These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Sulfate-reducing bacteria in human periodontitis  

Microsoft Academic Search

Periodontitis is the major cause of the loss of teeth among adults. A mixture of bacteria then settles under the gingiva, and is implicated in the degradation of tooth-supporting tissue. In the deepening lesion, or pocket, the adjacent bone is degraded too, which will eventually lead to the loss of the tooth. Professor van der Hoeven has shown 6 years

P. S. Langendijk Genevaux

2001-01-01

2

Methods for Engineering Sulfate Reducing Bacteria of the Genus Desulfovibrio  

SciTech Connect

Sulfate reducing bacteria are physiologically important given their nearly ubiquitous presence and have important applications in the areas of bioremediation and bioenergy. This chapter provides details on the steps used for homologous-recombination mediated chromosomal manipulation of Desulfovibrio vulgaris Hildenborough, a well-studied sulfate reducer. More specifically, we focus on the implementation of a 'parts' based approach for suicide vector assembly, important aspects of anaerobic culturing, choices for antibiotic selection, electroporation-based DNA transformation, as well as tools for screening and verifying genetically modified constructs. These methods, which in principle may be extended to other sulfate-reducing bacteria, are applicable for functional genomics investigations, as well as metabolic engineering manipulations.

Chhabra, Swapnil R; Keller, Kimberly L.; Wall, Judy D.

2011-03-15

3

Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries  

E-print Network

-lithifying microbial mat systems. These preliminary findings indicate the unexplored diversity of SRB in a microbialSulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries L.K. Baumgartner can, in fact, tolerate and even respire oxygen. Investigations of microbial mat systems have

4

Remediation of acid mine drainage with sulfate reducing bacteria  

SciTech Connect

Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed changes in dissolved metal concentrations and pH. Using synthetic acid mine drainage and combinations of inputs, students monitor their bioreactors for decreases in dissolved copper and iron concentrations.

Hauri, J.F.; Schaider, L.A. [Assumption College, Worcester, MA (USA)

2009-02-15

5

Revisiting Modes of energy generation in sulfate reducing bacteria  

SciTech Connect

Sulfate reducing bacteria (SRB) play an important role in global sulfur and carbon cycling through their ability to completely mineralize organic matter while respiring sulfate to hydrogen sulfide. They are ubiquitous in anaerobic environments and have the ability to reduce toxic metals like Cr(VI) and U(VI). While SRB have been studied for over three decades, bioenergetic modes of this group of microbes are poorly understood. Desulfovibrio vulgaris strain Hildenborough (DvH) has served as a model SRB over the last decade with the accumulation of transcriptomic, proteomic and metabolic data under a wide variety of stressors. To further investigate the three hypothesized modes of energy generation in this anaerobe we conducted a systematic study involving multiple electron donor and acceptor combinations for growth. DvH was grown at 37oC in a defined medium with (a) lactate + thiosulfate, (b) lactate + sulfite (c) lactate + sulfate, (d) pyruvate + sulfate, (e) H2 + acetate + sulfate, (f) formate + acetate + sulfate, g) formate + sulfate and (h) pyruvate fermentation. Cells were harvested at mid-log phase of growth for all conditions for transcriptomics, when the optical density at 600nm was in the range 0.42-0.5. Initial results indicate that cells grown on lactate do not appear to significantly differentiate their gene expression profiles when presented with different electron acceptors. These profiles however differ significantly from those observed during growth with other electron donors such as H2 and formate, as well as during fermentative growth. Together the gene expression changes in the presence of different electron donors provide insights into the ability of DvH to differentially reduce metals such as Cr(VI). Here we present revised modes of energy generation in DvH in light of this new transcriptomic evidence.

Joachimiak, Marcin; Chakraborty, Romy; Zhou, Aifen; Fortney, Julian; Geller, Jil; Wall, Judy; Zhou, Jizhong; Arkin, Adam; Hazen, Terry; Keasling, Jay; Chhabra, Swapnil

2010-05-17

6

Corrosion control in the presence of sulfate-reducing bacteria  

SciTech Connect

Impressed current and magnesium anode-type cathodic protection usually provide appreciable protection to the buried and underground telephone plant. However, in the laboratory, a medium containing sulfate-reducing bacteria (SRB) strongly reduces the output current from the magnesium anode. This explains the lack of success with magnesium anodes in the field where the ratio of protected surface area to current output is orders of magnitude higher than in the laboratory test. Low concentrations of sodium hypochlorite (NaOCl) additive to the solution provide minimal protection. However, high concentrations and/or aeration can eliminate the high concentration of SRB in the aqueous medium.

Schick, G. (Bellcore, Morristown, NJ (US))

1990-07-01

7

Planktonic nitrate-reducing bacteria and sulfate-reducing bacteria in some western Canadian oil field waters  

Microsoft Academic Search

  Oil fields that use water flooding to enhance oil recovery may become sour because of the production of H2S from the reduction of sulfate by sulfate-reducing bacteria (SRB). The addition of nitrate to produced waters can stimulate\\u000a the activities of nitrate-reducing bacteria (NRB) and control sulfide production. Many previous studies have focused on chemolithotrophic\\u000a bacteria that can use thiosulfate or

RE Eckford; PM Fedorak

2002-01-01

8

SULFATE-REDUCING BACTERIA IN THE SEAGRASS RHIZOSPHERE  

EPA Science Inventory

Seagrasses are rooted in anoxic sediments that support high levels of microbial activity including utilization of sulfate as a terminal electron acceptor which is reduced to sulfide. Sulfate reduction in seagrass bed sediments is stimulated by input of organic carbon through the ...

9

Distribution of methanogenic and sulfate-reducing bacteria in near-shore marine sediments.  

PubMed

The distribution of methanogenic and sulfate-reducing bacteria was examined in sediments from three sites off the coast of eastern Connecticut and five sites in Long Island Sound. Both bacterial groups were detected at all sites. Three distributional patterns were observed: (i) four sites exhibited methanogenic and sulfate-reducing populations which were restricted to the upper 10 to 20 cm, with a predominance of sulfate reducers; (ii) three sites in western Long Island Sound exhibited a methanogenic population most abundant in sediments deeper than those occupied by sulfate reducers; (iii) at one site that was influenced by fresh groundwater, methanogens and sulfate reducers were numerous within the same depths; however, the number of sulfate reducers varied vertically and temporally with sulfate concentrations. It was concluded that the distributions of abundant methanogenic and sulfate-reducing bacteria were mutually exclusive. Methanogenic enrichments yielded all genera of methanogens except Methanosarcina, with the methanobacteria predominating. PMID:16345950

Hines, M E; Buck, J D

1982-02-01

10

Sulfate?reducing and methanogenic bacteria from deep aquifers in montana  

Microsoft Academic Search

Thermophilic sulfate?reducing and methanogenic bacteria were detected in deep (1200 to 1800 m) ground waters from geologic units that make up the Madison Formation, which underlies a large portion of the northern Great Plains. Some sulfate?reducing bacteria were isolated and tentatively identified as Desulfotomaculum nigrificans. These organisms probably produce the hydrogen sulfide that is in the ground water. Direct microscopic

G. J. Olson; W. S. Dockins; G. A. McFeters; W. P. Iverson

1981-01-01

11

The function of sulfate-reducing bacteria in corrosion of potable water mains  

Microsoft Academic Search

Growing awareness of the detrimental effect of corrosion in conjunction with bacterial activity in potable drinking water systems has led to an increase in research sponsored by water companies. In particular, sulfate-reducing bacteria (SRB), found in anaerobic conditions underneath the main corrosion shell, are noted for their effects in promoting localized corrosion. This study investigates the presence of sulfate-reducing bacteria

A. D. Seth; R. G. J. Edyvean

2006-01-01

12

Stable carbon isotope fractionation by sulfate-reducing bacteria  

NASA Technical Reports Server (NTRS)

Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and delta(13)C values were determined for gaseous CO(2), organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO(2), and the cell biomass were small, ranging from 0 to 2 per thousand. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9 per thousand. SRB grown lithoautotrophically consumed less than 3% of the available CO(2) and exhibited substantial discrimination (calculated as isotope fractionation factors [alpha]), as follows: for Desulfobacterium autotrophicum, alpha values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the alpha value was 0.0138, and for Desulfotomaculum acetoxidans, the alpha value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO(2) resulted in biomass with a delta(13)C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H(2)), ecological forces can also influence carbon isotope discrimination by SRB.

Londry, Kathleen L.; Des Marais, David J.

2003-01-01

13

MOLECULAR PHYLOGENETIC AND BIOGEOCHEMICAL STUDIES OF SULFATE-REDUCING BACTERIA IN THE RHIZOSPHERE OF SPARTINA ALTERNIFLORA  

EPA Science Inventory

The population composition and biogeochemistry of sulfate-reducing bacteria (SRB) in the rhizosphere of the marsh grass Spartina alterniflora was investigated over two growing seasons using molecular probing, enumerations of culturable SRB, and measurements of SO42- reduction rat...

14

Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms  

Microsoft Academic Search

The population architecture of sulfidogenic biofilms established in anaerobic fixed-bed bioreactors was characterized by selective polymerase chain reaction amplification and fluorescence microscopy. A region of the 16S rRNA common to resident sulfate-reducing bacteria was selectively amplified by the polymerase chain reaction. Sequences of amplification products, with reference to a collection of 16S rRNA sequences representing most characterized sulfate-reducing bacteria, were

R. I. Amann; J. Stromley; R. Devereux; D. A. Stahl

1992-01-01

15

Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria  

USGS Publications Warehouse

Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum. Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+ ???SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O???SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.

Lovley, D.R.; Phillips, E.J.P.

1994-01-01

16

Anaerobic biodegradation of explosives and related compounds by sulfate-reducing and methanogenic bacteria : a review.  

SciTech Connect

In recent years, research on microbial degradation of explosives and nitroaromatic compounds has increased. Most studies of the microbial metabolism of nitroaromatic compounds have used aerobic microorganisms. Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Few review papers exist, and those deal mainly with aerobic bacterial degradation of explosives; none deals with anaerobic bacteria. In this paper, we review the anaerobic metabolic processes in the degradation of explosives and nitroaromatic compounds under sulfate-reducing and methanogenic conditions.

Boopathy, R.; Kulpa, C. F.; Manning, J.; Environmental Research; Univ. of Notre Dame

1998-01-01

17

Vertical distribution of major sulfate-reducing bacteria in a shallow eutrophic meromictic lake.  

PubMed

The vertical distribution of sulfate-reducing bacteria was investigated in a shallow, eutrophic, meromictic lake, Lake Harutori, located in a residential area of Kushiro, Japan. A steep chemocline, characterized by gradients of oxygen, sulfide and salinity, was found at a depth of 3.5-4.0 m. The sulfide concentration at the bottom of the lake was high (up to a concentration of 10.7 mM). Clone libraries were constructed using the aprA gene, which encodes adenosine-5'-phosphosulfate reductase subunit A, in order to monitor sulfate-reducing bacteria. In the aprA clone libraries, the most abundant sequences were those from the Desulfosarcina-Desulfococcus (DSS) group. A primer set for a DSS group-specific 16S rRNA gene was used to construct another clone library, analysis of which revealed that the uncultured group of sulfate-reducing bacteria, SEEP SRB-1, accounted for nearly half of the obtained sequences. Quantification of the major bacterial groups by catalyzed reporter deposition-fluorescence in situ hybridization demonstrated that the DSS group accounted for 3.2-4.8% of the total bacterial community below the chemocline. The results suggested that the DSS group was one of the major groups of sulfate-reducing bacteria and that these presumably metabolically versatile bacteria might play an important role in sulfur cycling in Lake Harutori. PMID:25034383

Kubo, Kyoko; Kojima, Hisaya; Fukui, Manabu

2014-10-01

18

Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments  

Microsoft Academic Search

The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of meth- ane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages (ANME-1

V. J. Orphan; K.-U. Hinrichs; W. USSLER III; C. K. Paull; L. T. Taylor; S. P. Sylva; J. M. Hayes; E. F. Delong

2001-01-01

19

Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids  

Microsoft Academic Search

Gliding motility, ultrastructure and nutrition of two newly isolated filamentous sulfate-reducing bacteria, strains 5ac10 and 4be13, were investigated. The filaments were always attached to surfaces. Growth was supported by addition of insoluble aluminium phosphate or agar as substrata for gliding movement. Electron microscopy of ultrathin sections revealed cell walls characteristic of Gramnegative bacteria; the undulated structure of the outer membrane

Friedrich Widdel; Gert-Wieland Kohring; Frank Mayer

1983-01-01

20

Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria  

SciTech Connect

Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

Boopathy, R. [Argonne National Lab., IL (United States); Kulpa, C.F. [Notre Dame Univ., IN (United States). Dept. of Biological Sciences

1994-06-01

21

DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS USING THE BEST MODEL  

EPA Science Inventory

BEST (bioreactor economics, size and time of operation) is a spreadsheet-based model that is used in conjunction with a public domain computer software package, PHREEQCI. BEST is intended to be used in the design process of sulfate-reducing bacteria (SRB)field bioreactors to pas...

22

COMPUTER SIMULATOR (BEST) FOR DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS  

EPA Science Inventory

BEST (bioreactor economics, size and time of operation) is a spreadsheet-based model that is used in conjunction with public domain software, PhreeqcI. BEST is used in the design process of sulfate-reducing bacteria (SRB) field bioreactors to passively treat acid mine drainage (A...

23

DESIGNING SULFATE-REDUCING BACTERIA FIELD-BIOREACTORS USING THE BEST MODEL  

EPA Science Inventory

DESIGNING SULFATE-REDUCING BACTERIA FIELD-BIOREACTORS USING THE BEST MODEL Marek H. Zaluski1,3, Brian T. Park1, Diana R. Bless2 1 MSE Technology Applications; 200 Technology Way, Butte, Montana 59701, USA 2 U.S. EPA, Office of Research and Development, Cincinna...

24

Role of sulfate?reducing bacteria in corrosion of mild steel: A review  

Microsoft Academic Search

The influence of sulfate?reducing bacteria on corrosion of mild steel is reviewed, with special emphasis on the effects of biofilm structure and function, medium composition (dissolved oxygen and ferrous ion concentrations) and the physical and chemical properties of iron sulfides. A summary of different corrosion mechanisms is critically discussed, based on electrochemical and rate process analyses. A mechanism is proposed

Whonchee Lee; Zbigniew Lewandowski; Per H Nielsen; W Allan Hamilton

1995-01-01

25

Field Tests of ?In-Situ? Remediation of Groundwater From Dissolved Mercury Utilizing Sulfate Reducing Bacteria  

EPA Science Inventory

Field tests of biologically active filters have been conducted at groundwater mercury pollution site in Pavlodar, Kazakhstan. The biofilters represented cultures of sulfate-reducing bacteria (SRB) immobilized on claydite imbedded in wells drilled down to basalt clay layer (14-17 ...

26

Different K s values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: An explanation for the apparent inhibition of methanogenesis by sulfate  

Microsoft Academic Search

Desulfovibrio vulgaris (Marburg) and Methanobrevibacter arboriphilus (AZ) are anaerobic sewage sludge bacteria which grow on H2 plus sulfate and H2 plus CO2 as sole energy sources, respectively. Their apparent Ks values for H2 were determined and found to be approximately 1 µM for the sulfate reducing bacterium and 6 µM for the methanogenic bacterium. In mixed cell suspensions of the

Jakob K. Kristjansson; Peter Schönheit; Rudolf K. Thauer

1982-01-01

27

Reductive Dissolution of Iron Oxides and Iron-Rich Clays Enhanced by Sulfate-Reducing Bacteria  

NASA Astrophysics Data System (ADS)

Iron oxides and iron-rich clays are abundant in low-temperature sedimentary environments where sulfate-reducing bacteria are also present. This study summarizes our research on reductive dissolution of ferrihydrite, goethite, hematite, magnetite, and a nontronite clay by Desulfovibrio spp. strain G-20 and strain G-11. The goal was twofold: (1) to understand the enzymatic processes of iron reduction by sulfate-reducing bacteria (SRB) using iron as the sole electron acceptor and (2) to determine whether iron reduction from the oxides and clays could be enhanced by biogenic H2S through an enzymatic process during sulfate reduction. In the iron-oxide experiments without sulfate, iron reduction by G-20 averaged about 4.5% of total iron for ferrihydrite, goethite, and hematite. The reduction of magnetite, however, was about threefold higher (13.3%). The maximum biomass of G-20 gained during iron reduction was also highest in the magnetite culture, suggesting that reduction of magnetite may have stimulated the growth of G-20. In the presence of sulfate, iron reduction was dramatically enhanced in all cultures (>70%). In inorganic experiments using Na2S, less than 4% total iron was reduced from goethite or hematite and about 19% was reduced from magnetite. The enhanced reduction of iron during sulfate reduction may have resulted from enzymatic activity of the SRB or through the chelation of solids with organic acids and other organic molecules. Transmission electron microscopy (TEM) showed shortened and thinned goethite and hematite crystals during sulfate and iron reduction. The magnetite crystals, on the other hand, were disintegrated extensively. For the nontronite experiments using G-11, iron reduction from the clay was about 10% of total structural Fe(III) in the absence of sulfate but reached 29% in the presence of sulfate. Abiotic iron reduction using Na2S, on the other hand, was ca. 7.5% of total structural Fe(III). Analyses of TEM and X-ray diffraction revealed significant changes in structure and composition of the clay during its dissolution by G-11. Overall, this study demonstrates that sulfate-reducing bacteria can dramatically enhance the dissolution of iron oxides and iron-rich clays, thus accelerating the transformation of these minerals in sulfate-rich environments.

Zhang, C. L.

2003-12-01

28

Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria.  

PubMed Central

Granules from an upflow anaerobic sludge blanket system treating a brewery wastewater that contained mainly ethanol, propionate, and acetate as carbon sources and sulfate (0.6 to 1.0 mM) were characterized for their physical and chemical properties, metabolic performance on various substrates, and microbial composition. Transmission electron microscopic examination showed that at least three types of microcolonies existed inside the granules. One type consisted of Methanothrix-like rods with low levels of Methanobacterium-like rods; two other types appeared to be associations between syntrophic-like acetogens and Methanobacterium-like organisms. The granules were observed to be have numerous vents or channels on the surface that extended into the interior portions of the granules that may be involved in release of gas formed within the granules. The maximum substrate conversion rates (millimoles per gram of volatile suspended solids per day) at 35 degrees C in the absence of sulfate were 45.1, 8.04, 4.14, and 5.75 for ethanol, acetate, propionate, and glucose, respectively. The maximum methane production rates (millimoles per gram of volatile suspended solids per day) from H2-CO2 and formate were essentially equal for intact granules (13.7 and 13.5) and for physically disrupted granules (42 and 37). During syntrophic ethanol conversion, both hydrogen and formate were formed by the granules. The concentrations of these two intermediates were maintained at a thermodynamic equilibrium, indicating that both are intermediate metabolites in degradation. Formate accumulated and was then consumed during methanogenesis from H2-CO2. Higher concentrations of formate accumulated in the absence of sulfate than in the presence of sulfate. The addition of sulfate (8 to 9 mM) increased the maximum substrate degradation rates for propionate and ethanol by 27 and 12%, respectively. In the presence of this level of sulfate, sulfate-reducing bacteria did not play a significant role in the metabolism of H2, formate, and acetate, but ethanol and propionate were converted via sulfate reduction by approximately 28 and 60%, respectively. In the presence of 2.0 mM molybdate, syntrophic propionate and ethanol conversion by the granules was inhibited by 97 and 29%, respectively. The data show that in this granular microbial consortium, methanogens and sulfate-reducing bacteria did not compete for common substrates. Syntrophic propionate and ethanol conversion was likely performed primarily by sulfate-reducing bacteria, while H2, formate, and acetate were consumed primarily by methanogens. Images PMID:1785921

Wu, W M; Hickey, R F; Zeikus, J G

1991-01-01

29

Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery  

Microsoft Academic Search

Acid-mine drainage can contain high concentrations of heavy metals and release of these contaminants into the environment is generally avoided by lime neutralization. However, this classical treatment is expensive and generates large amounts of residual sludge. The selective precipitation of metals using H2S produced biologically by sulfate-reducing bacteria has been proposed as an alternative process. Here, we report on experiments

S Foucher; F Battaglia-Brunet; I Ignatiadis; D Morin

2001-01-01

30

Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids  

Microsoft Academic Search

Three strains (2ac9, 3ac10 and 4ac11) of oval to rodshaped, Gram negative, nonsporing sulfate-reducing bacteria were isolated from brackish water and marine mud samples with acetate as sole electron donor. All three strains grew in simple defined media supplemented with biotin and 4-aminobenzoic acid as growth factors. Acetate was the only electron donor utilized by strain 2ac9, while the other

Friedrich Widdel; Norbert Pfennig

1981-01-01

31

A Scanning Auger Microprobe analysis of corrosion products associated with sulfate reducing bacteria  

SciTech Connect

A Scanning Auger Microprobe analysis was performed on the corrosion products of an austenitic AISI type 304 SS after a potentiostatic polarization of one volt for ten minutes in a modified Postgate`s C media containing sulfate reducing bacteria. The corrosion products were characterized and mapped in local regions where pitting was observed. A critical evaluation of the applicability of this technique for the examination of microbially influenced corrosion (MIC) is presented.

Sadowski, R.A.; Chen, G.; Clayton, C.R.; Kearns, J.R. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Materials Science and Engineering; Gillow, J.B.; Francis, A.J. [Brookhaven National Lab., Upton, NY (United States). Biosystems and Process Sciences Div.

1995-03-01

32

Diversity and Characterization of Sulfate-Reducing Bacteria in Groundwater at a Uranium Mill Tailings Site  

Microsoft Academic Search

Microbially mediated reduction and immobilization of U(VI) to U(IV) plays a role in both natural attenu- ation and accelerated bioremediation of uranium-contaminated sites. To realize bioremediation potential and accurately predict natural attenuation, it is important to first understand the microbial diversity of such sites. In this paper, the distribution of sulfate-reducing bacteria (SRB) in contaminated groundwater associated with a uranium

YUN-JUAN CHANG; AARON D. PEACOCK; PHILIP E. LONG; JOHN R. STEPHEN; JAMES P. MCKINLEY; SARAH J. MACNAUGHTON; A. K. M. A. Hussain; ARNOLD M. SAXTON; DAVID C. WHITE

2001-01-01

33

Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.  

PubMed

Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80 % after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions. PMID:25228086

Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

2015-02-01

34

Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io  

NASA Technical Reports Server (NTRS)

Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs, deepsea hydrothermal vents, soda and high salinity lakes, and cryo-environments. Furthermore, the StRB and SrRB have Astrobiological significance as these anaerobic extremophiles may represent the dominant relic life forms that inhabited our planet during the extensive volcanic activity in the Earth's early evolutionary period.

Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

2001-01-01

35

Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin  

NASA Technical Reports Server (NTRS)

The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing.

Dhillon, Ashita; Teske, Andreas; Dillon, Jesse; Stahl, David A.; Sogin, Mitchell L.

2003-01-01

36

Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors.  

PubMed

Nitrate injection into oil reservoirs can prevent and remediate souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Nitrate stimulates nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) and heterotrophic nitrate-reducing bacteria (hNRB) that compete with SRB for degradable oil organics. Up-flow, packed-bed bioreactors inoculated with water produced from an oil field and injected with lactate, sulfate, and nitrate served as sources for isolating several NRB, including Sulfurospirillum and Thauera spp. The former coupled reduction of nitrate to nitrite and ammonia with oxidation of either lactate (hNRB activity) or sulfide (NR-SOB activity). Souring control in a bioreactor receiving 12.5 mM lactate and 6, 2, 0.75, or 0.013 mM sulfate always required injection of 10 mM nitrate, irrespective of the sulfate concentration. Community analysis revealed that at all but the lowest sulfate concentration (0.013 mM), significant SRB were present. At 0.013 mM sulfate, direct hNRB-mediated oxidation of lactate by nitrate appeared to be the dominant mechanism. The absence of significant SRB indicated that sulfur cycling does not occur at such low sulfate concentrations. The metabolically versatile Sulfurospirillum spp. were dominant when nitrate was present in the bioreactor. Analysis of cocultures of Desulfovibrio sp. strain Lac3, Lac6, or Lac15 and Sulfurospirillum sp. strain KW indicated its hNRB activity and ability to produce inhibitory concentrations of nitrite to be key factors for it to successfully outcompete oil field SRB. PMID:17308184

Hubert, Casey; Voordouw, Gerrit

2007-04-01

37

Influence of sulfate-reducing bacteria on alloy 625 and austenitic stainless steel weldments  

SciTech Connect

A series of welded austenitic stainless steel and alloy 625 clad specimens were exposed to natural lake water inoculated with a mixed culture of anaerobic organisms high in sulfate-reducing bacteria. Total exposure was 300 days. The water and bacteria were taken from an actual service water system. Electrochemical testing included electrochemical impedance spectroscopy, monitoring of open-circuit potential (E{sub oc}), and zero resistance ammetry tests. Comparison of electrochemical and visual observations to sterile controls indicated electrochemical behavior of all materials in the test matrix was influenced by the bacteria. Polarization resistance and E{sub oc} values were reduced dramatically. Attack was along the fusion line of the weld. The magnitude of these effects followed a trend predicted by the pitting index for each material.

Enos, D.G.; Taylor, S.R. [Univ. of Virginia, Charlottesville, VA (United States)

1996-11-01

38

Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles.  

PubMed

Batch microcosms were setup to determine the impact of different sized zero valent iron (Fe(0)) particles on microbial sulfate reduction during the in situ bio-precipitation of metals. The microcosms were constructed with aquifer sediment and groundwater from a low pH (3.1), heavy-metal contaminated aquifer. Nano (nFe(0)), micro (mFe(0)) and granular (gFe(0)) sized Fe(0) particles were added to separate microcosms. Additionally, selected microcosms were also amended with glycerol as a C-source for sulfate-reducing bacteria. In addition to metal removal, Fe(0) in microcosms also raised the pH from 3.1 to 6.5, and decreased the oxidation redox potential from initial values of 249 to -226 mV, providing more favorable conditions for microbial sulfate reduction. mFe(0) and gFe(0) in combination with glycerol were found to enhance microbial sulfate reduction. However, no sulfate reduction occurred in the controls without Fe(0) or in the microcosm amended with nFe(0). A separate dose test confirmed the inhibition for sulfate reduction in presence of nFe(0). Hydrogen produced by Fe(0) was not capable of supporting microbial sulfate reduction as a lone electron donor in this study. Microbial analysis revealed that the addition of Fe(0) and glycerol shifted the microbial community towards Desulfosporosinus sp. from a population initially dominated by low pH and metal-resisting Acidithiobacillus ferrooxidans. PMID:24388832

Kumar, Naresh; Omoregie, Enoma O; Rose, Jerome; Masion, Armand; Lloyd, Jonathan R; Diels, Ludo; Bastiaens, Leen

2014-03-15

39

The role of DOM in the methylation of mercury by sulfate-reducing bacteria  

NASA Astrophysics Data System (ADS)

Methylation of mercury (Hg) by sulfate-reducing bacteria is an ecologically important, but poorly understood aspect of mercury cycling in aquatic systems. Dissolved organic matter (DOM) has long been thought to play a role in the methylation process, but little is known about the nature of these interactions. We designed two experimental approaches to better define the effects of DOM on mercury methylation by sulfate-reducing bacteria. The first approach was to determine directly the effects of DOM isolates on mercury methylation by Desulfobulbus propionicus, a known strain of sulfate reducing bacteria. These experiments employed stable isotope tracers of Hg and several different DOM isolates. Results indicated that the addition of DOM substantially increased the production of methylmercury (MeHg), however, the individual DOM isolates influenced MeHg production rates differently. In addition, spiked Hg equilibrated with DOM for a longer time period (5 or 30 days) was more readily methylated than spiked Hg equilibrated for only 4 hours. The second approach attempted to address the chemistry involved with the DOM-Hg-S interactions under similar conditions to those used in the methylation experiments. A method was developed employing C18 chromatography and extended X-ray absorption fine structure (EXAFS) spectroscopy to examine local mercury binding environments for solutions containing DOM isolates and varying sulfide and Hg concentrations. Systems with different DOM isolates showed different sulfur coordination numbers, but the Hg-S bond distances were consistently indicative of a metacinnabar-like nanocolloid. These results suggest that nanocolloidal metacinnabar-like species are stabilized by interactions with DOM and these nanocolloids become less ordered and presumably smaller with decreasing Hg:DOM ratio and decreasing sulfide concentrations. Together, the results of these two experimental approaches are consistent with a conceptual model wherein DOM interacts with HgS "clusters", thereby stabilizing the clusters and slowing the rate of formation of larger nanoparticles. In so doing, the HgS species remain relatively small and disordered, and available for uptake by sulfate-reducing bacteria.

Aiken, G.; Gerbig, C. A.; Krabbenhoft, D. P.; Moreau, J. W.

2011-12-01

40

Microbial control of the production of hydrogen sulfide by sulfate-reducing bacteria.  

PubMed

A sulfide-resistant ctrain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium or in Berea sandstone cores. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. These data suggest that strain F would be effective in controlling sulfide production in oil reservoirs and other environments. PMID:18592547

Montgomery, A D; McLnerney, M J; Sublette, K L

1990-03-01

41

Hydrogen sulfide production by sulfate-reducing bacteria utilizing additives eluted from plastic resins.  

PubMed

In the present study it was demonstrated that organic additives eluted from plastic resins could be utilized as substrates by sulfate-reducing bacteria. Two laboratory-scale experiments, a microcosm experiment and a leaching experiment, were conducted using polyvinyl chloride (PVC) as a model plastic resin. In the former experiment, the conversion of sulfate to sulfide was evident in microcosms that received plasticized PVC as the sole carbon source, but not in those that received PVC homopolymer. Additionally, dissolved organic carbon accumulated only in microcosms that received plasticized PVC, indicating that the dissolved organic carbon originated from additives. In the leaching experiment, phenol and bisphenol A were found in the leached solutions. These results suggest that the disposal of waste plastics in inert waste landfills may result in the production of H(2)S. PMID:21135024

Tsuchida, Daisuke; Kajihara, Yusuke; Shimidzu, Nobuhiro; Hamamura, Kengo; Nagase, Makoto

2011-06-01

42

D/H fractionation in lipids of facultative and obligate denitrifying and sulfate reducing bacteria  

NASA Astrophysics Data System (ADS)

The hydrogen isotopic composition of lipids has been shown to vary broadly in both cultured bacteria and in environmental samples. Culturing studies have indicated that this variability may primarily reflect metabolism; however, the limited number of organisms studied thus far prevents application of these trends to interpretation of environmental samples. Here we report D/H fractionations in anaerobic bacteria, including both facultative and obligate anaerobic organisms with a range of electron donors, acceptors, and metabolic pathways. Experiments using the metabolically flexible alphaproteobacterium Paracoccus denitrificans probe particular central metabolic pathways using a range of terminal electron acceptors. While a large range of ?D values has been observed during aerobic metabolism, denitrifying cultures produce a more limited range in ?D values that are more similar to each other than the corresponding aerobic culture. Data from the sulfate reducing bacteria Desulfobacterium autotrophicum and Desulfobacter hydrogenophilus indicate that chemolithoautotrophy and anaerobic heterotrophy can produce similar ?D values, and are similar between bacteria despite differing metabolic pathways. These results suggest that the fractionation of D/H depends both on the specific metabolic pathway and the electron acceptor. While this is not inconsistent with previous studies, it suggests the simple correspondence between ?D and metabolism previously understood from aerobic bacteria is not universally applicable.

Osburn, M. R.; Sessions, A. L.

2012-12-01

43

PHYLOGENETIC TREE OF 16S RIBOSOMAL RNA SEQUENCES FROM SULFATE-REDUCING BACTERIA IN A SANDY MARINE ENVIRONMENT  

EPA Science Inventory

Phylogenetic divergence among sulfate-reducing bacteria in an estuarine sediment sample was investigated by PCR amplification and comparison of partial 16S rDNA sequences. wenty unique 16S RDNA sequences were found, 12 from delta subclass bacteria based on overall sequence simila...

44

Reduction of Hexavalent Uranium from Organic Complexes by Sulfate- and Iron-Reducing Bacteria  

PubMed Central

The influence of organic-hexavalent-uranium [U(VI)] complexation on U(VI) reduction by a sulfate-reducing bacterium (Desulfovibrio desulfuricans) and an iron-reducing bacterium (Shewanella alga) was evaluated. Four aliphatic ligands (acetate, malonate, oxalate, and citrate) and an aromatic ligand (tiron [4,5-dihydroxy-1,3-benzene disulfonic acid]) were used to study complexed-uranium bioavailability. The trends in uranium reduction varied with the nature and the amount of U(VI)-organic complex formed and the type of bacteria present. D. desulfuricans rapidly reduced uranium from a monodentate aliphatic (acetate) complex. However, reduction from multidentate aliphatic complexes (malonate, oxalate, and citrate) was slower. A decrease in the amount of organic-U(VI) complex in solution significantly increased the rate of reduction. S. alga reduced uranium more rapidly from multidentate aliphatic complexes than from monodentate aliphatic complexes. The rate of reduction decreased with a decrease in the amount of multidentate complexes present. Uranium from an aromatic (tiron) complex was readily available for reduction by D. desulfuricans, while an insignificant level of U(VI) from the tiron complex was reduced by S. alga. These results indicate that selection of bacteria for rapid uranium reduction will depend on the organic composition of waste streams. PMID:16535729

Ganesh, R.; Robinson, K. G.; Reed, G. D.; Sayler, G. S.

1997-01-01

45

Sulfonates as Terminal Electron Acceptors for Growth of Sulfite-Reducing Bacteria (Desulfitobacterium spp.) and Sulfate-Reducing Bacteria: Effects of Inhibitors of Sulfidogenesis  

PubMed Central

This study demonstrates the ability of Desulfitobacterium spp. to utilize aliphatic sulfonates as terminal electron acceptors (TEA) for growth. Isethionate (2-hydroxyethanesulfonate) reduction by Desulfitobacterium hafniense resulted in acetate as well as sulfide accumulation in accordance with the expectation that the carbon portion of isethionate was oxidized to acetate and the sulfur was reduced to sulfide. The presence of a polypeptide, approximately 97 kDa, was evident in isethionate-grown cells of Desulfitobacterium hafniense, Desulfitobacterium sp. strain PCE 1, and the two sulfate-reducing bacteria (SRB)—Desulfovibrio desulfuricans IC1 (T. J. Lie, J. R. Leadbetter, and E. R. Leadbetter, Geomicrobiol. J. 15:135–149, 1998) and Desulfomicrobium norvegicum; this polypeptide was not detected when these bacteria were grown on TEA other than isethionate, suggesting involvement in its metabolism. The sulfate analogs molybdate and tungstate, effective in inhibiting sulfate reduction by SRB, were examined for their effects on sulfonate reduction. Molybdate effectively inhibited sulfonate reduction by strain IC1 and selectively inhibited isethionate (but not cysteate) reduction by Desulfitobacterium dehalogenans and Desulfitobacterium sp. strain PCE 1. Desulfitobacterium hafniense, however, grew with both isethionate and cysteate in the presence of molybdate. In contrast, tungstate only partially inhibited sulfonate reduction by both SRB and Desulfitobacterium spp. Similarly, another inhibitor of sulfate reduction, 1,8-dihydroxyanthraquinone, effectively inhibited sulfate reduction by SRB but only partially inhibited sulfonate reduction by both SRB and Desulfitobacterium hafniense. PMID:10508097

Lie, Thomas J.; Godchaux, Walter; Leadbetter, Edward R.

1999-01-01

46

Molecular analysis of the spatial distribution of sulfate-reducing bacteria in three eutrophicated wastewater stabilization ponds  

Microsoft Academic Search

The spatial distribution of sulfate-reducing bacteria (SRB) within three eutrophicated wastewater stabilization ponds (anaerobic,\\u000a facultative and maturation) was assessed by terminal restriction fragment (TRF) polymorphism targeting the dissimilatory (bi)\\u000a sulfite reductase (dsrAB) gene. High sulfate reducing diversity was confirmed through the 93 and 78 TRFs found using Sau3A1 and Taq ?1 restriction enzymes. Statistical analysis using Simpson (D) and Shannon

Abdelaziz Belila; Ahmed Ghrabi; Abdennaceur Hassen

47

Evaluation of support materials for the immobilization of sulfate-reducing bacteria and methanogenic archaea.  

PubMed

This paper reports on the adhesion of sulfate-reducing bacteria (SRB) and methanogenic archaea on polyurethane foam (PU), vegetal carbon (VC), low-density polyethylene (PE) and alumina-based ceramics (CE). Anaerobic differential reactors fed with a sulfate-rich synthetic wastewater were used to evaluate the formation of a biofilm. The PU presented the highest specific biomass concentration throughout the experiment, achieving 872 mg TVS/g support, while 84 mg TVS/g support was the maximum value obtained for the other materials. FISH results showed that bacterial cells rather than archaeal cells were predominant on the biofilms. These cells, detected with EUB338 probe, accounted for 76.2% (+/-1.6%), 79.7% (+/-1.3%), 84.4% (+/-1.4%) and 60.2% (+/-1.0%) in PU, VC, PE and CE, respectively, of the 4'6-diamidino-2-phenylindole (DAPI)-stained cells. From these percentages, 44.8% (+/-2.1%), 55.4% (+/-1.2%), 32.7% (+/-1.4%) and 18.1% (+/-1.1%), respectively, represented the SRB group. Archaeal cells, detected with ARC915 probe, accounted for 33.1% (+/-1.6%), 25.4% (+/-1.3%), 22.6% (+/-1.1%) and 41.9% (+/-1.0%) in PU, VC, PE and CE, respectively, of the DAPI-stained cells. Sulfate reduction efficiencies of 39% and 45% and mean chemical oxygen demand (COD) removal efficiencies of 86% and 90% were achieved for PU and VC, respectively. The other two supports, PE and CE, provided mean COD removal efficiencies of 84% and 86%, respectively. However, no sulfate reduction was observed with these supports. PMID:16701621

Silva, A J; Hirasawa, J S; Varesche, M B; Foresti, E; Zaiat, M

2006-04-01

48

New Family of Tungstate-Responsive Transcriptional Regulators in Sulfate-Reducing Bacteria  

PubMed Central

The trace elements molybdenum and tungsten are essential components of cofactors of many metalloenzymes. However, in sulfate-reducing bacteria, high concentrations of molybdate and tungstate oxyanions inhibit growth, thus requiring the tight regulation of their homeostasis. By a combination of bioinformatic and experimental techniques, we identified a novel regulator family, tungstate-responsive regulator (TunR), controlling the homeostasis of tungstate and molybdate in sulfate-reducing deltaproteobacteria. The effector-sensing domains of these regulators are similar to those of the known molybdate-responsive regulator ModE, while their DNA-binding domains are homologous to XerC/XerD site-specific recombinases. Using a comparative genomics approach, we identified DNA motifs and reconstructed regulons for 40 TunR family members. Positional analysis of TunR sites and putative promoters allowed us to classify most TunR proteins into two groups: (i) activators of modABC genes encoding a high-affinity molybdenum and tungsten transporting system and (ii) repressors of genes for toluene sulfonate uptake (TSUP) family transporters. The activation of modA and modBC genes by TunR in Desulfovibrio vulgaris Hildenborough was confirmed in vivo, and we discovered that the activation was diminished in the presence of tungstate. A predicted 30-bp TunR-binding motif was confirmed by in vitro binding assays. A novel TunR family of bacterial transcriptional factors controls tungstate and molybdate homeostasis in sulfate-reducing deltaproteobacteria. We proposed that TunR proteins participate in protection of the cells from the inhibition by these oxyanions. To our knowledge, this is a unique case of a family of bacterial transcriptional factors evolved from site-specific recombinases. PMID:23913324

Rajeev, Lara; Luning, Eric G.; Zane, Grant M.; Siddartha, Kavya; Rodionov, Dmitry A.; Dubchak, Inna; Arkin, Adam P.; Wall, Judy D.; Mukhopadhyay, Aindrila

2013-01-01

49

Sulfate-reducing bacteria release barium and radium from naturally occurring radioactive material in oil-field barite  

USGS Publications Warehouse

Scale and sludge deposits formed during oil production can contain elevated levels of Ra, often coprecipitated with barium sulfate (barite). The potential for sulfate-reducing bacteria to release 226 Ra and Ba (a Ra analog) from oil-field barite was evaluated. The concentration of dissolved Ba increased when samples containing pipe scale, tank sludge, or oil-field brine pond sediment were incubated with sulfate-reducing bacteria Desulfovibrio sp., Str LZKI, isolated from an oil-field brine pond. However, Ba release was not stoichiometric with sulfide production in oil-field samples, and <0.1% of the Ba was released. Potential for the release of 226Ra was demonstrated, and the 226 Ra release associated with sulfate-reducing activity was predictable from the amount of Ba released. As with Ba, only a fraction of the 226Ra expected from the amount of sulfide produced was released, and most of the Ra remained associated with the solid material.

Phillips, E.J.P.; Landa, E.R.; Kraemer, T.; Zielinski, R.

2001-01-01

50

Application Of Immobilized Sulfate Reducing Bacteria For Permeable Reactive Barriers In Abandoned Coal Mines  

NASA Astrophysics Data System (ADS)

The decline of the Korean coal industry has been drastic in production and consumption. This has been resulted mainly from the environmental concern and the collapse of commercial viability, which has eventually necessitated the government to implement the coal industry rationalization policies to reduce coal production and close down uneconomical mines. The overall drainage rates from abandoned coal mines reaches up to 80,000 ton/day. As a measure of controlling the acid mine drainage from abandoned coal mines, reactive materials in the pathways of drainage, designed to intercept and to transform the contaminants into environmentally acceptable forms can be applied at mines with small drainage rates. The main objective of this study is to design a permeable reactive barrier(PRB) to treat low flow and/or low contaminant loads of acid mine drainage. The PRB is comprised of immobilized sulfate reducing bacteria in hard beads and limestone to remove heavy metals and to raise the pH of AMD. A laboratory reactor was used to prepare a mixed culture of sulfate reducing bacteria. The microbes were separated and mixed with biodegradable matrix to form spherical beads. In order to maintain the viability of micro-organisms for a prolonged period, substrates such as saw dust, polysaccharide or glycerol was supplemented for the beads preparation. The strength of beads fortified by powered limestone to control the permeability of PRB. Different mixtures of limestone and the immobilized beads were tested to determine hydraulic conductivity and AMD treatment capacities. The characteristics of the spherical beads at various pH of AMD was investigated.

Kim, K.; Hur, W.; Choi, S.; Min, K.; Baek, H.

2006-05-01

51

Biodesulfurization of flue gases and other sulfate/sulfite waste streams using immobilized mixed sulfate-reducing bacteria.  

PubMed

Sulfur dioxide (SO2) is one of the major pollutants in the atmosphere that cause acid rain. Microbial processes for reducing SO2 to hydrogen sulfide (H2S) have previously been demonstrated by utilizing mixed cultures of sulfate-reducing bacteria (SRB) with municipal sewage digest as the carbon and energy source. To maximize the productivity of the bioreactor for SO2 reduction in this study, various immobilized cell bioreactors were investigated: a stirred tank with SRB flocs and columnar reactors with cells immobilized in either potassium-carrageenan gel matrix or polymeric porous BIO-SEP beads. The maximum volumetric productivity for SO2 reduction in the continuous stirred-tank reactor (CSTR) with SRB flocs was 2.1 mmol of SO2/(h.L). The potassium-carrageenan gell matrix used for cell immobilization was not durable at feed sulfite concentrations greater than 2000 mg/L (1.7 mmol/(h.L)). A columnar reactor with mixed SRB cells that had been allowed to grow into highly stable BIO-SEP polymeric beads exhibited the highest sulfite conversion rates, in the range 16.5 mmol/(h.L) (with 100% conversion) to 20 mmol/(h.L) (with 95% conversion). The average specific activity for sulfite reduction in the column, in terms of dry weight of SRB biomass, was 9.5 mmol of sulfite/(h.g). In addition to flue gas desulfurization, potential applications of this microbial process include the treatment of sulfate/sulfite-laden wastewater from the pulp and paper, petroleum, mining, and chemical industries. PMID:9376112

Selvaraj, P T; Little, M H; Kaufman, E N

1997-01-01

52

Identical Hg Isotope Mass Dependent Fractionation Signature during Methylation by Sulfate-Reducing Bacteria in Sulfate and Sulfate-Free Environment.  

PubMed

Inorganic mercury (iHg) methylation in aquatic environments is the first step leading to monomethylmercury (MMHg) bioaccumulation in food webs and might play a role in the Hg isotopic composition measured in sediments and organisms. Methylation by sulfate reducing bacteria (SRB) under sulfate-reducing conditions is probably one of the most important sources of MMHg in natural aquatic environments, but its influence on natural Hg isotopic composition remains to be ascertained. In this context, the methylating SRB Desulfovibrio dechloracetivorans (strain BerOc1) was incubated under sulfate reducing and fumarate respiration conditions (SR and FR, respectively) to determine Hg species specific (MMHg and IHg) isotopic composition associated with methylation and demethylation kinetics. Our results clearly establish Hg isotope mass-dependent fractionation (MDF) during biotic methylation (-1.20 to +0.58‰ for ?(202)Hg), but insignificant mass-independent fractionation (MIF) (-0.12 to +0.15‰ for ?(201)Hg). During the 24h of the time-course experiments Hg isotopic composition in the produced MMHg becomes significantly lighter than the residual IHg after 1.5h and shows similar ?(202)Hg values under both FR and SR conditions at the end of the experiments. This suggests a unique pathway responsible for the MDF of Hg isotopes during methylation by this strain regardless the metabolism of the cells. After 9 h of experiment, significant simultaneous demethylation is occurring in the culture and demethylates preferentially the lighter Hg isotopes of MMHg. Therefore, depending on their methylation/demethylation capacities, SRB communities in natural sulfate reducing conditions likely have a significant and specific influence on the Hg isotope composition of MMHg (MDF) in sediments and aquatic organisms. PMID:25564955

Perrot, Vincent; Bridou, Romain; Pedrero, Zoyne; Guyoneaud, Remy; Monperrus, Mathilde; Amouroux, David

2015-02-01

53

Analyses of Spatial Distributions of Sulfate-Reducing Bacteria and Their Activity in Aerobic Wastewater Biofilms  

PubMed Central

The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O2, H2S, NO2?, NO3?, NH4+, and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 109 to 1010 cells per cm3 of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 108 to 109 cells per cm3). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 ?m below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S0) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 ?m), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate. PMID:10543829

Okabe, Satoshi; Itoh, Tsukasa; Satoh, Hisashi; Watanabe, Yoshimasa

1999-01-01

54

Arsenic Thiolation and the Role of Sulfate-Reducing Bacteria from the Human Intestinal Tract  

PubMed Central

Background: Arsenic (As) toxicity is primarily based on its chemical speciation. Although inorganic and methylated As species are well characterized in terms of metabolism and formation in the human body, the origin of thiolated methylarsenicals is still unclear. Objectives: We sought to determine whether sulfate-reducing bacteria (SRB) from the human gut are actively involved in the thiolation of monomethylarsonic acid (MMAV). Methods: We incubated human fecal and colon microbiota in a batch incubator and in a dynamic gut simulator with a dose of 0.5 mg MMAV in the absence or presence of sodium molybdate, an SRB inhibitor. We monitored the conversion of MMAV into monomethyl monothioarsonate (MMMTAV) and other As species by high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry analysis. We monitored the sulfate-reducing activity of the SRB by measuring hydrogen sulfide (H2S) production. We used molecular analysis to determine the dominant species of SRB responsible for As thiolation. Results: In the absence of sodium molybdate, the SRB activity—primarily derived from Desulfovibrio desulfuricans (piger)—was specifically and proportionally correlated (p < 0.01) to MMAV conversion into MMMTAV. Inactivating the SRB with molybdate did not result in MMAV thiolation; however, we observed that the microbiota from a dynamic gut simulator were capable of demethylating 4% of the incubated MMAV into arsenous acid (iAsIII), the trivalent and more toxic form of arsenic acid (iAsV). Conclusion: We found that SRB of human gastrointestinal origin, through their ability to produce H2S, were necessary and sufficient to induce As thiolation. The toxicological consequences of this microbial As speciation change are not yet clear. However, given the efficient epithelial absorption of thiolated methylarsenicals, we conclude that the gut microbiome—and SRB activity in particular—should be incorporated into toxicokinetic analysis carried out after As exposure. Citation: DC.Rubin SS, Alava P, Zekker I, Du Laing G, Van de Wiele T. 2014. Arsenic thiolation and the role of sulfate-reducing bacteria from the human intestinal tract. Environ Health Perspect 122:817–822;?http://dx.doi.org/10.1289/ehp.1307759 PMID:24833621

Alava, Pradeep; Zekker, Ivar; Du Laing, Gijs

2014-01-01

55

Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments.  

PubMed

Marine gas and hydrocarbon seeps are hot spots of sulfate reduction which is fuelled by methane, other short-chain alkanes or a complex mixture of hydrocarbons. In this study, we investigated the global distribution and abundance of sulfate-reducing bacteria (SRB) in eight gas and hydrocarbon seeps by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH). The majority of Deltaproteobacteria were assigned to specific SRB groups, i.e. 83 ± 14% at gas seeps and 61 ± 35% at hydrocarbon seeps, indicating that the probe set used was sufficient for classification of marine SRB. Statistical analysis showed that SRB abundance and distribution were significantly influenced by habitat type and sediment depth. Members of the Desulfosarcina/Desulfococcus (DSS) clade strongly dominated all sites. Our data indicated the presence of many diverse and highly specialized DSS species of low abundance rather than a single abundant subgroup. In addition, SEEP-SRB2, an uncultured deep-branching deltaproteobacterial group, was ubiquitously found in high abundances at all sites. SEEP-SRB2 members occurred either in a novel association with methanotrophic archaea in shell-type ANME-2/SEEP-SRB2 consortia, in association with ANME-1 archaea in Black Sea microbial mats or as single cells. Two other uncultured groups, SEEP-SRB3 and SEEP-SRB4, were preferentially detected in surface sediments from mud volcanoes. PMID:22882476

Kleindienst, Sara; Ramette, Alban; Amann, Rudolf; Knittel, Katrin

2012-10-01

56

Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria  

NASA Astrophysics Data System (ADS)

We present a travel-time based reactive transport model to simulate an in-situ bioremediation experiment for demonstrating enhanced bioreduction of uranium(VI). The model considers aquatic equilibrium chemistry of uranium and other groundwater constituents, uranium sorption and precipitation, and the microbial reduction of nitrate, sulfate and U(VI). Kinetic sorption/desorption of U(VI) is characterized by mass transfer between stagnant micro-pores and mobile flow zones. The model describes the succession of terminal electron accepting processes and the growth and decay of sulfate-reducing bacteria, concurrent with the enzymatic reduction of aqueous U(VI) species. The effective U(VI) reduction rate and sorption site distributions are determined by fitting the model simulation to an in-situ experiment at Oak Ridge, TN. Results show that (1) the presence of nitrate inhibits U(VI) reduction at the site; (2) the fitted effective rate of in-situ U(VI) reduction is much smaller than the values reported for laboratory experiments; (3) U(VI) sorption/desorption, which affects U(VI) bioavailability at the site, is strongly controlled by kinetics; (4) both pH and bicarbonate concentration significantly influence the sorption/desorption of U(VI), which therefore cannot be characterized by empirical isotherms; and (5) calcium-uranyl-carbonate complexes significantly influence the model performance of U(VI) reduction.

Luo, Jian; Weber, Frank-Andreas; Cirpka, Olaf A.; Wu, Wei-Min; Nyman, Jennifer L.; Carley, Jack; Jardine, Philip M.; Criddle, Craig S.; Kitanidis, Peter K.

2007-06-01

57

Distribution of Sulfate-Reducing and Methanogenic Bacteria in Anaerobic Aggregates Determined by Microsensor and Molecular Analyses  

PubMed Central

Using molecular techniques and microsensors for H2S and CH4, we studied the population structure of and the activity distribution in anaerobic aggregates. The aggregates originated from three different types of reactors: a methanogenic reactor, a methanogenic-sulfidogenic reactor, and a sulfidogenic reactor. Microsensor measurements in methanogenic-sulfidogenic aggregates revealed that the activity of sulfate-reducing bacteria (2 to 3 mmol of S2? m?3 s?1 or 2 × 10?9 mmol s?1 per aggregate) was located in a surface layer of 50 to 100 ?m thick. The sulfidogenic aggregates contained a wider sulfate-reducing zone (the first 200 to 300 ?m from the aggregate surface) with a higher activity (1 to 6 mmol of S2? m?3 s?1 or 7 × 10?9 mol s?1 per aggregate). The methanogenic aggregates did not show significant sulfate-reducing activity. Methanogenic activity in the methanogenic-sulfidogenic aggregates (1 to 2 mmol of CH4 m?3 s?1 or 10?9 mmol s?1 per aggregate) and the methanogenic aggregates (2 to 4 mmol of CH4 m?3 s?1 or 5 × 10?9 mmol s?1 per aggregate) was located more inward, starting at ca. 100 ?m from the aggregate surface. The methanogenic activity was not affected by 10 mM sulfate during a 1-day incubation. The sulfidogenic and methanogenic activities were independent of the type of electron donor (acetate, propionate, ethanol, or H2), but the substrates were metabolized in different zones. The localization of the populations corresponded to the microsensor data. A distinct layered structure was found in the methanogenic-sulfidogenic aggregates, with sulfate-reducing bacteria in the outer 50 to 100 ?m, methanogens in the inner part, and Eubacteria spp. (partly syntrophic bacteria) filling the gap between sulfate-reducing and methanogenic bacteria. In methanogenic aggregates, few sulfate-reducing bacteria were detected, while methanogens were found in the core. In the sulfidogenic aggregates, sulfate-reducing bacteria were present in the outer 300 ?m, and methanogens were distributed over the inner part in clusters with syntrophic bacteria. PMID:10508098

Santegoeds, Cecilia M.; Damgaard, Lars Riis; Hesselink, Gijs; Zopfi, Jakob; Lens, Piet; Muyzer, Gerard; de Beer, Dirk

1999-01-01

58

Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust  

PubMed Central

Iron (Fe0) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H2S, and scavenge of ‘cathodic’ H2 from chemical reaction of Fe0 with H2O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe0 year?1), while conventional H2-scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO3, Mg/CaCO3) deposited on the corroding metal exhibited electrical conductivity (50 S m?1). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe0 ? 4Fe2+ + 8e?) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e? + SO42? + 9H+ ? HS? + 4H2O). Hence, anaerobic microbial iron corrosion obviously bypasses H2 rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments. PMID:22616633

Enning, Dennis; Venzlaff, Hendrik; Garrelfs, Julia; Dinh, Hang T; Meyer, Volker; Mayrhofer, Karl; Hassel, Achim W; Stratmann, Martin; Widdel, Friedrich

2012-01-01

59

Mercury removal, methylmercury formation, and sulfate-reducing bacteria profiles in wetland mesocosms.  

