These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Metabolic flexibility of sulfate-reducing bacteria.  

PubMed

Dissimilatory sulfate-reducing prokaryotes (SRB) are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter. Also in freshwater ecosystems with sulfate concentrations of only 10-200??M, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the ?-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life. In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment. PMID:21734907

Plugge, Caroline M; Zhang, Weiwen; Scholten, Johannes C M; Stams, Alfons J M

2011-01-01

2

Methods for Engineering Sulfate Reducing Bacteria of the Genus Desulfovibrio  

SciTech Connect

Sulfate reducing bacteria are physiologically important given their nearly ubiquitous presence and have important applications in the areas of bioremediation and bioenergy. This chapter provides details on the steps used for homologous-recombination mediated chromosomal manipulation of Desulfovibrio vulgaris Hildenborough, a well-studied sulfate reducer. More specifically, we focus on the implementation of a 'parts' based approach for suicide vector assembly, important aspects of anaerobic culturing, choices for antibiotic selection, electroporation-based DNA transformation, as well as tools for screening and verifying genetically modified constructs. These methods, which in principle may be extended to other sulfate-reducing bacteria, are applicable for functional genomics investigations, as well as metabolic engineering manipulations.

Chhabra, Swapnil R; Keller, Kimberly L.; Wall, Judy D.

2011-03-15

3

Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria  

ERIC Educational Resources Information Center

Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

Hauri, James F.; Schaider, Laurel A.

2009-01-01

4

Remediation of acid mine drainage with sulfate reducing bacteria  

SciTech Connect

Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed changes in dissolved metal concentrations and pH. Using synthetic acid mine drainage and combinations of inputs, students monitor their bioreactors for decreases in dissolved copper and iron concentrations.

Hauri, J.F.; Schaider, L.A. [Assumption College, Worcester, MA (USA)

2009-02-15

5

Commensal symbiosis between agglutinated polychaetes and sulfate-reducing bacteria.  

PubMed

Pendant bioconstructions occur within submerged caves in the Plemmirio Marine Protected Area in SE Sicily, Italy. These rigid structures, here termed biostalactites, were synsedimentarily lithified by clotted-peloidal microbial carbonate that has a high bacterial lipid biomarker content with abundant compounds derived from sulfate-reducing bacteria. The main framework builders are polychaete serpulid worms, mainly Protula with subordinate Semivermilia and Josephella. These polychaetes have lamellar and/or fibrillar wall structure. In contrast, small agglutinated terebellid tubes, which are a minor component of the biostalactites, are discontinuous and irregular with a peloidal micritic microfabric. The peloids, formed by bacterial sulfate reduction, appear to have been utilized by terebellids to construct tubes in an environment where other particulate sediment is scarce. We suggest that the bacteria obtained food from the worms in the form of fecal material and/or from the decaying tissue of surrounding organisms and that the worms obtained peloidal micrite with which to construct their tubes, either as grains and/or as tube encompassing biofilm. Peloidal worm tubes have rarely been reported in the recent but closely resemble examples in the geological record that extend back at least to the early Carboniferous. This suggests a long-lived commensal relationship between some polychaete worms and heterotrophic, especially sulfate-reducing, bacteria. PMID:24636469

Guido, A; Mastandrea, A; Rosso, A; Sanfilippo, R; Tosti, F; Riding, R; Russo, F

2014-05-01

6

New bactericide for biocide-resistant sulfate-reducing bacteria  

SciTech Connect

Biocide-resistant sulfate-reducing bacteria (SRB) cause low efficacy of bactericides, and there is a high cost of killing the bacteria. A new bactericide, bisquaternary ammonium compound (BQA), has been synthesized in the laboratory. The performance of BQA was tested alone and in combination with metronidazol flagyl (ME). The results show that the biocide-resistant SRB induced by 1227 bactericide (dodecyldimethyl-benzyl ammonium chloride) can be controlled by BQA combined with ME. The equivalent curve indicates synergistic efficacy of BQA and ME. They work together to stifle SRB (especially the biocide-resistant bacteria) at low cost, not only in the laboratory, but also in the oil field, allowing reduced use of toxic commercial biocides.

Liu Hongfang; Xu Liming; Zheng Jiashen; Liu Jing

2000-04-01

7

Revisiting Modes of energy generation in sulfate reducing bacteria  

SciTech Connect

Sulfate reducing bacteria (SRB) play an important role in global sulfur and carbon cycling through their ability to completely mineralize organic matter while respiring sulfate to hydrogen sulfide. They are ubiquitous in anaerobic environments and have the ability to reduce toxic metals like Cr(VI) and U(VI). While SRB have been studied for over three decades, bioenergetic modes of this group of microbes are poorly understood. Desulfovibrio vulgaris strain Hildenborough (DvH) has served as a model SRB over the last decade with the accumulation of transcriptomic, proteomic and metabolic data under a wide variety of stressors. To further investigate the three hypothesized modes of energy generation in this anaerobe we conducted a systematic study involving multiple electron donor and acceptor combinations for growth. DvH was grown at 37oC in a defined medium with (a) lactate + thiosulfate, (b) lactate + sulfite (c) lactate + sulfate, (d) pyruvate + sulfate, (e) H2 + acetate + sulfate, (f) formate + acetate + sulfate, g) formate + sulfate and (h) pyruvate fermentation. Cells were harvested at mid-log phase of growth for all conditions for transcriptomics, when the optical density at 600nm was in the range 0.42-0.5. Initial results indicate that cells grown on lactate do not appear to significantly differentiate their gene expression profiles when presented with different electron acceptors. These profiles however differ significantly from those observed during growth with other electron donors such as H2 and formate, as well as during fermentative growth. Together the gene expression changes in the presence of different electron donors provide insights into the ability of DvH to differentially reduce metals such as Cr(VI). Here we present revised modes of energy generation in DvH in light of this new transcriptomic evidence.

