzed using Computer Controlled Scanning Electron Microscopy (CCSEM). Optimized secondary electron detectors (SED) and back-scattered electron detectors (BSED) with adjustable quadrants was used with a light element Peltier-cooled energy dispersive x-ray spectrometer. A variable pressure system was used for the analysis of insulating materials, which eliminated the need for special specimen coating to dissipate charge and remove artifacts. Data from these samples are being used to address two primary questions: (1) Can CCSEM technology accurately describe elemental compounds derived from soil samples, and (2) is there a correlation between particle chemistry and size? The creation of a 29-point elemental classification system was used to separate and analyze each of the data points. Findings show large amounts of Fe, Si, and Al-rich minerals in all samples, but vary in percentages by amounts large enough to distinguish between sample regions. Other elemental constituents within the samples include varying amounts of Na, S, Ti, Ca, and K. An initial run of samples show a similarity in chemical composition, leading to the hypothesis that Aeolian processes are contributing to the mineral content of surface dusts, but are still distinguishable from region to region. Further research on the effects of these wind driven dusts is needed to assess the potential problematic deposited in the Atlantic Ocean, which can cause overpressures within the sediments on slopes.

  8. Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties.

    PubMed

    Yuan, Chaolei; Fitzpatrick, Rob; Mosley, Luke M; Marschner, Petra

    2015-11-15

    Sulfuric material is formed upon oxidation of sulfidic material; it is extremely acidic, and therefore, an environmental hazard. One option for increasing pH of sulfuric material may be stimulation of bacterial sulfate reduction. We investigated the effects of organic carbon addition and pH increase on sulfate reduction after re-flooding in ten sulfuric materials with four treatments: control, pH increase to 5.5 (+pH), organic carbon addition with 2% w/w finely ground wheat straw (+C), and organic carbon addition and pH increase (+C+pH). After 36 weeks, in five of the ten soils, only treatment +C+pH significantly increased the concentration of reduced inorganic sulfur (RIS) compared to the control and increased the soil pore water pH compared to treatment+pH. In four other soils, pH increase or/and organic carbon addition had no significant effect on RIS concentration compared to the control. The RIS concentration in treatment +C+pH as percentage of the control was negatively correlated with soil clay content and initial nitrate concentration. The results suggest that organic carbon addition and pH increase can stimulate sulfate reduction after re-flooding, but the effectiveness of this treatment depends on soil properties. PMID:26024614

  9. FOREST SOIL RESPONSE TO ACID AND SALT ADDITIONS OF SULFATE: SULFUR CONSTITUENTS AND NET RETENTION

    EPA Science Inventory

    We used soil columns constructed from a Maine Spodosol and Illinois Alfisol to investigate the retention of SO4 2- added as Na2SO4 or H2SO4. oth organic and inorganic S pools were examined to determine how retention of added SO4 2- was influenced by both mineralization/immobiliza...

  10. A Scanning Auger Microprobe analysis of corrosion products associated with sulfate reducing bacteria

    SciTech Connect

    Sadowski, R.A.; Chen, G.; Clayton, C.R.; Kearns, J.R.; Gillow, J.B.; Francis, A.J.

    1995-03-01

    A Scanning Auger Microprobe analysis was performed on the corrosion products of an austenitic AISI type 304 SS after a potentiostatic polarization of one volt for ten minutes in a modified Postgate`s C media containing sulfate reducing bacteria. The corrosion products were characterized and mapped in local regions where pitting was observed. A critical evaluation of the applicability of this technique for the examination of microbially influenced corrosion (MIC) is presented.

  11. Amount of organic matter required to induce sulfate reduction in sulfuric material after re-flooding is affected by soil nitrate concentration.

    PubMed

    Yuan, Chaolei; Mosley, Luke M; Fitzpatrick, Rob; Marschner, Petra

    2015-03-15

    Acid sulfate soils (ASS) with sulfuric material can be remediated through microbial sulfate reduction stimulated by adding organic matter (OM) and increasing the soil pH to >4.5, but the effectiveness of this treatment is influenced by soil properties. Two experiments were conducted using ASS with sulfuric material. In the first experiment with four ASS, OM (finely ground mature wheat straw) was added at 2-6% (w/w) and the pH adjusted to 5.5. After 36 weeks under flooded conditions, the concentration of reduced inorganic sulfur (RIS) and pore water pH were greater in all treatments with added OM than in the control without OM addition. The RIS concentration increased with OM addition rate. The increase in RIS concentration between 4% and 6% OM was significant but smaller than that between 2% and 4%, suggesting other factors limited sulfate reduction. In the second experiment, the effect of nitrate addition on sulfate reduction at different OM addition rates was investigated in one ASS. Organic matter was added at 2 and 4% and nitrate at 0, 100, and 200 mg nitrate-N kg(-1). After 2 weeks under flooded conditions, soil pH and the concentration of FeS measured as acid volatile sulfur (AVS) were lower with nitrate added at both OM addition rates. At a given nitrate addition rate, pH and AVS concentration were higher at 4% OM than at 2%. It can be concluded that sulfate reduction in ASS at pH 5.5 can be limited by low OM availability and high nitrate concentrations. Further, the inhibitory effect of nitrate can be overcome by high OM addition rates. PMID:25600239

  12. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters.

    PubMed

    Jones, Adele M; Xue, Youjia; Kinsela, Andrew S; Wilcken, Klaus M; Collins, Richard N

    2016-03-15

    Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values<3.9, 78 and 58% of Al and total Fe, respectively, were present as neutral or negatively-charged species. Complementary isotope dilution experiments with (55)Fe and (26)Al demonstrated that only soluble (i.e. no colloidal) species were present. Trivalent rare earth elements (REEs) were also mainly present (>70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO4)2(-) and/or Me-NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported. PMID:26780135

  13. Acid sulfate alteration of fluorapatite, basaltic glass and olivine by hydrothermal vapors and fluids: Implications for fumarolic activity and secondary phosphate phases in sulfate-rich Paso Robles soil at Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Hausrath, E. M.; Golden, D. C.; Morris, R. V.; Agresti, D. G.; Ming, D. W.

    2013-01-01

    Phosphate-rich rocks and a nearby phosphate-rich soil, Paso Robles, were analyzed in Gusev Crater, Mars, by the Mars Exploration Rover Spirit and interpreted to be highly altered, possibly by hydrothermal or fumarolic alteration of primary, phosphate-rich material. To test mineral phases resulting from such alteration, we performed hydrothermal acid-vapor and acid-fluid experiments on olivine (Ol), fluorapatite (Ap), and basaltic glass (Gl) as single phases and a mixture of phases. Minerals formed include Ca-, Al-, Fe- and Mg-sulfates with different hydration states (anhydrite, bassanite, gypsum; alunogen; hexahydrite, and pentahydrite). Phosphate-bearing minerals formed included monocalcium phosphate monohydrate (MCP) (acid-vapor and acid-fluid alteration of fluorapatite only) and ferrian giniite (acid-fluid alteration of the Ol + Gl + Ap mixture). MCP is likely present in Paso Robles if primary Ca-phosphate minerals reacted with sulfuric acid with little transport of phosphate. Under fluid:rock ratios allowing transport of phosphate, a ferric phosphate phase such as ferrian giniite might form instead. Mössbauer measurements of ferrian giniite-bearing alteration products and synthetic ferrian giniite are consistent with Spirit's Mössbauer measurements of the ferric-bearing phase in Paso Robes soil, but are also consistent with ferric sulfate phases in the low-P soil Arad_Samra. Therefore, Mössbauer data alone do not constrain the fluid:rock ratio. However, the excess iron (hematite) in Paso Robles soil, which implies aqueous transport, combined with our laboratory experiments, suggest acid-sulfate alteration in a hydrothermal (fumarolic) environment at fluid:rock ratios sufficient to allow dissolution, transport, and precipitation of secondary chemical components including a ferric phosphate such as ferrian giniite.

  14. Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction.

    PubMed

    Burton, Edward D; Johnston, Scott G; Kocar, Benjamin D

    2014-12-01

    In floodplain soils, As may be released during flooding-induced soil anoxia, with the degree of mobilization being affected by microbial redox processes such as the reduction of As(V), Fe(III), and SO4(2-). Microbial SO4(2-) reduction may affect both Fe and As cycling, but the processes involved and their ultimate consequences on As mobility are not well understood. Here, we examine the effect of microbial SO4(2) reduction on solution dynamics and solid-phase speciation of As during flooding of an As-contaminated soil. In the absence of significant levels of microbial SO4(2-) reduction, flooding caused increased Fe(II) and As(III) concentrations over a 10 week period, which is consistent with microbial Fe(III)- and As(V)-reduction. Microbial SO4(2-) reduction leads to lower concentrations of porewater Fe(II) as a result of FeS formation. Scanning electron microscopy with energy dispersive X-ray fluorescence spectroscopy revealed that the newly formed FeS sequestered substantial amounts of As. Bulk and microfocused As K-edge X-ray absorption near-edge structure spectroscopy confirmed that As(V) was reduced to As(III) and showed that in the presence of FeS, solid-phase As was retained partly via the formation of an As2S3-like species. High resolution transmission electron microscopy suggested that this was due to As retention as an As2S3-like complex associated with mackinawite (tetragonal FeS) rather than as a discrete As2S3 phase. This study shows that mackinawite formation in contaminated floodplain soil can help mitigate the extent of arsenic mobilization during prolonged flooding. PMID:25346449

  15. Deciphering the Role of Tyrosine Sulfation in Xanthomonas oryzae pv. oryzae Using Shotgun Proteomic Analysis

    PubMed Central

    Park, Hye-Jee; Park, Chang-Jin; Bae, Nahee; Han, Sang-Wook

    2016-01-01

    A bacterial tyrosine sulfotransferase, RaxST, is required for activation of rice XA21-mediated immunity, and it catalyzes sulfation of tyrosine residues of Omp1X and RaxX in Xanthomonas oryzae pv. oryzae, a causal agent of bacterial blight in rice. Although RaxST is biochemically well-characterized, biological functions of tyrosine sulfation have not been fully elucidated. We compared protein expression patterns between the wildtype and a raxST knockout mutant using shotgun proteomic analysis. Forty nine proteins displayed a more than 1.5-fold difference in their expression between the wildtype and the mutant strains. Clusters of orthologous groups analysis revealed that proteins involved in cell motility were most abundant, and phenotypic observation also showed that the twitching motility of the mutant was dramatically changed. These results indicate that tyrosine sulfation by RaxST is essential for Xoo movement, and they provide new insights into the biological roles of RaxST in cellular processes. PMID:27298602

  16. Detection of Connexins in Liver Cells Using Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis and Immunoblot Analysis.

    PubMed

    Willebrords, Joost; Maes, Michaël; Yanguas, Sara Crespo; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Since connexin expression is partly regulated at the protein level, immunoblot analysis represents a frequently addressed technique in the connexin research field. The present chapter describes the setup of an immunoblot procedure, including protein extraction and quantification from biological samples, gel electrophoresis, protein transfer, and immunoblotting, which is optimized for analysis of connexins in liver tissue. In essence, proteins are separated on a polyacrylamide gel using sodium dodecyl sulfate followed by transfer of proteins on a nitrocellulose membrane. The latter allows specific detection of connexins with antibodies combined with revelation through enhanced chemiluminescence. PMID:27207285

  17. Sulfur Mass Balances of Forested Catchments: Improving Predictions of Stream Sulfate Concentrations Through Better Representation of Soil Storage and Release

    NASA Astrophysics Data System (ADS)

    Scanlon, T. M.; Rice, K. C.; Riscassi, A.; Cosby, B. J., Jr.

    2015-12-01

    Sulfur dioxide (SO2) emissions in the eastern United States have declined by more than 80% since 1970, when the Clean Air Act first established limits on emissions from stationary and mobile sources. In many areas throughout the northeastern U.S., the resulting declines in sulfate (SO42-) deposition have been accompanied by declines in stream SO42- concentrations. In the southeastern U.S., however, declines in stream SO42- concentrations have not been observed on a widespread basis. In fact, SO42- concentrations continue to increase in many southeastern streams despite decades of declining deposition. This difference in behavior between northeastern and southeastern streams, owing to the distinct geological histories of their catchment soils, was anticipated by the Direct/Delayed Response Project initiated by the U.S. EPA during the early 1980s. At that time, understanding of how catchments store and release SO42- was mostly grounded in theory. Now, with the accumulation of long-term stream chemistry and hydrological datasets in forested catchments, we may develop an empirical basis for characterizing catchment storage and release of SO42-. In particular, are whole-catchment isotherms that described the partitioning between adsorbed and dissolved SO42- (1) linear or non-linear and (2) reversible or irreversible? How do these isotherms vary on a geographical basis? We apply mass balance combined with a simple theoretical framework to infer whole-catchment SO42- isotherms in Virginia and New England. Knowledge of this key soil geochemical property is needed to improve predictions of how catchments will store and export SO42- under changing levels of atmospheric deposition.

  18. Mapping of Acid Sulfate Soils in Finland: determining of areas of risks and compiling guidelines for environmental protection and safe land use

    NASA Astrophysics Data System (ADS)

    Kupila, Juho

    2013-04-01

    Acid sulfate soils (ASS), also referred to as the "nastiest soils in the world", are soils that contain or have contained metal sulfides that oxidize under aerobic conditions and, subsequently, typically produce very severe acidity and metal pollution. In Finland, for example, the discharge of several metals to water courses from ASS is greater than that from the entire Finnish industry, and due to the acidity these metals largely occur in a soluble toxic form. In Europe, the largest occurrences of acid sulfate soils are located in Finland. It has been estimated that coverage of these harmful soils is approximately 1000 - 1500 km2 along the coastal areas of Finland. Sulfide-bearing fine-grained sediments were deposited in the sea between Finland and Sweden after the melting of the latest continental ice sheet, about 10,000 years ago. In places, the formation of such sediments is still going on today. The rapid isostatic land uplift (more than 200 m after the latest glacial period, currently up to 8 mm/year) after the retreat of the continental ice sheet has lifted these sediments above sea level. In Finland, systematic mapping and classification of acid sulfate soils started in 2009 with Geological Survey of Finland (GTK) as the leading partner, together with Åbo Akademi University and University of Helsinki. The definition of a risk classification of Finnish acid sulfate soils has been developed during the project. The observations, measurements and analyses have been used to produce e.g. probability maps of integrated catchment areas (at the scale 1:250 000), reports of the areas and guides for the identification of ASS and their environments. The main users of the results have been authorities at governmental, regional and local levels, organizations and actors in agriculture and forestry, peat production and earthwork companies and consultants concerned with soil and construction. The mapping project carried out by GTK is still in process and should be

  19. Monosaccharide compositions of sulfated chitosans obtained by analysis of nitrous acid degraded and pyrazolone-labeled products.

    PubMed

    Han, Zhangrun; Zeng, Yangyang; Zhang, Meng; Zhang, Yiran; Zhang, Lijuan

    2016-01-20

    Chemically sulfated chitosans are important biomaterials. However, a reliable analytical method for quality control over such compounds is still lacking. In this study, we prepared four different kinds of selectively sulfated chitosans and developed a novel method to analyze their monosaccharide compositions by HPLC. In this method, nitrous acid was used to generate 2, 5-hydro mannose (M), 3-O-sulfated M (M3), 6-O-sulfated M (M6), and 3, 6-O-disulfated M (M9) from the sulfated chitosans. PMP, that is 1-phenyl-3-methyl-5-pyrazolone with a UV absorbance at 245 nm, was used to label all the Ms quantitatively. The monosaccharide compositions for each sulfated chitosan were obtained by C18 HPLC separation and online UV detection of all PMP-labeled Ms. The identities of all Ms were confirmed by MS analysis with the help of standard Ms generated from a heparin pentasaccharide and chitosan. The overall results indicated that the newly developed method had advantages over (13)C NMR in defining the monosaccharide compositions of sulfated chitosans and was useful for quality control purpose. PMID:26572367

  20. The CheMin Mineralogy Instrument on Mars Science Laboratory: Analysis of Clays and Sulfates at Gale Crater

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; CheMin Science Team

    2011-12-01

    A principal goal of the Mars Science Laboratory (MSL) Curiosity rover is to identify and characterize present or past habitable environments on Mars. Mineralogy is important in this regard because minerals are thermodynamic phases, stable under specific (and known) conditions of temperature, pressure and composition. By determining the mineralogical composition of a rock or soil, one can often deduce the conditions under which it formed or its subsequent diagenetic or metamorphic history. The CheMin instrument on MSL will return accurate mineral determinations and quantitative mineralogical information from scooped soil samples and drilled rock powders collected at Gale crater during Curiosity's 1-Mars-year nominal mission. Individual analyses will require several hours over one or more Mars sols. For typical well-ordered minerals, CheMin will have a Minimum Detection Limit (MDL) of <3% by mass, an accuracy of better than 15% and a precision of better than 10% of the amount present for phases present in concentrations >4X MDL (12%). The resolution of the diffraction patterns is 0.3° 2θ. This performance is sufficient to allow for the detection and quantification of virtually all minerals. Orbital imagery and analysis of reflectance spectra from Gale Crater reveal a wealth of mineralogical and morphological features suggestive of ancient habitable environments and water. CheMin is quite capable of discriminating and quantifying the clay and sulfate mineralogies expected within the landing ellipse and in the strata of the central mound, the primary target at Gale. Both polyhydrated and monohydrated (kieserite) sulfate minerals are distributed in mappable strata at Gale. Virtually all hydrated and nonhydrated sulfates are uniquely identifiable and quantifiable with CheMin. Breadboard and commercial equivalents of the CheMin instrument have already been used extensively in evaporite field localities ranging from Death Valley to Antarctica and Spitsbergen; at all

  1. Analysis of Furaneol in tomato using dynamic headspace sampling with sodium sulfate.

    PubMed

    Buttery, R G; Takeoka, G R; Naim, M; Rabinowitch, H; Nam, Y

    2001-09-01

    High-flow dynamic headspace sampling with excess anhydrous sodium sulfate was found to be an effective method of isolating Furaneol from fresh tomatoes. Quantitative analysis was carried out by gas chromatography using maltol as internal standard. Furaneol was found in the highest concentrations (660-1100 ppb) in the summer crop of home-grown tomatoes and in some of the greenhouse hydroponically grown tomatoes, which are ripened on the plant before being transported to the supermarkets. Furaneol was found in the lowest concentrations (38-180 ppb) in the common ethylene-ripened, field-grown, supermarket tomatoes. PMID:11559136

  2. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    SciTech Connect

    Dallam, R.D.

    1987-03-23

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H/sub 2//sup 35/SO/sub 4/) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables.

  3. Mercury bioaccumulation and bioaccumulation factors for Everglades mosquitofish as related to sulfate: a re-analysis of Julian II (2013).

    PubMed

    Pollman, Curtis D; Axelrad, Donald M

    2014-11-01

    The Everglades, an ecosystem of international significance, has elevated biota mercury levels representing risk to human and wildlife consumers of fish. Given the critical role of sulfate in the methylation of mercury, and because there is a significant agricultural contribution, one potential means of reducing these mercury levels is reducing Everglades sulfate inputs. Julian II (Bull Environ Contam Toxicol 90:329-332, 2013) conducted regression modeling of the relationship between surface water sulfate concentrations and Gambusia spp. mercury bioconcentration factors across the major hydrologic subunits of the Everglades, and used those results to draw conclusions about the role of sulfate in the cycling of mercury in the Everglades. We however demonstrate a number of fundamental problems with the analysis, interpretation and conclusions. As a result, we strongly caution against using the results of Julian II (Bull Environ Contam Toxicol 90:329-332, 2013) to formulate management decisions regarding mitigation of the Everglades mercury problem. PMID:25260994

  4. Results of mineral, chemical, and sulfate isotopic analyses of water, soil, rocks, and soil extracts from the Pariette Draw Watershed, Uinta Basin, Utah

    USGS Publications Warehouse

    Morrison, Jean M.; Tuttle, Michele L.W.; Fahy, Juli W.

    2015-01-01

    The goal of this study was to establish a process-based understanding of salt, Se, and B behavior to address whether these contaminants can be better managed, or if uncontrollable natural processes will overwhelm any attempts to bring Pariette Draw into compliance with respect to recently established total maximum daily limits (TMDLs). We collected data to refine our knowledge about the role of rock weathering and soil formation in the transport and storage of salt in the watershed and to show how salt is cycled under irrigated and natural conditions. Our approach was to sample rock, soils, and sediment on irrigated and natural terrain for mineralogical analysis to determine the residence of salt and associated Se and B, classify minerals as primary (related to rock formation) or secondary weathering products, and characterize mineral dissolution kinetics. Mineral and chemical analyses and selective extractions of rocks and soils provide useful information in understanding solute movement and mineral dissolution/ formation. The resulting data are critical in determining residence of salt, Se, and B in weathered rock and soil and understanding the mobility during water-rock-soil interactions. This report summarizes our methods for sample and data collection and tabulates the mineral, chemical, and isotopic data collected.

  5. Microbial community analysis of two field-scale sulfate-reducing bioreactors treating mine drainage.

    PubMed

    Hiibel, Sage R; Pereyra, Luciana P; Inman, Laura Y; Tischer, April; Reisman, David J; Reardon, Kenneth F; Pruden, Amy

    2008-08-01

    The microbial communities of two field-scale pilot sulfate-reducing bioreactors treating acid mine drainage (AMD), Luttrell and Peerless Jenny King (PJK), were compared using biomolecular tools and multivariate statistical analyses. The two bioreactors were well suited for this study because their geographic locations and substrate compositions were similar while the characteristics of influent AMD, configuration and degree of exposure to oxygen were distinct. The two bioreactor communities were found to be functionally similar, including cellulose degraders, fermenters and sulfate-reducing bacteria (SRB). Significant differences were found between the two bioreactors in phylogenetic comparisons of cloned 16S rRNA genes and adenosine 5'-phosphosulfate reductase (apsA) genes. The apsA gene clones from the Luttrell bioreactor were dominated by uncultured SRB most closely related to Desulfovibrio spp., while those of the PJK bioreactor were dominated by Thiobacillus spp. The fraction of the SRB genus Desulfovibrio was also higher at Luttrell than at PJK as determined by quantitative real-time polymerase chain reaction analysis. Oxygen exposure at PJK is hypothesized to be the primary cause of these differences. This study is the first rigorous phylogenetic investigation of field-scale bioreactors treating AMD and the first reported application of multivariate statistical analysis of remediation system microbial communities applying UniFrac software. PMID:18430021

  6. [The Quantitative Analysis of Raman Spectroscopy to Sulfate Ion in Aqueous Solution].

    PubMed

    Wang, Qian-qian; Sun, Qiang

    2016-02-01

    As a non-destructive and non-contact method, Raman spectroscopy has been widely applied in many research fields. Based on vibrational wavenumber, Raman spectroscopy is usually applied to determine the molecular species. Therefore, Raman quantitative analysis is necessary. In this study, according to the theoretical analysis of Raman intensity, Raman quantitative measurement should be fulfilled by relative intensity ratio, which can be divided into internal and external standards. This eliminates the influence of the measurement conditions. For aqueous solution, it is reasonable to treat the OH stretching band of water as an internal standard to determine the solute concentrations in aqueous solution. The Raman spectra of Na₂SO₄-H₂O, K₂SO₄-H₂O and NaCl-Na₂SO₄-H₂O are recorded in the paper. In addition, the Raman OH stretching band of water can be fitted into two Gaussian sub-bands. The intensity proportion I(SO₄²⁻)/I(W) is used to determine the molarity of sulfate in aqueous solution, where I(SO₄²⁻) represents the intensity of sulfate band and I(W) represents the sum of the two sub-bands of Raman OH stretching bands of water. Therefore, Raman spectroscopy can be utilized to measure the SO₄²⁻concentrations in aqueous solutions. PMID:27209744

  7. Global Soil Moisture Analysis at DWD

    NASA Astrophysics Data System (ADS)

    Lange, M.

    2012-04-01

    Small errors in the daily forecast of precipitation, evaporation and runoff accumulate to uncertainties of soil water content and lead to systematic biases of temperature and humidity profiles in the boundary layer if no corrections are applied. A new soil moisture assimilation scheme has been developed for the global GME model and runs operationally since March 2011. As many other variational schemes implemented at NWP centers (e.g. Canadian Met Service, DWD, ECMWF,, Meteo France) the scheme is based on minimisation of screen level forecast errors by adjusting the soil water content implicitly correcting the partitioning of available energy into latent and sensible heat. The original method proposed by Mahfouf (1991) and described in Hess, 2001 requires at least two additional model forecast runs to calculate the gradient of the cost function i.e. the sensitivity dT2m/dwb with T2m as 2m temperature and wb as the soil water content of the respective top and bottom soil layers. To overcome this computational costly approach in the new scheme the sensitivity of screen level temperature on soil moisture changes is parameterized with derivatives of analytical relations for transpiration from vegetation and bare soil evaporation as motivated by Jacobs and De Bruin (1992). The comparison of both methods shows high correlation of the temperature sensitivity that justifies the approximation. The method will be described in detail and verification results will be presented to demonstrate the impact of soil moisture analysis in GME. Hess, R. 2001: Assimilation of screen-level observations by variational soil moisture analysis. Meteorol. Atmos. Phys. 77, 145-154. Jacobs, C.M.M. and H.A.R. De Bruin, 1992: The Sensitivity of Regional Transpiration to Land-Surface Characteristics: Significance of Feedback. J. Clim. 5, 683-698. Mahfouf, J-F. 1991. Analysis of soil moisture from near-surface parameters: A feasibility study. J. Appl. Meteorol. 30: 1534-1547.

  8. Atomic Force Microscopy for Soil Analysis

    NASA Astrophysics Data System (ADS)

    gazze, andrea; doerr, stefan; dudley, ed; hallin, ingrid; matthews, peter; quinn, gerry; van keulen, geertje; francis, lewis

    2016-04-01

    Atomic Force Microscopy (AFM) is a high-resolution surface-sensitive technique, which provides 3-dimensional topographical information and material properties of both stiff and soft samples in their natural environments. Traditionally AFM has been applied to samples with low roughness: hence its use for soil analysis has been very limited so far. Here we report the optimization settings required for a standardization of high-resolution and artefact-free analysis of natural soil with AFM: soil immobilization, AFM probe selection, artefact recognition and minimization. Beyond topography, AFM can be used in a spectroscopic mode to evaluate nanomechanical properties, such as soil viscosity, stiffness, and deformation. In this regards, Bruker PeakForce-Quantitative NanoMechanical (QNM) AFM provides a fast and convenient way to extract physical properties from AFM force curves in real-time to obtain soil nanomechanical properties. Here we show for the first time the ability of AFM to describe the topography of natural soil at nanometre resolution, with observation of micro-components, such as clays, and of nano-structures, possibly of biotic origin, the visualization of which would prove difficult with other instrumentations. Finally, nanomechanical profiling has been applied to different wettability states in soil and the respective physical patterns are discussed.

  9. Variation of acharan sulfate and monosaccharide composition and analysis of neutral N-glycans in African giant snail (Achatina fulica)

    PubMed Central

    Park, Youmie; Zhang, Zhenqing; Laremore, Tatiana N.; Li, Boyangzi; Sim, Joon-Soo; Im, A-Rang; Ahn, Mi Young

    2009-01-01

    Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide →4)-α-d-GlcNpAc (1→4)-α-l-IdoAp2S(1→, analyzed by SAX (strong-anion exchange)–HPLC was observed soon after hatching and increases as the snails grow. Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition analysis. Three types of neutral N-glycan structures were observed, truncated (Hex2–4-Hex-NAc2), high mannose (Hex5–9-HexNAc2), and complex (Hex3-HexNAc2–10) types. None showed core fucosylation. PMID:18670878

  10. Chondroitin sulfate

    MedlinePlus

    ... If you have asthma, use chondroitin sulfate cautiously. Blood clotting disorders: In theory, administering chondroitin sulfate might increase the risk of bleeding in people with blood clotting disorders. Prostate cancer: Early research suggests that chondroitin ...

  11. Glucosamine sulfate

    MedlinePlus

    ... to control arthritis pain. These creams usually contain camphor and other ingredients in addition to glucosamine. Glucosamine ... in combination with chondroitin sulfate, shark cartilage, and camphor for up to 8 weeks. Glucosamine sulfate can ...

  12. Barium Sulfate

    MedlinePlus

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), ... dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called ...

  13. Effects and Safety of Magnesium Sulfate on Neuroprotection: A Meta-analysis Based on PRISMA Guidelines.

    PubMed

    Zeng, Xianling; Xue, Yan; Tian, Quan; Sun, Rong; An, Ruifang

    2016-01-01

    To evaluate the evidence of effects and safety of magnesium sulfate on neuroprotection for preterm infants who had exposure in uteri. We searched electronic databases and bibliographies of relevant papers to identify studies comparing magnesium sulfate (MgSO4) with placebo or other treatments in patients at high risk of preterm labor and reporting effects and safety of MgSO4 for antenatal infants. Then, we did this meta-analysis based on PRISMA guideline. The primary outcomes included fatal death, cerebral palsy (CP), intraventricular hemorrhage, and periventricular leukomalacia. Secondary outcomes included various neonatal and maternal outcomes. Ten studies including 6 randomized controlled trials and 5 cohort studies, and involving 18,655 preterm infants were analyzed. For the rate of moderate to severe CP, MgSO4 showed the ability to reduce the risk and achieved statistically significant difference (odd ratio [OR] 0.61, 95% confidence interval [CI] 0.42-0.89, P = 0.01). The comparison of mortality rate between the MgSO4 group and the placebo group only presented small difference clinically, but reached no statistical significance (OR 0.92, 95% CI 0.77-1.11, P = 0.39). Summarily, the analysis of adverse effects on babies showed no margin (P > 0.05). Yet for mothers, MgSO4 exhibited obvious side-effects, such as respiratory depression, nausea and so forth, but there exited great heterogeneity. MgSO4 administered to women at high risk of preterm labor could reduce the risk of moderate to severe CP, without obvious adverse effects on babies. Although there exit many unfavorable effects on mothers, yet they may be lessened through reduction of the dose of MgSO4 and could be tolerable for mothers. So MgSO4 is both beneficial and safety to be used as a neuroprotective agent for premature infants before a valid alternative was discovered. PMID:26735551

  14. Isolation of endosulfan sulfate-degrading Rhodococcus koreensis strain S1-1 from endosulfan contaminated soil and identification of a novel metabolite, endosulfan diol monosulfate.

    PubMed

    Ito, Koji; Kawashima, Fujimasa; Takagi, Kazuhiro; Kataoka, Ryota; Kotake, Masaaki; Kiyota, Hiromasa; Yamazaki, Kenichi; Sakakibara, Futa; Okada, Sanae

    2016-05-13

    An aerobic endosulfan sulfate-degrading bacterium, Rhodococcus koreensis strain S1-1, was isolated from soil to which endosulfan had been applied annually for more than 10 years until 2008. The strain isolated in this work reduced the concentration of endosulfan sulfate (2) from 12.25 μM to 2.11 μM during 14 d at 30 °C. Using ultra performance liquid chromatography-electrospray ionization-mass spectroscopy (UPLC-ESI-MS), a new highly water-soluble metabolite possessing six chlorine atoms was found to be endosulfan diol monosulfate (6), derived from 2 by hydrolysis of the cyclic sulfate ester ring. The structure of 6 was elucidated by chemical synthesis of the candidate derivatives and by HR-MS and UPLC-MS analyses. Therefore, it was suggested that the strain S1-1 has a new metabolic pathway of 2. In addition, 6 was expected to be less toxic among the metabolites of 1 because of its higher water-solubility. PMID:27073164

  15. Extreme environments in the critical zone: Linking acidification hazard of acid sulfate soils in mound spring discharge zones to groundwater evolution and mantle degassing.

    PubMed

    Shand, Paul; Gotch, Travis; Love, Andrew; Raven, Mark; Priestley, Stacey; Grocke, Sonia

    2016-10-15

    A decrease in flow from the iconic travertine mound springs of the Great Artesian Basin in South Australia has led to the oxidation of hypersulfidic soils and extreme soil acidification, impacting their unique groundwater dependent ecosystems. The build-up of pyrite in these systems occurred over millennia by the discharge of deep artesian sulfate-containing groundwaters through organic-rich subaqueous soils. Rare iron and aluminium hydroxysulfate minerals form thick efflorescences due to high evaporation rates in this arid zone environment, and the oxidised soils pose a significant risk to local aquatic and terrestrial ecosystems. The distribution of extreme acidification hazard is controlled by regional variations in the hydrochemistry of groundwater. Geochemical processes fractionate acidity and alkalinity into separate parts of the discharge zone allowing potentially extreme environments to form locally. Differences in groundwater chemistry in the aquifer along flow pathways towards the spring discharge zone are related to a range of processes including mineral dissolution and redox reactions, which in turn are strongly influenced by degassing of the mantle along deep crustal fractures. There is thus a connection between shallow critical zone ecosystems and deep crustal/mantle processes which ultimately control the formation of hypersulfidic soils and the potential for extreme geochemical environments. PMID:27256909

  16. Hydrological processes behind annual and decadal-scale variations in the water quality of runoff in Finnish catchments with acid sulfate soils

    NASA Astrophysics Data System (ADS)

    Toivonen, Janne; Österholm, Peter; Fröjdö, Sören

    2013-04-01

    SummaryIn this study we assess long- and short term temporal variations in the impact of acid sulfate (a.s.) soils on river water quality. We demonstrate how such variations depend on changes in hydrological conditions driven by land use, meteorological variations and potential changes in climate with important implications on mitigation strategies, water ecology and utilization of water resources. Quality of river water discharging into the Larsmo-Öja Lake in Midwestern Finland was studied by using long term water data collected during 1963-2009. Acid sulfate soils are extremely acidic soils (pH < 4) that are known to discharge very large amounts of acidity and metals into recipient water courses, and this was also evident in the study area where extreme acidic events have occurred frequently. Looking at the whole study period, there was an abrupt and consistent decline in pH in the late 1960s and early 1970s in the main river (Esse River) that coincided with extensive drainage works that dropped the ground water level, enabling oxidation of sulfidic soils and transport of acidity to the rivers. Since then, there is a trend of decreasing acidic events and rising pH values, probably due to a continuous depletion of the acidic pool in the existing a.s. soils. In the short run, water quality varied greatly due to varying hydrological conditions between seasons and years. Generally, the impact from a.s. soils was highest during high runoff in autumn and spring, and therefore, neutralization of acidity in discharge water by liming would at such occasions be very demanding. The relationship between the runoff and water quality was, however, somewhat different during different seasons. As expected, dry summers (low ground water levels) were found to increase the impact from a.s. soils in the subsequent autumn, but only if runoff was high. Towards the end of the study period winters tended to become warmer with higher runoff and spring floods tended to occur earlier

  17. Assessment of soil quality parameters using multivariate analysis in the Rawal Lake watershed.

    PubMed

    Firdous, Shahana; Begum, Shaheen; Yasmin, Azra

    2016-09-01

    Soil providing a wide array of ecosystem services is subjected to quality deterioration due to natural and anthropogenic factors. Most of the soils in Pakistan have poor status of available plant nutrients and cannot support optimum levels of crop productivity. The present study statistically analyzed ten soil quality parameters in five subwatersheds (Bari Imam, Chattar, Rumli, Shahdra, and Shahpur) of the Rawal Lake. Analysis of variance (ANOVA), cluster analysis (CA), and principal component analysis (PCA) were performed to evaluate correlation in soil quality parameters on spatiotemporal and vertical scales. Soil organic matter, electrical conductivity, nitrates, and sulfates were found to be lower than that required for good quality soil. Soil pH showed significant difference (p < 0.05) in mean values at different sampling sites and sampling months indicating that it is affected and determined by land uses and seasons. Pearson correlation revealed a strong positive correlation (r = 0.437) between nitrates and organic matter. Application of principal component analysis resulted in three major factors contributing 76 % of the total variance. For factor 1, temperature, sand, silt, clay, and nitrates had the highest factor loading values (>0.75) and indicated that these were the most influential parameters of first factor or component. Cluster analysis separated five sampling sites into three statistically significant clusters: I (Shahdra-Bari Imam), II (Chattar), and III (Shahpur-Rumli). Among the five sites, Shahdra was found to have good quality soil followed by Bari Imam. The present study illustrated the usefulness of multivariate statistical approaches for the analysis and interpretation of complex datasets to understand variations in soil quality for effective watershed management. PMID:27553947

  18. LC-MS n Analysis of Isomeric Chondroitin Sulfate Oligosaccharides Using a Chemical Derivatization Strategy

    NASA Astrophysics Data System (ADS)

    Huang, Rongrong; Pomin, Vitor H.; Sharp, Joshua S.

    2011-09-01

    Improved methods for structural analyses of glycosaminoglycans (GAGs) are required to understand their functional roles in various biological processes. Major challenges in structural characterization of complex GAG oligosaccharides using liquid chromatography-mass spectrometry (LC-MS) include the accurate determination of the patterns of sulfation due to gas-phase losses of the sulfate groups upon collisional activation and inefficient on-line separation of positional sulfation isomers prior to MS/MS analyses. Here, a sequential chemical derivatization procedure including permethylation, desulfation, and acetylation was demonstrated to enable both on-line LC separation of isomeric mixtures of chondroitin sulfate (CS) oligosaccharides and accurate determination of sites of sulfation by MS n . The derivatized oligosaccharides have sulfate groups replaced with acetyl groups, which are sufficiently stable to survive MS n fragmentation and reflect the original sulfation patterns. A standard reversed-phase LC-MS system with a capillary C18 column was used for separation, and MS n experiments using collision-induced dissociation (CID) were performed. Our results indicate that the combination of this derivatization strategy and MS n methodology enables accurate identification of the sulfation isomers of CS hexasaccharides with either saturated or unsaturated nonreducing ends. Moreover, derivatized CS hexasaccharide isomer mixtures become separable by LC-MS method due to different positions of acetyl modifications.

  19. Ferrous Sulfate Supplementation Causes Significant Gastrointestinal Side-Effects in Adults: A Systematic Review and Meta-Analysis

    PubMed Central

    Tolkien, Zoe; Stecher, Lynne; Mander, Adrian P.; Pereira, Dora I. A.; Powell, Jonathan J.

    2015-01-01

    Background The tolerability of oral iron supplementation for the treatment of iron deficiency anemia is disputed. Objective Our aim was to quantify the odds of GI side-effects in adults related to current gold standard oral iron therapy, namely ferrous sulfate. Methods Systematic review and meta-analysis of randomized controlled trials (RCTs) evaluating GI side-effects that included ferrous sulfate and a comparator that was either placebo or intravenous (IV) iron. Random effects meta-analysis modelling was undertaken and study heterogeneity was summarised using I2 statistics. Results Forty three trials comprising 6831 adult participants were included. Twenty trials (n = 3168) had a placebo arm and twenty three trials (n = 3663) had an active comparator arm of IV iron. Ferrous sulfate supplementation significantly increased risk of GI side-effects versus placebo with an odds ratio (OR) of 2.32 [95% CI 1.74–3.08, p<0.0001, I2 = 53.6%] and versus IV iron with an OR of 3.05 [95% CI 2.07-4.48, p<0.0001, I2 = 41.6%]. Subgroup analysis in IBD patients showed a similar effect versus IV iron (OR = 3.14, 95% CI 1.34-7.36, p = 0.008, I2 = 0%). Likewise, subgroup analysis of pooled data from 7 RCTs in pregnant women (n = 1028) showed a statistically significant increased risk of GI side-effects for ferrous sulfate although there was marked heterogeneity in the data (OR = 3.33, 95% CI 1.19-9.28, p = 0.02, I2 = 66.1%). Meta-regression did not provide significant evidence of an association between the study OR and the iron dose. Conclusions Our meta-analysis confirms that ferrous sulfate is associated with a significant increase in gastrointestinal-specific side-effects but does not find a relationship with dose. PMID:25700159

  20. Direct analysis of sulfate reducing bacterial communities in gas hydrate-impacted marine sediments by PCR-DGGE.

    PubMed

    Bagwell, Christopher E; Formolo, Michael; Ye, Qi; Yeager, Chris M; Lyons, Timothy W; Zhang, Chuanlun L

    2009-09-01

    Molecular investigations of the sulfate reducing bacteria that target the dissimilatory sulfite-reductase subunit A gene (dsr A) are plagued by the nonspecific performance of conventional PCR primers. Here we describe the incorporation of the FailSafe PCR System to optimize environmental analysis of dsr A by PCR amplification and denaturing gradient gel electrophoresis. PCR-DGGE analysis of dsr A composition revealed that SRB diversity was greater and more variable throughout the vertical profile of a marine sediment core obtained from a gas hydrate site (GC234) in the Gulf of Mexico than in a sediment core collected from a nearby site devoid of gas hydrates (NBP). Depth profiled dsr B abundance corresponded with sulfate reduction rates at both sites, though measurements were higher at GC234. This study exemplifies the numerical and functional importance of sulfate reducing bacteria in deep-sea sedimentary environments, and incremental methodological advancements, as described herein, will continue to streamline the analysis of sulfate reducer communities in situ. PMID:19322839

  1. Draft Genome Sequence of Desulfitobacterium hafniense Strain DH, a Sulfate-Reducing Bacterium Isolated from Paddy Soils

    PubMed Central

    Zhang, Xi; Li, Guo-Xiang; Chen, Song-Can; Jia, Xiao-Yu; Wu, Kun; Cao, Chang-Li

    2016-01-01

    Desulfitobacterium hafniense strain DH is a sulfate-reducing species. Here, we report the draft genome sequence of strain DH, with a size of 5,368,588 bp, average G+C content of 47.48%, and 5,296 predicted protein-coding sequences. PMID:26868389

  2. Study of thermochemical sulfate reduction mechanism using compound specific sulfur isotope analysis

    NASA Astrophysics Data System (ADS)

    Meshoulam, Alexander; Ellis, Geoffrey S.; Said Ahmad, Ward; Deev, Andrei; Sessions, Alex L.; Tang, Yongchun; Adkins, Jess F.; Liu, Jinzhong; Gilhooly, William P.; Aizenshtat, Zeev; Amrani, Alon

    2016-09-01

    The sulfur isotopic fractionation associated with the formation of organic sulfur compounds (OSCs) during thermochemical sulfate reduction (TSR) was studied using gold-tube pyrolysis experiments to simulate TSR. The reactants used included n-hexadecane (n-C16) as a model organic compound with sulfate, sulfite, or elemental sulfur as the sulfur source. At the end of each experiment, the S-isotopic composition and concentration of remaining sulfate, H2S, benzothiophene, dibenzothiophene, and 2-phenylthiophene (PT) were measured. The observed S-isotopic fractionations between sulfate and BT, DBT, and H2S in experimental simulations of TSR correlate well with a multi-stage model of the overall TSR process. Large kinetic isotope fractionations occur during the first, uncatalyzed stage of TSR, 12.4‰ for H2S and as much as 22.2‰ for BT. The fractionations decrease as the H2S concentration increases and the reaction enters the second, catalyzed stage. Once all of the oxidizable hydrocarbons have been consumed, sulfate reduction ceases and equilibrium partitioning then dictates the fractionation between H2S and sulfate (∼17‰). Experiments involving sparingly soluble CaSO4 show that during the second catalytic phase of TSR the rate of sulfate reduction exceeds that of sulfate dissolution. In this case, there is no apparent isotopic fractionation between source sulfate and generated H2S, as all of the available sulfate is effectively reduced at all reaction times. When CaSO4 is replaced with fully soluble Na2SO4, sulfate dissolution is no longer rate limiting and significant S-isotopic fractionation is observed. This supports the notion that CaSO4 dissolution can lead to the apparent lack of fractionation between H2S and sulfate produced by TSR in nature. The S-isotopic composition of individual OSCs record information related to geochemical reactions that cannot be discerned from the δ34S values obtained from bulk phases such as H2S, oil, and sulfate minerals, and

  3. Titanium Mass-balance Analysis of Paso Robles Soils: Elemental Gains and Losses as Affected by Acid Alteration Fluids

    NASA Technical Reports Server (NTRS)

    Sutter, Brad; Ming, Douglas W.

    2010-01-01

    The Columbia Hills soils have been exposed to aqueous alteration in alkaline [1] as well as acid conditions [2,3]. The Paso Robles class soils are bright soils that possess the highest S concentration of any soil measured on Mars [2]. Ferric-sulfate detection by Moessbauer analysis indicated that acid solutions were involved in forming these soils [4]. These soils are proposed to have formed by alteration of nearby rock by volcanic hydrothermal or fumarolic activity. The Paso Robles soils consist of the original Paso Robles-disturbed-Pasadena (PR-dist), Paso Robles- PasoLight (PR-PL), Arad-Samra, Arad-Hula, Tyrone- Berker Island1 and Tyrone-MountDarwin [2 ,3. ]Chemical characteristics indicate that the PR-dist and PR-PL soils could be derived from acid weathering of local Wishstone rocks while the Samra and Hula soils are likely derived from local Algonquin-Iroquet rock [3]. The Paso Robles soils were exposed to acidic sulfur bearing fluids; however, little else is known about the chemistry of the alteration fluid and its effects on the alteration of the proposed parent materials. The objectives of this work are to conduct titanium normalized mass-balance analysis to1) assess elemental gains and losses from the parent materials in the formation of the Paso Robles soils and 2) utilize this information to indicate the chemical nature of the alteration fluids.

  4. Soiling and degradation analysis of solar mirrors

    NASA Astrophysics Data System (ADS)

    Delord, Christine; Blaise, Anthony; Fernandez-García, Aránzazu; Martínez-Arcos, Lucía; Sutter, Florian; Reche-Navarro, Tomás Jesús

    2016-05-01

    The degradation and the soiling of the mirrors are dependent of the solar field and the mirrors technologies, the local climate, the meteorological events, the O&M tasks and the human activities around the site. In the frame of the European project SFERA II, the SODAM project has been the opportunity to compare the soiling and the degradation mechanisms on a Fresnel solar field installed in the South of France and on a parabolic-through solar field installed in the South of Spain. The analysis of the soiling has shown equivalent maximum weekly reflectance loss due to soiling in both sites but a double mean weekly reflectance loss in Spain respect to France, as well as typical meteorological events to be taken into account to adapt the cleaning strategies. Among the meteorological parameters mainly influencing the soiling, the study has revealed the effect of the rain and of the DNI. In parallel, the analysis of the degradation mechanisms has highlighted a common chalking of the protective back paint layers due to the irradiation. This chalking being associated to a leaching of the paint layers in the site of Cadarache due to the high presence of liquid water. A difference in the speed of corrosion of the silver layer has been also noticed, leading to a difference in the mechanisms of delamination of the paints layers.

  5. Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor.

    PubMed

    Orsi, William D; Barker Jørgensen, Bo; Biddle, Jennifer F

    2016-08-01

    Sulfate reducing bacteria (SRB) oxidize a significant proportion of subseafloor organic carbon, but their metabolic activities and subsistence mechanisms are poorly understood. Here, we report in depth phylogenetic and metabolic analyses of SRB transcripts in the Peru Margin subseafloor and interpret these results in the context of sulfate reduction activity in the sediment. Relative abundance of overall SRB gene transcripts declines strongly whereas relative abundance of ribosomal protein transcripts from sulfate reducing δ-Proteobacteria peak at 90 m below seafloor (mbsf) within a deep sulfate methane transition zone. This coincides with isotopically heavy δ(34) S values of pore water sulfate (70‰), indicating active subseafloor microbial sulfate reduction. Within the shallow sulfate reduction zone (0-5 mbsf), a transcript encoding the beta subunit of dissimilatory sulfite reductase (dsrB) was related to Desulfitobacterium dehalogenans and environmental sequences from Aarhus Bay (Denmark). At 159 mbsf we discovered a transcript encoding the reversely operating dissimilatory sulfite reductase α-subunit (rdsrA), with basal phylogenetic relation to the chemolithoautotrophic SUP05 Group II clade. A diversity of SRB transcripts involved in cellular maintenance point toward potential subsistence mechanisms under low-energy over long time periods, and provide a detailed new picture of SRB activities underlying sulfur cycling in the deep subseafloor. PMID:26991974

  6. Study of thermochemical sulfate reduction mechanism using compound specific sulfur isotope analysis

    USGS Publications Warehouse

    Alexander Meshoulam; Ellis, Geoffrey S.; Ward Said Ahmad; Andrei Deev; Alex L. Sessions; Yongchun Tang; Jess Adkins; Liu Jinzhong; William P. Gilhooly III; Zeev Aizenshtat; Alon Amrani

    2016-01-01

    Experiments involving sparingly soluble CaSO4 show that during the second catalytic phase of TSR the rate of sulfate reduction exceeds that of sulfate dissolution. In this case, there is no apparent isotopic fractionation between source sulfate and generated H2S, as all of the available sulfate is effectively reduced at all reaction times. When CaSO4 is replaced with fully soluble Na2SO4, sulfate dissolution is no longer rate limiting and significant S-isotopic fractionation is observed. This supports the notion that CaSO4dissolution can lead to the apparent lack of fractionation between H2S and sulfate produced by TSR in nature. The S-isotopic composition of individual OSCs record information related to geochemical reactions that cannot be discerned from the δ34S values obtained from bulk phases such as H2S, oil, and sulfate minerals, and provide important mechanistic details about the overall TSR process.

  7. Sulfated glycosaminoglycans from crown-of-thorns Acanthaster planci – extraction and quantification analysis

    PubMed Central

    Bahrom, Nur Afiqah; Sirajudeen, KNS; Yip, George W; Latiff, Aishah A; Ghazali, Farid Che

    2013-01-01

    In this article, the novel inventive steps for the extraction and quantification of sulfated glycosaminoglycan (GAG) from Acanthaster planci starfish, generally known as crown-of-thorns (COT), are reported. Starfish have been implicated with collagenous distributions within their body anatomy, thus making it a prima facie fact searching for the possibility that GAGs can be isolated from COT. In this study, total-, N-, and O-sulfated GAGs were extracted from three anatomical regions of the COT (integument, internal tissue, and coelomic fluid) and comparison was made. The result showed that body region of COT seemed to contain higher amount of sulfated GAGs as opposed to the arm region (55.79 ± 0.65 μg/mg was the highest amount in the body extracted from its coelomic fluid and 32.28 ± 3.14 μg/mg was the highest amount in the arm extracted from its internal tissue). COT's integument and coelomic fluid from its body region possessed the highest total of sulfated GAGs content with no significant difference (P < 0.05) between the two. All GAGs from COT comprised a higher percentage of N-sulfated GAGs than its counterpart, the O-sulfated GAGs. When compared with a similar previous study that used sea cucumbers as the sulfated GAGs source, COT possessed more total sulfated GAGs content per milligram as compared with the sea cucumber generally. This result seems to unveil this marine species' advantage per se pertaining to GAGs extraction biomass applicability. Thus, COT could now be the better alternative source for production technology of total-, N-, and O-sulfated GAGs. PMID:24804017

  8. Sulfated glycosaminoglycans from crown-of-thorns Acanthaster planci - extraction and quantification analysis.

    PubMed

    Bahrom, Nur Afiqah; Sirajudeen, Kns; Yip, George W; Latiff, Aishah A; Ghazali, Farid Che

    2013-01-01

    In this article, the novel inventive steps for the extraction and quantification of sulfated glycosaminoglycan (GAG) from Acanthaster planci starfish, generally known as crown-of-thorns (COT), are reported. Starfish have been implicated with collagenous distributions within their body anatomy, thus making it a prima facie fact searching for the possibility that GAGs can be isolated from COT. In this study, total-, N-, and O-sulfated GAGs were extracted from three anatomical regions of the COT (integument, internal tissue, and coelomic fluid) and comparison was made. The result showed that body region of COT seemed to contain higher amount of sulfated GAGs as opposed to the arm region (55.79 ± 0.65 μg/mg was the highest amount in the body extracted from its coelomic fluid and 32.28 ± 3.14 μg/mg was the highest amount in the arm extracted from its internal tissue). COT's integument and coelomic fluid from its body region possessed the highest total of sulfated GAGs content with no significant difference (P < 0.05) between the two. All GAGs from COT comprised a higher percentage of N-sulfated GAGs than its counterpart, the O-sulfated GAGs. When compared with a similar previous study that used sea cucumbers as the sulfated GAGs source, COT possessed more total sulfated GAGs content per milligram as compared with the sea cucumber generally. This result seems to unveil this marine species' advantage per se pertaining to GAGs extraction biomass applicability. Thus, COT could now be the better alternative source for production technology of total-, N-, and O-sulfated GAGs. PMID:24804017

  9. Ferric sulfates on Mars: Surface Explorations and Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Wang, A.; Ling, Z.; Freeman, J. J.