PubMed

A pilot-scale model was constructed to determine if a wetland treatment system (WTS) could effectively remove low-level mercury from an outfall located at the Department of Energy's Savannah River Site. Site-specific hydrosoil was planted with giant bulrush, Scirpus californicus, and surface amended with gypsum (CaSO4) prior to investigating the biogeochemical dynamics of sediment-based sulfur and mercury speciation. On average, the pilot WTS decreased total mercury concentrations in the outfall stream by 50%. Transformation of mercury to a more "bioavailable" species, methylmercury, was also observed in the wetland treatment system. Methylmercury formation in the wetland was ascertained with respect to sediment biogeochemistry and S. californicus influences. Differences in sulfate-reduction rates (SRRs) were observed between mesocosms that received additional decomposing Scirpus matter and mesocosms that were permitted growth of the submerged macrophyte, Potamogeton pusillus. Relative abundance measurements of sulfate-reducing bacteria (SRB) as characterized using oligonucleotide probes were also noticeably different between the two mesocosms. A positive correlation between increased sulfide, dissolved total mercury, and dissolved methylmercury concentrations was also observed in porewater. The data suggest that soluble mercury-sulfide complexes were formed and contributed, in part, to a slight increase in mercury solubility. Observed increases in methylmercury concentration also suggest that soluble mercury-sulfide complexes represent a significant source of mercury that is "available" for methylation. Finally, a volunteer macrophyte, Potamogeton pusillus, is implicated as having contributed additional suspended particulate matter in surface water that subsequently reduced the pool of dissolved mercury while also providing an environment suitable for demethylation. PMID:11922066

King, Jeffrey K; Harmon, S Michele; Fu, Theresa T; Gladden, John B

2002-02-01

60

BASE COMPOSITION OF DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA DEDUCED FROM BUOYANT DENSITY MEASUREMENTS IN CESIUM CHLORIDE  

PubMed Central

Saunders, Grady F. (University of Illinois, Urbana), L. Leon Campbell, and John R. Postgate. Base composition of deoxyribonucleic acid of sulfate-reducing bacteria deduced from buoyant density measurements in cesium chloride. J. Bacteriol. 87:1073–1078. 1964.—The base composition of the deoxyribonucleic acid (DNA) of sulfate-reducing bacteria was calculated from buoyant density measurements in CsCl. The sporulating sulfate-reducing bacteria fell into two groups: Desulfovibrio orientis with a DNA base composition of 42% guanine plus cytosine (G + C), and Clostridium nigrificans with a DNA base composition of 45% G + C. The mesophilic relative of C. nigrificans had a DNA base composition of 46% G + C. Thirty strains of nonsporulating sulfate-reducing bacteria called D. desulfuricans were studied. They fell into three groups as judged by DNA base composition: group I (11 strains), 60 to 62% G + C; group II (13 strains), 54 to 56% G + C; and group III (6 strains), 46 to 47% G + C. These data underline the need for a taxonomic revision of this group of microorganisms. PMID:5874533

Saunders, Grady F.; Campbell, L. Leon; Postgate, John R.

1964-01-01

61

Stable Carbon Isotope Ratios of Lipid Biomarkers and Biomass for Sulfate-reducing Bacteria Grown with Different Substrates  

NASA Technical Reports Server (NTRS)

We have determined isotope ratios of biomass and Fatty Acids Methyl Esters (FAME) for four Sulfate-Reducing Bacteria (SRB) grown lithotrophically and heterotrophically, and are investigating whether these biomarker signatures can reveal the ecological role and distribution of SRB within microbial mats. Additional information is contained in the original extended abstract.

Londry, K. L.; Jahnke, L. L.; Des Marais, D. J.

2001-01-01

62

GENUS- AND GROUP-SPECIFIC HYBRIDIZATION PROBES FOR DETERMINATIVE AND ENVIRONMENTAL STUDIES OF SULFATE-REDUCING BACTERIA  

EPA Science Inventory

A set of six oligonucleotides, complementary to conserved tracts of 16S rRNA from phylogenetically-defined groups of sulfate-reducing bacteria, was characterized for use as hybridization probes in determinative and environmental microbiology. our probes were genus specific and id...

63

Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals  

Microsoft Academic Search

Sulfate-reducing bacteria (SRB) have been recognized as key players in the precipitation of calcium carbonate in lithifying microbial communities. These bacteria increase the alkalinity by reducing sulfate ions, and consuming organic acids. SRB also produce copious amounts of exopolymeric substances (EPS). All of these processes influence the morphology and mineralogy of the carbonate minerals. Interactions of EPS with metals, calcium

O. BRAISSANT; A. W. DECHO; C. DUPRAZ; C. GLUNK; K. M. PRZEKOP; P. T. VISSCHER

2007-01-01

64

Integrative analysis of Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation  

NASA Astrophysics Data System (ADS)

Enhancing microbial U(VI) reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI)-reducing Geobacter predominated and U(VI) was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB) predominated and U(VI) reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III) was depleted whereas the SRB grow more slowly and reached dominance after 30-40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III) would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III) availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.

Barlett, M.; Zhuang, K.; Mahadevan, R.; Lovley, D.

2012-03-01

65

Integrative analysis of the interactions between Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation  

NASA Astrophysics Data System (ADS)

Enhancing microbial U(VI) reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI)-reducing Geobacter predominated and U(VI) was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB) predominated and U(VI) reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III) was depleted whereas the SRB grow more slowly and reached dominance after 30-40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III) would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III) availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.

Barlett, M.; Zhuang, K.; Mahadevan, R.; Lovley, D. R.

2011-11-01

66

Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats.  

PubMed

Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB). However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico-permanently submerged Microcoleus microbial mat (GN-S), and intertidal Lyngbya microbial mat (GN-I)-were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of DsrA phylotypes were responsible for H2 consumption. Incubation with (13)C-acetate and NanoSIMS (secondary ion mass-spectrometry) indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen) was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi. PMID:24616716

Lee, Jackson Z; Burow, Luke C; Woebken, Dagmar; Everroad, R Craig; Kubo, Mike D; Spormann, Alfred M; Weber, Peter K; Pett-Ridge, Jennifer; Bebout, Brad M; Hoehler, Tori M

2014-01-01

67

Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats  

PubMed Central

Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB). However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico—permanently submerged Microcoleus microbial mat (GN-S), and intertidal Lyngbya microbial mat (GN-I)—were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of DsrA phylotypes were responsible for H2 consumption. Incubation with 13C-acetate and NanoSIMS (secondary ion mass-spectrometry) indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen) was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi. PMID:24616716

Lee, Jackson Z.; Burow, Luke C.; Woebken, Dagmar; Everroad, R. Craig; Kubo, Mike D.; Spormann, Alfred M.; Weber, Peter K.; Pett-Ridge, Jennifer; Bebout, Brad M.; Hoehler, Tori M.

2013-01-01

68

A Comparative Genomic Analysis of Energy Metabolism in Sulfate Reducing Bacteria and Archaea  

PubMed Central

The number of sequenced genomes of sulfate reducing organisms (SRO) has increased significantly in the recent years, providing an opportunity for a broader perspective into their energy metabolism. In this work we carried out a comparative survey of energy metabolism genes found in 25 available genomes of SRO. This analysis revealed a higher diversity of possible energy conserving pathways than classically considered to be present in these organisms, and permitted the identification of new proteins not known to be present in this group. The Deltaproteobacteria (and Thermodesulfovibrio yellowstonii) are characterized by a large number of cytochromes c and cytochrome c-associated membrane redox complexes, indicating that periplasmic electron transfer pathways are important in these bacteria. The Archaea and Clostridia groups contain practically no cytochromes c or associated membrane complexes. However, despite the absence of a periplasmic space, a few extracytoplasmic membrane redox proteins were detected in the Gram-positive bacteria. Several ion-translocating complexes were detected in SRO including H+-pyrophosphatases, complex I homologs, Rnf, and Ech/Coo hydrogenases. Furthermore, we found evidence that cytoplasmic electron bifurcating mechanisms, recently described for other anaerobes, are also likely to play an important role in energy metabolism of SRO. A number of cytoplasmic [NiFe] and [FeFe] hydrogenases, formate dehydrogenases, and heterodisulfide reductase-related proteins are likely candidates to be involved in energy coupling through electron bifurcation, from diverse electron donors such as H2, formate, pyruvate, NAD(P)H, ?-oxidation, and others. In conclusion, this analysis indicates that energy metabolism of SRO is far more versatile than previously considered, and that both chemiosmotic and flavin-based electron bifurcating mechanisms provide alternative strategies for energy conservation. PMID:21747791

Pereira, Inês A. Cardoso; Ramos, Ana Raquel; Grein, Fabian; Marques, Marta Coimbra; da Silva, Sofia Marques; Venceslau, Sofia Santos

2011-01-01

69

Immunomagnetically Captured Thermophilic Sulfate-Reducing Bacteria from North Sea Oil Field Waters  

PubMed Central

Immunomagnetic beads (IMB) were used to recover thermophilic sulfate-reducing bacteria from oil field waters from oil production platforms in the Norwegian sector of the North Sea. IMB coated with polyclonal antibodies against whole-cell antigens of the thermophilic Thermodesulfobacterium mobile captured strains GFA1, GFA2, and GFA3. GFA1 was serologically and morphologically identical to T. mobile. GFA2 and GFA3 were spore forming and similar to the Desulfotomaculum strains T90A and T93B previously isolated from North Sea oil field waters by a classical enrichment procedure. Western blots (immunoblots) of whole cells showed that GFA2, GFA3, T90A, and T93B are different serotypes of the same Desulfotomaculum species. Monoclonal antibodies (MAb) against T. mobile type strain cells were produced and used as capture agents on IMB. These MAb, named A4F4, were immunoglobulin M; they were specific to T. mobile and directed against lipopolysaccharides. The prevailing cells immunocaptured with MAb A4F4 were morphologically and serologically similar to T. mobile type strain cells. T. mobile was not detected in these oil field waters by classical enrichment procedures. Furthermore, extraction with antibody-coated IMB allowed pure strains to be isolated directly from primary enrichment cultures without prior time-consuming subculturing and consecutive transfers to selective media. Images PMID:16348693

Christensen, Bjørn; Torsvik, Terje; Lien, Torleiv

1992-01-01

70

Analyses of the vertical and temporal distribution of sulfate-reducing bacteria in Lake Aha (China)  

NASA Astrophysics Data System (ADS)

In April and September of 2005, two sediment cores were collected from Lake Aha, which is polluted by the acid mine drainage of the mining industries. Sulfate-reducing bacteria (SRB) groups and their quantity were analyzed by using PCR and FISH (fluorescence in situ hybridization), respectively. The results showed that four SRB groups ( Desulfotomaculum, Desulfobulbus, Desulfococcus Desulfonema Desulfosarcina and Desulfovibrio Desulfomicrobium) were detected in September, while only three SRB groups ( Desulfotomaculum, Desulfobulbus and Desulfococcus Desulfonema Desulfosarcina) were detected in April. Desulfovibrio Desulfomicrobium was not detected and was expected to exist inactively, in April. Meanwhile, the distribution of every SRB group was wider in September than in April. The results indicated that different SRB groups had different vertical and temporal distribution. The vertical and temporal distribution of SRB was mainly in the upper sediments, and the number of SRB groups and quantity were larger in September than in April. It suggested that the environmental conditions of sediments in September were more suitable for SRB.

Wang, M. Y.; Liang, X. B.; Yuan, X. Y.; Zhang, W.; Zeng, J.

2008-03-01

71

Long-term surveillance of sulfate-reducing bacteria in highly saline industrial wastewater evaporation ponds  

PubMed Central

Abundance and seasonal dynamics of sulfate-reducing bacteria (SRB), in general, and of extreme halophilic SRB (belonging to Desulfocella halophila) in particular, were examined in highly saline industrial wastewater evaporation ponds over a forty one month period. Industrial wastewater was sampled and the presence of SRB was determined by quantitative real-time PCR (qPCR) with a set of primers designed to amplify the dissimilatory sulfite reductase (dsrA) gene. SRB displayed higher abundance during the summer (106–108 targets ml-1) and lower abundance from the autumn-spring (103–105 targets ml-1). However, addition of concentrated dissolved organic matter into the evaporation ponds during winter immediately resulted in a proliferation of SRB, despite the lower wastewater temperature (12–14°C). These results indicate that the qPCR approach can be used for rapid measurement of SRB to provide valuable information about the abundance of SRB in harsh environments, such as highly saline industrial wastewaters. Low level of H2S has been maintained over five years, which indicates a possible inhibition of SRB activity, following artificial salination (?16% w/v of NaCl) of wastewater evaporation ponds, despite SRB reproduction being detected by qPCR. PMID:19226456

Ben-Dov, Eitan; Kushmaro, Ariel; Brenner, Asher

2009-01-01

72

Stable Carbon Isotope Ratios of Lipid Biomarkers of Sulfate-Reducing Bacteria  

PubMed Central

We examined the potential use of natural-abundance stable carbon isotope ratios of lipids for determining substrate usage by sulfate-reducing bacteria (SRB). Four SRB were grown under autotrophic, mixotrophic, or heterotrophic growth conditions, and the ?13C values of their individual fatty acids (FA) were determined. The FA were usually 13C depleted in relation to biomass, with ??13C(FA ? biomass) of ?4 to ?17‰; the greatest depletion occurred during heterotrophic growth. The exception was Desulfotomaculum acetoxidans, for which substrate limitation resulted in biomass and FA becoming isotopically heavier than the acetate substrate. The ?13C values of FA in Desulfotomaculum acetoxidans varied with the position of the double bond in the monounsaturated C16 and C18 FA, with FA becoming progressively more 13C depleted as the double bond approached the methyl end. Mixotrophic growth of Desulfovibrio desulfuricans resulted in little depletion of the i17:1 biomarker relative to biomass or acetate, whereas growth with lactate resulted in a higher proportion of i17:1 with a greater depletion in 13C. The relative abundances of 10Me16:0 in Desulfobacter hydrogenophilus and Desulfobacterium autotrophicum were not affected by growth conditions, yet the ??13C(FA ? substrate) values of 10Me16:0 were considerably greater during autotrophic growth. These experiments indicate that FA ?13C values can be useful for interpreting carbon utilization by SRB in natural environments. PMID:14766550

Londry, K. L.; Jahnke, L. L.; Des Marais, D. J.

2004-01-01

73

A Study of the Relative Dominance of Selected Anaerobic Sulfate-Reducing Bacteria in a Continuous Bioreactor by Fluorescence in Situ Hybridization  

Microsoft Academic Search

The diversity and the community structure of sulfate-reducing bacteria (SRB) in an anaerobic continuous bioreactor used for\\u000a treatment of a sulfate-containing wastewater were investigated by fluorescence in situ hybridization. Hybridization to the 16S rRNA probe EUB338 for the domain Bacteria was performed, followed by a nonsense probe\\u000a NON338 as a control for nonspecific staining. Sulfate-reducing consortia were identified by using

B. Icgen; S. Moosa; S. T. L. Harrison

2007-01-01

74

The effects of sulfate reducing bacteria on stainless steel and Ni-Cr-Mo alloy weldments  

SciTech Connect

Previous research in this laboratory demonstrated a direct correlation between alloy composition and corrosion susceptibility of stainless steel and Ni-Cr-Mo alloy weldments exposed to lake water augmented with sulfate reducing bacteria (SRB). It was shown that lake water containing an active SRB population reduced the polarization resistance (R{sub p}) on all alloys studied including those with 9% Mo. In addition, preliminary evidence indicated that edge preparation and weld heat input were also important parameters in determining corrosion performance. This prior research, however, looked at ``doctored`` weldments in which the thermal oxide in the heat affected zone was removed. The objectives of the research presented here are to further confirm these observations using as-received welds. The materials examined (listed in increasing alloy content) are 1/4 inch thick plates of 316L, 317L, AL6XN (6% Mo), alloy 625 clad steel, alloy 625, and alloy 686. Materials were welded using the tungsten inert gas (TIG) process in an argon purged environment. In addition, 317L was welded in air to test oxide effects. All samples were prepared for welding by grinding to a V-edge, except the 625 clad steel samples which were prepared using a J-edge. Electrochemical performance of welded samples was monitored in four glass cells which could each allow exposure of 8 samples to the same environment. Two cells contained lake water inoculated with SRS, and two cells contained sterilized lake water. The open circuit potential (E{sub oc}) and R{sub p} was used to correlate corrosion susceptibility and bacterial activity with alloy composition and welding parameters.

Petersen, T.A.; Taylor, S.R. [Univ. of Virginia, Charlottesville, VA (United States). Center for Electrochemical Science and Engineering

1995-10-01

75

Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site  

SciTech Connect

Microbially mediated reduction and immobilization of U(VI) to U(TV) plays a role in both natural attenuation and accelerated bioremediation of uranium contaminated sites. To realize bioremediation potential and accurately predict natural attenuation, it is important to first understand the microbial diversity of such sites. In this paper, the distribution of sulfate-reducing bacteria (SRB) in contaminated groundwater associated with a uranium mill tailings disposal site at Shiprock, N.Mex,, was investigated. Two culture-independent analyses were employed: sequencing of clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) gene fragments and phospholipid fatty acid (PLFA) biomarker analysis. A remarkable diversity among the DSR sequences was revealed, including sequences from F-Proteobacteria, gram-positive organisms, and the Nitrospira division. PLFA analysis detected at least,52 different mid-chain-branched saturate PLFA and included a high proportion of 10me16:0, Desulfotomaculum and Desulfotomaculum-like sequences were the most dominant DSR genes detected. Those belonging to SRB within F-Proteobacteria were mainly recovered from low-uranium (less than or equal to 302 ppb) samples. One Desulfotomaculum like sequence cluster overwhelmingly dominated high-U (> 1,500 ppb) sites. Logistic regression showed a significant influence of uranium concentration over the dominance of this cluster of sequences (P= 0.0001), This strong association indicates that Desulfotomaculum has remarkable tolerance and adaptation to high levels of uranium and suggests the organism's possible involvement in natural attenuation of uranium. The in situ activity level of Desulfotomaculum in uranium-contaminated environments and its comparison to the activities of other SRB and other functional groups should be an important area for future research.

Chang, Yun-Juan (Unknown); Peacock, A D. (Tennessee, Univ Of); Long, Philip E. (BATTELLE (PACIFIC NW LAB)); Stephen, John R. (Unknown); McKinley, James P. (BATTELLE (PACIFIC NW LAB)); Mcnaughton, Sarah J. (Unknown); Hussain, A K M A.; Saxton, A M.; White, D C. (Unknown)

2000-12-01

76

Diversity and Characterization of Sulfate-Reducing Bacteria in Groundwater at a Uranium Mill Tailings Site  

PubMed Central

Microbially mediated reduction and immobilization of U(VI) to U(IV) plays a role in both natural attenuation and accelerated bioremediation of uranium-contaminated sites. To realize bioremediation potential and accurately predict natural attenuation, it is important to first understand the microbial diversity of such sites. In this paper, the distribution of sulfate-reducing bacteria (SRB) in contaminated groundwater associated with a uranium mill tailings disposal site at Shiprock, N.Mex., was investigated. Two culture-independent analyses were employed: sequencing of clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) gene fragments and phospholipid fatty acid (PLFA) biomarker analysis. A remarkable diversity among the DSR sequences was revealed, including sequences from ?-Proteobacteria, gram-positive organisms, and the Nitrospira division. PLFA analysis detected at least 52 different mid-chain-branched saturate PLFA and included a high proportion of 10me16:0. Desulfotomaculum and Desulfotomaculum-like sequences were the most dominant DSR genes detected. Those belonging to SRB within ?-Proteobacteria were mainly recovered from low-uranium (?302 ppb) samples. One Desulfotomaculum-like sequence cluster overwhelmingly dominated high-U (>1,500 ppb) sites. Logistic regression showed a significant influence of uranium concentration over the dominance of this cluster of sequences (P = 0.0001). This strong association indicates that Desulfotomaculum has remarkable tolerance and adaptation to high levels of uranium and suggests the organism's possible involvement in natural attenuation of uranium. The in situ activity level of Desulfotomaculum in uranium-contaminated environments and its comparison to the activities of other SRB and other functional groups should be an important area for future research. PMID:11425735

Chang, Yun-Juan; Peacock, Aaron D.; Long, Philip E.; Stephen, John R.; McKinley, James P.; Macnaughton, Sarah J.; Hussain, A. K. M. Anwar; Saxton, Arnold M.; White, David C.

2001-01-01

77

Neem extract as an inhibitor for biocorrosion influenced by sulfate reducing bacteria: A preliminary investigation  

E-print Network

extract Biocorrosion SRB Linepipe steel a b s t r a c t This work investigates the inhibition effect linepipe steel by a sulfate- reducing bacterial (SRB) consortium. The SRB consortium used in this study included three phylotypes; Desulfovibrio africanus, Desulfovibrio alaskensis and Desulfomicrobium sp. Steel

78

Quantitative real-time PCR analyses of sulfate-reducing bacteria in swine manure and the inhibitory effects of condensed tannins  

Technology Transfer Automated Retrieval System (TEKTRAN)

Odorous chemicals produced by anaerobic bacteria in stored swine manure are a nuisance and potential health hazard. One of the more odorous compounds is hydrogen sulfide (H2S), produced primarily by sulfate-reducing bacteria (SRB). However, little is known about these bacteria in stored swine manu...

79

Competitive Oxidation of Volatile Fatty Acids by Sulfate- and Nitrate-Reducing Bacteria from an Oil Field in Argentina? †  

PubMed Central

Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquén Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3 mM each) and excess sulfate, SRB first used propionate and butyrate for the production of acetate, which reached concentrations of up to 12 mM prior to being used as an electron donor for sulfate reduction. In contrast, hNRB used all three organic acids with similar kinetics, while reducing nitrate to nitrite and nitrogen. Transient inhibition of VFA-utilizing SRB was observed with 0.5 mM nitrite and permanent inhibition with concentrations of 1 mM or more. The addition of nitrate to medium flowing into an upflow, packed-bed bioreactor with an established VFA-oxidizing SRB consortium led to a spike of nitrite up to 3 mM. The nitrite-mediated inhibition of SRB led, in turn, to the transient accumulation of up to 13 mM of acetate. The complete utilization of nitrate and the incomplete utilization of VFA, especially propionate, and sulfate indicated that SRB remained partially inhibited. Hence, in addition to lower sulfide concentrations, an increase in the concentration of acetate in the presence of sulfate in waters produced from an oil field subjected to nitrate injection may indicate whether the treatment is successful. The microbial community composition in the bioreactor, as determined by culturing and culture-independent techniques, indicated shifts with an increasing fraction of nitrate. With VFA and sulfate, the SRB genera Desulfobotulus, Desulfotignum, and Desulfobacter as well as the sulfur-reducing Desulfuromonas and the NR-SOB Arcobacter were detected. With VFA and nitrate, Pseudomonas spp. were present. hNRB/NR-SOB from the genus Sulfurospirillum were found under all conditions. PMID:18502934

Grigoryan, Aleksandr A.; Cornish, Sabrina L.; Buziak, Brenton; Lin, Shiping; Cavallaro, Adriana; Arensdorf, Joseph J.; Voordouw, Gerrit

2008-01-01

80

Sulfur isotope fractionation during growth of sulfate-reducing bacteria on various carbon sources  

NASA Astrophysics Data System (ADS)

Stable sulfur isotope fractionation during microbial sulfate reduction is a potential tool to estimate sulfate reduction rates at field sites. However, little is known about the influence of the utilized carbon source on the magnitude of sulfur isotope fractionation. To investigate this effect, both a pure culture (strain PRTOL1) and enrichment cultures from a petroleum hydrocarbon (PHC)-contaminated aquifer were used and grown in batch cultures on various carbon sources with an initial sulfate concentration of 1 mmol/L. As sole carbon sources the PHC components naphthalene, 1,3,5-trimethylbenzene, and heating oil (enrichment culture) and the organic acids acetate, pyruvate, benzoate, and 3-phenylpropionate (enrichment culture and PRTOL1) were used. Sulfate reduction rates of all cultures ranged from 6 ± 1 nmol cm -3 d -1 (enrichment culture grown on 1,3,5-trimethylbenzene) to 280 ± 6 nmol cm -3 d -1 (enrichment culture grown on pyruvate). Cell-specific sulfate reduction rates ranged from 1.1 × 10 -14 mol cell -1 d -1 (PRTOL1 grown on pyruvate) to 1.5 × 10 -13 mol cell -1 d -1 (PRTOL1 grown on acetate). Sulfur isotope enrichment factors (?) for the enrichment culture ranged from 16.1‰ (3-phenylpropionate) to 34.5‰ (1,3,5-trimethylbenzene) and for PRTOL1 from 30.0‰ (benzoate) to 36.0‰ (pyruvate). Cultures of PRTOL1 always showed higher ? values than the enrichment culture when grown on the same carbon source due to culture-specific properties. Higher ? values were obtained when the enrichment culture was grown on PHC components than on organic acids. No relationship between ? values and cell-specific sulfate reduction rate existed when all data were combined. When comparing the magnitude of ? values determined in this laboratory study with ? values measured at contaminated and uncontaminated field sites, it becomes evident that a multitude of factors influences ? values at field sites and complicates their interpretation. The results of this study help us assess some of the general parameters that govern the magnitude of ? in sulfate-reducing environments.

Kleikemper, Jutta; Schroth, Martin H.; Bernasconi, Stefano M.; Brunner, Benjamin; Zeyer, Josef

2004-12-01

81

Sulfur Isotropic Studies of Archean Slate and Graywacke from Northern Minnesota: Evidence for the Existence of Sulfate Reducing Bacteria  

NASA Technical Reports Server (NTRS)

Sulfur isotopic studies of pyrite from metasediments in the 2.6 b.y. old Deer Lake greenstone sequence, Minnesota, were conducted in order to evaluate the possible importance of sulfate reducing bacteria in sulfide formation. Pyrite occurs as ovules up to 2 cm in diameter within graphitic slates, and as fine disseminations in metagraywacke units. SEM studies indicate the pyrite is framboidal in morphology. Delta notation values of pyrite from the Deer Lake sediments range from -2.3 to 11.1 0/00, with a peak at approximately +2 o/oo. Isotopic data is consistent with either high temperature inorganic reduction of circulating seawater sulfate, or low temperature bacterial reduction. However, the lack of sulfide bands or massive occurrences in the sediments, the restriction of pyrite mineralization to the sediments, and the absence of evidence for hot spring activity suggest that a diagenetic origin of pyrite is more feasible. Sulfide in such an environment would be produced principally by the action of sulfate reducing bacteria.

Ripley, E. M.; Nicol, D. L.

1979-01-01

82

Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria  

SciTech Connect

Surprising results were obtained following an attempt to induce or derepress the machinery for U(VI) reduction by growing Desulfovibrio desulfuricans G20 in the presence of 1 mM uranyl acetate. G20 cells grown on lactate-sulfate medium amended with U(VI) reduced uranium at a slower rate than cells grown in the absence of this metal. When periplasmic extracts of these cells were prepared, Western analysis of the proteins revealed that the cytochrome c3 was absent. This observation has been further investigated.

Wall, Judy D.

2003-06-01

83

Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation.  

PubMed

In order to better understand the main factors that influence the distribution of sulfate-reducing bacteria (SRB), their population size and their metabolic activity in high- and low-sulfate zones, we studied the SRB diversity in 3- to 5-m-deep sediment cores, which comprised the entire sulfate reduction zone and the upper methanogenic zone. By combining EMA (ethidium monoazide that can only enter damaged/dead cells and may also bind to free DNA) treatment with real-time PCR, we determined the distributions of total intact bacteria (16S rDNA genes) and intact SRB (dsrAB gene), their relative population sizes, and the proportion of dead cells or free DNA with depth. The abundance of SRB corresponded in average to 13% of the total bacterial community in the sulfate zone, 22% in the sulfate-methane transition zone and 8% in the methane zone. Compared with the total bacterial community, there were relatively less dead/damaged cells and free DNA present than among the SRB and this fraction did not change systematically with depth. By DGGE analysis, based on the amplification of the dsrA gene (400 bp), we found that the richness of SRB did not change with depth through the geochemical zones; but the clustering was related to the chemical zonation. A full-length clone library of the dsrAB gene (1900 bp) was constructed from four different depths (20, 110, 280 and 500 cm), and showed that the dsrAB genes in the near-surface sediment (20 cm) was mainly composed of sequences close to the Desulfobacteraceae, including marine complete and incomplete oxidizers such as Desulfosarcina, Desulfobacterium and Desulfococcus. The three other libraries were predominantly composed of Gram-positive SRB. PMID:19220398

Leloup, Julie; Fossing, Henrik; Kohls, Katharina; Holmkvist, Lars; Borowski, Christian; Jørgensen, Bo Barker

2009-05-01

84

Effectiveness of the bran media and bacteria inoculum treatments in increasing pH and reducing sulfur-total of acid sulfate soils  

NASA Astrophysics Data System (ADS)

This study was carried out to determine the effectiveness ofsulfate reducing bacteria (SRB) in using bran as a source of food and energy, and to see the effectiveness of the bran media and bacteria inoculums treatments for pH and sulfur-total of acid sulfate reduction insoils. This study used two factors in group random designs with four treatments for bacteria inoculum of B1 (1%), B2 (5%), B3 (10%), B4 (15%) and two treatments for organic media (bran) of D1 (1:1) and D2 (1:19). Based on three replications, the combination resulted in a total of 24 treatments. Soil pH was measured using the Duddridge and Wainright method and determination of sulfate content in soil was conducted by the spectrophotometry method. The data obtained was analyzed for significance by Analysis of Variance and the Least Significant Difference Test. The pH of the initial acid sulfate soils ranged from 3 to 4 and the soil sulfur-total ranged from 1.4% to 10%. After mixing sulfate reducing bacteria with the bran mediaand incubated for four days, the pH of the acid sulfate soils increased from 3.67 to 4.20, while the soil sulfur-total contents had been reduced by 2.85% to 0.35%. This experiment has proven that an acid sulfate soil with low pH is a good growth medium for the sulfate reducing bacteria. The bestincubation period to achieve an effective bioremediation resultthrough sulfate percentage reduction by sulfate reducing bacteria was 10 days, while the optimum bran media dose was 1:19, and the bacteria inoculums dose was 10%.

Taufieq, Nur Anny Suryaningsih; Rahim, Sahibin Abdul; Jamil, Habibah

2013-11-01

85

INFLUENCE OF THE SEAGRASS THALASSIA TESTUDINUM ON THE COMMUNITY COMPOSITION AND ACTIVITY OF SULFATE-REDUCING BACTERIA IN AN ESSENTIAL COAST MARINE HABITAT  

EPA Science Inventory

Biogeochemical cycling of nutrients and sulfate reduction rates (SRR) were studied in relation to the community composition of sulfate-reducing bacteria SRB) in a Thalassia testudinum bed and in adjacent unvegetated areas. Sampling took place in Santa Rosa Sound, Pensacola, Flori...

86

Growth of sulfate-reducing bacteria and methanogenic archaea with methylated sulfur compounds: a commentary on the thermodynamic aspects.  

PubMed

Methylated sulfur compounds such as dimethylsulfoniopropionate, dimethylsulfide, methanethiol, and other methylated sulfur compounds can act as sources of carbon and energy for the growth under anoxic conditions of a number of sulfate-reducing bacteria and methanogenic archaea. We summarise the range of degradative reactions that do or might occur in such organisms, and present thermodynamic data for these processes. These data enable estimates of the feasibility of the reactions as growth-supporting systems, and of the possible maximum growth yields of the bacteria and archaea catalysing them. We compare our new estimates with the few data that are currently available from the literature, and show that some published growth-yield assessments need reevaluation. PMID:12560992

Scholten, Johannes C M; Murrell, J Colin; Kelly, Donovan P

2003-01-01

87

Genetics and Molecular Biology of Hydrogen Metabolism in Sulfate-Reducing Bacteria  

SciTech Connect

The degradation of our environment and the depletion of fossil fuels make the exploration of alternative fuels evermore imperative. Among the alternatives is biohydrogen which has high energy content by weight and produces only water when combusted. Considerable effort is being expended to develop photosynthetic systems -- algae, cyanobacteria, and anaerobic phototrophs -- for sustainable H2 production. While promising, this approach also has hurdles such as the harvesting of light in densely pigmented cultures that requires costly constant mixing and large areas for exposure to sunlight. Little attention is given to fermentative H2 generation. Thus understanding the microbial pathways to H2 evolution and metabolic processes competing for electrons is an essential foundation that may expand the variety of fuels that can be generated or provide alternative substrates for fine chemical production. We studied a widely found soil anaerobe of the class Deltaproteobacteria, a sulfate-reducing bacterium to determine the electron pathways used during the oxidation of substrates and the potential for hydrogen production.

Wall, Judy D. [University of Missouri-Columbia

2014-12-23

88

Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode.  

PubMed

An anoxic biocathode was developed using sulfate-reducing bacteria (SRB) consortium on activated carbon fabric (ACF) and the effect of stainless steel (SS) mesh as additional current collector was investigated. Improved performance of biocathode was observed with SS mesh leading to nearly five folds increase in power density (from 4.79 to 23.11 mW/m(2)) and threefolds increase in current density (from 75 to 250 mA/m(2)). Enhanced redox currents and lower Tafel slopes observed from cyclic voltammograms of ACF with SS mesh indicated the positive role of uniform electron collecting points. Differential pulse voltammetry technique was employed as an additional tool to assess the redox carriers involved in bioelectrochemical reactions. SRB biocathode was also tested for reduction of volatile fatty acids (VFA) present in the fermentation effluent stream and the results indicated the possibility of integration of this system with anaerobic fermentation for efficient product recovery. PMID:24161648

Sharma, Mohita; Jain, Pratiksha; Varanasi, Jhansi L; Lal, Banwari; Rodríguez, Jorge; Lema, Juan M; Sarma, Priyangshu M

2013-12-01

89

Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage  

Microsoft Academic Search

The aim of this investigation was to develop a system for the remediation of acid mine drainage using sulphate-reducing bacteria. An upflow porous medium bioreactor was inoculated with sulphate-reducing bacteria (SRB) and operated under acidic conditions. The reactor was operated under continuous flow and was shown to be capable of sulfate reduction at pH 4.5, 4.0, 3.5 and 3.25 in

Phillip Elliott; Santo Ragusa; David Catcheside

1998-01-01

90

USE OF HYDROGEN RESPIROMETRY TO DETERMINE METAL TOXICITY TO SULFATE REDUCING BACTERIA  

EPA Science Inventory

Acid mine drainage (AMD), an acidic metal-bearing wastewater poses a severe pollution problem attributed to post-mining activities. The metals (metal sulfates) encountered in AMD and considered of concern for risk assessment are: arsenic, cadmium, aluminum, manganese, iron, zinc ...

91

Acid-Tolerant Sulfate-Reducing Bacteria Play a Major Role in Iron Cycling in Acidic Iron Rich Sediments  

NASA Astrophysics Data System (ADS)

Climate change drives drying and acidification of many rivers and lakes. Abundant sedimentary iron in these systems oxidizes chemically and biologically to form iron-ox(yhydrox)ide crusts and "hardpans". Given generally high sulfate concentrations, the mobilization and cycling of iron in these environments can be strongly influenced by bacterial sulfate reduction. Sulfate-reducing bacteria (SRB) induce reductive dissolution of oxidized iron phases by producing the reductant bisulfide as a metabolic product. These environmentally ubiquitous microbes also recycle much of the fixed carbon in sediment-hosted microbial mat communities. With prevalent drying, the buffering capacity for protons liberated from iron oxidation is exceeded, and the activity of sulfate-reducers is restricted to those species capable of tolerating low pH (and generally highly saline, i.e. sulfate-rich) conditions. These species will sustain the recycling of iron from more crystalline phases to more bioavailable species, as well as act as the only source of bisulfide for photosynthesizing microbial communities. The phylogeny and physiology of acid-tolerant SRB is therefore important to Fe, S and C cycling in iron-rich sedimentary environments, particularly those on a geochemical trajectory towards acidification. Previous studies have shown that these SRB species tend to be highly novel. We studied two distinct environments along a geochemical continuum towards acidification. In both settings, iron redox transformations exert a major, if not controlling, influence on reduction potential. An acidified, iron- rich tidal marsh receiving acid-mine drainage (San Francisco Bay, CA, USA) contained abundant textural evidence for reductive dissolution of Fe(III) in sediments with pH values varying from 2.4 - 3.8. From these sediments, full-length novel dsrAB gene sequences from acid-tolerant SRB were recovered, and sulfur isotope profiles reflected biological fractionation of sulfur under even the most acidic conditions. The dsrAB genes are related to other novel SRB lineages derived from acidic environments in previous reports, suggesting that these species have adapted to the acidity rather than colonized more circumneutral microenvironments. In an acidic hypersaline lake system in NW Victoria (Australia), previous studies suggested that pore water bisulfide derived from anoxic groundwater transported from distal locations. However, isolated potholes of oxic Fe(III)-rich springwater exhibited nearly a two-fold increase in conductivity and pH increase from 4.5 to 8.0 over time periods on the order of days; and biogeochemical and mineralogical observations were consistent with the presence of active acid- and halo-tolerant SRB. Furthermore, stratified active microbial mat communities, with zones of black FeS formation localized several millimeters below the sediment-air interface, were identified in cross-section from lakeshore sediments near groundwater discharge springs. Culture-independent and culture-based work to characterize the SRB population is ongoing at this site. We infer, from previous sulfur isotope tracer experiments at the lake, that overall sulfate reduction rates may be slow, but are nonetheless proceeding and contributing to the recycling of oxidized iron to a significant degree given the abundance of sulfate evidenced by widespread gypsum precipitation. We conclude from the two study-sites described above that acid-tolerant SRB species play an important role in the linked S, Fe and C cycles in acidifying, iron-rich environments, and their phylogenetic and physiological diversity should be further investigated.

Enright, K. A.; Moreau, J. W.

2008-12-01

92

Gene Expression Correlates with Process Rates Quantified for Sulfate- and Fe(III)-Reducing Bacteria in U(VI)-Contaminated Sediments  

PubMed Central

Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI) reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III) and sulfate reduction pathways in order to monitor these processes during in situ U(VI) remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA) and the dissimilatory (bi)sulfite reductase gene (dsrA), were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy’s Oak Ridge Integrated Field Research Challenge (OR-IFRC) site at Oak Ridge, TN, USA. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III)-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation. PMID:22908009

Akob, Denise M.; Lee, Sang Hyon; Sheth, Mili; Küsel, Kirsten; Watson, David B.; Palumbo, Anthony V.; Kostka, Joel E.; Chin, Kuk-Jeong

2012-01-01

93

Practical applications of sulfate-reducing bacteria to control acid mine drainage at the Lilly/Orphan Boy Mine near Elliston, Montana  

SciTech Connect

The overall purpose of this document is to provide a detailed technical description of a technology, biological sulfate reduction, which is being demonstrated under the Mine Waste Technology Pilot Program, and provide the technology evaluation process undertaken to select this technology for demonstration. In addition, this document will link the use of the selected technology to an application at a specific site. The purpose of this project is to develop technical information on the ability of biological sulfate reduction to slow the process of acid generation and, thus, improve water quality at a remote mine site. Several technologies are screened for their potential to treat acid mine water and to function as a source control for a specific acid-generating situation: a mine shaft and associated underground workings flooded with acid mine water and discharging a small flow from a mine opening. The preferred technology is the use of biological sulfate reduction. Sulfate-reducing bacteria are capable of reducing sulfate to sulfide, as well as increasing the pH and alkalinity of water affected by acid generation. Soluble sulfide reacts with the soluble metals in solution to form insoluble metal sulfides. The environment needed for efficient sulfate-reducing bacteria growth decreases acid production by reducing the dissolved oxygen in water and increasing pH. A detailed technical description of the sulfate-reducing bacteria technology, based on an extensive review of the technical literature, is presented. The field demonstration of this technology to be performed at the Lilly/Orphan Boy Mine is also described. Finally, additional in situ applications of biological sulfate reduction are presented.

Canty, M. [MSE Inc., Butte, MT (United States)

1994-12-31

94

COMPARISON OF PHYLOGENETIC RELATIONSHIPS BASED ON PHOSPHOLIPID FATTY ACID PROFILES AND RIBOSOMAL RNA SEQUENCE SIMILARITIES AMONG DISSIMILATORY SULFATE-REDUCING BACTERIA  

EPA Science Inventory

Twenty-five isolates of dissimilatory sulfate-reducing bacteria were clustered based on similarity analysis of their phospholipid ester-linked fatty acids (PLFA). f these, twenty-three showed the phylogenetic relationships based on the sequence similarity of their 16S rRNA direct...

95

ACUTE TOXICITY OF HEAVY METALS TO ACETATE-UTILIZING MIXED CULTURES OF SULFATE-REDUCING BACTERIA: EC100 AND EC50  

EPA Science Inventory

Acid mine drainage (AMD) from abandoned mines and acid mine pitlakes is an important environmental contaminant concern and usually contains appreciable concentrations of heavy metals. Since sulfate-reducing bacteria (SRB) are involved in the treatment of AMD, knowledge of acute m...

96

Effect of dietary inorganic sulfur level on growth performance, fecal composition, and measures of inflammation and sulfate-reducing bacteria in the intestine of growing pigs  

Technology Transfer Automated Retrieval System (TEKTRAN)

Two experiments were conducted to investigate the impact of dietary inorganic S on growth performance, markers of intestinal inflammation, fecal composition, and the presence of sulfate-reducing bacteria (SRB). In Exp. 1, pigs (n = 42; 13.8 kg) were fed diets formulated to contain either 2,300 or 2,...

97

Development and Comparison of SYBR Green Quantitative Real-time PCR Assays for Detection and Enumeration of Sulfate-reducing Bacteria in Stored Swine Manure  

Technology Transfer Automated Retrieval System (TEKTRAN)

A quantitative real-time polymerase chain reaction (PCR) assay for sulfate-reducing bacteria (SRB) was developed that targeted the dissimilatory sulfite reductase gene (dsrA). Degenerate primer sets were developed to detect three different groups of SRB in stored swine manure using a SYBR Green qua...

98

[Primary study on contents of sulfate reducing bacteria (SRB) and organic matter from intertidal zone at Chongming Dongtan].  

PubMed

Collected soil samples from different tidal flats and elevation in Chongming Dongtan wetland, then conducted sulfate-reducing bacteria (SRB) based on MPN method, determined organic matter content and calculated SO4(2-)/Cl- molar ratio, for the research on the distribution of SRB, relevance to soil organic matter content as well as influence of plant rhizosphere environment on SRB growth. The results show the distribution of SRB is ranked as middle flat > climax flat > bald flat. The same tidal flats at different depths, the SRB levels are shown as 51-52 cm > 21-22 cm > 81-82 cm, therefore 51-52 cm soil depth of Dongtan wetland is the suitable area for SRB to grow. However, in different tidal and depth, the distribution of organic matter content presents climax flat > middle flat > bald flat. From 21-51 cm, as the depth increasing, the organic matter content decreases while the amount of SRB significantly increasing, which indicates SRB utilizes the soil organic matter to carry out reduction reaction. The SO4(2-)/Cl- molar ratios of all soil samples are less than 0.05, indicating that SRB are actively engaged in sulfate reduction. The concentration of SRB in reed rhizosphere soil is the highest, showing that Phragmites australis rhizosphere environment in Dongtan wetland could enhance SRB growth, while the number of SRB in Spartina alterniflora rhizosphere environment is relatively lower than the non-rhizosphere environment, indicating that the rhizosphere effect has different effects on SRB in Dongtan tidal flats. PMID:21072939

Yuan, Qi; Cui, Yu-Xue; Chen, Qing-Qiang; Lü, Bao-Yi; Xie, Bing

2010-09-01

99

Assessing the Role of Iron Sulfides in the Long Term Sequestration of Uranium by Sulfate-Reducing Bacteria  

SciTech Connect

This overarching aim of this project was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. The work reported herein was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM). Research at ASU, focused on the biogenesis aspects, examined the biogeochemical bases for iron-sulfide production by Desulfovibrio vulgaris, a Gram-negative bacterium that is one of the most-studied strains of sulfate-reducing bacteria. A series of experimental studies were performed to investigate comprehensively important metabolic and environmental factors that affect the rates of sulfate reduction and iron-sulfide precipitation, the mineralogical characteristics of the iron sulfides, and how uranium is reduced or co-reduced by D. vulagaris. FeS production studies revealed that controlling the pH affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH produced larger-sized mackinawite (Fe1+xS). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and stimulated mackinawite transformation to greigite (Fe3S4) when the free sulfide concentration was 29.3 mM. On the other hand, using solid Fe(III) (hydr)oxides as the iron source led to less productivity of FeS due to their slow and incomplete dissolution and scavenging of sulfide. Furthermore, sufficient free Fe2+, particularly during Fe(III) (hydr)oxide reductions, led to the additional formation of vivianite [Fe3(PO4)2•8(H2O)]. The U(VI) reduction studies revealed that D. vulgaris reduced U(VI) fastest when accumulating sulfide from concomitant sulfate reduction, since direct enzymatic and sulfide-based reductions of U(VI) occurred in parallel. The UO2 produced in presence of ferrous iron was poorly crystalline. At UM, laboratory-scale reactor studies were performed to assess the potential for the predominant abiotic reductants formed under sulfate reducing conditions (SRCs) to: (1) reduce U(VI) in contaminated groundwater sediments), and (2) inhibit the re-oxidation of U(IV) species, and in particular, uraninite (UO2(s)). Under SRCs, mackinawite and aqueous sulfide are the key reductants expected to form. To assess their potential for abiotic reduction of U(VI) species, a series of experiments were performed in which either FeS or S(-II) was added to solutions of U(VI), with the rates of conversion to U(IV) solids monitored as a function of pH, and carbonate and calcium concentration. In the presence of FeS and absence of oxygen or carbonate, U(IV) was completely reduced uraninite. S(-II) was also found to be an effective reductant of aqueous phase U(VI) species and produced uraninite, with the kinetics and extent of reduction depending on geochemical conditions. U(VI) reduction to uraninite was faster under higher S(-II) concentrations but was slowed by an increase in the dissolved Ca or carbonate concentration. Rapid reduction of U(VI) occurred at circumneutral pH but virtually no reduction occurred at pH 10.7. In general, dissolved Ca and carbonate slowed abiotic U(VI) reduction by forming stable Ca-U(VI)-carbonate soluble complexes that are resistant to reaction with aqueous sulfide. To investigate the stability of U(IV) against re-oxidation in the presence of iron sulfides by oxidants in simulated groundwater environments, and to develop a mechanistic understanding the controlling redox processes, continuously-mixed batch reactor (CMBR) and flow-through reactor (CMFR) studies were performed at UM. In these studies a series of experiments were conducted under various oxic groundwater conditions to examine the effectiveness of FeS as an oxygen scavenger to retard UO2 dissolution. The results indicate that FeS is an effective oxygen scavenger, and can lower the rate of oxidative dissolution of UO2 by over an order of magnitude compared to

Hayes, Kim F.; Bi, Yuqiang; Carpenter, Julian; Hyng, Sung Pil; Rittmann, Bruce E.; Zhou, Chen; Vannela, Raveender; Davis, James A.

2014-01-01

100

Enzymatic Recovery of Elemental Palladium by Using Sulfate-Reducing Bacteria  

PubMed Central

Worldwide usage of platinum group metals is increasing, prompting new recovery technologies. Resting cells of Desulfovibrio desulfuricans reduced soluble Pd2+ to elemental, cell-bound Pd0 supported by pyruvate, formate, or H2 as the electron donor without biochemical cofactors. Pd reduction was O2 insensitive, opening the way for recycling and recovery of Pd under oxic conditions. PMID:9797331

Lloyd, Jon R.; Yong, Ping; Macaskie, Lynne E.

1998-01-01

101

Bacterial community structure and activity of sulfate reducing bacteria in a membrane aerated biofilm analyzed by microsensor and molecular techniques.  

PubMed

The activities and vertical spatial distribution of sulfate reducing bacteria (SRB) in an oxygen (O2 )-based membrane aerated biofilm (MAB) were investigated using microsensor (O2 and H2 S) measurements and molecular techniques (polymerase chain reaction-denaturing gradient gel electrophoresis [PCR-DGGE] and fluorescence in situ hybridization [FISH]). The O2 concentration profile revealed that O2 penetrated from the bottom (substratum) of the gas permeable membrane, and was gradually consumed within the biofilm until it was completely depleted near the biofilm/bulk liquid interface, indicating oxic and anoxic zone in the MAB. The H2 S concentration profile showed that H2 S production was found in the upper 285?µm of the biofilm, indicating a high activity of SRB in this region. The results from DGGE of the PCR-amplified dissimilatory sulfite reductase subunit B (dsrB) gene and FISH showed an uneven spatial distribution of SRB. The maximum SRB biomass was located in the upper biofilm. The information from the molecular analysis can be supplemented with that from microsensor measurements to better understand the microbial community and activity of SRB in the MAB. PMID:24890472

Liu, Hong; Tan, Shuying; Sheng, Zhiya; Liu, Yang; Yu, Tong

2014-11-01

102

Influence of four antimicrobials on methane-producing archaea and sulfate-reducing bacteria in anaerobic granular sludge.  

PubMed

The influence of Cephalexin (CLX), Tetracycline (TC), Erythromycin (ERY) and Sulfathiazole (ST) on methane-producing archaea (MPA) and sulfate-reducing bacteria (SRB) in anaerobic sludge was investigated using acetate or ethanol as substrate. With antimicrobial concentrations below 400mgL(-1), the relative specific methanogenic activity (SMA) was above 50%, so that the antimicrobials exerted slight effects on archaea. However ERY and ST at 400mgL(-1) caused a 74.5% and 57.6% inhibition to specific sulfidogenic activity (SSA) when the sludge granules were disrupted and ethanol used as substrate. After disruption, microbial tolerance to antimicrobials decreased, but the rate at which MPA utilized acetate and ethanol increased from 0.95gCOD·(gVSS?d)(-1) to 1.45gCOD·(gVSS?d)(-1) and 0.90gCOD·(gVSS?d)(-1) to 1.15gCOD·(gVSS?d)(-1) respectively. The ethanol utilization rate for SRB also increased after disruption from 0.35gCOD·(gVSS?d)(-1) to 0.46gCOD·(gVSS?d)(-1). Removal rates for CLX approaching 20.0% and 25.0% were obtained used acetate and ethanol respectively. The disintegration of granules improved the CLX removal rate to 65% and 78%, but ST was not removed during this process. PMID:25228232

Du, Jingru; Hu, Yong; Qi, Weikang; Zhang, Yanlong; Jing, Zhaoqian; Norton, Michael; Li, Yu-You

2014-09-13

103

Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov.  

PubMed

Deep subsurface sandstones in the area of Berlin (Germany) located 600 to 1060 m below the surface were examined for the presence of viable microorganisms. The in situ temperatures at the sampling sites ranged from 37 to 45 degrees C. Investigations focussed on sulfate-reducing bacteria able to grow on methanol and triethylene glycol, which are added as chemicals to facilitate the long-term underground storage of natural gas. Seven strains were isolated from porewater brines in the porous sandstone. Three of them were obtained with methanol (strains H1M, H3M, and B1M), three strains with triethylene glycol (strains H1T, B1T, and B2T) and one strain with a mixture of lactate, acetate and butyrate (strain H1-13). Due to phenotypic properties six isolates could be identified as members of the genus Desulfovibrio, and strain B2T as a Desulfotomaculum. The salt tolerance and temperature range for growth indicated that the isolates originated from the indigenous deep subsurface sandstones. They grew in mineral media reflecting the in situ ionic composition of the different brines, which contained 1.5 to 190 g NaCl x l(-1) and high calcium and magnesium concentrations. The Desulfovibrio strains grew at temperatures between 20 and 50 degrees C, while the Desulfotomaculum strain was thermophilic and grew between 30 and 65 degrees C. The strains utilized a broad spectrum of electron donors and acceptors. They grew with carbon compounds like lactate, pyruvate, formate, n-alcohols (C1-C5), glycerol, ethylene glycol, malate, succinate, and fumarate. Some strains even utilized glucose as electron donor and carbon source. All strains were able to use sulfate, sulfite and nitrate as electron acceptors. Additionally, three Desulfovibrio strains reduced manganese oxide, the Desulfotomaculum strain reduced manganese oxide, iron oxide, and elemental sulfur. The 16S rRNA analysis revealed that the isolates belong to three different species. The strains H1T, H3M and B1M could be identified as Desulfovibrio indonesiensis, and strain B2T as Desulfotomaculum geothermicum. The other Desulfovibrio strains (H1M, H1-13, and B1T) showed identical 16S rDNA sequences and similarities as low as 93% to their closest relative, Desulfovibrio aminophilusT. Therefore, these isolates were assigned to a new species, Desulfovibrio cavernae sp. nov., with strain H1M as the type strain. PMID:15490555

Sass, Henrik; Cypionka, Heribert

2004-09-01

104

Simultaneous degradation of waste phosphogypsum and liquid manure from industrial pig farm by a mixed community of sulfate-reducing bacteria.  

PubMed

The utilization of pig manure as a source of nutrients for the dissimilatory reduction of sulfates present in phosphogypsum was investigated. In both types of media used (synthetic medium and raw pig manure) increased utilization of sulfates with growing COD/SO4(2-)ratio in the medium was observed. The percent of sulfate reduction obtained in synthetic medium was from 18 to 99%, whereas the value for cultures set up in raw liquid manure was from 12% (at COD/SO4(2-) of 0.3) up to as high as 98% (at COD/SO4(2-) equal 3.80). Even with almost complete reduction of sulfates the percent of COD reduction did not exceed 55%. Based on the results obtained it was concluded that the effectiveness of removal of sulfates and organic matter by sulfate-reducing bacteria (SRB) depends to a considerable degree on the proportion between organic matter and sulfates in the purified wastewaters. The optimal COD/SO4(2-)ratio for the removal oforganic matter was between 0.6 and 1.2 whereas the optimal ratio for the removal of sulfates was between 2.4 and 4.8. PMID:21466041

Rzeczycka, Marzenna; Miernik, Antoni; Markiewicz, Zdzislaw

2010-01-01

105

Passive Treatment of Acid Mine Drainage in Bioreactors using Sulfate-Reducing Bacteria: Critical Review and Research Needs  

Microsoft Academic Search

Acid mine drainage (AMD), characterized by low pH and high concentrations of sulfate and heavy metals, is an important and widespread environmental problem related to the mining industry. Sulfate-reducing passive bioreactors have received much attention lately as promising biotechnologies for AMD treatment. They offer advantages such as high metal removal at low pH, stable sludge, very low operation costs, and

Carmen-Mihaela Neculita; Gerald J. Zagury; Bruno Bussiere

2007-01-01

106

A biological process for the reclamation of flue gas desulfurization gypsum using mixed sulfate-reducing bacteria with inexpensive carbon sources  

Microsoft Academic Search

A combined chemical and biological process for the recycling of flue gas desulfurization (FGD) gypsum into calcium carbonate\\u000a and elemental sulfur is demonstrated. In this process, a mixed culture of sulfate-reducing bacteria (SRB) utilizes inexpensive\\u000a carbon sources, such as sewage digest or synthesis gas, to reduce FGD gypsum to hydrogen sulfide. The sulfide is then oxidized\\u000a to elemental sulfur via

Eric N. Kaufman; Mark H. Little; PUNJAI T. SELVARAJ

1997-01-01

107

Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria  

PubMed Central

Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1) that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS). It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched ?-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 ?g/ml). Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential alternative to the chemical biocides or surface coating agents currently used to prevent SRB growth in petroleum industries. PMID:23131170

2012-01-01

108

Characterization of sulfate-reducing bacteria dominated surface communities during start-up of a down-flow fluidized bed reactor  

Microsoft Academic Search

An anaerobic down-flow fluidized bed reactor was inoculated with granular sludge and started-up with sulfate containing synthetic\\u000a wastewater to promote the formation of a biofilm enriched in sulfate-reducing bacteria (SRB), to produce biogenic sulfide.\\u000a The start-up was done in two stages operating the reactor in batch for 45 days followed by 85 days of continuous operation.\\u000a Low-density polyethylene was used as support.