Joachimiak, Marcin; Chakraborty, Romy; Zhou, Aifen; Fortney, Julian; Geller, Jil; Wall, Judy; Zhou, Jizhong; Arkin, Adam; Hazen, Terry; Keasling, Jay; Chhabra, Swapnil

2010-05-17

8

Quantifying sulfate reducing bacteria in microbiologically influenced corrosion. (Reannouncement with new availability information). Final report  

Microsoft Academic Search

Iron-oxidizing, sulfur-oxidizing, iron-reducing, sulfate-reducing, acid producing, slime-producing, ammonium-producing, and hydrogen-producing bacteria in addition to other physiological groups have been implicated in the corrosion of metals and alloys. However, the most widely recognized and most easily detected bacteria in most corrosion processes are the bacteria that reduce sulfate to sulfide that are collectively called sulfate-reducing bacteria (SRB). SRB constitute a physiological-ecological

B. Little; P. Wagner

1992-01-01

9

Reduction of molybdate by sulfate-reducing bacteria.  

PubMed

Molybdate is an essential trace element required by biological systems including the anaerobic sulfate-reducing bacteria (SRB); however, detrimental consequences may occur if molybdate is present in high concentrations in the environment. While molybdate is a structural analog of sulfate and inhibits sulfate respiration of SRB, little information is available concerning the effect of molybdate on pure cultures. We followed the growth of Desulfovibrio gigas ATCC 19364, Desulfovibrio vulgaris Hildenborough, Desulfovibrio desulfuricans DSM 642, and D. desulfuricans DSM 27774 in media containing sub-lethal levels of molybdate and observed a red-brown color in the culture fluid. Spectral analysis of the culture fluid revealed absorption peaks at 467, 395 and 314 nm and this color is proposed to be a molybdate-sulfide complex. Reduction of molybdate with the formation of molybdate disulfide occurs in the periplasm D. gigas and D. desulfuricans DSM 642. From these results we suggest that the occurrence of poorly crystalline Mo-sulfides in black shale may be a result from SRB reduction and selective enrichment of Mo in paleo-seawater. PMID:19130259

Biswas, Keka C; Woodards, Nicole A; Xu, Huifang; Barton, Larry L

2009-02-01

10

SULFATE-REDUCING BACTERIA IN THE SEAGRASS RHIZOSPHERE  

EPA Science Inventory

Seagrasses are rooted in anoxic sediments that support high levels of microbial activity including utilization of sulfate as a terminal electron acceptor which is reduced to sulfide. Sulfate reduction in seagrass bed sediments is stimulated by input of organic carbon through the ...

11

Anaerobic degradation of benzene by marine sulfate-reducing bacteria  

NASA Astrophysics Data System (ADS)

Benzene, the archetypal aromatic hydrocarbon is a common constituent of crude oil and oil-refined products. As such, it can enter the biosphere through natural oil seeps or as a consequence of exploitation of fossil fuel reservoirs. Benzene is chemically very stable, due to the stabilizing aromatic electron system and to the lack of functional groups. Although the anaerobic degradation of benzene has been reported under denitrifying, sulfate-reducing and methanogenic conditions, the microorganisms involved and the initial biochemical steps of degradation remain insufficiently understood. Using marine sediment from a Mediterranean lagoon a sulfate-reducing enrichment culture with benzene as the sole organic substrate was obtained. Application of 16S rRNA gene-based methods showed that the enrichment was dominated (more than 85% of total cells) by a distinct phylotype affiliated with a clade of Deltaproteobacteria that include degraders of other aromatic hydrocarbons, such as naphthalene, ethylbenzene and m-xylene. Using benzoate as a soluble substrate in agar dilution series, several pure cultures closely related to Desulfotignum spp. and Desulfosarcina spp. were isolated. None of these strains was able to utilize benzene as a substrate and hybridizations with specific oligonucleotide probes showed that they accounted for as much as 6% of the total cells. Incubations with 13C-labeled benzene followed by Halogen in situ Hybridization - Secondary Ion Mass Spectroscopy (HISH-SIMS) analysis showed that cells of the dominant phylotype were highly enriched in 13C, while the accompanying bacteria had little or no 13C incorporation. These results demonstrate that the dominant phylotype was indeed the apparent benzene degrader. Dense-cell suspensions of the enrichment culture did not show metabolic activity toward added phenol or toluene, suggesting that benzene degradation did not proceed through anaerobic hydroxylation or methylation. Instead, benzoate was identified in analyses of metabolites with benzene-grown cultures, suggesting an activation of benzene via carboxylation.

Musat, Florin; Wilkes, Heinz; Musat, Niculina; Kuypers, Marcel; Widdel, Friedrich

2010-05-01

12

STUDIES ON THERMOPHILIC SULFATE-REDUCING BACTERIA II.  