    2008-12-01

    Recent results from missions to Mars have reinforced the importance of sulfates for Mars science. They are the hosts of water, the sinks of acidity, and maybe the most active species in the past and current surface/near-surface processes on Mars. Fe-sulfate was found frequently by Spirit and Opportunity rovers: jarosite in Meridiani Planum outcrops and a less specific "ferric sulfate" in the salty soils excavated by Spirit at Gusev Crater. Pancam spectral analysis suggests a variety of ferric sulfates in these soils, i.e. ferricopiapite, jarosite, fibroferrite, and rhomboclase. A change in the Pancam spectral features occurred in Tyrone soils after ~ 190 sols of exposure to surface conditions. Dehydration of ferric sulfate is a possible cause. We synthesized eight ferric sulfates and conducted a series of hydration/dehydration experiments. Our goal was to establish the stability fields and phase transition pathways of these ferric sulfates. In our experiments, water activity, temperature, and starting structure are the variables. No redox state change was observed. Acidic, neutral, and basic salts were used. Ferric sulfate sample containers were placed into relative humidity buffer solutions that maintain static relative humidity levels at three temperatures. The five starting phases were ferricopiapite (Fe4.67(SO4)6(OH)2.20H2O), kornelite (Fe2(SO4)3.7H2O), rhomboclase (FeH(SO4)2.4H2O), pentahydrite (Fe2(SO4)3.5H2O), and an amorphous phase (Fe2(SO4)3.5H2O). A total of one hundred fifty experiments have been running for nearly ten months. Thousands of coupled Raman and gravimetric measurements were made at intermediate steps to monitor the phase transitions. The first order discovery from these experiments is the extremely large stability field of ferricopiapite. Ferricopiapite is the major ferric sulfate to precipitate from a Fe3+-S-rich aqueous solution at mid-low temperature, and it has the highest H2O/Fe ratio (~ 4.3). However, unlike the Mg-sulfate with highest

  10. Numerical analysis of granular soil fabrics

    NASA Astrophysics Data System (ADS)

    Torbahn, L.; Huhn, K.

    2012-04-01

    grain shapes. So, ideal round or stick- and plate-shaped grains were utilized to represent natural silts or clays to test two end-members. To quantify texture influences on soil strength, physical parameters, e.g. soil resistance, were calculated during deformation process. Furthermore, fabric analysis during shear reveals new information on detailed pore space regarding distribution and shape of voids. For this, a three-dimensional visualization of pore space is realized with the Visualization Toolkit (VTK) that allows the volume calculation and hence a quantification of single voids with progressive deformation. As a result, imaging of particle contact distribution and particle orientations within samples show significant changes with ongoing strain such as strong variations in material fabric and particle re-organization and therewith significant structural changes. These findings confirm that in general grain shape and its factor of soil fabric is not negligible for soil resistance and hence soil strength. This is notably affected by the deformation behavior of granular matter. With the broad investigation of the three most important factors that specify fabric behavior, this study attains a comprehensive view evaluating the impact of fabric on soil strength.

  11. Glucosamine sulfate

    MedlinePlus

    ... 8 weeks. Glucosamine sulfate can cause some mild side effects including nausea, heartburn, diarrhea, and constipation. Uncommon side effects are drowsiness, skin reactions, and headache. These are ...

  12. Analysis of sulfate metabolites of the doping agents oxandrolone and danazol using high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Rzeppa, S; Viet, L

    2016-09-01

    The direct detection of sulfate conjugates of anabolic androgenic steroids (AAS) can be a powerful tool in doping control analysis. By skipping the solvolysis step analysis time can be reduced, and due to long term sulfate metabolites the detection time can be significantly extended as demonstrated for some AAS. This study presents the successful identification of sulfate metabolites of the doping agents oxandrolone and danazol in excretion urines by high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). The sulfate conjugate of 17β-hydroxymethyl-17α-methyl-18-nor-2-oxa-5α-androsta-13-en-3-one could be identified as a new metabolite of oxandrolone. Sulfate conjugates of the danazol metabolites ethisterone and 2α-hydroxymethylethisterone were identified in an excretion urine for the first time. In addition, these sulfate conjugates were synthesized successfully. For a confirmation analysis, the number of analytes can be increased by additional sulfate conjugates of danazol metabolites (2-hydroxymethyl-1,2-dehydroethisterone and 6β-hydroxy-2-hydroxymethylethisterone), which were also identified for the first time. The presented validation data underline the suitability of the identified sulfate conjugates for doping analysis with regard to the criteria given by the technical documents of the World Anti-Doping Agency (WADA). PMID:27394004

  13. STATISTICAL VALIDATION OF SULFATE QUANTIFICATION METHODS USED FOR ANALYSIS OF ACID MINE DRAINAGE

    EPA Science Inventory

    Turbidimetric method (TM), ion chromatography (IC) and inductively coupled plasma atomic emission spectrometry (ICP-AES) with and without acid digestion have been compared and validated for the determination of sulfate in mining wastewater. Analytical methods were chosen to compa...

  14. Soil Surface Roughness through Image Analysis

    NASA Astrophysics Data System (ADS)

    Tarquis, A. M.; Saa-Requejo, A.; Valencia, J. L.; Moratiel, R.; Paz-Gonzalez, A.; Agro-Environmental Modeling

    2011-12-01

    Soil erosion is a complex phenomenon involving the detachment and transport of soil particles, storage and runoff of rainwater, and infiltration. The relative magnitude and importance of these processes depends on several factors being one of them surface micro-topography, usually quantified trough soil surface roughness (SSR). SSR greatly affects surface sealing and runoff generation, yet little information is available about the effect of roughness on the spatial distribution of runoff and on flow concentration. The methods commonly used to measure SSR involve measuring point elevation using a pin roughness meter or laser, both of which are labor intensive and expensive. Lately a simple and inexpensive technique based on percentage of shadow in soil surface image has been developed to determine SSR in the field in order to obtain measurement for wide spread application. One of the first steps in this technique is image de-noising and thresholding to estimate the percentage of black pixels in the studied area. In this work, a series of soil surface images have been analyzed applying several de-noising wavelet analysis and thresholding algorithms to study the variation in percentage of shadows and the shadows size distribution. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010- 21501/AGR and by Xunta de Galicia through project no INCITE08PXIB1621 are greatly appreciated.

  15. Membrane Transporters for Sulfated Steroids in the Human Testis - Cellular Localization, Expression Pattern and Functional Analysis

    PubMed Central

    Wapelhorst, Britta; Grosser, Gary; Günther, Sabine; Alber, Jörg; Döring, Barbara; Kliesch, Sabine; Weidner, Wolfgang; Galuska, Christina E.; Hartmann, Michaela F.; Wudy, Stefan A.; Bergmann, Martin; Geyer, Joachim

    2013-01-01

    Sulfated steroid hormones are commonly considered to be biologically inactive metabolites, but may be reactivated by the steroid sulfatase into biologically active free steroids, thereby having regulatory function via nuclear androgen and estrogen receptors which are widespread in the testis. However, a prerequisite for this mode of action would be a carrier-mediated import of the hydrophilic steroid sulfate molecules into specific target cells in reproductive tissues such as the testis. In the present study we detected predominant expression of the Sodium-dependent Organic Anion Transporter (SOAT), the Organic Anion Transporting Polypeptide 6A1, and the Organic Solute Carrier Partner 1 in human testis biopsies. All of these showed significantly lower or even absent mRNA expression in severe disorders of spermatogenesis (arrest at the level of spermatocytes or spermatogonia, Sertoli cell only syndrome). Only SOAT was significantly lower expressed in biopsies showing hypospermatogenesis. By use of immunohistochemistry SOAT was localized to germ cells at various stages in human testis biopsies showing normal spermatogenesis. SOAT immunoreactivity was detected in zygotene primary spermatocytes of stage V, pachytene spermatocytes of all stages (I–V), secondary spermatocytes of stage VI, and round spermatids (step 1 and step 2) in stages I and II. Furthermore, SOAT transport function for steroid sulfates was analyzed with a novel liquid chromatography tandem mass spectrometry procedure capable of profiling steroid sulfate molecules from cell lysates. With this technique, the cellular inward-directed SOAT transport was verified for the established substrates dehydroepiandrosterone sulfate and estrone-3-sulfate. Additionally, β-estradiol-3-sulfate and androstenediol-3-sulfate were identified as novel SOAT substrates. PMID:23667501

  16. Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees.

    PubMed

    Lin, Ning; Dufresne, Alain

    2014-05-21

    The process of sulfuric acid-hydrolysis of cellulose fibers for the preparation of cellulose nanocrystals (CNs) includes an esterification reaction between acid and cellulose molecules, which induces the covalent coupling of sulfate groups on the surface of prepared CNs. Negatively charged sulfate groups play an important role in both surface chemistry and physical properties of CNs. This study explored the strategy of introducing a gradient of sulfate groups on the surface of CNs, and further investigated the effect of the sulfation degree on surface chemistry, morphology, dimensions, and physical properties of different CN samples. Based on the discussion of their surface chemistry, the selection of different cross-section models was reported to significantly affect the calculation of the degree of substitution of sulfate groups on CNs. A new ellipsoid cross-section model was proposed on the basis of AFM observations. The effect of sulfate groups on crystal properties and thermal stability was discussed and validated, and the birefringence behavior of nanocrystal suspensions was observed. PMID:24706023

  17. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria.

    PubMed

    Yue, Zheng-Bo; Li, Qing; Li, Chuan-chuan; Chen, Tian-hu; Wang, Jin

    2015-10-01

    Extracellular polymeric substances (EPS) play an important role in the treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB). In this paper, Desulfovibrio desulfuricans was used as the test strain to explore the effect of heavy metals on the components and adsorption ability of EPS. Fourier-transform infrared (FTIR) spectroscopy analysis results showed that heavy metals did not influence the type of functional groups of EPS. Potentiometric titration results indicated that the acidic constants (pKa) of the EPS fell into three ranges of 3.5-4.0, 5.9-6.7, and 8.9-9.8. The adsorption site concentrations of the surface functional groups also increased. Adsorption results suggested that EPS had a specific binding affinity for the dosed heavy metal, and that EPS extracted from the Zn(2+)-dosed system had a higher binding affinity for all heavy metals. Additionally, Zn(2+) decreased the inhibitory effects of Cd(2+) and Cu(2+) on the SRB. PMID:26210529

  18. FOREST SOIL RESPONSE TO ACID AND SALT ADDITIONS OF SULFATE III. SOLUBILIZATION AND COMPOSITION OF DISSOLVED ORGANIC CARBON

    EPA Science Inventory

    A year-long experiment, using reconstructed spodosol and intact alfisol soil columns, was conducted to examine the effects of various simulated throughfall solutions on soil C dynamics. oil organic C solubilization, dissolved organic C fractions, and decomposition rates were stud...

  19. Combined Sulfur K-edge XANES Spectroscopy and Stable Isotope Analysis of Fulvic Acids and Groundwater Sulfate Identify Sulfur Cycling in a Karstic Catchment Area

    SciTech Connect

    Einsiedl,F.; Schafer, T.; Northrup, P.

    2007-01-01

    Chemical and isotope analyses on groundwater sulfate, atmospheric deposition sulfate and fulvic acids (FAs) associated sulfur were used to determine the S cycling in a karstic catchment area of the Franconian Alb, Southern Germany. Sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy provided information on the oxidation state and the mechanism of the incorporation of sulfur in FAs. During base flow {delta}{sup 34}S values of groundwater sulfate were slightly depleted to those of recent atmospheric sulfate deposition with mean amount-weighted {delta}{sup 34}S values of around + 3{per_thousand}. The {delta}{sup 18}O values of groundwater sulfate shifted to lower values compared to those of atmospheric deposition and indicated steadiness from base flow to peak flow. The reduced sulfur species (S{sub -1}/thiol; S{sub 0}/thiophene, disulfide, S{sub +2}2/sulfoxide) of soil FAs averaged around 49% of the total sulfur and {delta}{sup 34}S value in FAs was found to be 0.5{per_thousand}. The formation of polysulfides and thiols in FAs in concert with a decreasing isotope value of {delta}{sup 34}S in FAs with respect to those of atmospheric deposition sulfate suggests oxidation of H{sub 2}S, enriched in the {sup 32}S isotope, with organic material. The depletion of {delta}{sup 18}O-SO{sub 4}{sup 2-} by several per mil in groundwater sulfate with respect to those of atmospheric deposition is, therefore, consistent with the hypothesis that SO{sub 4}{sup 2-} has been cycled through the organic S pool as well as that groundwater sulfate is formed by oxidation of H{sub 2}S with organic matter in the mineral soil of the catchment area.

  20. A Comparative Genomic Analysis of Energy Metabolism in Sulfate Reducing Bacteria and Archaea

    PubMed Central

    Pereira, Inês A. Cardoso; Ramos, Ana Raquel; Grein, Fabian; Marques, Marta Coimbra; da Silva, Sofia Marques; Venceslau, Sofia Santos

    2011-01-01

    The number of sequenced genomes of sulfate reducing organisms (SRO) has increased significantly in the recent years, providing an opportunity for a broader perspective into their energy metabolism. In this work we carried out a comparative survey of energy metabolism genes found in 25 available genomes of SRO. This analysis revealed a higher diversity of possible energy conserving pathways than classically considered to be present in these organisms, and permitted the identification of new proteins not known to be present in this group. The Deltaproteobacteria (and Thermodesulfovibrio yellowstonii) are characterized by a large number of cytochromes c and cytochrome c-associated membrane redox complexes, indicating that periplasmic electron transfer pathways are important in these bacteria. The Archaea and Clostridia groups contain practically no cytochromes c or associated membrane complexes. However, despite the absence of a periplasmic space, a few extracytoplasmic membrane redox proteins were detected in the Gram-positive bacteria. Several ion-translocating complexes were detected in SRO including H+-pyrophosphatases, complex I homologs, Rnf, and Ech/Coo hydrogenases. Furthermore, we found evidence that cytoplasmic electron bifurcating mechanisms, recently described for other anaerobes, are also likely to play an important role in energy metabolism of SRO. A number of cytoplasmic [NiFe] and [FeFe] hydrogenases, formate dehydrogenases, and heterodisulfide reductase-related proteins are likely candidates to be involved in energy coupling through electron bifurcation, from diverse electron donors such as H2, formate, pyruvate, NAD(P)H, β-oxidation, and others. In conclusion, this analysis indicates that energy metabolism of SRO is far more versatile than previously considered, and that both chemiosmotic and flavin-based electron bifurcating mechanisms provide alternative strategies for energy conservation. PMID:21747791

  1. Morphological, structural, and spectral characteristics of amorphous iron sulfates

    NASA Astrophysics Data System (ADS)

    Sklute, E. C.; Jensen, H. B.; Rogers, A. D.; Reeder, R. J.

    2015-04-01

    Current or past brine hydrologic activity on Mars may provide suitable conditions for the formation of amorphous ferric sulfates. Once formed, these phases would likely be stable under current Martian conditions, particularly at low- to mid-latitudes. Therefore, we consider amorphous iron sulfates (AIS) as possible components of Martian surface materials. Laboratory AIS were created through multiple synthesis routes and characterized with total X-ray scattering, thermogravimetric analysis, scanning electron microscopy, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3 · ~ 6-8H2O) from sulfate-saturated fluids via vacuum dehydration or exposure to low relative humidity (<11%). Amorphous ferrous sulfate (Fe(II)SO4 · ~ 1H2O) was synthesized via vacuum dehydration of melanterite. All AIS lack structural order beyond 11 Å. The short-range (<5 Å) structural characteristics of amorphous ferric sulfates resemble all crystalline reference compounds; structural characteristics for the amorphous ferrous sulfate are similar to but distinct from both rozenite and szomolnokite. VNIR and TIR spectral data for all AIS display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from crystalline phase spectra available for comparison. AIS should be distinguishable from crystalline sulfates based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, bands associated with hydration at ~1.4 and 1.9 µm are significantly broadened, which greatly reduces their detectability in soil mixtures. AIS may contribute to the amorphous fraction of soils measured by the Curiosity rover.

  2. Reflectance spectra of sulfate-and carbonate-bearing Fe(3+)-doped montmorillonites as Mars soil analogs

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.; Burns, Roger G.

    1993-01-01

    Ferric smectites and ferrihydrite may be common alteration products of igneous lithologies on Mars, and experiments involving montmorillonite enriched with Fe(3+) support the likelihood of ferric smectites on Mars. Mossbauer spectroscopy has been used to identify ferrihydrite (Fe4(O,OH,H2O)12) as the primary ferric material in Fe(3+)-doped montmorillonite. Ferrihydrite is especially interesting due to its role as a precursor in the formation of hematite and goethite. Reflectance spectroscopy in the visible and infrared regions are coupled with Mossbauer spectroscopy in this study to characterize the ferric material in montmorillonites containing Fe(3+), as well as carbonates or sulfates, in the interlayer region.

  3. Pattern geomorphologic analysis for soil erosion study

    NASA Astrophysics Data System (ADS)

    Selmaoui, Nazha; Rouet, Isabelle; Mahot, Mélanie

    2009-01-01

    The geologist try to understand relationship between soil erosion observed and natural landscape structure. Erosion can effectively appears in the vicinity of linear or planar structures of soil (lines, faults or materials change). Once eroded areas are mapped, an inventory of relief linear shapes is done. The crossing geomorphological analysis with other environmental parameters allows to predict the becoming eroded areas. Lineaments detection is usually made by photointerpretation. DEM (Digital Elevation Model) visual analysis is another alternative but not sufficient, so it uses the derived models from DEM called hillshade images. The DEM is lighted up by a virtual source with a direction and height incidence. A good study require a complete lightings visual interpretation which is very slow and subjective. This paper propose an automatic process that help geologist to detect and analyse the geomorphological structures present in the landscape by using image analysis methods. This study focus on lines and catchments basins structures. First a new watershed and catchments basins segmentation method is developed it defines an attractive structure between pixels (based on path of steepest slope). After these lines are automatically extracted by Hough transform and their preferential direction is analysed by a technique called directions rose. Some results are given on DEM and Hillshade images for a particular areas of the main New Caledonia island where soil erosion is a serious problem mainly due to tropical weather (violent rains) and human activities (mining, bush fire) on the weathered rocks (laterites) in mountain.

  4. Soil temperature calculation for burial site analysis.

    PubMed

    Prangnell, Jonathan; McGowan, Glenys

    2009-10-30

    The effect of air and water temperature upon the decomposition of human remains and upon biological activity has been extensively studied. However, less attention has been devoted to the temperature of the soil surrounding burials, despite its potential influence upon chemical reactions involved in the decomposition of human remains, drugs and toxins, as well as upon microbial and insect activity. A soil temperature calculation equation usually employed in civil engineering was used to calculate soil temperature at various depths in a cemetery located in Brisbane, Australia, in order to explain the extensive degradation of human remains and funerary objects observed at exhumation. The results showed that for the 160 years of the site's history, ground temperature at burial level had been sufficiently high for biological activity and chemical degradation reactions to continue right up until the time of exhumation. The equation used has potential in the analysis of both cemetery and clandestine burials, since it allows ground temperature to be calculated from ambient air temperature figures, for a variety of depths, soil types and vegetation conditions. PMID:19656646

  5. A concise method for mine soils analysis

    SciTech Connect

    Winkler, S.; Wildeman, T.; Robinson, R.; Herron, J.

    1999-07-01

    A large number of abandoned hard rock mines exist in Colorado and other mountain west states, many on public property. Public pressure and resulting policy changes have become a driving force in the reclamation of these sites. Two of the key reclamation issues for these sites in the occurrence of acid forming materials (AFMs) in mine soils, and acid mine drainage (AMD) issuing from mine audits. An AMD treatment system design project for the Forest Queen mine in Colorado's San Juan mountains raised the need for a simple, useable method for analysis of mine land soils, both for suitability as a construction material, and to determine the AFM content and potential for acid release. The authors have developed a simple, stepwise, go - no go test for the analysis of mine soils. Samples were collected from a variety of sites in the Silverton, CO area, and subjected to three tiers of tests including: paste pH, Eh, and 10% HCl fizz test; then total digestion in HNO{sub 3}/HCl, neutralization potential, exposure to meteoric water, and toxicity content leaching procedure (TCLP). All elemental analyses were performed with an inductively-coupled plasma (ICP) spectrometer. Elimination of samples via the first two testing tiers left two remaining samples, which were subsequently subjected to column and sequential batch tests, with further elemental analysis by ICP. Based on these tests, one sample was chosen for suitability as a constructing material for the Forest Queen treatment system basins. Further simplification, and testing on two pairs of independent soil samples, has resulted in a final analytical method suitable for general use.

  6. Effects of nitrate and water on the oxygen isotopic analysis of barium sulfate precipitated from solution

    USGS Publications Warehouse

    Hannon, Janet E.; Bohlke, Johnkarl F.; Mroczkowski, Stanley J.

    2008-01-01

    BaSO4 precipitated from mixed salt solutions by common techniques for SO isotopic analysis may contain quantities of H2O and NOthat introduce errors in O isotope measurements. Experiments with synthetic solutions indicate that δ18O values of CO produced by decomposition of precipitated BaSO4 in a carbon reactor may be either too low or too high, depending on the relative concentrations of SO and NO and the δ18O values of the H2O, NO, and SO. Typical δ18O errors are of the order of 0.5 to 1‰ in many sample types, and can be larger in samples containing atmospheric NO, which can cause similar errors in δ17O and Δ17O. These errors can be reduced by (1) ion chromatographic separation of SO from NO, (2) increasing the salinity of the solutions before precipitating BaSO4 to minimize incorporation of H2O, (3) heating BaSO4 under vacuum to remove H2O, (4) preparing isotopic reference materials as aqueous samples to mimic the conditions of the samples, and (5) adjusting measured δ18O values based on amounts and isotopic compositions of coexisting H2O and NO. These procedures are demonstrated for SO isotopic reference materials, synthetic solutions with isotopically known reagents, atmospheric deposition from Shenandoah National Park, Virginia, USA, and sulfate salt deposits from the Atacama Desert, Chile, and Mojave Desert, California, USA. These results have implications for the calibration and use of O isotope data in studies of SOsources and reaction mechanisms.

  7. Molecular analysis of the human SLC13A4 sulfate transporter gene promoter

    SciTech Connect

    Jefferis, J.; Rakoczy, J.; Simmons, D.G.; Dawson, P.A.

    2013-03-29

    Highlights: ► Basal promoter activity of SLC13A4 −57 to −192 nt upstream of transcription initiation site. ► Human SLC13A4 5′-flanking region has conserved motifs with other placental species. ► Putative NFY, SP1 and KLF7 motifs in SLC13A4 5′-flanking region enhance transcription. -- Abstract: The human solute linked carrier (SLC) 13A4 gene is primarily expressed in the placenta where it is proposed to mediate the transport of nutrient sulfate from mother to fetus. The molecular mechanisms involved in the regulation of SLC13A4 expression remain unknown. To investigate the regulation of SLC13A4 gene expression, we analysed the transcriptional activity of the human SLC13A4 5′-flanking region in the JEG-3 placental cell line using luciferase reporter assays. Basal transcriptional activity was identified in the region −57 to −192 nucleotides upstream of the SLC13A4 transcription initiation site. Mutational analysis of the minimal promoter region identified Nuclear factor Y (NFY), Specificity protein 1 (SP1) and Krüppel like factor 7 (KLF7) motifs which conferred positive transcriptional activity, as well as Zinc finger protein of the cerebellum 2 (ZIC2) and helix–loop–helix protein 1 (HEN1) motifs that repressed transcription. The conserved NFY, SP1, KLF7, ZIC2 and HEN1 motifs in the SLC13A4 promoter of placental species but not in non-placental species, suggests a potential role for these putative transcriptional factor binding motifs in the physiological control of SLC13A4 mRNA expression.

  8. Genome sequence of the model sulfate reducer Desulfovibrio gigas: a comparative analysis within the Desulfovibrio genus*

    PubMed Central

    Morais-Silva, Fabio O; Rezende, Antonio Mauro; Pimentel, Catarina; Santos, Catia I; Clemente, Carla; Varela–Raposo, Ana; Resende, Daniela M; da Silva, Sofia M; de Oliveira, Luciana Márcia; Matos, Marcia; Costa, Daniela A; Flores, Orfeu; Ruiz, Jerónimo C; Rodrigues-Pousada, Claudina

    2014-01-01

    Desulfovibrio gigas is a model organism of sulfate-reducing bacteria of which energy metabolism and stress response have been extensively studied. The complete genomic context of this organism was however, not yet available. The sequencing of the D. gigas genome provides insights into the integrated network of energy conserving complexes and structures present in this bacterium. Comparison with genomes of other Desulfovibrio spp. reveals the presence of two different CRISPR/Cas systems in D. gigas. Phylogenetic analysis using conserved protein sequences (encoded by rpoB and gyrB) indicates two main groups of Desulfovibrio spp, being D. gigas more closely related to D. vulgaris and D. desulfuricans strains. Gene duplications were found such as those encoding fumarate reductase, formate dehydrogenase, and superoxide dismutase. Complexes not yet described within Desulfovibrio genus were identified: Mnh complex, a v-type ATP-synthase as well as genes encoding the MinCDE system that could be responsible for the larger size of D. gigas when compared to other members of the genus. A low number of hydrogenases and the absence of the codh/acs and pfl genes, both present in D. vulgaris strains, indicate that intermediate cycling mechanisms may contribute substantially less to the energy gain in D. gigas compared to other Desulfovibrio spp. This might be compensated by the presence of other unique genomic arrangements of complexes such as the Rnf and the Hdr/Flox, or by the presence of NAD(P)H related complexes, like the Nuo, NfnAB or Mnh. PMID:25055974

  9. THE ANALYSIS OF SUSPENDED PARTICULATES AND SULFATES: A WAY TO BEGIN

    EPA Science Inventory

    Total suspended particulate (TSP) and suspended sulfate (SS) levels have been sampled since November 1973 at five isolated sites across the Tennessee Valley. A method for beginning to analyze such data is demonstrated. This beginning is intended to lead finally to information on ...

  10. Analysis of vitamin E metabolites including carboxychromanols and sulfated derivatives using LC/MS/MS.

    PubMed

    Jiang, Qing; Xu, Tianlin; Huang, Jianjie; Jannasch, Amber S; Cooper, Bruce; Yang, Chao

    2015-11-01

    Tocopherols and tocotrienols are metabolized via hydroxylation and oxidation of their hydrophobic side chain to generate 13'-hydroxychromanols (13'-OHs) and various carboxychromanols, which can be further metabolized by conjugation including sulfation. Recent studies indicate that long-chain carboxychromanols, especially 13'-carboxychromanol (13'-COOH), appear to be more bioactive than tocopherols in anti-inflammatory and anticancer actions. To understand the potential contribution of metabolites to vitamin E-mediated effects, an accurate assay is needed to evaluate bioavailability of these metabolites. Here we describe an LC/MS/MS assay for quantifying vitamin E metabolites using negative polarity ESI. This assay includes a reliable sample extraction procedure with efficacy of ≥ 89% and interday/intraday variation of 3-11% for major metabolites. To ensure accurate quantification, short-chain, long-chain, and sulfated carboxychromanols are included as external/internal standards. Using this assay, we observed that sulfated carboxychromanols are the primary metabolites in the plasma of rodents fed with γ-tocopherol or δ-tocopherol. Although plasma levels of 13'-COOHs and 13'-OHs are low, high concentrations of these compounds are found in feces. Our study demonstrates an LC/MS/MS assay for quantitation of sulfated and unconjugated vitamin E metabolites, and this assay will be useful for evaluating the role of these metabolites in vivo. PMID:26351363

  11. Analysis of sperm antigens by sodium dodecyl sulfate gel/protein blot radioimmunobinding method

    SciTech Connect

    Lee, C.Y.G.; Huang, Y.S.; Hu, P.C.; Gomel, V.; Menge, A.C.

    1982-06-01

    A radioimmunobinding method based on the blotting of renatured proteins from sodium dodecyl sulfate gels on to nitrocellulose filter papers was developed to analyze the sperm antigens that elicit serum anti-sperm antibodies. In rabbits, serum anti-sperm antibodies were raised by immunization with homologous epididymal spermatozoa mixed with complete Freund's adjuvant. The raised antisera from either male or female rabbits were shown to react with three major sperm protein bands on sodium dodecyl sulfate gels with the corresponding molecular weights of about 70,000 +/- 5000, 14,000, and 13,000, respectively. In humans, the monoclonal antibodies against human sperm were raised by a hybridoma technique. Out of six independent hybrid cell lines that were generated, three of them were shown to secrete immunoglobulins that react with the same two protein bands on sodium dodecyl sulfate gels, which have the approximate molecular weight of 10,000. The same procedure was also used to analyze human serum samples that were shown to contain anti-sperm antibodies by the known techniques. Unique sperm antigens that elicit anti-sperm antibodies in humans were identified and correlated. The results of this study suggest that sodium dodecyl sulfate gel/protein blot radioimmunobinding method may be a sensitive and useful tool for the study of sperm antigens that elicit autoimmune responses and their association with human infertility.

  12. Advanced multivariate analysis to assess remediation of hydrocarbons in soils.

    PubMed

    Lin, Deborah S; Taylor, Peter; Tibbett, Mark

    2014-10-01

    Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation. PMID:25028320

  13. CADMIUM SULFATE APPLICATION TO SLUDGE-AMENDED SOILS. 1. EFFECT ON YIELD AND CADMIUM AVAILABILITY TO PLANTS

    EPA Science Inventory

    Twelve paired soils (only one of each pair having a history of sludge application) with pH values ranging from 3.9 to 7.4 were amended with CdSO4 in a growth chamber experiment. Three crops of Swiss chard (Beta vulgaris var. cicla) and one crop of corn (Zea mays L) were sequentia...

  14. Monitoring the soil degradation by Metastatistical Analysis

    NASA Astrophysics Data System (ADS)

    Oleschko, K.; Gaona, C.; Tarquis, A.

    2009-04-01

    The effectiveness of fractal toolbox to capture the critical behavior of soil structural patterns during the chemical and physical degradation was documented by our numerous experiments (Oleschko et al., 2008 a; 2008 b). The spatio-temporal dynamics of these patterns was measured and mapped with high precision in terms of fractal descriptors. All tested fractal techniques were able to detect the statistically significant differences in structure between the perfect spongy and massive patterns of uncultivated and sodium-saline agricultural soils, respectively. For instance, the Hurst exponent, extracted from the Chernozeḿ micromorphological images and from the time series of its physical and mechanical properties measured in situ, detected the roughness decrease (and therefore the increase in H - from 0.17 to 0.30 for images) derived from the loss of original structure complexity. The combined use of different fractal descriptors brings statistical precision into the quantification of natural system degradation and provides a means for objective soil structure comparison (Oleschko et al., 2000). The ability of fractal parameters to capture critical behavior and phase transition was documented for different contrasting situations, including from Andosols deforestation and erosion, to Vertisols high fructuring and consolidation. The Hurst exponent is used to measure the type of persistence and degree of complexity of structure dynamics. We conclude that there is an urgent need to select and adopt a standardized toolbox for fractal analysis and complexity measures in Earth Sciences. We propose to use the second-order (meta-) statistics as subtle measures of complexity (Atmanspacher et al., 1997). The high degree of correlation was documented between the fractal and high-order statistical descriptors (four central moments of stochastic variable distribution) used to the system heterogeneity and variability analysis. We proposed to call this combined fractal

  15. Confirmation of Soluble Sulfate at the Phoenix Landing Site: Implications for Martian Geochemistry and Habitability

    NASA Technical Reports Server (NTRS)

    Kounaves, S. P.; Hecht, M. H.; Kapit, J.; Quinn, R. C.; Catling, D. C.; Clark, B. C.; Ming, D. W.; Gospodinova, K.; Hredzak, P.; McElhoney, K.; Shusterman, J.

    2010-01-01

    Over the past several decades, elemental sulfur in martian soils and rocks has been detected by a number of missions using X-ray spectroscopy [1-3]. Optical spectroscopy has also provided evidence for widespread sulfates on Mars [4,5]. The ubiquitous presence of sulfur in soils has been interpreted as a widely distributed sulfate mineralogy [6]. However, direct confirmation as to the identity and solubility of the sulfur species in martian soil has never been obtained. One goal of the Wet Chemistry Laboratory (WCL) [7] on board the 2007 Phoenix Mars Lander [8] was to determine soluble sulfate in the martian soil. The WCL received three primary samples. Each sample was added to 25 mL of leaching solution and analysed for solvated ionic species, pH, and conductivity [9,10]. The analysis also showed a discrepancy between charge balance, ionic strength, and conductivity, suggesting unidentified anionic species.

  16. Cadmium sulfate application to sludge-amended soils: II. Extraction of Cd, Zn, and Ma from solid phases

    SciTech Connect

    Mahler, R.J. ); Ryan, J.A. )

    1988-01-01

    Cadmium, Zn and Mn in eleven paired soils (one which had a history of sludge application and a control from adjacent land where sludge had not been used) were partitioned into five fractions: exchangeable, adsorbed, organically bound, carbonate bound and sulfide, by the use of KNO{sub 3}, H{sub 2}O, NaHO, EDTA and HNO{sub 3}, respectively. The data indicate that the major portion of the total metals was found in the carbonate, sulfide and organic fractions. Addition of CaCO{sub 3} caused an increase in the exchangeable + soluble fractions of added Cd in the soils, but had little effect on native or sludge derived Cd.

  17. In-situ soil carbon analysis using inelastic neutron scattering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...

  18. Analysis of reversibility and reaction products of glyoxal uptake onto ammonium sulfate aerosol

    NASA Astrophysics Data System (ADS)

    Galloway, M. M.; Chhabra, P. S.; Chan, A. W.; Surratt, J. D.; Kwan, A. J.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.; Keutsch, F. N.

    2009-04-01

    Glyoxal, the smallest alpha-dicarbonyl, is an oxidation product of both biogenic and anthropogenic volatile organic compounds (Fu et al. JGR 113, D15303, 2008). Despite its low molecular weight, its role in secondary organic aerosol (SOA) formation has gained interest and a recent study suggested that it accounts for more than 15% of SOA in Mexico City (Volkamer et al. GRL 34, L19807, 2007). Despite numerous previous studies, questions remain regarding the processes controlling glyoxal uptake onto aerosol, including the role of acid catalysis, degree of reversibility, and identity of aerosol phase reaction products. We present results of chamber aerosol studies (Galloway et al. ACPD 8, 20799, 2008) and laboratory studies of bulk samples aimed at improving the understanding of these processes, in particular formation of oligomers and organosulfates of glyoxal, as well as the formation of imidazoles (carbon-nitrogen containing heterocyclic aromatic compounds) under dark and irradiated conditions. The relevance of these classes of reaction products extends beyond glyoxal, as evidence of oligomers and organosulfates other than those of glyoxal have been found in ambient aerosol (Surratt et al. JPCA 112, 8345, 2008; Denkenberger et al. Environ. Sci. Technol. 41, 5439, 2007). Experiments in which a chamber air mass was diluted after equilibration of glyoxal uptake onto ammonium sulfate seed aerosol (relative humidity 60% and glyoxal mixing ratios of 25-200 ppbv) shows that under these conditions uptake is reversible. The most important condensed phase products are hydrated oligomers of glyoxal, which are also formed reversibly under these conditions. Our studies show that organosulfates were not formed under dark conditions for neutral or acidified aerosol; similarly, Minerath et al. have recently shown that formation of a different class of organosulfates (alkyl sulfates) also proceeds very slowly even under acidic conditions (Environ. Sci. Technol. 42, 4410, 2008). The

  19. Analysis of ammonium sulfate circulation tank failure -- Possible causes and their remediation

    SciTech Connect

    O`Hearn, R.J.

    1997-12-31

    Acme steel manufactures a liquid solution of ammonium sulphate by scrubbing the coke oven gas with a dilute solution of sulphuric acid. When the bath reaches a predetermined specific gravity, it is isolated from the system, neutralized with aqua ammonia, pumped to the shipping tanks, re-charged with water and acid, then placed back in service. To improve the ammonia removal efficiency, three circulation tanks are used in this system. In June 1996, the volume of two of the sulfate solution tanks in the ammonia removal plant were increased by two different pressure events. The first tank was damaged by pressure that was not relieved due to a plugged vent line. The second tank was damaged by a pressure event generated during the process of making ammonium sulfate. This paper will discuss the cause of the second tank`s failure, and the design solution to restart the operation of the plant.

  20. Variations in aqueous sulfate concentrations at Panola Mountain, Georgia

    USGS Publications Warehouse

    Shanley, J.B.; Peters, N.E.

    1993-01-01

    Aqueous sulfate concentrations were measured in incident precipitation, canopy throughfall, stemflow, soil water, groundwater, and streamwater at three locations in a 41 ha forested watershed at Panola Mountain State Park in the Georgia Piedmont. To evaluate the variations in sulfate concentrations, sampling intensity was increased during storms by automated collection of surface water and by incremental subsampling of rainfall, throughfall, and soil solution. Canopy throughfall, stemflow, and runoff from a bedrock outcrop in the watershed headwaters were enriched in sulfate relative to incident precipitation due to washoff of dry deposition that accumulated between storms. Soil waters collected from zero-tension lysimeters at 15 cm and 50 cm below land surface also were enriched in sulfate relative to precipitation, groundwater and streamwater. Sulfate concentrations in groundwater and in streamwater at base flow varied in an annual sinusoidal pattern with winter maxima and summer minima. Stream discharge and groundwater levels varied in a similar annual pattern in phase with the sulfate concentrations. The temporal variability of sulfate concentrations at most groundwater sites was small relative to the spatial variability among groundwater sites. Streamwater sulfate concentrations during base flow were controlled by low-sulfate groundwater discharge. As flow increased, an increasing proportion of shallow, high-sulfate groundwater and soil water contributed to streamflow. The dominant control on stream sulfate concentration shifted from sulfate retention by adsorption in the mineral soil at base flow to mobilization of sulfate from the upper, organic-rich horizons of the soil at high flow. ?? 1993.

  1. Analysis of perfluorinated carboxylic acids in soils II: optimization of chromatography and extraction.

    PubMed

    Washington, John W; Henderson, W Matthew; Ellington, J Jackson; Jenkins, Thomas M; Evans, John J

    2008-02-15

    With the objective of detecting and quantitating low concentrations of perfluorinated carboxylic acids (PFCAs), including perfluorooctanoic acid (PFOA), in soils, we compared the analytical suitability of liquid chromatography columns containing three different stationary phases, two different liquid chromatography-tandem mass spectrometry (LC/MS/MS) systems, and eight combinations of sample-extract pretreatments, extractions and cleanups on three test soils. For the columns and systems we tested, we achieved the greatest analytical sensitivity for PFCAs using a column with a C(18) stationary phase in a Waters LC/MS/MS. In this system we achieved an instrument detection limit for PFOA of 270 ag/microL, equating to about 14 fg of PFOA on-column. While an elementary acetonitrile/water extraction of soils recovers PFCAs effectively, natural soil organic matter also dissolved in the extracts commonly imparts significant noise that appears as broad, multi-nodal, asymmetric peaks that coelute with several PFCAs. The intensity and elution profile of this noise is highly variable among soils and it challenges detection of low concentrations of PFCAs by decreasing the signal-to-noise contrast. In an effort to decrease this background noise, we investigated several methods of pretreatment, extraction and cleanup, in a variety of combinations, that used alkaline and unbuffered water, acetonitrile, tetrabutylammonium hydrogen sulfate, methyl-tert-butyl ether, dispersed activated carbon and solid-phase extraction. For the combined objectives of complete recovery and minimization of background noise, we have chosen: (1) alkaline pretreatment; (2) extraction with acetonitrile/water; (3) evaporation to dryness; (4) reconstitution with tetrabutylammonium-hydrogen-sulfate ion-pairing solution; (5) ion-pair extraction to methyl-tert-butyl ether; (6) evaporation to dryness; (7) reconstitution with 60/40 acetonitrile/water (v/v); and (8) analysis by LC/MS/MS. Using this method, we

  2. Metatranscriptomic analysis of arctic peat soil microbiota.

    PubMed

    Tveit, Alexander T; Urich, Tim; Svenning, Mette M

    2014-09-01

    Recent advances in meta-omics and particularly metatranscriptomic approaches have enabled detailed studies of the structure and function of microbial communities in many ecosystems. Molecular analyses of peat soils, ecosystems important to the global carbon balance, are still challenging due to the presence of coextracted substances that inhibit enzymes used in downstream applications. We sampled layers at different depths from two high-Arctic peat soils in Svalbard for metatranscriptome preparation. Here we show that enzyme inhibition in the preparation of metatranscriptomic libraries can be circumvented by linear amplification of diluted template RNA. A comparative analysis of mRNA-enriched and nonenriched metatranscriptomes showed that mRNA enrichment resulted in a 2-fold increase in the relative abundance of mRNA but biased the relative distribution of mRNA. The relative abundance of transcripts for cellulose degradation decreased with depth, while the transcripts for hemicellulose debranching increased, indicating that the polysaccharide composition of the peat was different in the deeper and older layers. Taxonomic annotation revealed that Actinobacteria and Bacteroidetes were the dominating polysaccharide decomposers. The relative abundances of 16S rRNA and mRNA transcripts of methanogenic Archaea increased substantially with depth. Acetoclastic methanogenesis was the dominating pathway, followed by methanogenesis from formate. The relative abundances of 16S rRNA and mRNA assigned to the methanotrophic Methylococcaceae, primarily Methylobacter, increased with depth. In conclusion, linear amplification of total RNA and deep sequencing constituted the preferred method for metatranscriptomic preparation to enable high-resolution functional and taxonomic analyses of the active microbiota in Arctic peat soil. PMID:25015892

  3. Metatranscriptomic Analysis of Arctic Peat Soil Microbiota

    PubMed Central

    Tveit, Alexander T.

    2014-01-01

    Recent advances in meta-omics and particularly metatranscriptomic approaches have enabled detailed studies of the structure and function of microbial communities in many ecosystems. Molecular analyses of peat soils, ecosystems important to the global carbon balance, are still challenging due to the presence of coextracted substances that inhibit enzymes used in downstream applications. We sampled layers at different depths from two high-Arctic peat soils in Svalbard for metatranscriptome preparation. Here we show that enzyme inhibition in the preparation of metatranscriptomic libraries can be circumvented by linear amplification of diluted template RNA. A comparative analysis of mRNA-enriched and nonenriched metatranscriptomes showed that mRNA enrichment resulted in a 2-fold increase in the relative abundance of mRNA but biased the relative distribution of mRNA. The relative abundance of transcripts for cellulose degradation decreased with depth, while the transcripts for hemicellulose debranching increased, indicating that the polysaccharide composition of the peat was different in the deeper and older layers. Taxonomic annotation revealed that Actinobacteria and Bacteroidetes were the dominating polysaccharide decomposers. The relative abundances of 16S rRNA and mRNA transcripts of methanogenic Archaea increased substantially with depth. Acetoclastic methanogenesis was the dominating pathway, followed by methanogenesis from formate. The relative abundances of 16S rRNA and mRNA assigned to the methanotrophic Methylococcaceae, primarily Methylobacter, increased with depth. In conclusion, linear amplification of total RNA and deep sequencing constituted the preferred method for metatranscriptomic preparation to enable high-resolution functional and taxonomic analyses of the active microbiota in Arctic peat soil. PMID:25015892

  4. Dimethyl sulfate

    Integrated Risk Information System (IRIS)

    Dimethyl sulfate ; CASRN 77 - 78 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  5. Diethyl sulfate

    Integrated Risk Information System (IRIS)

    Diethyl sulfate ; CASRN 64 - 67 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  6. Chondroitin sulfate

    MedlinePlus

    Natural Medicines Comprehensive Database rates effectiveness based on scientific evidence according to the following scale: Effective, Likely ... The following doses have been studied in scientific research: BY MOUTH: ... dose of chondroitin sulfate is 800-2000 mg taken as a single dose or in two ...

  7. Chemistry of atmospheric precipitation in the north-central united states: Influence of sulfate, nitrate, ammonia and calcareous soil particulates

    NASA Astrophysics Data System (ADS)

    Munger, James William

    The supply of alkaline soil dust and gaseous NH 3 available to neutralize anthropogenic acids in the atmosphere controls the acidity of precipitation in the north-central United States. Major ions and trace metals were determined in precipitation-event and snow-core samples from sites along a 600 km transect from the North Dakota prairie to the forests of northeastern Minnesota, collected during the period April 1978-June 1979. Acidity increased 4-fold from west to east as the effect of alkaline dust and NH 3 decreased with increasing distance from the cultivated prairie; calcium and Mg 2+ decreased 2 to 3-fold across the transect. However, minimum concentrations of NH 4+ and SO 42- were observed at Itasca, the central site. Natural emissions of these elements were important in the west, while anthropogenic emissions were responsible for the higher concentrations in the east. Wet deposition of H + decreased 8-fold and deposition of NO 3- and SO 42- decreased 1.5 to 2-fold from Hovland in the east to Tewaukon in the west. Wet deposition of the metal cations increased from Hovland to Tewaukon. Dry deposition followed a similar trend. Winter snow cover and freezing temperatures, which decreased airborne soil dust and the evolution of NH 3 from the prairie soils, led to an increase in precipitation acidity at all sites. The acid increase was accompanied by a decrease in alkaline metal cations, especially Ca 2+, and in NH 4+. At Hovland SO 42- and NO 3- also increased during the winter. The occurrence of snow events at Tewaukon that were appreciably more acid than the snowpack accumulated there indicates that snow was neutralized after it fell by alkaline dust entrained in resuspended snow, or deposited separately. Winter inputs of acid are especially important because they are released during a short period in the spring. Over half of the acid input at Hovland occurred during the winter. Precipitation inputs of P and N probably benefit nutrient-poor ecosystems in the

  8. Triple-Oxygen Isotope Analyses of Sulfate Occluded in Caliches

    NASA Astrophysics Data System (ADS)

    Howell, K. J.; Bao, H.

    2005-12-01

    Sulfate is the ultimate sink of atmospheric sulfur compounds and can provide important information about atmospheric compositions and processes. For example, ozone signatures are readily recorded in sulfate of atmospheric origin; however, atmospheric sulfate is rarely preserved in geologic records because it is extremely soluble and easily carried away by surface water. The only known cases of preserved atmospheric sulfate are in old, hyperarid desert surfaces like the Atacama Desert and the Antarctic Dry Valleys. Caliches, pedogenically formed calcite-rich layers or nodules in semi-arid to arid environments, could be potential reservoirs for preserving atmospheric sulfate because of the relatively dry climate in the regions where caliche forms. Here, two types of caliche are examined: modern caliche formed on limestones, basalts, and rhyolites in western Texas and New Mexico and fossil caliche formed on late-Cenozoic volcaniclastic deposits in western Nebraska. Analysis of the modern samples shows generally high caliche-associated sulfate (CAS) concentrations ranging from ~100 to 2000 ppm, with caliche developed on limestone having some of the highest concentrations and those formed on basalts and rhyolites having some of the lowest. Triple-oxygen stable isotope measurements show that the CAS has Δ 17O values (i.e., 17O-anomaly) ranging from -0.1 to 0.7 ‰ with higher 17O anomalies associated with igneous parent materials. Analysis of the fossil caliches from western Nebraska reveals CAS concentrations ranging from ~10 to 300 ppm and Δ 17O values ranging from 0.5 to 2.3 ‰. These data suggest atmospheric sulfate has survived the soil processes unaltered before being incorporated into solid caliche formation. Further confirmation of atmospheric sulfate records in much older caliches may lead to a new proxy for probing ancient atmospheric compositions and chemical processes.

  9. Analysis of grounding systems in soils with hemispherical layering

    SciTech Connect

    Ma, J.; Dawalibi, F.P. ); Daily, W.K. )

    1993-10-01

    A theoretical model for the analysis of grounding systems located inside or near hemispherical soil heterogeneities is presented for the first time. Exact closed-form analytical expressions for the earth potential calculations due to current sources in different regions of this soil structure have been obtained. Numerical results are presented for different grounding systems and for different types of hemispherical soil volumes. The results clearly show that these finite hemispherical soil heterogeneities have a significant influence on the performance of grounding systems. The results obtained are in agreement with well known simple case results and converge asymptotically to the uniform soil case.

  10. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors.

    PubMed

    Villa-Gomez, D K; Cassidy, J; Keesman, K J; Sampaio, R; Lens, P N L

    2014-03-01

    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4(2-) ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing bioreactors. The sulfide was measured using a sulfide ion selective electrode (pS) and the values obtained were used to calculate proportional-integral-derivative (PID) controller parameters. The experiments were performed in an inverse fluidized bed bioreactor with automated operation using the LabVIEW software version 2009(®). A rapid response and high sulfide increment was obtained through a stepwise increase in the CODin concentration, while a stepwise decrease to the HRT exhibited a slower response with smaller sulfide increment. Irrespective of the way the OLR was decreased, the pS response showed a time-varying behavior due to sulfide accumulation (HRT change) or utilization of substrate sources that were not accounted for (CODin change). The pS electrode response, however, showed to be informative for applications in sulfate reducing bioreactors. Nevertheless, the recorded pS values need to be corrected for pH variations and high sulfide concentrations (>200 mg/L). PMID:24361702

  11. Infrared Spectroscopic Analyses of Sulfate, Nitrate, and Carbonate-bearing Atacama Desert Soils: Analogs for the Interpretation of Infrared Spectra from the Martian Surface

    NASA Technical Reports Server (NTRS)

    Dalton, J. B.; Dalton, J. B.; Ewing, S. A.; Amundson, R.; McKay, C. P.