Lourdes B. Celis; Denys Villa-Gómez; Angel G. Alpuche-Solís; B. Otto Ortega-Morales; Elías Razo-Flores

2009-01-01

109

Growth and Population Dynamics of Anaerobic Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in a Continuous-Flow Bioreactor  

PubMed Central

The consumption of methane in anoxic marine sediments is a biogeochemical phenomenon mediated by two archaeal groups (ANME-1 and ANME-2) that exist syntrophically with sulfate-reducing bacteria. These anaerobic methanotrophs have yet to be recovered in pure culture, and key aspects of their ecology and physiology remain poorly understood. To characterize the growth and physiology of these anaerobic methanotrophs and the syntrophic sulfate-reducing bacteria, we incubated marine sediments using an anoxic, continuous-flow bioreactor during two experiments at different advective porewater flow rates. We examined the growth kinetics of anaerobic methanotrophs and Desulfosarcina-like sulfate-reducing bacteria using quantitative PCR as a proxy for cell counts, and measured methane oxidation rates using membrane-inlet mass spectrometry. Our data show that the specific growth rates of ANME-1 and ANME-2 archaea differed in response to porewater flow rates. ANME-2 methanotrophs had the highest rates in lower-flow regimes (?ANME-2 = 0.167 · week?1), whereas ANME-1 methanotrophs had the highest rates in higher-flow regimes (?ANME-1 = 0.218 · week?1). In both incubations, Desulfosarcina-like sulfate-reducing bacterial growth rates were approximately 0.3 · week?1, and their growth dynamics suggested that sulfate-reducing bacterial growth might be facilitated by, but not dependent upon, an established anaerobic methanotrophic population. ANME-1 growth rates corroborate field observations that ANME-1 archaea flourish in higher-flow regimes. Our growth and methane oxidation rates jointly demonstrate that anaerobic methanotrophs are capable of attaining substantial growth over a range of environmental conditions used in these experiments, including relatively low methane partial pressures. PMID:16000782

Girguis, Peter R.; Cozen, Aaron E.; DeLong, Edward F.

2005-01-01

110

Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach.  

PubMed

Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 ?M and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared. PMID:20729318

Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K; Jardine, Philip M; Zhou, Jizhong; Criddle, Craig S; Marsh, Terence L; Tiedje, James M

2010-10-01

111

Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach? †  

PubMed Central

Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 ?M and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared. PMID:20729318

Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Jardine, Philip M.; Zhou, Jizhong; Criddle, Craig S.; Marsh, Terence L.; Tiedje, James M.

2010-01-01

112

Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria.  

PubMed

Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on Earth. Two factors that contribute to carbonate mineral precipitation are the saturation index (SI) and the presence of nucleation sites. Both of these can be influenced by micro-organisms, which can either alter SI through their metabolisms, or produce and consume organic substances such as extracellular polymeric substances (EPS) that can affect nucleation. It is the balance of individual metabolisms within the mat community that determines the pH and the dissolved inorganic carbon concentration, thereby potentially increasing the alkalinity and consequently the SI. Sulfate-reducing bacteria (SRB) are an important component of this 'alkalinity engine.' The activity of SRB often peaks in layers where CaCO(3) precipitates, and mineral precipitation has been demonstrated in SRB cultures; however, the effect of their metabolism on the alkalinity engine and actual contribution to mineral precipitation is the subject of controversy. Here, we show through culture experiments, theoretical calculations, and geochemical modeling studies that the pH, alkalinity, and organomineralization potential will vary depending on the type of electron donor. Specifically, hydrogen and formate can increase the pH, but electron donors like lactate and ethanol, and to a lesser extent glycolate, decrease the pH. The implication of this for the lithification of mats is that the combination of processes supplying electron donors and the utilization of these compounds by SRB may be critical to promoting mineral precipitation. PMID:22925453

Gallagher, K L; Kading, T J; Braissant, O; Dupraz, C; Visscher, P T

2012-11-01

113

Application of Denaturing High-Performance Liquid Chromatography for Monitoring Sulfate-Reducing Bacteria in Oil Fields  

PubMed Central

Sulfate-reducing bacteria (SRB) participate in microbially induced corrosion (MIC) of equipment and H2S-driven reservoir souring in oil field sites. Successful management of industrial processes requires methods that allow robust monitoring of microbial communities. This study investigated the applicability of denaturing high-performance liquid chromatography (DHPLC) targeting the dissimilatory sulfite reductase ß-subunit (dsrB) gene for monitoring SRB communities in oil field samples from the North Sea, the United States, and Brazil. Fifteen of the 28 screened samples gave a positive result in real-time PCR assays, containing 9 × 101 to 6 × 105 dsrB gene copies ml?1. DHPLC and denaturing gradient gel electrophoresis (DGGE) community profiles of the PCR-positive samples shared an overall similarity; both methods revealed the same samples to have the lowest and highest diversity. The SRB communities were diverse, and different dsrB compositions were detected at different geographical locations. The identified dsrB gene sequences belonged to several phylogenetic groups, such as Desulfovibrio, Desulfococcus, Desulfomicrobium, Desulfobulbus, Desulfotignum, Desulfonatronovibrio, and Desulfonauticus. DHPLC showed an advantage over DGGE in that the community profiles were very reproducible from run to run, and the resolved gene fragments could be collected using an automated fraction collector and sequenced without a further purification step. DGGE, on the other hand, included casting of gradient gels, and several rounds of rerunning, excising, and reamplification of bands were needed for successful sequencing. In summary, DHPLC proved to be a suitable tool for routine monitoring of the diversity of SRB communities in oil field samples. PMID:23793633

Nyyssönen, Mari; Bomberg, Malin; Laitila, Arja; Simell, Jaakko; Kapanen, Anu; Juvonen, Riikka

2013-01-01

114

Effects of Long-Term Acid-Mine Drainage Contamination on Diversity and Activity of Sulfate-Reducing Bacteria in a Natural Salt Marsh  

Microsoft Academic Search

Constructed wetlands have been studied as sites or analogs for in situ bioremediation of metal contaminants from acid mine drainage (AMD) or industrial sources (e.g. Webb et al. 1998). Wetlands bioremediation necessarily invokes the ubiquity and robustness of sulfate-reducing bacteria (SRB) to sequester dissolved metals into various poorly soluble metal-sulfides (e.g. PbS, CdS). However, few studies of natural wetlands under

J. W. Moreau; J. F. Banfield

2003-01-01

115

Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions  

Microsoft Academic Search

Natural relationships, improvement of anaerobic growth on hydrocarbons, and properties that may provide clues to an understanding\\u000a of oxygen-independent alkane metabolism were studied with two mesophilic sulfate-reducing bacteria, strains Hxd3 and Pnd3.\\u000a Strain Hxd3 had been formerly isolated from an oil tank; strain Pnd3 was isolated from marine sediment. Strains Hxd3 and Pnd3\\u000a grew under strictly anoxic conditions on n-alkanes

Frank Aeckersberg; Fred A. Rainey; Friedrich Widdel

1998-01-01

116

Assessing the Role of Iron Sulfides in the Long Term Sequestration of U by Sulfate Reducing Bacteria  

SciTech Connect

This four-year project’s overarching aim was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. As stated in this final report, significant progress was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM).

Rittman, Bruce; Zhou, Chen; Vannela, Raveender

2013-12-31

117

DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria  

Microsoft Academic Search

A denaturing gradient gel electrophoresis (DGGE) method was developed to assess the diversity of dsrB (dissimilatory sulfite reductase ?-subunit)-genes in sulfate-reducing communities. For this purpose a PCR primer pair was optimized for the amplification of a ?350 bp dsrB gene fragment that after DGGE gel electrophoresis enabled us to discriminate between dsrB genes of different SRB-subgroups,-genera and -species. The dsrB-DGGE

Joke Geets; Brigitte Borremans; Ludo Diels; Dirk Springael; Jaco Vangronsveld; Daniel van der Lelie; Karolien Vanbroekhoven

2006-01-01

118

Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil.  

PubMed Central

A mesophilic sulfate-reducing enrichment culture growing anaerobically on crude oil was used as a model system to study which nutritional types of sulfate-reducing bacteria may develop on original petroleum constituents in oil wells, tanks, and pipelines. Chemical analysis of oil hydrocarbons during growth revealed depletion of toluene and o-xylene within 1 month and of m-xylene, o-ethyltoluene, m-ethyltoluene, m-propyltoluene, and m-isopropyltoluene within approximately 2 months. In anaerobic counting series, the highest numbers of CFU (6 x 10(6) to 8 x 10(6) CFU ml-1) were obtained with toluene and benzoate. Almost the same numbers were obtained with lactate, a substrate often used for detection of the vibrio-shaped, incompletely oxidizing Desulfovibrio sp. In the present study, however, lactate yielded mostly colonies of oval to rod-shaped, completely oxidizing, sulfate-reducing bacteria which were able to grow slowly on toluene or crude oil. Desulfovibrio species were detected only at low numbers (3 x 10(5) CFU ml-1). In agreement with this finding, a fluorescently labeled, 16S rRNA-targeted oligonucleotide probe described in the literature as specific for members of the Desulfovibrionaceae (suggested family) hybridized only with a small portion (< 5%) of the cells in the enrichment culture. These results are consistent with the observation that known Desulfovibrio species do not utilize aromatic hydrocarbons, the predominant substrates in the enrichment culture. All known sulfate-reducing bacteria which utilize aromatic compounds belong to a separate branch, the Desulfobacteriaceae (suggested family). Most members of this family are complete oxidizers. For specific hybridization with members of this branch, the probe had to be modified by a nucleotide exchange. Indeed, this modified probe hybridized with more than 95% of the cells in the enrichment culture. The results show that completely oxidizing, alkylbenzene-utilizing sulfate-reducing bacteria rather than Desulfovibrio species have to be considered in attempts to understand the microbiology of sulfide production in oil wells, tanks, and pipelines when no electron donors other than the indigenous oil constituents are available. PMID:8837415

Rabus, R; Fukui, M; Wilkes, H; Widdle, F

1996-01-01

119

Properties of Desulfovibrio carbinolicus sp. nov. and Other Sulfate-Reducing Bacteria Isolated from an Anaerobic-Purification Plant  

PubMed Central

Several sulfate-reducing microorganisms were isolated from an anaerobic-purification plant. Four strains were classified as Desulfovibrio desulfuricans, Desulfovibrio sapovorans, Desulfobulbus propionicus, and Desulfovibrio sp. The D. sapovorans strain contained poly-?-hydroxybutyrate granules and seemed to form extracellular vesicles. A fifth isolate, Desulfovibrio sp. strain EDK82, was a gram-negative, non-spore-forming, nonmotile, curved organism. It was able to oxidize several substrates, including methanol. Sulfate, sulfite, thiosulfate, and sulfur were utilized as electron acceptors. Pyruvate, fumarate, malate, and glycerol could be fermented. Because strain EDK82 could not be ascribed to any of the existing species, a new species, Desulfovibrio carbinolicus, is proposed. The doubling times of the isolates were determined on several substrates. Molecular hydrogen, lactate, propionate, and ethanol yielded the shortest doubling times (3.0 to 6.3 h). Due to the presence of support material in an anaerobic filter system, these species were able to convert sulfate to sulfide very effectively at a hydraulic retention time as short as 0.5 h. Images PMID:16347324

Nanninga, Henk J.; Gottschal, Jan C.

1987-01-01

120

Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.  

PubMed

A gramicidin-S-producing Bacillus brevis 18-3 biofilm was shown to reduce corrosion rates of mild steel by inhibiting both the sulfate-reducing bacterium Desulfosporosinus orientis and the iron-oxidizing bacterium Leptothrix discophora SP-6. When L. discophora SP-6 was introduced along with D. orientis to a non-antimicrobial-producing biofilm control, Paenibacillus polymyxa ATCC 10401, a corrosive synergy was created and mild steel coupons underwent more severe corrosion than when only D. orientis was present, showing a 2.3-fold increase via electrochemical impedance spectroscopy (EIS) and a 1.8-fold difference via mass-loss measurements. However, when a gramicidin-S-producing, protective B. brevis 18-3 biofilm was established on mild steel, the metal coupons were protected against the simultaneous attack of D. orientis and L. discophora SP-6. EIS data showed that the protective B. brevis 18-3 biofilm decreased the corrosion rate about 20-fold compared with the non-gramicidin-producing P. polymyxa ATCC 10401 biofilm control. The mass loss for the protected mild steel coupons was also significantly lower than that for the unprotected ones (4-fold decrease). Scanning electron microscope images corroborated the corrosion inhibition by the gramicidin-S-producing B. brevis biofilm on mild steel by showing that the metal surface remained untarnished, i.e., the polishing grooves were still visible after exposure to the simultaneous attack of the sulfate-reducing bacterium and the iron-oxidizing bacterium. PMID:15278311

Zuo, Rongjun; Wood, Thomas K

2004-11-01

121

Antagonistic activity of Bacillus sp. obtained from an Algerian oilfield and chemical biocide THPS against sulfate-reducing bacteria consortium inducing corrosion in the oil industry.  

PubMed

The present study enlightens the role of the antagonistic potential of nonpathogenic strain B21 against sulfate-reducing bacteria (SRB) consortium. The inhibitor effects of strain B21 were compared with those of the chemical biocide tetrakishydroxymethylphosphonium sulfate (THPS), generally used in the petroleum industry. The biological inhibitor exhibited much better and effective performance. Growth of SRB in coculture with bacteria strain B21 antagonist exhibited decline in SRB growth, reduction in production of sulfides, with consumption of sulfate. The observed effect seems more important in comparison with the effect caused by the tested biocide (THPS). Strain B21, a dominant facultative aerobic species, has salt growth requirement always above 5% (w/v) salts with optimal concentration of 10-15%. Phylogenetic analysis based on partial 16S rRNA gene sequences showed that strain B21 is a member of the genus Bacillus, being most closely related to Bacillus qingdaonensis DQ115802 (94.0% sequence similarity), Bacillus aidingensis DQ504377 (94.0%), and Bacillus salarius AY667494 (92.2%). Comparative analysis of partial 16S rRNA gene sequence data plus physiological, biochemical, and phenotypic features of the novel isolate and related species of Bacillus indicated that strain B21 may represent a novel species within the genus Bacillus, named Bacillus sp. (EMBL, FR671419). The results of this study indicate the application potential of Bacillus strain B21 as a biocontrol agent to fight corrosion in the oil industry. PMID:20949304

Gana, Mohamed Lamine; Kebbouche-Gana, Salima; Touzi, Abdelkader; Zorgani, Mohamed Amine; Pauss, André; Lounici, Hakim; Mameri, Nabil

2011-03-01

122

The Sulfate-Rich and Extreme Saline Sediment of the Ephemeral Tirez Lagoon: A Biotope for Acetoclastic Sulfate-Reducing Bacteria and Hydrogenotrophic Methanogenic Archaea  

PubMed Central

Our goal was to examine the composition of methanogenic archaea (MA) and sulfate-reducing (SRP) and sulfur-oxidizing (SOP) prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain). Thus, adenosine-5?-phosphosulfate (APS) reductase ? (aprA) and methyl coenzyme M reductase ? (mcrA) gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE) fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ?-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in ?-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA. PMID:21915180

Montoya, Lilia; Lozada-Chávez, Irma; Amils, Ricardo; Rodriguez, Nuria; Marín, Irma

2011-01-01

123

Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps  

PubMed Central

The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20?°C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with 13C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in 13C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture. PMID:23254512

Jaekel, Ulrike; Musat, Niculina; Adam, Birgit; Kuypers, Marcel; Grundmann, Olav; Musat, Florin

2013-01-01

124

Molecular analysis of deep subsurface Cretaceous rock indicates abundant Fe(III)- and S°-reducing bacteria in a sulfate-rich environment  

SciTech Connect

A multi-level sampler (MLS) was emplaced in a borehole straddling anaerobic, sulfate-rich Cretaceous-era shale and sandstone rock formations {approx}200 m below ground surface at Cerro Negro, New Mexico. Sterile quartzite sand contained in chambers in the sampler allowed in situ colonization and recovery of nucleic acids for molecular analyses. DGGE and 16S rRNA gene cloning results indicated a homogeneously distributed bacterial community across the shale/sandstone interface. ?-Proteobacteria sequences were common at all depths, and were dominated by members of the Geobacteraceae family (Pelobacter, Desulfuromonas, and Geobacter). Other members of this group are capable of dissimilatory Fe(III) and/or S0 reduction, but not sulfate reduction. RNA hybridization data also suggested that Fe(III)/S0 reducing bacteria were predominant. These findings are striking considering the lack of significant concentrations of these electron acceptors in this environment. The next most abundant bacterial group indicated was the sulfate reducers, including Desulfobacterium, Desulfocapsa and Desulfobulbus. Sequences related to fermenters, denitrifiers and acetogens were also recovered. The presence of a phylogenetically and functionally diverse microbial community in this deep subsurface environment likely reflects the complex nature of the primary energy and carbon sources, kerogen associated with the shale.

Kovacik, William P.; Takai, Ken; Mormile, Melanie R.; McKinley, James P.; Brockman, Fred J.; Fredrickson, Jim K.; Holben, William E.

2006-01-01

125

Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50.  

PubMed

Acid mine drainage from abandoned mines and acid mine pit lakes is an important environmental concern and usually contains appreciable concentrations of heavy metals. Because sulfate-reducing bacteria (SRB) are involved in the treatment of acid mine drainage, knowledge of acute metal toxicity levels for SRB is essential for the proper functioning of the treatment system for acid mine drainage. Quantification of heavy metal toxicity to mixed cultures of SRB is complicated by the confounding effects of metal hydroxide and sulfide precipitation, biosorption, and complexation with the constituents of the reaction matrix. The objective of this paper was to demonstrate that measurements of dissolved metal concentrations could be used to determine the toxicity parameters for mixed cultures of sulfate-reducing bacteria. The effective concentration, 100% (EC100), the lowest initial dissolved metal concentrations at which no sulfate reduction is observed, and the effective concentration, 50% (EC50), the initial dissolved metal concentrations resulting in a 50% decrease in sulfate reduction, for copper and zinc were determined in the present study by means of nondestructive, rapid physical and chemical analytical techniques. The reaction medium used in the experiments was designed specifically (in terms of pH and chemical composition) to provide the nutrients necessary for the sulfidogenic activity of the SRB and to preclude chemical precipitation of the metals under investigation. The toxicity-mitigating effects of biosorption of dissolved metals were also quantified. Anaerobic Hungate tubes were set up (at least in triplicate) and monitored for sulfate-reduction activity. The onset of SRB activity was detected by the blackening of the reaction mixture because of formation of insoluble ferrous sulfide. The EC100 values were found to be 12 mg/L for copper and 20 mg/L for zinc. The dissolved metal concentration measurements were effective as the indicators of the effect of the heavy metals at concentrations below EC100. The 7-d EC50 values obtained from the difference between the dissolved metal concentrations for the control tubes (tubes not containing copper or zinc) and tubes containing metals were found to be 10.5 mg/L for copper and 16.5 mg/L for zinc. Measurements of the turbidity and pH, bacterial population estimations by means of a most-probable number technique, and metal recovery in the sulfide precipitate were found to have only a limited applicability in these determinations. PMID:11764146

Utgikar, V P; Chen, B Y; Chaudhary, N; Tabak, H H; Haines, J R; Govind, R

2001-12-01

126

A biological process for the reclamation of flue gas desulfurization gypsum using mixed sulfate-reducing bacteria with inexpensive carbon sources.  

PubMed

A combined chemical and biological process for the recycling of flue gas desulfurization (FGD) gypsum into calcium carbonate and elemental sulfur is demonstrated. In this process, a mixed culture of sulfate-reducing bacteria (SRB) utilizes inexpensive carbon sources, such as sewage digest or synthesis gas, to reduce FGD gypsum to hydrogen sulfide. The sulfide is then oxidized to elemental sulfur via reaction with ferric sulfate, and accumulating calcium ions are precipitated as calcium carbonate using carbon dioxide. Employing anaerobically digested municipal sewage sludge (AD-MSS) medium as a carbon source, SRBs in serum bottles demonstrated an FGD gypsum reduction rate of 8 mg/L/h (10(9) cells)(-1). A chemostat with continuous addition of both AD-MSS media and gypsum exhibited sulfate reduction rates as high as 1.3 kg FGD gypsum/m(3)d. The increased biocatalyst density afforded by cell immobilization in a columnar reactor allowed a productivity of 152 mg SO(4) (-2)/Lh or 6.6 kg FGD gypsum/m(3)d. Both reactors demonstrated 100% conversion of sulfate, with 75-100% recovery of elemental sulfur and chemical oxygen demand utilization as high as 70%. Calcium carbonate was recovered from the reactor effluent on precipitation using carbon dioxide. It was demonstrated that SRBs may also use synthesis gas (CO, H(2), and CO(2) in the reduction of gypsum, further decreasing process costs. The formation of two marketable products-elemental sulfur and calcium carbonate-from FGD gypsum sludge, combined with the use of a low-cost carbon source and further improvements in reactor design, promises to offer an attractive alternative to the landfilling of FGD gypsum. PMID:18576124

Kaufman, E N; Little, M H; Selvaraj, P

1997-01-01

127

Sulfate-reducing bacteria in floating macrophyte rhizospheres from an Amazonian floodplain lake in Bolivia and their association with Hg methylation.  

PubMed

Five subgroups of sulfate-reducing bacteria (SRB) were detected by PCR in three macrophyte rhizospheres (Polygonum densiflorum, Hymenachne donacifolia, and Ludwigia helminthorriza) and three subgroups in Eichhornia crassipes from La Granja, a floodplain lake from the upper Madeira basin. The SRB community varied according to the macrophyte species but with different degrees of association with their roots. The rhizosphere of the C4 plant Polygonum densiflorum had higher frequencies of SRB subgroups as well as higher mercury methylation potentials (27.5 to 36.1%) and carbon (16.06 +/- 5.40%), nitrogen (2.03 +/- 0.64%), Hg (94.50 +/- 6.86 ng Hg g(-1)), and methylmercury (8.25 +/- 1.45 ng Hg g(-1)) contents than the rhizosphere of the C3 plant Eichhornia crassipes. Mercury methylation in Polygonum densiflorum and Eichhornia crassipes was reduced when SRB metabolism was inhibited by sodium molybdate. PMID:16269796

Achá, Darío; Iñiguez, Volga; Roulet, Marc; Guimarães, Jean Remy Davée; Luna, Ruddy; Alanoca, Lucia; Sanchez, Samanta

2005-11-01

128

Sulfate-Reducing Bacteria in Floating Macrophyte Rhizospheres from an Amazonian Floodplain Lake in Bolivia and Their Association with Hg Methylation  

PubMed Central

Five subgroups of sulfate-reducing bacteria (SRB) were detected by PCR in three macrophyte rhizospheres (Polygonum densiflorum, Hymenachne donacifolia, and Ludwigia helminthorriza) and three subgroups in Eichhornia crassipes from La Granja, a floodplain lake from the upper Madeira basin. The SRB community varied according to the macrophyte species but with different degrees of association with their roots. The rhizosphere of the C4 plant Polygonum densiflorum had higher frequencies of SRB subgroups as well as higher mercury methylation potentials (27.5 to 36.1%) and carbon (16.06 ± 5.40%), nitrogen (2.03 ± 0.64%), Hg (94.50 ± 6.86 ng Hg g?1), and methylmercury (8.25 ± 1.45 ng Hg g?1) contents than the rhizosphere of the C3 plant Eichhornia crassipes. Mercury methylation in Polygonum densiflorum and Eichhornia crassipes was reduced when SRB metabolism was inhibited by sodium molybdate. PMID:16269796

Achá, Darío; Iñiguez, Volga; Roulet, Marc; Guimarães, Jean Remy Davée; Luna, Ruddy; Alanoca, Lucia; Sanchez, Samanta

2005-01-01

129

Nested PCR and New Primers for Analysis of Sulfate-Reducing Bacteria in Low-Cell-Biomass Environments? †  

PubMed Central

New primers were designed for the amplification of dsrAB genes by nested PCR to investigate the diversity of sulfate-reducing prokaryotes (SRP) in environments with low bacterial cell density. The success of the nested PCR for the determination of SRP diversity was estimated by terminal-restriction fragment length polymorphism analysis in the Reigous, a small creek at an inactive mine (Carnoulès, France), which constitutes an extreme acidic arsenic-rich environment. Nested PCR limits were evaluated in dsrAB-rich sediments, and this technique was compared to direct PCR using either known primers (DSR1F/DSR4R) or new primers (dsr619AF/dsr1905BR). The comparison of clone libraries revealed that, even if the levels of diversity observed were not identical, nested PCR did not reduce the diversity compared to that of direct DSR1F/DSR4R PCR. Clone sequences were affiliated mainly with the Desulfobacteraceae and Desulfohalobiaceae families. Many sequences (?30%) were related to a deeply branching lineage unaffiliated with any cultured SRP. Although this dsrAB cluster was found in all libraries, the new primers better amplified this lineage, providing more information on this unknown bacterial group. Thanks to these new primers in nested PCR, the SRP community from Carnoulès could be characterized. Specific SRP populations were obtained according to environmental characteristics. Desulfomicrobiaceae-related sequences were recovered in samples with low pH, low levels of dissolved oxygen, and high As content, while sequences belonging to the deeply branching group were found in a less extreme sample. Furthermore, for the first time, dsrAB sequences related to the latter group were recovered from freshwater. PMID:20228118

Giloteaux, Ludovic; Goñi-Urriza, Marisol; Duran, Robert

2010-01-01

130

Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane.  

PubMed

Diverse associations between methanotrophic archaea (ANME) and sulfate-reducing bacterial groups (SRB) often co-occur in marine methane seeps; however, the ecophysiology of these different symbiotic associations has not been examined. Here, we applied a combination of molecular, geochemical and Fluorescence in situ hybridization (FISH) coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS) analyses of in situ seep sediments and methane-amended sediment incubations from diverse locations (Eel River Basin, Hydrate Ridge and Costa Rican Margin seeps) to investigate the distribution and physiology of a newly identified subgroup of the Desulfobulbaceae (seepDBB) found in consortia with ANME-2c archaea, and compared these with the more commonly observed associations between the same ANME partner and the Desulfobacteraceae (DSS). FISH analyses revealed aggregates of seepDBB cells in association with ANME-2 from both environmental samples and laboratory incubations that are distinct in their structure relative to co-occurring ANME/DSS consortia. ANME/seepDBB aggregates were most abundant in shallow sediment depths below sulfide-oxidizing microbial mats. Depth profiles of ANME/seepDBB aggregate abundance revealed a positive correlation with elevated porewater nitrate relative to ANME/DSS aggregates in all seep sites examined. This relationship with nitrate was supported by sediment microcosm experiments, in which the abundance of ANME/seepDBB was greater in nitrate-amended incubations relative to the unamended control. FISH-NanoSIMS additionally revealed significantly higher (15)N-nitrate incorporation levels in individual aggregates of ANME/seepDBB relative to ANME/DSS aggregates from the same incubation. These combined results suggest that nitrate is a geochemical effector of ANME/seepDBB aggregate distribution, and provides a unique niche for these consortia through their utilization of a greater range of nitrogen substrates than the ANME/DSS. PMID:24008326

Green-Saxena, A; Dekas, A E; Dalleska, N F; Orphan, V J

2014-01-01

131

Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane  

PubMed Central

Diverse associations between methanotrophic archaea (ANME) and sulfate-reducing bacterial groups (SRB) often co-occur in marine methane seeps; however, the ecophysiology of these different symbiotic associations has not been examined. Here, we applied a combination of molecular, geochemical and Fluorescence in situ hybridization (FISH) coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS) analyses of in situ seep sediments and methane-amended sediment incubations from diverse locations (Eel River Basin, Hydrate Ridge and Costa Rican Margin seeps) to investigate the distribution and physiology of a newly identified subgroup of the Desulfobulbaceae (seepDBB) found in consortia with ANME-2c archaea, and compared these with the more commonly observed associations between the same ANME partner and the Desulfobacteraceae (DSS). FISH analyses revealed aggregates of seepDBB cells in association with ANME-2 from both environmental samples and laboratory incubations that are distinct in their structure relative to co-occurring ANME/DSS consortia. ANME/seepDBB aggregates were most abundant in shallow sediment depths below sulfide-oxidizing microbial mats. Depth profiles of ANME/seepDBB aggregate abundance revealed a positive correlation with elevated porewater nitrate relative to ANME/DSS aggregates in all seep sites examined. This relationship with nitrate was supported by sediment microcosm experiments, in which the abundance of ANME/seepDBB was greater in nitrate-amended incubations relative to the unamended control. FISH-NanoSIMS additionally revealed significantly higher 15N-nitrate incorporation levels in individual aggregates of ANME/seepDBB relative to ANME/DSS aggregates from the same incubation. These combined results suggest that nitrate is a geochemical effector of ANME/seepDBB aggregate distribution, and provides a unique niche for these consortia through their utilization of a greater range of nitrogen substrates than the ANME/DSS. PMID:24008326

Green-Saxena, A; Dekas, A E; Dalleska, N F; Orphan, V J

2014-01-01

132

A green triple biocide cocktail consisting of a biocide, EDDS and methanol for the mitigation of planktonic and sessile sulfate-reducing bacteria.  

PubMed

Sulfate-reducing bacteria (SRB) cause souring and their biofilms are often the culprit in Microbiologically Influenced Corrosion (MIC). The two most common green biocides for SRB treatment are tetrakis-hydroxymethylphosphonium sulfate (THPS) and glutaraldehyde. It is unlikely that there will be another equally effective green biocide in the market any time soon. This means more effective biocide treatment probably will rely on biocide cocktails. In this work a triple biocide cocktail consisting of glutaraldehyde or THPS, ethylenediaminedisuccinate (EDDS) and methanol was used to treat planktonic SRB and to remove established SRB biofilms. Desulfovibrio vulgaris (ATCC 7757), a corrosive SRB was used as an example in the tests. Laboratory results indicated that with the addition of 10-15% (v/v) methanol to the glutaraldehyde and EDDS double combination, mitigation of planktonic SRB growth in ATCC 1249 medium and a diluted medium turned from inhibition to a kill effect while the chelator dosage was cut from 2,000 to 1,000 ppm. Biofilm removal was achieved when 50 ppm glutaraldehyde combined with 15% methanol and 1,000 ppm EDDS was used. THPS showed similar effects when it was used to replace glutaraldehyde in the triple biocide cocktail to treat planktonic SRB. PMID:22806837

Wen, J; Xu, D; Gu, T; Raad, I

2012-02-01

133

Quantifying Heavy Metals Sequestration by Sulfate-Reducing Bacteria in an Acid Mine Drainage-Contaminated Natural Wetland  

PubMed Central

Bioremediation strategies that depend on bacterial sulfate reduction for heavy metals remediation harness the reactivity of these metals with biogenic aqueous sulfide. Quantitative knowledge of the degree to which specific toxic metals are partitioned into various sulfide, oxide, or other phases is important for predicting the long-term mobility of these metals under environmental conditions. Here we report the quantitative partitioning into sedimentary biogenic sulfides of a suite of metals and metalloids associated with acid mine drainage contamination of a natural estuarine wetland for over a century. PMID:23487496

Moreau, John W.; Fournelle, John H.; Banfield, Jillian F.

2013-01-01

134

Identification of bacteria in enrichment cultures of sulfate reducers in the Cariaco Basin water column employing Denaturing Gradient Gel Electrophoresis of 16S ribosomal RNA gene fragments  

PubMed Central

Background The Cariaco Basin is characterized by pronounced and predictable vertical layering of microbial communities dominated by reduced sulfur species at and below the redox transition zone. Marine water samples were collected in May, 2005 and 2006, at the sampling stations A (10°30? N, 64°40? W), B (10°40? N, 64°45? W) and D (10°43’N, 64°32’W) from different depths, including surface, redox interface, and anoxic zones. In order to enrich for sulfate reducing bacteria (SRB), water samples were inoculated into anaerobic media amended with lactate or acetate as carbon source. To analyze the composition of enrichment cultures, we performed DNA extraction, PCR-DGGE, and sequencing of selected bands. Results DGGE results indicate that many bacterial genera were present that are associated with the sulfur cycle, including Desulfovibrio spp., as well as heterotrophs belonging to Vibrio, Enterobacter, Shewanella, Fusobacterium, Marinifilum, Mariniliabilia, and Spirochaeta. These bacterial populations are related to sulfur coupling and carbon cycles in an environment of variable redox conditions and oxygen availability. Conclusions In our studies, we found an association of SRB-like Desulfovibrio with Vibrio species and other genera that have a previously defined relevant role in sulfur transformation and coupling of carbon and sulfur cycles in an environment where there are variable redox conditions and oxygen availability. This study provides new information about microbial species that were culturable on media for SRB at anaerobic conditions at several locations and water depths in the Cariaco Basin. PMID:23981583

2013-01-01

135

Depth-related coupling relation between methane-oxidizing bacteria (MOBs) and sulfate-reducing bacteria (SRBs) in a marine sediment core from the Dongsha region, the South China Sea.  

PubMed

The vertical distributions of methane-oxidizing bacteria (MOBs) and sulfate-reducing bacteria (SRBs) in the marine sediment core of DH-CL14 from the Dongsha region, the South China Sea, were investigated. To enumerate MOBs and SRBs, their specific genes of pmoA and apsA were quantified by a culture-independent molecular biological technique, real-time polymerase chain reaction (RT-PCR). The result shows that the pmoA gene copies per gram of sediments reached the maximum of 1,118,679 at the depth of 140-160 cm. Overall considering the detection precision, sample amount, measurement cost, and sensitivity to the seepage of methane from the oil/gas reservoirs or gas hydrates, we suggest that the depth of 140-160 cm may be the optimal sampling position for the marine microbial exploration of oils, gases, and gas hydrates in the Dongsha region. The data of the pmoA and apsA gene copies exhibit an evident coupling relation between MOBs and SRBs as illustrated in their vertical distributions in this sediment core, which may well be interpreted by a high sulfate concentration inhibiting methane production and further leading to the reduction of MOBs. In comparison with the numbers of the pmoA and apsA copies at the same sediment depth, we find out that there were two methane-oxidizing mechanisms of aerobic and anaerobic oxidation in this sediment core, i.e., the aerobic oxidation with free oxygen dominantly occurred above the depth of 210-230 cm, while the anaerobic oxidation with the other electron acceptors such as sulfates and manganese-iron oxides happened below the depth of 210-230 cm. PMID:25064353

Xu, Xiao-Ming; Fu, Shao-Ying; Zhu, Qing; Xiao, Xi; Yuan, Jian-Ping; Peng, Juan; Wu, Chou-Fei; Wang, Jiang-Hai

2014-12-01

136

Sulfate-reducing prokaryotes in river floodplains.  

E-print Network

??This thesis constitutes a pioneer attempt at elucidating the ecology of sulfate-reducing prokaryotes in river floodplains. These are non-typical sulfate-reducing environmental settings, given the generally… (more)

Miletto, M.

2007-01-01

137

Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments.  

PubMed Central

The sulfate-reducing bacterial populations of a stratified marine water column, Mariager Fjord, Denmark, were investigated by molecular and culture-dependent approaches in parallel. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA and DNA encoding rRNA (rDNA) isolated from the water column indicated specific bacterial populations in different water column layers and revealed a highly differentiated pattern of rRNA- and rDNA-derived PCR amplificates, probably reflecting active and resting bacterial populations. Hybridization of DGGE patterns with rRNA probes indicated the increased presence and activity (by at least 1 order of magnitude) of sulfate-reducing bacteria within and below the chemocline. Parallel to this molecular approach, an approach involving most-probable-number (MPN) counts was used, and it found a similar distribution of cultivable sulfate-reducing bacteria in the water column of Mariager Fjord, Approximately 25 cells and 250 cells per ml above and below the chemocline, respectively, were found. Desulfovibrio- and Desulfobulbus-related strains occurred in the oxic zone. DGGE bands from MPN cultures were sequenced and compared with those obtained from nucleic acids extracted from water column samples. The MPN isolates were phylogenetically affiliated with sulfate-reducing delta subdivision proteobacteria (members of the genera Desulfovibrio, Desulfobulbus, and Desulfobacter), whereas the molecular isolates constituted an independent lineage of the delta subdivision proteobacteria. DGGE of PCR-amplified nucleic acids with general eubacterial PCR primers conceptually revealed the general bacterial population, whereas the use of culture media allowed cultivable sulfate-reducing bacteria to be selected. A parallel study of Mariager Fjord biogeochemistry, bacterial activity, and bacterial counts complementing this investigation has been presented elsewhere (N.B. Ramsing, H. Fossing, T. G. Ferdelman, F. Andersen, and B. Thamdrup, Appl. Environ. PMID:8919802

Teske, A; Wawer, C; Muyzer, G; Ramsing, N B

1996-01-01

138

Methane production correlates positively with methanogens, sulfate-reducing bacteria and pore water acetate at an estuarine brackish-marsh landscape scale  

NASA Astrophysics Data System (ADS)

Methane production is influenced by the abundance of methanogens and the availability of terminal substrates. Sulfate-reducing bacteria (SRB) also play an important role in the anaerobic decomposition of organic matter. However, the relationships between methane production and methanogen populations, pore water terminal substrates in estuarine brackish marshes are poorly characterized, and even to our knowledge, no published research has explored the relationship between methane production rate and abundance of SRB and pore water dimethyl sulfide (DMS) concentration. We investigated methane production rate, abundances of methanogens and SRB, concentrations of pore water terminal substrates and electron acceptors at a brackish marsh landscape dominated by Phragmites australis, Cyperus malaccensis and Spatina alterniflora marshes zones in the Min River estuary. The average rates of methane production at a soil depth of 30 cm in the three marsh zones were 0.142, 0.058 and 0.067 ?g g-1 d-1, respectively. The abundance of both methanogens and SRB in the soil of the P. australis marsh with highest soil organic carbon content was higher than in the C. malaccensis and S. alterniflora marshes. The abundance of methanogens and SRB in the three soil layers was statistically indistinguishable. Mean pore water DMS concentrations at a soil depth of 30 cm under the S. alterniflora marsh were higher than those in the C. malaccensis and P. australis marshes. Methane production rate increased with the abundance of both methanogens and SRB across three marsh zones together at the landscape scale, and also increased with the concentration of pore water acetate, but did not correlate with concentrations of pore water DMS and dissolved CO2. Our results suggest that, provided that substrates are available in ample supply, methanogens can continue to produce methane regardless of whether SRB are prevalent in estuarine brackish marshes.

Tong, C.; She, C. X.; Jin, Y. F.; Yang, P.; Huang, J. F.

2013-11-01

139

Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil  

Microsoft Academic Search

Production of sulfide in oil field waters, a process which is referred to as souring, has been of concern. Hydrogen sulfide may lead to poisoning, contamination of oil and gas, corrosion of pipelines, conversion of iron mineral to ferrous sulfide. This study used a previously established sulfate-reducing enrichment culture on crude oil as a model system of bacterial habitats in

RALF RABUS; F. Widdel; Manabu Fukui

1996-01-01

140

Acetate Production from Oil under Sulfate-Reducing Conditions in Bioreactors Injected with Sulfate and Nitrate  

PubMed Central

Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266–269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio, which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields. PMID:23770914

Callbeck, Cameron M.; Agrawal, Akhil

2013-01-01

141

Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria.  

PubMed Central

Oil field bacteria were characterized by cloning and sequencing of PCR-amplified 16S rRNA genes. A variety of gram-negative, sulfate-reducing bacteria was detected (16 members of the family Desulfovibrionaceae and 8 members of the family Desulfobacteriaceae). In contrast, a much more limited number of anaerobic, fermentative, or acetogenic bacteria was found (one Clostridium sp., one Eubacterium sp., and one Synergistes sp.). Potential sulfide oxidizers and/or microaerophiles (Thiomicrospira, Arcobacter, Campylobacter, and Oceanospirillum spp.) were also detected. The first two were prominently amplified from uncultured production water DNA and represented 28 and 47% of all clones, respectively. Growth on media containing sulfide as the electron donor and nitrate as the electron acceptor and designed for the isolation of Thiomicrospira spp. gave only significant enrichment of the Campylobacter sp., which was shown to be present in different western Canadian oil fields. This newly discovered sulfide oxidizer may provide a vital link in the oil field sulfur cycle by reoxidizing sulfide formed by microbial sulfate or sulfur reduction. PMID:8633860

Voordouw, G; Armstrong, S M; Reimer, M F; Fouts, B; Telang, A J; Shen, Y; Gevertz, D

1996-01-01

142

Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral  

PubMed Central

The anti-corrosion effect and the antimicrobial activity of lemongrass essential oil (LEO) against the planktonic and sessile growth of a sulfate reducing bacterium (SRB) were evaluated. Minimum inhibitory concentration (MIC) of LEO and its major component, the citral, was 0.17 mg ml-1. In addition, both LEO and citral showed an immediate killing effect against SRB in liquid medium, suggesting that citral is responsible for the antimicrobial activity of LEO against SRB. Transmission electron microscopy revealed that the MIC of LEO caused discernible cell membrane alterations and formed electron-dense inclusions. Neither biofilm formation nor corrosion was observed on carbon steel coupons after LEO treatment. LEO was effective for the control of the planktonic and sessile SRB growth and for the protection of carbon steel coupons against biocorrosion. The application of LEO as a potential biocide for SRB growth control in petroleum reservoirs and, consequently, for souring prevention, and/or as a coating protection against biocorrosion is of great interest for the petroleum industries. PMID:23938023

2013-01-01

143

Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral.  

PubMed

The anti-corrosion effect and the antimicrobial activity of lemongrass essential oil (LEO) against the planktonic and sessile growth of a sulfate reducing bacterium (SRB) were evaluated. Minimum inhibitory concentration (MIC) of LEO and its major component, the citral, was 0.17 mg ml-1. In addition, both LEO and citral showed an immediate killing effect against SRB in liquid medium, suggesting that citral is responsible for the antimicrobial activity of LEO against SRB. Transmission electron microscopy revealed that the MIC of LEO caused discernible cell membrane alterations and formed electron-dense inclusions. Neither biofilm formation nor corrosion was observed on carbon steel coupons after LEO treatment. LEO was effective for the control of the planktonic and sessile SRB growth and for the protection of carbon steel coupons against biocorrosion. The application of LEO as a potential biocide for SRB growth control in petroleum reservoirs and, consequently, for souring prevention, and/or as a coating protection against biocorrosion is of great interest for the petroleum industries. PMID:23938023

Korenblum, Elisa; Regina de Vasconcelos Goulart, Fátima; de Almeida Rodrigues, Igor; Abreu, Fernanda; Lins, Ulysses; Alves, Péricles Barreto; Blank, Arie Fitzgerald; Valoni, Erika; Sebastián, Gina V; Alviano, Daniela Sales; Alviano, Celuta Sales; Seldin, Lucy

2013-01-01

144

Thermodesulfovibrio aggregans sp. nov. and Thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio.  

PubMed

Four obligately anaerobic, thermophilic, sulfate-reducing bacterial strains, designated TGE-P1(T), TDV(T), TGL-LS1 and TSL-P1, were isolated from thermophilic (operated at 55 degrees C) methanogenic sludges from waste and wastewater treatment. The optimum temperature for growth of all the strains was in the range 55-60 degrees C. The four strains grew by reduction of sulfate with a limited range of electron donors, such as hydrogen, formate, pyruvate and lactate. In co-culture with the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus DeltaH(T), strains TGE-P1(T), TGL-LS1 and TSL-P1 were able to utilize lactate syntrophically for growth. The DNA G+C contents of all the strains were in the range 34-35 mol%. The major cellular fatty acids of the strains were iso-C(17 : 0), iso-C(16 : 0), C(16 : 0) and anteiso-C(15 : 0). Phylogenetic analyses based on 16S rRNA gene sequences revealed that the strains belong to the Thermodesulfovibrio clade of the phylum 'Nitrospirae'. On the basis of their physiological, chemotaxonomic and genetic properties, strains TGL-LS1 (=JCM 13214) and TSL-P1 (=JCM 13215) were classified as strains of Thermodesulfovibrio islandicus. Two novel species of the genus Thermodesulfovibrio are proposed to accommodate the other two isolates: Thermodesulfovibrio aggregans sp. nov. (type strain TGE-P1(T) =JCM 13213(T) =DSM 17283(T)) and Thermodesulfovibrio thiophilus sp. nov. (type strain TDV(T) =JCM 13216(T) =DSM 17215(T)). To examine the ecological aspects of Thermodesulfovibrio-type cells in the sludge from which the strains were originally isolated, an oligonucleotide probe targeting 16S rRNA of all Thermodesulfovibrio species was designed and applied to thin sections of thermophilic sludge granules. Fluorescence in situ hybridization using the probe revealed rod- or vibrio-shaped cells as a significant population within the sludge, indicating their important role in the original ecosystem. PMID:18984690

Sekiguchi, Yuji; Muramatsu, Mizuho; Imachi, Hiroyuki; Narihiro, Takashi; Ohashi, Akiyoshi; Harada, Hideki; Hanada, Satoshi; Kamagata, Yoichi

2008-11-01

145

Bacteria of porcine skin, xenografts, and treatment with neomycin sulfate.  

PubMed

Homogenized 4-mm punch biopsies were taken from pigs and bacteriologically evaluated to determine the efficacy of surgical scrub procedures and the subsequent treatment of tissue with 0.5% neomycin sulfate-sodium bisulfite (neomycin-bisulfite) as a decontaminating agent. The majority of the lots of porcine skin taken directly from animals for xenografts in the treatment of burns contained viable bacteria at the time of grafting although scrubbing procedures substantially reduced the skin bacteria. The porcine bacteria consisted primarily of coagulase-negative staphylococci with most strains exhibiting caseinolytic and elastase activity. Staphylococci were the only abundant bacteria found in postscrub biopsies and in saline solutions used to wash the dermatome during its use. After an overnight exposure of grafting tissue soaked in neomycin-bisulfite, the spent neomycin-bisulfite solutions were tested for bacteriostatic and bactericidal activity by comparison to unused neomycin. All solutions tested were equal in bacteriostatic strength, but the bactericidal action of some spent solutions was decreased. Neomycin alone exerted a more lethal effect on sensitive bacteria than the neomycin-bisulfite solution. The desirability of having viable porcine skin for a xenograft necessitated using or discarding the tissue after storage in neomycin-bisulfite at 4 C for a maximum of 72 hr. Certain contaminating microorganisms were unaffected by antibiotic treatment, and the prolonged use of neomycin without bisulfite would have primarily eradicated only the porcine coagulase-negative staphylococci. Neither the presence of this group in grafting tissue nor their proteolytic activity had any observed adverse effect on xenografting success. PMID:4552886

Smith, R F; Evans, B L

1972-02-01

146

IN SITU RT-PCR WITH A SULFATE-REDUCING BACTERIUM ISOLATED FROM SEAGRASS ROOTS  

EPA Science Inventory

Bacteria considered to be obligate anaerobes internally colonize roots of the submerged macrophyte Halodule wrightii. A sulfate reducing bacterium, Summer lac 1, was isolated on lactate from H. wrightii roots. The isolate has physiological characteristics typical of Desulfovibri...

147

The sulphate-reducing bacteria  

Microsoft Academic Search

This monograph surveys knowledge about an unusual and little-studied group of microbes, bringing together information that has hitherto been widely scattered throughout the scientific literature. The sulphate-reducing bacteria cannot grow in air; they respire sulphates instead of oxygen and are difficult to isolate and study. Nevertheless, much progress has been made in recent years and has revealed novelties of biochemistry

1984-01-01

148

Effect of Hydrogenase and Mixed Sulfate-Reducing Bacterial Populations on the Corrosion of Steel  

PubMed Central

The importance of hydrogenase activity to corrosion of steel was assessed by using mixed populations of sulfate-reducing bacteria isolated from corroded and noncorroded oil pipelines. Biofilms which developed on the steel studs contained detectable numbers of sulfate-reducing bacteria (104 increasing to 107/0.5 cm2). However, the biofilm with active hydrogenase activity (i.e., corrosion pipeline organisms), as measured by a semiquantitative commercial kit, was associated with a significantly higher corrosion rate (7.79 mm/year) relative to noncorrosive biofilm (0.48 mm/year) with 105 sulfate-reducing bacteria per 0.5 cm2 but no measurable hydrogenase activity. The importance of hydrogenase and the microbial sulfate-reducing bacterial population making up the biofilm are discussed relative to biocorrosion. Images PMID:16348560

Bryant, Richard D.; Jansen, Wayne; Boivin, Joe; Laishley, Edward J.; Costerton, J. William

1991-01-01

149

Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments  

USGS Publications Warehouse

Washed cell suspension of Desulfovibrio desulfuricans subsp. aestuarii were capable of reducing nanomolar levels of selenate to selenide as well as sulfate to sulfide. Reduction of these species was inhibited by 1 mM selenate or tungstate. The addition of 1 mM sulfate decreased the reduction of selenate and enhanced the reduction of sulfate. Increasing concentrations of sulfate inhibited rates of selenate reduction but enhanced sulfate reduction rates. Cell suspensions kept in 1 mM selenate were incapable of reducing either selenate or sulfate when the selenate/sulfate ratio was ???0.02, indicating that irreversible inhibition occurs at high selenate concentrations. Anoxic estuarine sediments having an active flora of sulfate-respiring bacteria were capable of a small amount of selenate reduction when ambient sulfate concentrations were low (<4 mM). These results indicate that sulfate is an inhibitor of the reduction of trace qunatitites of selenate. Therefore, direct reduction of traces of selenate to selenide by sulfate-respiring bacteria in natural environments is constrained by the ambient concentration of sulfate ions. The significance of this observation with regard to the role sediments play in sequestering selenium is discussed.

Zehr, J.P.; Oremland, R.S.

1987-01-01

150

Structural and Functional Dynamics of Sulfate-Reducing Populations in Bacterial Biofilms  

PubMed Central

We describe the combined application of microsensors and molecular techniques to investigate the development of sulfate reduction and of sulfate-reducing bacterial populations in an aerobic bacterial biofilm. Microsensor measurements for oxygen showed that anaerobic zones developed in the biofilm within 1 week and that oxygen was depleted in the top 200 to 400 ?m during all stages of biofilm development. Sulfate reduction was first detected after 6 weeks of growth, although favorable conditions for growth of sulfate-reducing bacteria (SRB) were present from the first week. In situ hybridization with a 16S rRNA probe for SRB revealed that sulfate reducers were present in high numbers (approximately 108 SRB/ml) in all stages of development, both in the oxic and anoxic zones of the biofilm. Denaturing gradient gel electrophoresis (DGGE) showed that the genetic diversity of the microbial community increased during the development of the biofilm. Hybridization analysis of the DGGE profiles with taxon-specific oligonucleotide probes showed that Desulfobulbus and Desulfovibrio were the main sulfate-reducing bacteria in all biofilm samples as well as in the bulk activated sludge. However, different Desulfobulbus and Desulfovibrio species were found in the 6th and 8th weeks of incubation, respectively, coinciding with the development of sulfate reduction. Our data indicate that not all SRB detected by molecular analysis were sulfidogenically active in the biofilm. PMID:9758792

Santegoeds, Cecilia M.; Ferdelman, Timothy G.; Muyzer, Gerard; de Beer, Dirk

1998-01-01

151

Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors.  

PubMed

Anaerobic oxidation of methane (AOM) in marine sediments is coupled to sulfate reduction (SR). AOM is mediated by distinct groups of archaea, called anaerobic methanotrophs (ANME). ANME co-exist with sulfate-reducing bacteria, which are also involved in AOM coupled SR. The microorganisms involved in AOM coupled to SR are extremely difficult to grow in vitro. Here, a novel well-mixed submerged-membrane bioreactor system is used to grow and enrich the microorganisms mediating AOM coupled to SR. Four reactors were inoculated with sediment sampled in the Eckernförde Bay (Baltic Sea) and operated at a methane and sulfate loading rate of 4.8 L L(-1) day(-1) (196 mmol L(-1) day(-1)) and 3.0 mmol L(-1) day(-1). Two bioreactors were controlled at 15 degrees C and two at 30 degrees C, one reactor at 30 degrees C contained also anaerobic granular sludge. At 15 degrees C, the volumetric AOM and SR rates doubled approximately every 3.8 months. After 884 days, an enrichment culture was obtained with an AOM and SR rate of 1.0 mmol g(volatile suspended solids) (-1) day(-1) (286 micromol g(dry weight) (-1) day(-1)). No increase in AOM and SR was observed in the two bioreactors operated at 30 degrees C. The microbial community of one of the 15 degrees C reactors was analyzed. ANME-2a became the dominant archaea. This study showed that sulfate reduction with methane as electron donor is possible in well-mixed bioreactors and that the submerged-membrane bioreactor system is an excellent system to enrich slow-growing microorganisms, like methanotrophic archaea. PMID:19544305

Meulepas, Roel J W; Jagersma, Christian G; Gieteling, Jarno; Buisman, Cees J N; Stams, Alfons J M; Lens, Piet N L

2009-10-15

152

Microbial community of sulfate-reducing up-flow sludge bed in the SANI ® process for saline sewage treatment  

Microsoft Academic Search

This study investigated the microbial community of the sulfate-reducing up-flow sludge bed (SRUSB) of a novel sulfate reduction,\\u000a autotrophic denitrification, and nitrification integrated (SANI®) process for saline sewage treatment. The investigation involved\\u000a a lab-scale SANI® system treating synthetic saline sewage and a pilot-scale SANI® plant treating 10 m3\\/day of screened saline sewage. Sulfate-reducing bacteria (SRB) were the dominant population, responsible for

Jin Wang; Manyuan Shi; Hui Lu; Di Wu; Ming-Fei Shao; Tong Zhang; George A. Ekama; Mark C. M. van Loosdrecht; Guang-Hao Chen

2011-01-01

153

Distribution of Sulfate-Reducing Bacteria in a Stratified Fjord (Mariager Fjord, Denmark) as Evaluated by Most-Probable- Number Counts and Denaturing Gradient Gel Electrophoresis of PCR-Amplified Ribosomal DNA Fragments  

Microsoft Academic Search

The sulfate-reducing bacterial populations of a stratified marine water column, Mariager Fjord, Denmark, were investigated by molecular and culture-dependent approaches in parallel. Denaturing gradient gel elec- trophoresis (DGGE) of PCR-amplified 16S rRNA and DNA encoding rRNA (rDNA) isolated from the water column indicated specific bacterial populations in different water column layers and revealed a highly differ- entiatedpatternofrRNA-andrDNA-derivedPCRamplificates,probablyreflectingactiveandrestingbacterial populations. Hybridization of

ANDREAS TESKE; CATHRIN WAWER; GERARD MUYZER; ANDNIELS B. RAMSING

154

Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium  

Microsoft Academic Search

Field and laboratory studies of anoxic sediments from Cape Lookout Bight, North Carolina, suggest that anaerobic methane oxidation is mediated by a consortium of methanogenic and sulfate-reducing bacteria. A seasonal survey of methane oxidation and COâ reduction rates indicates that methane production was confined to sulfate-depleted sediments at all times of year, while methane oxidation occurred in two modes. In

Tori M. Hoehler; Marc J. Alperin; Daniel B. Albert; Christopher S. Martens

1994-01-01

155

Medicinal smoke reduces airborne bacteria.  

PubMed

This study represents a comprehensive analysis and scientific validation of our ancient knowledge about the effect of ethnopharmacological aspects of natural products' smoke for therapy and health care on airborne bacterial composition and dynamics, using the Biolog microplate panels and Microlog database. We have observed that 1h treatment of medicinal smoke emanated by burning wood and a mixture of odoriferous and medicinal herbs (havan sámagri=material used in oblation to fire all over India), on aerial bacterial population caused over 94% reduction of bacterial counts by 60 min and the ability of the smoke to purify or disinfect the air and to make the environment cleaner was maintained up to 24h in the closed room. Absence of pathogenic bacteria Corynebacterium urealyticum, Curtobacterium flaccumfaciens, Enterobacter aerogenes (Klebsiella mobilis), Kocuria rosea, Pseudomonas syringae pv. persicae, Staphylococcus lentus, and Xanthomonas campestris pv. tardicrescens in the open room even after 30 days is indicative of the bactericidal potential of the medicinal smoke treatment. We have demonstrated that using medicinal smoke it is possible to completely eliminate diverse plant and human pathogenic bacteria of the air within confined space. PMID:17913417

Nautiyal, Chandra Shekhar; Chauhan, Puneet Singh; Nene, Yeshwant Laxman

2007-12-01

156

Mine wastewater treatment using Phalaris arundinacea plant material hydrolyzate as substrate for sulfate-reducing bioreactor.  