PubMed Central

Akagi, J. M. (Western Reserve University, Cleveland, Ohio) and L. Leon Campbell. Studies on thermophilic sulfate-reducing bacteria. II. Hydrogenase activity of Clostridium nigrificans. J. Bacteriol. 82:927–932. 1961.—The hydrogenase of Clostridium nigrificans has been found to be associated with the cell-free particulate fraction which can be sedimented at 105,000 × g in 1 hr. The specific activity of this fraction was increased 2 to 3 fold over that of the crude extract. It was not found possible to liberate the enzyme from the particulate fraction by methods of enzymatic digestion, chemical extraction, or physical disruption. The optimum temperature for H2 utilization using benzyl viologen as an electron acceptor was found to be 55 C, and the optimum pH range was 7 to 8. Employing metal complexing agents it was found that the enzyme required Fe++ ions for H2 utilization. In contrast, Fe++ ions were not required to catalyze the evolution of H2 from reduced methyl viologen. The role of Fe++ ions in the hydrogenase activity of this organism is discussed. PMID:13859876

Akagi, J. M.; Campbell, L. Leon

1961-01-01

13

Novel thermophilic sulfate-reducing bacteria from a geothermally active underground mine in Japan.  

PubMed

Thermophilic sulfate-reducing bacteria were enriched from samples obtained from a geothermal underground mine in Japan. The enrichment cultures contained bacteria affiliated with the genera Desulfotomaculum, Thermanaeromonas, Thermincola, Thermovenabulum, Moorella, "Natronoanaerobium," and Clostridium. Two novel thermophilic sulfate-reducing strains, RL50JIII and RL80JIV, affiliated with the genera Desulfotomaculum and Thermanaeromonas, respectively, were isolated. PMID:16672530

Kaksonen, Anna H; Plumb, Jason J; Robertson, Wendy J; Spring, Stefan; Schumann, Peter; Franzmann, Peter D; Puhakka, Jaakko A

2006-05-01

14

Separation and concentration of hazardous metals from aqueous solutions using sulfate-reducing bacteria  

Microsoft Academic Search

The removal of metals from aqueous solutions using sulfate-reducing bacteria was investigated. The sulfate-reducing bacteria utilized consisted of a consortium isolated from oil well brine. The consortium was capable of using lactate as a carbon and energy source and producing significant quantities of sulfide which reacted with solubilized metals to form insoluble metal sulfides. After formation, the metal sulfides were

W. A. Apel; M. R. Wiebe; P. R. Dugan

1990-01-01

15

Technetium reduction and precipitation by sulfate?reducing bacteria  

Microsoft Academic Search

Resting cells of the sulfate?reducing bacterium Desulfovibrio desulfuricans ATCC 29577 were able to precipitate the radionuclide technetium, supplied as the pertechnetate anion (TcO4 ), under anaerobic conditions by two discrete mechanisms. Sulfidogenic cultures, supplied with sulfate and lactate as an electron acceptor and donor, respectively, precipitated the radionuclide as an insoluble sulfhide. Using electron microscopy in combination with energy?dispersive x?ray

J. R. Lloyd; V. A. Solé; K. Bosecker; L. E. Macaskie

1998-01-01

16

Stable carbon isotope fractionation by sulfate-reducing bacteria  

NASA Technical Reports Server (NTRS)

Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and delta(13)C values were determined for gaseous CO(2), organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO(2), and the cell biomass were small, ranging from 0 to 2 per thousand. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9 per thousand. SRB grown lithoautotrophically consumed less than 3% of the available CO(2) and exhibited substantial discrimination (calculated as isotope fractionation factors [alpha]), as follows: for Desulfobacterium autotrophicum, alpha values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the alpha value was 0.0138, and for Desulfotomaculum acetoxidans, the alpha value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO(2) resulted in biomass with a delta(13)C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H(2)), ecological forces can also influence carbon isotope discrimination by SRB.

Londry, Kathleen L.; Des Marais, David J.

2003-01-01

17

MOLECULAR PHYLOGENETIC AND BIOGEOCHEMICAL STUDIES OF SULFATE-REDUCING BACTERIA IN THE RHIZOSPHERE OF SPARTINA ALTERNIFLORA  

EPA Science Inventory

The population composition and biogeochemistry of sulfate-reducing bacteria (SRB) in the rhizosphere of the marsh grass Spartina alterniflora was investigated over two growing seasons using molecular probing, enumerations of culturable SRB, and measurements of SO42- reduction rat...

18

Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms  

Microsoft Academic Search

The population architecture of sulfidogenic biofilms established in anaerobic fixed-bed bioreactors was characterized by selective polymerase chain reaction amplification and fluorescence microscopy. A region of the 16S rRNA common to resident sulfate-reducing bacteria was selectively amplified by the polymerase chain reaction. Sequences of amplification products, with reference to a collection of 16S rRNA sequences representing most characterized sulfate-reducing bacteria, were

R. I. Amann; J. Stromley; R. Devereux; D. A. Stahl

1992-01-01

19

Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt)  

SciTech Connect

The sulfate-reducing bacteria within the surface layer of the hypersaline cyanobacterial mat of Solar Lake (Sinai, Egypt) were investigated with combined microbiological, molecular, and biogeochemical approaches. The diurnally oxic surface layer contained between 10{sup 6} and 10{sup 7} cultivable sulfate-reducing bacteria ml{sup {minus}1} day{sup {minus}1}, both in the same range as and sometimes higher than those in anaerobic deeper mat layers. In the oxic surface layer and in the mat layers below, filamentous sulfate-reducing Desulfonema bacteria were found in variable densities of 10{sup 4} and 10{sup 6} cells ml{sup {minus}1}. A Desulfonema-related, diurnally migrating bacterium was detected with PCR and denaturing gradient gel electrophoresis within and below the oxic surface layer. Facultative aerobic respiration, filamentous morphology, motility, diurnal migration, and aggregate formation were the most conspicuous adaptations of Solar Lake sulfate-reducing bacteria to the mat matrix and to diurnal oxygen stress. A comparison of sulfate reduction rates within the mat and previously published photosynthesis rates showed that CO{sub 2} from sulfate reduction in the upper 5 mm accounted for 7 to 8% of the total photosynthetic CO{sub 2} demand of the mat.