    2005-01-01

    The Atacama Desert of northern Chile is the driest desert on Earth, receiving only a few mm of rain per decade. The Mars climate may, in the past, have been punctuated by short-lived episodes of aqueous activity. The paleo-Martian environment may have had aqueous conditions similar to the current conditions that exist in the Atacama, and Mars soils may have formed with soil chemistry and mineralogy similar to those found in the Atacama. Remote and in-situ analysis of the Martian surface using infrared technology has a long heritage. Future investigations of the subsurface mineralogy are likely to build upon this heritage, and will benefit from real life lessons to be learned from terrestrial analog studies. To that end, preliminary results from a near- and mid-infrared spectroscopic study of Atacama soil profiled at a range of depths are presented.

  12. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    NASA Astrophysics Data System (ADS)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  13. Recent advances in (soil moisture) triple collocation analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To date, triple collocation (TC) analysis is one of the most important methods for the global scale evaluation of remotely sensed soil moisture data sets. In this study we review existing implementations of soil moisture TC analysis as well as investigations of the assumptions underlying the method....

  14. Conceptual designs for in situ analysis of Mars soil

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Zent, A. P.; Hartman, H.

    1991-01-01

    A goal of this research is to develop conceptual designs for instrumentation to perform in situ measurements of the Martian soil in order to determine the existence and nature of any reactive chemicals. Our approach involves assessment and critical review of the Viking biology results which indicated the presence of a soil oxidant, an investigation of the possible application of standard soil science techniques to the analysis of Martian soil, and a preliminary consideration of non-standard methods that may be necessary for use in the highly oxidizing Martian soil. Based on our preliminary analysis, we have developed strawman concepts for standard soil analysis on Mars, including pH, suitable for use on a Mars rover mission. In addition, we have devised a method for the determination of the possible strong oxidants on Mars.

  15. Fe and S K-edge XAS determination of iron-sulfur species present in a range of acid sulfate soils: Effects of particle size and concentration on quantitative XANES determinations

    NASA Astrophysics Data System (ADS)

    Morgan, Kate E.; Burton, Edward D.; Cook, Perran; Raven, Mark D.; Fitzpatrick, Robert W.; Bush, Richard; Sullivan, Leigh A.; Hocking, Rosalie K.

    2009-11-01

    Acid sulfate soils (ASS) are soils and soft sediments in which sulfuric acid may be produced from iron sulfides or have been produced leaving iron oxyhydroxysulfates in amounts that have a long lasting effect on soil characteristics. If soil material is exposed to rotting vegetation or other reducing material, the Fe-oxyhydroxysulfates can be bacterially reduced to sulfides including disulfides (pyrite and marcasite), and Monosulfidic Black Ooze (MBO) a poorly characterised material known to be a mixture of iron sulfides (especially mackinawite) and organic matter. The chemistry of these environments is strongly affected by Fe and S cycling processes and herein we have sought to identify key differences in environments that occur as a function of Fe and S concentration. In addition to our chemical results, we have found that the effects of particle size on self absorption in natural sediments play an important role in the spectroscopic identification of the relative proportions of different species present.

  16. Formation of particulate sulfate and nitrate over the Pearl River Delta in the fall: Diagnostic analysis using the Community Multiscale Air Quality model

    NASA Astrophysics Data System (ADS)

    Qin, Momei; Wang, Xuesong; Hu, Yongtao; Huang, Xiaofeng; He, Lingyan; Zhong, Liuju; Song, Yu; Hu, Min; Zhang, Yuanhang

    2015-07-01

    In recent years, fine particulate matter (PM) pollution and visibility degradation have become severe air quality issues in China. In this study, PM2.5 pollution over the Pearl River Delta (PRD) region during January, April, August, and November 2009 was simulated using the Community Multiscale Air Quality (CMAQ) model. An in-depth diagnostic analysis, focused on November 2009, was also conducted to reveal the patterns of sulfate and nitrate distribution, and to identify the main factors that influence the formation of sulfate and nitrate under typical meteorological conditions. The CMAQ model reasonably reproduced the observed concentrations, but showed better performance for January and November than it did for April and August, for which there was light-moderate underestimation of SO2, NOx, O3, PM10, and PM2.5 concentrations, and slight overestimation of daily 8-h maximum concentrations of O3. Utilizing a sulfate tracking technique, it was found that on nearly 20 days in November 2009, characterized by northeasterly winds, cross-boundary transport contributed to >75% of the total sulfate budget, while local gas phase oxidation and primary emissions averaged 10% and 8%, respectively. Aqueous sulfate typically contributed less than 1% of the total sulfate budget, except when the winds were directed from the sea and high humidity favored aqueous oxidation, and the percentage contribution reached up to 46%. NH3 was generally sufficient to fully neutralize H2SO4; however, the formation of nitrate over the PRD was limited by the availability of NH3.

  17. Continuum soil modeling in the static analysis of buried structures

    SciTech Connect

    Julyk, L.J.; Marlow, R.S.; Moore, C.J.; Day, J.P.; Dyrness, A.D.

    1993-10-01

    Soil loading traditionally has been modeled as a hydrostatic pressure, a practice acceptable for many design applications. In the analyses of buried structure with predictive goals, soil compliance and load redistribution in the presence of soil plasticity are important factors to consider in determining the appropriate response of the structure. In the analysis of existing buried waste-storage tanks at the US Department of Energy`s Hanford Site, three soil-tank interaction modeling considerations are addressed. First, the soil interacts with the tank as the tank expands and contracts during thermal cycles associated with changes in the heat generated by the waste material as a result of additions and subtractions of the waste. Second, the soil transfers loads from the surface to the tank and provides support by resisting radial displacement of the tank haunch. Third, conventional finite-element mesh development causes artificial stress concentrations in the soil associated with differential settlement.

  18. Thermal analysis of whole soils and sediment.

    PubMed

    DeLapp, Rossane C; LeBoeuf, Eugene J

    2004-01-01

    Thermal analysis techniques were utilized to investigate the thermal properties of two soils and a lignite coal obtained from the International Humic Substances Society (IHSS), and sediment obtained from The Netherlands. Differential scanning calorimetry (DSC) revealed glass transition behavior of each sample at temperatures ranging from 52 degrees C for Pahokee peat (euic, hyperthermic Lithic Medisaprists), 55 degrees C for a Netherlands (B8) sediment, 64 degrees C for Elliott loam (fine, illitic, mesic Aquic Arguidolls), to 70 degrees C for Gascoyne leonardite. Temperature-modulated differential scanning calorimetry (TMDSC) revealed glass transition behavior at similar temperatures, and quantified constant-pressure specific heat capacity (Cp) at 0 degrees C from 0.6 J g(-1) degrees C(-1) for Elliott loam and 0.8 J g(-1) degrees C(-1) for the leonardite, to 1.0 J g(-1) degrees C(-1) for the peat and the sediment. Glass transition behavior showed no distinct correlation to elemental composition, although Gascoyne Leonardite and Pahokee peat each demonstrated glass transition behavior similar to that reported for humic acids derived from these materials. Thermomechanical analysis (TMA) revealed a large thermal expansion followed by a matrix collapse for each sample between 20 and 30 degrees C, suggesting the occurrence of transition behavior of unknown origin. Thermal transitions occurring at higher temperatures more representative of glass transition behavior were revealed for the sediment and the peat. PMID:14964387

  19. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    PubMed

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study. PMID:25269317

  20. Analysis of large soil samples for actinides

    DOEpatents

    Maxwell, III; Sherrod L.

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  1. Sulfates on Mars: Indicators of Aqueous Processes

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.

    2006-01-01

    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  2. Multi-Elemental Nuclear Analysis of soil reference material

    NASA Astrophysics Data System (ADS)

    Metairon, S.; Zamboni, C. B.; Medeiros, I. M. M. Amaral; Menezes, M. À. B. C.

    2011-08-01

    The elements concentration in the soil reference material (IAEA/SOIL-7) was obtained using the parametric Neutron Activation Analysis technique in the IEA-R1 nuclear reactor at IPEN (CNEN-SP). The results obtained were in good agreement with the respective nominal values from this reference material suggesting the viability of using this parametric procedure for environmental investigations.

  3. Stratigraphic Analysis of Phyllosilicate and Hydrated Sulfate Deposits Across the Margaritifer-Meridiani Boundary

    NASA Astrophysics Data System (ADS)

    Adler, J.; Bell, J. F., III

    2014-12-01

    We present a geologic map of the Miyamoto Crater region and analyze the stratigraphy of phyllosilicate and hydrated sulfate deposits. Miyamoto Crater is a 160-km impact crater to the southwest of the MER Opportunity rover landing site and marks the furthest southwestward extent of the Meridiani Planum materials, which bury approximately half of the crater. Existing high resolution geologic maps within our study region are available only for specific landing site locations, while lower resolution maps provide a more basic context for larger scale Meridiani Planum or Margaritifer Terra processes. We utilize CRISM high resolution FRT sequences (20m/pixel) and MSP strips (200m/pixel) of the D2300 and BD2100 parameters in order to help distinguish map units. We are producing a regional cross section, which ties candidate landing sites (west rim deposits, east Margaritifer chloride, and Opportunity Rover site) to a common geologic timeline. We determine map unit stratigraphy (relative ages) from superposition and cross cutting relationships we find in our 3D mosaic. We are building this regional mosaic from CTX and HiRISE imagery we overlay on HRSC DTM sequences. We discuss periods of aqueous alteration, deposition, and erosion throughout the mapped region to explain the mineralogic stratigraphy and geomorphology.

  4. Spectral study of interaction between chondroitin sulfate and nanoparticles and its application in quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Wei, Maojie; Zhang, Xiao; Zhao, Ting; Liu, Xiumei; Zhou, Guanglian

    2016-01-01

    In this work, the interaction between chondroitin sulfate (CS) and gold nanoparticles (GNPs) and silver nanoparticles (SNPs) was characterized for the first time. Plasma resonance scattering (PRS) and plasma resonance absorption (PRA) were used to investigate the characteristics of their spectrum. The results suggested that the CS with negative charge could interact with metal nanoparticles with negative charge and the adsorption of CS on the surface of SNPs was more regular than that of GNPs. The resonance scattering spectra also further confirmed the interaction between CS and SNPs. A new method for detection of CS based on the interaction was developed. CS concentrations in the range of 0.02-3.5 μg/mL were proportional to the decreases of absorbance of SNPs. Compared with other reported methods, the proposed method is simple and workable without complex process, high consumption and expensive equipments. The developed method was applied to the determination of the CS contents from different biological origins and the results were compared with those obtained by the method of Chinese Pharmacopeia. The effects of matrix in plasma and other glycosaminoglycans on the determination of CS were also investigated. The results showed that a small quantity of blood plasma had no effect on the determination of CS and when the concentration ratio of CS to heparin was more than 10:1, the influence of heparin on the detection of CS could be ignored. This work gave a specific research direction for the detection of CS in the presence of metal nanoparticles.

  5. A modified sulfate process to lunar oxygen

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    1992-01-01

    A modified sulfate process which produces oxygen from iron oxide-bearing minerals in lunar soil is under development. Reaction rates of ilmenite in varying strength sulfuric acid have been determined. Quantitative conversion of ilmenite to ferrous sulfate was observed over a range of temperatures and concentrations. Data has also been developed on the calcination of by-product sulfates. System engineering for overall operability and simplicity has begun, suggesting that a process separating the digestion and sulfate dissolution steps may offer an optimum process.

  6. Investigation of Biological Soil Crusts Metabolic Webs Using Exometabolomic Analysis

    NASA Astrophysics Data System (ADS)

    Northen, T.; Karaoz, U.; Jenkins, S.; Lau, R.; Bowen, B.; Cadillo-Quiroz, H.; Garcia-Pichel, F.; Brodie, E.; Richard, B.

    2014-12-01

    Desert biological soil crusts are simple cyanobacteria-dominated surface soil microbial communities found in areas with infrequent wetting, often extreme temperatures, low coverage of vascular plants and constitute the world's largest biofilm. They exist for extended periods in a desiccated dormant state, yet rapidly re-boot metabolism within minutes of wetting. These soil microbial communities are highly dependent on filamentous cyanobacteria such as Microcoleus vaginatusto stabilize the soil and to act as primary producers for the community through the release carbon sources to feed a diversity of heterotrophs. Exometabolomic analysis was performed using liquid chromatography coupled to tandem mass spectrometry on biological soil crust pore water and spent media of key soil bacterial isolates. Comparison of spent vs. fresh media was used to determine uptake or release of metabolites by specific microbes. To link pore water experiments with isolate studies, metabolite extracts of authentic soil were used as supplements for isolate exometabolomic profiling. Our soil metabolomics methods detected hundreds of metabolites from soils including may novel compounds. Only a small set of which being targeted by all isolates. Beyond these few metabolites, the individual bacteria examined showed specialization towards specific metabolites. Surprisingly, many of the most abundant oligosaccharides and other metabolites were ignored by these isolates. The observed specialization of biological soil crust bacteria may play a significant role in determining community structure.

  7. Analysis of remotely sensed data for detecting soil limitations

    NASA Technical Reports Server (NTRS)

    Benson, L. A.; Frazee, C. J.; Waltz, F. A.

    1973-01-01

    During 1971 and 1972 a detailed study was conducted on a fallow field in the proposed Oahe Irrigation Project to determine the relationship between the tonal variation observed on aerial photographs and the properties of eroded soil. Correlation and regression analysis of digitized, multiemulsion, color infrared film (2443) data and detailed field data revealed a highly significant correlation between film transmittance and several soil properties indicative of the erosion limitation. Computer classification of the multiemulsion film data resulted in maps portraying the eroded soil and the normal soil. Both correlation and computer classification results were best using the reflectance data from the red spectral band. The results showed film transmittance was actually measuring the reflectivity of the soil surface which was increased by the incorporation of the light colored, calcareous parent material exposed by erosion or tillage on soils with thin surface horizons.

  8. Metagenomic analysis of microbial community in uranium-contaminated soil.

    PubMed

    Yan, Xun; Luo, Xuegang; Zhao, Min

    2016-01-01

    Uranium tailing is a serious pollution challenge for the environment. Based on metagenomic sequencing analysis, we explored the functional and structural diversity of the microbial community in six soil samples taken at different soil depths from uranium-contaminated and uncontaminated areas. Kyoto Encyclopedia of Genes and Genomes Orthology (KO) groups were obtained using a Basic Local Alignment Search Tool search based on the universal protein resource database. The KO-pathway network was then constructed using the selected KOs. Finally, alpha and beta diversity analyses were performed to explore the differences in soil bacterial diversity between the radioactive soil and uncontaminated soil. In total, 30-68 million high-quality reads were obtained. Sequence assembly yielded 286,615 contigs; and these contigs mostly annotated to 1699 KOs. The KO distributions were similar among the six soil samples. Moreover, the proportion of the metabolism of other amino acids (e.g., beta-alanine, taurine, and hypotaurine) and signal transduction was significantly lower in radioactive soil than in uncontaminated soil, whereas the proportion of membrane transport and carbohydrate metabolism was higher. Additionally, KOs were mostly enriched in ATP-binding cassette transporters and two-component systems. According to diversity analyses, Actinobacteria and Proteobacteria were the dominant phyla in radioactive and uncontaminated soil, and Robiginitalea, Microlunatus, and Alicyclobacillus were the dominant genera in radioactive soil. Taken together, these results demonstrate that soil microbial community, structure, and functions show significant changes in uranium-contaminated soil. The dominant categories such as Actinobacteria and Proteobacteria may be applied in environmental governance for uranium-contaminated soil in southern China. PMID:26433967

  9. Spectral study of interaction between chondroitin sulfate and nanoparticles and its application in quantitative analysis.

    PubMed

    Ma, Yi; Wei, Maojie; Zhang, Xiao; Zhao, Ting; Liu, Xiumei; Zhou, Guanglian

    2016-01-15

    In this work, the interaction between chondroitin sulfate (CS) and gold nanoparticles (GNPs) and silver nanoparticles (SNPs) was characterized for the first time. Plasma resonance scattering (PRS) and plasma resonance absorption (PRA) were used to investigate the characteristics of their spectrum. The results suggested that the CS with negative charge could interact with metal nanoparticles with negative charge and the adsorption of CS on the surface of SNPs was more regular than that of GNPs. The resonance scattering spectra also further confirmed the interaction between CS and SNPs. A new method for detection of CS based on the interaction was developed. CS concentrations in the range of 0.02-3.5 μg/mL were proportional to the decreases of absorbance of SNPs. Compared with other reported methods, the proposed method is simple and workable without complex process, high consumption and expensive equipments. The developed method was applied to the determination of the CS contents from different biological origins and the results were compared with those obtained by the method of Chinese Pharmacopeia. The effects of matrix in plasma and other glycosaminoglycans on the determination of CS were also investigated. The results showed that a small quantity of blood plasma had no effect on the determination of CS and when the concentration ratio of CS to heparin was more than 10:1, the influence of heparin on the detection of CS could be ignored. This work gave a specific research direction for the detection of CS in the presence of metal nanoparticles. PMID:26363470

  10. Integrative analysis of the interactions between Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation

    NASA Astrophysics Data System (ADS)

    Barlett, M.; Zhuang, K.; Mahadevan, R.; Lovley, D. R.

    2011-11-01

    Enhancing microbial U(VI) reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI)-reducing Geobacter predominated and U(VI) was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB) predominated and U(VI) reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III) was depleted whereas the SRB grow more slowly and reached dominance after 30-40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III) would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III) availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.

  11. Integrative analysis of Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation

    NASA Astrophysics Data System (ADS)

    Barlett, M.; Zhuang, K.; Mahadevan, R.; Lovley, D.

    2012-03-01

    Enhancing microbial U(VI) reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI)-reducing Geobacter predominated and U(VI) was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB) predominated and U(VI) reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III) was depleted whereas the SRB grow more slowly and reached dominance after 30-40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III) would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III) availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.

  12. Theoretical crystal chemistry of M{sub x}(TO{sub 4}){sub y} sulfates and selenates: Topological analysis and classification of suprapolyhedral invariants

    SciTech Connect

    Ilyushin, G. D. Blatov, V. A.

    2006-05-15

    A geometric topological analysis of orthotetrahedral phases M{sub x}(TO{sub 4}){sub y} (T = S or Se) is performed for 46 sulfates and 17 selenates with the TOPOS 3.2 software package. The values of coordination sequences {l_brace}N{sub k}{r_brace} of T atoms are used as classification parameters of topologically different MTO nets. The crystal structures are analyzed within 12 coordination spheres of T sites and assigned to 26 topological types. It is established that only 7 types are common for the structures of sulfates and selenates, 16 types include only sulfates, and 3 types include only selenates. The average values of the bond lengths are determined: = 1.48(2) A and = 1.63(2) A. The hierarchical ordering of the crystal structure is performed using the concept of a polyhedral microensemble of the structure.

  13. The impact of soil compaction on runoff - a meta analysis

    NASA Astrophysics Data System (ADS)

    Rogger, Magdalena; Blöschl, Günter

    2016-04-01

    Soil compaction caused by intensive agricultural practices is known to influence runoff processes at the local scale and is often speculated to have an impact on flood events at much larger scales. Due to the complex and diverse mechanisms related to soil compaction, the key processes influencing runoff at different scales are still poorly understood. The impacts of soil compaction are, however, not only investigated by hydrologists, but also by agricultural scientists since changes in the soil structure and water availability have a direct impact on agricultural yield. Results from these studies are also of interest to hydrologists. This study presents a meta analysis of such agricultural studies with the aim to analyse and bring together the results related to runoff processes. The study identifies the most important parameters used to describe soil compaction effects and compares the observed impacts under different climatic and soil conditions. The specific type of agricultural practice causing the soil compaction is also taken into account. In a further step the results of this study shall be used to derive a toy model for scenario analysis in order to identify the potential impacts of soil compaction on runoff processes at larger scales then the plot scale.

  14. Genetic diversity analysis of faba bean (Vicia faba L.) germplasms using sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    PubMed

    Hou, W W; Zhang, X J; Shi, J B; Liu, Y J

    2015-01-01

    To investigate genetic diversity and relationships of 101 faba bean (Vicia faba L.), landraces and varieties from different provinces of China and abroad were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). A total of 2625 unambiguous and stable bands from 101 germplasms were detected, and 36 different bands were classified according to the electrophoretic mobility patterns of the proteins as determined by the SDS-PAGE analysis, of which 16 were polymorphic. Besides the common bands, the protein bands of 92, 75, 62, 40, 34, 17, and 13 kDa presented the highest frequencies of 92.08, 90.10, 99.01, 95.05, 95.05, 98.02, and 95.05%, respectively. The other 29 polymorphic protein bands showed higher polymorphism with 16.09 polymorphic bands in average. The genetic similarity of the 101 genotypes tested varied from 0.6111 to 0.9722, with an average of 0.7122. Cluster analysis divided the 101 genotypes into six major clusters, which was consistent with the systematic classification of faba bean done in previous studies. The overall results indicated that SDS-PAGE was a useful tool for genetic diversity analysis and laid a solid foundation for future faba bean breeding. PMID:26535710

  15. Evaluation of soil damping techniques used in soil structure interaction analysis of a nuclear power plant

    SciTech Connect

    Nelson, T.A.

    1982-02-24

    A prediction of dynamic soil properties at the site of a nuclear power plant plays a very important role in the seismic analysis of the facility. Conventional modal analysis procedures can accommodate virtually any range of equivalent elastic soil stiffness which is used to characterize the site. However, high radiation damping associated with energy dissipation in the soil half-space is difficult to accommodate in an elastic modal solution to the dynamic problem. Several methods are available to combine the soil damping with the structural damping in a composite modal damping coefficient. However, even with this convenient representation, the resulting large fractions of critical damping can make modal solutions to the problems suspect. This paper is based on experience gained in this area during studies performed for the Nuclear Regulatory Commission involving seismic analyses of power plants.

  16. A review of acid sulfate soil impacts, actions and policies that impact on water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity.

    PubMed

    Powell, B; Martens, M

    2005-01-01

    An estimated 666,000 ha of acid sulfate soils (ASS) occur within the Great Barrier Reef (GBR) catchments of Queensland, Australia. Extensive areas have been drained causing acidification, metal contamination, deoxygenation and iron precipitation in reef receiving waters. The close proximity of ASS to reef waters makes them a substantial threat to water quality. Another important issue linked with ASS is their release of soluble iron, which is known to stimulate nuisance marine algal blooms, in particular Lyngbya majuscula. Known blooms of the cyanobacteria in reef waters have been confirmed at Shoalwater Bay, Corio Bay, the Whitsunday area and Hinchinbrook Channel. Acid sulfate soils are intimately related to coastal wetland landscapes. Where landscapes containing ASS have been disturbed (such as for agriculture, aquaculture, marinas, etc.) the biodiversity of adjacent wetlands can be adversely affected. However, there is no clear knowledge of the real extent of the so-called "hotspot" ASS areas that occur within the GBR catchments. Management of ASS in reef catchments has benefited from the implementation of the Queensland Acid Sulfate Soils Management Strategy through policy development, mapping, training programs, an advisory service, research and community participation. However, major gaps remain in mapping the extent and nature of ASS. Areas of significant acidification (i.e. hotspots) need to be identified and policies developed for their remediation. Research has a critical role to play in understanding ASS risk and finding solutions, to prevent the adverse impacts that may be caused by ASS disturbance. A case study is presented of the East Trinity site near Cairns, a failed sugar cane development that episodically discharges large amounts of acid into Trinity Inlet, resulting in periodic fish kills. Details are presented of scientific investigations, and a lime-assisted tidal exchange strategy that are being undertaken to remediate a serious ASS problem

  17. Spectral reflectance of surface soils - A statistical analysis

    NASA Technical Reports Server (NTRS)

    Crouse, K. R.; Henninger, D. L.; Thompson, D. R.

    1983-01-01

    The relationship of the physical and chemical properties of soils to their spectral reflectance as measured at six wavebands of Thematic Mapper (TM) aboard NASA's Landsat-4 satellite was examined. The results of performing regressions of over 20 soil properties on the six TM bands indicated that organic matter, water, clay, cation exchange capacity, and calcium were the properties most readily predicted from TM data. The middle infrared bands, bands 5 and 7, were the best bands for predicting soil properties, and the near infrared band, band 4, was nearly as good. Clustering 234 soil samples on the TM bands and characterizing the clusters on the basis of soil properties revealed several clear relationships between properties and reflectance. Discriminant analysis found organic matter, fine sand, base saturation, sand, extractable acidity, and water to be significant in discriminating among clusters.

  18. Direct analysis of sialylated or sulfated glycosphingolipids and other polar and neutral lipids using TLC-MS interfaces[S

    PubMed Central

    Park, Hyejung; Zhou, Ying; Costello, Catherine E.

    2014-01-01

    Gangliosides and sulfatides (STs) are acidic glycosphingolipids (GSLs) that have one or more sialic acids or sulfate substituents, in addition to neutral sugars, attached to the C-1 hydroxyl group of the ceramide long chain base. TLC is a widely employed and convenient technique for separation and characterization of GSLs. When TLC is directly coupled to MS, it provides both the molecular mass and structural information without further purification. Here, after development of the TLC plates, the structural analyses of acidic GSLs, including gangliosides and STs, were investigated using the liquid extraction surface analysis (LESA™) and CAMAG TLC-MS interfaces coupled to an ESI QSTAR Pulsar i quadrupole orthogonal TOF mass spectrometer. Coupling TLC with ESI-MS allowed the acquisition of high resolution mass spectra of the acidic GSLs with high sensitivity and mass accuracy, without the loss of sialic acid residues that frequently occurs during low-pressure MALDI MS. These systems were then applied to the analysis of total lipid extracts from bovine brain. This allowed profiling of many different lipid classes, not only gangliosides and STs, but also SMs, neutral GSLs, and phospholipids. PMID:24482490

  19. Real-time cell analysis: sensitivity of different vertebrate cell cultures to copper sulfate measured by xCELLigence(®).

    PubMed

    Rakers, S; Imse, F; Gebert, M

    2014-10-01

    In this study, we report the use of a real-time cell analysis (RTCA) test system, the xCELLigence(®) RTCA, as efficient tool for a fast cytotoxicity analysis and comparison of four different vertebrate cell cultures. This new dynamic real-time monitoring and impedance-based assay allows for a combined measurement of cell adhesion, spreading and proliferation. Cell cultures were obtained from mouse, rat, human and fish, all displaying a fibroblast-like phenotype. The measured impedance values could be correlated to characteristic cell culture behaviours. In parallel, relative cytotoxicity of a commonly used but due to its very good water solubility highly hazardous pesticide, copper sulfate, was evaluated under in vitro conditions through measurements of cell viability by classical end-point based assays MTT and PrestoBlue(®). Cell line responses in terms of viability as measured by these three methods were variable between the fish skin cells and cells from higher vertebrates and also between the three methods. The advantage of impedance-based measurements is mainly based on the continuous monitoring of cell responses for a broad range of different cells, including fish cells. PMID:25001081

  20. Direct analysis of sialylated or sulfated glycosphingolipids and other polar and neutral lipids using TLC-MS interfaces.

    PubMed

    Park, Hyejung; Zhou, Ying; Costello, Catherine E

    2014-04-01

    Gangliosides and sulfatides (STs) are acidic glycosphingolipids (GSLs) that have one or more sialic acids or sulfate substituents, in addition to neutral sugars, attached to the C-1 hydroxyl group of the ceramide long chain base. TLC is a widely employed and convenient technique for separation and characterization of GSLs. When TLC is directly coupled to MS, it provides both the molecular mass and structural information without further purification. Here, after development of the TLC plates, the structural analyses of acidic GSLs, including gangliosides and STs, were investigated using the liquid extraction surface analysis (LESA™) and CAMAG TLC-MS interfaces coupled to an ESI QSTAR Pulsar i quadrupole orthogonal TOF mass spectrometer. Coupling TLC with ESI-MS allowed the acquisition of high resolution mass spectra of the acidic GSLs with high sensitivity and mass accuracy, without the loss of sialic acid residues that frequently occurs during low-pressure MALDI MS. These systems were then applied to the analysis of total lipid extracts from bovine brain. This allowed profiling of many different lipid classes, not only gangliosides and STs, but also SMs, neutral GSLs, and phospholipids. PMID:24482490

  1. Reactivity to nickel sulfate at sodium lauryl sulfate pretreated skin sites is higher in atopics: an echographic evaluation by means of image analysis performed on 20 MHz B-scan recordings.

    PubMed

    Seidenari, S

    1994-07-01

    The aim of this study was to establish an objectively assessable procedure simulating simultaneous exposure to irritants and allergens in domestic and occupational environments, in order to evaluate differences in the reactivity to the combination of these substances in atopic and non-atopic nickel-sensitized subjects. Thirty-four nickel-sensitive patients, 20 of whom were affected by atopic dermatitis, underwent four patch tests with NiSO4 0.05% aq. on two adjacent sites of both volar forearms, with a 24-h application time. Two of the test sites were treated with sodium lauryl sulfate (SLS) 5% for 30 min, before application of the nickel sulfate preparation. Echographic recordings were performed by a 20-MHz B-scanner and processed by an image analysis program, providing a numerical representation of the picture data, based on the attribution of fictional values to the amplitudes of the echoes. The dermal inflammatory reaction was quantified by an amplitude band, marking the hypo-reflecting part of the dermis, whereas epidermal damage was assessed by a band highlighting the entrance echo. Pre-treatment with SLS of the skin area where nickel sulfate was subsequently applied greatly enhanced the allergic response at 24 and 72 h, both in subjects with atopic dermatitis and in subjects with allergic contact dermatitis. However, in atopics, the increase in the allergic reactivity after irritation of the skin was more pronounced both by clinical and by echographic evaluation. These observations stress the importance of the concurrent action of irritants and allergens in maintaining the dermatitis in atopics. PMID:7976078

  2. INNOVATIONS IN SOIL SAMPLING AND DATA ANALYSIS

    EPA Science Inventory

    Successful research outcomes from the VOC in soils work will provide the Agency with methods and techniques that provide the accurate VOC concentrations so that decisions related to a contaminated site can be made to optimize the protectiveness to the environment and human health...

  3. COMPOSITE SAMPLING FOR SOIL VOC ANALYSIS

    EPA Science Inventory

    Data published by numerous researchers over the last decade demonstrate that there is a high degree of spatial variability in the measurement of volatile organic compounds (VOCs) in soil at contaminated waste sites. This phenomenon is confounded by the use of a small sample aliqu...

  4. Microwave soil moisture measurements and analysis

    NASA Technical Reports Server (NTRS)

    Newton, R. W.; Howell, T. A.; Nieber, J. L.; Vanbavel, C. H. M. (Principal Investigator)

    1980-01-01

    An effort to develop a model that simulates the distribution of water content and of temperature in bare soil is documented. The field experimental set up designed to acquire the data to test this model is described. The microwave signature acquisition system (MSAS) field measurements acquired in Colby, Kansas during the summer of 1978 are pesented.

  5. Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen and phosphorus nutritional responses in Arabidopsis

    PubMed Central

    Bielecka, Monika; Watanabe, Mutsumi; Morcuende, Rosa; Scheible, Wolf-Rüdiger; Hawkesford, Malcolm J.; Hesse, Holger; Hoefgen, Rainer

    2015-01-01

    Sulfur is an essential macronutrient for plant growth and development. Reaching a thorough understanding of the molecular basis for changes in plant metabolism depending on the sulfur-nutritional status at the systems level will advance our basic knowledge and help target future crop improvement. Although the transcriptional responses induced by sulfate starvation have been studied in the past, knowledge of the regulation of sulfur metabolism is still fragmentary. This work focuses on the discovery of candidates for regulatory genes such as transcription factors (TFs) using ‘omics technologies. For this purpose a short term sulfate-starvation/re-supply approach was used. ATH1 microarray studies and metabolite determinations yielded 21 TFs which responded more than 2-fold at the transcriptional level to sulfate starvation. Categorization by response behaviors under sulfate-starvation/re-supply and other nutrient starvations such as nitrate and phosphate allowed determination of whether the TF genes are specific for or common between distinct mineral nutrient depletions. Extending this co-behavior analysis to the whole transcriptome data set enabled prediction of putative downstream genes. Additionally, combinations of transcriptome and metabolome data allowed identification of relationships between TFs and downstream responses, namely, expression changes in biosynthetic genes and subsequent metabolic responses. Effect chains on glucosinolate and polyamine biosynthesis are discussed in detail. The knowledge gained from this study provides a blueprint for an integrated analysis of transcriptomics and metabolomics and application for the identification of uncharacterized genes. PMID:25674096

  6. Galvanic Cell Type Sensor for Soil Moisture Analysis.

    PubMed

    Gaikwad, Pramod; Devendrachari, Mruthyunjayachari Chattanahalli; Thimmappa, Ravikumar; Paswan, Bhuneshwar; Raja Kottaichamy, Alagar; Makri Nimbegondi Kotresh, Harish; Thotiyl, Musthafa Ottakam

    2015-07-21

    Here we report the first potentiometric sensor for soil moisture analysis by bringing in the concept of Galvanic cells wherein the redox energies of Al and conducting polyaniline are exploited to design a battery type sensor. The sensor consists of only simple architectural components, and as such they are inexpensive and lightweight, making it suitable for on-site analysis. The sensing mechanism is proved to be identical to a battery type discharge reaction wherein polyaniline redox energy changes from the conducting to the nonconducting state with a resulting voltage shift in the presence of soil moisture. Unlike the state of the art soil moisture sensors, a signal derived from the proposed moisture sensor is probe size independent, as it is potentiometric in nature and, hence, can be fabricated in any shape or size and can provide a consistent output signal under the strong aberration conditions often encountered in soil moisture analysis. The sensor is regenerable by treating with 1 M HCl and can be used for multiple analysis with little read out hysteresis. Further, a portable sensor is fabricated which can provide warning signals to the end user when the moisture levels in the soil go below critically low levels, thereby functioning as a smart device. As the sensor is inexpensive, portable, and potentiometric, it opens up avenues for developing effective and energy efficient irrigation strategies, understanding the heat and water transfer at the atmosphere-land interface, understanding soil mechanics, forecasting the risk of natural calamities, and so on. PMID:26098202

  7. Pyrosequencing Based Microbial Community Analysis of Stabilized Mine Soils

    NASA Astrophysics Data System (ADS)

    Park, J. E.; Lee, B. T.; Son, A.

    2015-12-01

    Heavy metals leached from exhausted mines have been causing severe environmental problems in nearby soils and groundwater. Environmental mitigation was performed based on the heavy metal stabilization using Calcite and steel slag in Korea. Since the soil stabilization only temporarily immobilizes the contaminants to soil matrix, the potential risk of re-leaching heavy metal still exists. Therefore the follow-up management of stabilized soils and the corresponding evaluation methods are required to avoid the consequent contamination from the stabilized soils. In this study, microbial community analysis using pyrosequencing was performed for assessing the potential leaching of the stabilized soils. As a result of rarefaction curve and Chao1 and Shannon indices, the stabilized soil has shown lower richness and diversity as compared to non-contaminated negative control. At the phyla level, as the degree of contamination increases, most of phyla decreased with only exception of increased proteobacteria. Among proteobacteria, gamma-proteobacteria increased against the heavy metal contamination. At the species level, Methylobacter tundripaludum of gamma-proteobacteria showed the highest relative portion of microbial community, indicating that methanotrophs may play an important role in either solubilization or immobilization of heavy metals in stabilized soils.

  8. Bornean orangutan geophagy: analysis of ingested and control soils.

    PubMed

    Mahaney, William C; Hancock, Ronald G V; Aufreiter, Susan; Milner, Michael W; Voros, Joan

    2016-02-01

    Geophagy among orangutans is the most poorly documented in contrast to the knowledge of soil-eating practices of other great ape species. Observations of soil consumption by orangutans in the Sungai Wain Forest Preserve (Wanariset) of Borneo are presented, along with physico-mineral-chemical analyses of the ingested soil in an effort to understand what might stimulate the activity. The consumed soils are: light colored, not excessively weathered by normal standards, higher in the clay size fraction relative to controls, and are comprised of a mix of clay minerals without any specificity of 1:1, 2:1 and/or 2:1:1 (Si:Al) species. The geophagic soils contain chlorides below detection limits, effectively eliminating salt as a stimulus. Soil chemical and geochemical analyses confirm that orangutans prefer soils with pH levels near or above 4.0, while controls are consistently lower (pH = 3.5-4.0), a considerable difference in acidity for at least four out of six soils consumed. Geochemical analysis shows Al, Fe and K are high in the consumed vs control samples; higher Al follows from higher clay percentages in the consumed earth. Iron and K may play physiological roles, but Fe is mostly in the ferrous form (Fe(+2)) and may not be readily taken up by the animals. The preferential choice of consumed samples, with pH above 4.0 and higher clay contents, may promote a more beneficial intestinal environment. PMID:25600229

  9. Conformational Analysis of a Dermatan Sulfate-Derived Tetrasaccharide by NMR, Molecular Modeling, and Residual Dipolar Couplings

    PubMed Central

    Silipo, Alba; Zhang, Zhenqing; Cañada, F. Javier; Molinaro, Antonio

    2014-01-01

    The solution conformation behavior of a dermatan-derived tetrasaccharide—ΔHexA-(1→3)-GalNAc4S-β-(1→4)-IdoA-α-(1→3)-red-GalNAc4S (S is a sulfate group)—has been explored by means of NMR spectroscopy, especially by NOE-based conformational analysis. The tetrasaccharide was present as four species, two of which are chemically different in the anomeric orientation of the reducing 2-deoxy-2-acetamido-galactose (red-GalNAc) residue, while the other two are the result of different conformations of the iduronic acid (IdoA) unit. The two α–-interconverting anomers were present in a 0.6:1 ratio. Ring conformations have been defined by analysis of 3JH,H coupling constants and interresidual NOE contacts. Both 2-deoxy-2-acetamido-galactose (GalNAc) residues were found in the 4C1 chair conformation, the unsaturated uronic acid (Δ-Hex A) adopts a strongly predominant half-chair 1H2 conformation, while the IdoA residue exists either in the 1C4 chair or in the 2S0 skewed boat geometries, in a 4:1 ratio. There is a moderate flexibility of Φ and Ψ torsions as suggested by nuclear Overhauser effects (NOEs), molecular modeling (MM), and molecular dynamics (MD) studies. This was further investigated by residual dipolar couplings (RDCs). One-bond C–H RDCs (1DC,H) and long-range H–H (3DH,H) RDCs were measured for the tetrasaccharide in a phage solution and interpreted in combination with restrained MD simulation. The RDC-derived data substantially confirmed the validity of the conformer distribution resulting from the NOE-derived simulations, but allowed an improved definition of the conformational behavior of the oligosaccharides in solution. In summary, the data show a moderate flexibility of the four tetrasaccharide species at the central glycosidic linkage. Differences in the shapes of species with the IdoA in skew and in chair conformations and in the distribution of the sulfate groups have also been highlighted. PMID:18072186

  10. High dimensional reflectance analysis of soil organic matter

    NASA Technical Reports Server (NTRS)

    Henderson, T. L.; Baumgardner, M. F.; Franzmeier, D. P.; Stott, D. E.; Coster, D. C.

    1992-01-01

    Recent breakthroughs in remote-sensing technology have led to the development of high spectral resolution imaging sensors for observation of earth surface features. This research was conducted to evaluate the effects of organic matter content and composition on narrowband soil reflectance across the visible and reflective infrared spectral ranges. Organic matter from four Indiana agricultural soils, ranging in organic C content from 0.99 to 1.72 percent, was extracted, fractionated, and purified. Six components of each soil were isolated and prepared for spectral analysis. Reflectance was measured in 210 narrow bands in the 400- to 2500-nm wavelength range. Statistical analysis of reflectance values indicated the potential of high dimensional reflectance data in specific visible, near-infrared, and middle-infrared bands to provide information about soil organic C content, but not organic matter composition. These bands also responded significantly to Fe- and Mn-oxide content.

  11. Diffuse Reflectance Spectroscopy for Total Carbon Analysis of Hawaiian Soils

    NASA Astrophysics Data System (ADS)

    McDowell, M. L.; Bruland, G. L.; Deenik, J. L.; Grunwald, S.; Uchida, R.

    2010-12-01

    Accurate assessment of total carbon (Ct) content is important for fertility and nutrient management of soils, as well as for carbon sequestration studies. The non-destructive analysis of soils by diffuse reflectance spectroscopy (DRS) is a potential supplement or alternative to the traditional time-consuming and costly combustion method of Ct analysis, especially in spatial or temporal studies where sample numbers are large. We investigate the use of the visible to near-infrared (VNIR) and mid-infrared (MIR) spectra of soils coupled with chemometric analysis to determine their Ct content. Our specific focus is on Hawaiian soils of agricultural importance. Though this technique has been introduced to the soil community, it has yet to be fully tested and used in practical applications for all soil types, and this is especially true for Hawaii. In short, DRS characterizes and differentiates materials based on the variation of the light reflected by a material at certain wavelengths. This spectrum is dependent on the material’s composition, structure, and physical state. Multivariate chemometric analysis unravels the information in a set of spectra that can help predict a property such as Ct. This study benefits from the remarkably diverse soils of Hawaii. Our sample set includes 216 soil samples from 145 pedons from the main Hawaiian Islands archived at the National Soil Survey Center in Lincoln, NE, along with more than 50 newly-collected samples from Kauai, Oahu, Molokai, and Maui. In total, over 90 series from 10 of the 12 soil orders are represented. The Ct values of these samples range from < 1% - 55%. We anticipate that the diverse nature of our sample set will ensure a model with applicability to a wide variety of soils, both in Hawaii and globally. We have measured the VNIR and MIR spectra of these samples and obtained their Ct values by dry combustion. Our initial analyses are conducted using only samples obtained from the Lincoln archive. In this

  12. Analysis of soil and species composition

    NASA Technical Reports Server (NTRS)

    Verma, Shashi B.

    1992-01-01

    Measurements were made during May to October, 1987 and June to August, 1989 over a tallgrass prairie near Manhattan, Kansas. Soil at the experimental site is predominantly Dwight silty clay loam. The prairie was burned on 16 April 1987 and on 28 April 1989 to improve the mix of grasses and forbs. The experimental area was not grazed during 1986 - 1989. A summary of results are given for soil moisture and plant growth; momentum flux and canopy aerodynamic characteristics; evapotranspiration, components of energy balance and canopy conductance; modeling canopy stomatal conductance; canopy photosynthesis, photosynthetic efficiency and water use efficiency; modeling canopy photosynthesis; the carbon dioxide budget in a temperate grassland ecosystem; and photosynthesis and stomatal conductance related to reflectance on the canopy scale.

  13. Soil Analysis using the semi-parametric NAA technique

    SciTech Connect

    Zamboni, C. B.; Silveira, M. A. G.; Medina, N. H.

    2007-10-26

    The semi-parametric Neutron Activation Analysis technique, using Au as a flux monitor, was applied to measure element concentrations of Br, Ca, Cl, K, Mn and Na for soil characterization. The results were compared with those using the Instrumental Neutron Activation Analysis technique and they found to be compatible. The viability, advantages, and limitations of using these two analytic methodologies are discussed.

  14. N-sulfotestosteronan, a novel substrate for heparan sulfate 6-O-sulfotransferases and its analysis by oxidative degradation

    PubMed Central

    Li, Guoyun; Masuko, Sayaka; Green, Dixy E.; Xu, Yongmei; Li, Lingyun; Zhang, Fuming; Xue, Changhu; Liu, Jian; DeAngelis, Paul. L.; Linhardt, Robert J.

    2013-01-01

    Testosteronan, an unusual glycosaminoglycan first isolated from the microbe Comamonas testosteroni, was enzymatically synthesized in vitro by transferring uridine diphosphate sugars on β-p-nitrophenyl glucuronide acceptor. After chemically converting testosteronan to N-sulfotestosteronan it was tested as a substrate for sulfotransferases involved in the biosynthesis of the glycosaminoglycan, heparan sulfate. Studies using 35S-labeled 3′-phosphodenosine-5′-phosphosulfate (PAPS) showed that only 6-O-sulfotransferases acted on N-sulfotestosteronan. An oxidative depolymerization reaction was explored to generate oligosaccharides from 34S-labeled 6-O-sulfo-N-sulfotestosteroran using 34S-labeled PAPS because testosteronan was resistant to all of the tested glycosaminoglycan-degrading enzymes. Liquid chromotography-mass spectrometric analysis of the oxidatively depolymerized polysaccharides confirmed the incorporation of 34S into ~14% of the glucosamine residues. Nuclear magnetic resonance spectroscopy also showed that the sulfo groups were transferred to ~20% of the 6-hydroxyl groups in the glucosamine residue of N-sulfotestosteronan. The bioactivity of 6-O–sulfo-N-sulfotestosteronan was examined by performing protein-binding studies with fibroblast growth factors and antithrombin III using a surface plasmon resonance competition assay. The introduction of 6-O-sulfo groups enhanced N-sulfotestosteronan binding to the fibroblast growth factors, but not to antithrombin III. PMID:23606289

  15. Applications of thermal analysis in soil mineralogy in NE Hungary

    NASA Astrophysics Data System (ADS)

    Hofmann, Eszter; Bidló, András

    2015-04-01

    The primary aim of our mineralogical investigation was to study the mineral composition and the soil-forming materials of the soils formed on compacted carbonate rocks in the Bükk Mountains' native forest in NE Hungary. The investigated soils can be found on a limestone plateau, called the Bükk-Highlands. The formation of the differently acidic and humus rich upper layer of the soil profiles is influenced by the mineral composition and the weathering of the rocks. In order to study the composition of soil minerals thermal analysis (Mettler Toledo TGA/DSC 1 type thermogravimeter (5°C/min, air atmosphere, 25-1000°C)) was applied. The results of the analyses were also veryfied with X-ray diffraction measurements (Philips P W3710/PW1050 type X-ray diffractometer). With grain-size distribution measurement using the Köhn pipette, fractions were separated to clay (<0.002 mm), silt (0.002-0.2 mm), fine sand (0.02-0.2 mm) and coarse sand (0.2-2 mm). By thermal analysis sieved soil samples as well as the separated fractions were evaluated. It was established that fine sand, clay and silt were the major soil constituents, while the ratio of coarse sand was less significant in most of the samples. According to the thermal analyses and the X-ray diffraction measurements the most abundant mineral in the soil samples was the quartz, not the calcite. Besides quartz clay minerals, feldspars, oxides-hidroxides and chlorites also occured. The amount of calcite determined by thermal analysis was compared to the results obtained with X-ray diffraction measurements, and we observed good relation between them. It has been concluded that the investigated soils of the Bükk-Highland contain significant amounts of silicates, so apparently they cannot be the product of the weathering of limestone solely. The major part of soil-forming material originates presumably from previous dust fallings or from the agglomerate materials of erosion. The research is supported by the "Agroclimate-2

  16. Factors controlling sulfate retention and transport in a forested watershed in the Georgia Piedmont

    SciTech Connect

    Shanley, J.B.

    1989-01-01

    The mechanisms that control sulfate retention and transport were investigated at Panola Mountain, a 41-ha forested watershed in the Georgia Piedmont. The approach combined laboratory determination of soil sulfate sorption properties with a field study that was designed to infer mechanisms controlling sulfate chemistry from temporal and spatial variations in sulfate concentration and flux. Aqueous sulfate concentrations are regulated at two discrete levels: near 100 {mu}eq L{sup {minus}1} by organic-rich upper horizon soils and near 10 {mu}eq L{sup {minus}1} by deeper mineral soils. Upper horizon soils contain a large pool of labile sulfate that damps variations in sulfate concentrations. Runoff from a 3-ha granodiorite outcrop in the headwaters varied from near zero to greater than 500 {mu}eq L{sup {minus}1} sulfate. After only minimal contact with organic-rich soils, however, sulfate was regulated at 80-120 {mu}eq L{sup {minus}1} in the headwater stream. Soil solution (200 {mu}eq L{sup {minus}1} sulfate) and groundwater in the upper part of the watershed (50 {mu}eq L{sup {minus}1} sulfate) also were controlled primarily by the organic horizon. In the lower part of the basin, mineral soil regulates sulfate in groundwater and low-flow streamwater at approximately 10 {mu}eq L{sup {minus}1}. Streamwater sulfate, however, increased to 100 {mu}eq L{sup {minus}1} or more during storms. Regulation of stream sulfate concentration shifted from the sulfate-retaining mineral soil at low flow to the upper-horizon, organic-rich soil at high flow. From October 1985 to September 1988, the watershed retained 75.4% of sulfate in wet deposition. For individual storms, however, sulfate retention ranged from less than 0% (net export) to greater than 99%.

  17. Analysis of glucuronide and sulfate steroids in urine by ultra-high-performance supercritical-fluid chromatography hyphenated tandem mass spectrometry.

    PubMed

    Doué, Mickael; Dervilly-Pinel, Gaud; Pouponneau, Karinne; Monteau, Fabrice; Le Bizec, Bruno

    2015-06-01

    Profiling conjugated urinary steroids to detect anabolic-steroid misuse is recognized as an efficient analytical strategy in both chemical-food-safety and anti-doping fields. The relevance and robustness of such profiling rely on the analysis of glucuronide and sulfate steroids, which is expected to have properties including accuracy, specificity, sensitivity, and, if possible, rapidity. In this context, the ability of ultra-high-performance supercritical-fluid chromatography (UHPSFC) hyphenated tandem mass spectrometry (MS-MS) to provide reliable and accurate phase II analysis of steroids was assessed. Four stationary phases with sub-2 μm particles (BEH, BEH 2-ethyl-pyridine, HSS C18 SB, and CSH fluorophenyl) were screened for their capacity to separate several conjugated steroid isomers. Analytical conditions including stationary phase, modifier composition and percentage, back pressure, column temperature, and composition and flow rate of make-up solvent were investigated to improve the separation and/or the sensitivity. Thus, an analytical procedure enabling the analysis of eight glucuronide and 12 sulfate steroids by two different methods in 12 and 15 min, respectively, was optimized. The two procedures were evaluated, and UHPSFC-MS-MS analysis revealed its ability to provide sensitive (limits of quantification: 0.1 ng mL(-1) and 0.5 ng mL(-1) for sulfate and glucuronide steroids, respectively) and reliable quantitative performance (R(2) > 0.995, RSD < 20%, and bias < 30%) through the use of suitable labeled internal standards. Comparison with UHPLC-MS-MS was performed, and UHPSFC-MS-MS obtained better performance in terms of sensitivity. Finally, as a proof of concept, this so-called green technology was used in a chemical-food-safety context to profile steroid conjugates in urine samples from bovines treated with estradiol. Graphical Abstract Glucuronide and sulfate steroids analysis in urine by ultra-high performance supercritical fluid

  18. Semi-synthesis of chondroitin sulfate-E from chondroitin sulfate-A

    PubMed Central

    Cai, Chao; Solakyildirim, Kemal; Yang, Bo; Beaudet, Julie M.; Weyer, Amanda; Linhardt, Robert J.; Zhang, Fuming

    2011-01-01

    Chondroitin sulfate-E (chondroitin-4, 6-disulfate) was prepared from chondroitin sulfate-A (chondroitin-4 - sulfate) by regioselective sulfonation, performed using trimethylamine sulfur trioxide in formamide under argon. The structure of semi-synthetic chondroitin sulfate-E was analyzed by PAGE, 1H NMR, 13C NMR, 2D NMR and disaccharide analysis and compared with natural chondroitin sulfate-E. Both semi-synthetic and natural chondroitin sulfate-E were each biotinylated and immobilized on BIAcore SA biochips and their interactions with fibroblast growth factors displayed very similar binding kinetics and binding affinities. The current semi-synthesis offers an economical approach for the preparation of the rare chondroitin sulfate-E from the readily available chondroitin sulfate-A. PMID:22140285

  19. SoilEngineering: A Microsoft Excel ® spreadsheet © program for geotechnical and geophysical analysis of soils

    NASA Astrophysics Data System (ADS)

    Ozcep, Ferhat

    2010-10-01

    SoilEngineering is a user-friendly, interactive Microsoft Excel ® spreadsheet program for the geotechnical and geophysical analysis of soils. The influence of soil behavior on earthquake characteristics and/or structural design is one of the major elements in investigating earthquake forces, and thus the structural response with static and dynamic loads. With its interactive nature, the program provides the user with an opportunity to undertake soil static and dynamic load analysis. The program is formed by three main options: (1) Data Preparation, (2) Derived Parameters and (3) Analysis of Soil Problems (with Static and Dynamic Loads). The Data Preparation option is divided into four modules: Seismic Refraction Data, Geoelectrical Data, Borehole and SPT ( N) Data and Laboratory Data. The Derived Parameters option is divided into two modules: Geotechnical Parameters Derived from Geophysical Data and Relationships between Vs and SPT ( N) Values. The Analysis of Soil Problems (with Static and Dynamic Loads) option is divided into nine modules: Bearing Capacity for Shallow and Deep Foundations, Settlement Analysis (Static and Dynamic Loads), Estimation of Subgrade Reaction Coefficient, Slope Stability Analysis, Seismic Hazard Analysis, Strong Motion Attenuation Relationships, Acceleration/Velocity/Displacement Spectra, Soil Amplification Analysis and Soil Liquefaction Analysis. Soil engineering also permits plotting geophysical and geotechnical data with analysis.