PubMed

A low-cost substrate, Phalaris arundinacea was acid hydrolyzed (Reed Canary Grass hydrolyzate, RCGH) and used to support sulfate reduction. The experiments included batch bottle assays (35 degrees C) and a fluidized-bed bioreactor (FBR) experiment (35 degrees C) treating synthetic mine wastewater. Dry plant material was also tested as substrate in batch bottle assays. The batch assays showed sulfate reduction with the studied substrates, producing 540 and 350mgL(-1) dissolved sulfide with RCGH and dry plant material, respectively. The soluble sugars of the RCGH presumably fermented into volatile fatty acids and hydrogen, which served as electron donors for sulfate reducing bacteria. A sulfate reduction rate of 2.2-3.3gL(-1)d(-1) was obtained in the FBR experiment. The acidic influent was neutralized and the highest metal precipitation rates were 0.84g FeL(-1)d(-1) and 15mg ZnL(-1)d(-1). The sulfate reduction rate in the FBR was limited by the acetate oxidation rate of the sulfate-reducing bacteria. PMID:20137922

Lakaniemi, Aino-Maija; Nevatalo, Laura M; Kaksonen, Anna H; Puhakka, Jaakko A

2010-06-01

157

Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing.  

PubMed

Ferric iron is commonly used for sulfide precipitation in sewers, thus achieving corrosion and odour control. Its impact on the activities of sulfate-reducing bacteria and methanogens in anaerobic sewer biofilms is investigated in this study. Two lab-scale rising main sewer systems fed with real sewage were operated for 8 months. One received Fe(3+) dosage (experimental system) and the other was used as a control. In addition to precipitating sulfide from bulk water, Fe(3+) dosage was found to significantly inhibit sulfate reduction and methane production by sewer biofilms. The experimental reactor discharged an effluent containing a higher concentration of sulfate and a lower concentration of methane in comparison with the reference reactor. Batch experiments showed that the addition of ferric ions reduced the sulfate reduction and methane production rates of the sewer biofilms by 60% and 80%, respectively. The batch experiments further showed that Fe(3+) dosage changed the final products of sulfate reduction with sulfide accounting for only 54% of the sulfate reduced. The other products could not be confirmed, but were not dissolved inorganic sulfur species such as sulfite or thiosulfate. The results suggest the addition of Fe(3+) at upstream locations would minimize the ferric salts required for achieving the same level of sulfide removal. Fe(3+) dosing could also substantially reduce the formation of methane, a potent greenhouse gas, in sewers. PMID:19576610

Zhang, Lishan; Keller, Jürg; Yuan, Zhiguo

2009-09-01

158

Use of sulfate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases.  

PubMed

This paper describes a novel bioscrubber concept for biological flue gas desulfurization, based on the recycling of a cell suspension of sulfite/sulfate reducing bacteria between a scrubber and a sulfite/sulfate reducing hydrogen fed bioreactor. Hydrogen metabolism in sulfite/sulfate reducing cell suspensions was investigated using batch activity tests and by operating a completely stirred tank reactor (CSTR). The maximum specific hydrogenotrophic sulfite/sulfate reduction rate increased with 10% and 300%, respectively, by crushing granular inoculum sludge and by cultivation of this sludge as cell suspension in a CSTR. Operation of a sulfite fed CSTR (hydraulic retention time 4 days; pH 7.0; sulfite loading rate 0.5-1.5 g SO3(2-) l(-1) d(-1)) with hydrogen as electron donor showed that high (up to 1.6 g l(-1)) H2S concentrations can be obtained within 10 days of operation. H2S inhibition, however, limited the sulfite reducing capacity of the CSTR. Methane production by the cell suspension disappeared within 20 days reactor operation. The outcompetition of methanogens in excess of H2 can be attributed to CO2 limitation and/or to sulfite or sulfide toxicity. The use of cell suspensions opens perspectives for monolith or packed bed reactor configurations, which have a much lower pressure drop compared to air lift reactors, to supply H2 to sulfite/sulfate reducing bioreactors. PMID:12889613

Lens, P N L; Gastesi, R; Lettinga, G

2003-06-01

159

Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions  

USGS Publications Warehouse

[14C]naphthalene and phenanthrene were oxidized to 14CO2 without a detectable lag under strict anaerobic conditions in sediments from San Diego Bay, San Diego, Calif., that were heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) but not in less contaminated sediments. Sulfate reduction was necessary for PAH oxidation. These results suggest that the self-purification capacity of PAH-contaminated sulfate-reducing environments may be greater than previously recognized.

Coates, J.D.; Anderson, R.T.; Lovley, D.R.

1996-01-01

160

Purification and characterization of three proteins from a halophilic sulfate-reducing bacterium, Desulfovibrio salexigens  

Microsoft Academic Search

Summary Hydrogenase, desulfoviridin and molybdenum proteins have been isolated from a halophilic sulfate-reducing bacteria,Desulfovibrio salexigens strain British Guiana. At least 50% of the hydrogenase was found to be located in the periplasm. The hydrogenase has a typical absorption spectrum, a 400\\/280 nm ratio of 0.28, a molecular weight by sedimentation equilibrium of 81 000 and is composed of two subunits.

M. Czechowski; G. Fauque; N. Galliano; B. Dimon; I. Moura; J. J. G. Moura; A. V. Xavier; B. A. S. Barato; A. R. Lino; J. LeGall

1986-01-01

161

Uranium immobilization by sulfate-reducing biofilms grown on hematite, dolomite, and calcite.  

SciTech Connect

Biofilms of sulfate-reducing bacteria Desulfovibrio desulfuricans G20 wereused to reduce dissolved U(VI)and subsequently immobilize U(IV) in the presence of uranium-complexing carbonates. The biofilms were grown in three identically operated fixed bed reactors, filled with three types of minerals: one noncarbonate-bearing mineral(hematite) and two carbonate-bearing minerals (calcite and dolomite). The source of carbonates in the reactors filled with calcite and dolomite were the minerals, while in the reactor filled with hematite it was a 10 mM carbonate buffer, pH 7.2, which we added to the growth medium. Our five-month study demonstrated that the sulfate-reducing biofilms grown in all reactors were able to immobilize/reduce uranium efficiently, despite the presence of uranium-complexing carbonates.

Marsili, E.; Beyenal, Haluk; Di Palma, L.; Merli, C.; Dohnalkova, Alice; Amonette, James E.; Lewandowski, Zbigniew

2007-12-15

162

Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions  

USGS Publications Warehouse

The potential use of iron(III) oxide to stimulate in-situ hydrocarbon degradation in anaerobic petroleum-contaminated harbor sediments was investigated. Previous studies have indicated that Fe(III)-reducing bacteria (FeRB) can oxidize some electron donors more effectively than sulfate- reducing bacteria (SRB). In contrast to previous results in freshwater sediments, the addition of Fe(III) to marine sediments from San Diego Bay, CA did not switch the terminal electron-accepting process (TEAP) from sulfate reduction to Fe-(III) reduction. Addition of Fe(III) also did not stimulate anaerobic hydrocarbon oxidation. Exposure of the sediment to air [to reoxidize Fe(II) to Fe(III)] followed by anaerobic incubation of the sediments, resulted in Fe-(III) reduction as the TEAP, but contaminant degradation was not stimulated and in some instances was inhibited. The difference in the ability of FeRB to compete with the SRB in the different sediment treatments was related to relative population sizes. Although the addition of Fe(III) did not stimulate hydrocarbon degradation, the results presented here as well as other recent studies demonstrate that there may be significant anaerobic hydrocarbon degradation under sulfate-reducing conditions in harbor sediments.

Coates, J.D.; Anderson, R.T.; Woodward, J.C.; Phillips, E.J.P.; Lovley, D.R.

1996-01-01

163

[Marine SRB community reducing sulfate wastewater in flue gas desulfurization].  

PubMed

An SRB community (SRB-2) was enriched from marine sediment for the treatment of sulfate-rich wastewater of high salinity, and the effect of salinity, temperature, pH value, carbon source, concentration of sulfate and the form of Fe on the activity of SRB-2 was studied. The results show that SRB-2 is a halophilous and moderately mesophilous SRB community. The optimal conditions for its growth are as follows: temperature of 30-40 degrees C and pH value of 7.4-8.3; it can endure 5,200 mg/L SO4(2-) and 60g/L NaCl. Zero-valent Fe can promote the reductive activity of SRB-2, while Fe2+ inhibits that. SEM and optical microscopic measurements indicate many rod-shaped and spiral bacteria on the surface of padding in reactor and black sticky substance composed of rod-shaped bacteria on the bottom of reactor. This sticky substance might be cumulus of culture SRB-2-64 (GenBank accession number: EU167911). PMID:19402507

Pan, Jia-Chuan; Cao, Hong-Bin; Shao, Zong-Ze; Sheng, Yu-Xing; Zhang, Yi

2009-02-15

164

Sulfate-Reducing Bacterium with Unusual Morphology and Pigment Content  

PubMed Central

A dissimilatory sulfate-reducing bacterium was isolated which differed in morphology and pigment content from previously described species. The organism was mesophilic, obligately anaerobic, gram-negative, nonsporulating, long, and slender with one polar flagellum. Whole cells fluoresced red at neutral pH when excited with light at 365 nm owing to the presence of a pink pigment. Desulfoviridin was present. Reduced minus oxidized spectra of whole cells showed peaks in the position of a c-type cytochrome characteristic of Desulfovibrio species and peaks at about 629 and 603 nm. CO difference spectra showed the presence of a CO-binding pigment with a peak at 593 nm. Lactate and pyruvate supported growth in the presence of sulfate but not in its absence. Sulfate, sulfite, and thiosulfate served as electron acceptors for growth. Hydrogenase was present. The deoxyribonucleic acid had a buoyant density of 1.722 g/cm3 and a guanosine plus cystosine molar percentage of total bases calculated by two different methods of 61.2 or 63.2. Images PMID:4929856

Jones, H. E.

1971-01-01

165

Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles.  

PubMed

For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds. PMID:24008263

Im, A-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

2013-10-01

166

Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles  

NASA Astrophysics Data System (ADS)

For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

2013-10-01

167

The genetic basis of energy conservation in the sulfate-reducing bacterium Desulfovibrio alaskensis G20  

PubMed Central

Sulfate-reducing bacteria play major roles in the global carbon and sulfur cycles, but it remains unclear how reducing sulfate yields energy. To determine the genetic basis of energy conservation, we measured the fitness of thousands of pooled mutants of Desulfovibrio alaskensis G20 during growth in 12 different combinations of electron donors and acceptors. We show that ion pumping by the ferredoxin:NADH oxidoreductase Rnf is required whenever substrate-level phosphorylation is not possible. The uncharacterized complex Hdr/flox-1 (Dde_1207:13) is sometimes important alongside Rnf and may perform an electron bifurcation to generate more reduced ferredoxin from NADH to allow further ion pumping. Similarly, during the oxidation of malate or fumarate, the electron-bifurcating transhydrogenase NfnAB-2 (Dde_1250:1) is important and may generate reduced ferredoxin to allow additional ion pumping by Rnf. During formate oxidation, the periplasmic [NiFeSe] hydrogenase HysAB is required, which suggests that hydrogen forms in the periplasm, diffuses to the cytoplasm, and is used to reduce ferredoxin, thus providing a substrate for Rnf. During hydrogen utilization, the transmembrane electron transport complex Tmc is important and may move electrons from the periplasm into the cytoplasmic sulfite reduction pathway. Finally, mutants of many other putative electron carriers have no clear phenotype, which suggests that they are not important under our growth conditions, although we cannot rule out genetic redundancy. PMID:25400629

Price, Morgan N.; Ray, Jayashree; Wetmore, Kelly M.; Kuehl, Jennifer V.; Bauer, Stefan; Deutschbauer, Adam M.; Arkin, Adam P.

2014-01-01

168

Multiple Lateral Transfers of Dissimilatory Sulfite Reductase Genes between Major Lineages of Sulfate-Reducing Prokaryotes  

PubMed Central

A large fragment of the dissimilatory sulfite reductase genes (dsrAB) was PCR amplified and fully sequenced from 30 reference strains representing all recognized lineages of sulfate-reducing bacteria. In addition, the sequence of the dsrAB gene homologs of the sulfite reducer Desulfitobacterium dehalogenans was determined. In contrast to previous reports, comparative analysis of all available DsrAB sequences produced a tree topology partially inconsistent with the corresponding 16S rRNA phylogeny. For example, the DsrAB sequences of several Desulfotomaculum species (low G+C gram-positive division) and two members of the genus Thermodesulfobacterium (a separate bacterial division) were monophyletic with ?-proteobacterial DsrAB sequences. The most parsimonious interpretation of these data is that dsrAB genes from ancestors of as-yet-unrecognized sulfate reducers within the ?-Proteobacteria were laterally transferred across divisions. A number of insertions and deletions in the DsrAB alignment independently support these inferred lateral acquisitions of dsrAB genes. Evidence for a dsrAB lateral gene transfer event also was found within the ?-Proteobacteria, affecting Desulfobacula toluolica. The root of the dsr tree was inferred to be within the Thermodesulfovibrio lineage by paralogous rooting of the alpha and beta subunits. This rooting suggests that the dsrAB genes in Archaeoglobus species also are the result of an ancient lateral transfer from a bacterial donor. Although these findings complicate the use of dsrAB genes to infer phylogenetic relationships among sulfate reducers in molecular diversity studies, they establish a framework to resolve the origins and diversification of this ancient respiratory lifestyle among organisms mediating a key step in the biogeochemical cycling of sulfur. PMID:11567003

Klein, Michael; Friedrich, Michael; Roger, Andrew J.; Hugenholtz, Philip; Fishbain, Susan; Abicht, Heike; Blackall, Linda L.; Stahl, David A.; Wagner, Michael

2001-01-01

169

[Activity and structure of the sulfate-reducing bacterial community in the sediments of the southern part of Lake Baikal].  

PubMed

The rates of sulfate reduction (SR) and the diversity of sulfate-reducing bacteria (SRB) were studied in the sediments of the Posol'skaya banka elevation in the southern part of Lake Baikal. SR rates varied from 1.2 to 1641 nmol/(dm3 day), with high rates (> 600 nmol/(dm3 day)) observed at both deep-water stations and in subsurface silts. Integral SR rates calculated for the uppermost 50 cm of the sediments were higher for gas-saturated and gas hydrate-bearing sediments than in those with low methane content. Enrichment SRB cultures were obtained in Widdel medium for freshwater SRB. Analysis of the 16S rRNA gene fragments from clone libraries obtained from the enrichments revealed the presence of SRB belonged to Desulfosporosinus genus, with D. lacus as the most closely related member (capable of sulfate, sulfite, and thiosulfate reduction), as well as members of the order Clostridiales. PMID:25507445

2014-01-01

170

Enrichment and characterization of sulfate reducing, naphthalene degrading microorganisms  

NASA Astrophysics Data System (ADS)

Polycyclic aromatic hydrocarbons (PAH) are pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. PAH are widely distributed in the environment by accidental discharges during the transport, use and disposal of petroleum products, and during forest and grass fires. Caused by their hydrophobic nature, PAH basically accumulate in sediments from where they are slowly released into the groundwater. Although generally limited by the low water solubility of PAH, microbial degradation is one of the major mechanisms leading to the complete clean-up of PAH-contaminated sites. Whereas organisms and biochemical pathways responsible for the aerobic breakdown of PAH are well known, anaerobic PAH biodegradation is less understood; only a few anaerobic PAH degrading cultures have been described. We studied the anaerobic PAH degradation in a microcosm approach to enrich anaerobic PAH degraders. Anoxic groundwater and sediment samples were used as inoculum. Groundwater samples were purchased from the erstwhile gas works facility and a former wood impregnation site. In contrast, sources of sediment samples were a former coal refining area and an old fuel depot. Samples were incubated in anoxic mineral salt medium with naphthalene as sole carbon source and sulfate as terminal electron acceptor. Grown cultures were characterized by feeding with 13C-labeled naphthalene, 16S rRNA gene sequencing using an Illumina® approach, and functional proteome analyses. Finally, six enrichment cultures able to degrade naphthalene under anoxic conditions were established. First results point to a dominance of identified sequences affiliated to the freshwater sulfate-reducing strain N47, which is a known anaerobic naphthalene degrader, in four out of the six enrichments. In those enrichments, peptides related to the pathway of anoxic naphthalene degradation in N47 were abundant. Overall the data underlines the importance of Desulfobacteria for natural attenuation of environmental contaminants. Understanding of diversity and physiology of anaerobic PAH degradation will contribute to remediation efforts of low-oxygen environments such as aquifers or river sediments.

Steffen, Kümmel; Florian-Alexander, Herbst; Márcia, Duarte; Dietmar, Pieper; Jana, Seifert; Bergen Martin, von; Hans-Hermann, Richnow; Carsten, Vogt

2014-05-01

171

Effects of biocides on gene expression in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.  

PubMed

Although sulfate-reducing bacteria (SRB), such as Desulfovibrio vulgaris Hildenborough (DvH) are often eradicated in oil and gas operations with biocides, such as glutaraldehyde (Glut), tetrakis (hydroxymethyl) phosphonium sulfate (THPS), and benzalkonium chloride (BAC), their response to these agents is not well known. Whole genome microarrays of D. vulgaris treated with biocides well below the minimum inhibitory concentration showed that 256, 96, and 198 genes were responsive to Glut, THPS, and BAC, respectively, and that these three commonly used biocides affect the physiology of the cell quite differently. Glut induces expression of genes required to degrade or refold proteins inactivated by either chemical modification or heat shock, whereas BAC appears to target ribosomal structure. THPS appears to primarily affect energy metabolism of SRB. Mutants constructed for genes strongly up-regulated by Glut, were killed by Glut to a similar degree as the wild type. Hence, it is difficult to achieve increased sensitivity to this biocide by single gene mutations, because Glut affects so many targets. Our results increase understanding of the biocide's mode of action, allowing a more intelligent combination of mechanistically different agents. This can reduce stress on budgets for chemicals and on the environment. PMID:20437234

Lee, Meng-Hsin Phoebe; Caffrey, Sean M; Voordouw, Johanna K; Voordouw, Gerrit

2010-07-01

172

Linking Microbial Ecology to Geochemistry in Sulfate Reducing Systems  

NASA Astrophysics Data System (ADS)

Sulfate reducing bioreactors (SRBRs) can serve as passive treatment systems for mining influenced waters (MIW). An enhanced understanding of the biogeochemistry and efficacy of SRBRs can be achieved by combining molecular biological and geochemical techniques in both field and column settings. To this end, a spatial and temporal sequence of eight pilot-scale columns were analyzed employing a multidisciplinary approach using ICP-AES, next-generation sequencing, and SEM-EDX to explore the effects of variable substrate on community structure and performance (measured by Zn removal). All pilot scale reactors contained 30% limestone by mass, 7 of the 8 had variable amounts of woodchips, sawdust, and alfalfa hay, and an 8th column where the only carbon source was walnut shells. High throughput sequencing of DNA extracted from liquid in pilot-scale columns reveals, similarly to an analogous field system in Arizona, a dominance of Proteobacteria. However, after the first pore volume, performance differences between substrate permutations emerged, where columns containing exclusively walnut shells or sawdust exhibited a more effective startup and metal removal than did columns containing exclusively woodchips or alfalfa hay. SEM-EDX analysis revealed the initial formation of gypsum (CaSO4) precipitates regardless of substrate. Zn was observed in the presence of Ca, S, and O in some column samples, suggesting there was co-precipitation of Zn and CaSO4. This is congruent with micro-XAS analysis of field data suggesting iron sulfides were co-precipitating with gypsum. A SEM-EDX analysis from a subsequent sampling event (8 months into operation) indicated that precipitation may be shifting to ZnS and ZnCO3. Biplots employing Canonical Correspondence Analysis (CCA) describe how diversity scales with performance and substrate selection, and how community shifts may result in differential performance and precipitation in response to selective pressure of bioreactor material on community composition. CCA of Shannon diversity data after one pore volume revealed that zinc removal, walnut shell content, and abundance of delta-Proteobacteria (sulfate reducing organisms) were all corresponding elements. However, after several pore volumes, the walnut shell column was no longer removing Zn as effectively, and community shifts were observed throughout the columns. Analysis of field and laboratory scale microbiological and geochemical shifts, in parallel, gives insight into key biogeochemical variables linked to the performance of passive remediation systems used for the treatment of contaminated MIW, while also providing further insight into metal immobilization at the microbe-mineral interface.

Drennan, D. M.; Lee, I.; Landkamer, L.; Almstrand, R.; Figueroa, L. A.; Sharp, J. H.

2013-12-01

173

Comparison of sulfate-reducing and conventional Anammox upflow anaerobic sludge blanket reactors.  

PubMed

Autotrophic NH4(+) removal has been extensively researched, but few studies have investigated alternative electron acceptors (for example, SO4(2-)) in NH4(+) oxidation. In this study, sulfate-reducing anaerobic ammonium oxidation (SRAO) and conventional Anammox were started up in upflow anaerobic sludge blanket reactors (UASBRs) at 36 (±0.5)°C and 20 (±0.5)°C respectively, using reject water as a source of NH4(+). SO4(2-) or NO2(-), respectively, were applied as electron acceptors. It was assumed that higher temperature could promote the SRAO, partly compensating its thermodynamic disadvantage comparing with the conventional Anammox to achieve comparable total nitrogen (TN) removal rate. Average volumetric NH4(+)-N removal rate in the sulfate-reducing UASBR1 was however 5-6 times less (0.03 kg-N/(m(3) day)) than in the UASBR2 performing conventional nitrite-dependent autotrophic nitrogen removal (0.17 kg-N/(m(3) day)). However, the stoichiometric ratio of NH4(+) removal in UASBR1 was significantly higher than could be expected from the extent of SO4(2-) reduction, possibly due to interactions between the N- and S-compounds and organic matter of the reject water. Injections of N2H4 and NH2OH accelerated the SRAO. Similar effect was observed in batch tests with anthraquinone-2,6-disulfonate (AQDS). For detection of key microorganisms PCR-DGGE was used. From both UASBRs, uncultured bacterium clone ATB-KS-1929 belonging to the order Verrucomicrobiales, Anammox bacteria (uncultured Planctomycete clone Pla_PO55-9) and aerobic ammonium-oxidizing bacteria (uncultured sludge bacterium clone ASB08 "Nitrosomonas") were detected. Nevertheless the SRAO process was shown to be less effective for the treatment of reject water, compared to the conventional Anammox. PMID:24863179

Rikmann, Ergo; Zekker, Ivar; Tomingas, Martin; Vabamäe, Priit; Kroon, Kristel; Saluste, Alar; Tenno, Taavo; Menert, Anne; Loorits, Liis; Rubin, Sergio S C dC; Tenno, Toomas

2014-10-01

174

Sodium dodecyl sulfate-polyacrylamide gel protein electrophoresis of freshwater photosynthetic sulfur bacteria.  

PubMed

Sodium dodecyl sulfate-polyacrylamide gel protein electrophoresis (SDS-PAGE) was carried out using different bacterial strains of the photosynthetic sulfur bacteria Chlorobium, Thiocapsa, Thiocystis, and Chromatium cultured in the laboratory, and the natural blooms in two karstic lakes (Lake Cisó and Lake Vilar, NE Spain) where planktonic photosynthetic bacteria (purple and green sulfur bacteria) massively developed accounting for most of the microbial biomass. Several extraction, solubilization, and electrophoresis methods were tested to develop an optimal protocol for the best resolution of the SDS-PAGE. Protein composition from different water depths and at different times of the year was visualized within a molecular mass range between 100 and 15 kDa yielding up to 20 different protein bands. Protein banding patterns were reproducible and changed in time and with depth in agreement with changes in photosynthetic bacteria composition. When a taxonomically stable community was followed in time, differences were observed in the intensity but not in the composition of the SDS-PAGE banding pattern. Three environmental variables directly related to the activity of sulfur bacteria (light, oxygen, and sulfide concentrations) had a significant effect on protein banding patterns and explained 33% of the variance. Changes in natural protein profiles of the bacterial blooms agreed with changes in species composition and in the in situ metabolic state of the populations. PMID:20524118

Osuna, M Begoña; Casamayor, Emilio O

2011-01-01

175

Use of a passive bioreactor to reduce water-borne plant pathogens, nitrate, and sulfate in greenhouse effluent.  

PubMed

The goal of this study was to evaluate the use of passive bioreactors to reduce water-borne plant pathogens (Pythium ultimum and Fusarium oxysporum) and nutrient load (NO(-) 3 and SO(2-) 4) in greenhouse effluent. Sterilized and unsterilized passive bioreactors filled with a reactive mixture of organic carbon material were used in three replicates. After a startup period of 2 (sterilized) or 5 (unsterilized) weeks, the bioreactor units received for 14 weeks a reconstituted commercial greenhouse effluent composed of 500 mg L(-1) SO(2-) 4 and 300 mg L(-1) NO(-) 3 and were inoculated three times with P. ultimum and F. oxysporum (10(6) CFU mL(-1)). Efficacy in removing water-borne plant pathogens and nitrate reached 99.9% for both the sterilized and unsterilized bioreactors. However, efficacy in reducing the SO(2-) 4 load sharply decreased from 89% to 29% after 2 weeks of NO(-) 3-supply treatment for the unsterilized bioreactors. Although SO(2-) 4 removal efficacy for the sterilized bioreactors did not recover after 4 weeks of NO(-) 3-supply treatment, the unsterilized bioreactor nearly reached a similar level of SO(2-) 4 removal after 4 weeks of NO(-) 3-supply treatment compared with affluent loaded only with SO(2-) 4, where no competition for the carbohydrate source occurred between the denitrification process and sulfate-reducing bacteria activity. Performance differences between the sterilized and unsterilized bioreactors clearly show the predominant importance of sulfate-reducing bacteria. Consequently, when sulfate-reducing bacteria reach their optimal activity, passive bioreactors may constitute a cheap, low-maintenance method of treating greenhouse effluent to recycle wastewater and eliminate nutrient runoff, which has important environmental impacts. PMID:23947714

Gruyer, Nicolas; Dorais, Martine; Alsanius, Beatrix W; Zagury, Gérald J

2013-01-01

176

Desulfofrigus sp. prevails in sulfate-reducing dilution cultures from sediments of the Benguela upwelling area.  

PubMed

Sediments of coastal upwelling areas are generally characterized by a high content of organic carbon that is mainly degraded via anaerobic microbial processes including sulfate reduction as a major terminal oxidation step. Despite the high importance of sulfate reduction in these sediments, the identity of sulfate-reducing bacteria (SRB) has remained almost unknown. Here, we applied a cultivation-based approach using selective enrichment conditions to study the diversity and distribution of active SRB in sediments along a transect perpendicular to the continental slope off the coast of Namibia (Meteor-cruise M76/1). To promote growth of the most abundant SRB, dilution series were prepared and amended with hydrogen, acetate, or a mixture of monomers representing typical substrates for SRB. Growth of SRB could be detected in the presence of all electron donors and from sediment down to 4 m depth. 16S rRNA gene-based DGGE analysis and sequencing revealed the predominance of SRB related to psychrophiles in particular to the genus Desulfofrigus, which made up 1 % of the total microbial community, accounting for an absolute abundance of up to 4.8 × 10(7)  cells mL(-1) . In general, the abundance of cultured SRB changed with depth and between the different sampling sites and correlated with the content of organic carbon as previously reported. Growth of chemolithotrophic SRB in relatively high dilution steps and the enrichment of methanogens as well as acetogens from deeper sediment point to a competition between hydrogen-utilizing microbial processes and their biogeochemical significance in deep sediment layers of the Benguela upwelling area. PMID:23157459

Kraft, Beate; Engelen, Bert; Goldhammer, Tobias; Lin, Yu-Shih; Cypionka, Heribert; Könneke, Martin

2013-04-01

177

Complete genome sequence of the acetate-degrading sulfate reducer Desulfobacca acetoxidans type strain (ASRB2T)  

SciTech Connect

Desulfobacca acetoxidans Elferink et al. 1999 is the type species of the genus Desulfobacca, which belongs to the family Syntrophaceae in the class Deltaproteobacteria. The species was first observed in a study on the competition of sulfate-reducers and acetoclastic methanogens for acetate in sludge. D. acetoxidans is considered to be the most abundant acetate-degrading sulfate reducer in sludge. It is of interest due to its isolated phylogenetic location in the 16S rRNA-based tree of life. This is the second completed genome sequence of a member of the family Syntrophaceae to be published and only the third genome sequence from a member of the order Syntrophobacterales. The 3,282,536 bp long genome with its 2,969 protein-coding and 54 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

2011-01-01

178

Identification of key components in the energy metabolism of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus by transcriptome analyses  

PubMed Central

Energy conservation via the pathway of dissimilatory sulfate reduction is present in a diverse group of prokaryotes, but is most comprehensively studied in Deltaproteobacteria. In this study, whole-genome microarray analyses were used to provide a model of the energy metabolism of the sulfate-reducing archaeon Archaeoglobus fulgidus, based on comparative analysis of litoautotrophic growth with H2/CO2 and thiosulfate, and heterotrophic growth on lactate with sulfate or thiosulfate. Only 72 genes were expressed differentially between the cultures utilizing sulfate or thiosulfate, whereas 269 genes were affected by a shift in energy source. We identified co-located gene cluster encoding putative lactate dehydrogenases (LDHs; lldD, dld, lldEFG), also present in sulfate-reducing bacteria. These enzymes may take part in energy conservation in A. fulgidus by specifically linking lactate oxidation with APS reduction via the Qmo complex. High transcriptional levels of Fqo confirm an important role of F420H2, as well as a menaquinone-mediated electron transport chain, during heterotrophic growth. A putative periplasmic thiosulfate reductase was identified by specific up-regulation. Also, putative genes for transport of sulfate and sulfite are discussed. We present a model for hydrogen metabolism, based on the probable bifurcation reaction of the Mvh:Hdl hydrogenase, which may inhibit the utilization of Fdred for energy conservation. Energy conservation is probably facilitated via menaquinone to multiple membrane-bound heterodisulfide reductase (Hdr) complexes and the DsrC protein—linking periplasmic hydrogenase (Vht) to the cytoplasmic reduction of sulfite. The ambiguous roles of genes corresponding to fatty acid metabolism induced during growth with H2 are discussed. Putative co-assimilation of organic acids is favored over a homologous secondary carbon fixation pathway, although both mechanisms may contribute to conserve the amount of Fdred needed during autotrophic growth with H2. PMID:24672515

Hocking, William P.; Stokke, Runar; Roalkvam, Irene; Steen, Ida H.

2014-01-01

179

Draft Genome Sequence of the Obligately Alkaliphilic Sulfate-Reducing Bacterium Desulfonatronum thiodismutans Strain MLF1.  

PubMed

Desulfonatronum thiodismutans strain MLF1, an alkaliphilic bacterium capable of sulfate reduction, was isolated from Mono Lake, California. Here we report the 3.92-Mb draft genome sequence comprising 34 contigs and some results of its automated annotation. These data will improve our knowledge of mechanisms by which bacteria withstand extreme environments. PMID:25081260

Trubitsyn, Denis; Geurink, Corey; Pikuta, Elena; Lefèvre, Christopher T; McShan, W Michael; Gillaspy, Allison F; Bazylinski, Dennis A

2014-01-01

180

Microbial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated  

E-print Network

Microbial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated) This work investigates microbiologically influenced corrosion of API 5L X52 linepipe steel by a sulfate the corrosion behavior. Through circuit modeling, EIS results were used to interpret the physicoelectric

181

U(VI) Reduction in Sulfate-Reducing Subsurface Sediments Amended with Ethanol or Acetate  

PubMed Central

An experiment was conducted with subsurface sediments from Oak Ridge National Laboratory to determine the potential for reduction of U(VI) under sulfate-reducing conditions with either ethanol or acetate as the electron donor. The results showed extensive U(VI) reduction in sediments supplied with either electron donor, where geochemical and microbiological analyses demonstrated active sulfate reduction. PMID:23624470

Converse, Brandon J.; Wu, Tao; Findlay, Robert H.

2013-01-01

182

Disruption of Adenosine-5?-Phosphosulfate Kinase in Arabidopsis Reduces Levels of Sulfated Secondary Metabolites[W  

PubMed Central

Plants can metabolize sulfate by two pathways, which branch at the level of adenosine 5?-phosphosulfate (APS). APS can be reduced to sulfide and incorporated into Cys in the primary sulfate assimilation pathway or phosphorylated by APS kinase to 3?-phosphoadenosine 5?-phosphosulfate, which is the activated sulfate form for sulfation reactions. To assess to what extent APS kinase regulates accumulation of sulfated compounds, we analyzed the corresponding gene family in Arabidopsis thaliana. Analysis of T-DNA insertion knockout lines for each of the four isoforms did not reveal any phenotypical alterations. However, when all six combinations of double mutants were compared, the apk1 apk2 plants were significantly smaller than wild-type plants. The levels of glucosinolates, a major class of sulfated secondary metabolites, and the sulfated 12-hydroxyjasmonate were reduced approximately fivefold in apk1 apk2 plants. Although auxin levels were increased in the apk1 apk2 mutants, as is the case for most plants with compromised glucosinolate synthesis, typical high auxin phenotypes were not observed. The reduction in glucosinolates resulted in increased transcript levels for genes involved in glucosinolate biosynthesis and accumulation of desulfated precursors. It also led to great alterations in sulfur metabolism: the levels of sulfate and thiols increased in the apk1 apk2 plants. The data indicate that the APK1 and APK2 isoforms of APS kinase play a major role in the synthesis of secondary sulfated metabolites and are required for normal growth rates. PMID:19304933

Mugford, Sarah G.; Yoshimoto, Naoko; Reichelt, Michael; Wirtz, Markus; Hill, Lionel; Mugford, Sam T.; Nakazato, Yoshimi; Noji, Masaaki; Takahashi, Hideki; Kramell, Robert; Gigolashvili, Tamara; Flügge, Ulf-Ingo; Wasternack, Claus; Gershenzon, Jonathan; Hell, Rüdiger; Saito, Kazuki; Kopriva, Stanislav

2009-01-01

183

Biogeochemistry of a Field-Scale Sulfate Reducing Bioreactor Treating Mining Influenced Water  

NASA Astrophysics Data System (ADS)

Acidity, metal release, and toxicity may be environmental health concerns in areas influenced by mining. Mining influenced waters (MIW) can be remediated through the establishment of Sulfate Reducing Bioreactors (SRBRs) as part of engineered passive treatment systems. The objective of our research is an enhanced understanding of the biogeochemistry in SRBRs by combining molecular biological and geochemical techniques. Bioreactor reactive substrate, settling pond water, and effluent (from the SRBR) were collected from a field scale SRBR in Arizona, which has been in operation for approximately 3 years. Schematically, the water passes through the SRBR; combines with flow that bypasses the SRBR into the and goes into the mixing pond, and finally is released as effluent to aerobic polishing cells. High throughput sequencing of extracted DNA revealed that Proteobacteria dominated the reactive substrate (61%), settling pond (93%), and effluent (50%), with the next most abundant phylum in all samples (excluding uncultured organisms) being Bacteriodes (1-17%). However, at the superclass level, the three samples were more variable. Gammaproteobacteria dominated the reactive substrate (35%), Betaproteobacteria in the settling pond (63%) and finally the effluent was dominated by Epsilonproteobacteria (Helicobacteraceae) (43%). Diversity was most pronounced in association with the reactor matrix, and least diverse in the settling pond. Putative functional analysis revealed a modest presence of sulfate/sulfur reducing bacteria (SRB) (>5%) in both the matrix and settling pond but a much higher abundance (43%) of sulfur reducing bacteria in the effluent. Interestingly this effluent population was composed entirely of the family Helicobacteraceae (sulfur reduction II via polysulfide pathway). Other putative functions of interest include metal reduction in the matrix (3%) and effluent (3%), as well as polysaccharide degradation, which was largely abundant in all samples (21-38%). Acid digests and micro-focused X-ray fluorescent and absorption spectroscopy revealed precipitation heterogeneities exist between surface samples taken near the front of the influent pipe (west) and downstream (east). Zinc was disproportionately immobilized at the front of the reactor (~10-fold higher), while a higher portion (~3-fold) of iron precipitates was observed downstream. Microfocused XAS further revealed matrix heterogeneities consisting of clusters of stellar shaped sulfur / iron precipitates. An enhanced understanding of the biogeochemistry of SRBRs has applications in passive remediation of contaminated MIW and an interdisciplinary understanding of metal immobilization at the microbe-mineral interface.

Drennan, D.; Lee, I.; Landkamer, L.; Figueroa, L. A.; Webb, S.; Sharp, J. O.

2012-12-01

184

The Effect of Temperature and Hydrogen Limited Growth on the Fractionation of Sulfur Isotopes by Thermodesulfatator indicus, a Deep-sea Hydrothermal Vent Sulfate-Reducing Bacterium  

NASA Astrophysics Data System (ADS)

Sulfate-reducing bacteria fractionate sulfur isotopes during dissimilatory sulfate reduction, producing sulfide depleted in 34S. Although isotope fractionation during sulfate reduction of pure cultures has been extensively studied, most of the research to date has focused on mesophilic sulfate reducers, particularly for the species Desulfovibrio desulfuricans. Results from these studies show that: 1) fractionations range from 3-46‰ with an average around 18‰ , 2) when organic electron donors are utilized, the extent of fractionation is dependent on the rate of sulfate reduction, with decreasing fractionations observed with higher specific rates, 3) fractionations are suppressed with low sulfate concentrations, and when hydrogen is used as the electron donor. High specific sulfate-reduction rates are encountered when sulfate-reducing bacteria metabolize at their optimal temperature and under non-limiting substrate conditions. Changes in both temperature and substrate availability could shift fractionations from those expressed under optimal growth conditions. Sulfate reducers may frequently experience substrate limitation and sub-optimal growth temperatures in the environment. Therefore it is important to understand how sulfate-reducing bacteria fractionate sulfur isotopes under conditions that more closely resemble the restrictions imposed by the environment. In this study the fractionation of sulfur isotopes by Thermodesulfatator indicus was explored during sulfate reduction under a wide range of temperatures and with both hydrogen-saturating and hydrogen-limited conditions. T. indicus is a thermophilic (temperature optimum = 70° C) chemolithotrophic sulfate-reducing bacterium, which was recently isolated from a deep-sea hydrothermal vent on the Central Indian Ridge. This bacterium represents the type species of a new genus and to date is the most deeply branching sulfate-reducing bacterium known. T. indicus was grown in carbonate-buffered salt-water medium with H2 as the sole electron donor, and CO2 as primary carbon source. The fractionation of sulfur isotopes was measured in batch cultures and in a thermal gradient block over the full temperature range of growth (40-80° C). For experiments in the gradient block, cell-specific rates of sulfate reduction increased with increasing temperatures to 70° C after which sulfate-reduction rates rapidly decreased. The range of fractionations (1.5-10‰ ) was typical for growth with hydrogen as the electron donor. Fractionations decreased with increasing temperature from 40--60° C, and increased with increasing temperatures from 60-80° C. Growth under H2-limited conditions in a fed-batch culture revealed high fractionations of 24-37‰ . This is the first report of sulfur isotope fractionation under H2 limited growth and indicates that large fractionations are produced when H2 is supplied as a limiting substrate. Our results suggest that fractionation is controlled by the competition of forward and reverse enzymatic reaction rates during sulfate reduction and by sulfate transport into the cell.

Hoek, J.; Reysenbach, A.; Habicht, K.; Canfield, D. E.

2004-12-01

185

Enhanced Dissolution of Iron Oxides by Biogenic H2S Produced by a Sulfate-Reducing Bacterium  

NASA Astrophysics Data System (ADS)

In natural environments, reductive dissolution is by far the most important dissolution mechanism for iron oxides, either biotically or abiotically. Enzymatic reduction of iron oxides by sulfate-reducing bacteria (SRB) has been reported (Lovley et al., 1993; Tebo and Obraztsova, 1998). The goal of this study was to determine the extent to which SRB can enhance iron reduction through production of biogenic H2S. Biologic experiments were performed using a Desulfovibrio desulfuricans G-20. Abiotic reduction of iron oxides was performed using commercial Na2S. When iron oxides were used as the sole electron acceptor, which included hematite, goethite, ferrihydrate, and magnetite, less than 10% of iron was reduced by G-20 after 240 hrs. When iron oxides and sulfate were both used as the electron acceptors, reduction of iron by G-20 ranged from 60% for hematite to 97% for magnetite during the same period of time. In the abiotic control, less than 5% of hematite and goethite but great than 45% of ferrihydrate and magnetite were reduced after 120 hrs. These results indicate that poorly crystalline iron oxides (such as ferrihydrate) or the partially reduced iron oxide magnetite is most susceptible for abiotic reduction by S=. The crystalline goethite and hematite are least susceptible for abiotic reduction by S=, but their reduction can be significantly enhanced by biogenic H2S through bacterial mediation. These results suggest that iron reduction in sulfidic environments is not purely an abiotic chemical process but may be mediated by the sulfate-reducing bacteria, particularly for diagenesis of geothite and hematite.

Li, Y.; Zhang, C. L.; Vali, H.; Yang, J.; Palumbo, A. V.

2001-12-01

186

Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors.  

PubMed

This paper evaluates the use of upflow anaerobic sludge bed (UASB) bioreactors (30 degrees C, pH=7.0) to remove selenium oxyanions from contaminated waters (790 microg Se L(-1)) under methanogenic and sulfate-reducing conditions using lactate as electron donor. One UASB reactor received sulfate at different sulfate to selenate ratios, while another UASB was operated under methanogenic conditions for 132 days without sulfate in the influent. The selenate effluent concentrations in the sulfate-reducing and methanogenic reactor were 24 and 8 microg Se L(-1), corresponding to removal efficiencies of 97% and 99%, respectively. X-ray diffraction (XRD) analysis and sequential extractions showed that selenium was mainly retained as elemental selenium in the biomass. However, the total dissolved selenium effluent concentrations amounted to 73 and 80 microg Se L(-1), respectively, suggesting that selenate was partly converted to another selenium compound, most likely colloidally dispersed Se(0) nanoparticles. Possible intermediates of selenium reduction (selenite, dimethylselenide, dimethyldiselenide, H(2)Se) could not be detected. Sulfate reducers removed selenate at molar excess of sulfate to selenate (up to a factor of 2600) and elevated dissolved sulfide concentrations (up to 168 mg L(-1)), but selenium removal efficiencies were limited by the applied sulfate-loading rate. In the methanogenic bioreactor, selenate and dissolved selenium removal were independent of the sulfate load, but inhibited by sulfide (101 mg L(-1)). The selenium removal efficiency of the methanogenic UASB abruptly improved after 58 days of operation, suggesting that a specialized selenium-converting population developed in the reactor. This paper demonstrates that both sulfate-reducing and methanogenic UASB reactors can be applied to remove selenate from contaminated natural waters and anthropogenic waste streams, e.g. agricultural drainage waters, acid mine drainage and flue gas desulfurization bleeds. PMID:18177686

Lenz, Markus; Hullebusch, Eric D Van; Hommes, Gregor; Corvini, Philippe F X; Lens, Piet N L

2008-04-01

187

Evidence that crude oil alkane activation proceeds by different mechanisms under sulfate-reducing and methanogenic conditions  

NASA Astrophysics Data System (ADS)

Fumarate addition has been widely proposed as an initial step in the anaerobic oxidation of both aromatic and aliphatic hydrocarbons. Alkyl and aryl succinates have been reported as metabolites of hydrocarbon degradation in laboratory studies with both pure and enrichment cultures of sulfate-, nitrate-, and iron-reducing bacteria. In addition these compounds have been reported in samples from environments such as hydrocarbon contaminated aquifers where, in addition to the above redox processes, hydrocarbon degradation linked to methanogenesis was observed. Here we report data from anaerobic crude oil degrading microcosms which revealed significant differences between the acid metabolite profiles of crude oil degraded under sulfate-reducing or methanogenic conditions. Under sulfate-reducing conditions fumarate addition and the formation of alkylsuccinate metabolites was the principal mechanism for the anaerobic degradation of n-alkanes and branched chain alkanes. Other than alkyl succinates that represent indigenous metabolites in the sediment inoculum, alkyl succinate metabolites were never detected in sediment microcosms where methane generation was quantitatively linked to n-alkane degradation. This indicates that alternative mechanisms of alkane activation may operate under methanogenic conditions.

Aitken, C. M.; Jones, D. M.; Maguire, M. J.; Gray, N. D.; Sherry, A.; Bowler, B. F. J.; Ditchfield, A. K.; Larter, S. R.; Head, I. M.

2013-05-01

188

MULTIPLE SULFUR ISOTOPE FRACTIONATIONS IN BIOLOGICAL SYSTEMS: A CASE STUDY WITH SULFATE REDUCERS  

E-print Network

MULTIPLE SULFUR ISOTOPE FRACTIONATIONS IN BIOLOGICAL SYSTEMS: A CASE STUDY WITH SULFATE REDUCERS*, DONALD E. CANFIELD**, and KIRSTEN S. HABICHT** ABSTRACT. Multiple sulfur isotope measurements of sulfur disproportionation indicate that different types of metabolic processes impart differ- ent multiple isotope

Kaufman, Alan Jay

189

Temperature-Dependent Variations in Sulfate-Reducing Communities Associated with a Terrestrial Hydrocarbon Seep.  

PubMed

Terrestrial hydrocarbon seeps are an important source of naturally emitted methane over geological time. The exact community compositions responsible for carbon cycling beneath these surface features remain obscure. As sulfate reduction represents an essential process for anoxic organic mineralization, this study collected muddy fluids from a high-temperature hydrocarbon seep in Taiwan and analyzed community structures of sulfate-supplemented sediment slurries incubated anoxically at elevated temperatures. The results obtained demonstrated that sulfate consumption occurred between 40°C and 80°C. Dominant potential sulfate reducers included Desulfovibrio spp., Desulfonatronum spp., Desulforhabdus spp., and Desulfotomaculum spp. at 40°C, Thermodesulfovibrio spp. at 50°C, Thermodesulfovibrio spp. and Thermacetogenium spp. at 60°C, Thermacetogenium spp. and Archaeoglobus spp. at 70°C, and Archaeoglobus spp. at 80°C. None of these potential sulfate reducers exceeded 7% of the community in the untreated sample. Since no exogenous electron donor was provided during incubation, these sulfate reducers appeared to rely on the degradation of organic matter inherited from porewater and sediments. Aqueous chemistry indicated that fluids discharged in the region represented a mixture of saline formation water and low-salinity surface water; therefore, these lines of evidence suggest that deeply-sourced, thermophilic and surface-input, mesophilic sulfate-reducing populations entrapped along the subsurface fluid transport could respond rapidly once the ambient temperature is adjusted to a range close to their individual optima. PMID:25273230

Cheng, Ting-Wen; Lin, Li-Hung; Lin, Yue-Ting; Song, Sheng-Rong; Wang, Pei-Ling

2014-10-01

190

Temperature-Dependent Variations in Sulfate-Reducing Communities Associated with a Terrestrial Hydrocarbon Seep  

PubMed Central

Terrestrial hydrocarbon seeps are an important source of naturally emitted methane over geological time. The exact community compositions responsible for carbon cycling beneath these surface features remain obscure. As sulfate reduction represents an essential process for anoxic organic mineralization, this study collected muddy fluids from a high-temperature hydrocarbon seep in Taiwan and analyzed community structures of sulfate-supplemented sediment slurries incubated anoxically at elevated temperatures. The results obtained demonstrated that sulfate consumption occurred between 40°C and 80°C. Dominant potential sulfate reducers included Desulfovibrio spp., Desulfonatronum spp., Desulforhabdus spp., and Desulfotomaculum spp. at 40°C, Thermodesulfovibrio spp. at 50°C, Thermodesulfovibrio spp. and Thermacetogenium spp. at 60°C, Thermacetogenium spp. and Archaeoglobus spp. at 70°C, and Archaeoglobus spp. at 80°C. None of these potential sulfate reducers exceeded 7% of the community in the untreated sample. Since no exogenous electron donor was provided during incubation, these sulfate reducers appeared to rely on the degradation of organic matter inherited from porewater and sediments. Aqueous chemistry indicated that fluids discharged in the region represented a mixture of saline formation water and low-salinity surface water; therefore, these lines of evidence suggest that deeply-sourced, thermophilic and surface-input, mesophilic sulfate-reducing populations entrapped along the subsurface fluid transport could respond rapidly once the ambient temperature is adjusted to a range close to their individual optima.

Cheng, Ting-Wen; Lin, Li-Hung; Lin, Yue-Ting; Song, Sheng-Rong; Wang, Pei-Ling

2014-01-01

191

Phylogenetic Analysis Reveals Multiple Lateral Transfers of Adenosine-5?-Phosphosulfate Reductase Genes among Sulfate-Reducing Microorganisms  

PubMed Central

Lateral gene transfer affects the evolutionary path of key genes involved in ancient metabolic traits, such as sulfate respiration, even more than previously expected. In this study, the phylogeny of the adenosine-5?-phosphosulfate (APS) reductase was analyzed. APS reductase is a key enzyme in sulfate respiration present in all sulfate-respiring prokaryotes. A newly developed PCR assay was used to amplify and sequence a fragment (?900 bp) of the APS reductase gene, apsA, from a taxonomically wide range of sulfate-reducing prokaryotes (n = 60). Comparative phylogenetic analysis of all obtained and available ApsA sequences indicated a high degree of sequence conservation in the region analyzed. However, a comparison of ApsA- and 16S rRNA-based phylogenetic trees revealed topological incongruences affecting seven members of the Syntrophobacteraceae and three members of the Nitrospinaceae, which were clearly monophyletic with gram-positive sulfate-reducing bacteria (SRB). In addition, Thermodesulfovibrio islandicus and Thermodesulfobacterium thermophilum, Thermodesulfobacterium commune, and Thermodesulfobacterium hveragerdense clearly branched off between the radiation of the ?-proteobacterial gram-negative SRB and the gram-positive SRB and not close to the root of the tree as expected from 16S rRNA phylogeny. The most parsimonious explanation for these discrepancies in tree topologies is lateral transfer of apsA genes across bacterial divisions. Similar patterns of insertions and deletions in ApsA sequences of donor and recipient lineages provide additional evidence for lateral gene transfer. From a subset of reference strains (n = 25), a fragment of the dissimilatory sulfite reductase genes (dsrAB), which have recently been proposed to have undergone multiple lateral gene transfers (M. Klein et al., J. Bacteriol. 183:6028–6035, 2001), was also amplified and sequenced. Phylogenetic comparison of DsrAB- and ApsA-based trees suggests a frequent involvement of gram-positive and thermophilic SRB in lateral gene transfer events among SRB. PMID:11741869

Friedrich, Michael W.

2002-01-01

192

The ecology and biotechnology of sulphate-reducing bacteria  

Microsoft Academic Search

Sulphate-reducing bacteria (SRB) are anaerobic microorganisms that use sulphate as a terminal electron acceptor in, for example, the degradation of organic compounds. They are ubiquitous in anoxic habitats, where they have an important role in both the sulphur and carbon cycles. SRB can cause a serious problem for industries, such as the offshore oil industry, because of the production of

Alfons J. M. Stams; Gerard Muyzer

2008-01-01

193

Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments.  

PubMed

Three strains of sulfate-reducing bacteria (M1(T), D, and E) were isolated from acidic sediments (White river and Tinto river) and characterized phylogenetically and physiologically. All three strains were obligately anaerobic, mesophilic, spore-forming straight rods, stained Gram-negative and displayed variable motility during active growth. The pH range for growth was 3.8-7.0, with an optimum at pH 5.5. The temperature range for growth was 15-40 °C, with an optimum at 30 °C. Strains M1(T), D, and E used a wide range of electron donors and acceptors, with certain variability within the different strains. The nominated type strain (M1(T)) used ferric iron, nitrate, sulfate, elemental sulfur, and thiosulfate (but not arsenate, sulfite, or fumarate) as electron acceptors, and organic acids (formate, lactate, butyrate, fumarate, malate, and pyruvate), alcohols (glycerol, methanol, and ethanol), yeast extract, and sugars (xylose, glucose, and fructose) as electron donors. It also fermented some substrates such as pyruvate and formate. Strain M1(T) tolerated up to 50 mM ferrous iron and 10 mM aluminum, but was inhibited by 1 mM copper. On the basis of phenotypic, phylogenetic, and genetic characteristics, strains M1(T), D, and E represent a novel species within the genus Desulfosporosinus, for which the name Desulfosporosinus acididurans sp. nov. is proposed. The type strain is M1(T) (=DSM 27692(T) = JCM 19471(T)). Strain M1(T) was the first acidophilic SRB isolated, and it is the third described species of acidophilic SRB besides Desulfosporosinus acidiphilus and Thermodesulfobium narugense. PMID:25370366

Sánchez-Andrea, Irene; Stams, Alfons J M; Hedrich, Sabrina; ?ancucheo, Ivan; Johnson, D Barrie

2015-01-01

194

Solubilization of plutonium hydrous oxide by iron-reducing bacteria  

Microsoft Academic Search

The removal of plutonium from soils id challenging because of its strong sorption to soils and limited solubility, Microbial reduction of metals is known to affect the speciation and solubility of sparingly soluble metals in the environment, notably iron and manganese. The similarity in reduction potential for [alpha]-FeOOH(s) and hydrous PuO[sub 2](s) suggests that iron-reducing bacteria may also reduce and

Patricia A. Rusin; Leticia Quintana; James R. Brainard; B. A. Strietelmeler; C. Drew Tait; Scott A. Ekberg; Phillip D. Palmer; Thomas W. Newton; David L. Clark

1994-01-01

195

Dissimilatory bacterial sulfate reduction in montana groundwaters  

Microsoft Academic Search

The origin of hydrogen sulfide in southeastern Montana groundwaters was investigated. Sulfate?reducing bacteria were detected in 25 of 26 groundwater samples in numbers ranging from 2.0 × 10 to greater than 2.4 × 10 bacteria per 100 ml. Stable sulfur isotope fractionation studies indicated a biological role in sulfate reduction. However, sulfate?reducing activity as determined by use of a radioactive

William S. Dockins; Gregory J. Olson; Gordon A. McFeters; Susan C. Turbak

1980-01-01

196

Systematic mapping of two component response regulators to gene targets in a model sulfate reducing bacterium  

PubMed Central

Background Two component regulatory systems are the primary form of signal transduction in bacteria. Although genomic binding sites have been determined for several eukaryotic and bacterial transcription factors, comprehensive identification of gene targets of two component response regulators remains challenging due to the lack of knowledge of the signals required for their activation. We focused our study on Desulfovibrio vulgaris Hildenborough, a sulfate reducing bacterium that encodes unusually diverse and largely uncharacterized two component signal transduction systems. Results We report the first systematic mapping of the genes regulated by all transcriptionally acting response regulators in a single bacterium. Our results enabled functional predictions for several response regulators and include key processes of carbon, nitrogen and energy metabolism, cell motility and biofilm formation, and responses to stresses such as nitrite, low potassium and phosphate starvation. Our study also led to the prediction of new genes and regulatory networks, which found corroboration in a compendium of transcriptome data available for D. vulgaris. For several regulators we predicted and experimentally verified the binding site motifs, most of which were discovered as part of this study. Conclusions The gene targets identified for the response regulators allowed strong functional predictions to be made for the corresponding two component systems. By tracking the D. vulgaris regulators and their motifs outside the Desulfovibrio spp. we provide testable hypotheses regarding the functions of orthologous regulators in other organisms. The in vitro array based method optimized here is generally applicable for the study of such systems in all organisms. PMID:21992415

2011-01-01

197

Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria.  