Teske, A.; Ramsing, N.B.; Habicht, K.; Kuever, J.; Joergensen, B.B. [Max Planck Inst. for Marine Microbiology, Bremen (Germany); Fukui, Manabu [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan); Cohen, Y. [Hebrew Univ. of Jerusalem (Israel)

1998-08-01

20

Separation and concentration of hazardous metals from aqueous solutions using sulfate-reducing bacteria  

SciTech Connect

The removal of metals from aqueous solutions using sulfate-reducing bacteria was investigated. The sulfate-reducing bacteria utilized consisted of a consortium isolated from oil well brine. The consortium was capable of using lactate as a carbon and energy source and producing significant quantities of sulfide which reacted with solubilized metals to form insoluble metal sulfides. After formation, the metal sulfides were removed from solution via filtration. A variety of solubilized metals including lead, cadmium, cobalt, copper, iron, and chromium were removed from solution using sulfate-reducing bacteria. Removal efficiencies varied from metal to metal with lead exhibiting the highest levels of removal and chromium the lowest. 13 refs., 9 figs.

Apel, W.A.; Wiebe, M.R.; Dugan, P.R.

1990-01-01

21

Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries  

E-print Network

.T. Visscher a,* a Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Rd., Groton, CT, United States b Marine Geology and Geophysics, Rosenstiel School of Marine and Atmospheric Science precipitation via sulfate reduction are also discussed. D 2006 Elsevier B.V. All rights reserved. Keywords

22

Formation of thionates by freshwater and marine strains of sulfate-reducing bacteria  

Microsoft Academic Search

The formation of thionates (thiosulfate, trithionate and tetrahionate) during the reduction of sulfate or sulfite was studied with four marine and four freshwater strains of sulfate-reducing bacteria. Growing cultures of two strains of the freshwater species Desulfovibrio desulfuricans formed up to 400 µM thiosulfate and 100 µM trithionate under conditions of electron donor limitation. Tetrathionate was observed in lower concentrations

H. Sass; J. Steuber; M. Kroder; P. M. H. Kroneck; H. Cypionka

1992-01-01

23

Corrosion of 2205 duplex stainless steel in chloride medium containing sulfate-reducing bacteria  

Microsoft Academic Search

Sulfate-reducing bacteria (SRB) play significant role in the corrosion of stainless steels exposed to marine and soil environment. Sulfate reduction by bacterial species results in the production of H2S, which can significantly influence the anodic and cathodic processes and ultimately enhances the corrosion of materials. In the present study, 2205 type duplex stainless steel (DSS) coupons in solution-annealed condition were

P. J. Antony; Shobhana Chongdar; Pradeep Kumar; R. Raman

2007-01-01

24

Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs.  

PubMed

In order to treat acid mine drainage (AMD) effectively using sulfate-reducing bacteria (SRB) at high concentration of sulfate and heavy metals, Fe(0) was added to enhance the activity of SRB. When AMD was treated by SRB and Fe(0) at 25 °C, more than 61% of sulfate was removed and the effluent pH was improved from 2.75 to 6.20 during the operation. Cu(2+) was removed effectively with the removal efficiency at 99%, while only 86% of Fe(2+) was removed during the AMD treatment, without conspicuous change of Mn(2+) in the effluent in the process. PMID:23182037

Bai, He; Kang, Yong; Quan, Hongen; Han, Yang; Sun, Jiao; Feng, Ying

2013-01-01

25

Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments  

Microsoft Academic Search

The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of meth- ane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages (ANME-1

V. J. Orphan; K.-U. Hinrichs; W. USSLER III; C. K. Paull; L. T. Taylor; S. P. Sylva; J. M. Hayes; E. F. Delong

2001-01-01

26

Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids  

Microsoft Academic Search

Gliding motility, ultrastructure and nutrition of two newly isolated filamentous sulfate-reducing bacteria, strains 5ac10 and 4be13, were investigated. The filaments were always attached to surfaces. Growth was supported by addition of insoluble aluminium phosphate or agar as substrata for gliding movement. Electron microscopy of ultrathin sections revealed cell walls characteristic of Gramnegative bacteria; the undulated structure of the outer membrane

Friedrich Widdel; Gert-Wieland Kohring; Frank Mayer

1983-01-01

27

Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria  

SciTech Connect

Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

Boopathy, R. [Argonne National Lab., IL (United States); Kulpa, C.F. [Notre Dame Univ., IN (United States). Dept. of Biological Sciences

1994-06-01

28

DESIGNING SULFATE-REDUCING BACTERIA FIELD-BIOREACTORS USING THE BEST MODEL  

EPA Science Inventory

DESIGNING SULFATE-REDUCING BACTERIA FIELD-BIOREACTORS USING THE BEST MODEL Marek H. Zaluski1,3, Brian T. Park1, Diana R. Bless2 1 MSE Technology Applications; 200 Technology Way, Butte, Montana 59701, USA 2 U.S. EPA, Office of Research and Development, Cincinna...