  20. Multiscale analysis of depth-dependent soil penetration resistance in a tropical soil

    NASA Astrophysics Data System (ADS)

    Paiva De Lima, Renato; Santos, Djail; Medeiros Bezerra, Joel; Machado Siqueira, Glécio; Paz González, Antonio

    2013-04-01

    Soil penetration resistance (PR) is widely used because it is linked to basic soil properties; it is correlated to root growth and plant production and is also used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent PR profiles and how this information can be used at the field scale. We analyzed multifractality of 50 PR vertical profiles, measured from 0 to 40 cm depth and randomly located on a 6.5 ha sugar cane field in north-eastern Brazil. According to the Soil Taxonomy, the studied soil was classified as an Orthic Podsol The scaling property of each profile was typified by singularity and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. Singularity and Rènyi spectra showed the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to one indicating strong persistence in PR variation with soil depth. Also Hurst exponent was negatively and significantly correlated to coefficient of variation (CV) and skewness of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean, maximum and minimum values of PR; these maps showed the multifractal approach also may complete information provided by descriptive statistics at the field scale.

  1. Acid Sulfate Alteration on Mars

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  2. Serum sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of patients with membranous nephropathy and focal and segmental glomerulosclerosis.

    PubMed

    Pant, Pragya; Singh, R G; Singh, Santosh K; Singh, Vijay P; Doley, Prodip K; Sivasankar, M

    2016-01-01

    Diagnosis of membranous nephropathy (MN) and focal and segmental glomerulo- sclerosis (FSGS) needs a renal biopsy, which is an invasive procedure with potentially serious complications. Proteomics may be applied for the development of a biomarker for these diseases which will obviate the need of biopsy. Serum sodium dodecyl sulfate-polyacrylamide gel electro-phoresis (SDS-PAGE) analysis gives an idea of the various proteins with different molecular weights (MWs) in a given sample. This study was conducted to analyze proteins with different MWs in patients with MN and FSGS and to compare the two groups with regard to their protein profile. This was a comparative, experimental study performed from June 2013 to July 2014 in the Department of Nephrology, Sir Sunderlal Hospital, Banaras Hindu University, Varanasi. Twenty-three histologically diagnosed cases of primary MN and 25 cases of FSGS were included in the study. Patients were categorized as having mild, moderate, and severe proteinuria with 24 h urinary protein levels of <4, 4- 8 and ≥8 g/24 h, respectively. SDS-PAGE analysis was performed by the method of Laemmli and revealed a significantly higher number of patients with FSGS (80%) having a protein corresponding to 29 kDa MW, than those with MN (39.1%) (P = 0.004). Protein of 5 kDa MW was present in a significantly higher number of patients with moderate (80%) and severe (100%) proteinuria than those with mild proteinuria (25%) (P <0.001). Thus, protein of MW 29 kDa may be a marker for FSGS and needs further characterization. Similarly, 5 kDa protein, present in patients with moderate and severe proteinuria, might be either contributing to or be a marker of severe illness. PMID:27215247

  3. Qualitative soil mineral analysis by EDXRF, XRD and AAS probes

    NASA Astrophysics Data System (ADS)

    Singh, Virendra; Agrawal, H. M.

    2012-12-01

    Soil minerals study is vital in terms of investigating the major soil forming compounds and to find out the fate of minor and trace elements, essential for the soil-plant interaction purpose. X-ray diffraction (XRD) has been a popular technique to search out the phases for different types of samples. For the soil samples, however, employing XRD is not so straightforward due to many practical problems. In the current approach, principal component analysis (PCA) has been used to have an idea of the minerals present, in qualitative manner, in the soil under study. PCA was used on the elemental concentrations data of 17 elements, determined by the energy dispersive X-ray fluorescence (EDXRF) technique. XRD analysis of soil samples has been done also to identify the minerals of major elements. Some prior treatments, like removal of silica by polytetrafluoroethylene (PTFE) slurry and grinding with alcohol, were given to samples to overcome the peak overlapping problems and to attain fine particle size which is important to minimize micro-absorption corrections, to give reproducible peak intensities and to minimize preferred orientation. A 2θ step of 0.05°/min and a longer dwell time than normal were used to reduce interferences from background noise and to increase the counting statistics. Finally, the sequential extraction procedure for metal speciation study has been applied on soil samples. Atomic absorption spectroscopy (AAS) was used to find the concentrations of metal fractions bound to various forms. Applying all the three probes, the minerals in the soils can be studied and identified, successfully.

  4. Martian Soil Ready for Robotic Laboratory Analysis

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander scooped up this Martian soil on the mission's 11th Martian day, or sol, after landing (June 5, 2008) as the first soil sample for delivery to the laboratory on the lander deck.

    The material includes a light-toned clod possibly from crusted surface of the ground, similar in appearance to clods observed near a foot of the lander.

    This approximately true-color view of the contents of the scoop on the Robotic Arm comes from combining separate images taken by the Robotic Arm Camera on Sol 11, using illumination by red, green and blue light-emitting diodes on the camera.

    The scoop loaded with this sample was poised over an open sample-delivery door of Thermal and Evolved-Gas Analyzer at the end of Sol 11, ready to be dumped into the instrument on the next sol.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes

    SciTech Connect

    Minz, D.; Flax, J.L.; Green, S.J.; Muyzer, G.; Cohen, Y.; Wagner, M.; Rittmann, B.E.; Stahl, D.A.

    1999-10-01

    Sequence analysis of genes encoding dissimilatory sulfite reductase (DSR) was used to identify sulfate-reducing bacteria in a hypersaline microbial mat and to evaluate their distribution in relation to levels of oxygen. The most highly diverse DSR sequences, most related to those of the Desulfonema-like organisms within the {delta}-proteobacteria, were recovered from oxic regions of the mat. This observation extends those of previous studies by the authors and others associating Desulfonema-like organisms with oxic habitats.

  6. Kinetic analysis of bile acid sulfation by stably expressed human sulfotransferase 2A1 (SULT2A1).

    PubMed

    Huang, J; Bathena, S P; Tong, J; Roth, M; Hagenbuch, B; Alnouti, Y

    2010-03-01

    Human sulfotransferase 2A1 (SULT2A1) is a member of the hydroxysteroid sulfotransferase (SULT2) family that mediates sulfo-conjugation of a variety of endogenous molecules including dehydroepiandrosterone (DHEA) and bile acids. In this study, we have constructed a stable cell line expressing SULT2A1 by transfection into HEK293 cells. The expression system was used to characterize and compare the sulfation kinetics of DHEA and 15 human bile acids by SULT2A1. Formation of DHEA sulfate demonstrated Michaelis-Menten kinetics with apparent K(m) and V(max) values of 3.8 muM and 130.8 pmol min(-1) mg(-1) protein, respectively. Sulfation kinetics of bile acids also demonstrated Michaelis-Menten kinetics with a marked variation in apparent K(m) and V(max) values between individual bile acids. Sulfation affinity was inversely proportional to the number of hydroxyl groups of bile acids. The monohydroxy- and most toxic bile acid (lithocholic acid) had the highest affinity, whereas the trihydroxy- and least toxic bile acid (cholic acid) had the lowest affinity to sulfation by SULT2A1. Intrinsic clearance (CL(int)) of ursodeoxycholic acid (UDCA) was approximately 1.5- and 9.0-fold higher than that of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA), respectively, despite the fact that all three are dihydroxy bile acids. PMID:20102295

  7. Soil sampling and analysis for volatile organic compounds.

    PubMed

    Lewis, T E; Crockett, A B; Siegrist, R L

    1994-05-01

    Concerns over data quality have raised many questions related to sampling soils for volatile organic compounds (VOCs). This paper was prepared in response to some of these questions and concerns expressed by Remedial Project Managers (RPMs) and On-Scene Coordinators (OSCs). The following questions are frequently asked: 1. Is there a specific device suggested for sampling soils for VOCs? 2. Are there significant losses of VOCs when transferring a soil sample from a sampling device (e.g., split spoon) into the sample container? 3. What is the best method for getting the sample from the split spoon (or other device) into the sample container? 4. Are there smaller devices such as subcore samplers available for collecting aliquots from the larger core and efficiently transferring the sample into the sample container? 5. Are certain containers better than others for shipping and storing soil samples for VOC analysis? 6. Are there any reliable preservation procedures for reducing VOC losses from soil samples and for extending holding times? Guidance is provided for selecting the most effective sampling device for collecting samples from soil matrices. The techniques for sample collection, sample handling, containerizing, shipment, and storage described in this paper reduce VOC losses and generally provide more representative samples for volatile organic analyses (VOA) than techniques in current use. For a discussion on the proper use of sampling equipment the reader should refer to other sources (Acker, 1974; U.S. EPA, 1983; U.S. EPA, 1986a).Soil, as referred to in this report, encompasses the mass (surface and subsurface) of unconsolidated mantle of weathered rock and loose material lying above solid rock. Further, a distinction must be made as to what fraction of the unconsolidated material is soil and what fraction is not. The soil component here is defined as all mineral and naturally occurring organic material that is 2 mm or less in size. This is the size normally

  8. Soil Organic Matter Effects on Phosphorus Sorption: a Path Analysis

    SciTech Connect

    Kang, J.; Hesterberg, D; Osmond, D

    2009-01-01

    While P sorption in mineral soils has been extensively studied, P sorption behavior in organic-rich soils is less known. This study was conducted to determine the relationships between Langmuir P sorption maxima (S{sub max}) and selected physicochemical properties of soils, with particular emphasis on organic matter (OM) content. The S{sub max} values were determined for 72 soil samples from the North Carolina Coastal Plain, along with pH, clay and OM contents, oxalate-extractable P (P{sub ox}), Al (Al{sub ox}), and Fe (Fe{sub ox}), and Mehlich 3 extractable P (P{sub M3}), Al (Al{sub M3}), and Fe (Fe{sub M3}). Path analysis was used to examine direct and indirect effects of soil properties on S{sub max}. In the oxalate path analysis, the direct effects of clay, Al{sub ox}, and Fe{sub ox} on S{sub max} were significant in the order Al{sub ox} > clay > Fe{sub ox} (P < 0.05). The S{sub max} was highly influenced by the indirect effect of Al{sub ox} and Fe{sub ox} through OM content. A two-piece segmented linear relationship existed between S{sub max} and OM and the regression slope in soils with OM {le} 49 g kg{sup -1} was 10-fold greater than that for soils with OM > 49 g kg{sup -1}. This finding suggested that noncrystalline or organically bound Al and Fe in the soils with OM > 49 g kg{sup -1} is less effective for P sorption than in the soils with lower OM content. In the Mehlich 3 path analysis, the direct effects of clay, OM, and Al{sub M3} on S{sub max} were significant in the order Al{sub M3} > OM > clay (P < 0.05) while the direct effect of Fe{sub M3} on S{sub max} was not significant. Oxalate may be better suited than Mehlich 3 as an extractant for predicting P sorption capacity in the Coastal Plain soils.

  9. Mineralogical phase analysis of alkali and sulfate bearing belite rich laboratory clinkers

    SciTech Connect

    Morsli, Khadija; Torre, Angeles G. de la; Zahir, Mohammed; Aranda, Miguel A.G. . E-mail: g_aranda@uma.es

    2007-05-15

    The activation of laboratory belite clinkers has been carried out by adding variable amounts of alkaline salts (K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}), and/or SO{sub 3} as gypsum in the raw materials but keeping almost constant the main elements ratios, Ca/Si/Al/Fe. Quantitative phase analyses by the Rietveld method using high resolution synchrotron and strictly monochromatic CuK{alpha}{sub 1} laboratory X-ray powder diffraction data has been performed. Quantitative phase analysis results have been compared to validate the protocol using laboratory X-ray data. The agreement in the results is noteworthy, which indicates that good quantitative phase analyses can be obtained from laboratory X-ray powder data. Qualitative studies have confirmed that the addition of alkaline salts to raw mixtures promotes the stabilization, at room temperature, of the highest temperature polymorphs: {alpha}'{sub H}-C{sub 2}S and {alpha}-C{sub 2}S. Quantitative studies gave the phase assemblage for ten different laboratory belite clinkers. As an example, an active belite clinker with 1.0 wt.% of K{sub 2}O and 1.0 wt.% of Na{sub 2}O (amounts added to the raw mixtures) contains 8.5(3) wt.% of {beta}-C{sub 2}S, 21.2(3) wt.% of {alpha}'{sub H}-C{sub 2}S, 24.1(2) wt.% of {alpha}-C{sub 2}S, 18.9(3) wt.% of total C{sub 3}S, 17.3(2) wt.% of C{sub 3}A and 10.0(2) wt.% of C{sub 4}AF. A belite clinker with 0.8 wt.% SO{sub 3} (nominal loading) contains 60.7(1) wt.% of {beta}-C{sub 2}S, 6.7(2) wt.% of {alpha}'{sub H}-C{sub 2}S, 12.3(7) wt.% of C{sub 3}S, 9.1(2) wt.% of C{sub 3}A and 11.2(2) wt.% of C{sub 4}AF. Overall, quantitative phase analyses have shown that alkaline oxides stabilize {alpha}'{sub H}-C{sub 2}S and {alpha}-C{sub 2}S, sulfur stabilizes {beta}-C{sub 2}S, with a large unit cell volume, and the joint presence of alkaline oxides and sulfur promotes mainly the stabilization of the {alpha}'{sub H}-C{sub 2}S polymorph.

  10. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    SciTech Connect

    Chen, C.; Thomas, D.M.

    1992-01-01

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The .experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated.

  11. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    SciTech Connect

    Chen, C.; Thomas, D.M.

    1992-12-31

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The .experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated.

  12. Image Analysis to Estimate Mulch Residue in Soil

    PubMed Central

    Moreno, Carmen; Mancebo, Ignacio; Saa, Antonio; Moreno, Marta M.

    2014-01-01

    Mulching is used to improve the condition of agricultural soils by covering the soil with different materials, mainly black polyethylene (PE). However, problems derived from its use are how to remove it from the field and, in the case of it remaining in the soil, the possible effects on it. One possible solution is to use biodegradable plastic (BD) or paper (PP), as mulch, which could present an alternative, reducing nonrecyclable waste and decreasing the environmental pollution associated with it. Determination of mulch residues in the ground is one of the basic requirements to estimate the potential of each material to degrade. This study has the goal of evaluating the residue of several mulch materials over a crop campaign in Central Spain through image analysis. Color images were acquired under similar lighting conditions at the experimental field. Different thresholding methods were applied to binarize the histogram values of the image saturation plane in order to show the best contrast between soil and mulch. Then the percentage of white pixels (i.e., soil area) was used to calculate the mulch deterioration. A comparison of thresholding methods and the different mulch materials based on percentage of bare soil area obtained is shown. PMID:25309953

  13. Keratan Sulfate Biosynthesis

    PubMed Central

    Funderburgh, James L.

    2010-01-01

    Summary Keratan sulfate was originally identified as the major glycosaminoglycan of cornea but is now known to modify at least a dozen different proteins in a wide variety of tissues. Despite a large body of research documenting keratan sulfate structure, and an increasing interest in the biological functions of keratan sulfate, until recently little was known of the specific enzymes involved in keratan sulfate biosynthesis or of the molecular mechanisms that control keratan sulfate expression. In the last 2 years, however, marked progress has been achieved in identification of genes involved in keratan sulfate biosynthesis and in development of experimental conditions to study keratan sulfate secretion and control in vitro. This review summarizes current understanding of keratan sulfate structure and recent developments in understanding keratan sulfate biosynthesis. PMID:12512857

  14. Effects of nitrate and water on the oxygen isotopic analysis of barium sulfate precipitated from water samples

    USGS Publications Warehouse

    Hannon, J.E.; Böhlke, J.K.; Mroczkowski, S.J.

    2008-01-01

    BaSO4 precipitated from mixed salt solutions by common techniques for SO42- isotopic analysis may contain quantities of H2O and NO3- that introduce errors in O isotope measurements. Experiments with synthetic solutions indicate that ??18O values of CO produced by decomposition of precipitated BaSO4 in a carbon reactor may be either too low or too high, depending on the relative concentrations of SO42- and NO3- and the ??18O values of the H2O, NO3-, and SO42-. Typical ??18O errors are of the order of 0.5 to 1??? in many sample types, and can be larger in samples containing atmospheric NO 3-, which can cause similar errors in ?? 17O and ??17O. These errors can be reduced by (1) ion chromatographic separation of SO42- from NO 3-, (2) increasing the salinity of the solutions before precipitating BaSO4 to minimize incorporation of H2O, (3) heating BaSO4 under vacuum to remove H2O, (4) preparing isotopic reference materials as aqueous samples to mimic the conditions of the samples, and (5) adjusting measured ??18O values based on amounts and isotopic compositions of coexisting H2O and NO 3-. These procedures are demonstrated for SO 42- isotopic reference materials, synthetic solutions with isotopically known reagents, atmospheric deposition from Shenandoah National Park, Virginia, USA, and sulfate salt deposits from the Atacama Desert, Chile, and Mojave Desert, California, USA. These results have implications for the calibration and use of O isotope data in studies of SO42- sources and reaction mechanisms.

  15. Nested PCR and New Primers for Analysis of Sulfate-Reducing Bacteria in Low-Cell-Biomass Environments▿ †

    PubMed Central

    Giloteaux, Ludovic; Goñi-Urriza, Marisol; Duran, Robert

    2010-01-01

    New primers were designed for the amplification of dsrAB genes by nested PCR to investigate the diversity of sulfate-reducing prokaryotes (SRP) in environments with low bacterial cell density. The success of the nested PCR for the determination of SRP diversity was estimated by terminal-restriction fragment length polymorphism analysis in the Reigous, a small creek at an inactive mine (Carnoulès, France), which constitutes an extreme acidic arsenic-rich environment. Nested PCR limits were evaluated in dsrAB-rich sediments, and this technique was compared to direct PCR using either known primers (DSR1F/DSR4R) or new primers (dsr619AF/dsr1905BR). The comparison of clone libraries revealed that, even if the levels of diversity observed were not identical, nested PCR did not reduce the diversity compared to that of direct DSR1F/DSR4R PCR. Clone sequences were affiliated mainly with the Desulfobacteraceae and Desulfohalobiaceae families. Many sequences (∼30%) were related to a deeply branching lineage unaffiliated with any cultured SRP. Although this dsrAB cluster was found in all libraries, the new primers better amplified this lineage, providing more information on this unknown bacterial group. Thanks to these new primers in nested PCR, the SRP community from Carnoulès could be characterized. Specific SRP populations were obtained according to environmental characteristics. Desulfomicrobiaceae-related sequences were recovered in samples with low pH, low levels of dissolved oxygen, and high As content, while sequences belonging to the deeply branching group were found in a less extreme sample. Furthermore, for the first time, dsrAB sequences related to the latter group were recovered from freshwater. PMID:20228118

  16. Effects of nitrate and water on the oxygen isotopic analysis of barium sulfate precipitated from water samples.

    PubMed

    Hannon, Janet E; Böhlke, John Karl; Mroczkowski, Stanley J

    2008-12-01

    BaSO(4) precipitated from mixed salt solutions by common techniques for SO(4) (2-) isotopic analysis may contain quantities of H(2)O and NO(3) (-) that introduce errors in O isotope measurements. Experiments with synthetic solutions indicate that delta(18)O values of CO produced by decomposition of precipitated BaSO(4) in a carbon reactor may be either too low or too high, depending on the relative concentrations of SO(4) (2-) and NO(3) (-) and the delta(18)O values of the H(2)O, NO(3) (-), and SO(4) (2-). Typical delta(18)O errors are of the order of 0.5 to 1 per thousand in many sample types, and can be larger in samples containing atmospheric NO(3) (-), which can cause similar errors in delta(17)O and Delta(17)O. These errors can be reduced by (1) ion chromatographic separation of SO(4) (2-) from NO(3) (-), (2) increasing the salinity of the solutions before precipitating BaSO(4) to minimize incorporation of H(2)O, (3) heating BaSO(4) under vacuum to remove H(2)O, (4) preparing isotopic reference materials as aqueous samples to mimic the conditions of the samples, and (5) adjusting measured delta(18)O values based on amounts and isotopic compositions of coexisting H(2)O and NO(3) (-). These procedures are demonstrated for SO(4) (2-) isotopic reference materials, synthetic solutions with isotopically known reagents, atmospheric deposition from Shenandoah National Park, Virginia, USA, and sulfate salt deposits from the Atacama Desert, Chile, and Mojave Desert, California, USA. These results have implications for the calibration and use of O isotope data in studies of SO(4) (2-) sources and reaction mechanisms. PMID:19021238

  17. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis.

    PubMed

    Gittel, Antje; Mussmann, Marc; Sass, Henrik; Cypionka, Heribert; Könneke, Martin

    2008-10-01

    The identity and abundance of potentially active sulfate-reducing bacteria (SRB) in several metre deep sediments of a tidal sand flat in the German Wadden Sea were assessed by directed cultivation and cultivation-independent CARD-FISH analysis (catalysed reporter deposition fluorescence in situ hybridization). Presumably abundant SRB from different sediment layers between 0.5 and 4 m depth were selectively enriched in up to million-fold diluted cultures supplemented with lactate, acetate or hydrogen. Partial 16S rRNA gene sequences obtained from highest dilution steps showing sulfide formation indicated growth of deltaproteobacterial SRB belonging to the Desulfobulbaceae and the Desulfobacteraceae as well as of members of the Firmicutes. Subsequent isolation resulted in 10 novel phylotypes of both litho- and organotrophic sulfate-reducing Deltaproteobacteria. Molecular pre-screening identified six isolates as members of the Desulfobulbaceae, sharing highest identities with either candidatus 'Desulfobacterium corrodens' (95-97%) or Desulfobacterium catecholicum (98%), and four isolates as members of Desulfobacteraceae, being related to either Desulfobacter psychrotolerans (98%) or Desulfobacula phenolica (95-97%). Relatives of D. phenolica were exlusively isolated from 50 and 100 cm deep sediments with 10 and 2 mM of pore water sulfate respectively. In contrast, relatives of D. corrodens, D. psychrotolerans and D. catecholicum were also obtained from layers deeper than 100 cm and with less than 2 mM sulfate. The high in situ abundance of members of both families in sediment layers beneath 50 cm could be confirmed via CARD-FISH analysis performed with a set of six SRB-specific oligonucleotide probes. Moreover, SRB represented a numerically significant fraction of the microbial community throughout the sediment (up to 7%) and reached even higher cell numbers in deep, sulfate-poor layers than in the sulfate-rich surface sediment. This relatively large community size of

  18. Studying soil properties using visible and near infrared spectral analysis

    NASA Astrophysics Data System (ADS)

    Moretti, S.; Garfagnoli, F.; Innocenti, L.; Chiarantini, L.

    2009-04-01

    This research is carried out inside the DIGISOIL Project, whose purposes are the integration and improvement of in situ and proximal measurement technologies, for the assessment of soil properties and soil degradation indicators, going form the sensing technologies to their integration and their application in digital soil mapping. The study area is located in the Virginio river basin, about 30 km south of Firenze, in the Chianti area, where soils with agricultural suitability have a high economic value connected to the production of internationally famous wines and olive oils. The most common soil threats, such as erosion and landslide, may determine huge economic losses, which must be considered in farming management practices. This basin has a length of about 23 km for a basin area of around 60,3 Km2. Geological formations outcropping in the area are Pliocene to Pleistocene marine and lacustrine sediments in beds with almost horizontal bedding. Vineyards, olive groves and annual crops are the main types of land use. A typical Mediterranean climate prevails with a dry summer followed by intense and sometimes prolonged rainfall in autumn, decreasing in winter. In this study, three types of VNIR and SWIR techniques, operating at different scales and in different environments (laboratory spectroscopy, portable field spectroscopy) are integrated to rapidly quantify various soil characteristics, in order to acquire data for assessing the risk of occurrence for typically agricultural practice-related soil threats (swelling, compaction, erosion, landslides, organic matter decline, ect.) and to collect ground data in order to build up a spectral library to be used in image analysis from air-borne and satellite sensors. Difficulties encountered in imaging spectroscopy, such as influence of measurements conditions, atmospheric attenuation, scene dependency and sampling representation are investigated and mathematical pre-treatments, using proper algorithms, are applied and

  19. Variability of Soil Temperature: A Spatial and Temporal Analysis.

    ERIC Educational Resources Information Center

    Walsh, Stephen J.; And Others

    1991-01-01

    Discusses an analysis of the relationship of soil temperatures at 3 depths to various climatic variables along a 200-kilometer transect in west-central Oklahoma. Reports that temperature readings increased from east to west. Concludes that temperature variations were explained by a combination of spatial, temporal, and biophysical factors. (SG)

  20. Recent advances in (soil moisture) triple collocation analysis

    NASA Astrophysics Data System (ADS)

    Gruber, A.; Su, C.-H.; Zwieback, S.; Crow, W.; Dorigo, W.; Wagner, W.

    2016-03-01

    To date, triple collocation (TC) analysis is one of the most important methods for the global-scale evaluation of remotely sensed soil moisture data sets. In this study we review existing implementations of soil moisture TC analysis as well as investigations of the assumptions underlying the method. Different notations that are used to formulate the TC problem are shown to be mathematically identical. While many studies have investigated issues related to possible violations of the underlying assumptions, only few TC modifications have been proposed to mitigate the impact of these violations. Moreover, assumptions, which are often understood as a limitation that is unique to TC analysis are shown to be common also to other conventional performance metrics. Noteworthy advances in TC analysis have been made in the way error estimates are being presented by moving from the investigation of absolute error variance estimates to the investigation of signal-to-noise ratio (SNR) metrics. Here we review existing error presentations and propose the combined investigation of the SNR (expressed in logarithmic units), the unscaled error variances, and the soil moisture sensitivities of the data sets as an optimal strategy for the evaluation of remotely-sensed soil moisture data sets.

  1. Integrated Spectroscopic Studies of Anhydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Lane, M. D.; Bishop, J. L.; Dyar, M. D.; Cloutis, E.; Forray, F. L.; Hiroi, T.

    2005-01-01

    Sulfates have been identified in Martian soils and bedrock and are emerging as an important indicator for aqueous activity on Mars. Sulfate minerals can form in a variety of low-temperature (evaporitic; chemical-weathering) and high-temperature (volcanic/fumarolic; hydrothermal) environments and their formational environments can range from alkaline to acidic. Although sulfates generally form in the presence of water, not all sulfates are hydrous or contain water in their structures. Many of these anhydrous sulfates (Dana group 28; Strunz class 67A) are minerals that form as accompanying phases to the main minerals in ore deposits or as replacement deposits in sedimentary rocks. However, some form from thermal decomposition of OH or H2O-bearing sulfates, such as from the reaction [1]: jarosite = yavapaiite + Fe2O3 + H2O. Where known, the stability fields of these minerals all suggest that they would be stable under martian surface conditions [2]. Thus, anhydrous sulfate minerals may contribute to martian surface mineralogy, so they must be well-represented in spectral libraries used for interpretation of the Martian surface. We present here the preliminary results of an integrated study of emittance, reflectance, and Mossbauer spectroscopy of a suite of wel-lcharacterized anhydrous sulfates.

  2. Fluorescent microscopy approaches of quantitative soil microbial analysis

    NASA Astrophysics Data System (ADS)

    Ivanov, Konstantin; Polyanskaya, Lubov

    2015-04-01

    hybridization method (FISH). This approach was used for evaluation of contribution of each gram-negative bactera group. No significant difference between the main soil gram-negative bacterial groups (phylum Proteobacteria and Bacteroidetes) was found both under anaerobic and anaerobic conditions in chernozem in the topsoil. Thus soil gram-negative bacteria play an important ecological role in natural polymer degradation as common group of microorganisms. Another approach with using cascade filtration technique for bacterial population density estimation in chernozem was compared to classical method of fluorescent microscopy. Quantification of soil bacteria with cascade filtration provided by filters with different diameters and filtering of soil suspension in fixed amount. In comparison to the classical fluorescent microscopy method the modification with filtration of soil suspension provided to quantify more bacterial cells. Thus biomass calculation results of soil bacteria by using classical fluorescent microscopy could be underestimated and combination with cascade filtration technique allow to avoid potential experimental error. Thereby, combination and comparison of several fluorescent microscopy methods modifications established during the research provided miscellaneous approaches in soil bacteria quantification and analysis of ecological roles of soil microorganisms.

  3. Oxidation and cyclization of organics in Mars-like soils during evolved gas analysis

    NASA Astrophysics Data System (ADS)

    Navarro-Gonzalez, Rafael; Iñiguez, Enrique; de La Rosa, Jose; McKay, Chris

    Thermal volatilization (TV) of soils has been used as the method of choice in space because of its simplicity and reproducibility. TV was first used by the Viking Landers, which failed to detect organics at ppb levels and subsequently by the Phoenix Lander that did not find organics but instead detected the release of carbon dioxide from 400 to 680° C which was attributed to magnesium or iron carbonate, adsorbed carbon dioxide, or organics present in the soil. Future missions such as the Mars Science Laboratory from NASA and ExoMars from ESA will also use this method to release soil organics to the analytical instruments. The presence of inorganic salts or minerals can strongly modify the release of soil organics leading to their degradation and/or oxidation resulting in loss of sensitivity by several orders of magnitude. The purpose of this work is to study the matrix effects of some minerals and Martian soil analogues in the analysis of organics by TV. Samples were analyzed by TV-MS and/or TV-GC-MS in neutral (He) and reducing (H2 ) atmospheres following the methods reported by Navarro-González eta al., 2006, 2009 and Iñiguez et al., 2009. Our results show that oxidation of organic matter is n promoted by several soil minerals (iron oxides) and inorganic salts (perchlorates, persulphates, sulfates, nitrates) in a neutral atmosphere; however, in a reducing atmosphere the oxidation of organics by the mineral matrix is reduced. Furthermore it was found that the stable organics that were thermally evolved were aromatic in nature (benzene and methyl benzene). Therefore, depending on the mineral matrix there is completion between formation of aromatic compounds versus oxidation. Iñiguez, E., Navarro-González, R., de la Rosa, J., Ureña-Núnez, F., Coll, P., Raulin, F., and McKay, C.P.: 2009, On the oxidation ability of the NASA Mars-1 soil simulant during the thermal volatilization step. Implications for the search of organics on Mars. Geophys Res Lett 36, L21205

  4. AN ASSESSMENT OF THE CHESS SULFATE AND NITRATE DATA DURING THE PERIOD RETA PERFORMED THE CHEMICAL ANALYSIS

    EPA Science Inventory

    In the early 1970s certain filters from the CHESS network were collected and sent to the Human Studies Laboratory (HSL) Bioenvironmental Laboratory Branch (BELB) for sulfate and nitrate analyses. These analyses were interrupted on October 1, 1972 and subsequently continued under ...

  5. Variations of pH as an additional tool in the analysis of crowded NMR spectra of fucosylated chondroitin sulfates.

    PubMed

    Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Bilan, Maria I; Shashkov, Alexander S; Gerbst, Alexey G; Usov, Anatolii I; Nifantiev, Nikolay E

    2016-03-24

    The influence of pH variation on chemical shift values in NMR spectra of fucosylated chondroitin sulfates was studied using polysaccharides isolated from three sea cucumber species Apostichopus japonicus, Actinopyga mauritiana and Cucumaria japonica. The signals of glucuronic acid residues were found to be the most sensitive to pH changes in comparison to the chemical shifts of the sulfated galactosamine and fucosyl units, most of which were altered insignificantly. It was shown that in the presence of imidazole-HCl buffer (pH 7.2) NMR spectra of the polysaccharides from A. japonicus and A. mauritiana were sufficiently resolved, whereas under acidic conditions their (1)H NMR spectra were complicated by overlapping of H-1 signals of GlcA and GalNAc. In the case of polysaccharide from C. japonica bearing 3-O-fucosylated and 3-O-sulfated glucuronic acid residues in the backbone, acidification of the medium led to separation of H-1 signals of GlcA3S and GalNAc. Therefore, the combination of data obtained at different pH values may be useful for interpretation of overcrowded spectra of fucosylated chondroitin sulfates. PMID:26895544

  6. Analysis of urban effects on soil temperature in Ankara.

    PubMed

    Turkoglu, Necla

    2010-10-01

    In this study, data from two different meteorology stations were analyzed in order to reveal the effects of the urbanization on the soil temperature. These stations are the Ankara Meteorology Station (AMS), showing the urban effects, and the Esenboğa Meteorology Station (EMS), showing the rural effects. The soil temperatures measured at depths of 5, 10, 20, and 50 cm at 0700, 1400, and 2100 hours between 1960 and 2005 were used in the analysis. Long-term mean monthly temperatures at each depth and at each time considered were calculated and analyzed using Sen's slope and Mann-Kendall tests. The results showed that the mean monthly urban soil temperatures were generally higher than the rural soil temperatures. The differences between temperatures measured at 5, 10, 20, and 50 cm in urban and rural stations (DeltaT(s(AMS-EMS))) ranged between 1.8 degrees C and 2.1 degrees C. As in the urban heat islands, the differences between the urban and rural soil temperatures are high at 2100 hours and low at 1400 hours. It was also observed that, due to the increasing number of buildings around the Esenboğa Station in recent years, the difference between the urban and rural soil temperatures seems to have become smaller. These show that the factors affecting the urban heat islands and those affecting the soil temperatures are similar. Also, the temperature differences were observed to be higher during the warm season than in the cold season. The frequency distributions of the temperature differences (DeltaT(s(AMS-EMS))) reveal both positive and negative values. However, the positive temperature differences are obviously prevalent. PMID:19859823

  7. Processing and statistical analysis of soil-root images

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Hoang, Duyen; Kuzyakov, Yakov

    2016-04-01

    Importance of the hotspots such as rhizosphere, the small soil volume that surrounds and is influenced by plant roots, calls for spatially explicit methods to visualize distribution of microbial activities in this active site (Kuzyakov and Blagodatskaya, 2015). Zymography technique has previously been adapted to visualize the spatial dynamics of enzyme activities in rhizosphere (Spohn and Kuzyakov, 2014). Following further developing of soil zymography -to obtain a higher resolution of enzyme activities - we aimed to 1) quantify the images, 2) determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). To this end, we incubated soil-filled rhizoboxes with maize Zea mays L. and without maize (control box) for two weeks. In situ soil zymography was applied to visualize enzymatic activity of β-glucosidase and phosphatase at soil-root interface. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. Furthermore, we applied "spatial point pattern analysis" to determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). Our results demonstrated that distribution of hotspots at rhizosphere is clumped (aggregated) compare to control box without plant which showed regular (dispersed) pattern. These patterns were similar in all three replicates and for both enzymes. We conclude that improved zymography is promising in situ technique to identify, analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere. Moreover, such different patterns should be considered in assessments and modeling of rhizosphere extension and the corresponding effects on soil properties and functions. Key words: rhizosphere, spatial point pattern, enzyme activity, zymography, maize.

  8. Grafting Sulfated Zirconia on Mesoporous Silica

    SciTech Connect

    Wang, Yong; Lee, Kwan Young; Choi, Saemin; Liu, Jun; Wang, Li Q.; Peden, Charles HF

    2007-06-01

    Sulfated zirconia has received considerable attention as a potential solid acid catalyst in recent years. In this paper, the preparation and properties of acid catalysts obtained by grafting ziconia with atomic precision on MCM-41 mesoporous silica were studied. TEM and potential titration characterizations revealed that ZrO2/MCM-41 with monolayer coverage can be obtained using this grafting technique. Sulfated ZrO2/MCM-41 exhibits improved thermal stability than that of bulk sulfated zirconia, as evidenced by temperature programmed characterizations and XRD analysis. Temperature programmed reaction of isopropanol was used to evaluate the acidity of sulfated ZrO2/MCM-41. It was found that the acid strength of sulfated ZrO2/MCM-41 with monolayer coverage is weaker than bulk sulfated zirconia but stronger than SiO2-Al2O3, a common strong acid catalyst.

  9. Multifractal analysis of 2D gray soil images

    NASA Astrophysics Data System (ADS)

    González-Torres, Ivan; Losada, Juan Carlos; Heck, Richard; Tarquis, Ana M.

    2015-04-01

    Soil structure, understood as the spatial arrangement of soil pores, is one of the key factors in soil modelling processes. Geometric properties of individual and interpretation of the morphological parameters of pores can be estimated from thin sections or 3D Computed Tomography images (Tarquis et al., 2003), but there is no satisfactory method to binarized these images and quantify the complexity of their spatial arrangement (Tarquis et al., 2008, Tarquis et al., 2009; Baveye et al., 2010). The objective of this work was to apply a multifractal technique, their singularities (α) and f(α) spectra, to quantify it without applying any threshold (Gónzalez-Torres, 2014). Intact soil samples were collected from four horizons of an Argisol, formed on the Tertiary Barreiras group of formations in Pernambuco state, Brazil (Itapirema Experimental Station). The natural vegetation of the region is tropical, coastal rainforest. From each horizon, showing different porosities and spatial arrangements, three adjacent samples were taken having a set of twelve samples. The intact soil samples were imaged using an EVS (now GE Medical. London, Canada) MS-8 MicroCT scanner with 45 μm pixel-1 resolution (256x256 pixels). Though some samples required paring to fit the 64 mm diameter imaging tubes, field orientation was maintained. References Baveye, P.C., M. Laba, W. Otten, L. Bouckaert, P. Dello, R.R. Goswami, D. Grinev, A. Houston, Yaoping Hu, Jianli Liu, S. Mooney, R. Pajor, S. Sleutel, A. Tarquis, Wei Wang, Qiao Wei, Mehmet Sezgin. Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data. Geoderma, 157, 51-63, 2010. González-Torres, Iván. Theory and application of multifractal analysis methods in images for the study of soil structure. Master thesis, UPM, 2014. Tarquis, A.M., R.J. Heck, J.B. Grau; J. Fabregat, M.E. Sanchez and J.M. Antón. Influence of Thresholding in Mass and Entropy Dimension of 3-D

  10. Phylogenetic analysis on the soil bacteria distributed in karst forest

    PubMed Central

    Zhou, JunPei; Huang, Ying; Mo, MingHe

    2009-01-01

    Phylogenetic composition of bacterial community in soil of a karst forest was analyzed by culture-independent molecular approach. The bacterial 16S rRNA gene was amplified directly from soil DNA and cloned to generate a library. After screening the clone library by RFLP, 16S rRNA genes of representative clones were sequenced and the bacterial community was analyzed phylogenetically. The 16S rRNA gene inserts of 190 clones randomly selected were analyzed by RFLP and generated 126 different RFLP types. After sequencing, 126 non-chimeric sequences were obtained, generating 113 phylotypes. Phylogenetic analysis revealed that the bacteria distributed in soil of the karst forest included the members assigning into Proteobacteria, Acidobacteria, Planctomycetes, Chloroflexi (Green nonsulfur bacteria), Bacteroidetes, Verrucomicrobia, Nitrospirae, Actinobacteria (High G+C Gram-positive bacteria), Firmicutes (Low G+C Gram-positive bacteria) and candidate divisions (including the SPAM and GN08). PMID:24031430

  11. Analysis of hexazinone in soil by enzyme linked immunosorbent assay

    SciTech Connect

    Bushway, R.J.; Perkins, L.B.; Reed, A.W.

    1996-10-01

    A tube enzyme immunoassay (ELA) procedure was developed for the determination of the triazine herbicide hexazinone in soil. The antibody was polyclonal and was prepared by employing metabolite A (3-(4-hydroxycyclohexyl)-6-dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione of hexazinone conjugated to bovine serum albumin as the immunogen. Hexazinone was extracted from soil by shaking with methanol-water 80/20 for 10 min and allowed to set overnight before reshaking for 5 min. Aliquots for EIA analysis were diluted in such a way as to always contain 8% methanol. Reproducibility results for both standards and samples were good. A correlation coefficient of 0.9562 was obtained for 76 soil samples run by EIA vs. HPLC. Of the eight known metabolites of hexazinone, 7 were tested for cross-reactivity and 5 were shown to be cross-reactive.

  12. The Analysis of Soil Resistance During Screw Displacement Pile Installation

    NASA Astrophysics Data System (ADS)

    Krasinski, Adam

    2015-02-01

    The application of screw displacement piles (SDP) is still increasing due to their high efficiency and many advantages. However, one technological problem is a serious disadvantage of those piles. It relates to the generation of very high soil resistance during screw auger penetration, especially when piles are installed in non-cohesive soils. In many situations this problem causes difficulties in creating piles of designed length and diameter. It is necessary to find a proper method for prediction of soil resistance during screw pile installation. The analysis of screw resistances based on model and field tests is presented in the paper. The investigations were carried out as part of research project, financed by the Polish Ministry of Science and Higher Education. As a result of tests and analyses the empirical method for prediction of rotation resistance (torque) during screw auger penetration in non-cohesive subsoil based on CPT is proposed.

  13. Application of PIXE trace-element analysis to the study of rapid conversion of SO/sub 2/(g) to sulfate in a fog bank

    SciTech Connect

    Arthur, R.J.; Mangelson, N.F.; Hill, M.W.; Eatough, D.J.; Eatough, N.L.; Richter, B.E.; Hansen, L.D.; Cooper, J.A.

    1985-01-01

    The conversion of gaseous sulfur dioxide to sulfate has been studied in the plume of an oil-fired power plant located on the Pacific Ocean coast. The plant's unique location makes it a nearly ideal sampling location for determining plume chemistry with a minimum of interference. The plant is often shrouded in the morning by a fog bank. Breezes from the ocean mix the plume of the power plant with large quantities of unpolluted ocean air. Sulfur dioxide generated by the plant is rapidly oxidized when the fog bank is present to produce secondary sulfate. The rate of conversion was estimated by sampling the plume inland both on days when the fog bank was present and when the fog bank was absent. Trace-element concentrations in particulates collected on Nuclepore filters were determined by Proton-Induced X-Ray Emission (PIXE) analysis, while concentrations of soluble ions were determined from acid extracts of quartz-fiber filters using ion chromatography. Chemical mass-balance source apportionment techniques were used to assign the sources of particulate sulfate. 3 refs.

  14. Analysis of volatile-phase transport in soils using natural radon gas as a tracer

    SciTech Connect

    Chen, C.; Thomas, D.M.

    1994-01-01

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The experiment monitored soil gas radon activity, soil moisture, and soil temperature at depth; barometric pressure, rainfall, and wind speed were monitored at the soil surface. Linear and multiple regression analysis under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature, and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been observed. 25 refs., 12 figs., 1 tab.

  15. Molecular Analysis of the Diversity of Sulfate-Reducing and Sulfur-Oxidizing Prokaryotes in the Environment, Using aprA as Functional Marker Gene▿ †

    PubMed Central

    Meyer, Birte; Kuever, Jan

    2007-01-01

    The dissimilatory adenosine-5′-phosposulfate reductase is a key enzyme of the microbial sulfate reduction and sulfur oxidation processes. Because the alpha- and beta-subunit-encoding genes, aprBA, are highly conserved among sulfate-reducing and sulfur-oxidizing prokaryotes, they are most suitable for molecular profiling of the microbial community structure of the sulfur cycle in environment. In this study, a new aprA gene-targeting assay using a combination of PCR and denaturing gradient gel electrophoresis is presented. The screening of sulfate-reducing and sulfur-oxidizing reference strains as well as the analyses of environmental DNA from diverse habitats (e.g., microbial mats, invertebrate tissue, marine and estuarine sediments, and filtered hydrothermal water) by the new primer pair revealed an improved microbial diversity coverage and less-pronounced template-to-PCR product bias in direct comparison to those of the previously published primer set (B. Deplancke, K. R. Hristova, H. A. Oakley, V. J. McCracken, R. Aminov, R. I. Mackie, and H. R. Gaskins, Appl. Environ. Microbiol. 66:2166-2174, 2000). The concomitant molecular detection of sulfate-reducing and sulfur-oxidizing prokaryotes was confirmed. The new assay was applied in comparison with the 16S rRNA gene-based analysis to investigate the microbial diversity of the sulfur cycle in sediment, seawater, and manganese crust samples from four study sites in the area of the Lesser Antilles volcanic arc, Caribbean Sea (Caribflux project). The aprA gene-based approach revealed putative sulfur-oxidizing Alphaproteobacteria of chemolithoheterotrophic lifestyle to have been abundant in the nonhydrothermal sediment and water column. In contrast, the sulfur-based microbial community that inhabited the surface of the volcanic manganese crust was more complex, consisting predominantly of putative chemolithoautotrophic sulfur oxidizers of the Betaproteobacteria and Gammaproteobacteria. PMID:17921272

  16. Comparative Proteomic Analysis of Desulfotomaculum reducens MI-1: Insights into the Metabolic Versatility of a Gram-Positive Sulfate- and Metal-Reducing Bacterium

    PubMed Central

    Otwell, Anne E.; Callister, Stephen J.; Zink, Erika M.; Smith, Richard D.; Richardson, Ruth E.

    2016-01-01

    The proteomes of the metabolically versatile and poorly characterized Gram-positive bacterium Desulfotomaculum reducens MI-1 were compared across four cultivation conditions including sulfate reduction, soluble Fe(III) reduction, insoluble Fe(III) reduction, and pyruvate fermentation. Collectively across conditions, we observed at high confidence ~38% of genome-encoded proteins. Here, we focus on proteins that display significant differential abundance on conditions tested. To the best of our knowledge, this is the first full-proteome study focused on a Gram-positive organism cultivated either on sulfate or metal-reducing conditions. Several proteins with uncharacterized function encoded within heterodisulfide reductase (hdr)-containing loci were upregulated on either sulfate (Dred_0633-4, Dred_0689-90, and Dred_1325-30) or Fe(III)-citrate-reducing conditions (Dred_0432-3 and Dred_1778-84). Two of these hdr-containing loci display homology to recently described flavin-based electron bifurcation (FBEB) pathways (Dred_1325-30 and Dred_1778-84). Additionally, we propose that a cluster of proteins, which is homologous to a described FBEB lactate dehydrogenase (LDH) complex, is performing lactate oxidation in D. reducens (Dred_0367-9). Analysis of the putative sulfate reduction machinery in D. reducens revealed that most of these proteins are constitutively expressed across cultivation conditions tested. In addition, peptides from the single multiheme c-type cytochrome (MHC) in the genome were exclusively observed on the insoluble Fe(III) condition, suggesting that this MHC may play a role in reduction of insoluble metals. PMID:26925055

  17. MC ICP-MS δ(34)S(VCDT) measurement of dissolved sulfate in environmental aqueous samples after matrix separation by means of an anion exchange membrane.

    PubMed

    Hanousek, Ondrej; Berger, Torsten W; Prohaska, Thomas

    2016-01-01

    Analysis of (34)S/(32)S of sulfate in rainwater and soil solutions can be seen as a powerful tool for the study of the sulfur cycle. Therefore, it is considered as a useful means, e.g., for amelioration and calibration of ecological or biogeochemical models. Due to several analytical limitations, mainly caused by low sulfate concentration in rainwater, complex matrix of soil solutions, limited sample volume, and high number of samples in ecosystem studies, a straightforward analytical protocol is required to provide accurate S isotopic data on a large set of diverse samples. Therefore, sulfate separation by anion exchange membrane was combined with precise isotopic measurement by multicollector inductively coupled plasma mass spectrometry (MC ICP-MS). The separation method proved to be able to remove quantitatively sulfate from matrix cations (Ca, K, Na, or Li) which is a precondition in order to avoid a matrix-induced analytical bias in the mass spectrometer. Moreover, sulfate exchange on the resin is capable of preconcentrating sulfate from low concentrated solutions (to factor 3 in our protocol). No significant sulfur isotope fractionation was observed during separation and preconcentration. MC ICP-MS operated at edge mass resolution has enabled the direct (34)S/(32)S analysis of sulfate eluted from the membrane, with an expanded uncertainty U (k = 2) down to 0.3 ‰ (a single measurement). The protocol was optimized and validated using different sulfate solutions and different matrix compositions. The optimized method was applied in a study on solute samples retrieved in a beech (Fagus sylvatica) forest in the Vienna Woods. Both rainwater (precipitation and tree throughfall) and soil solution δ (34)SVCDT ranged between 4 and 6 ‰, the ratio in soil solution being slightly lower. The lower ratio indicates that a considerable portion of the atmospherically deposited sulfate is cycled through the organic S pool before being released to the soil solution

  18. Analysis of soil-climatic relationships on the basis of the soil map and the BIOME database

    NASA Astrophysics Data System (ADS)

    Belousova, N. I.; Nazimova, D. I.; Andreeva, N. M.

    2012-02-01

    The analysis of soil-climatic relationships was performed on the basis of the BIOME database on climate and vegetation created by the V.N. Sukachev Institute of Forestry (Siberian Branch of the Russian Academy of Sciences) and the Soil Map of the Russian Federation (1: 2.5 M scale) for the southern part of the boreal zone of Siberia. Climatic parameters (accumulated daily temperatures above 10°C, continentality of the climate, and humidity of the climate) specifying the development of major types of mesomorphic soils on this territory were determined. The climatic contacts between different soil groups were established. The soil diversity in climatic ecotones was characterized. The criteria of steady and unsteady position of soils in the space of climatic coordinates were analyzed, and the measure of the climatic sensitivity of soils was suggested.