PubMed

Extremely thermophilic archaebacteria are known to be metabolizers of elemental sulfur and the methanogens. A novel group of extremely thermophilic archaebacteria is described, which consists of sulfate-respiring organisms that contain pure factor 420 and that have been isolated from marine hydrothermal systems in Italy. They possess a third type of archaebacterial RNA polymerase structure previously unknown, indicating an exceptional phylogenetic position. Most likely, this group represents a third major branch within the archaebacteria. The existence of sulfate reducers at extremely high temperatures could explain hydrogen sulfide formation in hot sulfate-containing environments, such as submarine hydrothermal systems and deep oil wells. PMID:17777850

Stetter, K O; Lauerer, G; Thomm, M; Neuner, A

1987-05-15

198

Elucidating microbial processes in nitrate- and sulfate-reducing systems using sulfur and oxygen isotope ratios: The example of oil reservoir souring control  

NASA Astrophysics Data System (ADS)

Sulfate-reducing bacteria (SRB) are ubiquitous in anoxic environments where they couple the oxidation of organic compounds to the production of hydrogen sulfide. This can be problematic for various industries including oil production where reservoir "souring" (the generation of H 2S) requires corrective actions. Nitrate or nitrite injection into sour oil fields can promote SRB control by stimulating organotrophic nitrate- or nitrite-reducing bacteria (O-NRB) that out-compete SRB for electron donors (biocompetitive exclusion), and/or by lithotrophic nitrate- or nitrite-reducing sulfide oxidizing bacteria (NR-SOB) that remove H 2S directly. Sulfur and oxygen isotope ratios of sulfide and sulfate were monitored in batch cultures and sulfidic bioreactors to evaluate mitigation of SRB activities by nitrate or nitrite injection. Sulfate reduction in batch cultures of Desulfovibrio sp. strain Lac15 indicated typical Rayleigh-type fractionation of sulfur isotopes during bacterial sulfate reduction (BSR) with lactate, whereas oxygen isotope ratios in unreacted sulfate remained constant. Sulfur isotope fractionation in batch cultures of the NR-SOB Thiomicrospira sp. strain CVO was minimal during the oxidation of sulfide to sulfate, which had ?18O SO4 values similar to that of the water-oxygen. Treating an up-flow bioreactor with increasing doses of nitrate to eliminate sulfide resulted in changes in sulfur isotope ratios of sulfate and sulfide but very little variation in oxygen isotope ratios of sulfate. These observations were similar to results obtained from SRB-only, but different from those of NR-SOB-only pure culture control experiments. This suggests that biocompetitive exclusion of SRB took place in the nitrate-injected bioreactor. In two replicate bioreactors treated with nitrite, less pronounced sulfur isotope fractionation and a slight decrease in ?18O SO4 were observed. This indicated that NR-SOB played a minor role during dosing with low nitrite and that biocompetitive exclusion was the major process. The results demonstrate that stable isotope data can contribute unique information for understanding complex microbial processes in nitrate- and sulfate-reducing systems, and offer important information for the management of H 2S problems in oil reservoirs and elsewhere.

Hubert, Casey; Voordouw, Gerrit; Mayer, Bernhard

2009-07-01

199

Functional Genomics with a Comprehensive Library of Transposon Mutants for the Sulfate-Reducing Bacterium Desulfovibrio alaskensis G20  

PubMed Central

ABSTRACT The genomes of sulfate-reducing bacteria remain poorly characterized, largely due to a paucity of experimental data and genetic tools. To meet this challenge, we generated an archived library of 15,477 mapped transposon insertion mutants in the sulfate-reducing bacterium Desulfovibrio alaskensis G20. To demonstrate the utility of the individual mutants, we profiled gene expression in mutants of six regulatory genes and used these data, together with 1,313 high-confidence transcription start sites identified by tiling microarrays and transcriptome sequencing (5? RNA-Seq), to update the regulons of Fur and Rex and to confirm the predicted regulons of LysX, PhnF, PerR, and Dde_3000, a histidine kinase. In addition to enabling single mutant investigations, the D. alaskensis G20 transposon mutants also contain DNA bar codes, which enables the pooling and analysis of mutant fitness for thousands of strains simultaneously. Using two pools of mutants that represent insertions in 2,369 unique protein-coding genes, we demonstrate that the hypothetical gene Dde_3007 is required for methionine biosynthesis. Using comparative genomics, we propose that Dde_3007 performs a missing step in methionine biosynthesis by transferring a sulfur group to O-phosphohomoserine to form homocysteine. Additionally, we show that the entire choline utilization cluster is important for fitness in choline sulfate medium, which confirms that a functional microcompartment is required for choline oxidation. Finally, we demonstrate that Dde_3291, a MerR-like transcription factor, is a choline-dependent activator of the choline utilization cluster. Taken together, our data set and genetic resources provide a foundation for systems-level investigation of a poorly studied group of bacteria of environmental and industrial importance. PMID:24865553

Kuehl, Jennifer V.; Price, Morgan N.; Ray, Jayashree; Wetmore, Kelly M.; Esquivel, Zuelma; Kazakov, Alexey E.; Nguyen, Michelle; Kuehn, Raquel; Davis, Ronald W.; Hazen, Terry C.; Arkin, Adam P.

2014-01-01

200

A Member of the Delta Subgroup of Proteobacteria from a Pyogenic Liver Abscess Is a Typical Sulfate Reducer of the Genus Desulfovibrio  

PubMed Central

Strain FH26001/95 (ATCC 700045) was previously isolated from a pyogenic liver abscess from a human. Comparative 16S rRNA gene sequence analysis showed that this strain is related to members of the delta subgroup of the proteobacteria, within a cluster of sulfate-reducing bacteria (Desulfovibrio spp.) and non-sulfate-reducing bacteria (Bilophila wadsworthia and Lawsonia spp.). The phenotype of strain FH26001/95 was found to be typical of members of the genus Desulfovibrio. Growth and substrate transformations were possible at oxygen concentrations of 2 to 5% (vol/vol) but not at oxygen concentrations of 21% (vol/vol) in air. Its isolation from an infection in a human suggests that some members of the genus Desulfovibrio can be considered opportunistic pathogens. PMID:11158153

Schoenborn, Liesbeth; Abdollahi, Hamid; Tee, Wee; Dyall-Smith, Michael; Janssen, Peter H.

2001-01-01

201

Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth.  

PubMed

A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c) kg(-1), respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils. PMID:25285745

Panhwar, Qurban Ali; Naher, Umme Aminun; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

2014-01-01

202

Biochemical and Molecular Characterization of Potential Phosphate-Solubilizing Bacteria in Acid Sulfate Soils and Their Beneficial Effects on Rice Growth  

PubMed Central

A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmolc kg?1, respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils. PMID:25285745

Panhwar, Qurban Ali; Naher, Umme Aminun; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

2014-01-01

203

Roles of HynAB and Ech, the Only Two Hydrogenases Found in the Model Sulfate Reducer Desulfovibrio gigas  

PubMed Central

Sulfate-reducing bacteria are characterized by a high number of hydrogenases, which have been proposed to contribute to the overall energy metabolism of the cell, but exactly in what role is not clear. Desulfovibrio spp. can produce or consume H2 when growing on organic or inorganic substrates in the presence or absence of sulfate. Because of the presence of only two hydrogenases encoded in its genome, the periplasmic HynAB and cytoplasmic Ech hydrogenases, Desulfovibrio gigas is an excellent model organism for investigation of the specific function of each of these enzymes during growth. In this study, we analyzed the physiological response to the deletion of the genes that encode the two hydrogenases in D. gigas, through the generation of ?echBC and ?hynAB single mutant strains. These strains were analyzed for the ability to grow on different substrates, such as lactate, pyruvate, and hydrogen, under respiratory and fermentative conditions. Furthermore, the expression of both hydrogenase genes in the three strains studied was assessed through quantitative reverse transcription-PCR. The results demonstrate that neither hydrogenase is essential for growth on lactate-sulfate, indicating that hydrogen cycling is not indispensable. In addition, the periplasmic HynAB enzyme has a bifunctional activity and is required for growth on H2 or by fermentation of pyruvate. Therefore, this enzyme seems to play a dominant role in D. gigas hydrogen metabolism. PMID:23974026

Morais-Silva, Fabio O.; Santos, Catia I.; Rodrigues, Rute

2013-01-01

204

Fe(III)EDTA and Fe(II)EDTA-NO reduction by a sulfate reducing bacterium in NO and SO2 scrubbing liquor.  

PubMed

A viable process concept, based on NO and SO2 absorption into an alkaline Fe(II)EDTA (EDTA: ethylenediaminetetraacetic acid) solution in a scrubber combined with biological reduction of the absorbed SO2 utilizing sulfate reducing bacteria (SRB) and regeneration of the scrubbing liquor in a single bioreactor, was developed. The SRB, Desulfovibrio sp. CMX, was used and its sulfate reduction performances in FeEDTA solutions and Fe(II)EDTA-NO had been investigated. In this study, the detailed regeneration process of Fe(II)EDTA solution, which contained Fe(III)EDTA and Fe(II)EDTA-NO reduction processes in presence of D. sp. CMX and sulfate, was evaluated. Fe(III)EDTA and Fe(II)EDTA-NO reduction processes were primarily biological, even if Fe(III)EDTA and Fe(II)EDTA-NO could also be chemically convert to Fe(II)EDTA by biogenic sulfide. Regardless presence or absence of sulfate, more than 87 % Fe(III)EDTA and 98 % Fe(II)EDTA-NO were reduced in 46 h, respectively. Sulfate and Fe(III)EDTA had no affection on Fe(II)EDTA-NO reduction. Sulfate enhanced final Fe(III)EDTA reduction. Effect of Fe(III)EDTA on Fe(II)EDTA-NO reduction rate was more obvious than effect of sulfate on Fe(II)EDTA-NO reduction rate before 8 h. To overcome toxicity of Fe(II)EDTA-NO on SRB, Fe(II)EDTA-NO was reduced first and the reduction of Fe(III)EDTA and sulfate occurred after 2 h. First-order Fe(II)EDTA-NO reduction rate and zero-order Fe(III)EDTA reduction rate were detected respectively before 8 h. PMID:25649204

Chen, Mingxiang; Zhou, Jiti; Zhang, Yu; Wang, Xiaojun; Shi, Zhuang; Wang, Xiaowei

2015-03-01

205

Response And Recovery Of Sulfate-Reducing Biochemical Reactors From Aerobic Stress Events  

EPA Science Inventory

Microbially-mediated treatment of mining-influenced water (MIW) through the implementation of sulfate-reducing biochemical reactors (BCRs) is an attractive option for passive, in situ remediation with low operating costs and reduced maintenance requirements. However, BCRs can be...

206

Response And Recovery Of Sulfate-Reducing Biochemical Reactors From Aerobic Stress Events (Presentation)  

EPA Science Inventory

Microbially-mediated treatment of mining-influenced water (MIW) through the implementation of sulfate-reducing biochemical reactors (BCR) is an attractive option for passive, in situ remediation with low operating costs and reduced maintenance requirements. However, BCRs can be ...

207

Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions  

SciTech Connect

This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

Coyne, P.; Smith, G. [New Mexico State Univ., Las Cruces, NM (United States)

1995-08-15

208

Magnesium Sulfate Only Slightly Reduces the Shivering Threshold in Humans  

PubMed Central

Background: Hypothermia may be an effective treatment for stroke or acute myocardial infarction; however, it provokes vigorous shivering, which causes potentially dangerous hemodynamic responses and prevents further hypothermia. Magnesium is an attractive antishivering agent because it is used for treatment of postoperative shivering and provides protection against ischemic injury in animal models. We tested the hypothesis that magnesium reduces the threshold (triggering core temperature) and gain of shivering without substantial sedation or muscle weakness. Methods: We studied nine healthy male volunteers (18-40 yr) on two randomly assigned treatment days: 1) Control and 2) Magnesium (80 mg·kg-1 followed by infusion at 2 g·h-1). Lactated Ringer's solution (4°C) was infused via a central venous catheter over a period of approximately 2 hours to decrease tympanic membrane temperature ?1.5°C·h-1. A significant and persistent increase in oxygen consumption identified the threshold. The gain of shivering was determined by the slope of oxygen consumption vs. core temperature regression. Sedation was evaluated using verbal rating score (VRS, 0-10) and bispectral index of the EEG (BIS). Peripheral muscle strength was evaluated using dynamometry and spirometry. Data were analyzed using repeated-measures ANOVA; P<0.05 was statistically significant. Results: Magnesium reduced the shivering threshold (36.3±0.4 [mean±SD] vs. 36.6±0.3°C, P=0.040). It did not affect the gain of shivering (Control: 437±289, Magnesium: 573±370 ml·min-1·°C-1, P=0.344). The magnesium bolus did not produce significant sedation or appreciably reduce muscle strength. Conclusions: Magnesium significantly reduced the shivering threshold; however, due to the modest absolute reduction, this finding is considered to be clinically unimportant for induction of therapeutic hypothermia. PMID:15749735

Wadhwa, Anupama; Sengupta, Papiya; Durrani, Jaleel; Akça, Ozan; Lenhardt, Rainer; Sessler, Daniel I.

2005-01-01

209

Prokaryotic Community Structure and Sulfate Reducer Activity in Water from High-Temperature Oil Reservoirs with and without Nitrate Treatment? †  

PubMed Central

Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. One strategy to control SRP activity is the addition of nitrate to the injection water. Production waters from two adjacent, hot (80°C) oil reservoirs, one with and one without nitrate treatment, were compared for prokaryotic community structure and activity of SRP. Bacterial and archaeal 16S rRNA gene analyses revealed higher prokaryotic abundance but lower diversity for the nitrate-treated field. The 16S rRNA gene clone libraries from both fields were dominated by sequences affiliated with Firmicutes (Bacteria) and Thermococcales (Archaea). Potential heterotrophic nitrate reducers (Deferribacterales) were exclusively found at the nitrate-treated field, possibly stimulated by nitrate addition. Quantitative PCR of dsrAB genes revealed that archaeal SRP (Archaeoglobus) dominated the SRP communities, but with lower relative abundance at the nitrate-treated site. Bacterial SRP were found in only low abundance at both sites and were nearly exclusively affiliated with thermophilic genera (Desulfacinum and Desulfotomaculum). Despite the high abundance of archaeal SRP, no archaeal SRP activity was detected in [35S]sulfate incubations at 80°C. Sulfate reduction was found at 60°C in samples from the untreated field and accompanied by the growth of thermophilic bacterial SRP in batch cultures. Samples from the nitrate-treated field generally lacked SRP activity. These results indicate that (i) Archaeoglobus can be a major player in hot oil reservoirs, and (ii) nitrate may act in souring control—not only by inhibiting SRP, but also by changing the overall community structure, including the stimulation of competitive nitrate reducers. PMID:19801479

Gittel, Antje; Sørensen, Ketil Bernt; Skovhus, Torben Lund; Ingvorsen, Kjeld; Schramm, Andreas

2009-01-01

210

Enrichment of amino acid-oxidizing, acetate-reducing bacteria.  

PubMed

In anaerobic condition, amino acids are oxidatively deaminated, and decarboxylated, resulting in the production of volatile fatty acids. In this process, excess electrons are produced and their consumption is necessary for the accomplishment of amino acid degradation. In this study, we anaerobically constructed leucine-degrading enrichment cultures from three different environmental samples (compost, excess sludge, and rice field soil) in order to investigate the diversity of electron-consuming reaction coupled to amino acid oxidation. Constructed enrichment cultures oxidized leucine to isovalerate and their activities were strongly dependent on acetate. Analysis of volatile fatty acids (VFAs) profiles and community structure analysis during batch culture of each enrichment indicated that Clostridium cluster I coupled leucine oxidation to acetate reduction in the enrichment from the compost and the rice field soil. In these cases, acetate was reduced to butyrate. On the other hand, Clostridium cluster XIVb coupled leucine oxidation to acetate reduction in the enrichment from the excess sludge. In this case, acetate was reduced to propionate. To our surprise, the enrichment from rice field soil oxidized leucine even in the absence of acetate and produced butyrate. The enrichment would couple leucine oxidation to reductive butyrate synthesis from CO2. The coupling reaction would be achieved based on trophic link between hydrogenotrophic acetogenic bacteria and acetate-reducing bacteria by sequential reduction of CO2 and acetate. Our study suggests anaerobic degradation of amino acids is achieved yet-to-be described reactions. PMID:24630616

Ato, Makoto; Ishii, Masaharu; Igarashi, Yasuo

2014-08-01

211

Genome sequence of the model sulfate reducer Desulfovibrio gigas: a comparative analysis within the Desulfovibrio genus*  

PubMed Central

Desulfovibrio gigas is a model organism of sulfate-reducing bacteria of which energy metabolism and stress response have been extensively studied. The complete genomic context of this organism was however, not yet available. The sequencing of the D. gigas genome provides insights into the integrated network of energy conserving complexes and structures present in this bacterium. Comparison with genomes of other Desulfovibrio spp. reveals the presence of two different CRISPR/Cas systems in D. gigas. Phylogenetic analysis using conserved protein sequences (encoded by rpoB and gyrB) indicates two main groups of Desulfovibrio spp, being D. gigas more closely related to D. vulgaris and D. desulfuricans strains. Gene duplications were found such as those encoding fumarate reductase, formate dehydrogenase, and superoxide dismutase. Complexes not yet described within Desulfovibrio genus were identified: Mnh complex, a v-type ATP-synthase as well as genes encoding the MinCDE system that could be responsible for the larger size of D. gigas when compared to other members of the genus. A low number of hydrogenases and the absence of the codh/acs and pfl genes, both present in D. vulgaris strains, indicate that intermediate cycling mechanisms may contribute substantially less to the energy gain in D. gigas compared to other Desulfovibrio spp. This might be compensated by the presence of other unique genomic arrangements of complexes such as the Rnf and the Hdr/Flox, or by the presence of NAD(P)H related complexes, like the Nuo, NfnAB or Mnh. PMID:25055974

Morais-Silva, Fabio O; Rezende, Antonio Mauro; Pimentel, Catarina; Santos, Catia I; Clemente, Carla; Varela–Raposo, Ana; Resende, Daniela M; da Silva, Sofia M; de Oliveira, Luciana Márcia; Matos, Marcia; Costa, Daniela A; Flores, Orfeu; Ruiz, Jerónimo C; Rodrigues-Pousada, Claudina

2014-01-01

212

Seasonal composition and activity of sulfate-reducing prokaryotic communities in seagrass bed sediments  

EPA Science Inventory

Sulfate-reducing prokaryotes (SRP) play a key role in the carbon and nutrient cycles of coastal marine, vegetated ecosystems, but the interactions of SRP communities with aquatic plants remain little studied. The abundance, activity, and community composition of SRP was studied i...

213

Complete Genome Sequence of the Subsurface, Mesophilic Sulfate-Reducing Bacterium Desulfovibrio aespoeensis Aspo-2  

PubMed Central

Desulfovibrio aespoeensis Aspo-2, DSM 10631T, is a mesophilic, hydrogenotrophic sulfate-reducing bacterium sampled from a 600-m-deep subsurface aquifer in hard rock under the island of Äspö in southeastern Sweden. We report the genome sequence of this bacterium, which is a 3,629,109-bp chromosome; plasmids were not found. PMID:24874683

Bengtsson, Andreas; Edlund, Johanna; Rabe, Lisa; Hazen, Terry; Chakraborty, Romy; Goodwin, Lynne; Shapiro, Nicole

2014-01-01

214

Bacterial Growth Phase Influences Methylmercury Production by the Sulfate-Reducing Bacterium  

E-print Network

Bacterial Growth Phase Influences Methylmercury Production by the Sulfate-Reducing Bacterium of bacterial growth phase on monomethyl mercury (MMHg) production by D. desulfuricans ND132. At late on bacterial MMHg production in natural systems. #12;Bacterial Growth Phase Influences Methylmercury Production

215

Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide  

PubMed Central

Sulfate-reducing bacteria (SRB) belonging to the metabolically versatile Desulfobacteriaceae are abundant in marine sediments and contribute to the global carbon cycle by complete oxidation of organic compounds. Desulfobacterium autotrophicum HRM2 is the first member of this ecophysiologically important group with a now available genome sequence. With 5.6 megabasepairs (Mbp) the genome of Db. autotrophicum HRM2 is about 2 Mbp larger than the sequenced genomes of other sulfate reducers (SRB). A high number of genome plasticity elements (> 100 transposon-related genes), several regions of GC discontinuity and a high number of repetitive elements (132 paralogous genes Mbp?1) point to a different genome evolution when comparing with Desulfovibrio spp. The metabolic versatility of Db. autotrophicum HRM2 is reflected in the presence of genes for the degradation of a variety of organic compounds including long-chain fatty acids and for the Wood–Ljungdahl pathway, which enables the organism to completely oxidize acetyl-CoA to CO2 but also to grow chemolithoautotrophically. The presence of more than 250 proteins of the sensory/regulatory protein families should enable Db. autotrophicum HRM2 to efficiently adapt to changing environmental conditions. Genes encoding periplasmic or cytoplasmic hydrogenases and formate dehydrogenases have been detected as well as genes for the transmembrane TpII-c3, Hme and Rnf complexes. Genes for subunits A, B, C and D as well as for the proposed novel subunits L and F of the heterodisulfide reductases are present. This enzyme is involved in energy conservation in methanoarchaea and it is speculated that it exhibits a similar function in the process of dissimilatory sulfate reduction in Db. autotrophicum HRM2. PMID:19187283

Strittmatter, Axel W; Liesegang, Heiko; Rabus, Ralf; Decker, Iwona; Amann, Judith; Andres, Sönke; Henne, Anke; Fricke, Wolfgang Florian; Martinez-Arias, Rosa; Bartels, Daniela; Goesmann, Alexander; Krause, Lutz; Pühler, Alfred; Klenk, Hans-Peter; Richter, Michael; Schüler, Margarete; Glöckner, Frank Oliver; Meyerdierks, Anke; Gottschalk, Gerhard; Amann, Rudolf

2009-01-01

216

Extremophilic iron-reducing bacteria: Their implications for possible life in extraterrestrial environments  

SciTech Connect

Iron reduction is believed to be an early form of respiration and iron-reducing bacteria might have evolved very early on Earth. To support this hypothesis, the authors began to search for both thermophilic and psychrophilic iron-reducing bacteria because iron-reducing capacity may be a widely distributed trait if ancestral microorganisms include extremophilic iron-reducing bacteria. To date, they have obtained thermophilic Fe(III)-reducing and magnetite-forming enrichment cultures from geologically and hydrologically isolated, millions of years-old deep terrestrial subsurface samples. Three dominant bacteria were identified based on 16S ribosomal RNA gene sequences. Phylogenetical analysis indicated that these bacteria were closely related to Thermoanaerobacter ethanoliticus. Two pure thermophilic iron-reducing bacteria have been isolated and characterized from these enrichments, they also are able to degrade cellulose and xylan. Geological evidence indicated that these bacteria were separated from modern organisms for about 200 million years, and they are the oldest isolated bacteria available now. Evolutionary sequence analysis showed that the 16S rRNA genes evolved extremely slowly in these bacteria. In addition, the authors have obtained about 30 psychrophilic iron-reducing bacteria in samples from Siberia and Alaska permafrost soils, Pacific marine sediments and Hawaii deep sea water. These bacteria were also able to reduce other heavy metals. The isolation of both thermophilic and psychrophilic iron-reducing bacteria from surface and subsurface environments has significant implications for microbial evolution and for studying the origin of life in extraterrestrial environments.

Zhou, J.; Liu, S.V.; Zhang, C.; Palumbo, A.V.; Phelps, T.J.

1998-06-01

217

Molecular survey of sulphate-reducing bacteria in the deep-sea sediments of the west Pacific Warm Pool  

Microsoft Academic Search

The sulfate-reducing bacteria (SRB) community in the deep-sea sediments of the west Pacific Warm Pool (WP) was surveyed by\\u000a molecular phylogenetic analyses using primers targeting the 16S rRNA gene fragments of SRB. Specific 16S rRNA gene libraries\\u000a from five sediment layers (1-cm, 3-cm, 6-cm, 10-cm and 12-cm layer) of the 12-cm core of WP-0 were constructed. The clones\\u000a in the

Peng Wang; Xiang Xiao; Haiyan Zhang; Fengping Wang

2008-01-01

218

Sulfate-reducing anaerobic ammonium oxidation as a potential treatment method for high nitrogen-content wastewater.  

PubMed

After sulfate-reducing ammonium oxidation (SRAO) was first assumed in 2001, several works have been published describing this process in laboratory-scale bioreactors or occurring in the nature. In this paper, the SRAO process was performed using reject water as a substrate for microorganisms and a source of NH(4) (+), with SO(4) (2-) being added as an electron acceptor. At a moderate temperature of 20°C in a moving bed biofilm reactor (MBBR) sulfate reduction along with ammonium oxidation were established. In an upflow anaerobic sludge blanket reactor (UASBR) the SRAO process took place at 36°C. Average volumetric TN removal rates of 0.03 kg-N/m³/day in the MBBR and 0.04 kg-N/m³/day in the UASBR were achieved, with long-term moderate average removal efficiencies, respectively. Uncultured bacteria clone P4 and uncultured planctomycete clone Amx-PAn30 were detected from the biofilm of the MBBR, from sludge of the UASBR uncultured Verrucomicrobiales bacterium clone De2102 and Uncultured bacterium clone ATB-KS-1929 were found also. The stoichiometrical ratio of NH(4) (+) removal was significantly higher than could be expected from the extent of SO(4) (2-) reduction. This phenomenon can primarily be attributed to complex interactions between nitrogen and sulfur compounds and organic matter present in the wastewater. The high NH(4) (+) removal ratio can be attributed to sulfur-utilizing denitrification/denitritation providing the evidence that SRAO is occurring independently and is not a result of sulfate reduction and anammox. HCO(3) (-) concentrations exceeding 1,000 mg/l were found to have an inhibiting effect on the SRAO process. Small amounts of hydrazine were naturally present in the reaction medium, indicating occurrence of the anammox process. Injections of anammox intermediates, hydrazine and hydroxylamine, had a positive effect on SRAO process performance, particularly in the case of the UASBR. PMID:22205544

Rikmann, Ergo; Zekker, Ivar; Tomingas, Martin; Tenno, Taavo; Menert, Anne; Loorits, Liis; Tenno, Toomas

2012-07-01

219

SAR11 marine bacteria require exogenous reduced sulphur for growth.  

PubMed

Sulphur is a universally required cell nutrient found in two amino acids and other small organic molecules. All aerobic marine bacteria are known to use assimilatory sulphate reduction to supply sulphur for biosynthesis, although many can assimilate sulphur from organic compounds that contain reduced sulphur atoms. An analysis of three complete 'Candidatus Pelagibacter ubique' genomes, and public ocean metagenomic data sets, suggested that members of the ubiquitous and abundant SAR11 alphaproteobacterial clade are deficient in assimilatory sulphate reduction genes. Here we show that SAR11 requires exogenous sources of reduced sulphur, such as methionine or 3-dimethylsulphoniopropionate (DMSP) for growth. Titrations of the algal osmolyte DMSP in seawater medium containing all other macronutrients in excess showed that 1.5 x 10(8) SAR11 cells are produced per nanomole of DMSP. Although it has been shown that other marine alphaproteobacteria use sulphur from DMSP in preference to sulphate, our results indicate that 'Cand. P. ubique' relies exclusively on reduced sulphur compounds that originate from other plankton. PMID:18337719

Tripp, H James; Kitner, Joshua B; Schwalbach, Michael S; Dacey, John W H; Wilhelm, Larry J; Giovannoni, Stephen J

2008-04-10

220

Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin?  

PubMed Central

Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in versican-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found that the skin collagen architecture was altered, and electron microscopy showed that the DS-epi1-null fibrils have a larger diameter than the wild-type fibrils. The altered chondroitin/dermatan sulfate chains carried by decorin in skin are likely to affect collagen fibril formation and reduce the tensile strength of DS-epi1-null skin. PMID:19687302

Maccarana, Marco; Kalamajski, Sebastian; Kongsgaard, Mads; Magnusson, S. Peter; Oldberg, Åke; Malmström, Anders

2009-01-01

221

Halotolerant and Resistant to High pH Hydrogenase from Haloalkaliphilic Sulfate-Reducing Bacterium Desulfonatronum thiodismutans  

NASA Technical Reports Server (NTRS)

Hydrogenase is the key enzyme of energetic metabolism in cells, it catalyzing the converse reaction of hydrogen oxidation and responsible for consumption and excretion of hydrogen in bacteria. Hydrogenases are proteins containing either Nickel and Iron, or the only Iron in theirs active center. Hydrogenases have been found in many microorganisms, such as Methanogenic, acetogenic, nitrogen-fixing, photosynthetic and sulfate-reducing bacteria that could utilize the hydrogen as energy source or use it as electron sink. Hydrogenases are subject for wide physiological, biochemical, physicochemical and genetic studies due to theirs abilities produce the molecular hydrogen as alternative source of pure energy. Notwithstanding on enough large quantity of works that deal with intracellular and extrasellular enzymes of halophilic bacteria, the data about hydrogenases and theirs functions of salts practically are absent. The study of hydrogenase in cell-free extracts of extremely halophilic eubacterium Acetohalobium mabaticum showed dramatic increasing activity of the enzyme at high concentrations of NaCl and KCI (close to saturated solution). Here we present the data of free-cells extracted hydrogenase from new haloalkaliphilic sulfate-reducing bacterium Desulfonatronum thiodismutans, which grow on highly miniralized carbonate-bicarbonate medium in salinity range 1 to 7 % and at pH 7.8 - 10.5. Studied enzyme was active in Concentration range from 0 to 4.3 M NaCl with optimum at 1.0 M NaCl. At 1.0 M NaCl the enzyme activity was increased on 20 %, but with changing concentration from 2.1 M to 3.4 M the activity decreased and was kept on constant level. NaHCO3 inhibited hydrogenase activity on more then 30 %. The maximum of enzyme activity was observed at pH 9.5 with limits 7.5 and 11.5 that practically equal to pH optimum of bacterial growth. Therefore the hydrogenase of Desulfanatronum thiodismutans is tolerant to high concentrations of sodium salts and it also resistant to high pH that make it the unique subject for different biochemical research and detects the possibility for biotechnological application.

Detkova, Ekaterina N.; Pikuta, Elena V.; Hoover, Richard B.

2004-01-01

222

Isolation and Characterization of a Sulfate-Reducing Bacterium That Anaerobically Degrades Alkanes  

Microsoft Academic Search

An alkane-degrading, sulfate-reducing bacterial strain, AK-01, was isolated from an estuarine sediment with a history of chronic petroleum contamination. The bacterium is a short, nonmotile, non-spore-forming, gram-negative rod. It is mesophilic and grows optimally at pH 6.9 to 7.0 and at an NaCl concentration of 1%. Formate, fatty acids (C4 to C16) and hydrogen were readily utilized as electron donors.

CHI MING SO; L. Y. YOUNG

1999-01-01

223

Genome-Assisted Analysis of Dissimilatory Metal-Reducing Bacteria  

SciTech Connect

Whole genome sequence for Shewanella oneidensis and Geobacter sulfurreducens has provided numerous new biological insights into the function of these model dissimilatory metal-reducing bacteria. Many of the discoveries, including the identification of a high number of c-type cytochromes in both organisms, have been the result of comparative genomic analyses including several that were experimentally confirmed. Genome sequence has also aided the identification of genes important for the reduction of metal ions and other electron acceptors utilized by these organisms during anaerobic growth by facilitating the identification of genes disrupted by random insertions. Technologies for assaying global expression patterns for genes (mRNA) and proteins have also been enabled by the availability of genome sequence but their application has been limited mainly to the analysis of the role of global regulatory genes and to identifying genes expressed or repressed in response to specific electron acceptors. It is anticipated that details regarding the mechanisms of metal ion respiration, and metabolism in general, will eventually be revealed by comprehensive, systems-level analyses enabled by functional genomic analyses.

Fredrickson, Jim K.; Romine, Margaret F.

2005-06-01

224

Ubiquity and Diversity of Dissimilatory (Per)chlorate-Reducing Bacteria  

PubMed Central

Environmental contamination with compounds containing oxyanions of chlorine, such as perchlorate or chlorate [(per)chlorate] or chlorine dioxide, has been a constantly growing problem over the last 100 years. Although the fact that microbes reduce these compounds has been recognized for more than 50 years, only six organisms which can obtain energy for growth by this metabolic process have been described. As part of a study to investigate the diversity and ubiquity of microorganisms involved in the microbial reduction of (per)chlorate, we enumerated the (per)chlorate-reducing bacteria (ClRB) in very diverse environments, including pristine and hydrocarbon-contaminated soils, aquatic sediments, paper mill waste sludges, and farm animal waste lagoons. In all of the environments tested, the acetate-oxidizing ClRB represented a significant population, whose size ranged from 2.31 × 103 to 2.4 × 106 cells per g of sample. In addition, we isolated 13 ClRB from these environments. All of these organisms could grow anaerobically by coupling complete oxidation of acetate to reduction of (per)chlorate. Chloride was the sole end product of this reductive metabolism. All of the isolates could also use oxygen as a sole electron acceptor, and most, but not all, could use nitrate. The alternative electron donors included simple volatile fatty acids, such as propionate, butyrate, or valerate, as well as simple organic acids, such as lactate or pyruvate. Oxidized-minus-reduced difference spectra of washed whole-cell suspensions of the isolates had absorbance maxima close to 425, 525, and 550 nm, which are characteristic of type c cytochromes. In addition, washed cell suspensions of all of the ClRB isolates could dismutate chlorite, an intermediate in the reductive metabolism of (per)chlorate, into chloride and molecular oxygen. Chlorite dismutation was a result of the activity of a single enzyme which in pure form had a specific activity of approximately 1,928 ?mol of chlorite per mg of protein per min. Analyses of the 16S ribosomal DNA sequences of the organisms indicated that they all belonged to the alpha, beta, or gamma subclass of the Proteobacteria. Several were closely related to members of previously described genera that are not recognized for the ability to reduce (per)chlorate, such as the genera Pseudomonas and Azospirllum. However, many were not closely related to any previously described organism and represented new genera within the Proteobacteria. The results of this study significantly increase the limited number of microbial isolates that are known to be capable of dissimilatory (per)chlorate reduction and demonstrate the hitherto unrecognized phylogenetic diversity and ubiquity of the microorganisms that exhibit this type of metabolism. PMID:10583970

Coates, John D.; Michaelidou, Urania; Bruce, Royce A.; O’Connor, Susan M.; Crespi, Jill N.; Achenbach, Laurie A.

1999-01-01

225

Effect of nitrate and nitrite on sulfide production by two thermophilic, sulfate-reducing enrichments from an oil field in the North Sea.  

PubMed

Thermophilic sulfate-reducing bacteria (tSRB) can be major contributors to the production of H(2)S (souring) in oil reservoirs. Two tSRB enrichments from a North Sea oil field, NS-tSRB1 and NS-tSRB2, were obtained at 58 degrees C with acetate-propionate-butyrate and with lactate as the electron donor, respectively. Analysis by rDNA sequencing indicated the presence of Thermodesulforhabdus norvegicus in NS-tSRB1 and of Archaeoglobus fulgidus in NS-tSRB2. Nitrate (10 mM) had no effect on H(2)S production by mid-log phase cultures of NS-tSRB1 and NS-tSRB2, whereas nitrite (0.25 mM or higher) inhibited sulfate reduction. NS-tSRB1 did not recover from inhibition, whereas sulfate reduction activity of NS-tSRB2 recovered after 500 h. Nitrite was also effective in souring inhibition and H(2)S removal in upflow bioreactors, whereas nitrate was similarly ineffective. Hence, nitrite may be preferable for souring prevention in some high-temperature oil fields because it reacts directly with sulfide and provides long-lasting inhibition of sulfate reduction. PMID:17245576

Kaster, Krista M; Grigoriyan, Alexander; Jenneman, Gary; Jennneman, Gary; Voordouw, Gerrit

2007-05-01

226

Isolation and characterization of a mesophilic heavy-metals-tolerant sulfate-reducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulfate source.  

PubMed

A sulfate-reducing bacterium, was isolated from a 6 month trained enrichment culture in an anaerobic media containing phosphogypsum as a sulfate source, and, designated strain SA2. Cells of strain SA2 were rod-shaped, did not form spores and stained Gram-negative. Phylogenetic analysis of the 16S rRNA gene sequence of the isolate revealed that it was related to members of the genus Desulfomicrobium (average sequence similarity of 98%) with Desulfomicrobium baculatum being the most closely related (sequence similarity of 99%). Strain SA2 used thiosulfate, sulfate, sulfite and elemental sulfur as electron acceptors and produced sulfide. Strain SA2 reduced sulfate contained in 1-20g/L phosphogypsum to sulfide with reduction of sulfate contained in 2g/L phosphogypsum being the optimum concentration. Strain SA2 grew with metalloid, halogenated and non-metal ions present in phosphogypsum and with added high concentrations of heavy metals (125ppm Zn and 100ppm Ni, W, Li and Al). The relative order for the inhibitory metal concentrations, based on the IC(50) values, was Cu, Te>Cd>Fe, Co, Mn>F, Se>Ni, Al, Li>Zn. PMID:16979290

Azabou, Samia; Mechichi, Tahar; Patel, Bharat K C; Sayadi, Sami

2007-02-01

227

In-Situ Survival Mechanisms of U and Tc Reducing Bacteria in Contaminated Sediments Final Report  

SciTech Connect

The proposed effort will identify genes and ultimately physiological mechanisms and pathways that are expressed under in situ conditions and are critical to functioning of aquifer dwelling anaerobic bacteria living in contaminated systems. The main objectives are: (1) Determine which Metal-reducer specific genes are important for activities in normal and contaminated subsurface sediment. To achieve these goals, we have generated a library of chromosomal mutants. These are introduced into contaminated sediments, incubated, allowed to grow, and then reisolated. A negative selection process allows us to determine which mutants have been selected against in sediments and thereby identify genes required for survival in subsurface sediments. (2) Delineate the function of these genes through GeneBank and Clusters of Orthologous Groups (COGs) comparisons and analyze other sediment microorganisms to determine if similar genes are present in these populations. After determining the sequence of the genes identified through the previous objectives, we delineate the role of those specific genes in the physiology of G20, MR-1 and perhaps other microorganisms. (3) Determine the loss in function of a select group of mutants. Cells with mutations in known genes with testable functions are assayed for the loss of that function if specific assays are available. Mutants with unknown loss of function and other mutants are run through a series of tests including motility, attachment, and rate of sulfate or iron reduction. These tests allow us to categorize mutants for subsequent more detailed study.

Lee Krumholz

2005-07-11

228

The Impact of Simulated Sulfate Deposition on Peatland Testate Amoebae  

Microsoft Academic Search

Peatlands subjected to sulfate deposition have been shown to produce less methane, believed to be due to competitive exclusion\\u000a of methanogenic archaea by sulfate-reducing bacteria. Here, we address whether sulfate deposition produces impacts on a higher\\u000a microbial group, the testate amoebae. Sodium sulfate was applied to experimental plots on a Scottish peatland and samples\\u000a extracted after a period of more

Richard Payne; Vincent Gauci; Dan J. Charman

2010-01-01

229

Effect of sulfide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans.  

PubMed

Cultures of the sulfate reducing bacteria Desulfovibrio desulfuricans were grown under anoxic conditions to study the effect of added sulfide, selenite and mercuric ions. A chemical trap consisting in a CuSO4 solution was used to control the poisoning effect induced by the bacterial production of hydrogen sulfide via the precipitation of CuS. Following the addition of Hg(2+), the formation of methylmercury (MeHg) was correlated to bacterial proliferation with most of MeHg found in the culture medium. A large fraction (50-80%) of added Hg(2+) to a culture ended up in a solid phase (Hg(0) and likely HgS) limiting its bioavailability to cells with elemental Hg representing ~40% of the solid. Following the addition of selenite, a small fraction was converted into Se(0) inside the cells and, even though the conversion to this selenium species increased with the increase of added selenite, it never reached more than 49% of the added amount. The formation of volatile dimethylselenide is suggested as another detoxification mechanism. In cultures containing both added selenite and mercuric ions, elemental forms of the two compounds were still produced and the increase of selenium in the residual fraction of the culture suggests the formation of mercuric selenite limiting the bioavailability of both elements to cells. PMID:23454698

Truong, Hoang-Yen T; Chen, Yu-Wei; Belzile, Nelson

2013-04-01

230

Microbial diversity in Los Azufres geothermal field (Michoacán, Mexico) and isolation of representative sulfate and sulfur reducers.  

PubMed

Los Azufres spa consists of a hydrothermal spring system in the Mexican Volcanic Axis. Five samples (two microbial mats, two mud pools and one cenote water), characterized by high acidity (pH between 1 and 3) and temperatures varying from 27 to 87 °C, were investigated for their microbial diversity by Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and 16S rRNA gene library analyses. These data are the first to describe microbial diversity from Los Azufres geothermal belt. The data obtained from both approaches suggested a low bacterial diversity in all five samples. Despite their proximity, the sampling points differed by their physico-chemical conditions (mainly temperature and matrix type) and thus exhibited different dominant bacterial populations: anoxygenic phototrophs related to the genus Rhodobacter in the biomats, colorless sulfur oxidizers Acidithiobacillus sp. in the warm mud and water samples, and Lyzobacter sp.-related populations in the hot mud sample (87 °C). Molecular data also allowed the detection of sulfate and sulfur reducers related to Thermodesulfobium and Desulfurella genera. Several strains affiliated to both genera were enriched or isolated from the mesophilic mud sample. A feature common to all samples was the dominance of bacteria involved in sulfur and iron biogeochemical cycles (Rhodobacter, Acidithiobacillus, Thiomonas, Desulfurella and Thermodesulfobium genera). PMID:24446065

Brito, Elcia M S; Villegas-Negrete, Norberto; Sotelo-González, Irene A; Caretta, César A; Goñi-Urriza, Marisol; Gassie, Claire; Hakil, Florence; Colin, Yannick; Duran, Robert; Gutiérrez-Corona, Felix; Piñón-Castillo, Hilda A; Cuevas-Rodríguez, Germán; Malm, Olaf; Torres, João P M; Fahy, Anne; Reyna-López, Georgina E; Guyoneaud, Rémy

2014-03-01

231

Multiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20  

E-print Network

Dissimilatory sulfate reduction serves as a key metabolic carbon remineralization process in anoxic marine environments. Sulfate reducing microorganisms can impart a wide range in mass-dependent sulfur isotopic fractionation. ...

Leavitt, William D.

232

High Motility Reduces Grazing Mortality of Planktonic Bacteria  

PubMed Central

We tested the impact of bacterial swimming speed on the survival of planktonic bacteria in the presence of protozoan grazers. Grazing experiments with three common bacterivorous nanoflagellates revealed low clearance rates for highly motile bacteria. High-resolution video microscopy demonstrated that the number of predator-prey contacts increased with bacterial swimming speed, but ingestion rates dropped at speeds of >25 ?m s?1 as a result of handling problems with highly motile cells. Comparative studies of a moderately motile strain (<25 ?m s?1) and a highly motile strain (>45 ?m s?1) further revealed changes in the bacterial swimming speed distribution due to speed-selective flagellate grazing. Better long-term survival of the highly motile strain was indicated by fourfold-higher bacterial numbers in the presence of grazing compared to the moderately motile strain. Putative constraints of maintaining high swimming speeds were tested at high growth rates and under starvation with the following results: (i) for two out of three strains increased growth rate resulted in larger and slower bacterial cells, and (ii) starved cells became smaller but maintained their swimming speeds. Combined data sets for bacterial swimming speed and cell size revealed highest grazing losses for moderately motile bacteria with a cell size between 0.2 and 0.4 ?m3. Grazing mortality was lowest for cells of >0.5 ?m3 and small, highly motile bacteria. Survival efficiencies of >95% for the ultramicrobacterial isolate CP-1 (?0.1 ?m3, >50 ?m s?1) illustrated the combined protective action of small cell size and high motility. Our findings suggest that motility has an important adaptive function in the survival of planktonic bacteria during protozoan grazing. PMID:15691949

Matz, Carsten; Jürgens, Klaus

2005-01-01

233

Transformation of 3- and 4-Picoline under Sulfate-Reducing Conditions  

PubMed Central

A microbial population which transformed 3- and 4-picoline under sulfate-reducing conditions was isolated from a subsurface soil which had been previously exposed to different N-substituted aromatic compounds for several years. In the presence of sulfate, the microbial culture transformed 3- and 4-picoline (0.4 mM) within 30 days. From the amounts of ammonia released and of sulfide that were determined during the transformation of 3-picoline, it can be concluded that the parent compound was mineralized to carbon dioxide and ammonia. During the transformation of 4-picoline, a UV-absorbing intermediate accumulated in the culture medium. This metabolite was identified as 2-hydroxy-4-picoline by gas chromatography-mass spectrometry and nuclear magnetic resonance analysis, and its further transformation was detected only after an additional month of incubation. The small amount of sulfide produced during the oxidation of 4-picoline and the generation of the hydroxylated metabolite indicated that the initial step in the metabolic pathway of 4-picoline was a monohydroxylation at position 2 of the heterocyclic aromatic ring. The 3- and 4-picoline-degrading cultures could also transform benzoic acid; however, the other methylated pyridine derivatives, 2-picoline, dimethyl-pyridines, and trimethylpyridines, were not degraded. PMID:16348885

Kaiser, J.-P.; Minard, R. D.; Bollag, J.-M.

1993-01-01

234

Biodegradation of munitions compounds by a sulfate reducing bacterial enrichment culture  

SciTech Connect

The degradation of several munitions compounds was studied. The compounds included 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine, 2,4,6-trinitrobenzene (TNB), and 2,4-dinitrotoluene. All of the compounds studied were degraded by the sulfate reducing bacterial (SRB) enrichment culture. The SRB culture did not use the munitions compounds as their sole source of carbon. However, all the munitions compounds tested served as the sole source of nitrogen for the SRB culture. Degradation of munitions compounds was achieved by a co-metabolic process. The SRB culture used a variety of carbon sources including pyruvate, ethanol, formate, lactate, and H{sub 2}-CO{sub 2}. The SRB culture was an incomplete oxidizer, unable to carry out the terminal oxidation of organic substrates to CO{sub 2} as the sole product, and it did not use acetate or methanol as a carbon source. In addition to serving as nitrogen sources, the munitions compounds also served as electron acceptors in the absence of sulfate. A soil slurry experiment with 5% and 10% munitions compounds-contaminated soil showed that the contaminant TNT was metabolized by the SRB culture in the presence of pyruvate as electron donor. This culture may be useful in decontaminating munitions compounds-contaminated soil and water under anaerobic conditions.

Boopathy, R.; Manning, J. [Argonne National Lab., IL (United States). Environmental Research Div.

1997-08-01

235

Sulfate Fining Chemistry in Oxidized and Reduced Soda-Lime-Silica Glasses  

SciTech Connect

Various reducing agents were used and their additions were varied to (1) increase glass quality through eliminating defects from silica scum, (2) decrease SOx emissions through changing the kind and quantity of reducing agents, and (3) improve production efficiency through increased flexibility of glass redox control during continuous processing. The work included measuring silica sand dissolution and sulfate decomposition in melts from glass batches. Glass batches were heated at a temperature-increase rate deemed similar to that experienced in the melting furnace. The sulfate decomposition kinetics was investigated with thermogravimetric analysis-differential thermal analysis and evolved gas analysis. Sulfur concentrations in glasses quenched at different temperatures were determined using X-ray fluorescence spectroscopy. The distribution of residual sand (that which was not dissolved during the initial batch reactions) in the glass was obtained as a function of temperature with optical microscopy in thin-sections of melts. The fraction of undissolved sand was measured with X-ray diffraction. The results of the present study helped Visteon Inc. reduce the energy consumption and establish the batch containing 0.118 mass% of graphite as the best candidate for Visteon glass production. The improved glass batch has a lower potential for silica scum formation and for brown fault occurrence in the final glass product. It was established that bubbles trapped in the melt even at 1450 C have a high probability to be refined when reaching the hot zone in the glass furnace. Furthermore, silica sand does not accumulate at the glass surface and dissolves faster in the batch with graphite than in the batch with carbocite.

Matyas, Josef; Hrma, Pavel R.

2005-05-13

236

Anaerobic degradation of m-cresol in anoxic aquifer slurries: carboxylation reactions in a sulfate-reducing bacterial enrichment.  

PubMed Central

The anaerobic biodegradation of m-cresol was observed in anoxic aquifer slurries kept under both sulfate-reducing and nitrate-reducing but not methanogenic conditions. More than 85% of the parent substrate (300 microM) was consumed in less than 6 days in slurries kept under the former two conditions. No appreciable loss of the compound from the corresponding autoclaved controls was measurable. A bacterial consortium was enriched from the slurries for its ability to metabolize m-cresol under sulfate-reducing conditions. Metabolism in this enrichment culture was inhibited in the presence of oxygen or molybdate (500 microM) and in the absence of sulfate but was unaffected by bromoethanesulfonic acid. The consortium consumed 3.63 mol of sulfate per mol of m-cresol degraded. This stoichiometry is about 87% of that theoretically expected and suggests that m-cresol was largely mineralized. Resting-cell experiments demonstrated that the degradation of m-cresol proceeded only in the presence of bicarbonate. 4-Hydroxy-2-methylbenzoic acid and acetate were detected as transient intermediates. Thus, the parent substrate was initially carboxylated as the primary degradative event. The sulfate-reducing consortium could also decarboxylate p- but not m-hydroxybenzoate to near stoichiometric amounts of phenol, but this reaction was not sulfate dependent. The presence of p-hydroxybenzoate in the medium temporarily inhibited m-cresol metabolism such that the former compound was metabolized prior to the latter and phenol was degraded in a sequential manner. These findings help clarify the fate of a common groundwater contaminant under sulfate-reducing conditions. PMID:1872602

Ramanand, K; Suflita, J M

1991-01-01

237

Effects of intestinal bacteria-derived p-cresyl sulfate on Th1-type immune response in vivo and in vitro  

SciTech Connect

Protein fermentation by intestinal bacteria generates various compounds that are not synthesized by their hosts. An example is p-cresol, which is produced from tyrosine. Patients with chronic kidney disease (CKD) accumulate high concentrations of intestinal bacteria-derived p-cresyl sulfate (pCS), which is the major metabolite of p-cresol, in their blood, and this accumulation contributes to certain CKD-associated disorders. Immune dysfunction is a CKD-associated disorder that frequently contributes to infectious diseases among CKD patients. Although some studies imply pCS as an etiological factor, the relation between pCS and immune systems is poorly understood. In the present study, we investigated the immunological effects of pCS derived from intestinal bacteria in mice. For this purpose, we fed mice a tyrosine-rich diet that causes the accumulation of pCS in their blood. The mice were shown to exhibit decreased Th1-driven 2, 4-dinitrofluorobenzene-induced contact hypersensitivity response. The concentration of pCS in blood was negatively correlated with the degree of the contact hypersensitivity response. In contrast, the T cell-dependent antibody response was not influenced by the accumulated pCS. We also examined the in vitro cytokine responses by T cells in the presence of pCS. The production of IFN-? was suppressed by pCS. Further, pCS decreased the percentage of IFN-?-producing Th1 cells. Our results suggest that intestinal bacteria-derived pCS suppressesTh1-type cellular immune responses. - Highlights: • Mice fed a tyrosine-rich diet accumulated p-cresyl sulfate in their blood. • p-Cresyl sulfate negatively correlated with contact hypersensitivity response. • The in vitro production of IFN-? was suppressed by p-cresyl sulfate. • p-Cresyl sulfate decreased the percentage of IFN-?-producing Th1 cells in vitro.

Shiba, Takahiro, E-mail: takahiro-shiba@yakult.co.jp; Kawakami, Koji; Sasaki, Takashi; Makino, Ikuyo; Kato, Ikuo; Kobayashi, Toshihide; Uchida, Kazumi; Kaneko, Kimiyuki

2014-01-15

238

Effect of fumarate reducing bacteria on in vitro rumen fermentation, methane mitigation and microbial diversity.  

PubMed

The metabolic pathways involved in hydrogen (H(2)) production, utilization and the activity of methanogens are the important factors that should be considered in controlling methane (CH(4)) emissions by ruminants. H(2) as one of the major substrate for CH(4) production is therefore should be controlled. One of the strategies on reducing CH(4) is through the use of hydrogenotrophic microorganisms such as fumarate reducing bacteria. This study determined the effect of fumarate reducing bacteria, Mitsuokella jalaludinii, supplementation on in vitro rumen fermentation, CH(4) production, diversity and quantity. M. jalaludinii significantly reduced CH(4) at 48 and 72 h of incubation and significantly increased succinate at 24 h. Although not significantly different, propionate was found to be highest in treatment containing M. jalaludinii at 12 and 48 h of incubation. These results suggest that supplementation of fumarate reducing bacteria to ruminal fermentation reduces CH(4) production and quantity, increases succinate and changes the rumen microbial diversity. PMID:24500476

Mamuad, Lovelia; Kim, Seon Ho; Jeong, Chang Dae; Choi, Yeon Jae; Jeon, Che Ok; Lee, Sang-Suk

2014-02-01

239

Weed-suppressive bacteria to reduce annual grass weeds  

Technology Transfer Automated Retrieval System (TEKTRAN)

Cheatgrass (Bromus tectorum L.), medusahead (Taeniatherum caput-medusae [L.] Nevski) and jointed goatgrass (Aegilops cylindrica L.) are exotic, annual grasses that negatively affect cereal production in cropland; reduce protein-rich forage for cattle; choke out native plants in the shrub-steppe habi...

240

High abundance and diversity of iron-reducing bacteria in wet tropical forest soils  

NASA Astrophysics Data System (ADS)

In wet tropical forests, warm and damp conditions promote rapid oxygen consumption in soils that contain high concentrations of iron oxides. Ferric iron is often the most abundant terminal electron acceptor for bacteria in soil during frequent periods of oxygen depletion. Highly-weathered soils of the wet tropics are likely to support large populations of Fe(III) reducing microorganisms whose activity is consequential to soil mineralogy and geochemistry. We studied the diversity and abundance of Fe(III)-reducing bacteria along a 700 m elevation gradient with variable soil redox conditions in northeast Puerto Rico. Culturable iron-reducers were enumerated, isolated and identified using five different media that contained poorly-crystalline Fe(III) oxides as the terminal electron acceptor. Entire soil microbial communities were characterized along the gradient using high-density 16S rRNA gene microarrays capable of detecting 9000 different bacterial and archaeal taxa and assessing changes in their spatial abundance. Fe(III)-reducing bacteria spanned the Proteobacteria and Firmicutes and included many previously unidentified Fe(III) reducers. Populations of culturable iron reducers numbered 108 to 1010 bacteria per gram soil, some of the highest numbers found in any soils or sediments, and population size increased significantly with elevation. These bacteria were dominated by both unclassified alpha- and gamma proteobacteria not previously known to reduce iron, in addition to delta-proteobacteria, such as the family Geobacteraceae, that are well-known Fe(III) reducers. The activity of this group of bacteria can affect biogeochemical cycles that are linked to iron and fundamental to tropical forest productivity, including phosphorus and carbon cycling.

Dubinsky, E. A.; Brodie, E. L.; Andersen, G. L.; Silver, W. L.; Firestone, M. K.

2005-12-01

241

Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust  

PubMed Central

The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100°C) fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with 35S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling. PMID:25642212

Robador, Alberto; Jungbluth, Sean P.; LaRowe, Douglas E.; Bowers, Robert M.; Rappé, Michael S.; Amend, Jan P.; Cowen, James P.

2015-01-01

242

Desulfohalobium utahense sp. nov., a moderately halophilic, sulfate-reducing bacterium isolated from Great Salt Lake.  