29

DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS USING THE BEST MODEL  

EPA Science Inventory

BEST (bioreactor economics, size and time of operation) is a spreadsheet-based model that is used in conjunction with a public domain computer software package, PHREEQCI. BEST is intended to be used in the design process of sulfate-reducing bacteria (SRB)field bioreactors to pas...

30

Neem extract as an inhibitor for biocorrosion influenced by sulfate reducing bacteria: A preliminary investigation  

E-print Network

Neem extract as an inhibitor for biocorrosion influenced by sulfate reducing bacteria form 17 September 2013 Accepted 20 September 2013 Available online 2 October 2013 Keywords: Neem of Neem (Azadirachta indica) extract on microbiologically influenced corrosion (MIC) of API 5L X80

31

Field Tests of ?In-Situ? Remediation of Groundwater From Dissolved Mercury Utilizing Sulfate Reducing Bacteria  

EPA Science Inventory

Field tests of biologically active filters have been conducted at groundwater mercury pollution site in Pavlodar, Kazakhstan. The biofilters represented cultures of sulfate-reducing bacteria (SRB) immobilized on claydite imbedded in wells drilled down to basalt clay layer (14-17 ...

32

Mine Waste Technology Program. In Situ Source Control Of Acid Generation Using Sulfate-Reducing Bacteria  

EPA Science Inventory

This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 3, In Situ Source Control of Acid Generation Using Sulfate-Reducing Bacteria, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S....

33

Different K s values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: An explanation for the apparent inhibition of methanogenesis by sulfate  

Microsoft Academic Search

Desulfovibrio vulgaris (Marburg) and Methanobrevibacter arboriphilus (AZ) are anaerobic sewage sludge bacteria which grow on H2 plus sulfate and H2 plus CO2 as sole energy sources, respectively. Their apparent Ks values for H2 were determined and found to be approximately 1 µM for the sulfate reducing bacterium and 6 µM for the methanogenic bacterium. In mixed cell suspensions of the

Jakob K. Kristjansson; Peter Schönheit; Rudolf K. Thauer

1982-01-01

34

Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer.  

PubMed

Microbial sulfate reduction is an important metabolic activity in petroleum hydrocarbon (PHC)-contaminated aquifers. We quantified carbon source-enhanced microbial SO(4)(2-) reduction in a PHC-contaminated aquifer by using single-well push-pull tests and related the consumption of sulfate and added carbon sources to the presence of certain genera of sulfate-reducing bacteria (SRB). We also used molecular methods to assess suspended SRB diversity. In four consecutive tests, we injected anoxic test solutions (1,000 liters) containing bromide as a conservative tracer, sulfate, and either propionate, butyrate, lactate, or acetate as reactants into an existing monitoring well. After an initial incubation period, 1,000 liters of test solution-groundwater mixture was extracted from the same well. Average total test duration was 71 h. We measured concentrations of bromide, sulfate, and carbon sources in native groundwater as well as in injection and extraction phase samples and characterized the SRB population by using fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE). Enhanced sulfate reduction concomitant with carbon source degradation was observed in all tests. Computed first-order rate coefficients ranged from 0.19 to 0.32 day(-1) for sulfate reduction and from 0.13 to 0.60 day(-1) for carbon source degradation. Sulfur isotope fractionation in unconsumed sulfate indicated that sulfate reduction was microbially mediated. Enhancement of sulfate reduction due to carbon source additions in all tests and variability of rate coefficients suggested the presence of specific SRB genera and a high diversity of SRB. We confirmed this by using FISH and DGGE. A large fraction of suspended bacteria hybridized with SRB-targeting probes SRB385 plus SRB385-Db (11 to 24% of total cells). FISH results showed that the activity of these bacteria was enhanced by addition of sulfate and carbon sources during push-pull tests. However, DGGE profiles indicated that the bacterial community structure of the dominant species did not change during the tests. Thus, the combination of push-pull tests with molecular methods provided valuable insights into microbial processes, activities, and diversity in the sulfate-reducing zone of a PHC-contaminated aquifer. PMID:11916663

Kleikemper, Jutta; Schroth, Martin H; Sigler, William V; Schmucki, Martina; Bernasconi, Stefano M; Zeyer, Josef

2002-04-01

35

Behavior of plutonium interacting with bentonite and sulfate-reducing anaerobic bacteria  

SciTech Connect

The interactions between sulfate reducing anaerobic bacteria and plutonium, with or without bentonite present, were investigated using distribution coefficients [Kd (ml/g)] as an index of the radionuclide behavior. Plutonium Kds for living bacteria varied within a large range, from 1,804 to 112,952, depending on the pH, while the Kds ranged from 1,180 to 5,931 for dead bacteria. In general, living bacteria had higher plutonium Kds than dead bacteria. Furthermore, the higher Kd values of 39,677 to 106,915 for living bacteria were obtained for a pH range between 6.83 and 8.25, while no visible pH effect was observed for dead bacteria. These Kd values were obtained using tracers for both {sup 236}Pu and {sup 239}Pu, which can check the experimental procedures and mass balance. Another comparison was conducted for plutonium Kd values of mixtures of living bacteria with bentonite and sterilized bacteria with bentonite. The range of Kd values for the non-sterilized bacteria with bentonite were 1,194 to 83,648 while Kd values for the sterilized bacteria with bentonite were from 624 to 17,236. Again, the Kd values for the living bacteria with bentonite were higher than those of sterilized bacteria with bentonite. In other words, the presence of living anaerobic bacteria with bentonite increased, by roughly 50 times, the Kd values of {sup 239}Pu when compared to the mixture of dead bacteria with bentonite. The results indicate that the effects of anaerobic bacteria within the engineered barrier system (in this case bentonite) will play a significant role in the behavior of plutonium in geologic repositories.