  19. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions. PMID:25228086

  20. Analysis of rainfall infiltration law in unsaturated soil slope.

    PubMed

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process. PMID:24672332

  1. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    PubMed Central

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process. PMID:24672332

  2. In vitro proteoglycan sulfation derived from sulfhydryl compounds in sulfate transporter chondrodysplasias.

    PubMed

    Rossi, Antonio; Cetta, Giuseppe; Piazza, Rocco; Bonaventure, Jacky; Steinmann, Beat; Supereti-Furga, Andrea

    2003-01-01

    Mutations in a sulfate-chloride antiporter gene, the diastrophic dysplasia sulfate transporter (DTDST), have been associated with a family of skeletal dysplasias including recessive multiple epiphyseal dysplasia, diastrophic dysplasia (DTD), atelosteogenesis type 2, and achondrogenesis type 1B (ACG1B). DTDST function is crucial for uptake of extracellular sulfate required for proteoglycan (PG) sulfation; the tissue-specific expression of the clinical phenotype may be the consequence of the high rate of PG synthesis in chondrocytes and the ensuing high sulfate requirement. We have studied the contribution of cysteine and its derivatives to PG sulfation in fibroblast and chondrocyte cultures from sulfate transporter dysplasia patients. Incubation of ACG1B fibroblasts in medium containing different concentrations of cystine indicated partial recovery of PG sulfation as measured by HPLC disaccharide analysis of chondroitin sulfate PGs; similar results were observed after incubation with N-acetylcysteine. When both compounds were tested in primary chondrocytes from a DTD patient, partial rescue of PG sulfation was observed, suggesting that the metabolic pathways producing cytoplasmic sulfate from thiols are also active in this cell type. PMID:14692227

  3. Comparative analysis of different measurement techniques for characterizing soil surface roughness in agricultural soils

    NASA Astrophysics Data System (ADS)

    Martinez-Agirre, Alex; Álvarez-Mozos, Jesús; Valle, José Manuel; Rodríguez, Álvaro; Giménez, Rafael

    2016-04-01

    Soil surface roughness can be defined as the variation in soil surface elevations, and as such, it is a key element in hydrology and soil erosion processes. In agricultural soils, roughness is mainly an anthropic factor determined by the type of tillage and management. Roughness is also a property with a high spatial variability, since the same type of tillage can result in surfaces with different roughness depending on the physical characteristics of the soil and atmospheric conditions. In order to quantify roughness and to parameterize its role in different processes, different measurement techniques have been used and several parameters have been proposed in the literature. The objective of this work is to evaluate different measurement techniques and assess their accuracy and suitability for quantifying surface roughness in agricultural soils. With this aim, a comparative analysis of three roughness measurement techniques has been carried out; (1) laser profilometer, (2) convergent photogrammetry and (3) terrestrial laser scanner. Roughness measurements were done in 3 experimental plots (5x5 meters) with different tillage treatments (representing different roughness conditions) obtained with typical agricultural tools. The laser profilometer registered vertically the distance from a reference bar down to the surface. It had a vertical accuracy of 1.25 mm, a sampling interval of 5 mm and a total length profile of 5 m. Eight profiles were taken per plot, four in parallel to tillage direction and four in perpendicular. Convergent photogrammetry consisted of 20-30 images taken per plot from a height of 5-10 m above ground (using an elevation platform), leading to point clouds of ~25 million points per plot. Terrestrial laser scanner measurements were taken from the four sides of each plot at a measurement height of ~1.75 m above ground. After orientating and corregistering the four scans, point clouds of ~60 million points were obtained per plot. The comparative

  4. Cadmium sulfate application to sludge-amended soils: III. Relationship between treatment and plant available cadmium, zinc, and manganese. [Beta vulgaris, Zea mays

    SciTech Connect

    Mahler, R.J. ); Ryan, J.A. )

    1988-01-01

    Swiss chard (Beta vulgaris var. cicla) and corn (Zea mays L.) were used as biological indicators of Cd, Zn, and Mn availability in 12 soils amended with and without sludge, CdSO{sub 4} and CaCO{sub 3}. Soil Cd, Zn and Mn were partitioned into six fractions: soluble, exchangeable, adsorbed, organically bound, carbonate bound and sulfide bound, by the use of H{sub 2}O, KNO{sub 3}, H{sub 2}O, NaOH, EDTA and HNO{sub 3}, respectively. The data indicate that the major portion of total Cd was found in the carbonate, residual and organic fractions. Addition of CaCO{sub 3} caused an increase in the soluble and exchangeable fractions of Cd in the soils. The concentrations of Cd in the saturation extracts of the limed soils were significantly greater than those of the unlimed soils; however, this was not reflected in greater plant uptake of Cd from limed soils.

  5. Compartmentalization and Regulation of Sulfate Assimilation Pathways in Plants.

    PubMed

    Bohrer, A-S; Takahashi, H

    2016-01-01

    Plants utilize sulfate to synthesize primary and secondary sulfur-containing metabolites required for growth and survival in the environment. Sulfate is taken up into roots from the soil and distributed to various organs through the functions of membrane-bound sulfate transporters, while it is utilized as the primary substrate for synthesizing sulfur-containing metabolites in the sulfate assimilation pathways. Transporters and enzymes for the assimilative conversion of sulfate are regulated in highly organized manners depending on changes in sulfate supply from the environment and demand for biosynthesis of reduced sulfur compounds in the plant systems. Over the past few decades, the effect of sulfur nutrition on gene expression of sulfate transporters and assimilatory enzymes has been extensively studied with the aim of understanding the full landscape of regulatory networks. PMID:27572125

  6. Natural variation in the ATPS1 isoform of ATP sulfurylase contributes to the control of sulfate levels in Arabidopsis.

    PubMed

    Koprivova, Anna; Giovannetti, Marco; Baraniecka, Patrycja; Lee, Bok-Rye; Grondin, Cécile; Loudet, Olivier; Kopriva, Stanislav

    2013-11-01

    Sulfur is an essential macronutrient for all living organisms. Plants take up inorganic sulfate from the soil, reduce it, and assimilate it into bioorganic compounds, but part of this sulfate is stored in the vacuoles. In our first attempt to identify genes involved in the control of sulfate content in the leaves, we reported that a quantitative trait locus (QTL) for sulfate content in Arabidopsis (Arabidopsis thaliana) was underlain by the APR2 isoform of the key enzyme of sulfate assimilation, adenosine 5'-phosphosulfate reductase. To increase the knowledge of the control of this trait, we cloned a second QTL from the same analysis. Surprisingly, the gene underlying this QTL encodes the ATPS1 isoform of the enzyme ATP sulfurylase, which precedes adenosine 5'-phosphosulfate reductase in the sulfate assimilation pathway. Plants with the Bay allele of ATPS1 accumulate lower steady-state levels of ATPS1 transcript than those with the Sha allele, which leads to lower enzyme activity and, ultimately, the accumulation of sulfate. Our results show that the transcript variation is controlled in cis. Examination of ATPS1 sequences of Bay-0 and Shahdara identified two deletions in the first intron and immediately downstream the gene in Bay-0 shared with multiple other Arabidopsis accessions. The average ATPS1 transcript levels are lower in these accessions than in those without the deletions, while sulfate levels are significantly higher. Thus, sulfate content in Arabidopsis is controlled by two genes encoding subsequent enzymes in the sulfate assimilation pathway but using different mechanisms, variation in amino acid sequence and variation in expression levels. PMID:24027241

  7. Genome analysis of Desulfotomaculum gibsoniae strain GrollT a highly versatile Gram-positive sulfate-reducing bacterium

    PubMed Central

    Kuever, Jan; Visser, Michael; Loeffler, Claudia; Boll, Matthias; Worm, Petra; Sousa, Diana Z.; Plugge, Caroline M.; Schaap, Peter J.; Muyzer, Gerard; Pereira, Ines A.C.; Parshina, Sofiya N.; Goodwin, Lynne A.; Kyrpides, Nikos C.; Detter, Janine; Woyke, Tanja; Chain, Patrick; Davenport, Karen W.; Rohde, Manfred; Spring, Stefan; Klenk, Hans-Peter; Stams, Alfons J.M.

    2014-01-01

    Desulfotomaculum gibsoniae is a mesophilic member of the polyphyletic spore-forming genus Desulfotomaculum within the family Peptococcaceae. This bacterium was isolated from a freshwater ditch and is of interest because it can grow with a large variety of organic substrates, in particular several aromatic compounds, short-chain and medium-chain fatty acids, which are degraded completely to carbon dioxide coupled to the reduction of sulfate. It can grow autotrophically with H2 + CO2 and sulfate and slowly acetogenically with H2 + CO2, formate or methoxylated aromatic compounds in the absence of sulfate. It does not require any vitamins for growth. Here, we describe the features of D. gibsoniae strain GrollT together with the genome sequence and annotation. The chromosome has 4,855,529 bp organized in one circular contig and is the largest genome of all sequenced Desulfotomaculum spp. to date. A total of 4,666 candidate protein-encoding genes and 96 RNA genes were identified. Genes of the acetyl-CoA pathway, possibly involved in heterotrophic growth and in CO2 fixation during autotrophic growth, are present. The genome contains a large set of genes for the anaerobic transformation and degradation of aromatic compounds, which are lacking in the other sequenced Desulfotomaculum genomes. PMID:25197466

  8. Prediction of soil properties at farm-scale using factor analysis and model-based soil-sampling schemes

    NASA Astrophysics Data System (ADS)

    Castro Franco, Mauricio; Costa, Jose Luis; Aparicio, Virginia

    2015-04-01

    Digital soil mapping techniques can be used for improve soil information at field-scale. The aim of this study were develop a RF model to soil organic matter (SOM) and clay content in top soil at farm-scale combining predictors reduction and model-based soil-sampling techniques. We combine predictors reduce by factor analysis and model-based soil-sampling schemes by Conditioned Latin hypercube sampling (cLHS) and Fuzzy c-means sampling (FCMS). In general, 11 of 18 predictors were selected. Factor analysis provided an efficient quantitative method to determine the number of predictors. The combination of cLHS and predictors reduction with factor analysis was effective to predict SOM and clay content. Factors related with vegetation cover and yield map were the most important predictors to predict SOM and clay content, whereas factors related with topography were the less important. A dataset minimum of 50 soil samples were necessary to demonstrate the efficacy of the combination Factor Analysis-cLHS-RF model. The accuracy of the RF models to predict SOM and clay content can be maximized by increasing the number of samples. In this study, we demonstrated that the combination Factor Analysis-cLHS could reduce the time and financial resources need to improve the predictive capacity of RF models to predict soil properties.

  9. Mercury in Fish from a Sulfate-Amended Wetland Mesocosm

    SciTech Connect

    Harmon, S.M.

    2003-05-29

    This study used an experimental model of a constructed wetland to evaluate the risk of mercury methylation when the soil is amended with sulfate. The model was planted with Schoenoplectus californicus, and the sediments were varied during construction to provide a control and two levels of sulfate treatment.

  10. Metagenomic Analysis of a Southern Maritime Antarctic Soil

    PubMed Central

    Pearce, David A.; Newsham, Kevin K.; Thorne, Michael A. S.; Calvo-Bado, Leo; Krsek, Martin; Laskaris, Paris; Hodson, Andy; Wellington, Elizabeth M.

    2012-01-01

    Our current understanding of Antarctic soils is derived from direct culture on selective media, biodiversity studies based on clone library construction and analysis, quantitative PCR amplification of specific gene sequences and the application of generic microarrays for microbial community analysis. Here, we investigated the biodiversity and functional potential of a soil community at Mars Oasis on Alexander Island in the southern Maritime Antarctic, by applying 454 pyrosequencing technology to a metagenomic library constructed from soil genomic DNA. The results suggest that the commonly cited range of phylotypes used in clone library construction and analysis of 78–730 OTUs (de-replicated to 30–140) provides low coverage of the major groups present (∼5%). The vast majority of functional genes (>77%) were for structure, carbohydrate metabolism, and DNA/RNA processing and modification. This study suggests that prokaryotic diversity in Antarctic terrestrial environments appears to be limited at the generic level, with Proteobacteria, Actinobacteria being common. Cyanobacteria were surprisingly under-represented at 3.4% of sequences, although ∼1% of the genes identified were involved in CO2 fixation. At the sequence level there appeared to be much greater heterogeneity, and this might be due to high divergence within the relatively restricted lineages which have successfully colonized Antarctic terrestrial environments. PMID:23227023

  11. Unsaturated Shear Strength and Numerical Analysis Methods for Unsaturated Soils

    NASA Astrophysics Data System (ADS)

    Kim, D.; Kim, G.; Kim, D.; Baek, H.; Kang, S.

    2011-12-01

    The angles of shearing resistance(φb) and internal friction(φ') appear to be identical in low suction range, but the angle of shearing resistance shows non-linearity as suction increases. In most numerical analysis however, a fixed value for the angle of shearing resistance is applied even in low suction range for practical reasons, often leading to a false conclusion. In this study, a numerical analysis has been undertaken employing the estimated shear strength curve of unsaturated soils from the residual water content of SWCC proposed by Vanapalli et al.(1996). The result was also compared with that from a fixed value of φb. It is suggested that, in case it is difficult to measure the unsaturated shear strength curve through the triaxial soil tests, the estimated shear strength curve using the residual water content can be a useful alternative. This result was applied for analyzing the slope stablity of unsaturated soils. The effects of a continuous rainfall on slope stability were analyzed using a commercial program "SLOPE/W", with the coupled infiltration analysis program "SEEP/W" from the GEO-SLOPE International Ltd. The results show that, prior to the infiltration by the intensive rainfall, the safety factors using the estimated shear strength curve were substantially higher than that from the fixed value of φb at all time points. After the intensive infiltration, both methods showed a similar behavior.

  12. Gene expression analysis of collembola in cadmium containing soil.

    PubMed

    Nota, Benjamin; Timmermans, Martijn J T N; Franken, Oscar; Montagne-Wajer, Kora; Mariën, Janine; De Boer, Muriel E; De Boer, Tjalf E; Ylstra, Bauke; Van Straalen, Nico M; Roelofs, Dick

    2008-11-01

    Increasing concern about pollution of our environment calls for advanced and rapid methods to estimate ecological toxicity. The use of gene expression microarrays in environmental studies can potentially meet this challenge. We present a novel method to examine soil toxicity. We exposed the collembolan Folsomia candida to soil containing an ecologically relevant cadmium concentration, and found a cumulative total of 1586 differentially expressed transcripts across three exposure durations, including transcripts involved in stress response, detoxification, and hypoxia. Additional enrichment analysis of gene ontology (GO) terms revealed that antibiotic biosynthesis is important at all time points examined. Interestingly, genes involved in the "penicillin and cephalosporin biosynthesis pathway" have never been identified in animals before, but are expressed in F. candida's tissue. The synthesis of antibiotics can possibly be a response to increased cadmium-induced susceptibility to invading pathogens, which might be caused by repression of genes involved in the immune-system (C-type lectins and Toll receptor). This study presents a first global view on the environmental stress response of an arthropod species exposed to contaminated soil, and provides a mechanistic basis for the development of a gene expression soil quality test. PMID:19031917

  13. Sulfate in fetal development.

    PubMed

    Dawson, Paul A

    2011-08-01

    Sulfate (SO(4)(2-)) is an important nutrient for human growth and development, and is obtained from the diet and the intra-cellular metabolism of sulfur-containing amino acids, including methionine and cysteine. During pregnancy, fetal tissues have a limited capacity to produce sulfate, and rely on sulfate obtained from the maternal circulation. Sulfate enters and exits placental and fetal cells via transporters on the plasma membrane, which maintain a sufficient intracellular supply of sulfate and its universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) for sulfate conjugation (sulfonation) reactions to function effectively. Sulfotransferases mediate sulfonation of numerous endogenous compounds, including proteins and steroids, which biotransforms their biological activities. In addition, sulfonation of proteoglycans is important for maintaining normal structure and development of tissues, as shown for reduced sulfonation of cartilage proteoglycans that leads to developmental dwarfism disorders and four different osteochondrodysplasias (diastrophic dysplasia, atelosteogenesis type II, achondrogenesis type IB and multiple epiphyseal dysplasia). The removal of sulfate via sulfatases is an important step in proteoglycan degradation, and defects in several sulfatases are linked to perturbed fetal bone development, including mesomelia-synostoses syndrome and chondrodysplasia punctata 1. In recent years, interest in sulfate and its role in developmental biology has expanded following the characterisation of sulfate transporters, sulfotransferases and sulfatases and their involvement in fetal growth. This review will focus on the physiological roles of sulfate in fetal development, with links to human and animal pathophysiologies. PMID:21419855

  14. STATISTICAL METHOD FOR DETECTION OF A TREND IN ATMOSPHERIC SULFATE

    EPA Science Inventory

    Daily atmospheric concentrations of sulfate collected in northeastern Pennsylvania are regressed against meteorological factors, ozone, and time in order to determine if a significant trend in sulfate can be detected. he data used in this analysis were collected during the Sulfat...

  15. Mercury Source Zone Identification using Soil Vapor Sampling and Analysis

    SciTech Connect

    Watson, David B; Miller, Carrie L; Lester, Brian P; Lowe, Kenneth Alan; Southworth, George R; Bogle, Mary Anna; Liang, Liyuan; Pierce, Eric M

    2014-01-01

    Development and demonstration of reliable measurement techniqes that can detect and help quantify the nature and extent of elemental mercury (Hg(0)) in the subsurface are needed to reduce certainties in the decision making process and increase the effectiveness of remedial actions. We conducted field tests at the Y-12 National Security Complex (NSC) in Oak Ridge, TN, to determine if sampling and analysis of Hg(0) vapors in the shallow subsurface (<0.3 m depth) can be used to as an indicator of the location and extent of Hg(0) releases in the subsurface. We constructed a rigid PVC pushprobe assembly, which was driven into the ground. Soil gas samples were collected through a sealed inner tube of the assembly and analyzed immediately in the field with a Lumex and/or Jerome Hg(0) analyzer. Time-series sampling showed that Hg vapor concentrations were fairly stable over time suggesting that the vapor phase Hg(0) was not being depleted and that sampling results were not dependent on the soil gas purge volume. Hg(0) vapor data collected at over 200 pushprobe locations at 3 different release sites correlated well to areas of known Hg(0) contamination. Vertical profiling of Hg(0) vapor concentrations conducted at 2 locations provided information on the vertical distribution of Hg(0) contamination in the subsurface. We concluded from our studies that soil gas sampling and analysis can be conducted rapidly and inexpensively at a large scale to help identify areas contaminated with Hg(0).

  16. Mineral exploration and soil analysis using in situ neutron activation

    USGS Publications Warehouse

    Senftle, F.E.; Hoyte, A.F.

    1966-01-01

    A feasibility study has been made to operate by remote control an unshielded portable positive-ion accelerator type neutron source to induce activities in the ground or rock by "in situ" neutron irradiation. Selective activation techniques make it possible to detect some thirty or more elements by irradiating the ground for periods of a few minutes with either 3-MeV or 14-MeV neutrons. The depth of penetration of neutrons, the effect of water content of the soil on neutron moderation, gamma ray attenuation in the soil and other problems are considered. The analysis shows that, when exploring for most elements of economic interest, the reaction 2H(d,n)3He yielding ??? 3-MeV neutrons is most practical to produce a relatively uniform flux of neutrons of less than 1 keV to a depth of 19???-20???. Irradiation with high energy neutrons (??? 14 MeV) can also be used and may be better suited for certain problems. However, due to higher background and lower sensitivity for the heavy minerals, it is not a recommended neutron source for general exploration use. Preliminary experiments have been made which indicate that neutron activation in situ is feasible for a mineral exploration or qualititative soil analysis. ?? 1976.

  17. Interdisciplinary analysis of soil acidification hazard and its legacy effects in Lithuania

    NASA Astrophysics Data System (ADS)

    Eidukeviciene, M.; Volungevicius, J.; Marcinkonis, S.; Tripolskaja, L.; Karcauskiene, D.; Fullen, M. A.; Booth, C. A.

    2010-07-01

    An analysis of factors influencing effective soil acidification management is reported. This analysis was conducted simultaneously at both national and local levels. These investigations were accomplished in three stages: (i) validation of acid soil spatial patterns using systems analysis and geoinformation methods; (ii) spatial statistical analysis of soil pH diversity using a statistical grid method; and (iii) development of the concept of soil acidity management. Results indicate the national spatial distribution of topsoil reaction is a natural and stable phenomenon related to Quaternary sub-surface deposits. However, secondary effects of topsoil liming are evident in both spatial and temporal soil reaction patterns.

  18. An Historical Perspective on the Theory and Practice of Soil Mechanical Analysis.

    ERIC Educational Resources Information Center

    Miller, W. P.; And Others

    1988-01-01

    Traces the history of soil mechanical analysis. Evaluates this history in order to place current concepts in perspective, from both a research and teaching viewpoint. Alternatives to traditional separation techniques for use in soils teaching laboratories are discussed. (TW)

  19. Heparan Sulfate Proteoglycans

    PubMed Central

    Sarrazin, Stephane; Lamanna, William C.; Esko, Jeffrey D.

    2011-01-01

    Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein–heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level. PMID:21690215

  20. Fractal analysis of extra-embryonic vessels of chick embryos under the effect of glucosamine and chondroitin sulfates.

    PubMed

    de Souza Lins Borba, Fernanda Katharine; Felix, Giovanni Loos Queiroz; Costa, Edbhergue Ventura Lola; Silva, Lisie; Dias, Paulo Fernando; de Albuquerque Nogueira, Romildo

    2016-05-01

    Like heparan sulfate proteoglycans, some monosaccharides and glycosaminoglycans, such as sulfated glucosamine (GS) and chondroitin (CS), integrate the vascular extracellular matrix and may influence vascular endothelial cell growth. To assess the effects of these substances on blood vessel formation, we used the chick yolk sac membrane (YSM) model and fractal geometry quantification, which provided an objective in vivo method for testing potential agents that promote vasculogenesis and angiogenesis. An image processing method was developed to evaluate YSM capillary vessels after they were implanted in a methylcellulose disk of GS or CS at a concentration between 0.001-0.1mg/disk (performed on 2-day old embryos). This method resulted in a binary image of the microvascular network (white vessels on a black background). Fractal box-counting (DBC) and information (DINF) dimensions were used to quantify the activity of GS and CS in vasculogenesis and angiogenesis. YSM treated with GS (0.001-0.1mg) and CS (0.03-0.1mg) showed an increase in fractal dimensions that corresponded to vitelline vessel growth compared to the control group (vehicle), with GS displaying higher fractal dimension values. PMID:26873109

  1. Emerging techniques for soil analysis via mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Linker, R.; Shaviv, A.

    2009-04-01

    Transmittance and diffuse reflectance (DRIFT) spectroscopy in the mid-IR range are well-established methods for soil analysis. Over the last five years, additional mid-IR techniques have been investigated, and in particular: 1. Attenuated total reflectance (ATR) Attenuated total reflectance is commonly used for analysis of liquids and powders for which simple transmittance measurements are not possible. The method relies on a crystal with a high refractive index, which is in contact with the sample and serves as a waveguide for the IR radiation. The radiation beam is directed in such a way that it hits the crystal/sample interface several times, each time penetrating a few microns into the sample. Since the penetration depth is limited to a few microns, very good contact between the sample and the crystal must be ensured, which can be achieved by working with samples close to water saturation. However, the strong absorbance of water in the mid-infrared range as well as the absorbance of some soil constituents (e.g., calcium carbonate) interfere with some of the absorbance bands of interest. This has led to the development of several post-processing methods for analysis of the spectra. The FTIR-ATR technique has been successfully applied to soil classification as well as to determination of nitrate concentration [1, 6-8, 10]. Furthermore, Shaviv et al. [12] demonstrated the possibility of using fiber optics as an ATR devise for direct determination of nitrate concentration in soil extracts. Recently, Du et al. [5] showed that it is possible to differentiate between 14N and 15N in such spectra, which opens very promising opportunities for developing FTIR-ATR based methods for investigating nitrogen transformation in soils by tracing changes in N-isotopic species. 2. Photo-acoustic spectroscopy Photoacoustic spectroscopy (PAS) is based on absorption-induced heating of the sample, which produces pressure fluctuations in a surrounding gas. These fluctuations are

  2. Comparative proteomic analysis of Desulfotomaculum reducens MI-1: Insights into the metabolic versatility of a gram-positive sulfate- and metal-reducing bacterium

    DOE PAGESBeta

    Otwell, Anne E.; Callister, Stephen J.; Zink, Erika M.; Smith, Richard D.; Richardson, Ruth E.

    2016-02-19

    In this study, the proteomes of the metabolically versatile and poorly characterized Gram-positive bacterium Desulfotomaculum reducens MI-1 were compared across four cultivation conditions including sulfate reduction, soluble Fe(III) reduction, insoluble Fe(III) reduction, and pyruvate fermentation. Collectively across conditions, we observed at high confidence ~38% of genome-encoded proteins. Here, we focus on proteins that display significant differential abundance on conditions tested. To the best of our knowledge, this is the first full-proteome study focused on a Gram-positive organism cultivated either on sulfate or metal-reducing conditions. Several proteins with uncharacterized function encoded within heterodisulfide reductase (hdr)-containing loci were upregulated on either sulfatemore » (Dred_0633-4, Dred_0689-90, and Dred_1325-30) or Fe(III)-citrate-reducing conditions (Dred_0432-3 and Dred_1778-84). Two of these hdr-containing loci display homology to recently described flavin-based electron bifurcation (FBEB) pathways (Dred_1325-30 and Dred_1778-84). Additionally, we propose that a cluster of proteins, which is homologous to a described FBEB lactate dehydrogenase (LDH) complex, is performing lactate oxidation in D. reducens (Dred_0367-9). Analysis of the putative sulfate reduction machinery in D. reducens revealed that most of these proteins are constitutively expressed across cultivation conditions tested. In addition, peptides from the single multiheme c-type cytochrome (MHC) in the genome were exclusively observed on the insoluble Fe(III) condition, suggesting that this MHC may play a role in reduction of insoluble metals.« less

  3. Sea salt, sulfate, nitrate, chloride in Asian dust particles observed in Japan: results of individual particle analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Daizhou; Yamada, Maromu; Tobo, Yutaka; Ogata, Hiroko; Hara, Kazutaka; Nagatani, Tetsuji; Matsuki, Atsushi; Iwasaka, Yasunobu; Lieke, Kirsten

    2010-05-01

    Atmospheric particles were collected in Japan during Asian dust storm events from 2000 to 2007. Dust particles were analyzed by using electron microscopes and the mixture state of individual dust particles with sea salt, sulfate, nitrate and chloride were investigated. About 60~85% of dust particles were internally mixed with sea salt, 91% or more dust particles contained sulfate, and 27% or less contained nitrate. Besides the coagulation of sea-salt and dust particles, chlorine could deposit onto dust particles through the absorption of chlorine-containing gases when the particles passed through the marine atmosphere between China and Japan. The quantitative estimation revealed that the chlorine deposition on many particles was not negligible compared to sulfur deposition. The preferential formation of chloride in Ca-rich dust particles in cases when the particles contain little or no sulfate was found. Most of the particles were in an amorphous state and nearly spherical even under high vacuum, implying the potential enhancement of dust hygroscopicity. Comparisons of the relative weight ratios of sodium, sulfur and chlorine in mixture particles and in sea salt particles showed that mineral materials could enhance particulate sulfate and nitrate formation and restrain chlorine depletion from the sea salt components in mixture particles. Size distributions of the particles segregated by the mixture degrees of mineral and sea salt in different dust storm events were similar and all distributions showed a diameter range of 1~8 μm with maximum mode around 3 μm. Out of 1~8 μm, dust particles were rarely detected. It is confirmed that the size increase of dust particles had a strong correlation with their sea salt content but was independent from their non-sea-salt sulfur content, suggesting that the growth of dust particles in size during their dispersion in the marine atmosphere was dominated by the combination with sea salt rather than by other processes such as

  4. The impact of the soil surface properties in water erosion seen through LandSoil model sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Follain, Stéphane; Cheviron, Bruno; Le Bissonnais, Yves; Couturier, Alain; Walter, Christian

    2014-05-01

    Quantitative models of soil redistribution at the landscape scale are the current tools for understanding space-time processes in soil and landscape evolution. But models use larger and larger numbers of variables and sometimes it becomes difficult to understand their relative importance and model behaviours in critical conditions. Sensitivity analysis (SA) is widely used to clarify models behaviours, their structure giving fundamental information to ameliorate models their selves. We tested the LandSoil model (LANDscape design for SOIL conservation under soil use and climate change) a model designed for the analysis of agricultural landscape evolution at a fine spatial resolution scale [1-10 meters] and a mid-term temporal scale [10-100 years]. LandSoil is suitable for simulations from parcel to catchment scale. It is spatially distributed, event-based, and considers water and tillage erosion processes that use a dynamic representation of the agricultural landscape through parameters such as a monthly representation of soil surface properties. Our aim was to identify most significant parameters driving the model and to highlight potential particular/singular behaviours of parameter combinations and relationships. The approach was to use local sensitivity analysis, also termed 'one-factor-at-time' (OAT) which consists of a deterministic, derivative method, inquiring the local response O to a particular input factor Pi at a specified point P0 within the full input parameter space of the model expressed as: δO/δP = (O2-O1) / (P2-P1) The local sensitivity represents the partial derivatives of O with respect to Pi at the point P0. In the SA procedure the topographical entity is represented by a virtual hillslope on which soil loss and sensitivity are calculated. Virtual hillslope is inspired from the virtual catchment framework proposed by Cheviron at al. (2011): a fixed topology consisting of a 3X3 square pixel structure having 150 m length allowing to test

  5. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    SciTech Connect

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C. )

    1989-11-25

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with (35S) sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I.

  6. Crystal-Chemical Analysis of Soil at Rocknest, Gale Crater

    NASA Technical Reports Server (NTRS)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; Gellert, R.; Achilles, C. N.; Rampe, E. B.; Bristow, T. F.; Crisp, J. A.; Sarrazin, P. C.; DesMarais, D. J.; Morookian, J. M.; Anderson, R. C.

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analysis on Martian soil [1] at Rocknest in Gale Crater. In particular, crystalline phases from scoop 5 were identified and analyzed with the Rietveld method [2]. Refined unit-cell parameters are reported in Table 1. Comparing these unit-cell parameters with those in the literature provides an estimate of the chemical composition of the crystalline phases. For instance, Fig. 1 shows the Mg-content of Fa-Fo olivine as a function of the b unit-cell parameter using literature data. Our refined b parameter is indicated by the black triangle.

  7. TXRF analysis of soils and sediments to assess environmental contamination.

    PubMed

    Bilo, Fabjola; Borgese, Laura; Cazzago, Davide; Zacco, Annalisa; Bontempi, Elza; Guarneri, Rita; Bernardello, Marco; Attuati, Silvia; Lazo, Pranvera; Depero, Laura E

    2014-12-01

    Total reflection x-ray fluorescence spectroscopy (TXRF) is proposed for the elemental chemical analysis of crustal environmental samples, such as sediments and soils. A comparative study of TXRF with respect to flame atomic absorption spectroscopy and inductively coupled plasma optical emission spectroscopy was performed. Microwave acid digestion and suspension preparation methods are evaluated. A good agreement was found among the results obtained with different spectroscopic techniques and sample preparation methods for Cr, Mn, Fe, Ni, Cu, and Zn. We demonstrated that TXRF is suitable for the assessment of environmental contamination phenomena, even if the errors for Pb, As, V, and Ba are ingent. PMID:24122164

  8. Proteomic analysis of acute responses to copper sulfate stress in larvae of the brine shrimp, Artemia sinica

    NASA Astrophysics Data System (ADS)

    Zhou, Qian; Wu, Changgong; Dong, Bo; Li, Fuhua; Liu, Fengqi; Xiang, Jianhai

    2010-03-01

    Proteomics was used to reveal the differential protein expression profiles of acute responses to copper sulfate exposure in larvae of Artemia sinica. Fourteen differentially displayed protein spots were detected and seven of them were identified. Three spots were up-expressed and identified: actin, heat shock protein 70, and chaperone subunit 1; three down-regulated proteins were identified: arginine kinase, elongation factor-2, and glycine-rich protein; and a newly expressed protein was identified as peroxiredoxin. The study indicates the involvement of all the differentially expressed proteins in the early responses of protein expression, and in the survival of A. sinica in the presence of copper and other heavy metals; the findings improve understanding of the organism’s adaptive responses and resistance.

  9. Novel Alkylsulfatases Required for Biodegradation of the Branched Primary Alkyl Sulfate Surfactant 2-Butyloctyl Sulfate

    PubMed Central

    Ellis, Andrew J.; Hales, Stephen G.; Ur-Rehman, Naheed G. A.; White, Graham F.

    2002-01-01

    Recent reports show that contrary to common perception, branched alkyl sulfate surfactants are readily biodegradable in standard biodegradability tests. We report here the isolation of bacteria capable of biodegrading 2-butyloctyl sulfate and the identification of novel enzymes that initiate the process. Enrichment culturing from activated sewage sludge yielded several strains capable of growth on 2-butyloctyl sulfate. Of these, two were selected for further study and identified as members of the genus Pseudomonas. Strain AE-A was able to utilize either sodium dodecyl sulfate (SDS) or 2-butyloctyl sulfate as a carbon and energy source for growth, but strain AE-D utilized only the latter. Depending on growth conditions, strain AE-A produced up to three alkylsulfatases, as shown by polyacrylamide gel electrophoresis zymography. Growth on either SDS or 2-butyloctyl sulfate or in nutrient broth produced an apparently constitutive, nonspecific primary alkylsulfatase, AP1, weakly active on SDS and on 2-butyloctyl sulfate. Growth on 2-butyloctyl sulfate produced a second enzyme, AP2, active on 2-butyloctyl sulfate but not on SDS, and growth on SDS produced a third enzyme, AP3, active on SDS but not on 2-butyloctyl sulfate. In contrast, strain AE-D, when grown on 2-butyloctyl sulfate (no growth on SDS), produced a single enzyme, DP1, active on 2-butyloctyl sulfate but not on SDS. DP1 was not produced in broth cultures. DP1 was induced when residual 2-butyloctyl sulfate was present in the growth medium, but the enzyme disappeared when the substrate was exhausted. Gas chromatographic analysis of products of incubating 2-butyloctyl sulfate with DP1 in gels revealed the formation of 2-butyloctanol, showing the enzyme to be a true sulfatase. In contrast, Pseudomonas sp. strain C12B, well known for its ability to degrade linear SDS, was unable to grow on 2-butyloctyl sulfate, and its alkylsulfatases responsible for initiating the degradation of SDS by releasing the parent

  10. Novel alkylsulfatases required for biodegradation of the branched primary alkyl sulfate surfactant 2-butyloctyl sulfate.

    PubMed

    Ellis, Andrew J; Hales, Stephen G; Ur-Rehman, Naheed G A; White, Graham F

    2002-01-01

    Recent reports show that contrary to common perception, branched alkyl sulfate surfactants are readily biodegradable in standard biodegradability tests. We report here the isolation of bacteria capable of biodegrading 2-butyloctyl sulfate and the identification of novel enzymes that initiate the process. Enrichment culturing from activated sewage sludge yielded several strains capable of growth on 2-butyloctyl sulfate. Of these, two were selected for further study and identified as members of the genus Pseudomonas. Strain AE-A was able to utilize either sodium dodecyl sulfate (SDS) or 2-butyloctyl sulfate as a carbon and energy source for growth, but strain AE-D utilized only the latter. Depending on growth conditions, strain AE-A produced up to three alkylsulfatases, as shown by polyacrylamide gel electrophoresis zymography. Growth on either SDS or 2-butyloctyl sulfate or in nutrient broth produced an apparently constitutive, nonspecific primary alkylsulfatase, AP1, weakly active on SDS and on 2-butyloctyl sulfate. Growth on 2-butyloctyl sulfate produced a second enzyme, AP2, active on 2-butyloctyl sulfate but not on SDS, and growth on SDS produced a third enzyme, AP3, active on SDS but not on 2-butyloctyl sulfate. In contrast, strain AE-D, when grown on 2-butyloctyl sulfate (no growth on SDS), produced a single enzyme, DP1, active on 2-butyloctyl sulfate but not on SDS. DP1 was not produced in broth cultures. DP1 was induced when residual 2-butyloctyl sulfate was present in the growth medium, but the enzyme disappeared when the substrate was exhausted. Gas chromatographic analysis of products of incubating 2-butyloctyl sulfate with DP1 in gels revealed the formation of 2-butyloctanol, showing the enzyme to be a true sulfatase. In contrast, Pseudomonas sp. strain C12B, well known for its ability to degrade linear SDS, was unable to grow on 2-butyloctyl sulfate, and its alkylsulfatases responsible for initiating the degradation of SDS by releasing the parent

  11. Automotive sulfate emission data.

    PubMed Central

    Somers, J H

    1975-01-01

    This paper discusses automotive sulfate emission results obtained by the Office of Mobile Source Air Pollution Control of EPA, General Motors, Ford, Chrysler, and Esso. This work has been directed towards obtaining sulfate emission factors for cars with and without catalyst. While the EPA and Chrysler investigations have found significant sulfate formation in noncatalyst cars, GM, Ford, and Esso have found only trace levels from noncatalyst cars. All of these investigators agree that much higher quantities of sulfate are emitted from catalyst cars. The work done to date shows pelleted catalysts to have much lower sulfate emissions over the low speed-EPA Federal Test Procedures than monolith catalysts. This is probably due to temporary storage of sulfates on the catalyst due to chemical interaction with the alumina pellets. The sulfate compounds are, to a large degree, emitted later under higher speed conditions which result in higher catalyst temperatures which decompose the alumina salt. Future work will be directed towards further elucidation of this storage mechanism as well as determining in detail how factors such as air injection rate and catalyst location affect sulfate emissions. PMID:50932

  12. Sulfate metabolism in mycobacteria.

    PubMed

    Schelle, Michael W; Bertozzi, Carolyn R

    2006-10-01

    Pathogenic bacteria have developed numerous mechanisms to survive inside a hostile host environment. The human pathogen Mycobacterium tuberculosis (M. tb) is thought to control the human immune response with diverse biomolecules, including a variety of exotic lipids. One prevalent M. tb-specific sulfated metabolite, termed sulfolipid-1 (SL-1), has been correlated with virulence though its specific biological function is not known. Recent advances in our understanding of SL-1 biosynthesis will help elucidate the role of this curious metabolite in M. tb infection. Furthermore, the study of SL-1 has led to questions regarding the significance of sulfation in mycobacteria. Examples of sulfated metabolites as mediators of interactions between bacteria and plants suggest that sulfation is a key modulator of extracellular signaling between prokaryotes and eukaryotes. The discovery of novel sulfated metabolites in M. tb and related mycobacteria strengthens this hypothesis. Finally, mechanistic and structural data from sulfate-assimilation enzymes have revealed how M. tb controls the flux of sulfate in the cell. Mutants with defects in sulfate assimilation indicate that the fate of sulfur in M. tb is a critical survival determinant for the bacteria during infection and suggest novel targets for tuberculosis drug therapy. PMID:16933356

  13. Detection of 'archaeological features' among reflectance spectra of natural soils and archaeological soils using principal component analysis (PCA)

    NASA Astrophysics Data System (ADS)

    Choi, Yoon Jung; Lampel, Johannes; Jordan, David; Fiedler, Sabine; Wagner, Thomas

    2016-04-01

    Archaeological terminology 'soil-mark' refers to buried archaeological features being visible on the ground surface. Soil-marks have been identified by archaeologists based on their personal experience and knowledge. This study suggests a quantitative spectral analysis method to detect such archaeological features. This study identifies 'archaeological spectra' (reflectance spectra from surfaces containing archaeological materials) among various soil spectra using PCA (principal component analysis). Based on the results of the PCA, a difference (D) between the original spectrum and modified spectrum, which represents the principal component (PC) values of natural soils, can be determined. If the difference D between the two spectra is small, then the spectrum is similar to the spectral features of natural soils. If not, it identifies that the spectrum is more likely to be non-natural soil, probably an archaeological material. The method is applied on soil spectra from a prehistoric settlement site in Calabria, Italy. For the spectral range between 400 to 700nm, the difference value D for archaeological material ranges from 0.11 to 0.73 (the value varies depending on the number of PCs used). For natural soil, D ranges only from 0.04 to 0.09. The results shows D value is significantly larger for archaeological spectra, which indicates that the method can be applied to identify archaeological material among an unknown group of soil spectra, if a set of samples of natural soils exists. The study will present results of applying this method to various wavelength ranges and spectra from different sites. The major aim is to find optimised settings of the PCA method which can be applied in a universal way for identifying archaeological spectra.

  14. Particle size and X-ray analysis of Feldspar, Calvert, Ball, and Jordan soils

    NASA Technical Reports Server (NTRS)

    Chapman, R. S.

    1977-01-01

    Pipette analysis and X-ray diffraction techniques were employed to characterize the particle size distribution and clay mineral content of the feldspar, calvert, ball, and jordan soils. In general, the ball, calvert, and jordan soils were primarily clay size particles composed of kaolinite and illite whereas the feldspar soil was primarily silt-size particles composed of quartz and feldspar minerals.

  15. Potential Activity, Size, and Structure of Sulfate-Reducing Microbial Communities in an Exposed, Grazed and a Sheltered, Non-Grazed Mangrove Stand at the Red Sea Coast

    PubMed Central

    Balk, Melike; Keuskamp, Joost A.; Laanbroek, Hendrikus J.

    2015-01-01

    After oxygen, sulfate is the most important oxidant for the oxidation of organic matter in mangrove forest soils. As sulfate reducers are poor competitors for common electron donors, their relative success depends mostly on the surplus of carbon that is left by aerobic organisms due to oxygen depletion. We therefore hypothesized that sulfate-cycling in mangrove soils is influenced by the size of net primary production, and hence negatively affected by mangrove degradation and exploitation, as well as by carbon-exporting waves. To test this, we compared quantitative and qualitative traits of sulfate-reducing communities in two Saudi-Arabian mangrove stands near Jeddah, where co-occurring differences in camel-grazing pressure and tidal exposure led to a markedly different stand height and hence primary production. Potential sulfate reduction rates measured in anoxic flow-through reactors in the absence and presence of additional carbon sources were significantly higher in the samples from the non-grazed site. Near the surface (0–2 cm depth), numbers of dsrB gene copies and culturable cells also tended to be higher in the non-grazed sites, while these differences were not detected in the sub-surface (4–6 cm depth). It was concluded that sulfate-reducing microbes at the surface were indeed repressed at the low-productive site as could be expected from our hypothesis. At both sites, sulfate reduction rates as well as numbers of the dsrB gene copies and viable cells increased with depth suggesting repression of sulfate reduction near the surface in both irrespective of production level. Additionally, sequence analysis of DNA bands obtained from DGGE gels based on the dsrB gene, showed a clear difference in dominance of sulfate-reducing genera belonging to the Deltaproteobacteria and the Firmicutes between sampling sites and depths. PMID:26733999

  16. Potential Activity, Size, and Structure of Sulfate-Reducing Microbial Communities in an Exposed, Grazed and a Sheltered, Non-Grazed Mangrove Stand at the Red Sea Coast.

    PubMed

    Balk, Melike; Keuskamp, Joost A; Laanbroek, Hendrikus J

    2015-01-01

    After oxygen, sulfate is the most important oxidant for the oxidation of organic matter in mangrove forest soils. As sulfate reducers are poor competitors for common electron donors, their relative success depends mostly on the surplus of carbon that is left by aerobic organisms due to oxygen depletion. We therefore hypothesized that sulfate-cycling in mangrove soils is influenced by the size of net primary production, and hence negatively affected by mangrove degradation and exploitation, as well as by carbon-exporting waves. To test this, we compared quantitative and qualitative traits of sulfate-reducing communities in two Saudi-Arabian mangrove stands near Jeddah, where co-occurring differences in camel-grazing pressure and tidal exposure led to a markedly different stand height and hence primary production. Potential sulfate reduction rates measured in anoxic flow-through reactors in the absence and presence of additional carbon sources were significantly higher in the samples from the non-grazed site. Near the surface (0-2 cm depth), numbers of dsrB gene copies and culturable cells also tended to be higher in the non-grazed sites, while these differences were not detected in the sub-surface (4-6 cm depth). It was concluded that sulfate-reducing microbes at the surface were indeed repressed at the low-productive site as could be expected from our hypothesis. At both sites, sulfate reduction rates as well as numbers of the dsrB gene copies and viable cells increased with depth suggesting repression of sulfate reduction near the surface in both irrespective of production level. Additionally, sequence analysis of DNA bands obtained from DGGE gels based on the dsrB gene, showed a clear difference in dominance of sulfate-reducing genera belonging to the Deltaproteobacteria and the Firmicutes between sampling sites and depths. PMID:26733999

  17. Unsmooth cuticles of soil animals and theoretical analysis of their hydrophobicity and anti-soil-adhesion mechanism.

    PubMed

    Jia, Xian

    2006-03-15

    Soil adhesion is a natural phenomenon, and it is harmful to terrain machines and tillage equipment that have soil as their work medium, such as automobiles, tractors, earth-moving machines, spades, hoes, and plows. Soil adhesion increases motion resistance and energy consumption, quickens damage to the soil-engaging components, and lowers work quality. The biomimetic research has provided a promising method to solve the soil adhesion problem. In this work, the cuticles of typical soil animals were observed by scanning electron microscopy (SEM) and their wettability and mechanism of antiadhesion were analyzed in theory. The results of experimental observation have shown that the cuticles of soil animals have different unsmooth appearances, such as pimple-shaped, pit-like, and undee structures. But for the cross sections of the unsmooth cuticles, their common character is undee. Theoretical analysis has indicated that the larger the ratio of the amplitude of the wave to the period of the wave, the stronger the hydrophobicity, the more easily the composite interface between the liquid and the unsmooth cuticles forms, and the function of reducing soil adhesion of the unsmooth cuticles will be better. PMID:16298383

  18. "Hot background" of the mobile inelastic neutron scattering system for soil carbon analysis.

    PubMed

    Kavetskiy, Aleksandr; Yakubova, Galina; Prior, Stephen A; Torbert, H Allen

    2016-01-01

    The problem of gamma spectrum peak identification arises when conducting soil carbon analysis using the inelastic neutron scattering (INS) system. Some spectral peaks could be associated with radioisotopes appearing due to neutron activation of both the measurement system and soil samples. The investigation of "hot background" gamma spectra from the construction materials, whole measurement system, and soil samples over time showed that activation of (28)Al isotope can contribute noticeable additions to the soil neutron stimulated gamma spectra. PMID:26595773

  19. Statistical analysis of mineral soils in the Odra valley

    NASA Astrophysics Data System (ADS)

    Hudak, Magda; Rojna, Arkadiusz

    2012-10-01

    The aim of this article is to present the results of statistical analyses of laboratory experiment results obtained from an ITB ZW-K2 apparatus, Kamieński tubes and grain-size distribution curves. Beside basic statistical parameters (mean, sum, minimum and maximum), correlation analysis and multivariate analysis of variance at significance levels α < 0.01 and α < 0.05 were taken into account, as well as calculations of LSD confidence half-intervals. The research material was collected from the valley of the Odra river near the town of Słubice in Lubuskie province. The research involved mineral, non-rock fine-grained, non-cohesive soils lying at the depth of 0.3-1.5 m.

  20. Stabilization and reuse of heavy metal contaminated soils by means of quicklime sulfate salt treatment. Final report, September 1992--February 1995

    SciTech Connect

    Dermatas, D.

    1995-08-01

    Capillary and hydraulic flows of water in porous media contaminated by heavy metal species often result in severe aquifer contamination. In the present study a chemical admixture stabilization approach is proposed, where heavy metal stabilization/immobilization is achieved by means of quicklime-based treatment. Both in-situ treatment by injection and on-site stabilization by excavation, mixing, and compaction will be investigated. In addition, the potential to reuse the resulting stabilized material as readily available construction material will also be investigated. The heavy metals under study include: arsenic, chromium, lead, and mercury. The proposed technical approach consists of three separate phases. During phase A, both artificial and naturally occurring contaminated soil mixes were treated, and then tested for stress-strain properties, leachability, micromorphology, mineralogical composition, permeability, setting time, and durability. In such a way, the effectiveness of the proposed remediation technology was verified, the treatment approach was optimized, and the underlying mechanisms responsible for stabilization were established. During phase B, the proposed technology will be tested for two DOE-site subscale systems, involving naturally occurring contaminated soil, using the same testing methodology as the one outlined for phase A. Provided that the proposed technology is proven effective for the subscale systems, a field application will be demonstrated. Again process quality monitoring will be performed by testing undisturbed samples collected from the treated sites, in the same fashion as for the previous phases. Following completion of the proposed study, a set of comprehensive guidelines for field applications will be developed. 42 refs., 196 figs., 26 tabs.

  1. Sulfation of tyrosine residues in coagulation factor V

    SciTech Connect

    Hortin, G.L. )

    1990-09-01

    Sulfation of human coagulation factor V was investigated by biosynthetically labeling the products of HepG2 cells with ({sup 35}S)sulfate. There was abundant incorporation of the sulfate label into a product identified as factor V by immunoprecipitation, lability to proteases, affinity for the lectin jacalin, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two or more sites in factor V incorporated sulfate as indicated by labeling of different peptide chains of factor Va. The 150-Kd activation fragment of factor Va incorporated the greatest amounts of sulfate. This fragment of factor Va was bound selectively by jacalin-agarose, reflecting its content of O-linked oligosaccharides. Analysis of an alkaline hydrolysate of sulfate-labeled factor Va by anion-exchange chromatography showed that the sulfate occurred partly in tyrosine sulfate residues and partly in alkaline-labile linkages. Sulfate groups are potentially important structural and functional elements in factor V, and labeling with (35S)sulfate provides a useful approach for examining the biosynthesis and processing of this protein. The hypothesis is advanced that sites of sulfation in factor V and several other plasma proteins contribute to the affinity and specificity of thrombin for these molecules, just as it does for the interaction of thrombin with the potent inhibitor hirudin from leeches.