PubMed

A novel moderately halophilic, sulfate-reducing bacterium, strain EtOH3(T), was isolated from anoxic hypersaline (270 g NaCl l(-1)) sediment of the northern arm of the Great Salt Lake, Utah, USA. Cells of strain EtOH3(T) were oval to rod-shaped, non-motile, non-sporulating and stained Gram-negative. The strain required sodium and magnesium ions for growth and grew at salinities of up to 240 g NaCl l(-1) and 121 g MgCl(2).6H(2)O l(-1). The optimum NaCl concentration was 80-100 g l(-1). Strain EtOH3(T) grew at temperatures ranging from 15 to 44 degrees Celsius (optimum 37 degrees Celsius). The pH range for growth was 6.5-8.3 (optimum around pH 6.8). Only sulfate and thiosulfate served as electron acceptors for a broad range of electron donors including various short-chain fatty acids and primary (C(1-5)) alcohols, amino acids, H(2)/acetate and H(2)/yeast extract. The G+C content of the genomic DNA was 51.4 mol%. Phylogenetic analysis of dsrAB [genes encoding the major subunits of dissimilatory (bi)sulfite reductase] and 16S rRNA gene sequence data placed strain EtOH3(T) within the deltaproteobacterial family Desulfohalobiaceae. Strain EtOH3(T) shared 76 and 91 % dsrAB and 16S rRNA gene sequence similarity, respectively, with the type strain of the phylogenetically most closely related species with a validly published name, Desulfohalobium retbaense DSM 5692(T). High 16S rRNA gene sequence similarity ( approximately 97 %) was shared with the recently described strain 'Desulfovermiculus halophilus' VKM B-2364. Strain EtOH3(T), however, clearly differed from this strain in both genomic G+C content and in several of its phenotypic properties. On the basis of phenotypic and genotypic characteristics, the novel species Desulfohalobium utahense sp. nov. is proposed, with strain EtOH3(T) (=VKM B-2384(T)=DSM 17720(T)) as the type strain. PMID:16957100

Jakobsen, Trine Fredlund; Kjeldsen, Kasper Urup; Ingvorsen, Kjeld

2006-09-01

243

Bidirectional sulfate diffusion in saline-lake sediments: evidence from Devils Lake, northeast North Dakota  

USGS Publications Warehouse

Chemical and isotopic gradients in pore water in Devils Lake indicate that maximum rates of sulfate reduction occur between 1 and 3 cm depth in the bottom sediments. The abundance of electron acceptors enables sulfate-reducing bacteria to outcompete methanogenic bacteria for organic material and thereby suppress methane production. Suppression of methanogenesis may be widespread in sulfate-rich lakes and wetlands and may limit methane fluxes from these water bodies to the atmostphere. -from Author

Komor, S.C.

1992-01-01

244

MICROBIAL DEGRADATION OF TOLUENE UNDER SULFATE- REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS  

EPA Science Inventory

Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (Md.). Similar results were obtained for enrichment cultures in which toluene was ...

245

Alternate stabilizers: solution towards reducing sulfate swell in expansive clay subgrades in Dallas district  

E-print Network

-soluble sulfate reaction is attributed to the formation of expansive minerals and due to the disruption of the pozzolanic reaction. This research study investigated the material properties of soils in two problem areas, SH 161 and IH 635 when stabilized...

Rajendran, Deepa

1997-01-01

246

Method for reducing sulfate formation during regeneration of hot-gas desulfurization sorbents  

DOEpatents

The regeneration of sulfur sorbents having sulfate forming tendencies and used for desulfurizing hot product gas streams such as provided by coal gasification is provided by employing a two-stage regeneration method. Air containing a sub-stoichiometric quantity of oxygen is used in the first stage for substantially fully regenerating the sorbent without sulfate formation and then regeneration of the resulting partially regenerated sorbent is completed in the second stage with air containing a quantity of oxygen slightly greater than the stoichiometric amount adequate to essentially fully regenerate the sorbent. Sulfate formation occurs in only the second stage with the extent of sulfate formation being limited only to the portion of the sulfur species contained by the sorbent after substantially all of the sulfur species have been removed therefrom in the first stage.

Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV); Rockey, John M. (Westover, WV)

1994-01-01

247

Using Ultraviolet Radiation for Controlling Sulfate-Reducing Bacteria in Injection Water  

Microsoft Academic Search

Laboratory and field experiments have shown that ultraviolet light may be as effective a treatment for microbial control in injection waters as many biocides. In many cases, the use of ultraviolet light is less expensive. The ultraviolet unit must be properly designed and constructed, and the effectiveness of the unit must be determined by a bioassay rather than by physical

J. B. Clark; J. C. Luppens; P. T. Tucker

1984-01-01

248

Using ultraviolet radiation for controlling sulfate-reducing bacteria in injection water  

SciTech Connect

Laboratory and field experiments have shown that ultraviolet light may be as effective a treatment for microbial control in injection waters as many biocides. In many cases, the use of ultraviolet light is less expensive. The ultraviolet unit must be properly designed and constructed, and the effectiveness of the unit must be determined by a bioassay rather than by physical measurements. Experimental results are presented and recommendations for design and use of ultraviolet units are given.

Clark, J.B.; Luppens, J.C.; Tucker, P.T.

1984-09-01

249

Mercury removal, methylmercury formation, and sulfate-reducing bacteria profiles in wetland mesocosms  

Microsoft Academic Search

A pilot-scale model was constructed to determine if a wetland treatment system (WTS) could effectively remove low-level mercury from an outfall located at the Department of Energy's Savannah River Site. Site-specific hydrosoil was planted with giant bulrush, Scirpus californicus, and surface amended with gypsum (CaSO4) prior to investigating the biogeochemical dynamics of sediment-based sulfur and mercury speciation. On average, the

Jeffrey K King; S. Michele Harmon; Theresa T Fu; John B Gladden

2002-01-01

250

EVALUATION OF SULFATE-REDUCING BACTERIA TO PRECIPITATE MERCURY FROM CONTAMINATED GROUNDWATER  

EPA Science Inventory

Several regions in the Republic of Kazakhstan are contaminated with mercury as a result of releases from industrial plants. Operations at an old chemical plant, "Khimprom", which produced chlorine and alkali in the 1970s - 1990s, resulted in significant pollution of groundwater ...

251

Effects of marine sulfate-reducing bacteria on the electrochemical behavior of galvanic cells  

E-print Network

LIOGRAPHI 4s 82 82 82 85 8p Pa?e Table 1 Table 2 Table 3-A ild Steel =. secures in Bealcer Cells d Stool au Al ol S . '~osurss in " '" Cells Oxidation . 'olontials of ~d Steel Electrocies in Aerated Sea, 'ator a;. d H2S Saturated Kaolinite 32... Table 3-B ' f facts o. '-~carnal Hesistance on '=alvanic C'~~ant 32 Table 4 A Oxidation Pote itials of l!ild Steel Electrodes in Aerated e" inter a:xi iiPC Saturated Zllite 33 Table 4-B Effects o !ternal icesistance on Calvanic Current 33 Table 5-A...

Bradley, William Gordon

2012-06-07

252

Desulfotomaculum alcoholivorax sp. nov., a moderately thermophilic, spore-forming, sulfate-reducer isolated from a fluidized-bed reactor treating acidic metal- and sulfate-containing wastewater.  

PubMed

A moderately thermophilic, Gram-positive, endospore-forming, sulfate-reducing bacterium was isolated from a fluidized-bed reactor treating acidic water containing metal and sulfate. The strain, designated RE35E1T, was rod-shaped and motile. The temperature range for growth was 33-51 degrees C (optimum 44-46 degrees C) and the pH range was 6.0-7.5 (optimum pH 6.4-7.3). The strain grew optimally without additional NaCl. The electron acceptors were 10 mM sulfate, thiosulfate and elemental sulfur and 1 mM (but not 10 mM) sulfite. Various alcohols and carboxylic acids were utilized as electron donors. Fermentative growth occurred on pyruvate. The cell wall contained meso-diaminopimelic acid, and the major respiratory isoprenoid quinone was menaquinone MK-7. The major whole-cell fatty acids were iso-C15 : 0, iso-C17 : 1 omega 10c and iso-C17 : 0. Strain RE35E1T was related to representatives of the genera Desulfotomaculum and Sporotomaculum, the closest relatives being Desulfotomaculum arcticum DSM 17038T (96.3 % 16S rRNA gene sequence similarity) and Sporotomaculum hydroxybenzoicum DSM 5475T (92.0 % similarity). Strain RE35E1T represents a novel species, for which the name Desulfotomaculum alcoholivorax sp. nov. is proposed. The type strain is RE35E1T (=DSM 16058T=JCM 14019T). PMID:18398178

Kaksonen, Anna H; Spring, Stefan; Schumann, Peter; Kroppenstedt, Reiner M; Puhakka, Jaakko A

2008-04-01

253

Changing Microspatial Patterns of Sulfate-Reducing Microorganisms (SRM) during Cycling of Marine Stromatolite Mats  

PubMed Central

Microspatial arrangements of sulfate-reducing microorganisms (SRM) in surface microbial mats (~1.5 mm) forming open marine stromatolites were investigated. Previous research revealed three different mat types associated with these stromatolites, each with a unique petrographic signature. Here we focused on comparing “non-lithifying” (Type-1) and “lithifying” (Type-2) mats. Our results revealed three major trends: (1) Molecular typing using the dsrA probe revealed a shift in the SRM community composition between Type-1 and Type-2 mats. Fluorescence in-situ hybridization (FISH) coupled to confocal scanning-laser microscopy (CSLM)-based image analyses, and 35SO4 2?-silver foil patterns showed that SRM were present in surfaces of both mat types, but in significantly (p < 0.05) higher abundances in Type-2 mats. Over 85% of SRM cells in the top 0.5 mm of Type-2 mats were contained in a dense 130 ?m thick horizontal layer comprised of clusters of varying sizes; (2) Microspatial mapping revealed that locations of SRM and CaCO3 precipitation were significantly correlated (p < 0.05); (3) Extracts from Type-2 mats contained acylhomoserine-lactones (C4-, C6-, oxo-C6 C7-, C8-, C10-, C12-, C14-AHLs) involved in cell-cell communication. Similar AHLs were produced by SRM mat-isolates. These trends suggest that development of a microspatially-organized SRM community is closely-associated with the hallmark transition of stromatolite surface mats from a non-lithifying to a lithifying state. PMID:24413754

Petrisor, Alexandru I.; Szyjka, Sandra; Kawaguchi, Tomohiro; Visscher, Pieter T.; Norman, Robert Sean; Decho, Alan W.

2014-01-01

254

Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation  

USGS Publications Warehouse

Demethylation of monomethylmercury in freshwater and estuarine sediments and in bacterial cultures was investigated with 14CH3HgI. Under anaerobiosis, results with inhibitors indicated partial involvement of both sulfate reducers and methanogens, the former dominating estuarine sediments, while both were active in freshwaters. Aerobes were the most significant demethylators in estuarine sediments, but were unimportant in freshwater sediments. Products of anaerobic demethylation were mainly 14CO2 as well as lesser amounts of 14CH4. Acetogenic activity resulted in fixation of some 14CO2 produced from 14CH3HgI into acetate. Aerobic demethylation in estuarine sediments produced only 14CH4, while aerobic demethylation in freshwater sediments produced small amounts of both 14CH4 and 14CO2. Two species of Desulfovibrio produced only traces of 14CH4 from 14CH3HgI, while a culture of a methylotrophic methanogen formed traces of 14CO2 and 14CH4 when grown on trimethylamine in the presence of the 14CH3HgI. These results indicate that both aerobes and anaerobes demethylate mercury in sediments, but that either group may dominate in a particular sediment type. Aerobic demethylation in the estuarine sediments appeared to proceed by the previously characterized organomercurial-lyase pathway, because methane was the sole product. However, aerobic demethylation in freshwater sediments as well as anaerobic demethylation in all sediments studied produced primarily carbon dioxide. This indicates the presence of an oxidative pathway, possibly one in which methylmercury serves as an analog of one-carbon substrates.

Oremland, R.S.; Culbertson, C.W.; Winfrey, M.R.

1991-01-01

255

Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132 as a Model for Understanding Bacterial Mercury Methylation?†  

PubMed Central

We propose the use of Desulfovibrio desulfuricans ND132 as a model species for understanding the mechanism of microbial Hg methylation. Strain ND132 is an anaerobic dissimilatory sulfate-reducing bacterium (DSRB), isolated from estuarine mid-Chesapeake Bay sediments. It was chosen for study because of its exceptionally high rates of Hg methylation in culture and its metabolic similarity to the lost strain D. desulfuricans LS, the only organism for which methylation pathways have been partially defined. Strain ND132 is an incomplete oxidizer of short-chain fatty acids. It is capable of respiratory growth using fumarate as an electron acceptor, supporting growth without sulfide production. We used enriched stable Hg isotopes to show that ND132 simultaneously produces and degrades methylmercury (MeHg) during growth but does not produce elemental Hg. MeHg produced by cells is mainly excreted, and no MeHg is produced in spent medium. Mass balances for Hg and MeHg during the growth of cultures, including the distribution between filterable and particulate phases, illustrate how medium chemistry and growth phase dramatically affect Hg solubility and availability for methylation. The available information on Hg methylation among strains in the genus Desulfovibrio is summarized, and we present methylation rates for several previously untested species. About 50% of Desulfovibrio strains tested to date have the ability to produce MeHg. Importantly, the ability to produce MeHg is constitutive and does not confer Hg resistance. A 16S rRNA-based alignment of the genus Desulfovibrio allows the very preliminary assessment that there may be some evolutionary basis for the ability to produce MeHg within this genus. PMID:21515733

Gilmour, Cynthia C.; Elias, Dwayne A.; Kucken, Amy M.; Brown, Steven D.; Palumbo, Anthony V.; Schadt, Christopher W.; Wall, Judy D.

2011-01-01

256

Tapeworm Infection Reduces Epithelial Ion Transport Abnormalities in Murine Dextran Sulfate Sodium-Induced Colitis  

PubMed Central

The rat tapeworm Hymenolepis diminuta was used to test the hypothesis that helminth infection could modulate murine colitis. Mice were infected with five H. diminuta cysticercoids, and colitis was evoked via free access to 4% (wt/vol) dextran sulfate sodium (DSS)-containing drinking water for 5 days. BALB/c mice were either infected with H. diminuta and 7 days later exposed to DSS (prophylactic strategy) or started on DSS and infected with H. diminuta 48 h later (treatment strategy). Naive and H. diminuta-only-infected mice served as controls. On autopsy, colonic segments were processed for histological examination and myeloperoxidase (MPO) measurement or mounted in Ussing chambers for assessment of epithelial ion transport. Cytokines (gamma interferon [IFN-?], interleukin 12 [IL-12], and IL-10) were measured in serum and colonic tissue homogenates. DSS treatment resulted in reduced ion responses (indicated by short-circuit current [Isc]) to electrical nerve stimulation, the cholinergic agonist carbachol, and the adenylate cyclase activator forskolin compared to controls. H. diminuta infection, either prophylactic or therapeutic, caused a significant (P < 0.05) amelioration of these DSS-induced irregularities in stimulated ion transport. In contrast, the histopathology (i.e., mixed immune cell infiltrate, edema, and ulcerative damage) and elevated MPO levels that accompany DSS colitis were unaffected by concomitant H. diminuta infection. Similarly, there were no significant differences in levels of IFN-?, IL-12, or IL-10 in serum or tissue from any of the treatment groups at the time of autopsy. We suggest that abolishment of colitis-induced epithelial ion transport abnormalities by H. diminuta infection provides proof-of-principle data and speculate that helminth therapy may provide relief of disease symptoms in colitis. PMID:11401981

Reardon, Colin; Sanchez, Ana; Hogaboam, Cory M.; McKay, Derek M.

2001-01-01

257

Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria  

PubMed Central

Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 106 acetate-utilizing manganese-reducing cells cm?3 in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments. PMID:22572639

Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

2012-01-01

258

Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.  

PubMed

Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments. PMID:22572639

Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

2012-11-01

259

Sulfate Reduction at pH 4.0 for Treatment of Process and Wastewaters  

Microsoft Academic Search

Acidic industrial process and wastewaters often contain high sulfate and metal concentrations and their direct biological treatment is thus far not possible as biological processes at pH < 5 have been neglected. Sulfate-reducing bacteria convert sulfate to sulfide that can subsequently be used to recover metals as metal-sulfides precipitate. This study reports on high-rate sulfate reduction with a mixed microbial

Martijn F. M. Bijmans; Erik de Vries; Chun-Hui Yang; Cees J. N. Buisman; Piet N. L. Lens; Mark Dopson

2010-01-01

260

Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium?  

PubMed

In situ remediation of uranium contaminated soil and groundwater is attractive because a diverse range of microbial and abiotic processes reduce soluble and mobile U(VI) to sparingly soluble and immobile U(IV). Often these processes are linked. Sulfate-reducing bacteria (SRB), for example, enzymatically reduce U(VI) to U(IV), but they also produce hydrogen sulfide that can itself reduce U(VI). This study evaluated the relative importance of these processes for Desulfovibrio aerotolerans, a SRB isolated from a U(VI)-contaminated site. For the conditions evaluated, the observed rate of SRB-mediated U(VI) reduction can be explained by the abiotic reaction of U(VI) with the microbially-generated H(2)S. The presence of trace ferrous iron appeared to enhance the extent of hydrogen sulfide-mediated U(VI) reduction at 5 mM bicarbonate, but had no clear effect at 15 mM. During the hydrogen sulfide-mediated reduction of U(VI), a floc formed containing uranium and sulfur. U(VI) sequestered in the floc was not available for further reduction. PMID:19597947

Boonchayaanant, Benjaporn; Gu, Baohua; Wang, Wei; Ortiz, Monica E; Criddle, Craig S

2010-02-01

261

Hydrocarbon activation under sulfate-reducing and methanogenic conditions proceeds by different mechanisms.  

NASA Astrophysics Data System (ADS)

Microbial degradation of alkanes typically involves their conversion to fatty acids which are then catabolised by beta-oxidation. The critical step in this process is activation of the hydrocarbon. Under oxic conditions this is catalyzed by monooxygenase enzymes with the formation of long chain alcohols. In the absence of oxygen alternative alkane activation mechanisms have been observed or proposed. Fumarate addition to alkanes to form alkyl succinates is considered a central process in anaerobic hydrocarbon degradation. Comparative studies of crude oil degradation under sulphate-reducing and methanogenic conditions revealed distinctive patterns of compound class removal and metabolite formation. Alkyl succinates derived from C7 to C26 n-alkanes and branched chain alkanes were found in abundance in sulfate-reducing systems but these were not detected during methanogenic crude oil degradation. Only one other mechanism of alkane activation has been elucidated to date. This involves addition of carbon derived from bicarbonate/CO2 to C-3 of an alkane chain to form a 2-ethylalkane with subsequent removal of the ethyl group leading to the formation of a fatty acid 1 carbon shorter than the original alkane. 2-ethylalkanes have never been detected as metabolites of anaerobic alkane degradation and were not detected in crude oil-degrading methanogenic systems. Due to the range of alkanes present in crude oil it was not possible to infer the generation of C-odd acids from C-even alkanes which is characteristic of the C-3 carboxylation mechanism. Furthermore genes homologous to alkysuccinate synthetases were not detected in the methanogenic hydrocarbon degrading community by pyrosequencing of total DNA extracted from methanogenic enrichments cultures. beta-oxidation genes were detected and intriguingly, alcohol and aldehyde dehydrogenase genes were present. This offers the possibility that alkane activation in the methanogenic system does not proceed via acid metabolites, but may be initiated by an anaerobic hydroxylation reaction. This is not unprecedented and hydroxylation of ethylbenzene has been demonstrated. However the C-H bond dissociation energy of alkanes is typically considered too high to readily permit alkane hydroxylation. It is however clear that alkane activation in these methanogenic crude oil-degrading systems involves mechanisms other than the well-known fumarate-addition reactions.

Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

2010-05-01

262

ACETOGENIC AND SULPHATE-REDUCING BACTERIA INHABITING THE RHIZOPLANE AND DEEP CORTEX CELLS OF THE SEAGRASS HALODULE WRIGHTII  

EPA Science Inventory

Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizosphere that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacter...

263

Composition, Reactivity, and Regulations of Extracellular Metal-Reducing Structures (Bacterial Nanowires) Produced by Dissimilatory Metal Reducing Bacteria  

SciTech Connect

This research proposal seeks to describe the composition and function of electrically conductive appendages known as bacterial nanowires. This project targets bacterial nanowires produced by dissimilatory metal reducing bacteria Shewanella and Geobacter. Specifically, this project will investigate the role of these structures in the reductive transformation of iron oxides as solid phase electron acceptors, as well as uranium as a dissolved electron acceptor that forms nanocrystalline particles of uraninite upon reduction.

Scholten, Johannes

2006-06-01

264

Metagenomic Analysis of Nitrate-Reducing Bacteria in the Oral Cavity: Implications for Nitric Oxide Homeostasis  

PubMed Central

The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria. PMID:24670812

Hyde, Embriette R.; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K.; Torregrossa, Ashley C.; Tribble, Gena; Kaplan, Heidi B.; Petrosino, Joseph F.; Bryan, Nathan S.

2014-01-01

265

Comparison of reduced volume versus four liters sulfate-free electrolyte lavage solutions for colonoscopy colon cleansing  

Microsoft Academic Search

OBJECTIVE:In an attempt to improve patient tolerance for colonoscopy cleansing, a reduced volume lavage regimen with 2 L sulfate-free electrolyte lavage solution (SF-ELS, NuLYTELY, Braintree Laboratories, Braintree, MA) plus 20 mg p.o. bisacodyl (Half Lytely, Braintree Laboratories) was compared with standard 4 L SF-ELS lavage for safety and efficacy.METHODS:At two centers, 200 patients undergoing colonoscopy for routine indications were randomized

Jack A. DiPalma; Bruce G. Wolff; Alan Meagher; Mark v B. Cleveland

2003-01-01

266

Influence of hydrological fluxes on the structure of nitrate-reducing bacteria communities in a peatland  

Microsoft Academic Search

Factors influencing nitrate dynamics and nitrate-reducing bacteria in peat soil in the field, were investigated in laboratory experiments. A previous study had indicated that the on-site effects of redox conditions and nutrient fluxes on microbial activity were influenced by hydrological conditions. However, the laboratory experiments indicated that peat samples from sites under different hydrological regimes exhibited different microbial activities independently

N. Bougon; L. Aquilina; M. P. Briand; S. Coedel; P. Vandenkoornhuyse

2009-01-01

267

Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment  

Microsoft Academic Search

Acid mine drainage (AMD), which contains high concentrations of sulphate and dissolved metals, is a serious environmental problem. It can be treated in situ by sulphate reducing bacteria (SRB), but effectiveness of the treatment process depends on the organic substrate chosen to supply the bacteria’s carbon source. Six natural organic materials were characterized in order to investigate how well these

Gerald J. Zagury; Viktors I. Kulnieks; Carmen M. Neculita

2006-01-01

268

Isolation of Extremely Thermophilic Sulfate Reducers: Evidence for a Novel Branch of Archaebacteria  

Microsoft Academic Search

Extremely thermophilic archaebacteria are known to be metabolizers of elemental sulfur and the methanogens. A novel group of extremely thermophilic archaebacteria is described, which consists of sulfate-respiring organisms that contain pure factor 420 and that have been isolated from marine hydrothermal systems in Italy. They possess a third type of archaebacterial RNA polymerase structure previously unknown, indicating an exceptional phylogenetic

Karl O. Stetter; Gerta Lauerer; Michael Thomm; Annemarie Neuner

1987-01-01

269

Methanogenesis and Sulfate Reduction: Competitive and Noncompetitive Substrates in Estuarine Sediments  

PubMed Central

Sulfate ions did not inhibit methanogenesis in estuarine sediments supplemented with methanol, trimethylamine, or methionine. However, sulfate greatly retarded methanogenesis when hydrogen or acetate was the substrate. Sulfate reduction was stimulated by acetate, hydrogen, and acetate plus hydrogen, but not by methanol or trimethylamine. These results indicate that sulfate-reducing bacteria will outcompete methanogens for hydrogen, acetate, or both, but will not compete with methanogens for compounds like methanol, trimethylamine, or methionine, thereby allowing methanogenesis and sulfate reduction to operate simultaneously within anoxic, sulfate-containing sediments. PMID:16346144

Oremland, Ronald S.; Polcin, Sandra

1982-01-01

270

Toward a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough  

SciTech Connect

Protein–protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study E. coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio 5 vulgaris Hildenborough, a model anaerobe and sulfate reducer. In this paper we present the first attempt to identify protein-protein interactions in an obligate anaerobic bacterium. We used suicide vector-assisted chromosomal modification of 12 open reading frames encoded by this sulfate reducer to append an eight amino acid affinity tag to the carboxy-terminus of the chosen proteins. Three biological replicates of the 10 ‘pulled-down’ proteins were separated and analyzed using liquid chromatography-mass spectrometry. Replicate agreement ranged between 35% and 69%. An interaction network among 12 bait and 90 prey proteins was reconstructed based on 134 bait-prey interactions computationally identified to be of high confidence. We discuss the biological significance of several unique metabolic features of D. vulgaris revealed by this protein-protein interaction data 15 and protein modifications that were observed. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.

Chhabra, S.R.; Joachimiak, M.P.; Petzold, C.J.; Zane, G.M.; Price, M.N.; Gaucher, S.; Reveco, S.A.; Fok, V.; Johanson, A.R.; Batth, T.S.; Singer, M.; Chandonia, J.M.; Joyner, D.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Singh, A.K.; Keasling, J.D.

2011-05-01

271

Reducing dissolved phosphorus loading to the Salton Sea with aluminum sulfate  

Microsoft Academic Search

The primary productivity of the Salton Sea, California is excessively high, leading to low-oxygen conditions, low clarity,\\u000a and odors associated with algal decomposition. Treating the inflow water with aluminum sulfate (alum) to remove soluble phosphorus\\u000a (P), the limiting nutrient, is being considered to improve water quality. The objective of this study was to evaluate the\\u000a use of alum to remove

I. R. Rodriguez; C. Amrhein; M. A. Anderson

2008-01-01

272

Reducing Macrophage Proteoglycan Sulfation Increases Atherosclerosis and Obesity through Enhanced Type I Interferon Signaling.  

PubMed

Heparan sulfate proteoglycans (HSPGs) are an important constituent of the macrophage glycocalyx and extracellular microenvironment. To examine their role in atherogenesis, we inactivated the biosynthetic gene N-acetylglucosamine N-deacetylase-N-sulfotransferase 1 (Ndst1) in macrophages and crossbred the strain to Ldlr(-/-) mice. When placed on an atherogenic diet, Ldlr(-/-)Ndst1(f/f)LysMCre(+) mice had increased atherosclerotic plaque area and volume compared to Ldlr(-/-) mice. Diminished sulfation of heparan sulfate resulted in enhanced chemokine expression; increased macrophages in plaques; increased expression of ACAT2, a key enzyme in cholesterol ester storage; and increased foam cell conversion. Motif analysis of promoters of upregulated genes suggested increased type I interferon signaling, which was confirmed by elevation of STAT1 phosphorylation induced by IFN-?. The proinflammatory macrophages derived from Ndst1(f/f)LysMCre(+) mice also sensitized the animals to diet-induced obesity. We propose that macrophage HSPGs control basal activation of macrophages by maintaining type I interferon reception in a quiescent state through sequestration of IFN-?. PMID:25440058

Gordts, Philip L S M; Foley, Erin M; Lawrence, Roger; Sinha, Risha; Lameda-Diaz, Carlos; Deng, Liwen; Nock, Ryan; Glass, Christopher K; Erbilgin, Ayca; Lusis, Aldons J; Witztum, Joseph L; Esko, Jeffrey D

2014-11-01

273

Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors.  

PubMed

Supercapacitors with potential high power are useful and have attracted much attention recently. Graphene-based composites have been demonstrated to be promising electrode materials for supercapacitors with enhanced properties. To improve the performance of graphene-based composites further and realize their synthesis with large scale, we report a green approach to synthesize bacteria-reduced graphene oxide-nickel sulfide (BGNS) networks. By using Bacillus subtilis as spacers, we deposited reduced graphene oxide/Ni3S2 nanoparticle composites with submillimeter pores directly onto substrate by a binder-free electrostatic spray approach to form BGNS networks. Their electrochemical capacitor performance was evaluated. Compared with stacked reduced graphene oxide-nickel sulfide (GNS) prepared without the aid of bacteria, BGNS with unique nm-?m structure exhibited a higher specific capacitance of about 1424 F g(-1) at a current density of 0.75 A g(-1). About 67.5% of the capacitance was retained as the current density increased from 0.75 to 15 A g(-1). At a current density of 75 A g(-1), a specific capacitance of 406 F g(-1) could still remain. The results indicate that the reduced graphene oxide-nickel sulfide network promoted by bacteria is a promising electrode material for supercapacitors. PMID:23751359

Zhang, Haiming; Yu, Xinzhi; Guo, Di; Qu, Baihua; Zhang, Ming; Li, Qiuhong; Wang, Taihong

2013-08-14

274

TEM investigation of U{sup 6+} and Re{sup 7+} reduction by Desulfovibrio desulfuricans, a sulfate-reducing bacterium  

SciTech Connect

Uranium and its fission product Tc in aerobic environment will be in the forms of UO{sub 2}{sup 2+} and TcO{sub 4}{sup {minus}}. Reduced forms of tetravalent U and Tc are sparingly soluble. As determined by transmission electron microscopy, the reduction of uranyl acetate by immobilized cells of Desulfovibrio desulfuricans results in the production of black uraninite nanocrystals precipitated outside the cell. Some nanocrystals are associated with outer membranes of the cell as revealed from cross sections of these metabolic active sulfate-reducing bacteria. The nanocrystals have an average diameter of 5 nm and have anhedral shape. The reduction of Re{sup 7+} by cells of Desulfovibrio desulfuricans is fast in media containing H{sub 2} an electron donor, and slow in media containing lactic acid. It is proposed that the cytochrome in these cells has an important role in the reduction of uranyl and Re{sup 7+} is (a chemical analogue for Tc{sup 7+}) through transferring an electron from molecular hydrogen or lactic acid to the oxyions of UO{sub 2}{sup 2+} and TcO{sub 4}{sup {minus}}.

XU,HUIFANG; BARTON,LARRY L.; CHOUDHURY,KEKA; ZHANG,PENGCHU; WANG,YIFENG

2000-03-14

275

Desulfotomaculum defluvii sp. nov., a sulfate-reducing bacterium isolated from the subsurface environment of a landfill.  

PubMed

A novel sulfate-reducing, strictly anaerobic and endospore-forming bacterium, designated strain A5LFS102(T), was isolated from a subsurface landfill sample. The strain was characterized using a polyphasic approach. Optimal growth was observed at 37 °C and pH 7.5 with sulfate as an electron acceptor. Sulfite and thiosulfate were utilized as electron acceptors. The respiratory isoprenoid quinone was menaquinone MK-7. 16S rRNA gene sequence analysis assigned strain A5LFS102(T) to the genus Desulfotomaculum. Both 16S rRNA and dissimilatory sulfate reductase (dsr) genes were compared with those of representative members of the genus Desulfotomaculum. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain A5LFS102(T) was closely related to Desulfotomaculum aeronauticum DSM 10349(T) (94.6% sequence similarity). The G+C content of the DNA was 45.4 mol%. The total cellular fatty acid profile was dominated by C16 fatty acids. These phenotypic and genotypic data showed that strain A5LFS102(T) should be recognized as representative of a novel species of the genus Desulfotomaculum, for which the name Desulfotomaculum defluvii sp. nov. is proposed. The type strain is A5LFS102(T) (=DSM 23699(T)=JCM 14036(T)=MTCC 7767(T)). PMID:23159750

Krishnamurthi, Srinivasan; Spring, Stefan; Kumar, Pinnaka Anil; Mayilraj, Shanmugam; Klenk, Hans-Peter; Suresh, Korpole

2013-06-01

276

Effect of hydrogen limitation and temperature on the fractionation of sulfur isotopes by a deep-sea hydrothermal vent sulfate-reducing bacterium  

NASA Astrophysics Data System (ADS)

The fractionation of sulfur isotopes by the thermophilic chemolithoautotrophic Thermodesulfatator indicus was explored during sulfate reduction under excess and reduced hydrogen supply, and the full temperature range of growth (40-80 °C). Fractionation of sulfur isotopes measured under reduced H 2 conditions in a fed-batch culture revealed high fractionations (24-37‰) compared to fractionations produced under excess H 2 supply (1-6‰). Higher fractionations correlated with lower sulfate reduction rates. Such high fractionations have never been reported for growth on H 2. For temperature-dependant fractionation experiments cell-specific rates of sulfate reduction increased with increasing temperatures to 70 °C after which sulfate-reduction rates rapidly decreased. Fractionations were relatively high at 40 °C and decreased with increasing temperature from 40-60 °C. Above 60 °C, fractionation trends switched and increased again with increasing temperatures. These temperature-dependant fractionation trends have not previously been reported for growth on H 2 and are not predicted by a generally accepted fractionation model for sulfate reduction, where fractionations are controlled as a function of temperature, by the balance of the exchange of sulfate across the cell membrane, and enzymatic reduction rates of sulfate. Our results are reproduced with a model where fractionation is controlled by differences in the temperature response of enzyme reaction rates and the exchange of sulfate in and out of the cell.

Hoek, Joost; Reysenbach, Anna-Louise; Habicht, Kirsten S.; Canfield, Donald E.

2006-12-01

277

Oligonucleotide Microarray for 16S rRNA Gene-Based Detection of All Recognized Lineages of Sulfate-Reducing Prokaryotes in the Environment  

Microsoft Academic Search

For cultivation-independent detection of sulfate-reducing prokaryotes (SRPs) an oligonucleotide microarray consisting of 132 16S rRNA gene-targeted oligonucleotide probes (18-mers) having hierarchical and parallel (identical) specificity for the detection of all known lineages of sulfate-reducing prokaryotes (SRP-PhyloChip) was designed and subsequently evaluated with 41 suitable pure cultures of SRPs. The applicability of SRP- PhyloChip for diversity screening of SRPs in environmental

Alexander Loy; Angelika Lehner; Natuschka Lee; Justyna Adamczyk; Harald Meier; Jens Ernst; Karl-Heinz Schleifer; Michael Wagner

2002-01-01

278

Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen  

Microsoft Academic Search

A methanogenic bacterial consortium was obtained after inoculation of benzoate medium under N2\\/CO2 atmosphere with intertidal sediment. A hydrogen donating organotroph andMethanococcus mazei were isolated from this enrichment. H2-utilising sulphate reducing bacteria were isolated under H2\\/CO2 in the absence of organic electron donors. TheMethanococcus was able to produce methane in yeast extract medium under N2\\/CO2 if the H2 donating organism

Jeremy W. Abram; David B. Nedwell

1978-01-01

279

Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria  

Microsoft Academic Search

MANY crude oil constituents are biodegradable in the presence of oxygen; however, a substantial anaerobic degradation has never been demonstrated1,2. An unusually low content of n-alkanes in oils of certain deposits is commonly attributed to selective utilization of these hydrocarbons by aerobic microorganisms3,4. On the other hand, oil wells and production fluids were shown to harbour anaerobic sulphate-reducing bacteria5-8, but

Petra Rueter; Ralf Rabus; Heinz Wilkest; Frank Aeckersberg; Fred A. Rainey; Holger W. Jannasch; Friedrich Widdel

1994-01-01

280

Anaerobic degradation and carbon isotopic fractionation of alkylbenzenes in crude oil by sulphate-reducing bacteria  

Microsoft Academic Search

A mesophilic enrichment culture of sulphate-reducing bacteria isolated from the water phase of a North Sea oil tank using oil from the same tank as sole source of carbon and energy specifically depletes certain C1–C5 alkylbenzenes in crude oil during growth. The enrichment culture grows on oils of different origin and composition resulting in similar patterns of alkylbenzene depletion. Two

Heinz Wilkes; Chris Boreham; Gerda Harms; Karsten Zengler; Ralf Rabus

2000-01-01

281

Isolation and Characterization of Strains CVO and FWKO B, Two Novel Nitrate-Reducing, Sulfide-Oxidizing Bacteria Isolated from Oil Field Brine  

PubMed Central

Bacterial strains CVO and FWKO B were isolated from produced brine at the Coleville oil field in Saskatchewan, Canada. Both strains are obligate chemolithotrophs, with hydrogen, formate, and sulfide serving as the only known energy sources for FWKO B, whereas sulfide and elemental sulfur are the only known electron donors for CVO. Neither strain uses thiosulfate as an energy source. Both strains are microaerophiles (1% O2). In addition, CVO grows by denitrification of nitrate or nitrite whereas FWKO B reduces nitrate only to nitrite. Elemental sulfur is the sole product of sulfide oxidation by FWKO B, while CVO produces either elemental sulfur or sulfate, depending on the initial concentration of sulfide. Both strains are capable of growth under strictly autotrophic conditions, but CVO uses acetate as well as CO2 as its sole carbon source. Neither strain reduces sulfate; however, FWKO B reduces sulfur and displays chemolithoautotrophic growth in the presence of elemental sulfur, hydrogen, and CO2. Both strains grow at temperatures between 5 and 40°C. CVO is capable of growth at NaCl concentrations as high as 7%. The present 16s rRNA analysis suggests that both strains are members of the epsilon subdivision of the division Proteobacteria, with CVO most closely related to Thiomicrospira denitrifcans and FWKO B most closely related to members of the genus Arcobacter. The isolation of these two novel chemolithotrophic sulfur bacteria from oil field brine suggests the presence of a subterranean sulfur cycle driven entirely by hydrogen, carbon dioxide, and nitrate. PMID:10831429

Gevertz, Diane; Telang, Anita J.; Voordouw, Gerrit; Jenneman, Gary E.

2000-01-01

282

A preliminary study on sulfate reduction bacteria behaviors in groundwater by sulfur and carbon isotopes: a case study in Jiaozuo City, China.  

PubMed

Inorganic pollutants in groundwater, such as sulfate and nitrate, have been a serious problem in China for decades. These pollutants are difficult to be removed because of their high solubility and ease of transport in subsurface environment. It had been found that microorganism could be one of the most feasible methods for inorganic pollutant elimination. During the process of degradation, some microorganisms can utilize sulfur and nitrogen in sulfate and nitrate forms, respectively, as energy sources. Meanwhile, significant variations of sulfur stable isotope ratios happened. Therefore sulfur isotope can be used as a good indicator for pollutant degradation and microbial activities. Shallow groundwater (SGW), deep groundwater (DGW), and surface water (SFW) were investigated in alluvial plain in Jiaozuo City, China. The results of hydrochemical analysis indicated that K(+), Na(+), and HCO3(-) were dominant ions in DGW, Mg(2+) and HCO3(-) were dominant ions in SGW, and Ca(2+) and HCO3 (-) were dominant in SFW except for LR sample. A wide variation of ? (34)SSO4 values ranging from + 7.3 to +23.6‰ had been observed for all water samples, with a mean value of +20.7, +12.6 and +10.0‰ for DGW, SGW, and SFW respectively. At the same time, ?(13)C values of dissolved inorganic carbon (DIC) ranged from -12.4 to -5.7‰, with a mean value of -7.5, -9.0, and -9.6‰ for DGW, SGW, and SFW, respectively. The microbial degradation processes resulted in significant sulfur isotope fractionations in DGW. Organic carbon was utilized by bacteria and transferred into inorganic carbon, leading to negative fractionation of carbon isotopes. Thus the variations in stable isotope ratios of sulfur and carbon in groundwater can be used as good indicators for understanding of the relationship between bacteria behaviors and sulfate degradation. PMID:25150982

Zhang, Dong; Liu, Congqiang

2014-12-01

283

SO 2 adsorption and thermal stability and reducibility of sulfates formed on the magnesium-aluminate spinel sulfur-transfer catalyst  

NASA Astrophysics Data System (ADS)

Magnesium-aluminate spinel used as a sulfur-transfer catalyst in the fluid catalytic cracking units for SO x emission control was prepared by the precipitation method. The crystalline structure, textural property, and surface dehydroxylation of the sample were characterized by thermogravimetry-derivative thermogravimetry (TG-DTG), differential thermal analysis (DTA), X-ray diffraction (XRD), liquid N 2 adsorption-desorption and infrared spectroscopy (IR) measurements. The behavior of SO 2 adsorption and oxidation on the surface of catalyst was evaluated with IR from 50°C to 600°C. Particularly, the thermal stability and H 2-reducibility of the formed sulfite or sulfate during SO 2 adsorption or oxidation were tested under various conditions. In the absence of oxygen in the feed mixture, weak physically adsorbed SO 2 species and surface sulfite were identified. In the case of SO 2 oxidative adsorption, both surface sulfate and bulk-like sulfate were formed. When the sulfated sample was reduced with hydrogen, the surface sulfite and sulfates were completely removed below 550°C in vacuum. The bulk-like sulfate, however, showed a high ability to resist H 2-reduction, which indicates that the reducibility of bulk-like sulfate formed on magnesium-aluminate spinel must be enhanced when it is used as a sulfur-transfer catalyst.

Wang, Jin-an; Li, Cheng-lie

2000-07-01

284

Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions.  

PubMed Central

Toluene and the three isomers of xylene were completely mineralized to CO2 and biomass by aquifer-derived microorganisms under strictly anaerobic conditions. The source of the inoculum was gasoline-contaminated sediment from Seal Beach, Calif. Evidence confirming that sulfate was the terminal electron acceptor is presented. Benzene and ethylbenzene were not degraded under the experimental conditions used. Successive transfers of the mixed cultures that were enriched from aquifer sediments retained the ability to degrade toluene and xylenes. Greater than 90% of 14C-labeled toluene or 14C-labeled o-xylene was mineralized to 14CO2. The doubling time for the culture grown on toluene or m-xylene was about 20 days, and the cell yield was about 0.1 to 0.14 g of cells (dry weight) per g of substrate. The accumulation of sulfide in the cultures as a result of sulfate reduction appeared to inhibit degradation of aromatic hydrocarbons. PMID:1575482

Edwards, E A; Wills, L E; Reinhard, M; Grbi?-Gali?, D

1992-01-01

285

Bioleaching of arsenic in contaminated soil using metal-reducing bacteria  

NASA Astrophysics Data System (ADS)

A study on the extraction of arsenic in the contaminated soil collected from an old smelting site in Korea was carried out using metal-reducing bacteria. Two types of batch-type experiments, biostimulation and bioaugmentation, were conducted for 28 days under anaerobic conditions. The biostimulation experiments were performed through activation of indigenous bacteria by supply with glucose or lactate as a carbon source. The contaminated, autoclaved soil was inoculated with metal-reducing bacteria, Shewanella oneidensis MR-1 and S. algae BrY, in the bioaugmentation experiments. The results indicated that the maximum concentration of the extracted As was 11.2 mg/L at 4 days from the onset of the experiment when 20 mM glucose was supplied and the extraction efficiency of As ranged 60~63% in the biostimulation experiments. In the case of bioaugmentation, the highest dissolved As concentration was 24.4 mg/L at 2 days, though it dramatically decreased over time through re-adsorption onto soil particles. After both treatments, mode of As occurrence in the soil appeared to be changed to readily extractable fractions. This novel technique of bioleaching may be practically applied for remediation of As-contaminated soil after determination of optimum operational conditions such as operation time and proper carbon source and its concentration.

Lee, So-Ra; Lee, Jong-Un; Chon, Hyo-Taek

2014-05-01

286

Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper.  

PubMed

The solubility of Cd in contaminated paddy soils controls Cd uptake by rice, which is an important food safety issue. We investigated the solution and solid-phase dynamics of Cd in a paddy soil spiked with ?20 mg kg(-1) Cd during 40 days of soil reduction followed by 28 days of soil reoxidation as a function of the amounts of sulfate available for microbial reduction and of Cu that competes with Cd for precipitation with biogenic sulfide. At an excess of sulfate over (Cd + Cu), dissolved Cd decreased during sulfate reduction and Cd was transformed into a poorly soluble phase identified as Cd-sulfide using Cd K-edge X-ray absorption spectroscopy (XAS). The extent of Cd-sulfide precipitation decreased with decreasing sulfate and increasing Cu contents, even if sulfate exceeded Cd. When both Cu and Cd exceeded sulfate, dissolved and mobilizable Cd remained elevated after 40 days of soil reduction. During soil reoxidation, Cd-sulfide was readily transformed back into more soluble species. Our data suggest that Cd-sulfide formation in flooded paddy soil may be limited when the amounts of Cd and other chalcophile metals significantly exceed reducible sulfate Therefore, in multimetal contaminated paddy soils with low sulfate contents, Cd may remain labile during soil flooding, which enhances the risk for Cd transfer into rice. PMID:24171446

Fulda, Beate; Voegelin, Andreas; Kretzschmar, Ruben

2013-11-19

287

Removal of chromium and lead by a sulfate-reducing consortium using peat moss as carbon source.  

PubMed

The effect of pre-treated peat moss on the ability of a sulfate-reducing microbial consortium to remove chromium and lead in solution was evaluated. The most active bacterial community (235.7 mmol H2S/g VSS) was selected from among eight consortia. The peat moss was pre-treated with different HCl concentrations and contact times. The best combination of treatments was 20% HCl for 10 min. The constant substrate affinity Ks was 740 mg COD/L and the ratio COD/SO4(2-) was 0.71. At pH 5, higher production of biogenic sulfide was observed. The up-flowpacked bed bioreactor operated at a flow of 8.3 mL/min for 180 h to obtain removal efficiency (by sulfate-reducing activity) of 90% lead and 65% chromium. It is important to consider that peat moss is a natural adsorbent that further influences the removal efficiency of metal ions. PMID:23859988

Márquez-Reyes, Julia Mariana; López-Chuken, Ulrico Javier; Valdez-González, Arcadio; Luna-Olvera, Hugo Alberto

2013-09-01

288

Nitrate?reducing and ammonium?oxidizing bacteria in the vadose zone of the chalk aquifer of England  

Microsoft Academic Search

The vadose zone of the Chalk aquifer from two sites of different land use was found to contain large numbers of nitrate?reducing and ammonium?oxidizing bacteria. Relationships between the type of bacteria and nitrogen compounds produced showed that denitrification was occurring beneath the permanent grassland site, whereas the vadose zone beneath the fertilized arable site was essentially aerobic and little attenuation

K. Whitelaw; J. F. Rees

1980-01-01

289

Effects of dietary inorganic sulfate levels on growth performance and markers of intestinal inflammation in growing pigs  

Technology Transfer Automated Retrieval System (TEKTRAN)

Co-products from the ethanol industry may contain moderate amounts of inorganic sulfur. In the digestive tract, inorganic sulfate can be reduced to hydrogen sulfide by sulfate-reducing bacteria. Hydrogen sulfide has been found to alter the inflammatory response in cell culture and rodent models, b...

290

Composition and Function of Sulfate-Reducing Prokaryotes in Eutrophic and Pristine Areas of the Florida Everglades†  

PubMed Central

As a result of agricultural activities in regions adjacent to the northern boundary of the Florida Everglades, a nutrient gradient developed that resulted in physicochemical and ecological changes from the original system. Sulfate input from agricultural runoff and groundwater is present in soils of the Northern Everglades, and sulfate-reducing prokaryotes (SRP) may play an important role in biogeochemical processes such as carbon cycling. The goal of this project was to utilize culture-based and non-culture-based approaches to study differences between the composition of assemblages of SRP in eutrophic and pristine areas of the Everglades. Sulfate reduction rates and most-probable-number enumerations revealed SRP populations and activities to be greater in eutrophic zones than in more pristine soils. In eutrophic regions, methanogenesis rates were higher, the addition of acetate stimulated methanogenesis, and SRP able to utilize acetate competed to a limited degree with acetoclastic methanogens. A surprising amount of diversity within clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) genes was observed, and the majority of DSR sequences were associated with gram-positive spore-forming Desulfotomaculum and uncultured microorganisms. Sequences associated with Desulfotomaculum fall into two categories: in the eutrophic regions, 94.7% of the sequences related to Desulfotomaculum were associated with those able to completely oxidize substrates, and in samples from pristine regions, all Desulfotomaculum-like sequences were related to incomplete oxidizers. This metabolic selection may be linked to the types of substrates that Desulfotomaculum spp. utilize; it may be that complete oxidizers are more versatile and likelier to proliferate in nutrient-rich zones of the Everglades. Desulfotomaculum incomplete oxidizers may outcompete complete oxidizers for substrates such as hydrogen in pristine zones where diverse carbon sources are less available. PMID:12450837

Castro, Hector; Reddy, K. R.; Ogram, Andrew

2002-01-01

291

Composition and function of sulfate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades.  

PubMed

As a result of agricultural activities in regions adjacent to the northern boundary of the Florida Everglades, a nutrient gradient developed that resulted in physicochemical and ecological changes from the original system. Sulfate input from agricultural runoff and groundwater is present in soils of the Northern Everglades, and sulfate-reducing prokaryotes (SRP) may play an important role in biogeochemical processes such as carbon cycling. The goal of this project was to utilize culture-based and non-culture-based approaches to study differences between the composition of assemblages of SRP in eutrophic and pristine areas of the Everglades. Sulfate reduction rates and most-probable-number enumerations revealed SRP populations and activities to be greater in eutrophic zones than in more pristine soils. In eutrophic regions, methanogenesis rates were higher, the addition of acetate stimulated methanogenesis, and SRP able to utilize acetate competed to a limited degree with acetoclastic methanogens. A surprising amount of diversity within clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) genes was observed, and the majority of DSR sequences were associated with gram-positive spore-forming Desulfotomaculum and uncultured microorganisms. Sequences associated with Desulfotomaculum fall into two categories: in the eutrophic regions, 94.7% of the sequences related to Desulfotomaculum were associated with those able to completely oxidize substrates, and in samples from pristine regions, all Desulfotomaculum-like sequences were related to incomplete oxidizers. This metabolic selection may be linked to the types of substrates that Desulfotomaculum spp. utilize; it may be that complete oxidizers are more versatile and likelier to proliferate in nutrient-rich zones of the Everglades. Desulfotomaculum incomplete oxidizers may outcompete complete oxidizers for substrates such as hydrogen in pristine zones where diverse carbon sources are less available. PMID:12450837

Castro, Hector; Reddy, K R; Ogram, Andrew

2002-12-01

292

Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan  

NASA Astrophysics Data System (ADS)

Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

2011-04-01

293

Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan.  

PubMed

Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater. PMID:21216490

Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

2011-04-01

294

Enrichment and Isolation of Rumen Bacteria That Reduce trans- Aconitic Acid to Tricarballylic Acid  

PubMed Central

Bacteria from the bovine rumen capable of reducing trans-aconitate to tricarballylate were enriched in an anaerobic chemostat containing rumen fluid medium and aconitate. After 9 days at a dilution rate of 0.07 h?1, the medium was diluted and plated in an anaerobic glove box. Three types of isolates were obtained from the plates (a crescent-shaped organism, a pleomorphic rod, and a spiral-shaped organism), and all three produced tricarballylate in batch cultures that contained glucose and trans-aconitate. In glucose-limited chemostats (0.10 h?1), trans-aconitate reduction was associated with a decrease in the amount of reduced products formed from glucose. The crescent-shaped organism produced less propionate, the pleomorphic rod produced less ethanol, and the spiral made less succinate and possibly H2. Aconitate reduction by the pleomorphic rod and the spiral organism was associated with a significant increase in cellular dry matter. Experiments with stock cultures of predominant rumen bacteria indicated that Selenomonas ruminantium, a species taxonomically similar to the crescent-shaped isolate, was an active reducer of trans-aconitate. Strains of Bacteroides ruminicola, Butyrivibrio fibrisolvens, and Megasphaera elsdenii produced little if any tricarballylate. Wolinella succinogenes produced some tricarballylate. Based on its stability constant for magnesium (Keq = 115), tricarballylate could be a factor in the hypomagnesemia that leads to grass tetany. Images PMID:16346691

Russell, James B.

1985-01-01

295

Use of Urgotul SSD to reduce bacteria and promote healing in chronic wounds.  

PubMed

This product focus seeks to give an overview of the management of wound bioburden in relation to the use of antimicrobial dressings, according to recent guidelines and best practice statements. Identification of critical colonisation/localised infection and the role of biofilms is a key aspect of effective wound management. Silver antimicrobial dressings are efficient in reducing bacteria in wounds, but must be used appropriately to prevent overuse. Silver sulphadiazine has traditionally been used for the treatment of burns or Pseudomonas infection in leg ulceration, often in a cream formation. This article will be looking specifically at the effective use of Urgotul SSD in three critically colonised/non healing wounds. PMID:23682500

Downe, Annette

2013-03-01

296

Methane production in the interstitial waters of sulfate-depleted marine sediments.  

PubMed

Methane in the interstitial waters of anoxic Long Island Sound sediments does not reach appreciable concentrations until about 90 percent of seawater sulfate is removed by sulfate-reducing bacteria. This is in agreement with laboratory studies of anoxic marine sediments sealed in jars, which indicate that methane production does not occur until dissolved sulfate is totally exhausted. Upward diffusion of methane or its production in sulfate-free microenvironments, or both, can explain the observed coexistence of measurable concentrations of methane and sulfate in the upper portions of anoxic sediments. PMID:17835470

Martens, C S; Berner, R A

1974-09-27

297

Application of molecular techniques to evaluate the methanogenic archaea and anaerobic bacteria in the presence of oxygen with different COD:sulfate ratios in a UASB reactor.  

PubMed

In this paper, the microbial characteristics of the granular sludge in the presence of oxygen (3.0+/-0.7 mg O2 l(-1)) were analyzed using molecular biology techniques. The granules were provided by an upflow anaerobic sludge blanket (UASB) operated over 469 days and fed with synthetic substrate. Ethanol and sulfate were added to obtain different COD/SO4(2-) ratios (3.0, 2.0, and 1.6). The results of fluorescent in situ hybridization (FISH) analyses showed that archaeal cells, detected by the ARC915 probe, accounted for 77%, 84%, and 75% in the COD/SO(4)(2-) ratios (3.0, 2.0, and 1.6, respectively). Methanosaeta sp. was the predominant acetoclastic archaea observed by optical microscopy and FISH analyses, and confirmed by sequencing of the excised bands of the DGGE gel with a similarity of 96%. The sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris (similarity of 99%) was verified by sequencing of the DGGE band. Others identified microorganism were similar to Shewanella sp. and Desulfitobacterium hafniense, with similarities of 95% and 99%, respectively. These results confirmed that the presence of oxygen did not severely affect the metabolism of microorganisms that are commonly considered strictly anaerobic. We obtained mean efficiencies of organic matter conversion and sulfate reducing higher than 74%. PMID:18634895

Hirasawa, Julia Sumiko; Sarti, Arnaldo; Del Aguila, Nora Katia Saavedra; Varesche, Maria Bernadete A

2008-10-01

298

Effects of intestinal bacteria-derived p-cresyl sulfate on Th1-type immune response in vivo and in vitro.  

PubMed

Protein fermentation by intestinal bacteria generates various compounds that are not synthesized by their hosts. An example is p-cresol, which is produced from tyrosine. Patients with chronic kidney disease (CKD) accumulate high concentrations of intestinal bacteria-derived p-cresyl sulfate (pCS), which is the major metabolite of p-cresol, in their blood, and this accumulation contributes to certain CKD-associated disorders. Immune dysfunction is a CKD-associated disorder that frequently contributes to infectious diseases among CKD patients. Although some studies imply pCS as an etiological factor, the relation between pCS and immune systems is poorly understood. In the present study, we investigated the immunological effects of pCS derived from intestinal bacteria in mice. For this purpose, we fed mice a tyrosine-rich diet that causes the accumulation of pCS in their blood. The mice were shown to exhibit decreased Th1-driven 2, 4-dinitrofluorobenzene-induced contact hypersensitivity response. The concentration of pCS in blood was negatively correlated with the degree of the contact hypersensitivity response. In contrast, the T cell-dependent antibody response was not influenced by the accumulated pCS. We also examined the in vitro cytokine responses by T cells in the presence of pCS. The production of IFN-? was suppressed by pCS. Further, pCS decreased the percentage of IFN-?-producing Th1 cells. Our results suggest that intestinal bacteria-derived pCS suppressesTh1-type cellular immune responses. PMID:24161588

Shiba, Takahiro; Kawakami, Koji; Sasaki, Takashi; Makino, Ikuyo; Kato, Ikuo; Kobayashi, Toshihide; Uchida, Kazumi; Kaneko, Kimiyuki

2014-01-15

299

MAGNESIUM SULFATE REDUCES INFLAMMATION-ASSOCIATED BRAIN INJURY IN FETAL MICE  

PubMed Central

OBJECTIVE To investigate whether magnesium sulfate (MgSO4) prevents fetal brain injury in inflammation-associated preterm birth (PTB). STUDY DESIGN Utilising a mouse model of PTB, LPS or normal saline (NS)-exposed mice via intrauterine injection, were randomized to intraperitoneal treatment with MgSO4 or NS. From the 4 treatment groups, 1)NS+NS; 2)LPS+NS; 3)LPS+MgSO4; and 4)NS+MgSO4, fetal brains were collected for QPCR studies and primary neuronal cultures. mRNA expression of cytokines, cell death, and markers of neuronal and glial differentiation were assessed. Immunocytochemistry and confocal microscopy were performed. RESULTS There was no difference between LPS+NS and LPS+MgSO4 groups in expression of pro-inflammatory cytokines, cell death markers as well markers of pro-oligodendrocyte and astrocyte development (P>0.05 for all). Neuronal cultures from LPS+NS demonstrated morphological changes and this neuronal injury was prevented by MgSO4 (P<0.001). CONCLUSION Amelioration of neuronal injury in inflammation-associated PTB may be a key mechanism by which MgSO4 prevents cerebral palsy. PMID:20207246

Burd, Irina; Breen, Kelsey; Friedman, Alexander; Chai, Jinghua; Elovitz, Michal A.