Kudo, A.; Zheng, J.; Cayer, I. [National Research Council of Canada, Ottawa, Ontario (Canada); Fujikawa, Y. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Asano, H.; Arai, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Isogo, Yokohama (Japan); Yoshikawa, H.; Ito, M. [Power Reactor and Nuclear Fuel Development Co., Tokai, Ibaraki (Japan)

1997-12-31

36

[Biodiversity of sulfate-reducing bacteria growing on objects of heating systems].  

PubMed

It was shown that sulfate-reducing bacteria developed on the sections of Kyiv municipal heating systems, which are exploited in conditions of different temperatures. The bacteria were different as to their morphological and physiological properties. The bacteria of Desulfovibrio genus were revealed on the sections, which were exploited at a temperature of 35-40 degrees C and bacteria of Desulfomicrobium and Desulfotomaculum genera were revealed on the sections with a higher temperature such as 60 degrees C. Based on of the 16S rRNA gene analysis data, it was demonstrated that sequences of TC2, TC3 and TC4 clones related to Desulfovibrio sp. DSM 12803 (100% sequence similarity), Desulfotomaculum sp. ECP-C-5 (92% sequence similarity) and Desulfomicrobium baculatum strain DSM 2555 (99% sequence similarity), respectively. The identified bacteria are potentially dangerous for heating systems and can be the agents of microbial corrosion. PMID:25007438

Purish, L M; Asaulenko, L G; Abdulina, D R; Iutinskaia, G A

2014-01-01

37

Inhibiting sulfate-reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin  

Microsoft Academic Search

  To identify novel, less-toxic compounds capable of inhibiting sulfate-reducing bacteria (SRB), Desulfovibrio vulgaris and Desulfovibrio gigas in suspension cultures were exposed to several antimicrobial peptides. The bacterial peptide antimicrobials gramicidin S,\\u000a gramicidin D, and polymyxin B as well as the cationic peptides indolicidin and bactenecin from bovine neutrophils decreased\\u000a the viability of both SRB by 90% after a 1-h exposure

A Jayaraman; F B Mansfeld; T K Wood

1999-01-01

38

Diversity and Characterization of Sulfate-Reducing Bacteria in Groundwater at a Uranium Mill Tailings Site  

Microsoft Academic Search

Microbially mediated reduction and immobilization of U(VI) to U(IV) plays a role in both natural attenu- ation and accelerated bioremediation of uranium-contaminated sites. To realize bioremediation potential and accurately predict natural attenuation, it is important to first understand the microbial diversity of such sites. In this paper, the distribution of sulfate-reducing bacteria (SRB) in contaminated groundwater associated with a uranium

YUN-JUAN CHANG; AARON D. PEACOCK; PHILIP E. LONG; JOHN R. STEPHEN; JAMES P. MCKINLEY; SARAH J. MACNAUGHTON; A. K. M. A. Hussain; ARNOLD M. SAXTON; DAVID C. WHITE

2001-01-01

39

Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery  

Microsoft Academic Search

Acid-mine drainage can contain high concentrations of heavy metals and release of these contaminants into the environment is generally avoided by lime neutralization. However, this classical treatment is expensive and generates large amounts of residual sludge. The selective precipitation of metals using H2S produced biologically by sulfate-reducing bacteria has been proposed as an alternative process. Here, we report on experiments

S Foucher; F Battaglia-Brunet; I Ignatiadis; D Morin

2001-01-01

40

A Scanning Auger Microprobe analysis of corrosion products associated with sulfate reducing bacteria  

SciTech Connect

A Scanning Auger Microprobe analysis was performed on the corrosion products of an austenitic AISI type 304 SS after a potentiostatic polarization of one volt for ten minutes in a modified Postgate`s C media containing sulfate reducing bacteria. The corrosion products were characterized and mapped in local regions where pitting was observed. A critical evaluation of the applicability of this technique for the examination of microbially influenced corrosion (MIC) is presented.

Sadowski, R.A.; Chen, G.; Clayton, C.R.; Kearns, J.R. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Materials Science and Engineering; Gillow, J.B.; Francis, A.J. [Brookhaven National Lab., Upton, NY (United States). Biosystems and Process Sciences Div.

1995-03-01

41

Innovative, In Situ Use of Sulfate Reducing Bacteria to Remove Heavy Metals from Acid Mine Drainage  

Microsoft Academic Search

Unregulated heavy-metal mining in the West during the early to mid-1900s resulted in the generation of acid mine drainage (AMD) at many locations. AMD is characterized by low pH and high concentrations of heavy metals. Results are presented that were gathered during on- going field-scale testing of an innovative technology, the use of sulfate-reducing bacteria (SRB), designed to treat and

Marietta Canty; Randy Hiebert; Mary Ann Harrington-Baker; Diana Bless

42

Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria  

Microsoft Academic Search

PCR primer sets for the 16S rRNA gene of six phylogenetic groups of sulfate- reducing bacteria (SRB) were designed. Their application in conjunction with group-specific internal oligonucleotide probes was used to detect SRB DNA in samples of landfill leachate. Six generic\\/suprageneric groups could be differentiated : Desulfotomaculum ; Desulfobulbus; Desulfobacterium ; Desulfobacter; Desulfococcus-Desulfonema-Desulfosarcina; Desulfovibrio-Desulfomicrobium. The predicted specificities of the PCR

Kristian Daly; Richard J. Sharp; Alan J. McCarthy

2000-01-01

43

Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids  

Microsoft Academic Search

Three strains (2ac9, 3ac10 and 4ac11) of oval to rodshaped, Gram negative, nonsporing sulfate-reducing bacteria were isolated from brackish water and marine mud samples with acetate as sole electron donor. All three strains grew in simple defined media supplemented with biotin and 4-aminobenzoic acid as growth factors. Acetate was the only electron donor utilized by strain 2ac9, while the other

Friedrich Widdel; Norbert Pfennig

1981-01-01

44

Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.  