  2. Analysis of Diversity and Activity of Sulfate-Reducing Bacterial Communities in Sulfidogenic Bioreactors Using 16S rRNA and dsrB Genes as Molecular Markers▿

    PubMed Central

    Dar, Shabir A.; Yao, Li; van Dongen, Udo; Kuenen, J. Gijs; Muyzer, Gerard

    2007-01-01

    Here we describe the diversity and activity of sulfate-reducing bacteria (SRB) in sulfidogenic bioreactors by using the simultaneous analysis of PCR products obtained from DNA and RNA of the 16S rRNA and dissimilatory sulfite reductase (dsrAB) genes. We subsequently analyzed the amplified gene fragments by using denaturing gradient gel electrophoresis (DGGE). We observed fewer bands in the RNA-based DGGE profiles than in the DNA-based profiles, indicating marked differences in the populations present and in those that were metabolically active at the time of sampling. Comparative sequence analyses of the bands obtained from rRNA and dsrB DGGE profiles were congruent, revealing the same SRB populations. Bioreactors that received either ethanol or isopropanol as an energy source showed the presence of SRB affiliated with Desulfobulbus rhabdoformis and/or Desulfovibrio sulfodismutans, as well as SRB related to the acetate-oxidizing Desulfobacca acetoxidans. The reactor that received wastewater containing a diverse mixture of organic compounds showed the presence of nutritionally versatile SRB affiliated with Desulfosarcina variabilis and another acetate-oxidizing SRB, affiliated with Desulfoarculus baarsii. In addition to DGGE analysis, we performed whole-cell hybridization with fluorescently labeled oligonucleotide probes to estimate the relative abundances of the dominant sulfate-reducing bacterial populations. Desulfobacca acetoxidans-like populations were most dominant (50 to 60%) relative to the total SRB communities, followed by Desulfovibrio-like populations (30 to 40%), and Desulfobulbus-like populations (15 to 20%). This study is the first to identify metabolically active SRB in sulfidogenic bioreactors by using the functional gene dsrAB as a molecular marker. The same approach can also be used to infer the ecological role of coexisting SRB in other habitats. PMID:17098925

  3. Structural analysis and cytokine-induced activity of gelling sulfated polysaccharide from the cystocarpic plants of Ahnfeltiopsis flabelliformis.

    PubMed

    Kravchenko, Anna O; Anastyuk, Stanislav D; Sokolova, Ekaterina V; Isakov, Vladimir V; Glazunov, Valery P; Helbert, William; Yermak, Irina M

    2016-10-20

    Gelling sulfated polysaccharide from the cystocarpic plants of Ahnfeltiopsis flabelliformis was studied. According to FT-IR and NMR spectroscopy data, the polysaccharide was found to be iota/kappa-carrageenan with iota- and kappa-type units in a 2:1 ratio containing beta-carrageenan units and minor amounts of nu- and mu-carrageenans. The HPLC and ESI MS/MS data of enzymatic hydrolysis products revealed that the main components of the polymer chain are iota-carrabiose, iota-carratetraose and hybrid tetra- and hexasaccharides consisting of kappa- and iota-units. Xylose was a substituent of a hydroxyl group at C-6 of 1,3-linked β-d-galactose in the total polysaccharides. It was shown that the ability of carrageenans to increase the synthesis of cytokines depended on their molecular weight. The polysaccharide induced the synthesis of the anti-inflammatory cytokine IL-10, whereas oligosaccharides increased the synthesis of both pro- and anti-inflammatory cytokines at high concentrations. PMID:27474596

  4. Improving the soil moisture data record of the U.S. Climate Reference Network (USCRN) and Soil Climate Analysis Network (SCAN)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture estimates are valuable for hydrologic modeling, drought prediction and management, climate change analysis, and agricultural decision support. However, in situ measurements of soil moisture have only become available within the past few decades with additional sensors being installed ...

  5. Sulfate resistance of high calcium fly ash concrete

    NASA Astrophysics Data System (ADS)

    Dhole, Rajaram

    Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime

  6. Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease

    NASA Astrophysics Data System (ADS)

    Yu, Mingming; Wang, Yuanhong; Jiang, Tingfu; Lv, Zhihua

    2014-06-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  7. Image analysis of dye stained patterns in soils

    NASA Astrophysics Data System (ADS)

    Bogner, Christina; Trancón y Widemann, Baltasar; Lange, Holger

    2013-04-01

    Quality of surface water and groundwater is directly affected by flow processes in the unsaturated zone. In general, it is difficult to measure or model water flow. Indeed, parametrization of hydrological models is problematic and often no unique solution exists. To visualise flow patterns in soils directly dye tracer studies can be done. These experiments provide images of stained soil profiles and their evaluation demands knowledge in hydrology as well as in image analysis and statistics. First, these photographs are converted to binary images classifying the pixels in dye stained and non-stained ones. Then, some feature extraction is necessary to discern relevant hydrological information. In our study we propose to use several index functions to extract different (ideally complementary) features. We associate each image row with a feature vector (i.e. a certain number of image function values) and use these features to cluster the image rows to identify similar image areas. Because images of stained profiles might have different reasonable clusterings, we calculate multiple consensus clusterings. An expert can explore these different solutions and base his/her interpretation of predominant flow mechanisms on quantitative (objective) criteria. The complete workflow from reading-in binary images to final clusterings has been implemented in the free R system, a language and environment for statistical computing. The calculation of image indices is part of our own package Indigo, manipulation of binary images, clustering and visualization of results are done using either build-in facilities in R, additional R packages or the LATEX system.

  8. Elemental Analysis of Soils by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gondal, Mohammed Ashraf; Dastageer, Mohamed A.

    The chemical and elemental composition of soil is very complex as it contains many constituents like minerals, organic matters, living organisms, fossils, air and water. Considering the diversity of soil contents, quality and usability, a systematic scientific study on the elemental and chemical composition of soil is very important. In order to study the chemical composition of soil, Laser induced breakdown spectroscopy (LIBS) has been applied recently. The important features of LIBS system and its applications for the measurement of nutrients in green house soil, on-line monitoring of remediation process of chromium polluted soil, determination of trace elements in volcanic erupted soil samples collected from ancient cenozoic lava eruption sites and detection of toxic metals in Gulf war oil spill contaminated soil using LIBS are described in this chapter.

  9. Metabolomics analysis reveals elevation of 3-indoxyl sulfate in plasma and brain during chemically-induced acute kidney injury in mice: Investigation of nicotinic acid receptor agonists

    SciTech Connect

    Zgoda-Pols, Joanna R.; Chowdhury, Swapan; Wirth, Mark; Milburn, Michael V.; Alexander, Danny C.; Alton, Kevin B.

    2011-08-15

    An investigative renal toxicity study using metabolomics was conducted with a potent nicotinic acid receptor (NAR) agonist, SCH 900424. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were used to identify small molecule biomarkers of acute kidney injury (AKI) that could aid in a better mechanistic understanding of SCH 900424-induced AKI in mice. The metabolomics study revealed 3-indoxyl sulfate (3IS) as a more sensitive marker of SCH 900424-induced renal toxicity than creatinine or urea. An LC-MS assay for quantitative determination of 3IS in mouse matrices was also developed. Following treatment with SCH 900424, 3IS levels were markedly increased in murine plasma and brain, thereby potentially contributing to renal- and central nervous system (CNS)-related rapid onset of toxicities. Furthermore, significant decrease in urinary excretion of 3IS in those animals due to compromised renal function may be associated with the elevation of 3IS in plasma and brain. These data suggest that 3IS has a potential to be a marker of renal and CNS toxicities during chemically-induced AKI in mice. In addition, based on the metabolomic analysis other statistically significant plasma markers including p-cresol-sulfate and tryptophan catabolites (kynurenate, kynurenine, 3-indole-lactate) might be of toxicological importance but have not been studied in detail. This comprehensive approach that includes untargeted metabolomic and targeted bioanalytical sample analyses could be used to investigate toxicity of other compounds that pose preclinical or clinical development challenges in a pharmaceutical discovery and development. - Research Highlights: > Nicotinic acid receptor agonist, SCH 900424, caused acute kidney injury in mice. > MS-based metabolomics was conducted to identify potential small molecule markers of renal toxicity. > 3-indoxyl-sulfate was found to be as a more sensitive marker of renal toxicity than creatinine

  10. X-ray microtomography analysis of soil structure deformation caused by centrifugation

    NASA Astrophysics Data System (ADS)

    Schlüter, S.; Leuther, F.; Vogler, S.; Vogel, H.-J.

    2015-10-01

    Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high rotation speed in the centrifuge. These changes in soil structure were analyzed with X-ray microtomography. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. While volume changes due to swelling clay minerals are immanent to any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. The displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.

  11. Temporal changes of soil physic-chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance

    PubMed Central

    Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang

    2014-01-01

    Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg−1·year−1 for SOM, 438.9 mg·g−1·year−1 for C:P, 5.3 mg·g−1·year−1 for C:K, and −3.23 mg·cm−3·year−1 for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0–80-cm soil profile (P: −4.10 mg·kg−1·year−1; pH: −0.0061 unit·year−1; C:N: 167.1 mg·g−1·year−1; K:P: 371.5 mg·g−1 year−1; N:K: −0.242 mg·g−1·year−1; EC: 0.169 μS·cm−1·year−1), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance. PMID:24772281

  12. Hydrazine Sulfate (PDQ)

    MedlinePlus

    ... cells need to grow (see Question 3 ). In randomized clinical trials (a type of research study ), hydrazine ... make tumors shrink or go away. In some randomized trials, however, hydrazine sulfate was reported to be ...

  13. A Meta-analysis of Timber Harvest and Site Preparation Effects on Soil Carbon Storage

    NASA Astrophysics Data System (ADS)

    Nave, L. E.; Swanston, C. S.; Vance, E. D.; Curtis, P. S.

    2008-12-01

    Management practices can dramatically alter soil carbon (C) storage in forests. Timber harvesting and site preparation are a widely employed and studied form of forest management, yet abundant experimental data from this area of research have not recently been synthesized. We are using meta-analysis to test a database developed from 86 studies with published soil C storage values for paired harvested and un- harvested forests, in order to identify how timber harvesting and site preparation affect soil C pool sizes. Most of the studies in the database are from coniferous or hardwood forests of the continental United States, although temperate forests of Asia, Australia, Canada, and Europe also are represented. We have identified factors that influence soil C responses to harvest at global to regional scales, and estimated soil C storage shifts in pools of different vulnerability. At the global scale, soil C storage changes due to harvest differ according to soil horizon, soil taxonomic order, and species composition. Within soil types and at regional scales, climate, species composition, and harvest and site preparation methods appear to have more significant effects on forest soil C storage. At all spatial scales, forest floors and surface mineral soils show different levels of vulnerability to C loss or increase, highlighting the importance of constraining turnover times for C incorporated into these two soil pools as efforts to model the C cycle improve. As part of a larger effort to understand how soil C pools are impacted by management and global change, our meta-analysis identifies opportunities for increased soil C storage, situations where soil C losses are highly probable, and areas requiring improved understanding of mechanisms of forest soil C accumulation and loss.

  14. Structure analysis of a heteropolysaccharide from Taraxacum mongolicum Hand.-Mazz. and anticomplementary activity of its sulfated derivatives.

    PubMed

    Chen, MiaoMiao; Wu, Jianjun; Shi, Songshan; Chen, Yonglin; Wang, Huijun; Fan, Hongwei; Wang, Shunchun

    2016-11-01

    A homogenous water-soluble polysaccharide, DPSW-A, with a deduced chemical structure was extracted from the herb Taraxacum mongolicum Hand.-Mazz. Moreover, 80.813-kDa DPSW-A is composed of three types of monosaccharide, namely rhamnose, arabinose, and galactose, at a molar ratio of 1.0:10.7:11.9. The main chain of DPSW-A contains Terminal-Galp, 1,3-Galp, 1,6-Galp, 1,3,6-Galp, and 1,2,4-Rhap; the branched chain contains Terminal-Araf, 1,5-Araf, and 1,3,5-Araf. The sulfated derivatives prepared from DPSW-A showed inhibitory effects on complement activation through the classical pathway (CH50: Sul-DPSW-A, 3.94±0.43μg/mL; heparin, 104.40±3.82μg/mL) and alternative pathway (AP50: Sul-DPSW-A, 42.76±0.46μg/mL; heparin, 43.42±0.22μg/mL). Mechanism studies indicated that Sul-DPSW-A inhibited complement activation by blocking C1q, C1r, C1s, and C9, but not C2, C3, C4, and C5. In addition, Sul-DPSW-A displayed limited anticoagulant effects. These results suggest that Sul-DPSW-A prepared from DPSW-A is valuable for treating diseases caused by excessive complement system activation. PMID:27516270

  15. Rank Stability Analysis of Surface and Profile Soil Moisture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although several studies have examined the spatial and rank stability of soil moisture at the surface layer (0-5cm) with the purpose of estimating large scale mean soil moisture, the integration of the rank stability of profile (0-60cm) soil moisture has not been fully considered. This research comb...

  16. No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: results from a meta-analysis

    NASA Astrophysics Data System (ADS)

    Abdalla, Khatab; Chivenge, Pauline; Ciais, Philippe; Chaplot, Vincent

    2016-06-01

    The management of agroecosystems plays a crucial role in the global carbon cycle with soil tillage leading to known organic carbon redistributions within soils and changes in soil CO2 emissions. Yet, discrepancies exist on the impact of tillage on soil CO2 emissions and on the main soil and environmental controls. A meta-analysis was conducted using 46 peer-reviewed publications totaling 174 paired observations comparing CO2 emissions over entire seasons or years from tilled and untilled soils across different climates, crop types and soil conditions with the objective of quantifying tillage impact on CO2 emissions and assessing the main controls. On average, tilled soils emitted 21 % more CO2 than untilled soils, which corresponded to a significant difference at P<0.05. The difference increased to 29 % in sandy soils from arid climates with low soil organic carbon content (SOCC < 1 %) and low soil moisture, but tillage had no impact on CO2 fluxes in clayey soils with high background SOCC (> 3 %). Finally, nitrogen fertilization and crop residue management had little effect on the CO2 responses of soils to no-tillage. These results suggest no-tillage is an effective mitigation measure of carbon dioxide losses from dry land soils. They emphasize the importance of including information on soil factors such as texture, aggregate stability and organic carbon content in global models of the carbon cycle.

  17. Effective Synthesis of Sulfate Metabolites of Chlorinated Phenols

    PubMed Central

    Lehmler, Hans-Joachim; He, Xianran; Li, Xueshu; Duffel, Michael W.; Parkin, Sean

    2013-01-01

    Chlorophenols are an important class of persistent environmental contaminants and have been implicated in a range of adverse health effects, including cancer. They are readily conjugated and excreted as the corresponding glucuronides and sulfates in the urine of humans and other species. Here we report the synthesis and characterization of a series of ten chlorophenol sulfates by sulfation of the corresponding chlorophenols with 2,2,2-trichloroethyl (TCE) chlorosulfate using N,N-dimethylaminopyridine (DMAP) as base. Deprotection of the chlorophenol diesters with zinc powder/ammonium formate yielded the respective chlorophenol sulfate ammonium salts in good yield. The molecular structure of three TCE-protected chlorophenol sulfate diesters and one chlorophenol sulfate monoester were confirmed by X-ray crystal structure analysis. The chlorophenol sulfates were stable for several months if stored at −20 °C and, thus, are useful for future toxicological, environmental and human biomonitoring studies. PMID:23906814

  18. Structure-antioxidant relationships of sulfated galactomannan from guar gum.

    PubMed

    Wang, Xiaofang; Wang, Junlong; Zhang, Ji; Zhao, Baotang; Yao, Jian; Wang, Yunpu

    2010-01-01

    Sulfated polysaccharides exerted potential biological property which was relative to degree of sulfation (DS), M(w), substitution position and chain conformation. In the present study, commercial guar gum was purified and its sulfated derivates with different DS and M(w) were synthesized. FT-IR and 13C NMR analysis indicated that C-6 substitution was predominant in sulfated samples compared with other positions. In the sulfation reaction, a sharp decrease in M(w) was observed. The d(f) values from 1.92 to 2.85 indicated that the -SO3H groups led to the relatively expanded conformation of sulfated polysaccharides. Antioxidant assays showed that sulfated polysaccharides had better antioxidant activities. The data obtained in in vitro models indicated that high DS and low M(w) showed the best antioxidant capacities. PMID:19836415

  19. Homogenization of soil properties map by Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Valverde Arias, Omar; Garrido, Alberto; Villeta, Maria; Tarquis, Ana Maria

    2016-04-01

    It is widely known that extreme climatic phenomena occur with more intensity and frequency. This fact has put more pressure over farming, becoming very important to implement agriculture risk management policies by governments and institutions. One of the main strategies is transfer risk by agriculture insurance. Agriculture insurance based in indexes has gained importance in the last decade. And consist in a comparison between measured index values with a defined threshold that triggers damage losses. However, based index insurance could not be based on an isolated measurement. It is necessary to be integrated in a complete monitoring system that uses many sources of information and tools. For example, index influence areas, crop production risk maps, crop yields, claim statistics, and so on. To establish index influence area is necessary to have a secondary information that show us homogeneous climatic and soil areas, which inside of each homogeneous classes, index measurements on crops of interest are going to be similar, and in this way reduce basis risk. But it is necessary an efficient method to accomplish this aim, to get homogeneous areas that not depends on only in expert criteria and that could be widely used, for this reason this study asses two conventional agricultural and geographic methods (control and climatic maps) based in expert criteria, and one classical statistical method of multi-factorial analysis (factorial map), all of them to homogenize soil and climatic characteristics. Resulting maps were validated by agricultural and spatial analysis, obtaining very good results in statistical method (Factorial map) that proves to be an efficient and accuracy method that could be used for similar porpoises.

  20. Application of the pulsed fast/thermal neutron method for soil elemental analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil science is a research field where physic concepts and experimental methods are widely used, particularly in agro-chemistry and soil elemental analysis. Different methods of analysis are currently available. The evolution of nuclear physics (methodology and instrumentation) combined with the ava...

  1. Evaluation of PLS, LS-SVM, and LWR for quantitative spectroscopic analysis of soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil testing requires the analysis of large numbers of samples in laboratory that are often time consuming and expensive. Mid-infrared spectroscopy (mid-IR) and near-infrared spectroscopy (NIRS) are fast, non-destructive, and inexpensive analytical methods that have been used for soil analysis, in l...

  2. Sulfated triterpene derivatives from Fagonia arabica.

    PubMed

    Perrone, Angela; Masullo, Milena; Bassarello, Carla; Hamed, Arafa I; Belisario, Maria Antonietta; Pizza, Cosimo; Piacente, Sonia

    2007-04-01

    Two new sulfated triterpenes (1, 6) and four new sulfated triterpene glycosides (2-5) have been isolated from the aerial parts of Fagonia arabica. Their structures were established by spectroscopic data analysis. Compounds 1/2 and 3/4 are sulfated derivatives of the rare sapogenins 3beta,27-dihydroxyolean-12-en-28-oic acid and 3beta,27-dihydroxyurs-12-en-28-oic acid, respectively. Compound 5 is an unusual disulfated oleanene derivative characterized by the occurrence of a 13,18-double bond, while compound 6 is the first reported naturally occurring saturated and sulfated pentacyclic triterpene of the taraxastane series with a C-20,28 lactone unit. PMID:17338564

  3. Analysis on Soil Seed Bank Diversity Characteristics and Its Relation with Soil Physical and Chemical Properties after Substrate Addition

    PubMed Central

    He, Mengxuan; Lv, Lingyue; Li, Hongyuan; Meng, Weiqing; Zhao, Na

    2016-01-01

    Aims Considered as an essential measure in the application of soil seed bank (SSB) projects, the mixing of substrate and surface soil can effectively improve soil condition. This research is aimed at exploring the diversity characteristics of SSBs and the relationships between SSBs and soil properties. Methods Canonical correspondence analysis (CCA) was adopted to describe the ordination of SSBs on soil properties’ gradients; multiple linear regressions were adopted to analyze the relationship between average growth height and soil properties, density and soil properties. Results Experimental groups of mixed substrate (the mixture of organic and inorganic substrates) had high diversity indexes, especially the Shannon-Wiener Index compared with those of single substrate. Meanwhile, a higher number of species and increased density were also noted in those of mixed substrate. The best test group, No.16, had the highest diversity indexes with a Shannon-Wiener of 1.898, Simpson of 0.633 and Pielou of 0.717, and also showed the highest density of 14000 germinants /m2 and 21 species. In addition, an improvement of the soil’s chemical and physical properties was noted when the substrates were mixed. The mixed substrate of turfy soil and perlite could effectively enhance the soil moisture content, whilst a mixed substrate of rice husk carbon and vermiculite could improve the content of available potassium (AK) and phosphorus (AP) and strengthen soil fertility. The germinated plants also reflected obvious regularities of ordination on soil factor gradients. Three distinct cluster groups were presented, of which the first cluster was distributed in an area with a relatively higher content of AK and AP; the second cluster was distributed at places with relatively higher soil moisture content; and the third cluster of plants didn’t show any obvious relationship with soil physical and chemical properties. Through CCA analysis, AK and AP were considered the most important

  4. Surface water sulfate dynamics in the northern Florida Everglades.

    PubMed

    Wang, Hongqing; Waldon, Michael G; Meselhe, Ehab A; Arceneaux, Jeanne C; Chen, Chunfang; Harwell, Matthew C

    2009-01-01

    Sulfate contamination has been identified as a serious environmental issue in the Everglades ecosystem. However, it has received less attention compared to P enrichment. Sulfate enters the Arthur R. Marshall Loxahatchee National Wildlife Refuge (Refuge), a remnant of the historic Everglades, in pumped stormwater discharges with a mean concentration of approximately 50 mg L(-1), and marsh interior concentrations at times fall below a detection limit of 0.1 mg L(-1). In this research, we developed a sulfate mass balance model to examine the response of surface water sulfate in the Refuge to changes in sulfate loading and hydrological processes. Meanwhile, sulfate removal resulting from microbial sulfate reduction in the underlying sediments of the marsh was estimated from the apparent settling coefficients incorporated in the model. The model has been calibrated and validated using long-term monitoring data (1995-2006). Statistical analysis indicated that our model is capable of capturing the spatial and temporal variations in surface water sulfate concentrations across the Refuge. This modeling work emphasizes the fact that sulfate from canal discharge is impacting even the interior portions of the Refuge, supporting work by other researchers. In addition, model simulations suggest a condition of sulfate in excess of requirement for microbial sulfate reduction in the Refuge. PMID:19244495

  5. A Brazilian soil hydraulic database and field capacity analysis

    NASA Astrophysics Data System (ADS)

    Luiza Lima Ferreira, Ana; Van Dam, Jos Cornelis; de Jong van Lier, Quirijn

    2015-04-01

    Field Capacity (FC) is a widely-used concept by agricultural engineers, hydrologists and soil physicists to quantify the available soil water during growing seasons and the accessible soil water storage during intensive rainfall periods. In the field FC does depend on various environmental factors, including the soil hydraulic properties, rate of evapotranspiration, root density distribution, and groundwater level. Therefore world-wide different approaches are used to determine field capacity, based on both static and dynamic criteria. Dynamic criteria are usually related to the simulation of the soil internal drainage, until the percolation attains a negligible value. Recently Assouline and Or (2014) proposed a soil intrinsic characteristic length to determine the FC pressure head. This characteristic length is related to the loss of hydraulic continuity and is derived from the soil water retention function. In Brazil soil hydraulic properties were not yet organized in a database. Therefore we collected existing data of unsaturated soil hydraulic properties across Brazil, using available PhD thesis and scientific publications. This inquiry resulted in a soil sample data set of 106 horizons. We fitted the soil hydraulic parameters (θr, θs, α, n,gλ and Ks)of the Mualem-Van Genuchten (1980) function to all soil samples. Next we derived FC values based on soil internal drainage and using the characteristic length according to Assouline and Or (2014). The internal drainage is analysed with the agrohydrological model SWAP (Kroes and van Dam, 2008). In the poster we will present the Brazilian soil hydraulic database and the derived FC values.

  6. Soil moisture trends in mountainous areas: a 50-yr analysis of modelled soil moisture over Sierra Nevada Mountains (Spain).

    NASA Astrophysics Data System (ADS)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María

    2016-04-01

    Soil moisture conditions the energy and water fluxes through the ground surface and constitutes a major hydrological state variable in the analysis of environmental processes. Detecting potential changes in soil moisture and analyzing their trend over a long period of study can help to understand its evolution in other similar areas and to estimate its future role. In mountainous areas, the snow distribution highly conditions soil water content and its implications on the local water cycle. Sierra Nevada, Southern Spain, is a linear mountain range, with altitude higher than 3000 m.a.s.l., where Mediterranean and alpine climates coexist. The snow dynamics dominates the hydrological regime, and the medium and long term trends observed in the snow persistence constitute one of the main potential drivers for soil moisture changes both on a seasonal and annual basis. This work presents a 50-yr study of the soil moisture trends in Sierra Nevada (SN); the distributed monthly mean soil moisture evolution during the recent past (1960-2010) is simulated and its relationship with meteorological variables (precipitation and temperature) analyzed in the five head river basins that the SN area comprises. For this, soil water content is simulated throughout the area by means of WiMMed, a distributed and physically based hydrological model developed for Mediterranean regions that includes snow modelling, which had been previously calibrated and validated in the study area. The analysis of soil moisture shows a globally decreasing annual rate, with a mean value of 0.0011 mmṡmm‑1ṡyear‑1 during the study period averaged over the whole study area, which locally ranges between 0.174 mmṡmm‑1ṡyear‑1 and 0.0014 mmṡmm‑1ṡyear‑1. As previous studies reported, the observed trend in precipitation is more influent than temperature on the snowfall regime change; therefore, as expected, the estimated trends of soil moisture are more related to this variable. Moreover, an

  7. Functional Genomic Analysis Identifies Indoxyl Sulfate as a Major, Poorly Dialyzable Uremic Toxin in End-Stage Renal Disease

    PubMed Central

    Jhawar, Sachin; Singh, Prabhjot; Torres, Daniel; Ramirez-Valle, Francisco; Kassem, Hania; Banerjee, Trina; Dolgalev, Igor; Heguy, Adriana; Zavadil, Jiri; Lowenstein, Jerome

    2015-01-01

    Background Chronic renal failure is characterized by progressive renal scarring and accelerated arteriosclerotic cardiovascular disease despite what is considered to be adequate hemodialysis or peritoneal dialysis. In rodents with reduced renal mass, renal scarring has been attributed to poorly filtered, small protein-bound molecules. The best studied of these is indoxyl sulfate (IS). Methods We have attempted to establish whether there are uremic toxins that are not effectively removed by hemodialysis. We examined plasma from patients undergoing hemodialysis, employing global gene expression in normal human renal cortical cells incubated in pre- and post- dialysis plasma as a reporter system. Responses in cells incubated with pre- and post-dialysis uremic plasma (n = 10) were compared with responses elicited by plasma from control subjects (n = 5). The effects of adding IS to control plasma and of adding probenecid to uremic plasma were examined. Plasma concentrations of IS were measured by HPLC (high pressure liquid chromatography). Results Gene expression in our reporter system revealed dysregulation of 1912 genes in cells incubated with pre-dialysis uremic plasma. In cells incubated in post-dialysis plasma, the expression of 537 of those genes returned to baseline but the majority of them (1375) remained dysregulated. IS concentration was markedly elevated in pre- and post-dialysis plasma. Addition of IS to control plasma simulated more than 80% of the effects of uremic plasma on gene expression; the addition of probenecid, an organic anion transport (OAT) inhibitor, to uremic plasma reversed the changes in gene expression. Conclusion These findings provide evidence that hemodialysis fails to effectively clear one or more solutes that effect gene expression, in our reporter system, from the plasma of patients with uremia. The finding that gene dysregulation was simulated by the addition of IS to control plasma and inhibited by addition of an OAT inhibitor to

  8. Using soil function evaluation in multi-criteria decision analysis for sustainability appraisal of remediation alternatives.

    PubMed

    Volchko, Yevheniya; Norrman, Jenny; Rosén, Lars; Bergknut, Magnus; Josefsson, Sarah; Söderqvist, Tore; Norberg, Tommy; Wiberg, Karin; Tysklind, Mats

    2014-07-01

    Soil contamination is one of the major threats constraining proper functioning of the soil and thus provision of ecosystem services. Remedial actions typically only address the chemical soil quality by reducing total contaminant concentrations to acceptable levels guided by land use. However, emerging regulatory requirements on soil protection demand a holistic view on soil assessment in remediation projects thus accounting for a variety of soil functions. Such a view would require not only that the contamination concentrations are assessed and attended to, but also that other aspects are taking into account, thus addressing also physical and biological as well as other chemical soil quality indicators (SQIs). This study outlines how soil function assessment can be a part of a holistic sustainability appraisal of remediation alternatives using multi-criteria decision analysis (MCDA). The paper presents a method for practitioners for evaluating the effects of remediation alternatives on selected ecological soil functions using a suggested minimum data set (MDS) containing physical, biological and chemical SQIs. The measured SQIs are transformed into sub-scores by the use of scoring curves, which allows interpretation and the integration of soil quality data into the MCDA framework. The method is demonstrated at a study site (Marieberg, Sweden) and the results give an example of how soil analyses using the suggested MDS can be used for soil function assessment and subsequent input to the MCDA framework. PMID:24529453

  9. Community structure analysis of soil ammonia oxidizers during vegetation restoration in southwest China.

    PubMed

    Liang, Yueming; He, Xunyang; Liang, Shichu; Zhang, Wei; Chen, Xiangbi; Feng, Shuzheng; Su, Yirong

    2014-03-01

    Soil ammonia oxidizers play a critical role in nitrogen cycling and ecological restoration. The composition and structure of soil ammonia oxidizers and their impacting factors were studied in four typical ecosystem soils, tussock (T), shrub (S), secondary forest (SF), and primary forest (PF), during vegetation restoration in the Karst region of Southwest China. The composition and structure of the ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities were characterized by sequencing the amoA and arch-amoA genes, respectively. The diversity of soil ammonia oxidizers (except in S) and plant Shannon diversity index gradually increased with vegetation restoration, and the ammonia oxidizer communities differed significantly (p < 0.001). Amplicons of AOA from the Nitrososphaera cluster dominated all four ecosystem soils. AOB Nitrosospira cluster 3b only appeared in PF and SF soils, while Nitrosospira cluster 3a species were found in all soils. Changes in AOB paralleled the changes in soil ammonium content that occurred with vegetation restoration. Redundancy analysis showed that the distribution of dominant AOB species was linked to pH, soil urease activity, and soil C/N ratio, whereas the distribution of dominant AOA species was mainly influenced by litter nitrogen content and C/N ratio. These results suggested that the composition and structure of the AOB community were more sensitive to changes in vegetation and soil ammonium content, and may be an important indicator of nitrogen availability in Karst ecosystem soils. PMID:23897748

  10. Growth Performance and Root Transcriptome Remodeling of Arabidopsis in Response to Mars-Like Levels of Magnesium Sulfate

    PubMed Central

    Visscher, Anne M.; Paul, Anna-Lisa; Kirst, Matias; Guy, Charles L.; Schuerger, Andrew C.; Ferl, Robert J.

    2010-01-01

    Background Martian regolith (unconsolidated surface material) is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth. Methodology and Principal Findings Disabling ion transporters AtMRS2-10 and AtSULTR1;2, which are plasma membrane localized in peripheral root cells, is not an effective way to confer tolerance to magnesium sulfate soils. Arabidopsis mrs2-10 and sel1-10 knockout lines do not mitigate the growth inhibiting impacts of high MgSO4·7H2O concentrations observed with wildtype plants. A global approach was used to identify novel genes with potential to enhance tolerance to high MgSO4·7H2O (magnesium sulfate) stress. The early Arabidopsis root transcriptome response to elevated concentrations of magnesium sulfate was characterized in Col-0, and also between Col-0 and the mutant line cax1-1, which was confirmed to be relatively tolerant of high levels of MgSO4·7H2O in soil solution. Differentially expressed genes in Col-0 treated for 45 min. encode enzymes primarily involved in hormone metabolism, transcription factors, calcium-binding proteins, kinases, cell wall related proteins and membrane-based transporters. Over 200 genes encoding transporters were differentially expressed in Col-0 up to 180 min. of exposure, and one of the first down-regulated genes was CAX1. The importance of this early response in wildtype Arabidopsis is exemplified in the fact that only four transcripts were differentially expressed between Col-0 and cax1-1 at 180 min. after initiation of treatment. Conclusions/Significance The results provide a solid basis for the understanding of the metabolic response of plants to elevated magnesium sulfate soils; it is the first transcriptome analysis of plants in this environment. The results foster the development of Mars

  11. Challenges in Bulk Soil Sampling and Analysis for Vapor Intrusion Screening of Soil

    EPA Science Inventory

    This draft Engineering Issue Paper discusses technical issues with monitoring soil excavations for VOCs and describes options for such monitoring as part of a VI pathway assessment at sites where soil excavation is being considered or used as part of the remedy for VOC-contaminat...

  12. Long term analysis of PALS soil moisture campaign measurements for global soil moisture algorithm development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important component of satellite-based soil moisture algorithm development and validation is the comparison of coincident remote sensing and in situ observations that are typically provided by intensive field campaigns. The planned NASA Soil Moisture Active Passive (SMAP) mission has unique requi...

  13. Dust emission parameterization scheme over the MENA region: Sensitivity analysis to soil moisture and soil texture

    NASA Astrophysics Data System (ADS)

    Gherboudj, Imen; Beegum, S. Naseema; Marticorena, Beatrice; Ghedira, Hosni

    2015-10-01

    The mineral dust emissions from arid/semiarid soils were simulated over the MENA (Middle East and North Africa) region using the dust parameterization scheme proposed by Alfaro and Gomes (2001), to quantify the effect of the soil moisture and clay fraction in the emissions. For this purpose, an extensive data set of Soil Moisture and Ocean Salinity soil moisture, European Centre for Medium-Range Weather Forecasting wind speed at 10 m height, Food Agricultural Organization soil texture maps, MODIS (Moderate Resolution Imaging Spectroradiometer) Normalized Difference Vegetation Index, and erodibility of the soil surface were collected for the a period of 3 years, from 2010 to 2013. Though the considered data sets have different temporal and spatial resolution, efforts have been made to make them consistent in time and space. At first, the simulated sandblasting flux over the region were validated qualitatively using MODIS Deep Blue aerosol optical depth and EUMETSAT MSG (Meteosat Seciond Generation) dust product from SEVIRI (Meteosat Spinning Enhanced Visible and Infrared Imager) and quantitatively based on the available ground-based measurements of near-surface particulate mass concentrations (PM10) collected over four stations in the MENA region. Sensitivity analyses were performed to investigate the effect of soil moisture and clay fraction on the emissions flux. The results showed that soil moisture and soil texture have significant roles in the dust emissions over the MENA region, particularly over the Arabian Peninsula. An inversely proportional dependency is observed between the soil moisture and the sandblasting flux, where a steep reduction in flux is observed at low friction velocity and a gradual reduction is observed at high friction velocity. Conversely, a directly proportional dependency is observed between the soil clay fraction and the sandblasting flux where a steep increase in flux is observed at low friction velocity and a gradual increase is

  14. Glyphosate immunosensor. Application for water and soil analysis.

    PubMed

    González-Martínez, Miguel Angel; Brun, Eva María; Puchades, Rosa; Maquieira, Angel; Ramsey, Kristy; Rubio, Fernando

    2005-07-01

    A fully automated immunosensor for the herbicide glyphosate has been developed on the basis of the immunocomplex capture assay protocol. The sensor carries out on-line analyte derivatization prior to the assay and uses a selective anti-glyphosate serum, a glyphosate peroxidase enzyme tracer, and fluorescent detection. Under optimal conditions, the detection limit achieved is 0.021 microg/L with an analysis rate of 25 min per assay, autonomy of more than 48 h, and sensor reusability >500 analytical cycles. The immunosensor is able to discriminate structurally related molecules, such as aminomethylphosphonic acid, the main metabolite of glyphosate, and other related herbicides, such as glufosinate and glyphosine. Interferences from naturally occurring species (anions, cations, and humic substances) and their elimination were also studied. The immunosensor has been successfully applied to water and soil sample analysis, with good recoveries at levels lower than 1 microg/L. Results obtained with the immunosensor correlate well with data from a magnetic particle ELISA and LC/LC/MS chromatographic method. PMID:15987130

  15. Role of 6-O-Sulfated Heparan Sulfate in Chronic Renal Fibrosis*

    PubMed Central

    Alhasan, Abd A.; Spielhofer, Julia; Kusche-Gullberg, Marion; Kirby, John A.; Ali, Simi

    2014-01-01

    Heparan sulfate (HS) plays a crucial role in the fibrosis associated with chronic allograft dysfunction by binding and presenting cytokines and growth factors to their receptors. These interactions critically depend on the distribution of 6-O-sulfated glucosamine residues, which is generated by glucosaminyl-6-O-sulfotransferases (HS6STs) and selectively removed by cell surface HS-6-O-endosulfatases (SULFs). Using human renal allografts we found increased expression of 6-O-sulfated HS domains in tubular epithelial cells during chronic rejection as compared with the controls. Stimulation of renal epithelial cells with TGF-β induced SULF2 expression. To examine the role of 6-O-sulfated HS in the development of fibrosis, we generated stable HS6ST1 and SULF2 overexpressing renal epithelial cells. Compared with mock transfectants, the HS6ST1 transfectants showed significantly increased binding of FGF2 (p = 0.0086) and pERK activation. HS6ST1 transfectants displayed a relative increase in mono-6-O-sulfated disaccharides accompanied by a decrease in iduronic acid 2-O-sulfated disaccharide structures. In contrast, SULF2 transfectants showed significantly reduced FGF2 binding and phosphorylation of ERK. Structural analysis of HS showed about 40% down-regulation in 6-O-sulfation with a parallel increase in iduronic acid mono-2-O-sulfated disaccharides. To assess the relevance of these data in vivo we established a murine model of fibrosis (unilateral ureteric obstruction (UUO)). HS-specific phage display antibodies (HS3A8 and RB4EA12) showed significant increase in 6-O-sulfation in fibrotic kidney compared with the control. These results suggest an important role of 6-O-sulfation in the pathogenesis of fibrosis associated with chronic rejection. PMID:24878958

  16. Formation and deposition of volcanic sulfate aerosols on Mars

    NASA Technical Reports Server (NTRS)

    Settle, M.

    1979-01-01

    The paper considers the formation and deposition of volcanic sulfate aerosols on Mars. The rate limiting step in sulfate aerosol formation on Mars is the gas phase oxidation of SO2 by chemical reactions with O, OH, and HO2; submicron aerosol particles would circuit Mars and then be removed from the atmosphere by gravitational forces, globally dispersed, and deposited over a range of equatorial and mid-latitudes. Volcanic sulfate aerosols on Mars consist of liquid droplets and slurries containing sulfuric acid; aerosol deposition on a global or hemispheric scale could account for the similar concentrations of sulfur within surficial soils at the two Viking lander sites.

  17. Methylmercury formation in a wetland mesocosm amended with sulfate.

    PubMed

    Harmon, S M; King, J K; Gladden, J B; Chandler, G T; Newman, L A

    2004-01-15

    This study used an experimental model to evaluate methylmercury accumulation when the soil of a constructed wetland is amended with sulfate. The model was planted with Schoenoplectus californicus and designed to reduce wastestream metals and metal-related toxicity. The soil was varied during construction to provide a control and two sulfate treatments which were equally efficient at overall mercury and copper removal. After an initial stabilization period, methylmercury concentrations in porewater were up to three times higher in the sulfate-treated porewater (0.5-1.6 ng/L) than in the control (<0.02-0.5 ng/L). Mean percent methylmercury was 9.0% in the control with 18.5 and 16.6% in the low- and high-sulfate treatments, respectively. Methylmercury concentrations measured in mesocosm surface water did not reflect the differences between the control and the sulfate treatments that were noted in porewater. The mean bulk sediment methylmercury concentration in the top 6 cm of the low-sulfate treatment (2.33 ng/g) was significantly higher than other treatment means which ranged from 0.96 to 1.57 ng/g. Total mercury in sediment ranged from 20.8 to 33.4 ng/g, with no differences between treatments. Results suggest that the non-sulfate-amended control was equally effective in removing metals while keeping mercury methylation low. PMID:14750744

  18. Assessment of diversity indices for the characterization of the soil prokaryotic community by metagenomic analysis

    NASA Astrophysics Data System (ADS)

    Chernov, T. I.; Tkhakakhova, A. K.; Kutovaya, O. V.

    2015-04-01

    The diversity indices used in ecology for assessing the metagenomes of soil prokaryotic communities at different phylogenetic levels were compared. The following indices were considered: the number of detected taxa and the Shannon, Menhinick, Margalef, Simpson, Chao1, and ACE indices. The diversity analysis of the prokaryotic communities in the upper horizons of a typical chernozem (Haplic Chernozem (Pachic)), a dark chestnut soil (Haplic Kastanozem (Chromic)), and an extremely arid desert soil (Endosalic Calcisol (Yermic)) was based on the analysis of 16S rRNA genes. The Menhinick, Margalef, Chao1, and ACE indices gave similar results for the classification of the communities according to their diversity levels; the Simpson index gave good results only for the high-level taxa (phyla); the best results were obtained with the Shannon index. In general, all the indices used showed a decrease in the diversity of the soil prokaryotes in the following sequence: chernozem > dark chestnut soil > extremely arid desert soil.

  19. Ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for the structural analysis of N-unsubstituted heparin/heparan sulfate.

    PubMed

    Du, Jia Yan; Chen, Lan Rong; Liu, Su; Lin, Jiang Hui; Liang, Qun Tao; Lyon, Malcolm; Wei, Zheng

    2016-08-15

    The rare N-unsubstituted glucosamine (GlcNH3(+)) residues in heparan sulfate (HS) have important biological and pathophysiological roles. In this study, a high-resolution method for the separation and analysis of N-unsubstituted disaccharides of heparin/HS is described. Four N-unsubstituted disaccharides, together with eight N-substituted species, can be well-separated by ion-pair reverse-phase ultra-performance liquid chromatography. Each disaccharide can then be detected and its relative abundance quantified using electrospray ionization mass spectrometry in the negative mode. Because of its high sensitivity, without interference from proteins and other sample impurities, this method is particularly useful in the analysis of low content GlcNH3(+) residues in small amounts of biological materials, eg. sera, tissue and cell culture-derived samples. This would lead to a better understanding of the biological origin of GlcNH3(+) residues and their increasingly important function in human health and disease. PMID:27322632

  20. Mineralogy, Abundance, and Hydration State of Sulfates and Chlorides at the Mars Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    Zolotov, M. Y.; Kuzmin, R. O.; Shock, E. L.

    2004-01-01

    Detection of elevated concentrations of S and Cl at the landing sites of Viking 1 and 2 [1], and Mars Pathfinder (MP) [2-5] reveals the presence of sulfates and chlorides in soil and rock samples [1-10]. These data are consistent with the findings of Ca sulfates and NaCl in Martian meteorites [11,12], and with Earth-based spectroscopic observations [13,14] tentatively indicating the presence of sulfates on Mars. Although the correlation of S and Mg in Viking and MP samples could reveal the occurrence of Mg sulfate [1-10], the mineralogy of sulfates and chlorides remains unclear.

  1. Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics.

    PubMed

    Liu, Ruimin; Xu, Fei; Yu, Wenwen; Shi, Jianhan; Zhang, Peipei; Shen, Zhenyao

    2016-02-01

    Spatial correlations and soil nutrient variations are important for soil nutrient management. They help to reduce the negative impacts of agricultural nonpoint source pollution. Based on the sampled available nitrogen (AN), available phosphorus (AP), and available potassium (AK), soil nutrient data from 2010, the spatial correlation, was analyzed, and the probabilities of the nutrient's abundance or deficiency were discussed. This paper presents a statistical approach to spatial analysis, the spatial correlation analysis (SCA), which was originally developed for describing heterogeneity in the presence of correlated variation and based on ordinary kriging (OK) results. Indicator kriging (IK) was used to assess the susceptibility of excess of soil nutrients based on crop needs. The kriged results showed there was a distinct spatial variability in the concentration of all three soil nutrients. High concentrations of these three soil nutrients were found near Anzhou. As the distance from the center of town increased, the concentration of the soil nutrients gradually decreased. Spatially, the relationship between AN and AP was negative, and the relationship between AP and AK was not clear. The IK results showed that there were few areas with a risk of AN and AP overabundance. However, almost the entire study region was at risk of AK overabundance. Based on the soil nutrient distribution results, it is clear that the spatial variability of the soil nutrients differed throughout the study region. This spatial soil nutrient variability might be caused by different fertilizer types and different fertilizing practices. PMID:26832723

  2. Sulfate attack expansion mechanisms

    SciTech Connect

    Müllauer, Wolfram Beddoe, Robin E.; Heinz, Detlef

    2013-10-15

    A specially constructed stress cell was used to measure the stress generated in thin-walled Portland cement mortar cylinders caused by external sulfate attack. The effects of sulfate concentration of the storage solution and C{sub 3}A content of the cement were studied. Changes in mineralogical composition and pore size distribution were investigated by X-ray diffraction and mercury intrusion porosimetry, respectively. Damage is due to the formation of ettringite in small pores (10–50 nm) which generates stresses up to 8 MPa exceeding the tensile strength of the binder matrix. Higher sulfate concentrations and C{sub 3}A contents result in higher stresses. The results can be understood in terms of the effect of crystal surface energy and size on supersaturation and crystal growth pressure.

  3. Heritability and Clinical Determinants of Serum Indoxyl Sulfate and p-Cresyl Sulfate, Candidate Biomarkers of the Human Microbiome Enterotype

    PubMed Central

    Viaene, Liesbeth; Thijs, Lutgarde; Jin, Yu; Liu, Yanping; Gu, Yumei; Meijers, Björn; Claes, Kathleen; Staessen, Jan; Evenepoel, Pieter

    2014-01-01

    Background Indoxyl sulfate and p-cresyl sulfate are unique microbial co-metabolites. Both co-metabolites have been involved in the pathogenesis of accelerated cardiovascular disease and renal disease progression. Available evidence suggests that indoxyl sulfate and p-cresyl sulfate may be considered candidate biomarkers of the human enterotype and may help to explain the link between diet and cardiovascular disease burden. Objective and Design Information on clinical determinants and heritability of indoxyl sulfate and p-cresyl sulfate serum is non-existing. To clarify this issue, the authors determined serum levels of indoxyl sulfate and p-cresyl sulfate in 773 individuals, recruited in the frame of the Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO study). Results Serum levels of indoxyl sulfate and p-cresyl sulfate amounted to 3.1 (2.4–4.3) and 13.0 (7.4–21.5) μM, respectively. Regression analysis identified renal function, age and sex as independent determinants of both co-metabolites. Both serum indoxyl sulfate (h2 = 0.17) and p-cresyl sulfate (h2 = 0.18) concentrations showed moderate but significant heritability after adjustment for covariables, with significant genetic and environmental correlations for both co-metabolites. Limitations Family studies cannot provide conclusive evidence for a genetic contribution, as confounding by shared environmental effects can never be excluded. Conclusions The heritability of indoxyl sulfate and p-cresyl sulfate is moderate. Besides genetic host factors and environmental factors, also renal function, sex and age influence the serum levels of these co-metabolites. PMID:24850265

  4. A meta-analysis of soil biodiversity impacts on the carbon cycle

    NASA Astrophysics Data System (ADS)

    de Graaff, M.-A.; Adkins, J.; Kardol, P.; Throop, H. L.

    2015-03-01

    Loss of biodiversity impacts ecosystem functions, such as carbon (C) cycling. Soils are the largest terrestrial C reservoir, containing more C globally than the biotic and atmospheric pools together. As such, soil C cycling, and the processes controlling it, has the potential to affect atmospheric CO2 concentrations and subsequent climate change. Despite the growing evidence of links between plant diversity and soil C cycling, there is a dearth of information on whether similar relationships exist between soil biodiversity and C cycling. This knowledge gap occurs even though there has been increased recognition that soil communities display high levels of both taxonomic and functional diversity and are key drivers of fluxes of C between the atmosphere and terrestrial ecosystems. Here, we used meta-analysis and regression analysis to quantitatively assess how soil biodiversity affects soil C cycling pools and processes (i.e., soil C respiration, litter decomposition, and plant biomass). We compared the response of process variables to changes in diversity both within and across groups of soil organisms that differed in body size, a grouping that typically correlates with ecological function. When studies that manipulated both within- and across-body size group diversity were included in the meta-analysis, loss of diversity significantly reduced soil C respiration (-27.5%) and plant tissue decomposition (-18%) but did not affect above- or belowground plant biomass. The loss of within-group diversity significantly reduced soil C respiration, while loss of across-group diversity did not. Decomposition was negatively affected both by loss of within-group and across-group diversity. Furthermore, loss of microbial diversity strongly reduced soil C respiration (-41%). In contrast, plant tissue decomposition was negatively affected by loss of soil faunal diversity but was unaffected by loss of microbial diversity. Taken together, our findings show that loss of soil

  5. A meta-analysis of soil biodiversity impacts on the carbon cycle

    NASA Astrophysics Data System (ADS)

    de Graaff, M.-A.; Adkins, J.; Kardol, P.; Throop, H. L.

    2014-11-01

    Loss of biodiversity can impact ecosystem functioning, such as altering carbon (C) cycling rates. Soils are the largest terrestrial C reservoir, containing more C globally than the biotic and atmospheric pools together. As such, soil C cycling, and the processes controlling it, have the potential to affect atmospheric CO2 concentrations and subsequent climate change. Despite the growing evidence of links between plant diversity and soil C cycling, there is a dearth of information on whether similar relationships exist between biodiversity of soil organisms (microbes and soil fauna) and C cycling. This is despite increasing recognition that soil communities display high levels of both taxonomic and functional diversity and are key drivers of fluxes of C between the atmosphere and terrestrial ecosystems. Here, we used meta-analysis and regression analysis to quantitatively assess how soil biodiversity affects soil C cycling pools and processes (i.e., soil C respiration, litter decomposition, and plant biomass). We compared the response of pool amd process variables to changes in biodiversity both within and across trophic groups of organisms. Overall, loss of soil diversity significantly reduced soil C respiration (-27.5%) and plant tissue decomposition (-18%), but did not affect above- and belowground plant biomass. Detailed analyses showed that loss of within-group biodiversity significantly reduced soil C respiration, while loss of across-group diversity did not. Decomposition was negatively affected by losses of both within-group and across-group diversity. Further, loss of microbial diversity strongly reduced soil C respiration (-41%). In contrast, plant tissue decomposition was negatively affected by loss of soil faunal diversity, but was unaffected by loss of microbial diversity. Taken together, our findings show that loss of soil biodiversity can strongly affect soil C cycling processes, and highlight the importance of diversity across organismal groups for

  6. Structural and Spectral Characteristics of Amorphous Iron Sulfates

    NASA Astrophysics Data System (ADS)

    Sklute, E.; Jensen, H. B.; Rogers, D.; Reeder, R. J.