2010-01-01

300

Removal of copper in an integrated sulfate reducing bioreactor-crystallization reactor system.  

PubMed

Removal of copper was investigated using an innovative water treatment system integrating a sulfidogenic bioreactor with a fluidized-bed crystallization reactor containing fine sand to facilitate the recovery of copper as a purified copper-sulfide mineral. The performance of the system was tested using a simulated semiconductor manufacturing wastewater containing high levels of Cu2+ (4-66 mg/L), sulfate, and a mixture of citrate, isopropanol, and polyethylene glycol (Mn 300). Soluble copper removal efficiencies exceeding 99% and effluent copper concentrations averaging 89 micog/L were demonstrated in the two-stage system, with near complete metal removal occurring in the crystallizer. Copper crystals deposited on sand grains were identified as covellite (CuS). The removal of organic constituents did not exceed 70% of the initial chemical oxygen demand due to incomplete degradation of isopropanol and its breakdown product (acetone). Taken as a whole, these results indicate the potential of this novel reactor configuration for the simultaneous removal of heavy metals and organic constituents. The ability of this process to recover heavy metals in a purified form makes it particularly attractive for the treatment of contaminated aqueous streams, including industrial wastewaters and acid mine drainage. PMID:17593752

Sierra-Alvarez, Reyes; Hollingsworth, Jeremy; Zhou, Michael S

2007-02-15

301

Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus.  

PubMed

The thermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain VC-16 (DSM 4304), which is known to oxidize fatty acids and n-alkenes, was shown to oxidize saturated hydrocarbons (n-alkanes in the range C10-C21) with thiosulfate or sulfate as a terminal electron acceptor. The amount of n-hexadecane degradation observed was in stoichiometric agreement with the theoretically expected amount of thiosulfate reduction. One of the pathways used by anaerobic microorganisms to activate alkanes is addition to fumarate that involves alkylsuccinate synthase as a key enzyme. A search for genes encoding homologous enzymes in A. fulgidus identified the pflD gene (locus-tag AF1449) that was previously annotated as a pyruvate formate lyase. A phylogenetic analysis revealed that this gene is of bacterial origin and was likely acquired by A. fulgidus from a bacterial donor through a horizontal gene transfer. Based on three-dimensional modeling of the corresponding protein and molecular dynamic simulations, we hypothesize an alkylsuccinate synthase activity for this gene product. The pflD gene expression was upregulated during the growth of A. fulgidus on an n-alkane (C16) compared with growth on a fatty acid. Our results suggest that anaerobic alkane degradation in A. fulgidus may involve the gene pflD in alkane activation through addition to fumarate. These findings highlight the possible importance of hydrocarbon oxidation at high temperatures by A. fulgidus in hydrothermal vents and the deep biosphere. PMID:24763368

Khelifi, Nadia; Amin Ali, Oulfat; Roche, Philippe; Grossi, Vincent; Brochier-Armanet, Céline; Valette, Odile; Ollivier, Bernard; Dolla, Alain; Hirschler-Réa, Agnès

2014-11-01

302

Unusual Starch Degradation Pathway via Cyclodextrins in the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus fulgidus Strain 7324?  

PubMed Central

The hyperthermophilic archaeon Archaeoglobus fulgidus strain 7324 has been shown to grow on starch and sulfate and thus represents the first sulfate reducer able to degrade polymeric sugars. The enzymes involved in starch degradation to glucose 6-phosphate were studied. In extracts of starch-grown cells the activities of the classical starch degradation enzymes, ?-amylase and amylopullulanase, could not be detected. Instead, evidence is presented here that A. fulgidus utilizes an unusual pathway of starch degradation involving cyclodextrins as intermediates. The pathway comprises the combined action of an extracellular cyclodextrin glucanotransferase (CGTase) converting starch to cyclodextrins and the intracellular conversion of cyclodextrins to glucose 6-phosphate via cyclodextrinase (CDase), maltodextrin phosphorylase (Mal-P), and phosphoglucomutase (PGM). These enzymes, which are all induced after growth on starch, were characterized. CGTase catalyzed the conversion of starch to mainly ?-cyclodextrin. The gene encoding CGTase was cloned and sequenced and showed highest similarity to a glucanotransferase from Thermococcus litoralis. After transport of the cyclodextrins into the cell by a transport system to be defined, these molecules are linearized via a CDase, catalyzing exclusively the ring opening of the cyclodextrins to the respective maltooligodextrins. These are degraded by a Mal-P to glucose 1-phosphate. Finally, PGM catalyzes the conversion of glucose 1-phosphate to glucose 6-phosphate, which is further degraded to pyruvate via the modified Embden-Meyerhof pathway. PMID:17921308

Labes, Antje; Schönheit, Peter

2007-01-01

303

Thermodesulfobacterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park.  

PubMed

A novel sulfate-reducing bacterium designated OPF15(T) was isolated from Obsidian Pool, Yellowstone National Park, Wyoming. The phylogeny of 16S rRNA and functional genes (dsrAB) placed the organism within the family Thermodesulfobacteriaceae. The organism displayed hyperthermophilic temperature requirements for growth with a range of 70-90 °C and an optimum of 83 °C. Optimal pH was around 6.5-7.0 and the organism required the presence of H2 or formate as an electron donor and CO2 as a carbon source. Electron acceptors supporting growth included sulfate, thiosulfate, and elemental sulfur. Lactate, acetate, pyruvate, benzoate, oleic acid, and ethanol did not serve as electron donors. Membrane lipid analysis revealed diacyl glycerols and acyl/ether glycerols which ranged from C14:0 to C20:0. Alkyl chains present in acyl/ether and diether glycerol lipids ranged from C16:0 to C18:0. Straight, iso- and anteiso-configurations were found for all lipid types. The presence of OPF15(T) was also shown to increase cellulose consumption during co-cultivation with Caldicellulosiruptor obsidiansis, a fermentative, cellulolytic extreme thermophile isolated from the same environment. On the basis of phylogenetic, phenotypic, and structural analyses, Thermodesulfobacterium geofontis sp. nov. is proposed as a new species with OPF15(T) representing the type strain. PMID:23345010

Hamilton-Brehm, Scott D; Gibson, Robert A; Green, Stefan J; Hopmans, Ellen C; Schouten, Stefan; van der Meer, Marcel T J; Shields, John P; Damsté, Jaap S S; Elkins, James G

2013-03-01

304

Thermodesulfobacterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park  

SciTech Connect

A novel sulfate-reducing bacterium designated OPF15T was isolated from Obsidian Pool, Yellowstone National Park, Wyoming. The phylogeny of 16S rRNA and functional genes (dsrAB) placed the organism within the family Thermodesulfobacteriaceae. The organism displayed hyperthermophilic temperature requirements for growth with a range of 70 90 C and an optimum of 83 C. Optimal pH was around 6.5 7.0 and the organism required the presence of H2 or formate as an electron donor and CO2 as a carbon source. Electron acceptors supporting growth included sulfate, thiosulfate, and elemental sulfur. Lactate, acetate, pyruvate, benzoate, oleic acid, and ethanol did not serve as electron donors. Membrane lipid analysis revealed diacyl glycerols and acyl/ether glycerols which ranged from C14:0 to C20:0. Alkyl chains present in acyl/ether and diether glycerol lipids ranged from C16:0 to C18:0. Straight, iso- and anteiso-configurations were found for all lipid types. The presence of OPF15T was also shown to increase cellulose consumption during co-cultivation with Caldicellulosiruptor obsidiansis, a fermentative, cellulolytic extreme thermophile isolated from the same environment. On the basis of phylogenetic, phenotypic, and structural analyses, Thermodesulfobacterium geofontis sp. nov. is proposed as a new species with OPF15T representing the type strain.

Hamilton-Brehm, Scott [ORNL; Gibson, Robert [NIOZ Royal Netherlands Institute for Sea Research; Green, Stefan [University of Illinois, Chicago; Hopmans, Ellen [NIOZ Royal Netherlands Institute for Sea Research; Schouten, Stefan [NIOZ Royal Netherlands Institute for Sea Research; van der Meer, Marcel T. J. [NIOZ Royal Netherlands Institute for Sea Research; Shields, John [University of Georgia, Athens, GA; S. Damste, Jaap S. [NIOZ Royal Netherlands Institute for Sea Research; Elkins, James G [ORNL

2013-01-01

305

Towards a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough.  

PubMed

Protein-protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study Escherichia coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio vulgaris Hildenborough, a model obligate anaerobe and sulfate reducer and the subject of this study. Here we carried out affinity purification followed by mass spectrometry to reconstruct an interaction network among 12 chromosomally encoded bait and 90 prey proteins based on 134 bait-prey interactions identified to be of high confidence. Protein-protein interaction data are often plagued by the lack of adequate controls and replication analyses necessary to assess confidence in the results, including identification of potential false positives. We addressed these issues through the use of biological replication, exponentially modified protein abundance indices, results from an experimental negative control, and a statistical test to assign confidence to each putative interacting pair applicable to small interaction data studies. We discuss the biological significance of metabolic features of D. vulgaris revealed by these protein-protein interaction data and the observed protein modifications. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction. PMID:21738675

Chhabra, Swapnil R; Joachimiak, Marcin P; Petzold, Christopher J; Zane, Grant M; Price, Morgan N; Reveco, Sonia A; Fok, Veronica; Johanson, Alyssa R; Batth, Tanveer S; Singer, Mary; Chandonia, John-Marc; Joyner, Dominique; Hazen, Terry C; Arkin, Adam P; Wall, Judy D; Singh, Anup K; Keasling, Jay D

2011-01-01

306

Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria.  

PubMed

Iron reduction and mercury methylation by dissimilatory iron-reducing bacteria (DIRB), Geobacter sulfurreducens and Shewanella oneidensis, were studied, and the relationship of mercury methylation coupled to iron reduction was determined. The ability of both bacteria for reducing iron was tested, and Fe(III) reduction occurred with the highest rate when ferric oxyhydroxide was used as a terminal electron acceptor. G. sulfurreducens had proven to mediate the production of methylmercury (MeHg), and a notable increase of MeHg following the addition of inorganic Hg was observed. When the initial concentration of HgCl2 was 500nM, about 177.03nM of MeHg was determined at 8d after G. sulfurreducens inoculation. S. oneidensis was tested negligible for Hg methylation and only 12.06nM of MeHg was determined. Iron reduction could potentially influence Hg methylation rates. The increase in MeHg was consistent with high rate of iron reduction, indicating that Fe(III) reduction stimulated the formation of MeHg. Furthermore, the net MeHg concentration increased at low Fe(III) additions from 1.78 to 3.57mM, and then decreased when the added Fe(III) was high from 7.14 to 17.85mM. The mercury methylation rate was suppressed with high Fe(III) additions, which might have been attributable to mercury complexation and low availability. PMID:25496739

Si, Youbin; Zou, Yan; Liu, Xiaohong; Si, Xiongyuan; Mao, Jingdong

2015-03-01

307

Prewashing with acidified sodium chlorite reduces pathogenic bacteria in lightly fermented Chinese cabbage.  

PubMed

Efficacy of prewashing with acidified sodium chlorite (ASC) for the sanitation of lightly fermented Chinese cabbage was evaluated. The population of the natural microflora on the cabbage leaves was reduced about 2.0 log CFU/g just after washing with ASC, a significant reduction compared with the control distilled water wash (P < or = 0.05). In the control experiment, viable aerobic bacteria increased gradually when incubated at 10 degrees C; however, ASC-washed cabbage maintained a lower microbial concentration. The treatment of Chinese cabbage with ASC reduced the population of artificially inoculated Escherichia coli O157:H7, Salmonella Enteritidis, Staphylococcus aureus, and Listeria monocytogenes by 2.4 log CFU/g. The sanitation efficacy of ASC was 1.6 log CFU/g higher than that of distilled water washing. The viable cell counts of all pathogenic bacteria tested remained constant during 8 days of storage at 10 degrees C for both washing treatments, with the exception of L. monocytogenes, whose viable cell counts increased gradually with time for both treatments. No significant differences in color, odor, taste, and texture in raw leaves were observed after the ASC wash compared with after the distilled water wash. These results indicate that prewashing with ASC could control bacterial growth in lightly fermented Chinese cabbage without changing the product quality. PMID:15895733

Inatsu, Yasuhiro; Maeda, Yutaka; Bari, M L; Kawasaki, Susumu; Kawamoto, Shinichi

2005-05-01

308

Influence of headspace composition on product diversity by sulphate reducing bacteria biocathode.  

PubMed

Mixed culture of sulphate reducing bacteria named TERI-MS-003 was used for development of biocathode on activated carbon fabric fastened to stainless steel mesh for conversion of volatile fatty acids to reduced organic compounds under chronoamperometric conditions of -0.85V vs. Ag/AgCl (3.5M KCl). A range of chemicals were bioelectrosynthesized, however the gases present in headspace environment of the bioelectrochemical reactor governed the product profile. Succinate, ethanol, hydrogen, glycerol and propionate were observed to be the predominant products when the reactor was hermetically sealed. On the other hand, acetone, propionate, isopropanol, propanol, isobutyrate, isovalerate and heptanoate were the predominant products when the reactor was continuously sparged with nitrogen. This study highlights the importance of head space composition in order to manoeuvre the final product profile desired during a microbial electro-synthesis operation and the need for simultaneously developing effective separation and recovery strategies from an economical and practical standpoint. PMID:24726774

Sharma, Mohita; Varanasi, Jhansi L; Jain, Pratiksha; Dureja, Prem; Lal, Banwari; Dominguez-Benetton, Xochitl; Pant, Deepak; Sarma, Priyangshu M

2014-08-01

309

Interfering with UDP-GlcNAc metabolism and heparan sulfate expression using a sugar analog reduces angiogenesis  

PubMed Central

Heparan sulfate (HS), a long linear polysaccharide, is implicated in various steps of tumorigenesis, including angiogenesis. We successfully interfered with HS biosynthesis using a peracetylated 4-deoxy analog of the HS constituent GlcNAc and studied the compound's metabolic fate and its effect on angiogenesis. The 4-deoxy analog was activated intracellularly into UDP-4-deoxy-GlcNAc and HS expression was inhibited up to ~96% (IC50 = 16 ?M). HS chain size was reduced, without detectable incorporation of the 4-deoxy analog, likely due to reduced levels of UDP-GlcNAc and/or inhibition of glycosyltransferase activity. Comprehensive gene expression analysis revealed reduced expression of genes regulated by HS binding growth factors as FGF-2 and VEGF. Cellular binding and signaling of these angiogenic factors was inhibited. Micro-injection in zebrafish embryos strongly reduced HS biosynthesis, and angiogenesis was inhibited in both zebrafish and chicken model systems. All these data identify 4-deoxy-GlcNAc as a potent inhibitor of HS synthesis which hampers pro-angiogenic signaling and neo-vessel formation. PMID:23972127

van Wijk, Xander M.; van den Broek, Sebastiaan A.; Dona, Margo; Naidu, Natasha; Oosterhof, Arie; van de Westerlo, Els M.; Kusters, Lisanne J.; Khaled, Yasmine; Jokela, Tiina A.; Nowak-Sliwinska, Patrycja; Kremer, Hannie; Stringer, Sally E.; Griffioen, Arjan W.; van Wijk, Erwin; van Delft, Floris L.; van Kuppevelt, Toin H.

2013-01-01

310

Methylation of Mercury by Bacteria Exposed to Dissolved, Nanoparticulate, and Microparticulate Mercuric Sulfides  

E-print Network

Methylation of Mercury by Bacteria Exposed to Dissolved, Nanoparticulate, and Microparticulate bacteria that methylate Hg(II). In sediment porewater, Hg(II) associates with sulfides and natural organic intermediates of heterogeneous mineral precipitation. Here, we exposed two strains of sulfate-reducing bacteria

311

Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines.  

PubMed

Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55°C. Most-probable number (MPN) analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG) scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy) was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy), while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm(2), while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens. PMID:24639674

Liang, Renxing; Grizzle, Robert S; Duncan, Kathleen E; McInerney, Michael J; Suflita, Joseph M

2014-01-01

312

ENUMERATION, ISOLATION, AND CHARACTERIZATION OF ACETOGENIC BACTERIA ASSOCIATED WITH SEAGRASS ROOTS  

EPA Science Inventory

Seagrasses are rooted in anoxic, sulfate-reducing sediments. However, the seagrass root is oxygenated during the daytime, becoming anoxic at night. Root thin sections hydridized with 33P-labeled probes revealed the presence of acetogenic and sulfate-reducing bacteria in the rhizo...

313

ENUMERATION, ISOLATION, AND CHARACTERIZATION OF ACETOGENIC BACTERIA ASSOCIATED WITH SEAGRASS ROOTS (POSTER SESSION)  

EPA Science Inventory

Seagrasses are rooted in anoxic, sulfate-reducing sediments. However, the seagrass root is oxygenated during the daytime, becoming anoxic at night. Root thin sections hydridized with 33P-labeled probes revealed the presence of acetogenic and sulfate-reducing bacteria in the rhizo...

314

Biological sulfate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source  

SciTech Connect

Feasibility and engineering aspects of biological sulfate reduction in gas-lift reactors were studied. Hydrogen and carbon dioxide were used as energy and carbon source. Attention was paid to biofilm formation, sulfide toxicity, sulfate conversion rate optimization, and gas-liquid mass transfer limitations. Sulfate-reducing bacteria formed stable biofilms on pumice particles. Biofilm formation was not observed when basalt particles were used. However, use of basalt particles led to the formation of granules of sulfate-reducing biomass. The sulfate-reducing bacteria, grown on pumice, easily adapted to free H[sub 2]S concentrations up to 450 mg/L. Biofilm growth rate then equilibrated biomass loss rate. These high free H[sub 2]S concentrations caused reversible inhibition rather than acute toxicity. When free H[sub 2]S concentrations were kept below 450 mg/L, a maximum sulfate conversion rate of 30 g SO[sub 4][sup 2[minus

Houten, R.T. van; Hulshoff Pol, L.W.; Lettinga, G. (Wageningen Agricultural Univ. (Netherlands). Dept. of Environmental Technology)

1994-08-20

315

Gene Expression by the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough Grown on an Iron Electrode under Cathodic Protection Conditions? †  

PubMed Central

The genome sequence of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough was reanalyzed to design unique 70-mer oligonucleotide probes against 2,824 probable protein-coding regions. These included three genes not previously annotated, including one that encodes a c-type cytochrome. Using microarrays printed with these 70-mer probes, we analyzed the gene expression profile of wild-type D. vulgaris grown on cathodic hydrogen, generated at an iron electrode surface with an imposed negative potential of ?1.1 V (cathodic protection conditions). The gene expression profile of cells grown on cathodic hydrogen was compared to that of cells grown with gaseous hydrogen bubbling through the culture. Relative to the latter, the electrode-grown cells overexpressed two hydrogenases, the hyn-1 genes for [NiFe] hydrogenase 1 and the hyd genes, encoding [Fe] hydrogenase. The hmc genes for the high-molecular-weight cytochrome complex, which allows electron flow from the hydrogenases across the cytoplasmic membrane, were also overexpressed. In contrast, cells grown on gaseous hydrogen overexpressed the hys genes for [NiFeSe] hydrogenase. Cells growing on the electrode also overexpressed genes encoding proteins which promote biofilm formation. Although the gene expression profiles for these two modes of growth were distinct, they were more closely related to each other than to that for cells grown in a lactate- and sulfate-containing medium. Electrochemically measured corrosion rates were lower for iron electrodes covered with hyn-1, hyd, and hmc mutant biofilms than for wild-type biofilms. This confirms the importance, suggested by the gene expression studies, of the corresponding gene products in D. vulgaris-mediated iron corrosion. PMID:18310429

Caffrey, Sean M.; Park, Hyung Soo; Been, Jenny; Gordon, Paul; Sensen, Christoph W.; Voordouw, Gerrit

2008-01-01

316

Gene expression by the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough grown on an iron electrode under cathodic protection conditions.  

PubMed

The genome sequence of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough was reanalyzed to design unique 70-mer oligonucleotide probes against 2,824 probable protein-coding regions. These included three genes not previously annotated, including one that encodes a c-type cytochrome. Using microarrays printed with these 70-mer probes, we analyzed the gene expression profile of wild-type D. vulgaris grown on cathodic hydrogen, generated at an iron electrode surface with an imposed negative potential of -1.1 V (cathodic protection conditions). The gene expression profile of cells grown on cathodic hydrogen was compared to that of cells grown with gaseous hydrogen bubbling through the culture. Relative to the latter, the electrode-grown cells overexpressed two hydrogenases, the hyn-1 genes for [NiFe] hydrogenase 1 and the hyd genes, encoding [Fe] hydrogenase. The hmc genes for the high-molecular-weight cytochrome complex, which allows electron flow from the hydrogenases across the cytoplasmic membrane, were also overexpressed. In contrast, cells grown on gaseous hydrogen overexpressed the hys genes for [NiFeSe] hydrogenase. Cells growing on the electrode also overexpressed genes encoding proteins which promote biofilm formation. Although the gene expression profiles for these two modes of growth were distinct, they were more closely related to each other than to that for cells grown in a lactate- and sulfate-containing medium. Electrochemically measured corrosion rates were lower for iron electrodes covered with hyn-1, hyd, and hmc mutant biofilms than for wild-type biofilms. This confirms the importance, suggested by the gene expression studies, of the corresponding gene products in D. vulgaris-mediated iron corrosion. PMID:18310429

Caffrey, Sean M; Park, Hyung Soo; Been, Jenny; Gordon, Paul; Sensen, Christoph W; Voordouw, Gerrit

2008-04-01

317

Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine.  

PubMed

Bacterial strains CVO and FWKO B were isolated from produced brine at the Coleville oil field in Saskatchewan, Canada. Both strains are obligate chemolithotrophs, with hydrogen, formate, and sulfide serving as the only known energy sources for FWKO B, whereas sulfide and elemental sulfur are the only known electron donors for CVO. Neither strain uses thiosulfate as an energy source. Both strains are microaerophiles (1% O(2)). In addition, CVO grows by denitrification of nitrate or nitrite whereas FWKO B reduces nitrate only to nitrite. Elemental sulfur is the sole product of sulfide oxidation by FWKO B, while CVO produces either elemental sulfur or sulfate, depending on the initial concentration of sulfide. Both strains are capable of growth under strictly autotrophic conditions, but CVO uses acetate as well as CO(2) as its sole carbon source. Neither strain reduces sulfate; however, FWKO B reduces sulfur and displays chemolithoautotrophic growth in the presence of elemental sulfur, hydrogen, and CO(2). Both strains grow at temperatures between 5 and 40 degrees C. CVO is capable of growth at NaCl concentrations as high as 7%. The present 16s rRNA analysis suggests that both strains are members of the epsilon subdivision of the division Proteobacteria, with CVO most closely related to Thiomicrospira denitrifcans and FWKO B most closely related to members of the genus Arcobacter. The isolation of these two novel chemolithotrophic sulfur bacteria from oil field brine suggests the presence of a subterranean sulfur cycle driven entirely by hydrogen, carbon dioxide, and nitrate. PMID:10831429

Gevertz, D; Telang, A J; Voordouw, G; Jenneman, G E

2000-06-01

318

Multiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20  

PubMed Central

Dissimilatory sulfate reduction serves as a key metabolic carbon remineralization process in anoxic marine environments. Sulfate reducing microorganisms can impart a wide range in mass-dependent sulfur isotopic fractionation. As such, the presence and relative activity of these organisms is identifiable from geological materials. By extension, sulfur isotope records are used to infer the redox balance of marine sedimentary environments, and the oxidation state of Earth's oceans and atmosphere. However, recent work suggests that our understanding of microbial sulfate reduction (MSRs) may be missing complexity associated with the presence and role of key chemical intermediates in the reductive process. This study provides a test of proposed metabolic models of sulfate reduction by growing an axenic culture of the well-studied MSRs, Desulfovibrio alaskensis strain G20, under electron donor limited conditions on the terminal electron acceptors sulfate, sulfite or thiosulfate, and tracking the multiple S isotopic consequences of each condition set. The dissimilatory reduction of thiosulfate and sulfite produce unique minor isotope effects, as compared to the reduction of sulfate. Further, these experiments reveal a complex biochemistry associated with sulfite reduction. That is, under high sulfite concentrations, sulfur is shuttled to an intermediate pool of thiosulfate. Site-specific isotope fractionation (within thiosulfate) is very large (34? ~ 30‰) while terminal product sulfide carries only a small fractionation from the initial sulfite (34? < 10‰): a signature similar in magnitude to sulfate and thiosulfate reduction. Together these findings show that microbial sulfate reduction (MSR) is highly sensitive to the concentration of environmentally important sulfur-cycle intermediates (sulfite and thiosulfate), especially when thiosulfate and the large site-specific isotope effects are involved. PMID:25505449

Leavitt, William D.; Cummins, Renata; Schmidt, Marian L.; Sim, Min S.; Ono, Shuhei; Bradley, Alexander S.; Johnston, David T.

2014-01-01

319

Multiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20.  

PubMed

Dissimilatory sulfate reduction serves as a key metabolic carbon remineralization process in anoxic marine environments. Sulfate reducing microorganisms can impart a wide range in mass-dependent sulfur isotopic fractionation. As such, the presence and relative activity of these organisms is identifiable from geological materials. By extension, sulfur isotope records are used to infer the redox balance of marine sedimentary environments, and the oxidation state of Earth's oceans and atmosphere. However, recent work suggests that our understanding of microbial sulfate reduction (MSRs) may be missing complexity associated with the presence and role of key chemical intermediates in the reductive process. This study provides a test of proposed metabolic models of sulfate reduction by growing an axenic culture of the well-studied MSRs, Desulfovibrio alaskensis strain G20, under electron donor limited conditions on the terminal electron acceptors sulfate, sulfite or thiosulfate, and tracking the multiple S isotopic consequences of each condition set. The dissimilatory reduction of thiosulfate and sulfite produce unique minor isotope effects, as compared to the reduction of sulfate. Further, these experiments reveal a complex biochemistry associated with sulfite reduction. That is, under high sulfite concentrations, sulfur is shuttled to an intermediate pool of thiosulfate. Site-specific isotope fractionation (within thiosulfate) is very large ((34)? ~ 30‰) while terminal product sulfide carries only a small fractionation from the initial sulfite ((34)? < 10‰): a signature similar in magnitude to sulfate and thiosulfate reduction. Together these findings show that microbial sulfate reduction (MSR) is highly sensitive to the concentration of environmentally important sulfur-cycle intermediates (sulfite and thiosulfate), especially when thiosulfate and the large site-specific isotope effects are involved. PMID:25505449

Leavitt, William D; Cummins, Renata; Schmidt, Marian L; Sim, Min S; Ono, Shuhei; Bradley, Alexander S; Johnston, David T

2014-01-01

320

Sensory evaluation of dairy supplements enriched with reduced iron, ferrous sulfate or ferrous fumarate.  

PubMed

Objective. To determine the degree of liking of the Oportunidades programme dietary supplements (DS) -purees and beverages- added with different iron salts (IS): reduced iron (RI), ferrous sulphate (FS) or ferrous fumarate (FF) during 24 weeks of storage. Materials and methods. The DS were evaluated through a hedonic scale for aroma, flavour and colour attributes; at time zero and every eight weeks, each panel member evaluated three DS with same flavour and presentation but different IS. Seventy women participated as panel members. Results. The chocolate and banana DS exhibited a change in preference by colour and flavour due to storage. DS with FS or RI showed the least preference by flavour and colour in the context of the three IS considered. The chocolate and neutral DS enriched with FS changed their colour and flavour. Conclusion. DS were, in general, well-liked; nonetheless, for purees enriched with FS and for beverages enriched with RI, the less-liked attributes were colour and flavour. PMID:25629275

Morales, Josefina C; Sánchez-Vargas, Elena; García-Zepeda, Rodrigo; Villalpando, Salvador

2015-02-01

321

Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth  

PubMed Central

Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III)-bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Furthermore, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA, close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on site and subsequently examined using correlated two- and three-dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). The outer membranes of most cells were decorated with aggregates up to 150?nm in diameter composed of ?3?nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well-studied group of FeRB. STXM results at the Fe L2,3 absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)–Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed-valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension. PMID:23038172

Luef, Birgit; Fakra, Sirine C; Csencsits, Roseann; Wrighton, Kelly C; Williams, Kenneth H; Wilkins, Michael J; Downing, Kenneth H; Long, Philip E; Comolli, Luis R; Banfield, Jillian F

2013-01-01

322

Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth  

SciTech Connect

Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III) bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Further, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on site and subsequently examined using correlated 2- and 3- dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). Most cells had their outer membranes decorated with up to 150 nm diameter aggregates composed of a few nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well studied group of FeRB. STXM results at the Fe L2,3 absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)-Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell-surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension.

Luef, Birgit; Fakra, Sirine C.; Csencsits, Roseann; Wrighton, Kelly C.; Williams, Kenneth H.; Wilkins, Michael J.; Downing, Kenneth H.; Long, Philip E.; Comolli, Luis R.; Banfield, Jillian F.

2013-02-04

323

Alteration of Iron-Rich Lacustrine Sediments by Dissimilatory Iron-Reducing Bacteria  

SciTech Connect

The reduction of Fe during bacterial anaerobic respiration in sediments and soils not only causes the degradation of organic matter but also results in changes in mineralogy and the redistribution of many nutrients and trace metals. Understanding trace metal patterns in sedimentary rocks and predicting the fate of contaminants in the environment requires a detailed understanding of the mechanisms through which they are redistributed during Fe reduction. In this work, lacustrine sediments from Lake Matano in Indonesia were incubated in a minimal media with the dissimilatory iron reducing (DIR) bacterium Shewanella putrefaciens 200R. These sediments were reductively dissolved at rates slower than pure synthetic goethite despite the presence of an 'easily reducible' component, as defined by selective extractions. DIR of the lacustrine sediments resulted in the substrate-dependent production of abundant quantities of extracellular polymeric substances. Trace elements, including Ni, Co, P, Si, and As, were released from the sediments with progressive Fe reduction while Cr was sequestered. Much of the initial trace metal mobility can be attributed to the rapid reduction of a Mn-rich oxyhydroxide phase. The production of organo-Fe(III) reveals that DIR bacteria can generate significant metal complexation capacity. This work demonstrates that DIR induces the release of many elements associated with Fe-Mn oxyhydroxides, despite secondary mineralization.

Crowe,S.; Roberts, J.; Weisener, C.; Fowle, D.

2007-01-01

324

Mtr Extracellular Electron Transfer Pathways in Fe(III)-reducing or Fe(II)-oxidizing Bacteria: A Genomic Perspective  

SciTech Connect

Originally discovered in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), the Mtr (i.e., metal-reducing) pathway exists in all characterized strains of metal-reducing Shewanella. The protein components identified to date for the Mtr pathway of MR-1 include four multi-heme c-type cytochromes (c-Cyts), CymA, MtrA, MtrC and OmcA, and a porin-like, outer membrane protein MtrB. They are strategically positioned along the width of the MR-1 cell envelope to mediate electron transfer from the quinone/quinol pool in the inner-membrane to the Fe(III)-containing minerals external to the bacterial cells. A survey of microbial genomes revealed homologues of the Mtr pathway in other dissimilatory Fe(III)-reducing bacteria, including Aeromonas hydrophila, Ferrimonas balearica and Rhodoferax ferrireducens, and in the Fe(II)-oxidizing bacteria Dechloromonas aromatica RCB, Gallionella capsiferriformans ES-2 and Sideroxydans lithotrophicus ES-1. The widespread distribution of Mtr pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria emphasizes the importance of this type of extracellular electron transfer pathway in microbial redox transformation of Fe. Their distribution in these two different functional groups of bacteria also emphasizes the bi-directional nature of electron transfer reactions carried out by the Mtr pathways. The characteristics of the Mtr pathways may be shared by other pathways used by microorganisms for exchanging electrons with their extracellular environments.

Shi, Liang; Rosso, Kevin M.; Zachara, John M.; Fredrickson, Jim K.

2012-12-01

325

REDUCTION AND IMMOBILIZATION OF RADIONUCLIDES AND TOXIC METAL IONS USING COMBINED ZERO VALENT IRON AND ANAEROBIC BACTERIA  

EPA Science Inventory

Large groundwater plumes contaminated with toxic metal ions, including radionuclides, exist at several DOE facilities. Previous research indicated that both zero valent iron and sulfate reducing bacteria can yield significant decreases in concentrations of redox sensitive metals ...

326

MICROBIAL DEGRADATION OF TOLUENE UNDER SULFATE-REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS  

EPA Science Inventory

Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (MD). imilar results were obtained for enrichment cultures in which toluene was th...

327

ACETOGENIC BACTERIA ASSOCIATED WITH SEAGRASS ROOTS  

EPA Science Inventory

Seagrasses are adapted to being rooted in reduced, anoxic sediments with high rates of sulfate reduction. During the day, an oxygen gradient is generated around the roots, becoming anoxic at night. Thus, obligate anaerobic bacteria in the rhizosphere have to tolerate elevated oxy...

328

Suppressing Activity of Common Intestinal Bacteria Reduces Tumor Growth | Physical Sciences in Oncology  

Cancer.gov

Over the past few years, cancer researchers have come to suspect that the bacteria living in our gastrointestinal system may play a role in the development of some types of cancer. Now, a team of investigators from the University of California, San Diego (UCSD) School of Medicine has discovered that common intestinal bacteria do promote tumor growth in genetically susceptible mice.

329

The sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation  

SciTech Connect

We propose the use of Desulfovibrio sp. ND132 as a model species for understanding the genetics and biochemistry of microbial Hg methylation. ND132 is a dissimilatory sulfate-reducing bacterium (DSRB) that exhibits exceptionally high rates of Hg methylation in culture, but is otherwise a characteristically typical Desulfovibrio strain. The full genome sequence of ND132 will be available soon. ND132 is very similar to other DSRB that are sequenced but do not methylate Hg, allowing comparison for potential methylation genes. Here, we describe the physiological characteristics of the strain, examine its MeHg production capability, and place the strain within the phylogeny of the Desulfovibrionales using 16S rRNA. We also examine Hg toxicity and the inducibility of MeHg production amongst the DSRB by comparing ND132 to non-methylating DSRB. The optimal growth medium for Hg methylation is pyruvate/fumarate, which supports strong respiratory growth without sulfide production. At moderate Hg concentrations (10 ng/ml), and using TiNTA as a reductant, ND132 methylates about 30% of added HgCl2 during batch culture growth on 40 mM pyruvate/fumarate. Under constant culture conditions, MeHg production is an exponential function of Hg concentration, probably reflecting Hg partitioning between aqueous and solid phases. To help understand how Hg is taken up by this organism, we examined the influence of a variety of small thiol-bearing ligands, as well as select amino acids, on methylation by D. desulfuricans ND132. All thiol bearing ligands tested affected methylation in similar ways, suggesting that Hg uptake by ND132 is not associated with uptake of a specific amino acid. To identify enzymes for the methylation activity, a genetic approach is being pursued. Conjugation from E. coli donors works well that allows the generation of a transposon library of random ND132 mutants. These mutants will be screened for affects on mercury methylation.

Gilmour, C C [Smithsonian Environmental Research Center, Edgewater, MD] [Smithsonian Environmental Research Center, Edgewater, MD; Elias, Dwayne A [ORNL] [ORNL; Kucken, A M [University of Missouri, Columbia] [University of Missouri, Columbia; Brown, Steven D [ORNL] [ORNL; Palumbo, Anthony Vito [ORNL] [ORNL; Wall, Judy D. [University of Missouri] [University of Missouri

2010-01-01

330

The sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation  

SciTech Connect

We propose the use of Desulfovibrio desulfuricans ND132 as a model species for understanding the mechanism of microbial Hg methylation. Strain ND132 is an anaerobic dissimilatory sulfate-reducing bacterium (DSRB), isolated from estuarine mid-Chesapeake Bay sediments. It was chosen for study because of its exceptionally high rates of Hg methylation in culture and its metabolic similarity to the lost strain D. desulfuricans LS, the only organism for which methylation pathways have been partially defined. Strain ND132 is an incomplete oxidizer of short-chain fatty acids. It is capable of respiratory growth using fumarate as an electron acceptor, supporting growth without sulfide production. We used enriched stable Hg isotopes to show that ND132 simultaneously produces and degrades methylmercury (MeHg) during growth but does not produce elemental Hg. MeHg produced by cells is mainly excreted, and no MeHg is produced in spent medium. Mass balances for Hg and MeHg during the growth of cultures, including the distribution between filterable and particulate phases, illustrate how medium chemistry and growth phase dramatically affect Hg solubility and availability for methylation. The available information on Hg methylation among strains in the genus Desulfovibrio is summarized, and we present methylation rates for several previously untested species. About 50% of Desulfovibrio strains tested to date have the ability to produce MeHg. Importantly, the ability to produce MeHg is constitutive and does not confer Hg resistance. A 16S rRNA-based alignment of the genus Desulfovibrio allows the very preliminary assessment that there may be some evolutionary basis for the ability to produce MeHg within this genus.

Gilmour, C C [Smithsonian Environmental Research Center, Edgewater, MD; Elias, Dwayne A [ORNL; Kucken, A M [University of Missouri, Columbia; Brown, Steven D [ORNL; Palumbo, Anthony Vito [ORNL; Schadt, Christopher Warren [ORNL; Wall, Judy D. [University of Missouri

2011-01-01

331

Alanyl-glutamine administration suppresses Th17 and reduces inflammatory reaction in dextran sulfate sodium-induced acute colitis.  

PubMed

T helper (Th) cells play a major role in the pathogenesis of inflammatory bowel disease (IBD). Glutamine (Gln) is known to have immunomodulatory effects in metabolic stressed conditions. This study investigated the effects of post-treatment of alanyl-glutamine (Ala-Gln) on Th cell-associated cytokine expressions and inflammatory reaction in dextran sulfate sodium (DSS)-induced colitis. C57BL/6 mice received distilled water containing 3% DSS for 5 days to induce colitis, whereas the normal control (NC) group received distilled water. After induction of colitis, one of the colitis groups (DG) was intraperitoneally injected with an Ala-Gln solution (0.5 g Gln/kg/d), and the saline DSS group (DS) received an identical volume of saline. After treatment for 3 days, mice were sacrificed, and the blood and tissue samples were collected for further analysis. DSS colitis resulted in higher percentages of blood interleukin (IL)-17-secreting Th cells and greater expression of Th cell-associated cytokine messenger RNA (mRNA) in the mesenteric lymph nodes (MLN). Also, luminal immunoglobin (Ig) G, keratinocyte-derived chemokine, and macrophage chemoattractant protein-1 levels were higher in the DS group than the NC group, whereas these parameters did not differ between the DG and NC groups. The DG group had lower blood IL-17A, 17F, MLN IL-17 mRNA and macrophage percentage in the peritoneal lavage fluid than those of the DS group. These results suggest that post-treatment with Ala-Gln suppressed Th17-associated cytokine expressions, reduced macrophage infiltration into the peritoneal cavity and decreased pro-inflammatory cytokine production in the colon, thus may have attenuated inflammatory response in DSS-induced colitis. PMID:23721689

Hou, Yu-Chen; Liu, Jun-Jen; Pai, Man-Hui; Tsou, Shung-Sheng; Yeh, Sung-Ling

2013-09-01

332

Plutonium(V/VI) Reduction by the Metal-Reducing Bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1?  

PubMed Central

We examined the ability of the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1 to reduce Pu(VI) and Pu(V). Cell suspensions of both bacteria reduced oxidized Pu [a mixture of Pu(VI) and Pu(V)] to Pu(IV). The rate of plutonium reduction was similar to the rate of U(VI) reduction obtained under similar conditions for each bacteria. The rates of Pu(VI) and U(VI) reduction by cell suspensions of S. oneidensis were slightly higher than the rates observed with G. metallireducens. The reduced form of Pu was characterized as aggregates of nanoparticulates of Pu(IV). Transmission electron microscopy images of the solids obtained from the cultures after the reduction of Pu(VI) and Pu(V) by S. oneidensis show that the Pu precipitates have a crystalline structure. The nanoparticulates of Pu(IV) were precipitated on the surface of or within the cell walls of the bacteria. The production of Pu(III) was not observed, which indicates that Pu(IV) was the stable form of reduced Pu under these experimental conditions. Experiments examining the ability of these bacteria to use Pu(VI) as a terminal electron acceptor for growth were inconclusive. A slight increase in cell density was observed for both G. metallireducens and S. oneidensis when Pu(VI) was provided as the sole electron acceptor; however, Pu(VI) concentrations decreased similarly in both the experimental and control cultures. PMID:19363069

Icopini, Gary A.; Lack, Joe G.; Hersman, Larry E.; Neu, Mary P.; Boukhalfa, Hakim

2009-01-01

333

Cool Temperatures Reduce Antifungal Activity of Symbiotic Bacteria of Threatened Amphibians – Implications for Disease Management and Patterns of Decline  

PubMed Central

Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians’ skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd’s optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata). All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8°C to 33°C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs) from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to avoid inconsistent antifungal activity, bacteria evaluated for use in chytridiomycosis biocontrol should be tested over a range of environmental temperatures spanning those likely to be encountered in the field. PMID:24941262

Daskin, Joshua H.; Bell, Sara C.; Schwarzkopf, Lin; Alford, Ross A.

2014-01-01

334

Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.  

PubMed

Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata). All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs) from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to avoid inconsistent antifungal activity, bacteria evaluated for use in chytridiomycosis biocontrol should be tested over a range of environmental temperatures spanning those likely to be encountered in the field. PMID:24941262

Daskin, Joshua H; Bell, Sara C; Schwarzkopf, Lin; Alford, Ross A

2014-01-01

335

Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L.  

PubMed

Arsenic is a common contaminant in soils and water. It is well established that the fern Pteris vittata L. is an As hyperaccumulator and therefore has potential to phyroremediate As-polluted soils. Also, it is accepted that rhizosphere microflora play an enhancing role in plant uptake of metallic elements from soils. Studies showed that hydroponiclly grown P. Vittata accumulated arsenite more than the arsenate form of As apparently because arsenate and phosphate are analogues and therefore its absorption is inhibited by phosphate. The objective of this study was to determine whether addition of five different arsenate-reducing bacteria would enhance arsenic uptake by P. vittata grown in arsenic polluted soils in afield experiment. Results showed that addition of the As reducing bacteria promoted the growth of P. vittata, increased As accumulation, activated soil insoluble As, and reduced As leaching compared to the untreated control. Plant biomass increased by 53% and As uptake by 44%. As leaching was reduced by 29% to 71% depending on the As reducing bacterium. The results in their entirety permitted some insight into the mechanisms by which the arsenate reducing bacteria enhanced the effectiveness of P. vittata to remove As from the polluted soil. PMID:22567697

Yang, Q; Tu, S; Wang, G; Liao, X; Yan, X

2012-01-01

336

Oxygen isotopic fractionation during bacterial sulfate reduction  

NASA Astrophysics Data System (ADS)

Sulfur isotope fractionation during bacterial sulfate reduction (BSR) is understood to depend on a variety of environmental parameters, such as sulfate concentration, temperature, cell specific sulfate reduction rates, and the carbon substrate. What controls oxygen isotope fractionation during BSR is less well understood. Some studies have suggested that carbon substrate is important, whereas others concluded that there is a stoichiometric relationship between the fractionations of sulfur and oxygen during BSR. Studies of oxygen fractionation are complicated by isotopic equilibration between sulfur intermediates, particularly sulfite, and water. This process can modify the isotopic composition of the extracellular sulfate pool (?18OSO4 ). Given this, the challenge is to distinguish between this isotopic equilibration and fractionations linked to the kinetic effects of the intercellular enzymes and the incorporation of sulfate into the bacterial cell. The ?18OSO4 , in concert with the sulfur isotope composition of sulfate (?34SSO4), could be a powerful tool for understanding the pathways and environmental controls of BSR in natural systems. We will present ?18OSO4 data measured from batch culture growth of 14 different species of sulfate reducing bacteria for which sulfur isotope data were previously published. A general observation is that ?18OSO4 shows little isotopic change (<4‰) even when the ?34SSO4 varies by up to 30 to 50‰ over the course of the experiment. This disparity could reflect little to no kinetic effect during BSR and/or equilibration between sulfur intermediates and the isotopically light water (~-5‰) of the growth medium. Our present batch culture data do not allow us to convincingly isolate the magnitude and the controlling parameters of the kinetic isotope effect for oxygen. However, ongoing growth of mutant bacteria missing enzymes critical in the different steps of BSR may assist in this mission.

Balci, N.; Turchyn, A. V.; Lyons, T.; Bruchert, V.; Schrag, D. P.; Wall, J.

2006-12-01

337

Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments.  

PubMed

The roles of several trophic groups of organisms (methanogens and sulfate- and nitrate-reducing bacteria) in the microbial degradation of methanethiol (MT) and dimethyl sulfide (DMS) were studied in freshwater sediments. The incubation of DMS- and MT-amended slurries revealed that methanogens are the dominant DMS and MT utilizers in sulfate-poor freshwater systems. In sediment slurries, which were depleted of sulfate, 75 micromol of DMS was stoichiometrically converted into 112 micromol of methane. The addition of methanol or MT to DMS-degrading slurries at concentrations similar to that of DMS reduced DMS degradation rates. This indicates that the methanogens in freshwater sediments, which degrade DMS, are also consumers of methanol and MT. To verify whether a competition between sulfate-reducing and methanogenic bacteria for DMS or MT takes place in sulfate-rich freshwater systems, the effects of sulfate and inhibitors, like bromoethanesulfonic acid, molybdate, and tungstate, on the degradation of MT and DMS were studied. The results for these sulfate-rich and sulfate-amended slurry incubations clearly demonstrated that besides methanogens, sulfate-reducing bacteria take part in MT and DMS degradation in freshwater sediments, provided that sulfate is available. The possible involvement of an interspecies hydrogen transfer in these processes is discussed. In general, our study provides evidence for methanogenesis as a major sink for MT and DMS in freshwater sediments. PMID:10224009

Lomans, B P; Op den Camp, H J; Pol, A; van der Drift, C; Vogels, G D

1999-05-01

338

Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria  

SciTech Connect

Project Title: Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria DOE Grant Number: DE-FG02-06ER64205 Principal Investigator: Jizhong (Joe) Zhou (University of Oklahoma) Key members: Zhili He, Aifen Zhou, Christopher Hemme, Joy Van Nostrand, Ye Deng, and Qichao Tu Collaborators: Terry Hazen, Judy Wall, Adam Arkin, Matthew Fields, Aindrila Mukhopadhyay, and David Stahl Summary Three major objectives have been conducted in the Zhou group at the University of Oklahoma (OU): (i) understanding of gene function, regulation, network and evolution of Desulfovibrio vugaris Hildenborough in response to environmental stresses, (ii) development of metagenomics technologies for microbial community analysis, and (iii) functional characterization of microbial communities with metagenomic approaches. In the past a few years, we characterized four CRP/FNR regulators, sequenced ancestor and evolved D. vulgaris strains, and functionally analyzed those mutated genes identified in salt-adapted strains. Also, a new version of GeoChip 4.0 has been developed, which also includes stress response genes (StressChip), and a random matrix theory-based conceptual framework for identifying functional molecular ecological networks has been developed with the high throughput functional gene array hybridization data as well as pyrosequencing data from 16S rRNA genes. In addition, GeoChip and sequencing technologies as well as network analysis approaches have been used to analyze microbial communities from different habitats. Those studies provide a comprehensive understanding of gene function, regulation, network, and evolution in D. vulgaris, and microbial community diversity, composition and structure as well as their linkages with environmental factors and ecosystem functioning, which has resulted in more than 60 publications.

Zhou, Jizhong [University of Oklahoma; He, Zhili [University of Oklahoma

2010-02-28

339

Thermophiles as Candidate Iron-Reducing Bacteria For the Putative Biogenetic Magnetite in Banded Iron Formations  

NASA Astrophysics Data System (ADS)

The temperature of the Archaean-Palaeoproterozoic ocean was likely consistent with physiological requirements of thermophilic species being present. In this study, we compared the crystallochemistry and lattice constants of magnetite crystals produced by Thermoanaerobacter sp. TOR39, Geobacter and Shewanella and the slightly altered magnetite from BIF of Hamersley, Western Australia. The lattice constants of TOR39-magnetite and the BIF-magnetite were similar, being 8.3901 and 8.3869 Å respectively. The lattice constant of magnetite produced by Geobacter is more close to perfect stoichiometry (8.4038 Å), however, the magnetite produced by Shewanella experienced oxidization has a much smaller value (8.3522 Å). The stoichiometries of TOR39-magnetite was Fe3+[Fe3+1.1217Fe2+0.8175--0.0608]O4 and that of BIF-magnetite was quite similar being Fe3+[Fe3+0.9963Fe2+1.0056]O4. The stoichiometry, lattice constant and crystal size collectively indicated that TOR39-magnetite was similar to BIF-magnetite. The Mössbauer spectroscopy indicated the existence of a Fe(III)-salt, possibly Fe3+OH(CH3COO)2 in the magnetite lamina of BIF which was widely detected in the magnetite-assemblages of iron-reducing bacterial cultures that contained acetate. This is evidence that supports a potential role for thermophiles such as Thermoanaerobacter in the biogenesis of magnetite in BIF. The magnetite crystals produced by cultures of Shewanella, Geobacter, magnetotactic bacteria and those synthesized from green rust appeared less similar to BIF-magnetite by either their crystallochemistry or their optimized growth temperatures.

Li, Y.; Phelps, T. J.; Cole, D. R.; Vali, H.; Konhauser, K.

2008-12-01

340

FINAL REPORT -- SULFATE-REDUCING BACTERIA REACTIVE WALL DEMONSTRATION MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 12  

EPA Science Inventory

Efforts reported in this document focused on the demonstration of a passive technology that could be used for remediation of thousands of abandoned mine sites existing in the Western United States that emanate acid mine drainage (AMD). This passive remedial technology takes advan...

341

A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde  

E-print Network

pipeline had to be shut down due to a leak in 2006, which caused a turmoil in the global oil market. MIC desulfuricans subsp. aestuarii ATCC 14563 was used in this work. It is a marine strain SRB that favors a liquid

Gu, Tingyue

342

Sulfate but Not Thiosulfate Reduces Calculated and Measured Urinary Ionized Calcium and Supersaturation: Implications for the Treatment of Calcium Renal Stones  

PubMed Central

Background Urinary sulfate (SO42?) and thiosulfate (S2O32?) can potentially bind with calcium and decrease kidney stone risk. We modeled the effects of these species on the concentration of ionized calcium (iCa) and on supersaturation (SS) of calcium oxalate (CaOx) and calcium phosphate (CaP), and measured their in vitro effects on iCa and the upper limit of stability (ULM) of these salts. Methods Urine data from 4 different types of stone patients were obtained from the Mayo Nephrology Clinic (Model 1). A second data set was obtained from healthy controls and hypercalciuric stone formers in the literature who had been treated with sodium thiosulfate (STS) (Model 2). The Joint Expert Speciation System (JESS) was used to calculate iCa and SS. In Model 1, these parameters were calculated as a function of sulfate and thiosulfate concentrations. In Model 2, data from pre- and post STS urines were analyzed. ULM and iCa were determined in human urine as a function of sulfate and thiosulfate concentrations. Results Calculated iCa and SS values for all calcium salts decreased with increasing sulfate concentration. Thiosulfate had no effect on these parameters. In Model 2, calculated iCa and CaOx SS increased after STS treatment, but CaP SS decreased, perhaps due to a decrease in pH after STS treatment. In confirmatory in vitro experiments supplemental sulfate, but not thiosulfate, significantly increased the calcium needed to achieve the ULM of CaP and tended to increase the oxalate needed to reach the ULM of CaOx. Sulfate also significantly decreased iCa in human urine, while thiosulfate had no effect. Conclusion Increasing urinary sulfate could theoretically reduce CaOx and CaP stone risk. Although STS may reduce CaP stone risk by decreasing urinary pH, it might also paradoxically increase iCa and CaOx SS. As such, STS may not be a viable treatment option for stone disease. PMID:25061988

Rodgers, Allen; Gauvin, Daniel; Edeh, Samuel; Allie-Hamdulay, Shameez; Jackson, Graham; Lieske, John C.

2014-01-01

343

A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils.  

PubMed

A single medium, containing standard basal salts and three common carbon sources (sucrose, mannitol, and sodium lactate) is proposed to replace nitrogen-free media in common use for isolating dinitrogen-fixing bacteria. Eight commonly isolated genera of dinitrogen-fixing bacterial exhibited growth on this combined carbon medium that equalled or bettered growth on other carbon-containing media. Combined carbon medium also yielded the highest counts of putative dinitrogen-fixing bacteria from three southern Alberta soils. A survey of the bacteria isolated aerobically from the Burdett soil on combined carbon agar indicated that, at higher dilutions, 75% of the isolates exhibited acetylene reduction. These bacteria were identified as Azospirillum spp., Bacillus polymyxa, B. macerans, Klebsiella pneumoniae, Erwinia herbicola, and Enterobacter cloacae. The inclusion of yeast extract in combined carbon medium is considered essential to supply organic growth factors and may supply "starter" nitrogen that promotes growth without inhibiting acetylene reduction. PMID:7214234

Rennie, R J

1981-01-01

344

Culturable Diversity and Community Fatty Acid Profiling of Sulfate-Reducing Fluidized-Bed Reactors Treating Acidic, Metal-Containing Wastewater  

Microsoft Academic Search

Cultivable strains were identified from sulfate-reducing fluidized-bed reactors (FBR) treating acidic metal-containing wastewater. The FBR-communities were further characterized using culture-independent phenotypic markers, phospholipid fatty acid (PLFA) profiling. After morphological screening of 128 bacterial strains and partial sequencing of 55 strains, 17 distinct phylogenetic types were identified and characterized further. A total of 14 and 6 different bacterial strains were isolated

Anna H. Kaksonen; Jason J. Plumb; Wendy J. Robertson; Peter D. Franzmann; John A. E. Gibson; Jaakko A. Puhakka

2004-01-01

345

A reduced-form approach to characterizing sulfate aerosol effects on climate in integrated assessment models. Final report  

SciTech Connect

The objective of this study was to devise a methodology for estimating the spatial patterns of future climate change accounting for the effects of both greenhouse gases and sulfate aerosols under a wide range of emissions scenarios, using the results of General Circulation Models.

Wigley, T.M.L.

1996-04-01

346

Treatment of acid mine drainage by sulphate-reducing bacteria using permeable reactive barriers: A review from laboratory to full-scale experiments  

Microsoft Academic Search

Acid mine drainage in-situbioremediation has in the last decades drawnthe attention in the field of environmentalbiotechnology. The most recent treatmenttechnique are the permeable reactive barriersusing sulphate-reducing bacteria. This viewdescribes the basis of many of the currentapproaches to use sulphate-reducing bacteria inacid mine drainage treatment, from laboratoryto full-scale realisations, and the limitationsencountered when applied to full scaleapplications.

O. Gibert; J. de Pablo; J. L. Cortina; C. Ayora

2002-01-01

347

Antiquity and evolutionary status of bacterial sulfate reduction: sulfur isotope evidence.  