PubMed

Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions. PMID:25228086

Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

2015-02-01

45

Bioaugmentation of anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulfate reducing bacteria (SRB) for the treatment of sulfate bearing chemical wastewater  

Microsoft Academic Search

Bioaugmentation strategy was applied to anaerobic sequencing batch biofilm reactor (AnSBBR) by inoculating with enriched sulfate reducing bacteria (SRB) in alginate-immobilized matrix for the enhanced treatment of sulfate bearing chemical wastewater. Non-augmented AnSBBR showed 35% of COD removal efficiency and 27% of sulfate reduction. Volatile fatty acid (VFA) accumulation was evidently observed during reactor operation indicating non-functioning of methanogenic bacteria

S. Venkata Mohan; N. Chandrasekhara Rao; K. Krishna Prasad; P. N. Sarma

46

Nickel, manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio.  

PubMed

The use of sulfate-reducing bacteria (SRB) in passive treatments of acidic effluents containing heavy metals has become an attractive alternative biotechnology. Treatment efficiency may be linked with the effluent conditions (pH and metal concentration) and also to the amount and nature of the organic substrate. Variations on organic substrate and sulfate ratios clearly interfere with the biological removal of this ion by mixed cultures of SRB. This study aimed to cultivate a mixed culture of SRB using different lactate concentrations at pH 7.0 in the presence of Ni, Mn and Cu. The highest sulfate removal efficiency obtained was 98 %, at a COD/sulfate ratio of 2.0. The organic acid analyses indicated an acetate accumulation as a consequence of lactate degradation. Different concentrations of metals were added to the system at neutral pH conditions. Cell proliferation and sulfate consumption in the presence of nickel (4, 20 and 50 mg l(-1)), manganese (1.5, 10 and 25 mg l(-1)) and copper (1.5, 10 and 25 mg l(-1)) were measured. The presence of metals interfered in the sulfate biological removal however the concentration of sulfide produced was high enough to remove over 90 % of the metals in the environment. The molecular characterization of the bacterial consortium based on dsrB gene sequencing indicated the presence of Desulfovibrio desulfuricans, Desulfomonas pigra and Desulfobulbus sp. The results here presented indicate that this SRB culture may be employed for mine effluent bioremediation due to its potential for removing sulfate and metals, simultaneously. PMID:24710619

Barbosa, L P; Costa, P F; Bertolino, S M; Silva, J C C; Guerra-Sá, R; Leão, V A; Teixeira, M C

2014-08-01

47

Spore-Forming Thermophilic Sulfate-Reducing Bacteria Isolated from North Sea Oil Field Waters  

PubMed Central

Thermophilic sulfate-reducing bacteria were isolated from oil field waters from oil production platforms in the Norwegian sector of the North Sea. Spore-forming rods dominated in the enrichments when lactate, propionate, butyrate, or a mixture of aliphatic fatty acids (C4 through C6) was added as a carbon source and electron donor. Representative strains were isolated and characterized. The isolates grew autotrophically on H2-CO2 and heterotrophically on fatty acids such as formate, propionate, butyrate, caproate, valerate, pyruvate, and lactate and on alcohols such as methanol, ethanol, and propanol. Sulfate, sulfite, and thiosulfate but not nitrate could be used as an electron acceptor. The temperature range for growth was 43 to 78°C; the spores were extremely heat resistant and survived 131°C for 20 min. The optimum pH was 7.0. The isolates grew well in salt concentrations ranging from 0 to 800 mmol of NaCl per liter. Sulfite reductase P582 was present, but cytochrome c and desulfoviridin were not found. Electron micrographs revealed a gram-positive cell organization. The isolates were classified as a Desulfotomaculum sp. on the basis of spore formation, general physiological characteristics, and submicroscopic organization. To detect thermophilic spore-forming sulfate-reducing bacteria in oil field water, polyvalent antisera raised against antigens from two isolates were used. These bacteria were shown to be widespread in oil field water from different platforms. The origin of thermophilic sulfate-reducing bacteria in the pore water of oil reservoirs is discussed. Images PMID:16348538

Rosnes, Jan Thomas; Torsvik, Terje; Lien, Torleiv

1991-01-01

48

Promotion of ni2+ removal by masking toxicity to sulfate-reducing bacteria: addition of citrate.  