    2014-12-01

    Substantial evidence points to the existence of hydrated sulfate phases on the Martian surface1-3. In addition, the discovery of recurring slope lineae could point to an active brine hydrologic cycle on the surface4,5. The rapid dehydration of both hydrated sulfates and sulfate-rich brines can lead to the formation of amorphous sulfates. Evidence suggests that the Rocknest soil target and the Sheepbed mudstone interrogated by the Mars Science Laboratory at Gale crater contain ~30 wt.% XRD amorphous material that is rich in both sulfur and iron6. These factors have led us to consider hydrated amorphous iron sulfates as possible components in Martian surface materials. Amorphous iron sulfates were created through multiple synthesis routes, and then characterized with total x-ray scattering, TGA, SEM, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3•~5-8H2O) from sulfate-saturated fluids via two pathways: vacuum dehydration and exposure to low relative humidity (<11%) using a LiCl buffer. Amorphous ferrous sulfate (Fe(II)SO4•~1H2O) was synthesized via vacuum dehydration of melanterite (Fe(II) SO4•7H2O). We find that both the ferric and ferrous sulfates synthesized from these methods lack long-range (>10Å) order, and thus are truly amorphous. VNIR and TIR spectral data for the amorphous sulfates display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from all crystalline phase spectra available for comparison. The amorphous sulfates should be distinguishable based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, which is the spectral range that has primarily been used to detect sulfates on Mars, the bands associated with hydration at ~1.4 and 1.9 μm are significantly

  7. Novel analysis using pyrosesequencing for characterization of soil bacterial diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impacts of management and land uses on the soil bacterial diversity have not been well documented. Here we present the use of a novel bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP) diversity method, which will promote studies in soil microbiomes. Using this modified FLX pyrosequenc...

  8. Bacterial and fungal microbiome analysis of alfalfa rhizosphere soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbial communities are increasingly being recognized for their critical roles in agriculture. While microbiome studies enabled by next generation sequencing platforms reveal soils to be some of the most diverse environments known, certain taxa may have disproportionate influence in their fu...

  9. Preface, Soil Science: A step-by-step analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book provides step-by-step procedures for soil professionals, without a lot of background theory. Chapters are targeted toward agricultural and environmental consultants, producers, students, teachers, government, and industry. Applied soil scientists gave input through a survey, which guided t...

  10. ION-SELECTIVE ELECTRODES FOR SIMULTANEOUS ANALYSIS OF SOIL MACRONUTRIENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Automated sensing of soil macronutrients would be useful in mapping soil nutrient variability for variable-rate nutrient management. Ion-selective electrodes (ISEs) are a promising approach because of their small size, rapid response, and ability to directly measure the analyte. This study reports ...

  11. SIMULTANEOUS ANALYSIS OF SOIL MACRONUTRIENTS USING ION-SELECTIVE ELECTRODES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Automated sensing of soil macronutrients would be useful in mapping soil nutrient variability for variable-rate nutrient management. Ion-selective electrodes (ISEs) are a promising approach because of their small size, rapid response, and ability to directly measure the analyte. This study reports ...

  12. Analysis and Modeling of soil hydrology under different soil additives in artificial runoff plots

    NASA Astrophysics Data System (ADS)

    Ruidisch, M.; Arnhold, S.; Kettering, J.; Huwe, B.; Kuzyakov, Y.; Ok, Y.; Tenhunen, J. D.

    2009-12-01

    The impact of monsoon events during June and July in the Korean project region Haean Basin, which is located in the northeastern part of South Korea plays a key role for erosion, leaching and groundwater pollution risk by agrochemicals. Therefore, the project investigates the main hydrological processes in agricultural soils under field and laboratory conditions on different scales (plot, hillslope and catchment). Soil hydrological parameters were analysed depending on different soil additives, which are known for prevention of soil erosion and nutrient loss as well as increasing of water infiltration, aggregate stability and soil fertility. Hence, synthetic water-soluble Polyacrylamides (PAM), Biochar (Black Carbon mixed with organic fertilizer), both PAM and Biochar were applied in runoff plots at three agricultural field sites. Additionally, as control a subplot was set up without any additives. The field sites were selected in areas with similar hillslope gradients and with emphasis on the dominant land management form of dryland farming in Haean, which is characterised by row planting and row covering by foil. Hydrological parameters like satured water conductivity, matrix potential and water content were analysed by infiltration experiments, continuous tensiometer measurements, time domain reflectometry as well as pressure plates to indentify characteristic water retention curves of each horizon. Weather data were observed by three weather stations next to the runoff plots. Measured data also provide the input data for modeling water transport in the unsatured zone in runoff plots with HYDRUS 1D/2D/3D and SWAT (Soil & Water Assessment Tool).

  13. Analysis of Soil Structure Turnover with Garnet Particles and X-Ray Microtomography.

    PubMed

    Schlüter, Steffen; Vogel, Hans-Jörg

    2016-01-01

    Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous distribution of habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of soil structure alteration is deemed to be important for essential ecosystem functions of soil but very little is known about it. A major reason for this knowledge gap is the lack of methods to study soil structure turnover directly at microscopic scales. Here we devise a conceptual approach and an image processing workflow to study soil structure turnover by labeling some initial state of soil structure with small garnet particles and tracking their fate with X-ray microtomography. The particles adhere to aggregate boundaries at the beginning of the experiment but gradually change their position relative to the nearest pore as structure formation progresses and pores are destructed or newly formed. A new metric based on the contact distances between particles and pores is proposed that allows for a direct quantification of soil structure turnover rates. The methodology is tested for a case study about soil compaction of a silty loam soil during stepwise increase of bulk density (ρ = {1.1, 1.3, 1.5} g/cm3). We demonstrate that the analysis of mean contact distances provides genuinely new insights about changing diffusion pathways that cannot be inferred neither from conventional pore space attributes (porosity, mean pore size, pore connectivity) nor from deformation analysis with digital image correlation. This structure labeling approach to quantify soil structure turnover provides a direct analogy to stable isotope labeling for the analysis of matter turnover and can be readily combined with each other. PMID:27453995

  14. Analysis of Soil Structure Turnover with Garnet Particles and X-Ray Microtomography

    PubMed Central

    Vogel, Hans-Jörg

    2016-01-01

    Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous distribution of habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of soil structure alteration is deemed to be important for essential ecosystem functions of soil but very little is known about it. A major reason for this knowledge gap is the lack of methods to study soil structure turnover directly at microscopic scales. Here we devise a conceptual approach and an image processing workflow to study soil structure turnover by labeling some initial state of soil structure with small garnet particles and tracking their fate with X-ray microtomography. The particles adhere to aggregate boundaries at the beginning of the experiment but gradually change their position relative to the nearest pore as structure formation progresses and pores are destructed or newly formed. A new metric based on the contact distances between particles and pores is proposed that allows for a direct quantification of soil structure turnover rates. The methodology is tested for a case study about soil compaction of a silty loam soil during stepwise increase of bulk density (ρ = {1.1, 1.3, 1.5} g/cm3). We demonstrate that the analysis of mean contact distances provides genuinely new insights about changing diffusion pathways that cannot be inferred neither from conventional pore space attributes (porosity, mean pore size, pore connectivity) nor from deformation analysis with digital image correlation. This structure labeling approach to quantify soil structure turnover provides a direct analogy to stable isotope labeling for the analysis of matter turnover and can be readily combined with each other. PMID:27453995

  15. Analysis of U.S. soil lead (Pb) studies from 1970 to 2012.

    PubMed

    Datko-Williams, Laura; Wilkie, Adrien; Richmond-Bryant, Jennifer

    2014-01-15

    Although lead (Pb) emissions to the air have substantially decreased in the United States since the phase-out of leaded gasoline by 1995, amounts of lead in some soils remain elevated. Lead concentrations in residential and recreational soils are of concern because health effects have been associated with Pb exposure. Elevated soil Pb is especially harmful to young children due to their higher likelihood of soil ingestion. The purpose of this study is to create a comprehensive compilation of U.S. soil Pb data published from 1970 through 2012 as well as to analyze the collected data to reveal spatial and/or temporal soil Pb trends in the U.S. over the past 40 years. A total of 84 soil Pb studies across 62 U.S. cities were evaluated. Median soil Pb values from the studies were analyzed with respect to year of sampling, residential location type (e.g., urban, suburban), and population density. In aggregate, there was no statistically significant correlation between year and median soil Pb; however, within single cities, soil Pb generally declined over time. Our analysis shows that soil Pb quantities in city centers were generally highest and declined towards the suburbs and exurbs of the city. In addition, there was a statistically significant, positive relationship between median soil Pb and population density. In general, the trends examined here align with previously reported conclusions that soil Pb levels are higher in larger urban areas and Pb tends to remain in soil for long periods of time. PMID:24076506

  16. The preparation and antioxidant activity of glucosamine sulfate

    NASA Astrophysics Data System (ADS)

    Xing, Ronge; Liu, Song; Wang, Lin; Cai, Shengbao; Yu, Huahua; Feng, Jinhua; Li, Pengcheng

    2009-05-01

    Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O{2/-})/hydroxyl (·OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O{2/-} scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the ·OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL. Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL. However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.

  17. Further modification of pressure-calcimeter method for soil inorganic carbon analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inorganic carbon (IC) in soil is important when considering C fluxes and processes in the environment that involve C. Here data are presented for measurement of IC in soils using the pressure calcimeter method of Sherrod et al. (2002) with modifications to decrease analysis time while preserving met...

  18. Analysis methods for the determination of anthropogenic additions of P to agricultural soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus additions and measurement in soil is of concern on lands where biosolids have been applied. Colorimetric analysis for plant-available P may be inadequate for the accurate assessment of soil P. Phosphate additions in a regulatory environment need to be accurately assessed as the reported...

  19. Genome-wide expression analysis of human in vivo irritated epidermis: differential profiles induced by sodium lauryl sulfate and nonanoic acid.

    PubMed

    Clemmensen, Anders; Andersen, Klaus E; Clemmensen, Ole; Tan, Qihua; Petersen, Thomas K; Kruse, Torben A; Thomassen, Mads

    2010-09-01

    The pathogenesis of irritant contact dermatitis (ICD) is poorly understood, and genes participating in the epidermal response to chemical irritants are only partly known. It is commonly accepted that different irritants have different mechanisms of action in the development of ICD. To define the differential molecular events induced in the epidermis by different irritants, we collected sequential biopsies ((1/2), 4, and 24 hours after a single exposure and at day 11 after repeated exposure) from human volunteers exposed to either sodium lauryl sulfate (SLS) or nonanoic acid (NON). Gene expression analysis using high-density oligonucleotide microarrays (representing 47,000 transcripts) revealed essentially different pathway responses (1/2)hours after exposure: NON transiently induced the IL-6 pathway as well as a number of mitogen-activated signaling cascades including extracellular signal-regulated kinase and growth factor receptor signaling, whereas SLS transiently downregulated cellular energy metabolism pathways. Differential expression of the cyclooxygenase-2 and matrix metalloproteinase 3 transcripts was confirmed immunohistochemically. After cumulative exposure, 883 genes were differentially expressed, whereas we identified 23 suggested common biomarkers for ICD. In conclusion, we bring new insights into two hitherto less well-elucidated phases of skin irritancy: the very initial as well as the late phase after single and cumulative mild exposures, respectively. PMID:20428187

  20. In-situ LIF Analysis of Biological and Petroleum-based Hydraulic Oils on Soil

    PubMed Central

    Lemke, Matthias; Fernández-Trujillo, Rebeca; Löhmannsröben, Hans-Gerd

    2005-01-01

    Absorption and fluorescence properties of 4 hydraulic oils (3 biological and 1 petroleum-based) were investigated. In-situ LIF (laser-induced fluorescence) analysis of the oils on a brown sandy loam soil was performed. With calibration, quantitative detection was achieved. Estimated limits of detection were below ca. 500 mg/kg for the petroleum-based oil and ca. 2000 mg/kg for one biological oil. A semi-quantitative classification scheme is proposed for monitoring of the biological oils. This approach was applied to investigate the migration of a biological oil in soil-containing compartments, namely a soil column and a soil bed.

  1. Spatio-temporal soil moisture patterns - A meta-analysis using plot to catchment scale data

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Fiener, P.; Koyama, C. N.; Bogena, H. R.; Cornelissen, T.; Baatz, R.; Herbst, M.; Diekkrüger, B.; Vereecken, H.; Schneider, K.

    2015-01-01

    Soil moisture is a key variable in hydrology, meteorology and agriculture. It is influenced by many factors, such as topography, soil properties, vegetation type, management, and meteorological conditions. The role of these factors in controlling the spatial patterns and temporal dynamics is often not well known. The aim of the current study is to analyze spatio-temporal soil moisture patterns acquired across a variety of land use types, on different spatial scales (plot to meso-scale catchment) and with different methods (point measurements, remote sensing, and modeling). We apply a uniform set of tools to determine method specific effects, as well as site and scale specific controlling factors. Spatial patterns of soil moisture and their temporal development were analyzed using nine different datasets from the Rur catchment in Western Germany. For all datasets we found negative linear relationships between the coefficient of variation and the mean soil moisture, indicating lower spatial variability at higher mean soil moisture. For a forest sub-catchment compared to cropped areas, the offset of this relationship was larger, with generally larger variability at similar mean soil moisture values. Using a geostatistical analysis of the soil moisture patterns we identified three groups of datasets with similar values for sill and range of the theoretical variogram: (i) modeled and measured datasets from the forest sub-catchment (patterns mainly influenced by soil properties and topography), (ii) remotely sensed datasets from the cropped part of the Rur catchment (patterns mainly influenced by the land-use structure of the cropped area), and (iii) modeled datasets from the cropped part of the Rur catchment (patterns mainly influenced by large scale variability of soil properties). A fractal analysis revealed that all analyzed soil moisture patterns showed a multifractal behavior, with at least one scale break and generally high fractal dimensions. Corresponding scale

  2. Analysis Results for Lunar Soil Simulant Using a Portable X-Ray Fluorescence Analyzer

    NASA Technical Reports Server (NTRS)

    Boothe, R. E.

    2006-01-01

    Lunar soil will potentially be used for oxygen generation, water generation, and as filler for building blocks during habitation missions on the Moon. NASA s in situ fabrication and repair program is evaluating portable technologies that can assess the chemistry of lunar soil and lunar soil simulants. This Technical Memorandum summarizes the results of the JSC 1 lunar soil simulant analysis using the TRACeR III IV handheld x-ray fluorescence analyzer, manufactured by KeyMaster Technologies, Inc. The focus of the evaluation was to determine how well the current instrument configuration would detect and quantify the components of JSC-1.

  3. Image Analysis to Estimate Mulch Residual on Soil

    NASA Astrophysics Data System (ADS)

    Moreno Valencia, Carmen; Moreno Valencia, Marta; Tarquis, Ana M.

    2014-05-01

    Organic farmers are currently allowed to use conventional polyethylene mulch, provided it is removed from the field at the end of the growing or harvest season. To some, such use represents a contradiction between the resource conservation goals of sustainable, organic agriculture and the waste generated from the use of polyethylene mulch. One possible solution is to use biodegradable plastic or paper as mulch, which could present an alternative to polyethylene in reducing non-recyclable waste and decreasing the environmental pollution associated with it. Determination of mulch residues on the ground is one of the basic requisites to estimate the potential of each material to degrade. Determination the extent of mulch residue on the field is an exhausting job while there is not a distinct and accurate criterion for its measurement. There are several indices for estimation the residue covers while most of them are not only laborious and time consuming but also impressed by human errors. Human vision system is fast and accurate enough in this case but the problem is that the magnitude must be stated numerically to be reported and to be used for comparison between several mulches or mulches in different times. Interpretation of the extent perceived by vision system to numerals is possible by simulation of human vision system. Machine vision comprising image processing system can afford these jobs. This study aimed to evaluate the residue of mulch materials over a crop campaign in a processing tomato (Solanum lycopersicon L.) crop in Central Spain through image analysis. The mulch materials used were standard black polyethylene (PE), two biodegradable plastic mulches (BD1 and BD2), and one paper (PP1) were compared. Meanwhile the initial appearance of most of the mulches was sort of black PE, at the end of the experiment the materials appeared somewhat discoloured, soil and/or crop residue was impregnated being very difficult to completely remove them. A digital camera

  4. Dynamics of sulfate and nitrate dry deposition associated with pollen

    SciTech Connect

    Khalili, E.K.

    1988-01-01

    A field study of pollen dispersion and deposition from a remote forested area in Northern Wisconsin has been undertaken. Although the experiments constitute a case study in Wisconsin, the experimental site was chosen, which represents much of the Eastern US and Europe where acid rain is considered an important environmental problem. Measurements of dry deposition of pollen were made during the pollination season (May and June, 1987). Deposited particles were weighted to determine mass fluxes, then washed and subjected to ion chromatographic analysis for sulfate and nitrate. Ambient concentration of pollen were measured by a coarse particle sampler (Noll Inertial Rotary Impact) during the same time period. The chemical analysis of pollen species collected around the sampling site as well as commercially available pollen demonstrated that sulfate and nitrate were present on all pollen samples. Many trace metals such as Fe, Al, Zn, Cu, Mn, Cd, Pb, Ca, and Si and organic acids were quantified. It was hypothesized that pollen accumulate extraneous amounts of non-essential, as well as essential elements from the soil supplying nutrient. Therefore, pollen can be used as a fingerprint for the availability and the level of contamination of a particular element in the forest soil environment. A model developed for measurement of coarse particle dry deposition was utilized to measure the pollen dry deposition velocity. It was shown that depositional velocity of pollen exceeds the settling velocity by a factor of 3 to 4, and both V{sub d} and fluxes of pollen grains increase with wind speed. Finally, the role of pollen dispersion and deposition has been discussed and emphasized for modeling of lake acidification in forested region.

  5. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  6. Hydrazine/Hydrazine sulfate

    Integrated Risk Information System (IRIS)

    Hydrazine / Hydrazine sulfate ; CASRN 302 - 01 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Non

  7. Preliminary Experimental Analysis of Soil Stabilizers for Contamination Control

    SciTech Connect

    Lagos, L.; Varona, J.; Zidan, A.; Gudavalli, R.; Wu, Kuang-His

    2006-07-01

    A major focus of Department of Energy's (DOE's) environmental management mission at the Hanford site involves characterizing and remediating contaminated soil and groundwater; stabilizing contaminated soil; remediating disposal sites; decontaminating and decommissioning structures, and demolishing former plutonium production process buildings, nuclear reactors, and separation plants; maintaining inactive waste sites; transitioning facilities into the surveillance and maintenance program; and mitigating effects to biological and cultural resources from site development and environmental cleanup and restoration activities. For example, a total of 470,914 metric tons of contaminated soil from 100 Areas remediation activities were disposed at the Environmental Restoration Disposal Facility (ERDF) during 2004. The Applied Research Center (ARC) at Florida International University (FIU) is supporting the Hanford's site remediation program by analyzing the effectiveness of several soil stabilizers (fixatives) for contamination control during excavation activities. The study is focusing on determining the effects of varying soil conditions, temperature, humidity and wind velocity on the effectiveness of the candidate stabilizers. The test matrix consists of a soil penetration-depth study, wind tunnel experiments for determination of threshold velocity, and temperature and moisture-controlled drying/curing experiments. These three set of experiments are designed to verify performance metrics, as well as provide insight into what fundamental forces are altered by the use of the stabilizer. This paper only presents the preliminary results obtained during wind tunnel experiments using dry Hanford soil samples (with 2.7% moisture by weight). These dry soil samples were exposed to varying wind speeds from 2.22 m/sec to 8.88 m/sec. Furthermore, airborne particulate data was collected for the dry Hanford soil experiments using an aerosol analyzer instrument. (authors)

  8. Geospatial Analysis of Near-Surface Soil Moisture Time Series Data Over Indian Region

    NASA Astrophysics Data System (ADS)

    Berwal, P.; Murthy, C. S.; Raju, P. V.; Sesha Sai, M. V. R.

    2016-06-01

    The present study has developed the time series database surface soil moisture over India, for June, July and August months for the period of 20 years from 1991 to 2010, using data products generated under Climate Change Initiative Programme of European Space Agency. These three months represent the crop sowing period in the prime cropping season in the country and the soil moisture data during this period is highly useful to detect the drought conditions and assess the drought impact. The time series soil moisture data which is in 0.25 degree spatial resolution was analyzed to generate different indicators. Rainfall data of same spatial resolution for the same period, generated by India Meteorological Department was also procured and analyzed. Geospatial analysis of soil moisture and rainfall derived indicators was carried out to study (1) inter annual variability of soil moisture and rainfall, (2) soil moisture deviations from normal during prominent drought years, (3) soil moisture and rainfall correlations and (4) drought exposure based on soil moisture and rainfall variability. The study has successfully demonstrated the potential of these soil moisture time series data sets for generating regional drought surveillance information products, drought hazard mapping, drought exposure analysis and detection of drought sensitive areas in the crop planting period.

  9. Synthesis and characterization of novel cellulose ether sulfates.

    PubMed

    Rohowsky, Juta; Heise, Katja; Fischer, Steffen; Hettrich, Kay

    2016-05-20

    The synthesis and characterization of novel cellulose sulfate derivatives was reported. Various cellulose ethers were prepared in a homogeneous reaction with common sulfating agents. The received product possess different properties in dependence on the reaction conditions like sulfating agent, solvent, reaction time and reaction temperature. The cellulose ether sulfates are all soluble in water, they rheological behavior could be determined by viscosity measurements and the determination of the sulfur content by elemental analysis lead to a resulting degree of substitution ascribed to sulfate groups (DSSul) of the product. A wide range of products from DSSul 0.1 to DSSul 2.7 will be obtained. Furthermore the cellulose sulfate ethers could be characterized by Raman spectroscopy. PMID:26917374

  10. Removal of Sulfate Ion From AN-107 by Evaporation

    SciTech Connect

    GJ Lumetta; GS Klinger; DE Kurath; RL Sell; LP Darnell; LR Greenwood; CZ Soderquist; MJ Steele; MW Urie; JJ Wagner

    2000-08-02

    Hanford low-activity waste solutions contain sulfate, which can cause accelerated corrosion of the vitrification melter and unacceptable operating conditions. A method is needed to selectively separate sulfate from the waste. An experiment was conducted to evaluate evaporation for removing sulfate ion from Tank AN-107 low-activity waste. Two evaporation steps were performed. In the first step, the volume was reduced by 55% while in the second step, the liquid volume was reduced another 22%. Analysis of the solids precipitated during these evaporations revealed that large amounts of sodium nitrate and nitrite co-precipitated with sodium sulfate. Many other waste components precipitated as well. It can be concluded that sulfate removal by precipitation is not selective, and thus, evaporation is not a viable option for removing sulfate from the AN-107 liquid.

  11. Analysis and Evaluation of the Liquefaction on Layered Soil

    SciTech Connect

    Sang Hoon Lee; Kwang Yoo Hoon

    2002-07-01

    Liquefaction potential on the specific site of nuclear power plant is analyzed and reviewed. The layered site for this study consists of silt and sand. Based on the limited available soil data, maximum shear strength at critical locations using Seed and Idriss method and computer program SHAKE is calculated, and liquefaction potential is reviewed. As seismic input motion used for the assessment of liquefaction, the artificial time history compatible with the US NRC Regulatory Guide 1.60 is used. Assessment results of the liquefaction are validated by analyzing to the other typical soil foundations which can show the effects on the foundation depth and soil data. (authors)

  12. LORICA - A new model for linking landscape and soil profile evolution: Development and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Temme, Arnaud J. A. M.; Vanwalleghem, Tom

    2016-05-01

    Soils and landscapes evolve in tandem. Landscape position is a strong determinant of vertical soil development, which has often been formalized in the catena concept. At the same time, soil properties are strong determinants of geomorphic processes such as overland erosion, landsliding and creep. We present a new soilscape evolution model; LORICA, to study these numerous interactions between soil and landscape development. The model is based on the existing landscape evolution model LAPSUS and the soil formation model MILESD. The model includes similar soil formation processes as MILESD, but the main novelties include the consideration of more layers and the dynamic adaption of the number of layers as a function of the soil profile's heterogeneity. New processes in the landscape evolution component include a negative feedback of vegetation and armouring and particle size selectivity of the erosion-deposition process. In order to quantify these different interactions, we present a full sensitivity analysis of the input parameters. First results show that the model successfully simulates various soil-landscape interactions, leading to outputs where the surface changes in the landscape clearly depend on soil development, and soil changes depend on landscape location. Sensitivity analysis of the model confirms that soil and landscape interact: variables controlling amount and position of fine clay have the largest effect on erosion, and erosion variables control among others the amount of chemical weathering. These results show the importance of particle size distribution, and especially processes controlling the presence of finer clay particles that are easily eroded, both for the resulting landscape form as for the resulting soil profiles. Further research will have to show whether this is specific to the boundary conditions of this study or a general phenomenon.

  13. Analysis of microbial habitats in soil-root interfaces in space and time

    NASA Astrophysics Data System (ADS)

    Eickhorst, Thilo; Schmidt, Hannes

    2015-04-01

    Microorganisms are of great importance for a wide range of processes in terrestrial systems, especially in soil-root interfaces and the resulting gradients. Their physiology is regulated by the environmental conditions on the scale of microbial habitats which are mainly the features of biogeochemical interfaces. The microbial colonization of soil-root interfaces in soil is hence of great importance when studying processes on this particular scale. A set of techniques has been developed recently to study the colonization and distribution of microorganisms in the undisturbed soil matrix and thus in their microbial habitat in situ. This is done via 16S rRNA targeted fluorescence in situ hybridization (FISH) combined with micropedological resin impregnation. The impregnation of the fragile soil structure is a good way to preserve the in situ arrangements of soil compounds forming the physical structure of the soil matrix including the pore space being relevant for the support with water and air. The preparation of high quality polished blocks and thin sections of these resin impregnated samples enables a detailed analysis of the spatial information on the level of microbial habitats in soil. A correlative microscopic approach of the aforementioned techniques allows the characterization of soil-root interfaces and the resulting physico-chemical living conditions as well as the identification and localization of soil microorganisms on the microscale. This gives qualitative insights of the features in microbial habitats which are of great importance for the study of the microbial ecology of microbes in soil in space and time. Since the various processes related to soil-root interfaces have a relevance on the large scale and vice versa upscaling is of great importance for the investigation of their influence on ecosystem functioning. Furthermore spatial modelling based on these observations is required to understand and predict the effects of changing physico

  14. Impact of roots, mycorrhizas and earthworms on soil physical properties as assessed by shrinkage analysis

    NASA Astrophysics Data System (ADS)

    Milleret, R.; Le Bayon, R.-C.; Lamy, F.; Gobat, J.-M.; Boivin, P.

    2009-07-01

    SummarySoil biota such as earthworms, arbuscular mycorrhizal fungi (AMF) and plant roots are known to play a major role in engineering the belowground part of the terrestrial ecosystems, thus strongly influencing the water budget and quality on earth. However, the effect of soil organisms and their interactions on the numerous soil physical properties to be considered are still poorly understood. Shrinkage analysis allows quantifying a large spectrum of soil properties in a single experiment, with small standard errors. The objectives of the present study were, therefore, to assess the ability of the method to quantify changes in soil properties as induced by single or combined effects of leek roots ( Allium porrum), AMF ( Glomus intraradices) and earthworms ( Allolobophora chlorotica). The study was performed on homogenised soil microcosms and the experiments lasted 35 weeks. The volume of the root network and the external fungal hyphae was measured at the end, and undisturbed soil cores were collected. Shrinkage analysis allowed calculating the changes in soil hydro-structural stability, soil plasma and structural pore volumes, soil bulk density and plant available water, and structural pore size distributions. Data analysis revealed different impacts of the experimented soil biota on the soil physical properties. At any water content, the presence of A. chlorotica resulted in a decrease of the specific bulk volume and the hydro-structural stability around 25%, and in a significant increase in the bulk soil density. These changes went with a decrease of the structural pore volumes at any pore size, a disappearing of the thinnest structural pores, a decrease in plant available water, and a hardening of the plasma. On the contrary, leek roots decreased the bulk soil density up to 1.23 g cm -3 despite an initial bulk density of 1.15 g cm -3. This increase in volume was accompanied with a enhanced hydro-structural stability, a larger structural pore volume at any

  15. Selection of the Methods of Soil Analysis for Phyto-available Arsenic

    NASA Astrophysics Data System (ADS)

    Yoon, Junghwan; Lee, Dan-Bi; Kim, Kwon-Rae; Kim, Won-Il; Kim, Kye-Hoon

    2016-04-01

    Arsenic (As) is a trace element of major public health concern. Many of As contaminated agricultural lands in the Republic of Korea (ROK) are located at the areas nearby abandoned mines. Therefore, management of contaminated agricultural lands is important for safe crop cultivation. In ROK, soils contaminated with As have managed according to the As concentration determined after aqua regia digestion (total As). Many soil scientists reported that management of As in soils by phyto-available As is more effective than that by total As for safety of the crop cultivation point-of-view since As concentration in crops has a significant correlation with phyto-available As. Therefore, this study was carried out to select method of soil analysis for phyto-available As. For that purpose, five extracting solutions (0.1M Ca(NO?), 0.1M (NH?)?HPO?), 0.5M EDTA, Mehlich 3, 0.5M NaHCO?) were examined with 35 soil samples used for cultivation of three crops (bean, red pepper, rice). Correlation analysis was conducted between phyto-available As concentrations in soils and As concentration in edible part of the crops. Results of the correlation analysis showed that phyto-available As concentrations in soils using Mehlich 3 solution and As concentrations in edible part of red pepper and rice were significantly correlated. For soils used for bean cultivation, Mehlich 3 (R

  16. 50-Minute Experiment: Soil Analysis for High School Chemistry Students.

    ERIC Educational Resources Information Center

    Baruch, Gerard, Ed.; And Others

    1980-01-01

    Lists equipment and materials needed and procedures for analyzing soil, in which secondary school students experience practical applications to acid-base reactions, pH, oxidation-reduction, precipitation and solubility. (CS)

  17. Ultrasonic dispersion of soils for routine particle size analysis: recommended procedures

    SciTech Connect

    Heller, P.R.; Hayden, R.E.; Gee, G.W.

    1984-11-01

    Ultrasonic techniques were found to be more effective than standard mechanical techniques to disperse soils for routine particle-size analysis (i.e., using a dispersing agent and mechanical mixing). Soil samples were tested using an ultrasonic homogenizer at various power outputs. The samples varied widely in texture and mineralogy, and included sands, silts, clays, volcanic soils, and soils high in organic matter. A combination of chemical and ultrasonic dispersion techniques were used in all tests. Hydrometer techniques were used for particle-size analysis. For most materials tested, clay percentage values indicated that ultrasonic dispersion was more complete than mechanical dispersion. Soils high in volcanic ash or iron oxides showed 10 to 20 wt % more clay when using ultrasonic mixing rather than mechanical mixing. The recommended procedure requires ultrasonic dispersion of a 20- to 40-g sample for 15 min at 300 W with a 1.9-cm-diameter ultrasonic homogenizer. 12 references, 5 figures, 1 table.

  18. The character of single particle sulfate in Baltimore

    NASA Astrophysics Data System (ADS)

    Lake, Derek A.; Tolocka, Michael P.; Johnston, Murray V.; Wexler, Anthony S.

    2004-10-01

    A major component of PM2.5 in urban aerosol in the eastern United States is sulfate. The eastern US is heavily influenced by regional sources (e.g. coal combustion in the Ohio River Valley) and also by local sources. From March to December 2002, the Baltimore aerosol was characterized with the real-time single-particle mass spectrometer RSMS III. RSMS III is capable of simultaneous positive/negative ion detection of size selected particles between 45 and 1250 nm in diameter. The negative ion detection ability allows sulfate to be monitored. Particles were first sorted into two groups based on the negative ion spectra: (1) those with sulfate detected and (2) those with no sulfate detected. The two groups were further sub-divided by ART 2-a analysis of the positive ion spectra to determine which particle compositions are most/least likely to contain detectable sulfate. A separate analysis was also performed on the positive ion spectra to determine the presence/absence of specific metals in the group of particles with and without sulfate. The correlation of positive and negative ion spectra in this manner allows particle types that are strongly associated with sulfate to be distinguished from those which are not. Particle types strongly correlated with sulfate are nitrate, organic carbon/nitrate (OCAN) and vanadium. Particle types weakly associated with sulfate include carbon and potassium/sodium. Many particles contain both sulfate and nitrate, which suggests that they are acid neutralized. While laser ablation mass spectrometry has inherent limitations for particulate sulfate detection, the results presented here suggest that sulfate detection by this method is a reasonable indicator of particle source and atmospheric transformation.

  19. Characterizing the Microstructure of Heparin and Heparan Sulfate using N-sulfoglucosamine 1H and 15N NMR Chemical Shift Analysis

    PubMed Central

    Langeslay, Derek J.; Beecher, Consuelo N.; Naggi, Annamaria; Guerrini, Marco; Torri, Giangiacomo; Larive, Cynthia K.

    2014-01-01

    Heparin and heparan sulfate (HS) are members of a biologically important group of highly anionic linear polysaccharides called glycosaminoglycans (GAGs). Because of their structural complexity, the molecular-level characterization of heparin and HS continues to be a challenge. The work presented herein describes an emerging approach for the analysis of unfractionated and low molecular weight heparins as well as porcine and human-derived HS. This approach utilizes the untapped potential of 15N NMR to characterize these preparations through detection of the NH resonances of N-sulfo-glucosamine residues. The sulfamate group 1H and 15N chemical shifts of six GAG microenvironments were assigned based on the critical comparison of selectively modified heparin derivatives, NMR measurements for a library of heparin-derived oligosaccharide standards, and an in-depth NMR analysis of the low molecular weight heparin enoxaparin through systematic investigation of the chemical exchange properties of NH resonances and residue-specific assignments using the [1H, 15N] HSQC-TOCSY experiment. The sulfamate microenvironments characterized in this study include GlcNS(6S)-UA(2S), ΔUA(2S)-GlcNS(6S), GlcNS(3S)(6S)-UA(2S), GlcNS-UA, GlcNS(6S)-redα, and 1,6-anhydro GlcNS demonstrate the utility of [1H, 15N] HSQC NMR spectra to provide a spectroscopic fingerprint reflecting the composition of intact GAGs and low molecular weight heparin preparations. PMID:23240897

  20. Analysis of ethyl sulfate in raw wastewater for estimation of alcohol consumption and its correlation with drugs of abuse in the city of Barcelona.

    PubMed

    Mastroianni, Nicola; Lopez de Alda, Miren; Barcelo, Damia

    2014-09-19

    The increasing, generalized consumption of alcohol, especially among young people, generates great concern in our society due to its negative consequences on public health and safety. Besides the traditional, official methods employed for estimation of alcohol consumption, the monitoring of ethyl sulfate (EtS), a urinary biomarker of alcohol ingestion, in raw wastewater has been recently proposed as an additional tool to estimate alcohol use at community level through the so-called sewage epidemiology approach. In the presented study, a fast and reliable analytical method based on ion-pair liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been optimized and further applied to the analysis of EtS in seven 24h composite samples collected along one week at the inlet of a large sewage treatment plant (STP) located in the Barcelona area. EtS was measured in the entire set of analysed samples, with concentrations ranging from 5.5 to 33μg/L, which correspond to an absolute alcohol consumption of around 11,000 (Wednesday) to 25,000 (Sunday) kg/day. The average per capita absolute alcohol consumption calculated was 18mL/day/inhabitant. Moreover, the levels of EtS measured throughout the week showed high correlation with those of some recreational illicit drugs and metabolites, namely, cocaethylene (r(2)=0.9391, n=5), benzoylecgonine (r(2)=0.9252, n=7), ecstasy (r(2)=0.8950, n=7), amphetamine (r(2)=0.8707, n=7) and cocaine (r(2)=0.6425, n=7), measured in the same samples. This study confirms that the analysis of EtS in raw wastewater can be a useful tool for the estimation of alcohol consumption in an anonymous, fast and economic way, and indicates that consumption of alcohol and some illicit drugs occurs often together. PMID:25103281

  1. Analysis of the sodium dodecyl sulfate-stable peptidoglycan autolysins of select gram-negative pathogens by using renaturing polyacrylamide gel electrophoresis.

    PubMed Central

    Bernadsky, G; Beveridge, T J; Clarke, A J

    1994-01-01

    For the first time, peptidoglycan autolysins from cellular fractions derived from sonicated cultures of Pseudomonas aeruginosa PAO1, Escherichia coli W7, Klebsiella pneumoniae CWK2, and Proteus mirabilis 19 were detected and partially characterized by zymogram analysis. Purified murein sacculi from P. aeruginosa PAO1 were incorporated into a sodium dodecyl sulfate (SDS)-polyacrylamide gel at a concentration of 0.05% (wt/vol) to serve as a substrate for the separated autolysins. At least 11 autolysin bands of various intensities with M(r)s ranging between 17,000 and 122,000 were detected in each of the homogenated cultures. Some of the autolysins of the four bacteria had similar M(r)s. The zymogram analysis was used to show that a number of the autolysins from E. coli were inhibited by the heavy metals Hg2+ and Cu2+, at 1 and 10 mM, respectively, high ionic strengths, and reagents known to affect the packing of lipopolysaccharides. The activity of an autolysin with an M(r) of 65,000 was also impaired by penicillin G, whereas it was enhanced by gentamicin. A preliminary screen to determine the relationship between penicillin-binding proteins (PBPs) and autolysins was carried out by using a dual assay in which radiolabelled penicillin V bands were visualized on an autolysin zymogram. Radiolabelled bands corresponding to PBPs 3, 4, 5, and 6 from E. coli and P. aeruginosa; PBPs 3, 4, and 6 from Proteus mirabilis; and PBP 6 from K. pneumoniae degraded the murein sacculi in the gels and were presumed to have autolytic activity, although the possibility of two distinct enzymes, each with one of the activities, comigrating in the SDS-polyacrylamide gels could not be excluded. Some radiolabelled bands possessed an Mr of <34,000 and coincided with similar low-Mr autolysin bands. Images PMID:7915268

  2. Acid Sulfate Alteration in Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic

  3. Soil CO2 respiration: Comparison of chemical titration, CO2 IRGA analysis and the Solvita gel system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this research is to compare the results of measured soil CO2 respiration using three methods: (1) titration method; (2) Infrared gas analysis (IRGA); and (3) the Solvita gel system for soil CO2 analysis. We acquired 36 soil samples from across the USA for comparison which ranged in pH...

  4. Modeling Reduction of Uranium U(VI) under Variable Sulfate Concentrations by Sulfate-Reducing Bacteria

    PubMed Central

    Spear, John R.; Figueroa, Linda A.; Honeyman, Bruce D.

    2000-01-01

    The kinetics for the reduction of sulfate alone and for concurrent uranium [U(VI)] and sulfate reduction, by mixed and pure cultures of sulfate-reducing bacteria (SRB) at 21 ± 3°C were studied. The mixed culture contained the SRB Desulfovibrio vulgaris along with a Clostridium sp. determined via 16S ribosomal DNA analysis. The pure culture was Desulfovibrio desulfuricans (ATCC 7757). A zero-order model best fit the data for the reduction of sulfate from 0.1 to 10 mM. A lag time occurred below cell concentrations of 0.1 mg (dry weight) of cells/ml. For the mixed culture, average values for the maximum specific reaction rate, Vmax, ranged from 2.4 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1) at 0.25 mM sulfate to 5.0 ± 1.1 μmol of sulfate/mg (dry weight) of SRB · h−1 at 10 mM sulfate (average cell concentration, 0.52 mg [dry weight]/ml). For the pure culture, Vmax was 1.6 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1 at 1 mM sulfate (0.29 mg [dry weight] of cells/ml). When both electron acceptors were present, sulfate reduction remained zero order for both cultures, while uranium reduction was first order, with rate constants of 0.071 ± 0.003 mg (dry weight) of cells/ml · min−1 for the mixed culture and 0.137 ± 0.016 mg (dry weight) of cells/ml · min−1 (U0 = 1 mM) for the D. desulfuricans culture. Both cultures exhibited a faster rate of uranium reduction in the presence of sulfate and no lag time until the onset of U reduction in contrast to U alone. This kinetics information can be used to design an SRB-dominated biotreatment scheme for the removal of U(VI) from an aqueous source. PMID:10966381

  5. Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles.

    PubMed

    Mathieu, Jordane A; Hatté, Christine; Balesdent, Jérôme; Parent, Éric

    2015-11-01

    The response of soil carbon dynamics to climate and land-use change will affect both the future climate and the quality of ecosystems. Deep soil carbon (>20 cm) is the primary component of the soil carbon pool, but the dynamics of deep soil carbon remain poorly understood. Therefore, radiocarbon activity (Δ14C), which is a function of the age of carbon, may help to understand the rates of soil carbon biodegradation and stabilization. We analyzed the published 14C contents in 122 profiles of mineral soil that were well distributed in most of the large world biomes, except for the boreal zone. With a multivariate extension of a linear mixed-effects model whose inference was based on the parallel combination of two algorithms, the expectation-maximization (EM) and the Metropolis-Hasting algorithms, we expressed soil Δ14C profiles as a four-parameter function of depth. The four-parameter model produced insightful predictions of soil Δ14C as dependent on depth, soil type, climate, vegetation, land-use and date of sampling (R2=0.68). Further analysis with the model showed that the age of topsoil carbon was primarily affected by climate and cultivation. By contrast, the age of deep soil carbon was affected more by soil taxa than by climate and thus illustrated the strong dependence of soil carbon dynamics on other pedologic traits such as clay content and mineralogy. PMID:26119088

  6. Calcium Sulfate in Atacama Desert Basalt: A Possible Analog for Bright Material in Adirondack Basalt, Gusev Crater

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    The Atacama Desert in northern Chile is one of the driest deserts on Earth (< 2mm/y). The hyper-arid conditions allow extraordinary accumulations of sulfates, chlorides, and nitrates in Atacama soils. Examining salt accumulations in the Atacama may assist understanding salt accumulations on Mars. Recent work examining sulfate soils on basalt parent material observed white material in the interior vesicles of surface basalt. This is strikingly similar to the bright-white material present in veins and vesicles of the Adirondack basalt rocks at Gusev Crater which are presumed to consist of S, Cl, and/or Br. The abundance of soil gypsum/anhydrite in the area of the Atacama basalt suggested that the white material consisted of calcium sulfate (Ca-SO4) which was later confirmed by SEM/EDS analysis. This work examines the Ca-SO4 of Atacama basalt in an effort to provide insight into the possible nature of the bright material in the Adirondack basalt of Gusev Crater. The objectives of this work are to (i) discuss variations in Ca-SO4 crystal morphology in the vesicles and (ii) examine the Ca-SO4 interaction(s) with the basalt interior.

  7. Soil residue analysis and degradation of saflufenacil as affected by moisture content and soil characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate saflufenacil degradation and persistence in soils from rice regions under field capacity (non-flooded) and saturated (flooded) conditions. Saflufenacil dissolved in acetonitrile was added into pre-incubated samples at the rate of 2000 g ha-1. The amount of...

  8. Effects of fou8/fry1 mutation on sulfur metabolism: is decreased internal sulfate the trigger of sulfate starvation response?

    PubMed

    Lee, Bok-Rye; Huseby, Stine; Koprivova, Anna; Chételat, Aurore; Wirtz, Markus; Mugford, Sam T; Navid, Emily; Brearley, Charles; Saha, Shikha; Mithen, Richard; Hell, Rüdiger; Farmer, Edward E; Kopriva, Stanislav

    2012-01-01

    The fou8 loss of function allele of adenosine bisphosphate phosphatase FIERY1 results in numerous phenotypes including the increased enzymatic oxygenation of fatty acids and increased jasmonate synthesis. Here we show that the mutation causes also profound alterations of sulfur metabolism. The fou8 mutants possess lower levels of sulfated secondary compounds, glucosinolates, and accumulate the desulfo-precursors similar to previously described mutants in adenosine 5'phosphosulfate kinase. Transcript levels of genes involved in sulfate assimilation differ in fou8 compared to wild type Col-0 plants and are similar to plants subjected to sulfate deficiency. Indeed, independent microarray analyses of various alleles of mutants in FIERY1 showed similar patterns of gene expression as in sulfate deficient plants. This was not caused by alterations in signalling, as the fou8 mutants contained significantly lower levels of sulfate and glutathione and, consequently, of total elemental sulfur. Analysis of mutants with altered levels of sulfate and glutathione confirmed the correlation of sulfate deficiency-like gene expression pattern with low internal sulfate but not low glutathione. The changes in sulfur metabolism in fou8 correlated with massive increases in 3'-phosphoadenosine 5'-phosphate levels. The analysis of fou8 thus revealed that sulfate starvation response is triggered by a decrease in internal sulfate as opposed to external sulfate availability and that the presence of desulfo-glucosinolates does not induce the glucosinolate synthesis network. However, as well as resolving these important questions on the regulation of sulfate assimilation in plants, fou8 has also opened an array of new questions on the links between jasmonate synthesis and sulfur metabolism. PMID:22724014

  9. Effects of fou8/fry1 Mutation on Sulfur Metabolism: Is Decreased Internal Sulfate the Trigger of Sulfate Starvation Response?

    PubMed Central

    Lee, Bok-Rye; Huseby, Stine; Koprivova, Anna; Chételat, Aurore; Wirtz, Markus; Mugford, Sam T.; Navid, Emily; Brearley, Charles; Saha, Shikha; Mithen, Richard; Hell, Rüdiger; Farmer, Edward E.; Kopriva, Stanislav

    2012-01-01

    The fou8 loss of function allele of adenosine bisphosphate phosphatase FIERY1 results in numerous phenotypes including the increased enzymatic oxygenation of fatty acids and increased jasmonate synthesis. Here we show that the mutation causes also profound alterations of sulfur metabolism. The fou8 mutants possess lower levels of sulfated secondary compounds, glucosinolates, and accumulate the desulfo-precursors similar to previously described mutants in adenosine 5′phosphosulfate kinase. Transcript levels of genes involved in sulfate assimilation differ in fou8 compared to wild type Col-0 plants and are similar to plants subjected to sulfate deficiency. Indeed, independent microarray analyses of various alleles of mutants in FIERY1 showed similar patterns of gene expression as in sulfate deficient plants. This was not caused by alterations in signalling, as the fou8 mutants contained significantly lower levels of sulfate and glutathione and, consequently, of total elemental sulfur. Analysis of mutants with altered levels of sulfate and glutathione confirmed the correlation of sulfate deficiency-like gene expression pattern with low internal sulfate but not low glutathione. The changes in sulfur metabolism in fou8 correlated with massive increases in 3′-phosphoadenosine 5′-phosphate levels. The analysis of fou8 thus revealed that sulfate starvation response is triggered by a decrease in internal sulfate as opposed to external sulfate availability and that the presence of desulfo-glucosinolates does not induce the glucosinolate synthesis network. However, as well as resolving these important questions on the regulation of sulfate assimilation in plants, fou8 has also opened an array of new questions on the links between jasmonate synthesis and sulfur metabolism. PMID:22724014

  10. Bioreactor performance and functional gene analysis of microbial community in a limited-oxygen fed bioreactor for co-reduction of sulfate and nitrate with high organic input.

    PubMed

    Xu, Xi-jun; Chen, Chuan; Wang, Ai-jie; Yu, Hao; Zhou, Xu; Guo, Hong-liang; Yuan, Ye; Lee, Duu-jong; Zhou, Jizhong; Ren, Nan-qi

    2014-08-15

    Limited-oxygen mediated synergistic relationships between sulfate-reducing bacteria (SRB), nitrate-reducing bacteria (NRB) and sulfide-oxidizing bacteria (SOB, including nitrate-reducing, sulfide-oxidizing bacteria NR-SOB) were predicted to simultaneously remove contaminants of nitrate, sulfate and high COD, and eliminate sulfide generation. A lab-scale experiment was conducted to examine the impact of limited oxygen on these oxy-anions degradation, sulfide oxidation and associated microbial functional responses. In all scenarios tested, the reduction of both nitrate and sulfate was almost complete. When limited-oxygen was fed into bioreactors, S(0) formation was significantly improved up to ∼ 70%. GeoChip 4.0, a functional gene microarray, was used to determine the microbial gene diversity and functional potential for nitrate and sulfate reduction, and sulfide oxidation. The diversity of the microbial community in bioreactors was increased with the feeding of limited oxygen. Whereas the intensities of the functional genes involved in sulfate reduction did not show a significant difference, the abundance of the detected denitrification genes decreased in limited oxygen samples. More importantly, sulfide-oxidizing bacteria may alter their populations/genes in response to limited oxygen potentially to function more effectively in sulfide oxidation, especially to elemental sulfur. The genes fccA/fccB from nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB), such as Paracoccus denitrificans, Thiobacillus denitrificans, Beggiatoa sp., Thiomicrospira sp., and Thioalkalivibrio sp., were more abundant under limited-oxygen condition. PMID:24981676

  11. Exploring the potential of anaerobic sulfate reduction process in treating sulfonated diazo dye: Microbial community analysis using bar-coded pyrosequencing.

    PubMed

    Rasool, Kashif; Shahzad, Asif; Lee, Dae Sung

    2016-11-15

    Anaerobic decolorization and biotransformation of azo dye was investigated in a sulfate-reducing environment. Batch reactor studies were performed with mixed cultures of anaerobic sulfate-reducing bacteria (SRBs) enriched from anaerobic digester sludge. Complete sulfate and color removal were achieved in batch experiments with different initial dye concentrations (50-2500mg/L) and 1000mg/L of sulfate. Induction of various oxidoreductive enzyme activities such as phenol oxidase, veratryl alcohol oxidase, lignin peroxidase, and azo reductase was studied to understand their involvement in dye metabolism under anoxic environment. The degradation of Cotton Red B was confirmed using high-performance liquid chromatography and gas chromatography-mass spectroscopy. Sulfidogenic sludge demonstrated excellent dye degradation and mineralization ability, producing aniline and 1,4-diamino benzene as metabolites. A barcoded 16S rRNA gene-pyrosequencing approach was used to assess the bacterial diversity in the sludge culture and a phylogenetic tree was constructed for sulfate-reducing bacteria. PMID:27475462

  12. [Investigation and canonical correspondence analysis of salinity contents in secondary salinization greenhouse soils in Shanghai suburb].

    PubMed

    Tang, Dong; Mao, Liang; Zhi, Yue-e; Zhang, Jin-Zhong; Zhou, Pei; Chai, Xiao-Tong

    2014-12-01

    The salinity characteristics of greenhouse soils with cropping obstacles in Shanghai suburb were investigated and analyzed. The salinity contents of the salinization greenhouse soils showed a trend of first increasing and then decreasing with the increasing cropping duration. The salinized soils mainly included slightly salted, mildly salted and salted soils, which accounted for 17.39%, 56.52% and 13.04%, respectively. Among them, the degree of salinity in greenhouse soil planted with asparagus in Chongming County was the highest. Among the salt ions in greenhouse soils, the cations were mainly Ca2+ and Na+, while the anions were mainly NO3- and SO4(2-). The degree of salinity was mainly influenced by fertilization mode, cropping duration, crop type and management level, which led to the great variation in the salinity contents and salt ions. Canonical correspondence analysis found that the contents of Ca2+, Mg2+ and NO3- in greenhouse soils were greatly affected by cropping duration, and the degree of salinity would be enhanced and attenuated with long-term application of single fertilizer and mixed application of chemical fertilizer and organic manure, respectively. The greenhouse soils in Shanghai suburb could be classified as four patterns influenced by the relationship between salinity ions and samples, and the most soils were influenced by Ca2+, Mg2+, NO3- and Cl-, which required to be primarily controlled. PMID:25826944

  13. Dynamics of methane production, sulfate reduction, and denitrification in a permanently waterlogged alder swamp

    SciTech Connect

    Westermann, P.; Ahring, B.K.