PubMed

The presently available sedimentary sulfur isotope record for the Precambrian seems to allow the following conclusions: (1) In the Early Archaean, sedimentary delta 34S patterns attributable to bacteriogenic sulfate reduction are generally absent. In particular, the delta 34S spread observed in the Isua banded iron formation (3.7 x 10(9) yr) is extremely narrow and coincides completely with the respective spreads yielded by contemporaneous rocks of assumed mantle derivation. Incipient minor differentiation of the isotope pattersn notably of Archaean sulfates may be accounted for by photosynthetic sulfur bacteria rather than by sulfate reducers. (2) Isotopic evidence of dissimilatory sulfate reduction is first observed in the upper Archaean of the Aldan Shield, Siberia (approximately 3.0 x 10(9) yr) and in the Michipicoten and Woman River banded iron formations of Canada (2.75 x 10(9) yr). This narrows down the possible time of appearance of sulfate respirers to the interval 2.8--3.1 x 10(9) yr. (3) Various lines of evidence indicate that photosynthesis is older than sulfate respiration, the SO4(2-) Utilized by the first sulfate reducers deriving most probably from oxidation of reduced sulfur compounds by photosynthetic sulfur bacteria. Sulfate respiration must, in turn, have antedated oxygen respiration as O2-respiring multicellular eucaryotes appear late in the Precambrian. (4) With the bulk of sulfate in the Archaean oceans probably produced by photosynthetic sulfur bacteria, the accumulation of SO4(2-) in the ancient seas must have preceded the buildup of appreciable steady state levels of free oxygen. Hence, the occurrence of sulfate evaporites in Archaean sediments does not necessarily provide testimony of oxidation weathering on the ancient continents and, consequently, of the existence of an atmospheric oxygen reservoir. PMID:503456

Schidlowski, M

1979-09-01

348

Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents  

PubMed Central

Few studies have directly measured sulfate reduction at hydrothermal vents, and relatively little is known about how environmental or ecological factors influence rates of sulfate reduction in vent environments. A better understanding of microbially mediated sulfate reduction in hydrothermal vent ecosystems may be achieved by integrating ecological and geochemical data with metabolic rate measurements. Here we present rates of microbially mediated sulfate reduction from three distinct hydrothermal vents in the Middle Valley vent field along the Juan de Fuca Ridge, as well as assessments of bacterial and archaeal diversity, estimates of total biomass and the abundance of functional genes related to sulfate reduction, and in situ geochemistry. Maximum rates of sulfate reduction occurred at 90?°C in all three deposits. Pyrosequencing and functional gene abundance data revealed differences in both biomass and community composition among sites, including differences in the abundance of known sulfate-reducing bacteria. The abundance of sequences for Thermodesulfovibro-like organisms and higher sulfate reduction rates at elevated temperatures suggests that Thermodesulfovibro-like organisms may have a role in sulfate reduction in warmer environments. The rates of sulfate reduction presented here suggest that—within anaerobic niches of hydrothermal deposits—heterotrophic sulfate reduction may be quite common and might contribute substantially to secondary productivity, underscoring the potential role of this process in both sulfur and carbon cycling at vents. PMID:23535916

Frank, Kiana L; Rogers, Daniel R; Olins, Heather C; Vidoudez, Charles; Girguis, Peter R

2013-01-01

349

Methods to Reduce Indicator Bacteria Levels in Agricultural Runoff in the Lake Champlain Basin  

E-print Network

Portions of many streams in the nation are impaired by bacteria levels that routinely exceed water quality standards. Exposure to water-borne pathogens poses a significant and increasing risk to public health. Livestock agriculture can be a major source of mi-

Donald W. Meals; David C. Braun

2005-01-01

350

Dextran sulfate sodium and 2,4,6-trinitrobenzene sulfonic acid induce lipid peroxidation by the proliferation of intestinal gram-negative bacteria in mice  

PubMed Central

Abstrect Background To understand whether TLR-4-linked NF-kB activation negatively correlates with lipid peroxidation in colitic animal models, we caused colitis by the treatment with dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzenesulfonic acid (TNBS) to C3H/HeJ (TLR-4-defective) and C3H/HeN (wild type) mice, investigated inflammatory markers, lipid peroxidation, proinflammatory cytokines and TLR-4-linked NF-?B activation, in colon and intestinal bacterial composition in vivo. Methods Orally administered DSS and intrarectally injected TNBS all caused severe inflammation, manifested by shortened colons in both mice. These agents increased intestinal myeloperoxidase activity and the expression of the proinflammatory cytokines, IL-1?, TNF-? and IL-6, in the colon. Results DSS and TNBS induced the protein expression of TLR-4 and activated transcription factor NF-?B. However, these colitic agents did not express TLR-4 in C3H/HeJ mice. Of proinflammatory cytokines, IL-1? was most potently expressed in C3H/HeN mice. IL-1? potently induced NF-?B activation in CaCo-2 cells, but did not induce TLR-4 expression. DSS and TNBS increased lipid peroxide (malondialdehyde) and 4-hydroxy-2-nonenal content in the colon, but reduced glutathione content and superoxide dismutase and catalase activities. These colitic inducers increased the number of Enterobacteriaceae grown in DHL agar plates in both mice, although the number of anaerobes and bifidobacteria grown in GAM and BL agar plates was reduced. E. coli, K. pneumoniae and Proteus mirabilis isolated in DHL agar plates increased lipid peroxidation in liposomes prepared by L-?-phosphatidylcholine, but B. animalis and B. cholerium isolated from BL agar plates inhibited it. Discussion These findings suggest that DSS and TNBS may cause colitis by inducing lipid peroxidation and enterobacterial proliferation, which may deteriorate the colitis by regulating proinflammatory cytokines via TLR-4-linked NF-?B activation pathway. PMID:20181058

2010-01-01

351

Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing.  

PubMed

Direct cell-to-cell transfer of genomes from bacteria to yeast facilitates genome engineering for bacteria that are not amenable to genetic manipulation by allowing instead for the utilization of the powerful yeast genetic tools. Here we describe a protocol for transferring whole genomes from bacterial cells to yeast spheroplasts without any DNA purification process. The method is dependent on the treatment of the bacterial and yeast cellular mixture with PEG, which induces cell fusion, engulfment, aggregation or lysis. Over 80% of the bacterial genomes transferred in this way are complete, on the basis of structural and functional tests. Excluding the time required for preparing starting cultures and for incubating cells to form final colonies, the protocol can be completed in 3 h. PMID:24603933

Karas, Bogumil J; Jablanovic, Jelena; Irvine, Edward; Sun, Lijie; Ma, Li; Weyman, Philip D; Gibson, Daniel G; Glass, John I; Venter, J Craig; Hutchison, Clyde A; Smith, Hamilton O; Suzuki, Yo

2014-04-01

352

Phylogenetic Diversity of Aerobic Saprotrophic Bacteria Isolated from the Daqing Oil Field  

Microsoft Academic Search

A diverse and active microbial community in the stratal waters of the Daqing oil field (China), which is exploited with the use of water-flooding, was found to contain aerobic chemoheterotrophic bacteria (including hydrocarbon-oxidizing ones) and anaerobic fermentative, sulfate-reducing, and methanogenic bacteria. The aerobic bacteria were most abundant in the near-bottom zones of injection wells. Twenty pure cultures of aerobic saprotrophic

T. N. Nazina; A. A. Grigor'yan; Yan-Fen Xue; D. Sh. Sokolova; E. V. Novikova; T. P. Tourova; A. B. Poltaraus; S. S. Belyaev; M. V. Ivanov

2002-01-01

353

Chondroitin sulfate  

MedlinePLUS

... sulfate is manufactured from animal sources, such as cow cartilage. Chondroitin sulfate is used for osteoarthritis. It ... those that might transmit bovine spongiform encephalopathy (mad cow disease). So far, there are no reports of ...

354

Barium Sulfate  

MedlinePLUS

Cheetah® ... Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), stomach, ... dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called radiopaque ...

355

Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils  

PubMed Central

ABSTRACT This study demonstrates the prevalence, phylogenetic diversity, and physiology of nitrate-reducing microorganisms capable of utilizing reduced humic acids (HA) as electron donors in agricultural soils. Most probable number (MPN) enumeration of agricultural soils revealed large populations (104 to 106 cells g?1 soil) of microorganisms capable of reducing nitrate while oxidizing the reduced HA analog 2,6-anthrahydroquinone disulfonate (AH2DS) to its corresponding quinone. Nitrate-dependent HA-oxidizing organisms isolated from agricultural soils were phylogenetically diverse and included members of the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Advective up-flow columns inoculated with corn plot soil and amended with reduced HA and nitrate supported both HA oxidation and enhanced nitrate reduction relative to no-donor or oxidized HA controls. The additional electron donating capacity of reduced HA could reasonably be attributed to the oxidation of reduced functional groups. Subsequent 16S rRNA gene-based high-density oligonucleotide microarray (PhyloChip) indicated that reduced HA columns supported the development of a bacterial community enriched with members of the Acidobacteria, Firmicutes, and Betaproteobacteria relative to the no-donor control and initial inoculum. This study identifies a previously unrecognized role for HA in stimulating denitrification processes in saturated soil systems. Furthermore, this study indicates that reduced humic acids impact soil geochemistry and the indigenous bacterial community composition. PMID:21750120

Van Trump, J. Ian; Wrighton, Kelly C.; Thrash, J. Cameron; Weber, Karrie A.; Andersen, Gary L.; Coates, John D.

2011-01-01

356

Light scattering spectra of sulfur-reducing bacteria Desulfuromonas acetoxidans under the influence of ions Fe metals  

NASA Astrophysics Data System (ADS)

Desulfuromonas acetoxidans are uncoloured gram-negative sulfur bacteria that inhabit sulfur containing aquatic environments. These are gram-negative obligatory anaerobes that have an ability to reduce S0 to H2S and Fe3+ to Fe2+ in the processes of dissimilation Sulfur- and Fe (III)-reduction. Existence of Sulfur and Ferric ions in the anaerobic sediments causes binding of hydrogen sulfide which diffuses from the zone of sulfur reducing. As a result hydrogen sulfide is detoxificated. The ability of these bacteria to use Sulfur or Ferric ions as acceptors of electrons during organic carbon oxidation causes their special adaptation to the changes of surrounding environment. Interaction between bacterial Desulfuromonas acetoxidans cells and different concentrations of ferrous Fe2+ and ferric Fe3+ ions possibly could cause the changes of cells' light scattering characteristics. The changes of cells relative content and their size distribution during five days of cultivation under the influence of FeSO4 and FeCl3×6H2O in concentration from 0.01 to 10 mM was investigated by the new method of measurement. It includes sounding of flow suspended bacterial cells by monochromatic coherent light, registration of signals of co-operation of sounding radiation with the explored microbiological objects by detects of the changes of amplitudes and durations of scattered light impulses. Under the influence from 0.01 to 10 mM of FeSO4 the maximum of cells' size distribution changed from 0.55 to 0.62 ?m and effect of investigated range of FeCl3×6H2O concentrations caused it changes from 0.43 to 0.49 ?m during five days of sulfurreducing Desulfuromonas acetoxidans bacteria growth.

Bilyy, Oleksandr I.; Vasyliv, Oresta M.; Hnatush, Svitlana O.

2011-09-01

357

Light scattering spectra of sulfur-reducing bacteria Desulfuromonas acetoxidans under the influence of ions Fe metals  

NASA Astrophysics Data System (ADS)

Desulfuromonas acetoxidans are uncoloured gram-negative sulfur bacteria that inhabit sulfur containing aquatic environments. These are gram-negative obligatory anaerobes that have an ability to reduce S0 to H2S and Fe3+ to Fe2+ in the processes of dissimilation Sulfur- and Fe (III)-reduction. Existence of Sulfur and Ferric ions in the anaerobic sediments causes binding of hydrogen sulfide which diffuses from the zone of sulfur reducing. As a result hydrogen sulfide is detoxificated. The ability of these bacteria to use Sulfur or Ferric ions as acceptors of electrons during organic carbon oxidation causes their special adaptation to the changes of surrounding environment. Interaction between bacterial Desulfuromonas acetoxidans cells and different concentrations of ferrous Fe2+ and ferric Fe3+ ions possibly could cause the changes of cells' light scattering characteristics. The changes of cells relative content and their size distribution during five days of cultivation under the influence of FeSO4 and FeCl3×6H2O in concentration from 0.01 to 10 mM was investigated by the new method of measurement. It includes sounding of flow suspended bacterial cells by monochromatic coherent light, registration of signals of co-operation of sounding radiation with the explored microbiological objects by detects of the changes of amplitudes and durations of scattered light impulses. Under the influence from 0.01 to 10 mM of FeSO4 the maximum of cells' size distribution changed from 0.55 to 0.62 ?m and effect of investigated range of FeCl3×6H2O concentrations caused it changes from 0.43 to 0.49 ?m during five days of sulfurreducing Desulfuromonas acetoxidans bacteria growth.

Bilyy, Oleksandr I.; Vasyliv, Oresta M.; Hnatush, Svitlana O.

2012-01-01

358

Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization.  

PubMed

The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes. PMID:24724102

Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska

2014-01-01

359

CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough  

SciTech Connect

Geologic carbon dioxide (CO2) sequestration drives physical and geochemical changes in deep subsurface environments that impact indigenous microbial activities. The combined effects of pressurized CO2 on a model sulfate-reducing microorganism, Desulfovibrio vulgaris, have been assessed using a suite of genomic and kinetic measurements. Novel high-pressure NMR time-series measurements using 13C-lactate were used to track D. vulgaris metabolism. We identified cessation of respiration at CO2 pressures of 10 bar, 25 bar, 50 bar, and 80 bar. Concurrent experiments using N2 as the pressurizing phase had no negative effect on microbial respiration, as inferred from reduction of sulfate to sulfide. Complementary pressurized batch incubations and fluorescence microscopy measurements supported NMR observations, and indicated that non-respiring cells were mostly viable at 50 bar CO2 for at least four hours, and at 80 bar CO2 for two hours. The fraction of dead cells increased rapidly after four hours at 80 bar CO2. Transcriptomic (RNA-Seq) measurements on mRNA transcripts from CO2-incubated biomass indicated that cells up-regulated the production of certain amino acids (leucine, isoleucine) following CO2 exposure at elevated pressures, likely as part of a general stress response. Evidence for other poorly understood stress responses were also identified within RNA-Seq data, suggesting that while pressurized CO2 severely limits the growth and respiration of D. vulgaris cells, biomass retains intact cell membranes at pressures up to 80 bar CO2. Together, these data show that geologic sequestration of CO2 may have significant impacts on rates of sulfate reduction in many deep subsurface environments where this metabolism is a key respiratory process.

Wilkins, Michael J.; Hoyt, David W.; Marshall, Matthew J.; Alderson, Paul A.; Plymale, Andrew E.; Markillie, Lye Meng; Tucker, Abigail E.; Walter, Eric D.; Linggi, Bryan E.; Dohnalkova, Alice; Taylor, Ronald C.

2014-09-01

360

Desulfosoma profundi sp. nov., a thermophilic sulfate-reducing bacterium isolated from a deep terrestrial geothermal spring in France.  

PubMed

A novel strictly anaerobic bacterium designated SPDX02-08(T) was isolated from a deep terrestrial geothermal spring located in southwest France. Cells (1-2 × 2-6 ?m) were non-motile, non sporulating and stained Gram negative. Strain SPDX02-08(T) grew at a temperature between 40 and 60°C (optimum 55°C), pH between 6.3 and 7.3 (optimum 7.2) and a NaCl concentration between 0 and 5 g/l (optimum 2 g/l). Sulfate, thiosulfate and sulfite were used as terminal electron acceptors, but not elemental sulfur, nitrate, nitrite, Fe (III) or fumarate. In the presence of sulfate, strain SPDX02-08(T) completely oxidized pyruvate, propionate, butyrate, isobutyrate, valerate, isovalerate and hexadecanoate. Stoichiometric measurements revealed a complete oxidation of part of lactate (0.125 mol of acetate produced per mole lactate oxidized). Strain SPDX02-08(T) required yeast extract to oxidize formate and H(2) but did not grow autotrophically on H(2). Among the substrates tested, only pyruvate was fermented. The G+C content of the genomic DNA was 57.6 mol%. Major cellular fatty acids of strain SPDX02-08(T) were iso-C(15:0), C(15:0), and C(16:0). Phylogenetic analysis of the 16S small-subunit (SSU) ribosomal RNA gene sequence indicated that strain SPDX02-08(T) belongs to the genus Desulfosoma, family Syntrophobacteraceae, having Desulfosoma caldarium as its closest phylogenetic relative (97.6% similarity). The mean DNA/DNA reassociation value between strain SPDX02-08(T) and Desulfosoma caldarium was 16.9 ± 2.7%. Based on the polyphasic differences, strain SPDX02-08(T) is proposed to be assigned as a new species of the genus Desulfosoma, Desulfosoma profundi sp. nov. (DSM 22937(T) = JCM 16410(T)). GenBank accession number for the 16S rRNA gene sequence of strain SPDX02-08(T) is HM056226. PMID:22120904

Grégoire, Patrick; Fardeau, Marie-Laure; Guasco, Sophie; Lagière, Joël; Cambar, Jean; Michotey, Valérie; Bonin, Patricia; Ollivier, Bernard

2012-03-01

361

Biological sulfate reduction using molasses as a carbon source.  

PubMed

The feasibility of using a laboratory-scale upflow anaerobic sludge blanket process for sulfate reduction with molasses as a carbon source was demonstrated. Competition between methane-producing bacteria (MPB) and sulfate-reducing bacteria (SRB) was influenced by the chemical oxygen demand-to-sulfur (COD:S) ratio in the feed. Sulfate removal greater than 80% could be achieved at COD:S greater than 10 when MPB predominated. Activity of MPB and SRB was inhibited at a dissolved sulfide concentration of approximately 200 mg/L. Competition between MPB and SRB was intense as the COD:S was reduced from 5 to 2. Further reduction in the COD:S to 0.7 led to the formation of sulfidogenic granules. The COD removal decreased to approximately 30% at a COD:S less than 2 because of accumulation of sulfurous precipitates and the nonbiodegradable portion of molasses in the sludge. Reduced gas production rates further imposed limitations on diffusion of the organic substrate into granules. Sulfidogenic process operation yielded sulfate removal as great as 70% at a COD:S of approximately 3.5. PMID:11558296

Annachhatre, A P; Suktrakoolvait, S

2001-01-01

362

Reduced Heparan Sulfate Accumulation in Enterocytes Contributes to Protein-Losing Enteropathy in a Congenital Disorder of Glycosylation  

PubMed Central

Intestinal biopsy in a boy with gastroenteritis-induced protein-losing enteropathy (PLE) showed loss of heparan sulfate (HS) and syndecan-1 core protein from the basolateral surface of the enterocytes, which improved after PLE subsided. Isoelectric focusing analysis of serum transferrin indicated a congenital disorder of glycosylation (CDG) and subsequent analysis showed three point mutations in the ALG6 gene encoding an ?1,3-glucosyltransferase needed for the addition of the first glucose to the dolichol-linked oligosaccharide. The maternal mutation, C998T, causing an A333V substitution, has been shown to cause CDG-Ic, whereas the two paternal mutations, T391C (Y131H) and C924A (S308R) have not previously been reported. The mutations were tested for their ability to rescue faulty N-linked glycosylation of carboxypeptidase Y in an ALG6-deficient Saccharomyces cerevisiae strain. Normal human ALG6 rescues glycosylation and A333V partially rescues, whereas the combined paternal mutations (Y131H and S308R) are ineffective. Underglycosylation resulting from each of these mutations is much more severe in rapidly dividing yeast. Similarly, incomplete protein glycosylation in the patient is most severe in rapidly dividing enterocytes during gastroenteritis-induced stress. Incomplete N-linked glycosylation of an HS core protein and/or other biosynthetic enzymes may explain the selective localized loss of HS and PLE. PMID:11106564

Westphal, Vibeke; Murch, Simon; Kim, Soohyun; Srikrishna, Geetha; Winchester, Bryan; Day, Richard; Freeze, Hudson H.

2000-01-01

363

Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron.  

PubMed

Host inflammation alters the availability of nutrients such as iron to limit microbial growth. However, Salmonella enterica serovar Typhimurium thrives in the inflamed gut by scavenging for iron with siderophores. By administering Escherichia coli strain Nissle 1917, which assimilates iron by similar mechanisms, we show that this nonpathogenic bacterium can outcompete and reduce S. Typhimurium colonization in mouse models of acute colitis and chronic persistent infection. This probiotic activity depends on E. coli Nissle iron acquisition, given that mutants deficient in iron uptake colonize the intestine but do not reduce S. Typhimurium colonization. Additionally, the ability of E. coli Nissle to overcome iron restriction by the host protein lipocalin 2, which counteracts some siderophores, is essential, given that S. Typhimurium is unaffected by E. coli Nissle in lipocalin 2-deficient mice. Thus, iron availability impacts S. Typhimurium growth, and E. coli Nissle reduces S. Typhimurium intestinal colonization by competing for this limiting nutrient. PMID:23870311

Deriu, Elisa; Liu, Janet Z; Pezeshki, Milad; Edwards, Robert A; Ochoa, Roxanna J; Contreras, Heidi; Libby, Stephen J; Fang, Ferric C; Raffatellu, Manuela

2013-07-17

364

Anaerobic bacteria from hypersaline environments.  

PubMed Central

Strictly anaerobic halophiles, namely fermentative, sulfate-reducing, homoacetogenic, phototrophic, and methanogenic bacteria are involved in the oxidation of organic carbon in hypersaline environments. To date, six anaerobic fermentative genera, containing nine species, have been described. Two of them are homoacetogens. Six species belong to the family Haloanaerobiaceae, as indicated by their unique 16S rRNA oligonucleotide sequences. Desulfohalobium retbaense and Desulfovibrio halophilus represent the only two moderately halophilic sulfate reducers so far reported. Among anoxygenic phototrophic anaerobes, a few purple bacteria with optimal growth at salinities between 6 and 11% NaCl have been isolated from hypersaline habitats. They belong to the genera Rhodospirillum, Chromatium, Thiocapsa, and Ectothiorhodospira. The commonest organisms isolated so far are Chromatium salexigens, Thiocapsa halophila, and Rhodospirillum salinarum. Extremely halophilic purple bacteria have most commonly been isolated from alkaline brines and require about 20 to 25% NaCl for optimal growth. They belong to the family Ectothiorodhospiraceae. Their osmoregulation involves synthesis or uptake of compatible solutes such as glycine-betaine that accumulate in their cytoplasm. The existence of methanogens in hypersaline environments is related to the presence of noncompetitive substrates such as methylamines, which originate mainly from the breakdown of osmoregulatory amines. Methanogenesis probably does not contribute to the mineralization of carbohydrates at NaCl concentrations higher than 15%. Above this concentration, sulfate reduction is probably the main way to oxidize H2 (although at rates too low to use up all the H2 formed) and occupies a terminal function kn the degradation of carbohydrates. Three genera and five species of halophilic methylotrophic methanogens have been reported. A bloom of phototrophic bacteria in the marine salterns of Salins-de-Giraud, located on the Mediterranean French coast in the Rhone Delta, is also described. PMID:8177169

Ollivier, B; Caumette, P; Garcia, J L; Mah, R A

1994-01-01

365

Anaerobic bacteria from hypersaline environments.  

PubMed

Strictly anaerobic halophiles, namely fermentative, sulfate-reducing, homoacetogenic, phototrophic, and methanogenic bacteria are involved in the oxidation of organic carbon in hypersaline environments. To date, six anaerobic fermentative genera, containing nine species, have been described. Two of them are homoacetogens. Six species belong to the family Haloanaerobiaceae, as indicated by their unique 16S rRNA oligonucleotide sequences. Desulfohalobium retbaense and Desulfovibrio halophilus represent the only two moderately halophilic sulfate reducers so far reported. Among anoxygenic phototrophic anaerobes, a few purple bacteria with optimal growth at salinities between 6 and 11% NaCl have been isolated from hypersaline habitats. They belong to the genera Rhodospirillum, Chromatium, Thiocapsa, and Ectothiorhodospira. The commonest organisms isolated so far are Chromatium salexigens, Thiocapsa halophila, and Rhodospirillum salinarum. Extremely halophilic purple bacteria have most commonly been isolated from alkaline brines and require about 20 to 25% NaCl for optimal growth. They belong to the family Ectothiorodhospiraceae. Their osmoregulation involves synthesis or uptake of compatible solutes such as glycine-betaine that accumulate in their cytoplasm. The existence of methanogens in hypersaline environments is related to the presence of noncompetitive substrates such as methylamines, which originate mainly from the breakdown of osmoregulatory amines. Methanogenesis probably does not contribute to the mineralization of carbohydrates at NaCl concentrations higher than 15%. Above this concentration, sulfate reduction is probably the main way to oxidize H2 (although at rates too low to use up all the H2 formed) and occupies a terminal function kn the degradation of carbohydrates. Three genera and five species of halophilic methylotrophic methanogens have been reported. A bloom of phototrophic bacteria in the marine salterns of Salins-de-Giraud, located on the Mediterranean French coast in the Rhone Delta, is also described. PMID:8177169

Ollivier, B; Caumette, P; Garcia, J L; Mah, R A

1994-03-01

366

Reduced dimer excision in bacteria following near ultraviolet (365 nm) radiation  

Microsoft Academic Search

The experiment consisted of uv-irradiating Escherichia coli at 365 mn ; and then inducing substrate for the excision system in DNA by 254 nm radiation. ; The samples were then assayed for excision. The ability of E. coli to excise ; dimers induced in DNA by 254 nm radiation was progressively reduced as a function ; of the dose of

R. M. Tyrrell; R. B. Webb

1973-01-01

367

Plutonium(IV) Reduction by the Metal-Reducing Bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1?  

PubMed Central

The bacterial reduction of actinides has been suggested as a possible remedial strategy for actinide-contaminated environments, and the bacterial reduction of Pu(VI/V) has the potential to produce highly insoluble Pu(IV) solid phases. However, the behavior of plutonium with regard to bacterial reduction is more complex than for other actinides because it is possible for Pu(IV) to be further reduced to Pu(III), which is relatively more soluble than Pu(IV). This work investigates the ability of the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1 to enzymatically reduce freshly precipitated amorphous Pu(IV) (OH)4 [Pu(IV)(OH)4(am)] and soluble Pu(IV)(EDTA). In cell suspensions without added complexing ligands, minor Pu(III) production was observed in cultures containing S. oneidensis, but little or no Pu(III) production was observed in cultures containing G. metallireducens. In the presence of EDTA, most of the Pu(IV)(OH)4(am) present was reduced to Pu(III) and remained soluble in cell suspensions of both S. oneidensis and G. metallireducens. When soluble Pu(IV)(EDTA) was provided as the terminal electron acceptor, cell suspensions of both S. oneidensis and G. metallireducens rapidly reduced Pu(IV)(EDTA) to Pu(III)(EDTA) with nearly complete reduction within 20 to 40 min, depending on the initial concentration. Neither bacterium was able to use Pu(IV) (in any of the forms used) as a terminal electron acceptor to support growth. These results have significant implications for the potential remediation of plutonium and suggest that strongly reducing environments where complexing ligands are present may produce soluble forms of reduced Pu species. PMID:17644643

Boukhalfa, Hakim; Icopini, Gary A.; Reilly, Sean D.; Neu, Mary P.

2007-01-01

368

Anaerobic Oxidation of n-Dodecane by an Addition Reaction in a Sulfate-Reducing Bacterial Enrichment Culture  

PubMed Central

We identified trace metabolites produced during the anaerobic biodegradation of H26- and D26-n-dodecane by an enrichment culture that mineralizes these compounds in a sulfate-dependent fashion. The metabolites are dodecylsuccinic acids that, in the case of the perdeuterated substrate, retain all of the deuterium atoms. The deuterium retention and the gas chromatography-mass spectrometry fragmentation patterns of the derivatized metabolites suggest that they are formed by C—H or C—D addition across the double bond of fumarate. As trimethylsilyl esters, two nearly coeluting metabolites of equal abundance with nearly identical mass spectra were detected from each of H26- and D26-dodecane, but as methyl esters, only a single metabolite peak was detected for each parent substrate. An authentic standard of protonated n-dodecylsuccinic acid that was synthesized and derivatized by the two methods had the same fragmentation patterns as the metabolites of H26-dodecane. However, the standard gave only a single peak for each ester type and gas chromatographic retention times different from those of the derivatized metabolites. This suggests that the succinyl moiety in the dodecylsuccinic acid metabolites is attached not at the terminal methyl group of the alkane but at a subterminal position. The detection of two equally abundant trimethylsilyl-esterified metabolites in culture extracts suggests that the analysis is resolving diastereomers which have the succinyl moiety located at the same subterminal carbon in two different absolute configurations. Alternatively, there may be more than one methylene group in the alkane that undergoes the proposed fumarate addition reaction, giving at least two structural isomers in equal amounts. PMID:11097919

Kropp, Kevin G.; Davidova, Irene A.; Suflita, Joseph M.

2000-01-01

369

Identification of a cyclic-di-GMP-modulating response regulator that impacts biofilm formation in a model sulfate reducing bacterium  

PubMed Central

We surveyed the eight putative cyclic-di-GMP-modulating response regulators (RRs) in Desulfovibrio vulgaris Hildenborough that are predicted to function via two-component signaling. Using purified proteins, we examined cyclic-di-GMP (c-di-GMP) production or turnover in vitro of all eight proteins. The two RRs containing only GGDEF domains (DVU2067, DVU0636) demonstrated c-di-GMP production activity in vitro. Of the remaining proteins, three RRs with HD-GYP domains (DVU0722, DVUA0086, and DVU2933) were confirmed to be Mn2+-dependent phosphodiesterases (PDEs) in vitro and converted c-di-GMP to its linear form, pGpG. DVU0408, containing both c-di-GMP production (GGDEF) and degradation domains (EAL), showed c-di-GMP turnover activity in vitro also with production of pGpG. No c-di-GMP related activity could be assigned to the RR DVU0330, containing a metal-dependent phosphohydrolase HD-OD domain, or to the HD-GYP domain RR, DVU1181. Studies included examining the impact of overexpressed cyclic-di-GMP-modulating RRs in the heterologous host E. coli and led to the identification of one RR, DVU0636, with increased cellulose production. Evaluation of a transposon mutant in DVU0636 indicated that the strain was impaired in biofilm formation and demonstrated an altered carbohydrate:protein ratio relative to the D. vulgaris wild type biofilms. However, grown in liquid lactate/sulfate medium, the DVU0636 transposon mutant showed no growth impairment relative to the wild-type strain. Among the eight candidates, only the transposon disruption mutant in the DVU2067 RR presented a growth defect in liquid culture. Our results indicate that, of the two diguanylate cyclases (DGCs) that function as part of two-component signaling, DVU0636 plays an important role in biofilm formation while the function of DVU2067 has pertinence in planktonic growth. PMID:25120537

Rajeev, Lara; Luning, Eric G.; Altenburg, Sara; Zane, Grant M.; Baidoo, Edward E. K.; Catena, Michela; Keasling, Jay D.; Wall, Judy D.; Fields, Matthew W.; Mukhopadhyay, Aindrila

2014-01-01

370

Comparing lactate and glycerol as a single-electron donor for sulfate reduction in fluidized bed reactors.  

PubMed

Among the greatest challenges to the full implementation of biological sulfate reduction are the cost and availability of the electron source. With the development of the biofuel industry, new organic substrates have become available. Therefore, this work sought to compare the performance of a sulfidogenic process utilizing either lactate or glycerol as the substrate for sulfate-reducing bacteria (SRB) growth. Although sulfate reduction is energetically more favorable with lactate, glycerol is a less expensive alternative because excess production is forecasted with the worldwide development of the biodiesel industry. Continuous experiments were performed in a fluidized bed (FB) reactor containing activated carbon as a carrier for a mixed bacterial population composed of sulfate-reducing and fermentative bacteria. During the lactate-fed phases, incomplete oxidation of lactate to acetate by SRB was the dominant metabolic pathway resulting in as much as 90 % sulfate reduction and high acetate concentrations (2.7 g L(-1)). Conversely, in the glycerol-fed phases, glycerol degradation resulted from syntrophic cooperation between sulfate-reducing and fermentative bacteria that produce butyrate along with acetate (1.0 g L(-1)) as oxidation products. To our knowledge, this is the first report of butyrate formation during sulfate reduction in a glycerol-fed continuous-flow reactor. Sulfate concentrations were reduced by about 90 % (from 2,000 to 100-300 mg L(-1)) when glycerol was being fed to the reactor. Since the FB reactor was able to stand a change from lactate to glycerol, this reactor is recommended as the preferred option should glycerol be selected as a cost-effective alternative to lactate for continuous sulfate reduction. PMID:24929339

Bertolino, Sueli M; Melgaço, Lucas A; Sá, Renata G; Leão, Versiane A

2014-09-01

371

Improved ICU design reduces acquisition of antibiotic-resistant bacteria: a quasi-experimental observational study  

PubMed Central

Introduction The role of ICU design and particularly single-patient rooms in decreasing bacterial transmission between ICU patients has been debated. A recent change in our ICU allowed further investigation. Methods Pre-move ICU-A and pre-move ICU-B were open-plan units. In March 2007, ICU-A moved to single-patient rooms (post-move ICU-A). ICU-B remained unchanged (post-move ICU-B). The same physicians cover both ICUs. Cultures of specified resistant organisms in surveillance or clinical cultures from consecutive patients staying >48 hours were compared for the different ICUs and periods to assess the effect of ICU design on acquisition of resistant organisms. Results Data were collected for 62, 62, 44 and 39 patients from pre-move ICU-A, post-move ICU-A, pre-move ICU-B and post-move ICU-B, respectively. Fewer post-move ICU-A patients acquired resistant organisms (3/62, 5%) compared with post-move ICU-B patients (7/39, 18%; P = 0.043, P = 0.011 using survival analysis) or pre-move ICU-A patients (14/62, 23%; P = 0.004, P = 0.012 on survival analysis). Only the admission period was significant for acquisition of resistant organisms comparing pre-move ICU-A with post-move ICU-A (hazard ratio = 5.18, 95% confidence interval = 1.03 to 16.06; P = 0.025). More antibiotic-free days were recorded in post-move ICU-A (median = 3, interquartile range = 0 to 5) versus post-move ICU-B (median = 0, interquartile range = 0 to 4; P = 0.070) or pre-move ICU-A (median = 0, interquartile range = 0 to 4; P = 0.017). Adequate hand hygiene was observed on 140/242 (58%) occasions in post-move ICU-A versus 23/66 (35%) occasions in post-move ICU-B (P < 0.001). Conclusions Improved ICU design, and particularly use of single-patient rooms, decreases acquisition of resistant bacteria and antibiotic use. This observation should be considered in future ICU design. PMID:21914222

2011-01-01

372

The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis  

PubMed Central

BACKGROUND—Butyrate oxidation within the colonocyte is selectively inhibited by hydrogen sulphide, reproducing the metabolic lesion observed in active ulcerative colitis.?AIMS—To study generation of hydrogen sulphide by sulphate reducing bacteria (SRB) and the effects of 5-aminosalicylic acid (5-ASA) in patients with ulcerative colitis in order to identify a role of this noxious agent in pathogenesis.?PATIENTS—Fresh faeces were obtained from 37 patients with ulcerative colitis (23 with active disease) and 16 healthy controls.?METHODS—SRB were enumerated from fresh faecal slurries and measurements made of sulphate reducing activity, and sulphate and hydrogen sulphide concentrations. The effect of 5-ASA on hydrogen sulphide production was studied in vitro.?RESULTS—All controls and patients with active ulcerative colitis carried SRB and total viable counts were significantly related to the clinical severity grade. SRB were of two distinct types: rapidly growing strains (desulfovibrios) which showed high sulphate reduction rates, present in 30% of patients with ulcerative colitis and 44% of controls; and slow growing strains which had little activity. In vitro, 5-ASA inhibited sulphide production in a dose dependent manner; in patients with ulcerative colitis not on these drugs faecal sulphide was significantly higher than in controls (0.55 versus 0.25 mM, p=0.027).?CONCLUSIONS—Counts and carriage rates of SRB in faeces of patients with ulcerative colitis are not significantly different from those in controls. SRB metabolism is not uniform between strains and alternative sources of hydrogen sulphide production exist in the colonic lumen which may be similarly inhibited by 5-ASA. The evidence for hydrogen sulphide as a metabolic toxin in ulcerative colitis remains circumstantial.???Keywords: colitis; sulphate; sulphide; bacteria; fermentation; salicylate PMID:10601057

Pitcher, M; Beatty, E; Cummings, J

2000-01-01

373

Efficacy of neutral electrolyzed water for reducing pathogenic bacteria contaminating shrimp.  

PubMed

Pathogenic contamination is a food safety concern. This study was conducted to investigate the efficacy of neutral electrolyzed water (NEW) in killing pathogens, namely, Vibrio parahaemolyticus, Vibrio vulnificus, Salmonella Enteritidis, and Escherichia coli in shrimp. Pure cultures of each pathogen were submerged separately in NEW containing five different chlorine concentrations: 10, 30, 50, 70, and 100 ppm. For each concentration, three submersion times were tested: 1, 3, and 5 min. The population of V. parahaemolyticus was rapidly reduced even at low concentrations, but prolonged contact times caused only a slight reduction. V. vulnificus was gradually inhibited with increasing NEW concentrations and contact times. For the V. parahaemolyticus applications of 70 ppm for 5 min and of 100 ppm for 3 min, each eliminated 7 log CFU/ml. For V. vulnificus, applications of 50 ppm for 3 min and 100 ppm for 1 min, each eliminated 7 log CFU/ml. Salmonella Enteritidis and E. coli were slightly reduced by NEW. Applications of 50 ppm for 15 min and 10 ppm for 30 min completely eliminated 4.16 log CFU/g of V. parahaemolyticus in inoculated shrimp, while only a 1-log CFU/g reduction of V. vulnificus was detected. Soaking shrimp in 10 ppm NEW for 30 min did not affect its sensory quality. Our results suggest NEW could be an alternative sanitizer to improve the microbiological quality of seafood. PMID:25474069

Ratana-Arporn, Pattama; Jommark, Naruemon

2014-12-01

374

A review of biological sulfate conversions in wastewater treatment.  

PubMed

Treatment of waters contaminated with sulfur containing compounds (S) resulting from seawater intrusion, the use of seawater (e.g. seawater flushing, cooling) and industrial processes has become a challenging issue since around two thirds of the world's population live within 150 km of the coast. In the past, research has produced a number of bioengineered systems for remediation of industrial sulfate containing sewage and sulfur contaminated groundwater utilizing sulfate reducing bacteria (SRB). The majority of these studies are specific with SRB only or focusing on the microbiology rather than the engineered application. In this review, existing sulfate based biotechnologies and new approaches for sulfate contaminated waters treatment are discussed. The sulfur cycle connects with carbon, nitrogen and phosphorus cycles, thus a new platform of sulfur based biotechnologies incorporating sulfur cycle with other cycles can be developed, for the removal of sulfate and other pollutants (e.g. carbon, nitrogen, phosphorus and metal) from wastewaters. All possible electron donors for sulfate reduction are summarized for further understanding of the S related biotechnologies including rates and benefits/drawbacks of each electron donor. A review of known SRB and their environmental preferences with regard to bioreactor operational parameters (e.g. pH, temperature, salinity etc.) shed light on the optimization of sulfur conversion-based biotechnologies. This review not only summarizes information from the current sulfur conversion-based biotechnologies for further optimization and understanding, but also offers new directions for sulfur related biotechnology development. PMID:25086411

Hao, Tian-wei; Xiang, Peng-yu; Mackey, Hamish R; Chi, Kun; Lu, Hui; Chui, Ho-kwong; van Loosdrecht, Mark C M; Chen, Guang-Hao

2014-11-15

375

Isolation of sulfur reducing and oxidizing bacteria found in contaminated drywall.  

PubMed

Drywall from China has been reported to release sulfur producing products which are corrosive to metals, result in noxious odors, and represent a significant health risk. It has been reported that these emissions produce medical symptoms such as respiratory or asthma type problems, sinusitis, gastrointestinal disorders, and vision problems in home owners and their household pets. We report here a method of identifying a causative agent for these emissions by sampling affected gypsum wallboard and subjecting those samples to Real Time Polymerase Chain Reaction [RT-PCR] studies. Specific DNA probes and primers have been designed and patented that detect a specific iron and sulfur reducing bacterium (i.e., Thiobacillus ferrooxidans). One hundred percent of affected drywall samples obtained from homes located in the southeastern United States tested positive for the presence of T. ferrooxidans. All negative controls consisting of unaffected wallboard and internal controls, Geotrichum sp., tested negative within our limits of detection. PMID:20386658

Hooper, Dennis G; Shane, John; Straus, David C; Kilburn, Kaye H; Bolton, Vincent; Sutton, John S; Guilford, Frederick T

2010-01-01

376

Isolation of Sulfur Reducing and Oxidizing Bacteria Found in Contaminated Drywall  

PubMed Central

Drywall from China has been reported to release sulfur producing products which are corrosive to metals, result in noxious odors, and represent a significant health risk. It has been reported that these emissions produce medical symptoms such as respiratory or asthma type problems, sinusitis, gastrointestinal disorders, and vision problems in home owners and their household pets. We report here a method of identifying a causative agent for these emissions by sampling affected gypsum wallboard and subjecting those samples to Real Time Polymerase Chain Reaction [RT-PCR] studies. Specific DNA probes and primers have been designed and patented that detect a specific iron and sulfur reducing bacterium (i.e., Thiobacillus ferrooxidans). One hundred percent of affected drywall samples obtained from homes located in the southeastern United States tested positive for the presence of T. ferrooxidans. All negative controls consisting of unaffected wallboard and internal controls, Geotrichum sp., tested negative within our limits of detection. PMID:20386658

Hooper, Dennis G.; Shane, John; Straus, David C.; Kilburn, Kaye H.; Bolton, Vincent; Sutton, John S.; Guilford, Frederick T.

2010-01-01

377

Characterization of Co(III) EDTA-Reducing Bacteria in Metal- and Radionuclide-Contaminated Groundwater  

SciTech Connect

The Waste Area Grouping 5 (WAG5) site at Oak Ridge National Laboratory has a potential to be a field site for evaluating the effectiveness of various bioremediation approaches and strategies. The site has been well studied in terms of its geological and geochemical properties over the past decade. However, despite the importance of microorganisms in bioremediation processes, the microbiological populations at the WAG5 site and their potential in bioremediation have not been similarly evaluated. In this study, we initiated research to characterize the microbial populations in WAG5 groundwater. Approximately 100 isolates from WAG5 groundwater were isolated and selected based on colony morphology. Fifty-five unique isolates were identified by BOX-PCR and subjected to further characterization. 16S rRNA sequences indicated that these isolates belong to seventeen bacterial genera including Alcaligenes (1 isolate), Aquamonas (1), Aquaspirillum (1), Bacillus (10), Brevundimonas (5), Caulobacter (7), Dechloromonas (2), Janibacter (1), Janthinobacterium (2), Lactobacillus (1), Paenibacillus (4), Pseudomonas (9), Rhodoferax (1), Sphingomonas (1), Stenotrophomonas (6), Variovorax (2), and Zoogloea (1). Metal respiration assays identified several isolates, which phylogenically belong or are close to Caulobacter, Stenotrophomonas, Bacillus, Paenibacillus and Pseudomonas, capable of reducing Co(III)EDTA- to Co(II)EDTA{sup 2-} using the defined M1 medium under anaerobic conditions. In addition, using WAG5 groundwater directly as the inoculants, we found that organisms associated with WAG5 groundwater can reduce both Fe(III) and Co(III) under anaerobic conditions. Further assays were then performed to determine the optimal conditions for Co(III) reduction. These assays indicated that addition of various electron donors including ethanol, lactate, methanol, pyruvate, and acetate resulted in metal reduction. These experiments will provide useful background information for future bioremediation field experiments at the WAG5 site.

Gao, Weimin [Arizona State University; Gentry, Terry J [ORNL; Mehlhorn, Tonia L [ORNL; Carroll, Sue L [ORNL; Jardine, Philip M [ORNL; Zhou, Jizhong [University of Oklahoma, Norman

2010-01-01

378

Effects of condensed tannins on hydrogen sulfide production and the sulfate-reducing bacterial population of swine manure  

Technology Transfer Automated Retrieval System (TEKTRAN)

Condensed tannins are natural plant compounds that have antibacterial properties and have been used in studies to reduce methane emissions and frothy bloat in cattle. The objective of this study was to test the effects of condensed tannins on swine manure to target bacterial groups responsible for ...

379

Desulfoprunum benzoelyticum gen. nov., sp. nov., a Gram-stain-negative, benzoate-degrading, sulfate-reducing bacterium isolated from a wastewater treatment plant.  

PubMed

A strictly anaerobic, mesophilic, sulfate-reducing bacterium, strain KoBa311(T), isolated from the wastewater treatment plant at Konstanz, Germany, was characterized phenotypically and phylogenetically. Cells were Gram-stain-negative, non-motile, oval to short rods, 3-5 µm long and 0.8-1.0 µm wide with rounded ends, dividing by binary fission and occurring singly or in pairs. The strain grew optimally in freshwater medium and the optimum temperature was 30 °C. Strain KoBa311(T) showed optimum growth at pH 7.3-7.6. Organic electron donors were oxidized completely to carbon dioxide concomitant with sulfate reduction to sulfide. At excess substrate supply, substrates were oxidized incompletely and acetate (mainly) and/or propionate accumulated. The strain utilized short-chain fatty acids, alcohols (except methanol) and benzoate. Sulfate and DMSO were used as terminal electron acceptors for growth. The genomic DNA G+C content was 52.3 mol% and the respiratory quinone was menaquinone MK-5 (V-H2). The major fatty acids were C16?:?0, C16?:?1?7c/?6c and C18?:?1?7c. Phylogenetic analysis based on 16S rRNA gene sequences placed strain KoBa311(T) within the family Desulfobulbaceae in the class Deltaproteobacteria. Its closest related bacterial species on the basis of the distance matrix were Desulfobacterium catecholicum DSM 3882(T) (93.0?% similarity), Desulfocapsa thiozymogenes (93.1?%), Desulforhopalus singaporensis (92.9?%), Desulfopila aestuarii (92.4?%), Desulfopila inferna JS_SRB250Lac(T) (92.3?%) and Desulfofustis glycolicus (92.3?%). On the basis of phylogenetic, physiological and chemotaxonomic characteristics, strain KoBa311(T) was distinct from any related type species. Therefore, strain KoBa311(T) is considered to represent a novel species of a new genus, for which the name Desulfoprunum benzoelyticum gen. nov., sp. nov. is proposed. The type strain of Desulfoprunum benzoelyticum is KoBa311(T) (?=?DSM 28570(T)?=?KCTC 15441(T)). PMID:25278560

Junghare, Madan; Schink, Bernhard

2015-01-01

380

Desulfotomaculum tongense sp. nov., a moderately thermophilic sulfate-reducing bacterium isolated from a hydrothermal vent sediment collected from the Tofua Arc in the Tonga Trench.  

PubMed

A novel, strictly anaerobic, moderately thermophilic, endospore-forming, sulfate-reducing bacterium, designated TGB60-1T, was isolated from a hydrothermal sediment vent collected from the Tofua Arc in the Tonga Trench. The strain was characterized phenotypically and phylogenetically. The isolated strain was observed to be Gram-positive, with slightly curved rod-shaped cells and a polar flagellum. Strain TGB60-1T was found to grow anaerobically at 37–60 °C (optimum, 50 °C), at pH 6.0–8.5 (optimum, pH 7.0) and with 1.0–4.0 % (w/v) NaCl (optimum, 3.0 %). The electron acceptors utilised were determined to be sulfate, sulfite, and thiosulfate. Strain TGB60-1T was found to utilise pyruvate and H2 as electron donors. Strain TGB60-1T was determined to be related to representatives of the genus Desulfotomaculum and the closest relatives within this genus were identified as Desulfotomaculum halophilum SEBR 3139T, Desulfotomaculum alkaliphilum S1T and Desulfotomaculum peckii LINDBHT1T (92.7, 92.1, and 91.8 % 16S rRNA gene sequence similarity, respectively). The major fatty acids (>20 %) were identified as C16:0 and C18:1 ?7c. The G+C content of the genomic DNA of this novel bacterium was determined to be 53.9 mol%. Based on this polyphasic taxonomic study, strain TGB60-1T is considered to represent a novel species in the genus Desulfotomaculum, for which the name Desulfotomaculum tongense sp. nov. is proposed. The type strain of D. tongense is strain TGB60-1T (= KTCT 4534T = JCM 18733T). PMID:24078017

Cha, In-Tae; Roh, Seong Woon; Kim, So-Jeong; Hong, Hee-Ji; Lee, Hae-Won; Lim, Wan-Taek; Rhee, Sung-Keun

2013-12-01

381

Competition between Fe(III)-reducing and methanogenic bacteria for acetate in iron-rich freshwater sediments.  

PubMed

The kinetics of acetate uptake and the depth distribution of [2-14C]acetate metabolism were examined in iron-rich sediments from a beaver impoundment in northcentral Alabama. The half-saturation constant (Km) determined for acetate uptake in slurries of Fe(III)-reducing sediment (0.8 mM) was more than 10-fold lower than that measured in methanogenic slurries (12 mM) which supported comparable rates of bulk organic carbon metabolism and Vmax values for acetate uptake. The endogenous acetate concentration (Sn) was also substantially lower (1.7 mM) in Fe(III)-reducing vs methanogenic (9.0 mM) slurries. The proportion of [2-14C]acetate converted to 14CH4 increased with depth from ca 0.1 in the upper 0.5 cm to ca 0.8 below 2 cm and was inversely correlated (r2 = 0.99) to a decline in amorphous Fe(III) oxide concentration. The results of the acetate uptake kinetics experiments suggest that differences in the affinity of Fe(III)-reducing bacteria vs methanogens for acetate can account for the preferential conversion of [2-14C]acetate to 14CO2 in Fe(III) oxide-rich surface sediments, and that the downcore increase in conversion of [2-14C]acetate to 14CH4 can be attributed to progressive liberation of methanogens from competition with Fe(III) reducers as Fe(III) oxides are depleted with depth. PMID:12658519

Roden, E E; Wetzel, R G

2003-03-01

382

CHARACTERIZATION OF A NEW THERMOPHILIC SULFATE-REDUCING BACTERIUM THERMODESULFOVIBRIO YELLOWSTONII GEN. NOV. AND SP. NOV.: ITS PHYLOGENETIC RELATIONSHIP TO THERMODESULFOBACTERIUM COMMUNE AND THEIR ORIGINS DEEP WITHIN THE BACTERIAL DOMAIN  

EPA Science Inventory

A thermophilic sulfate-reducing vibrio isolated from thermal vent water in Yellowstone Lake, Wyoming USA, is described. he Gram-negative, curve rod-shaped cells averaged 0.3 um wide and 1.5 um long. hey were motile by means of a single polar flagellum. rowth was observed between ...

383

Roles of Heparan Sulfate Sulfation in Dentinogenesis*  

PubMed Central

Cell surface heparan sulfate (HS) is an essential regulator of cell signaling and development. HS traps signaling molecules, like Wnt in the glycosaminoglycan side chains of HS proteoglycans (HSPGs), and regulates their functions. Endosulfatases Sulf1 and Sulf2 are secreted at the cell surface to selectively remove 6-O-sulfate groups from HSPGs, thereby modifying the affinity of cell surface HSPGs for its ligands. This study provides molecular evidence for the functional roles of HSPG sulfation and desulfation in dentinogenesis. We show that odontogenic cells are highly sulfated on the cell surface and become desulfated during their differentiation to odontoblasts, which produce tooth dentin. Sulf1/Sulf2 double null mutant mice exhibit a thin dentin matrix and short roots combined with reduced expression of dentin sialophosphoprotein (Dspp) mRNA, encoding a dentin-specific extracellular matrix precursor protein, whereas single Sulf mutants do not show such defective phenotypes. In odontoblast cell lines, Dspp mRNA expression is potentiated by the activation of the Wnt canonical signaling pathway. In addition, pharmacological interference with HS sulfation promotes Dspp mRNA expression through activation of Wnt signaling. On the contrary, the silencing of Sulf suppresses the Wnt signaling pathway and subsequently Dspp mRNA expression. We also show that Wnt10a protein binds to cell surface HSPGs in odontoblasts, and interference with HS sulfation decreases the binding affinity of Wnt10a for HSPGs, which facilitates the binding of Wnt10a to its receptor and potentiates the Wnt signaling pathway, thereby up-regulating Dspp mRNA expression. These results demonstrate that Sulf-mediated desulfation of cellular HSPGs is an important modification that is critical for the activation of the Wnt signaling in odontoblasts and for production of the dentin matrix. PMID:22351753

Hayano, Satoru; Kurosaka, Hiroshi; Yanagita, Takeshi; Kalus, Ina; Milz, Fabian; Ishihara, Yoshihito; Islam, Md. Nurul; Kawanabe, Noriaki; Saito, Masahiro; Kamioka, Hiroshi; Adachi, Taiji; Dierks, Thomas; Yamashiro, Takashi

2012-01-01

384

Large-Scale Chondroitin Sulfate Proteoglycan Digestion with Chondroitinase Gene Therapy Leads to Reduced Pathology and Modulates Macrophage Phenotype following Spinal Cord Contusion Injury  

PubMed Central

Chondroitin sulfate proteoglycans (CSPGs) inhibit repair following spinal cord injury. Here we use mammalian-compatible engineered chondroitinase ABC (ChABC) delivered via lentiviral vector (LV-ChABC) to explore the consequences of large-scale CSPG digestion for spinal cord repair. We demonstrate significantly reduced secondary injury pathology in adult rats following spinal contusion injury and LV-ChABC treatment, with reduced cavitation and enhanced preservation of spinal neurons and axons at 12 weeks postinjury, compared with control (LV-GFP)-treated animals. To understand these neuroprotective effects, we investigated early inflammatory changes following LV-ChABC treatment. Increased expression of the phagocytic macrophage marker CD68 at 3 d postinjury was followed by increased CD206 expression at 2 weeks, indicating that large-scale CSPG digestion can alter macrophage phenotype to favor alternatively activated M2 macrophages. Accordingly, ChABC treatment in vitro induced a significant increase in CD206 expression in unpolarized monocytes stimulated with conditioned medium from spinal-injured tissue explants. LV-ChABC also promoted the remodelling of specific CSPGs as well as enhanced vascularity, which was closely associated with CD206-positive macrophages. Neuroprotective effects of LV-ChABC corresponded with improved sensorimotor function, evident as early as 1 week postinjury, a time point when increased neuronal survival correlated with reduced apoptosis. Improved function was maintained into chronic injury stages, where improved axonal conduction and increased serotonergic innervation were also observed. Thus, we demonstrate that ChABC gene therapy can modulate secondary injury processes, with neuroprotective effects that lead to long-term improved functional outcome and reveal novel mechanistic evidence that modulation of macrophage phenotype may underlie these effects. PMID:24695702

Bartus, Katalin; James, Nicholas D.; Didangelos, Athanasios; Bosch, Karen D.; Verhaagen, Joost; Yáñez-Muñoz, Rafael J.; Rogers, John H.; Schneider, Bernard L.; Muir, Elizabeth M.

2014-01-01

385

LiF Reduces MICs of Antibiotics against Clinical Isolates of Gram-Positive and Gram-Negative Bacteria.  

PubMed

Antibiotic resistance is an ever-growing problem yet the development of new antibiotics has slowed to a trickle, giving rise to the use of combination therapy to eradicate infections. The purpose of this study was to evaluate the combined inhibitory effect of lithium fluoride (LiF) and commonly used antimicrobials on the growth of the following bacteria: Enterococcus faecalis, Staphyloccoccus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, and Streptococcus pneumoniae. The in vitro activities of ceftazidime, sulfamethoxazole-trimethoprim, streptomycin, erythromycin, amoxicillin, and ciprofloxacin, doxy