    1987-10-01

    The dynamics of sulfate reduction, methane production, and denitrification were investigated in a permanently waterlogged alder swamp. Molybdate, an inhibitor of sulfate reduction, stimulated methane production in soil slurries, thus suggesting competition for common substrates between sulfate-reducing and methane-producing bacteria. Acetate, hydrogen, and methanol were found to stimulate both sulfate reduction and methane production, while trimethylamine mainly stimulated methane production. Nitrate addition reduced both methane production and sulfate reduction, either as a consequence of competition of poisoning of the bacteria. Sulfate-reducing bacteria were only slightly limited by the availability of electron acceptors, while denitrifying bacteria were seriously limited by low nitrate concentrations. Arrhenius plots of the three processes revealed different responses to temperature changes in the slurries. Methane production was most sensitive to temperature changes, followed by denitrification and sulfate reduction. No significant differences between slope patterns were observed when comparing summer and winter measurements, indicating similar populations regarding temperature responses.

  14. Dynamics of Methane Production, Sulfate Reduction, and Denitrification in a Permanently Waterlogged Alder Swamp

    PubMed Central

    Westermann, Peter; Ahring, Birgitte Kiær

    1987-01-01

    The dynamics of sulfate reduction, methane production, and denitrification were investigated in a permanently waterlogged alder swamp. Molybdate, an inhibitor of sulfate reduction, stimulated methane production in soil slurries, thus suggesting competition for common substrates between sulfate-reducing and methane-producing bacteria. Acetate, hydrogen, and methanol were found to stimulate both sulfate reduction and methane production, while trimethylamine mainly stimulated methane production. Nitrate addition reduced both methane production and sulfate reduction, either as a consequence of competition or poisoning of the bacteria. Sulfate-reducing bacteria were only slightly limited by the availability of electron acceptors, while denitrifying bacteria were seriously limited by low nitrate concentrations. Arrhenius plots of the three processes revealed different responses to temperature changes in the slurries. Methane production was most sensitive to temperature changes, followed by denitrification and sulfate reduction. No significant differences between slope patterns were observed when comparing summer and winter measurements, indicating similar populations regarding temperature responses. PMID:16347472

  15. Integrated Analysis of Climate, Soil, Topography and Vegetative Growth in Iberian Viticultural Regions

    PubMed Central

    Fraga, Helder; Malheiro, Aureliano C.; Moutinho-Pereira, José; Cardoso, Rita M.; Soares, Pedro M. M.; Cancela, Javier J.; Pinto, Joaquim G.; Santos, João A.

    2014-01-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate. PMID:25251495

  16. Microprofiling of nitrogen patches in paddy soil: Analysis of spatiotemporal nutrient heterogeneity at the microscale.

    PubMed

    Li, Yilin; Kronzucker, Herbert J; Shi, Weiming

    2016-01-01

    Flooded paddy soil ecosystems in the tropics support the cultivation of the majority of the world's leading crop, rice, and nitrogen (N) availability in the paddy-soil rooting zone limits rice production more than any other nutritional factor. Yet, little is known about the dynamic response of paddy soil to N-fertiliser application, in terms of horizontal and vertical patchiness in N distribution and transformation. Here, we present a microscale analysis of the profile of ammonium (NH4(+)) and nitrate (NO3(-)), nitrification, oxygen (O2water and O2soil), and pH (pHwater and pHsoil) in paddy soils, collected from two representative rice-production areas in subtropical China. NH4(+) and NO3(-) exhibited dramatic spatiotemporal profiles within N patches on the microscale. We show that pHsoil became constant at 1.0-3.5 mm depth, and O2soil became undetectable at 1.7-4.0 mm. Fertiliser application significantly increased pH, and decreased O2, within N patches. Path analysis showed that the factors governing nitrification scaled in the order: pHwater > pHsoil > NH4(+) > O2water > NO3(-) > O2soil. We discuss the soil properties that decide the degree of nutrient patchiness within them and argue that such knowledge is critical to intelligent appraisals of nutrient-use efficiencies in the field. PMID:27265522

  17. An improved method for field extraction and laboratory analysis of large, intact soil cores

    USGS Publications Warehouse

    Tindall, J.A.; Hemmen, K.; Dowd, J.F.

    1992-01-01

    Various methods have been proposed for the extraction of large, undisturbed soil cores and for subsequent analysis of fluid movement within the cores. The major problems associated with these methods are expense, cumbersome field extraction, and inadequate simulation of unsaturated flow conditions. A field and laboratory procedure is presented that is economical, convenient, and simulates unsaturated and saturated flow without interface flow problems and can be used on a variety of soil types. In the field, a stainless steel core barrel is hydraulically pressed into the soil (30-cm diam. and 38 cm high), the barrel and core are extracted from the soil, and after the barrel is removed from the core, the core is then wrapped securely with flexible sheet metal and a stainless mesh screen is attached to the bottom of the core for support. In the laboratory the soil core is set atop a porous ceramic plate over which a soil-diatomaceous earth slurry has been poured to assure good contact between plate and core. A cardboard cylinder (mold) is fastened around the core and the empty space filled with paraffin wax. Soil cores were tested under saturated and unsaturated conditions using a hanging water column for potentials ???0. Breakthrough curves indicated that no interface flow occurred along the edge of the core. This procedure proved to be reliable for field extraction of large, intact soil cores and for laboratory analysis of solute transport.

  18. Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization.

    PubMed

    Unno, Yusuke; Shinano, Takuro

    2013-01-01

    While phytic acid is a major form of organic phosphate in many soils, plant utilization of phytic acid is normally limited; however, culture trials of Lotus japonicus using experimental field soil that had been managed without phosphate fertilizer for over 90 years showed significant usage of phytic acid applied to soil for growth and flowering and differences in the degree of growth, even in the same culture pot. To understand the key metabolic processes involved in soil phytic acid utilization, we analyzed rhizosphere soil microbial communities using molecular ecological approaches. Although molecular fingerprint analysis revealed changes in the rhizosphere soil microbial communities from bulk soil microbial community, no clear relationship between the microbiome composition and flowering status that might be related to phytic acid utilization of L. japonicus could be determined. However, metagenomic analysis revealed changes in the relative abundance of the classes Bacteroidetes, Betaproteobacteria, Chlorobi, Dehalococcoidetes and Methanobacteria, which include strains that potentially promote plant growth and phytic acid utilization, and some gene clusters relating to phytic acid utilization, such as alkaline phosphatase and citrate synthase, with the phytic acid utilization status of the plant. This study highlights phylogenetic and metabolic features of the microbial community of the L. japonicus rhizosphere and provides a basic understanding of how rhizosphere microbial communities affect the phytic acid status in soil. PMID:23257911

  19. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions.

    PubMed

    Fraga, Helder; Malheiro, Aureliano C; Moutinho-Pereira, José; Cardoso, Rita M; Soares, Pedro M M; Cancela, Javier J; Pinto, Joaquim G; Santos, João A

    2014-01-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate. PMID:25251495

  20. Integrated Analysis of Climate, Soil, Topography and Vegetative Growth in Iberian Viticultural Regions

    NASA Astrophysics Data System (ADS)

    Fraga, Helder; Malheiro, Aureliano C.; Moutinho-Pereira, José; Cardoso, Rita M.; Soares, Pedro M. M.; Cancela, Javier J.; Pinto, Joaquim G.; Santos, João A.

    2015-04-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

  1. On the evaporation of ammonium sulfate solution

    PubMed Central

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-01-01

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 ± 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor–liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly. PMID:19861551

  2. On the evaporation of ammonium sulfate solution

    SciTech Connect

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  3. NMR metabolomics for soil analysis provide complementary, orthogonal data to MIR and traditional soil chemistry approaches--a land use study.

    PubMed

    Rochfort, Simone; Ezernieks, Vilnis; Mele, Pauline; Kitching, Matt

    2015-09-01

    The present study was designed to analyse soils by different methodologies to determine the range of traits that could be investigated for the study of environmental soil samples. Proton nuclear magnetic resonance spectroscopy ((1) H NMR) was employed for metametabolomic analysis of soils from agricultural systems (managed) or from soils in a native state (remnant). The metabolomic methodologies employed (grinding and extraction with sonication) are capable of breaking up cell walls and so enabled characterisation of both extracellular and intracellular components of soil. Diffuse mid-infrared spectroscopy (MIR) data was obtained for the same sample sets, and in addition, elemental composition was determined by conventional laboratory chemical testing methods. Also investigated was the antibiotic activity of the soil extracts. Resilient or suppressive soils are valued in the agricultural setting as they convey disease resistance (against bacterial and fungal pathogens) to crop plants. In order to test if any such biological activity could be detected in the soils, the extracts were tested against the bacteria Bacillus subtilis. Several extracts showed strong growth inhibition against the bacteria with the most active clustered together in principle component analysis (PCA) of the metabolomic data. The study showed that the NMR metabolomic approach corresponds more accurately to land use and biochemical properties potentially associated with suppression, while MIR data correlated well to inorganic chemical analysis. Thus, the study demonstrates the utility in combining these spectroscopic methods for soil analysis. PMID:25640917

  4. Analysis of membrane-protein complexes of the marine sulfate reducer Desulfobacula toluolica Tol2 by 1D blue native-PAGE complexome profiling and 2D blue native-/SDS-PAGE.

    PubMed

    Wöhlbrand, Lars; Ruppersberg, Hanna S; Feenders, Christoph; Blasius, Bernd; Braun, Hans-Peter; Rabus, Ralf

    2016-03-01

    Sulfate-reducing bacteria (SRB) obtain energy from cytoplasmic reduction of sulfate to sulfide involving APS-reductase (AprAB) and dissimilatory sulfite reductase (DsrAB). These enzymes are predicted to obtain electrons from membrane redox complexes, i.e. the quinone-interacting membrane-bound oxidoreductase (QmoABC) and DsrMKJOP complexes. In addition to these conserved complexes, the genomes of SRB encode a large number of other (predicted) membrane redox complexes, the function and actual formation of which is unknown. This study reports the establishment of 1D Blue Native-PAGE complexome profiling and 2D BN-/SDS-PAGE for analysis of the membrane protein complexome of the marine sulfate reducer Desulfobacula toluolica Tol2. Analysis of normalized score profiles of >800 proteins in combination with hierarchical clustering and identification of 2D BN-/SDS-PAGE separated spots demonstrated separation of membrane complexes in their native form, e.g. ATP synthase. In addition to the QmoABC and DsrMKJOP complexes, other complexes were detected that constitute the basic membrane complexome of D. toluolica Tol2, e.g. transport proteins (e.g. sodium/sulfate symporters) or redox complexes involved in Na(+) -based bioenergetics (RnfABCDEG). Notably, size estimation indicates dimer and quadruple formation of the DsrMKJOP complex in vivo. Furthermore, cluster analysis suggests interaction of this complex with a rhodanese-like protein (Tol2_C05230) possibly representing a periplasmic electron transfer partner for DsrMKJOP. PMID:26792001

  5. Numerical analysis of kinematic soil-pile interaction

    SciTech Connect

    Castelli, Francesco; Maugeri, Michele; Mylonakis, George

    2008-07-08

    In the present study, the response of singles pile to kinematic seismic loading is investigated using the computer program SAP2000. The objectives of the study are: (1) to develop a numerical model that can realistically simulate kinematic soil-structure interaction for piles accounting for discontinuity conditions at the pile-soil interface, energy dissipation and wave propagation; (2) to use the model for evaluating kinematic interaction effects on pile response as function of input ground motion; and (3) to present a case study in which theoretical predictions are compared with results obtained from other formulations. To evaluate the effects of kinematic loading, the responses of both the free-field soil (with no piles) and the pile were compared. Time history and static pushover analyses were conducted to estimate the displacement and kinematic pile bending under seismic loadings.

  6. Trace element analysis of soil type collected from the Manjung and central Perak

    SciTech Connect

    Azman, Muhammad Azfar Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che

    2015-04-29

    Trace elements in soils primarily originated from their parent materials. Parents’ material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.

  7. Trace element analysis of soil type collected from the Manjung and central Perak

    NASA Astrophysics Data System (ADS)

    Azman, Muhammad Azfar; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che

    2015-04-01

    Trace elements in soils primarily originated from their parent materials. Parents' material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.

  8. X-ray spectrometry and X-ray microtomography techniques for soil and geological samples analysis

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś, A.; Banaś, D.; Braziewicz, J.; Dziadowicz, M.; Kopeć, E.; Majewska, U.; Mazurek, M.; Pajek, M.; Sobisz, M.; Stabrawa, I.; Wudarczyk-Moćko, J.; Góźdź, S.

    2015-12-01

    A particular subject of X-ray fluorescence analysis is its application in studies of the multielemental sample of composition in a wide range of concentrations, samples with different matrices, also inhomogeneous ones and those characterized with different grain size. Typical examples of these kinds of samples are soil or geological samples for which XRF elemental analysis may be difficult due to XRF disturbing effects. In this paper the WDXRF technique was applied in elemental analysis concerning different soil and geological samples (therapeutic mud, floral soil, brown soil, sandy soil, calcium aluminum cement). The sample morphology was analyzed using X-ray microtomography technique. The paper discusses the differences between the composition of samples, the influence of procedures with respect to the preparation of samples as regards their morphology and, finally, a quantitative analysis. The results of the studies were statistically tested (one-way ANOVA and correlation coefficients). For lead concentration determination in samples of sandy soil and cement-like matrix, the WDXRF spectrometer calibration was performed. The elemental analysis of the samples was complemented with knowledge of chemical composition obtained by X-ray powder diffraction.

  9. Utilization of by-product ammonium sulfate

    SciTech Connect

    Boles, J.L.

    1992-12-31

    Sulfur is generally referred to as a secondary plant nutrients but it actually ranks in importance with nitrogen and phosphorous in protein synthesis. It is also an integral part of vitamins and enzymes essential to life. Soils in many areas of the world today are deficient in sulfur and soil sulfur reserves are being rapidly depleted. To address growing agronomic needs for sulfur, TVA`s National Fertilizer and Environmental Research Center (NFERC) has been committed to development of technologies to produce low-cost sulfur-containing fertilizers since the mid 1970`s. In the late 1970`s and early 1980`s, NFERC developed and demonstrated a 29-0-0-5S urea-ammonium sulfate (UAS) suspension. In 1984, NFERC developed and later patented a new family of nitrogen-sulfur (NS) suspensions to replace the earlier UAS suspension with more versatile, better quality products made by a simpler, more economical process. NFERC`s current endeavors involve development of technologies for successful utilization of low-quality, by-product ammonium sulfate (AS) in the fertilizer industry, which is the subject of this paper. NFERC`s current focus on utilization of by-product AS centers around the economic and environmental aspects of these technologies as the primary rationale for development, since the needs for sulfur in soils is now generally well known and sulfur application is common and now charged for in many areas.

  10. Utilization of by-product ammonium sulfate

    SciTech Connect

    Boles, J.L.

    1992-01-01

    Sulfur is generally referred to as a secondary plant nutrients but it actually ranks in importance with nitrogen and phosphorous in protein synthesis. It is also an integral part of vitamins and enzymes essential to life. Soils in many areas of the world today are deficient in sulfur and soil sulfur reserves are being rapidly depleted. To address growing agronomic needs for sulfur, TVA's National Fertilizer and Environmental Research Center (NFERC) has been committed to development of technologies to produce low-cost sulfur-containing fertilizers since the mid 1970's. In the late 1970's and early 1980's, NFERC developed and demonstrated a 29-0-0-5S urea-ammonium sulfate (UAS) suspension. In 1984, NFERC developed and later patented a new family of nitrogen-sulfur (NS) suspensions to replace the earlier UAS suspension with more versatile, better quality products made by a simpler, more economical process. NFERC's current endeavors involve development of technologies for successful utilization of low-quality, by-product ammonium sulfate (AS) in the fertilizer industry, which is the subject of this paper. NFERC's current focus on utilization of by-product AS centers around the economic and environmental aspects of these technologies as the primary rationale for development, since the needs for sulfur in soils is now generally well known and sulfur application is common and now charged for in many areas.

  11. Analysis of bioremediation of pesticides by soil microorganisms

    NASA Astrophysics Data System (ADS)

    Ruml, Tomas; Klotz, Dietmar; Tykva, Richard

    1995-10-01

    The application of new pesticides requires careful monitoring of their distribution in the environment. The effect of the soil microflora on the stability of the [14C]- labelled juvenoid hormone analogue W-328 was estimated. The micro-organisms from two different soil samples were isolated and tested for their ability to decompose W-328. One bacterial strain, yeast and mold isolates, exhibited the degradation activity. The growth characteristics such as pH and temperature optima were determined. The degradation products were estimated using HPLC.

  12. Effects of copper sulfate on seedlings of Prosopis pubescens (screwbean mesquite).

    PubMed

    Zappala, Marian N; Ellzey, Joanne T; Bader, Julia; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge

    2014-01-01

    Phytoextraction is an established method of removal of heavy metals from contaminated soils worldwide. Phytoextraction is most efficient if local plants are used in the contaminated site. We propose that Prosopis pubescens (Screw bean mesquite) would be a successful phytoextractor of copper in our local soils. In order to determine the feasibility of using Screw bean mesquite, we utilized inductively-coupled plasma-optical emission spectroscopy (ICP-OES) and elemental analysis to observe the uptake of copper and the effects on macro and micro nutrients within laboratory-grown seedlings. We have previously shown that P. pubescens is a hyperaccumulator of copper in soil-grown seedlings. Light and transmission electron microscopy demonstrated death of root cells and ultrastructural changes due to the presence of copper from 50 mg/L - 600 mg/L. Ultrastructural changes included plasmolysis, starch accumulation, increased vacuolation and swollen chloroplasts with disarranged thylakoid membranes in cotyledons. Inductively coupled plasma-optical emission spectroscopy analyses of macro- and micro-nutrients revealed that the presence of copper sulfate in the growth medium of Petri-dish grown Prosopis pubescens seedlings resulted in dramatic decreases of magnesium, potassium and phosphorus. At 500-600 mg/L of copper sulfate, a substantial increase of sulfur was present in roots. PMID:24933900

  13. Animating the biodynamics of soil thickness using process vector analysis: A dynamic denudation approach to soil formation

    USGS Publications Warehouse

    Johnson, D.L.; Domier, J.E.J.; Johnson, D.N.

    2005-01-01

    This paper expands the dynamic denudation framework of landscape evolution by providing new process insights and details on how soil and its signature morphological feature, the biomantle, form and function in the environment. We examine soils and their biomantles from disparate parts of the world, from the tropics through midlatitudes and hyperarid through perhumid, a range that exhibits varying environments for, and of, life. We then explicate the process pathways that cause soils to thicken and thin, and to even disappear, then reform. We do this by examining thickness relationships, where soil thickness stand biomantle thickness bt are functions of upbuilding u and deepening d minus removal r processes, hence st/bt=f(u+d-r). Upbuilding has two subsets, u1, which includes all exogenous (allochthonous-outside) mineral and/or organic inputs to the soil system, and u2, which includes all endogenous (autochthonous-in situ) processes and productions, including weathering. Exogenous u1 inputs include eolian and slopewash inputs (sedimentations) of mineral and organic materials, mass wasting accumulations and the like. Endogenous u2 processes and productions include the sum of in situ bioturbations, biosynthetic productions, organic accumulations, biovoid productions, weathering and volume increases caused by their sum. Endogenous upbuildings, which dominantly occur in the biomantle, are basically biodynamic bd processes and productions, hence u2=bd. Therefore, if exogenous upbuildings u1 are minimal or zero, then biomantle thickness bt is expressed by bt=f(u2-r) or bt=f(bd-r). Drawing on these relationships, we employ a graphic-conceptual device called process vector analysis in a digital animation (see supplementary materials or cf. https://netfiles.uiuc.edu/jdomier/www/temp/ biomantle.html) that illustrates the main pathways that form both Earth's soil and its unique epidermis, the biomantle. We then discuss the main elements of the animation using still frames that

  14. Recent patterns of sulfate variability in pristine streams

    USGS Publications Warehouse

    Lins, H.F.

    1986-01-01

    Systematic modes of spatial and temporal variation in a 13-y record of stream sulfate from a nationwide network of headwater sampling stations are defined using principal components. Based on the undisturbed nature of the sampling network, it is suggested that these modes of stream sulfate variability are analogues for variations in acid deposition. Three statistically significant components, accounting for approximately 50% of the total stream sulfate variance, are identified. Analysis of component loadings and scores indicates that a major transition occurred in the early 1970s when stream sulfate concentrations in the northeast changed from persistently above mean levels to persistently below. At the same time concentrations of sulfate in Gulf and Southeast Atlantic coast streams shifted from persistently below to persistently above mean concentrations. Significantly, these changes occurred contemporaneously with regional trends in sulfate emissions which can generally be characterized as decreasing in the northeast and increasing in the southeast.Systematic modes of spatial and temporal variation in a 13-y record of stream sulfate from a nationwide network of headwater sampling stations are defined using principal components. Based on the undisturbed nature of the sampling network, it is suggested that these modes of stream sulfate variability are analogues for variations in acid deposition. Three statistically significant components, accounting for approximately 50% of the total stream sulfate variance, are identified. Analysis of component loadings and scores indicates that a major transition occurred in the early 1970s when stream sulfate concentrations in the northeast changed from persistently above mean levels to persistently below. At the same time concentrations of sulfate in Gulf and Southeast Atlantic coast streams shifted from persistently below to persistently above mean concentrations.

  15. MICROBIAL DEGRADATION OF TOLUENE UNDER SULFATE- REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS

    EPA Science Inventory

    Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (Md.). Similar results were obtained for enrichment cultures in which toluene was ...

  16. Soil Phosphorus Gains and Losses with Afforestation: A Meta-analysis

    NASA Astrophysics Data System (ADS)

    McMahon, D.; Deng, Q.; Xiang, Y.; Yu, C. L.; Hui, D.; Jackson, R. B.

    2015-12-01

    Afforestation, the planting of trees on previously non-forested land, is commonly practiced around the world to provide wood, reduce erosion, and restore degraded agricultural land. Although afforestation has the potential to meet these objectives while increasing carbon uptake, its net impact on the soil depends on environmental conditions and land-use history. Availability of vital plant nutrients, such as phosphorus (P), may be altered by afforestation, but prior work has largely focused on soil carbon, and changes in soil P had not been quantitatively reviewed. We conducted a literature meta-analysis of changes in total and plant-available soil P with afforestation, compiling 49 studies representing 186 independent forest stands on five continents. Over the full dataset, mean concentration of plant-available phosphorus (mg kg-1 soil) increased by 22.7% with afforestation (bootstrapped 95% confidence interval = [15.1%, 30.7%]), while mean concentration of total phosphorus decreased by 13.5% (95% CI = [-18.4%, -8.6%]). These data reflect trends in upper mineral soil horizons, with sampling depths clustered around 20 cm and few studies reporting data below 50 cm. Differences in prior land use partially explain the substantial variation in effect size, with larger increases in available P and smaller decreases in total P when trees were planted on degraded soils. Trends in both available and total P were also enhanced with increasing time since afforestation, suggesting that changes in soil P concentrations are driven by cumulative processes rather than site preparation and planting. Our meta-analysis suggests that 1. afforestation can transform phosphorus into more plant-accessible forms, while potentially depleting total soil stocks of P, and 2. land-use history, more than climate or species planted, determines the effects of afforestation on soils' ability to meet the nutrient needs of vegetation.

  17. Soil erosion rates in rangelands of northeastern Patagonia: A dendrogeomorphological analysis using exposed shrub roots

    NASA Astrophysics Data System (ADS)

    Chartier, Marcelo Pablo; Rostagno, César Mario; Roig, Fidel Alejandro

    2009-05-01

    Soil erosion is an important process of land degradation in many rangelands and a significant driver of desertification in the world's drylands. Dendrogeomorphology is an alternative to traditional methods for determining soil erosion rate. Specifically, the vertical distance between the upper portion of exposed roots and the actual soil surface can be used as a bioindicator of erosion since plant establishment. In this study, we determined (i) the soil erosion rate from exposed roots of the dwarf shrub Margyricarpus pinnatus [Lam.] Kuntze in two ecological sites in the northeastern rangelands of Patagonia and (ii) the relationship between shrub age and upper root diameter. We selected two ecological sites, a pediment-like plateau and a flank pediment, where the dominant soils were Xeric Haplocalcids and Xeric Calciargids, respectively. The soil erosion rates in the pediment-like plateau and in the flank pediment were 2.4 and 3.1 mm yr - 1 , respectively. Data clearly indicate a high rate of soil erosion during the mean 8-year life span of the dwarf shrubs in degraded patches, which represent ~ 10% of surface cover in the study area. Simple linear regression analysis yielded a highly significant predictive model for age estimation of M. pinnatus plants using the upper root diameter as a predictor variable. The measurement of ground lowering against datable exposed roots represents a simple method for the determination of soil erosion rates. In combination with other soil surface features, it was used to infer the episodic nature of soil erosion. This approach could be particularly useful for monitoring the effects of land management practices on recent soil erosion and for the establishment of records in regions where historical data regarding this process are scarce or absent.

  18. Soil-structure interaction analysis of jack-up platforms subjected to monochrome and irregular waves

    NASA Astrophysics Data System (ADS)

    Korzani, Maziar Gholami; Aghakouchak, Ali Akbar

    2015-03-01

    As jack-up platforms have recently been used in deeper and harsher waters, there has been an increasing demand to understand their behaviour more accurately to develop more sophisticated analysis techniques. One of the areas of significant development has been the modelling of spudcan performance, where the load-displacement behaviour of the foundation is required to be included in any numerical model of the structure. In this study, beam on nonlinear winkler foundation (BNWF) modeling—which is based on using nonlinear springs and dampers instead of a continuum soil media—is employed for this purpose. A regular monochrome design wave and an irregular wave representing a design sea state are applied to the platform as lateral loading. By using the BNWF model and assuming a granular soil under spudcans, properties such as soil nonlinear behaviour near the structure, contact phenomena at the interface of soil and spudcan (such as uplifting and rocking), and geometrical nonlinear behaviour of the structure are studied. Results of this study show that inelastic behaviour of the soil causes an increase in the lateral displacement at the hull elevation and permanent unequal settlement in soil below the spudcans, which are increased by decreasing the friction angle of the sandy soil. In fact, spudcans and the underlying soil cause a relative fixity at the platform support, which changes the dynamic response of the structure compared with the case where the structure is assumed to have a fixed support or pinned support. For simulating this behaviour without explicit modelling of soil-structure interaction (SSI), moment-rotation curves at the end of platform legs, which are dependent on foundation dimensions and soil characteristics, are obtained. These curves can be used in a simplified model of the platform for considering the relative fixity at the soil-foundation interface.

  19. Copper Sulfate Foot Baths on Dairies and Crop Toxicities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A rising concern with the application of dairy wastes to agricultural fields is the accumulation of copper (Cu) in the soil. Copper sulfate (CuSO4) from cattle foot baths are washed out of dairy barns and into wastewater lagoons. The addition of CuSO4 baths has been reported to increase Cu concent...

  20. FINITE-ELEMENT ANALYSIS OF MULTIPHASE IMMISCIBLE FLOW THROUGH SOILS

    EPA Science Inventory

    A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equation...

  1. The USDA Natural Resources Conservation Service Soil Analysis Network (SCAN)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface soil moisture plays an important role in the dynamics of land atmosphere interactions and many current and upcoming models and satellite sensors. In situ data will be required to provide calibration and validation data sets. Therefore, there is a need for sensor networks at a variety of sc...

  2. Soil Studies: Applying Acid-Base Chemistry to Environmental Analysis.

    ERIC Educational Resources Information Center

    West, Donna M.; Sterling, Donna R.

    2001-01-01

    Laboratory activities for chemistry students focus attention on the use of acid-base chemistry to examine environmental conditions. After using standard laboratory procedures to analyze soil and rainwater samples, students use web-based resources to interpret their findings. Uses CBL probes and graphing calculators to gather and analyze data and…

  3. Field analysis of mercury in water, sediment and soil using static headspace analysis

    SciTech Connect

    Kriger, A.A.; Turner, R.R.

    1994-12-31

    We developed a field screening method for rapid analysis of Hg in water, soil, and sediment, which can be applied cost-effectively at Hg-contaminated sites. Samples are chemically pretreated in ordinary containers, followed by analysis of the sample headspace Hg vapor using a portable commercial analyzer. Hg in water samples is reduced directly by the addition of stannous chloride, while solids are first digested with aqua regia or piranha solution to liberate the Hg from the solids. Aided by vigorous agitation after adding the reductant, the elemental Hg partitions between solution and headspace according to Henry`s Law. The method requires about 2 and 15 minutes to complete for water and solids, respectively. The method provides very useful detection limits for water (0.1 {mu}g/L) and solids (2-3{mu}g/g). Intercomparisons with laboratory-analyzed environmental samples show good agreement.

  4. Analysis of large scale spatial variability of soil moisture using a geostatistical method.

    PubMed

    Lakhankar, Tarendra; Jones, Andrew S; Combs, Cynthia L; Sengupta, Manajit; Vonder Haar, Thomas H; Khanbilvardi, Reza

    2010-01-01

    Spatial and temporal soil moisture dynamics are critically needed to improve the parameterization for hydrological and meteorological modeling processes. This study evaluates the statistical spatial structure of large-scale observed and simulated estimates of soil moisture under pre- and post-precipitation event conditions. This large scale variability is a crucial in calibration and validation of large-scale satellite based data assimilation systems. Spatial analysis using geostatistical approaches was used to validate modeled soil moisture by the Agriculture Meteorological (AGRMET) model using in situ measurements of soil moisture from a state-wide environmental monitoring network (Oklahoma Mesonet). The results show that AGRMET data produces larger spatial decorrelation compared to in situ based soil moisture data. The precipitation storms drive the soil moisture spatial structures at large scale, found smaller decorrelation length after precipitation. This study also evaluates the geostatistical approach for mitigation for quality control issues within in situ soil moisture network to estimates at soil moisture at unsampled stations. PMID:22315576

  5. Grapevine water absorption in different soils. A spatio-temporal analysis.

    NASA Astrophysics Data System (ADS)

    Brillante, Luca; Bois, Benjamin; Lévêque, Jean; Mathieu, Olivier

    2015-04-01

    Hillslope vineyards show complex water dynamics between soil and plants. To gain further insight of this relationship, 8 grapevine plots were monitored during two vintages (2011-2013), on Corton Hill, Burgundy, France. Grapevine water status was monitored weekly by surveying water potential, and at harvest, using δ13C analysis of grape juice. Soil volumetric humidity was also measured weekly, using TDR probes. A pedotransfer function was developed to transform Electrical Resistivity Tomography (ERT) into Soil Volume Water and therefore to spatialise and describe variations in space and time in the Fraction of Transpirable Soil Water (FTSW). During the two years of monitoring, grapevines experienced great variation in water status, which ranged from low to substantial water deficit. With this freshly developed method, it was possible to observe differences in water absorption pattern by roots, in different soils, and at different depth. Great heterogeneity was observed, both laterally and vertically in grapevine water absorption. The contribution of each soil region to plant water status varies according to grapevine water status. It is different between day and night and depends from soil characteristics. It is to our knowledge the first time that water absorption by grapevine is revealed in space (2D) and time, and has therefore allowed a deeper comprehension of plant and soil dynamics in grapevine.

  6. The affect of industrial activities on zinc in alluvial Egyptian soil determined using neutron activation analysis.

    PubMed

    Abdel-Sabour, M F; Abdel-Basset, N

    2002-07-01

    Thirty-two surface (0-20 cm) soil samples were collected from different locations in Egypt representing non-polluted, moderately and highly polluted soils. The aim of this study was to evaluate total Zn content in alluvial soils of Nile Delta in Egypt by using the delayed neutron activation analysis technique (DNAA), in the irradiation facilities of the first Egyptian research reactor (ET-RR-1). The gamma-ray spectra were recorded with a hyper pure germanium detection system. The well resolved gamma-ray peak at 1116.0 keV was efficiently used for 65Zn content determination. Zn content in non-polluted soil samples ranged between 74.1 and 103.8 ppm with an average of 98.5 +/- 5.1 ppm. Zn content in moderately polluted soils ranged between 136.0 and 232.5 ppm with an average of 180.1 +/- 32.6 ppm. The highest Zn levels ranging from 240.0 and 733.0 ppm with an average of 410.3 +/- 54.4 ppm, were observed in soil samples collected from, either highly polluted agricultural soils exposed to prolonged irrigation with industrial wastewater or surface soil samples from industrial sites. PMID:12211982

  7. Multifractal analysis of vertical profiles of soil penetration resistance at the field scale

    NASA Astrophysics Data System (ADS)

    Siqueira, G. M.; Silva, E. F. F.; Montenegro, A. A. A.; Vidal Vázquez, E.; Paz-Ferreiro, J.

    2013-07-01

    Soil penetration resistance (PR) is widely used as an indirect indicator of soil strength. Soil PR is linked to basic soil properties and correlated to root growth and plant production, and as such it is extensively used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent soil PR profiles and how this information can be used at the field scale. We analysed multifractality of 50 PR vertical profiles, measured from 0 to 60 cm depth and randomly located on a 6.5 ha sugar cane field in northeastern Brazil. The scaling property of each profile was typified by singularity, and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. The singularity and Rènyi spectra showed that the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to 1, ranging from 0.944 to 0.988, indicating strong persistence in PR variation with soil depth. Also, the Hurst exponent was negatively and significantly correlated to coefficient of variation (CV), skewness and maximum values of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean and maximum values of PR. Combination of spatial variability survey and multifractal analysis appear to be useful to manage soil compaction.

  8. Sulfur isotope analysis of bitumen and pyrite associated with thermal sulfate reduction in reservoir carbonates at the Big Piney-La Barge production complex

    NASA Astrophysics Data System (ADS)

    King, Hubert E.; Walters, Clifford C.; Horn, William C.; Zimmer, Mindy; Heines, Maureen M.; Lamberti, William A.; Kliewer, Christine; Pottorf, Robert J.; Macleod, Gordon

    2014-06-01

    Sulfur isotopes of solid bitumen and associated pyrite from the Madison Limestone in the Big Piney-La Barge production complex were measured using a Secondary Ion Mass Spectrometry (SIMS) method. The solid bitumens, a product of thermochemical sulfate reduction, yielded δ34S values of +18.9 ± 3.9 that are consistent with inferred values for native Mississippian sulfate. In contrast, coarse and fine grain pyrite grains were found to be 34S depleted, with values similar to that of the produced H2S (δ34S ∼ +10‰). We interpret these results to indicate that two different sources of sulfate were involved with TSR within the Madison Limestone-autochthonous anhydrite, which is now completely replaced with calcite, and Permian age sulfate dissolved in the aquifer. While checking for inclusions within the bitumen that could lead to erroneous measurement, we found the bitumen possesses a ∼5 μm rim and internal “worm-like” features enriched in organic sulfur. We hypothesize that the rim is the result of back reaction of the late forming H2S with the solid bitumen and that the <1 μm diameter wormy features may result from liquid-liquid immiscibility occurring at the high temperatures of formation.

  9. Mutagenic analysis of conserved arginine residues in and around the novel sulfate binding pocket of the human Theta class glutathione transferase T2-2.

    PubMed Central

    Flanagan, J. U.; Rossjohn, J.; Parker, M. W.; Board, P. G.; Chelvanayagam, G.

    1999-01-01

    The human Theta class glutathione transferase GSTT2-2 has a novel sulfatase activity that is not dependent on the presence of a conserved hydrogen bond donor in the active site. Initial homology modeling and the crystallographic studies have identified three conserved Arg residues that contribute to the formation of (Arg107 and Arg239), and entry to (Arg242), a sulfate binding pocket. These residues have been individually mutated to Ala to investigate their potential role in substrate binding and catalysis. The mutation of Arg107 had a significant detrimental effect on the sulfatase reaction, while the Arg242 mutation caused only a small reduction in sulfatase activity. Surprisingly, the Arg239 had an increased activity resulting from a reduction in stability. Thus, Arg239 appears to play a role in maintaining the architecture of the active site. Electrostatic calculations performed on the wild-type and mutant forms of the enzyme are in good agreement with the experimental results. These findings, along with docking studies, suggest that prior to conjugation, the location of 1-menaphthyl sulfate, a model substrate for the sulfatase reaction, is approximately midway between the position ultimately occupied by the naphthalene ring of 1-menaphthylglutathione and the free sulfate. It is further proposed that the Arg residues in and around the sulfate binding pocket have a role in electrostatic substrate recognition. PMID:10548067

  10. X-ray microtomography analysis of soil structure deformation caused by centrifugation

    NASA Astrophysics Data System (ADS)

    Schlüter, S.; Leuther, F.; Vogler, S.; Vogel, H.-J.

    2016-01-01

    Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of ψ < -100 kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent in any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.

  11. X-ray microtomography analysis of soil structure deformation caused by centrifugation

    NASA Astrophysics Data System (ADS)

    Schlüter, Steffen; Leuther, Frederic; Vogler, Steffen; Vogel, Hans-Jörg

    2016-04-01

    Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of <-100kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent to any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.

  12. Assessing heavy metal sources in sugarcane Brazilian soils: an approach using multivariate analysis.

    PubMed

    da Silva, Fernando Bruno Vieira; do Nascimento, Clístenes Williams Araújo; Araújo, Paula Renata Muniz; da Silva, Luiz Henrique Vieira; da Silva, Roberto Felipe

    2016-08-01

    Brazil is the world's largest sugarcane producer and soils in the northeastern part of the country have been cultivated with the crop for over 450 years. However, so far, there has been no study on the status of heavy metal accumulation in these long-history cultivated soils. To fill the gap, we collect soil samples from 60 sugarcane fields in order to determine the contents of Cd, Cr, Cu, Ni, Pb, and Zn. We used multivariate analysis to distinguish between natural and anthropogenic sources of these metals in soils. Analytical determinations were performed in ICP-OES after microwave acid solution digestion. Mean concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 1.9, 18.8, 6.4, 4.9, 11.2, and 16.2 mg kg(-1), respectively. The principal component one was associated with lithogenic origin and comprised the metals Cr, Cu, Ni, and Zn. Cluster analysis confirmed that 68 % of the evaluated sites have soil heavy metal concentrations close to the natural background. The Cd concentration (principal component two) was clearly associated with anthropogenic sources with P fertilization being the most likely source of Cd to soils. On the other hand, the third component (Pb concentration) indicates a mixed origin for this metal (natural and anthropogenic); hence, Pb concentrations are probably related not only to the soil parent material but also to industrial emissions and urbanization in the vicinity of the agricultural areas. PMID:27395358

  13. Mapping soils, crops, and rangelands by machine analysis of multitemporal ERTS-1 data. [Kansas and Texas

    NASA Technical Reports Server (NTRS)

    Baumgardner, M. F.; Henderson, J. A., Jr.

    1974-01-01

    ERTS-1 data, obtained during the period 25 August 1972 to 5 September 1973 over a range of test sites in the Central United States, have been used for identifying and mapping differences in soil patterns, species and conditions of cultivated crops, and conditions of rangelands. Multispectral scanner data from multiple ERTS passes over certain test sites have provided the opportunity to study temporal changes in the scene. Multispectral classifications delineating soils boundaries in different test sites compared well with existing soil association maps prepared by conventional means. Spectral analysis of ERTS data was used to identify, maps, and make areal measurements of wheat in western Kansas. Multispectral analysis of ERTS-1 data provided patterns in rangelands which can be related to soils differences, range management practices, and the extent of infestation of grasslands by mesquite (prosopis fuliflora) and juniper (juniperus spp.).

  14. Improving long-term global precipitation dataset using multi-sensor surface soil moisture retrievals and the soil moisture analysis rainfall tool (SMART)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using multiple historical satellite surface soil moisture products, the Kalman Filtering-based Soil Moisture Analysis Rainfall Tool (SMART) is applied to improve the accuracy of a multi-decadal global daily rainfall product that has been bias-corrected to match the monthly totals of available rain g...

  15. Improving long-term, retrospective precipitation datasets using satellite-based surface soil moisture retrievals and the soil moisture analysis rainfall tool (SMART)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using historical satellite surface soil moisture products, the Soil Moisture Analysis Rainfall Tool (SMART) is applied to improve the accuracy of a multi-decadal global daily rainfall product that has been bias-corrected to match the monthly totals of available ground observations. In order to adapt...

  16. Proteoglycan sulfation in cartilage and cell cultures from patients with sulfate transporter chondrodysplasias: relationship to clinical severity and indications on the role of intracellular sulfate production.

    PubMed

    Rossi, A; Kaitila, I; Wilcox, W R; Rimoin, D L; Steinmann, B; Cetta, G; Superti-Furga, A

    1998-10-01

    Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene have been associated with a family of chondrodysplasias that includes diastrophic dysplasia (DTD), atelosteogenesis type 2 (AO2) and the lethal condition achondrogenesis type 1B (ACG1B). There is a correlation between the nature of the mutations and the clinical phenotype, but our understanding of the pathophysiology of the disorder, which involves defective sulfation of cartilage proteoglycans, is far from complete. To evaluate the degree of proteoglycan undersulfation in vivo, we have extracted chondroitin sulfate proteoglycans from cartilage of twelve patients with sulfate transporter chondrodysplasias and analyzed their disaccharide composition by HPLC after digestion with chondroitinase ABC. The amount of non-sulfated disaccharide was elevated in patients' samples (controls, 5.5%+/-2.8 (n=10); patients, 11% to 77%), the highest amount being present in ACG1B patients, indicating that undersulfation of chondroitin sulfate proteoglycans occurs in cartilage in vivo and is correlated with the clinical severity. To investigate further the biochemical mechanisms responsible for the translation of genotype to phenotype, we have studied fibroblast cultures of patients with DTD, AO2 and ACG1B, and controls, by double-labelling with [35S]sulfate and [3H]glucosamine. The incorporation of extracellular sulfate, estimated by the 35S/3H ratio in proteoglycans, was reduced in all patients' cells, with ACG1B cells showing the lowest values. However, disaccharide analysis of chondroitin sulfate proteoglycans showed that these were normally sul fated or only moderately undersulfated; marked undersulfation was observed only after addition of the artificial glycosaminoglycan-chain initiator, beta-D-xyloside, to the culture medium. These results suggest that, while utilization of extracellular sulfate is impaired, fibroblasts can replenish their intracellular sulfate pool by oxidizing sulfur

  17. Soil analysis and underground storage tank assessment (evaluation of soil contamination)

    SciTech Connect

    Kitchen, G.H.

    1995-12-31

    This paper gives the theoretical foundation, applicable background information, and practical guidance to the detection of exterior and interior corrosion of underground steel fuel storage tanks. The corrosion of underground fuel tanks is affected by many variables such as: conductivity, chemical compositions, compaction and pH of the soil; yearly precipitation; deterioration of the coating by physical, lightning, and biological activity; stray currents; galvanic coupling with other buried metallic structures. Corrosion may lead to leakage of the fluids contained in the underground fuel storage tank and/or its associated piping.

  18. Reducing the dimensionality of soil microinvertebrate community datasets using Indicator Species Analysis: Implications for ecosystem monitoring and soil management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microinvertebrates are closely associated with soil decomposition and nutrient cycles and may be particularly responsive indicators for soil management practices. However, identification of appropriate bioindicator species for many systems has been severely limited by a lack of information on ...

  19. Soil salination indicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salts are naturally present in soils, and many salt elements are essential nutrients for plants. The most common soluble salts in soil include major cations of sodium (Na+), magnesium (Mg2+), calcium (Ca2+), potassium (K+), and anions of chloride (Cl-), sulfate (SO42-), bicarbonate (HCO3-) and carbo...

  20. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems.

    PubMed

    Sugumaran, G; Silbert, J E

    1988-04-01

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo[14C]chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo[14C]chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo[14C] chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo[14C]chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo[14C]chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo[14C]chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo[14C]chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent. These results indicate that the intact microsomal system was not accessible to the larger

  1. Lots of legacy soil data are available, but which data do we need to collect for regional land use analysis?

    NASA Astrophysics Data System (ADS)

    Hendriks, Chantal; Stoorvogel, Jetse; Claessens, Lieven

    2015-04-01

    In the past, soil surveying techniques were mainly developed for qualitative regional land use analysis (RLUA) like land evaluation and land use planning. Conventional soil survey techniques usually describe soil types according to a soil classification scheme (e.g. Soil Taxonomy and World Reference Base). These soil surveys met the requirements of qualitative land evaluation and land use planning. However, during the last decades there is an increased need for quantitative RLUA resulting in an increased demand for quantitative soil data. The rapid developments in computing technology and the availability of auxiliary information (e.g. remote sensing and digital elevation models) allowed for the development of new soil surveying techniques like digital soil mapping. These new soil surveying techniques aim to produce continuous maps of quantitative functional soil properties. However, RLUA nowadays requires soil data that include a description of the spatial variability of the entire pedon in which correlations between soil properties are retained. Current surveying techniques do not fully fulfil these requirements resulting in a gap between the supply and demand of soil data in RLUA. The gap is caused by the fact that legacy soil data are collected for different purposes and inherently have different assumptions on e.g., soil variability. In this study, some of these assumptions are tested and verified using primary soil data collected during a recent field survey in Machakos and Makueni County (Kenya). Subsequently an ongoing RLUA, the Global Yield Gap Atlas (GYGA) project, is taken as a case study to evaluate the effect of different sources of soil data on the results of the RLUA. The results of the study show that various assumptions underlying the soil survey hamper the quality requirements of soil data for the specific objectives of the RLUA. To give a few examples: mapping soil properties individually ignores correlations between them, soil properties

  2. Application of fluorescent microscopy and cascade filtration methods for analysis of soil microbial community

    NASA Astrophysics Data System (ADS)

    Ivanov, Konstantin; Pinchuk, Irina; Gorodnichev, Roman; Polyanskaya, Lubov

    2016-04-01

    Methods establishment of soil microbial cells size estimation called from the importance of current needs of research in microbial ecology. Some of the methods need to be improved for more detailed view of changes happen in microbiome of terrestrial ecosystems. The combination of traditional microscopy methods, fluorescence and filtration in addition to cutting-edge DNA analysis gives a wide range of the approaches for soil microbial ecologists in their research questions. In the most of the cases the bacterial cells size is limited of the natural conditions such as lack of nutrients or stress factors due to heterogeneity of soil system. In the samples of soils, lakes and rivers sediments, snow and rain water the bacterial cells were detected minimally of 0.2 microns. We established the combination of the cascade filtration and fluorescent microscopy for complex analysis of different terrestrial ecosystems and various soil types. Our modification based on the use of successively filtered soil suspension for collection of microbes by the membrane pores decrease. Combination with fluorescence microscopy and DNA analysis via FISH method gave the presentation of microbial interactions and review of ecological strategies of soil microorganisms. Humus horizons of primitive arctic soil were the most favorable for bacterial growth. Quantified biomass of soil bacteria depends on the dominance of cells with specific dimensions caused of stress factors. The average bacterial size of different soil varied from 0.23 to 0.38 microns, however in humus horizons of arctic soil we detected the contrast dominance of the bigger bacterial cells sized of 1.85 microns. Fungi in this case contributed to increase the availability of organic matter for bacteria because the fungal mycelium forms the appreciable part of microbial biomass of primitive arctic soil. The dominant content of bigger bacterial cells in forest and fallow soil as well as the opposite situation in arable soils caused

  3. Characterization of field compaction using shrinkage analysis and visual soil examination

    NASA Astrophysics Data System (ADS)

    Johannes, Alice; Keller, Thomas; Weisskopf, Peter; Schulin, Rainer; Boivin, Pascal

    2016-04-01

    Visual field examination of soil structure can be very useful in extension work, because it is easy to perform, does not require equipment or lab analyses and the result is immediately available. The main limitations of visual methods are subjectivity and variation with field conditions. To provide reliable reference information, methods for objective and quantitative assessment of soil structure quality are still necessary. Soil shrinkage analysis (ShA) (Braudeau et al., 2004) provides relevant parameters for soil functions that allow precise and accurate assessment of soil compaction. To test it, we applied ShA to samples taken from a soil structure observatory (SSO) set up in 2014 on a loamy soil in Zurich, Switzerland to quantify the structural recovery of compacted agricultural soil. The objective in this presentation is to compare the ability of a visual examination method and ShA to assess soil compaction and structural recovery on the SSO field plots. Eighteen undisturbed soil samples were taken in the topsoil (5-10 cm) and 9 samples in the subsoil (30-35 cm) of compacted plots and control. Each sample went through ShA, followed by a visual examination of the sample and analysis of soil organic carbon and texture. ShA combines simultaneous shrinkage with water retention measurements and, in addition to soil properties such as bulk density, coarse and fine porosity, also provides information on hydrostructural stability and plasma and structural porosity. For visual examination the VESS method of Ball et al. (2007) was adapted to core samples previously equilibrated at -100 hPa matric potential. The samples were randomly and anonymously scored to avoid subjectivity and were equilibrated to insure comparable conditions. Compaction decreased the total specific volume, as well as air and water content at all matric potentials. Structural porosity was reduced, while plasma porosity remained unchanged. Compaction also changed the shape of the shrinkage curve: (i

  4. Heterogeneity of soil properties along a profile as reflected in multifractal analysis

    NASA Astrophysics Data System (ADS)

    Vidal Vázquez, Eva; Vieira, Sidney R.; Miranda, José G. V.; Camargo, Otavio A.; Menk, João. R. F.; Paz Ferreiro, Jorge

    2010-05-01

    Soils have been defined as natural bodies that have length, breadth and depth. Each soil type occupies a portion of the landscape. Soil properties are the result of soil forming factors and processes that operate at different spatial scales. Therefore, there is a need to take into account spatial scales and the processes operating at those scales for a sound characterization of the spatial variability of soil properties. The capability of multifractal analysis to efficiently describe and summarize patterns of soil spatial variability has been demonstrated in the last years. The objectives of this work were (a) to characterize the spatial variability and scaling of soil properties along a transect using multifractal techniques and (b) to relate the pattern of spatial variability with soil forming factors and processes. The research site was located at the experimental centre of the Agronomic Institute of Campinas, São Paulo State, Brazil. The topography of the site is gently undulating. The climate is humid subtropical (Cwa according to Köppen). A transect of 2370 m was established and a 30 m sampling interval was marked along it, giving 79 sampling points. This profile included different soil types and soil uses. The most frequent soil type was Oxisol according to the Soil Survey Staff equivalent to a Latossolo in the Brazilian classification system. Soil was sampled at the 0-20 cm depth and the following properties were determined: texture fractions, pH both in H2O and KCl, organic carbon content (OC), exchangeable bases (S), exchangeable aluminium and hydrogen, cation exchange capacity (CEC) and percent base saturation (V). The texture along the studied transect ranged from clay to sandy-clay. Soil pH (H2O) ranged from strongly acid (4.50) to neutral (7.00) with a mean value of 5.21. Accordingly percent base saturation varied between 4.0 % and 91.7 % and on average it was 38.2 %. Mean organic carbon content was 1.66% and the extreme values were 0.80 %