PubMed

The sulfate-reducing bioprocess is a promising technology for the treatment of heavy metal-containing wastewater. This work was conducted to investigate the possibility of promoting heavy metal removal by the addition of citrate to mask Ni2+ toxicity to sulfate-reducing bacteria (SRB) in batch reactors. SRB growth was completely inhibited in Ni2+-containing medium (1 mM) when lactate served as the sole carbon resource, leading to no sulfate reduction and Ni2+ removal. However, after the addition of citrate, SRB grew well, and sulfate was quickly reduced to sulfide. Simultaneously, the Ni-citrate complex was biodegraded to Ni2+ and acetate. The NiS precipitate was then formed, and Ni2+ was completely removed from the solution. It was suggested that the addition of citrate greatly alleviates Ni2+ toxicity to SRB and improves the removal of Ni2+, which was confirmed by quantitative real-time PCR targeting dissimilatory sulfite reductase (dsrAB) genes. Analysis of the carbon metabolism indicated that lactate instead of acetate served as the electron donor for sulfate reduction. This study offers a potential approach to increase the removal of heavy metals from wastewater in the single stage SRB-based bioprocess. PMID:25860948

Qian, Junwei; Zhu, Xiaoyu; Tao, Yong; Zhou, Yan; He, Xiaohong; Li, Daping

2015-01-01

49

A Cultured Greigite-Producing Magnetotactic Bacterium in a Novel Group of Sulfate-Reducing Bacteria  

NASA Astrophysics Data System (ADS)

Magnetotactic bacteria contain magnetosomes—intracellular, membrane-bounded, magnetic nanocrystals of magnetite (Fe3O4) or greigite (Fe3S4)—that cause the bacteria to swim along geomagnetic field lines. We isolated a greigite-producing magnetotactic bacterium from a brackish spring in Death Valley National Park, California, USA, strain BW-1, that is able to biomineralize greigite and magnetite depending on culture conditions. A phylogenetic comparison of BW-1 and similar uncultured greigite- and/or magnetite-producing magnetotactic bacteria from freshwater to hypersaline habitats shows that these organisms represent a previously unknown group of sulfate-reducing bacteria in the Deltaproteobacteria. Genomic analysis of BW-1 reveals the presence of two different magnetosome gene clusters, suggesting that one may be responsible for greigite biomineralization and the other for magnetite.

Lefèvre, Christopher T.; Menguy, Nicolas; Abreu, Fernanda; Lins, Ulysses; Pósfai, Mihály; Prozorov, Tanya; Pignol, David; Frankel, Richard B.; Bazylinski, Dennis A.

2011-12-01

50

A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria.  

PubMed

Magnetotactic bacteria contain magnetosomes--intracellular, membrane-bounded, magnetic nanocrystals of magnetite (Fe(3)O(4)) or greigite (Fe(3)S(4))--that cause the bacteria to swim along geomagnetic field lines. We isolated a greigite-producing magnetotactic bacterium from a brackish spring in Death Valley National Park, California, USA, strain BW-1, that is able to biomineralize greigite and magnetite depending on culture conditions. A phylogenetic comparison of BW-1 and similar uncultured greigite- and/or magnetite-producing magnetotactic bacteria from freshwater to hypersaline habitats shows that these organisms represent a previously unknown group of sulfate-reducing bacteria in the Deltaproteobacteria. Genomic analysis of BW-1 reveals the presence of two different magnetosome gene clusters, suggesting that one may be responsible for greigite biomineralization and the other for magnetite. PMID:22194580

Lefèvre, Christopher T; Menguy, Nicolas; Abreu, Fernanda; Lins, Ulysses; Pósfai, Mihály; Prozorov, Tanya; Pignol, David; Frankel, Richard B; Bazylinski, Dennis A

2011-12-23

51

Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io  

NASA Technical Reports Server (NTRS)

Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs, deepsea hydrothermal vents, soda and high salinity lakes, and cryo-environments. Furthermore, the StRB and SrRB have Astrobiological significance as these anaerobic extremophiles may represent the dominant relic life forms that inhabited our planet during the extensive volcanic activity in the Earth's early evolutionary period.

Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

2001-01-01

52

Molecular Characterization of Sulfate-Reducing Bacteria in the Guaymas Basin†  

PubMed Central

The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing. PMID:12732547

Dhillon, Ashita; Teske, Andreas; Dillon, Jesse; Stahl, David A.; Sogin, Mitchell L.

2003-01-01

53

Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin  

NASA Technical Reports Server (NTRS)

The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing.

Dhillon, Ashita; Teske, Andreas; Dillon, Jesse; Stahl, David A.; Sogin, Mitchell L.

2003-01-01

54

Oil Field Souring Control by Nitrate-Reducing Sulfurospirillum spp. That Outcompete Sulfate-Reducing Bacteria for Organic Electron Donors? †  

PubMed Central

Nitrate injection into oil reservoirs can prevent and remediate souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Nitrate stimulates nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) and heterotrophic nitrate-reducing bacteria (hNRB) that compete with SRB for degradable oil organics. Up-flow, packed-bed bioreactors inoculated with water produced from an oil field and injected with lactate, sulfate, and nitrate served as sources for isolating several NRB, including Sulfurospirillum and Thauera spp. The former coupled reduction of nitrate to nitrite and ammonia with oxidation of either lactate (hNRB activity) or sulfide (NR-SOB activity). Souring control in a bioreactor receiving 12.5 mM lactate and 6, 2, 0.75, or 0.013 mM sulfate always required injection of 10 mM nitrate, irrespective of the sulfate concentration. Community analysis revealed that at all but the lowest sulfate concentration (0.013 mM), significant SRB were present. At 0.013 mM sulfate, direct hNRB-mediated oxidation of lactate by nitrate appeared to be the dominant mechanism. The absence of significant SRB indicated that sulfur cycling does not occur at such low sulfate concentrations. The metabolically versatile Sulfurospirillum spp. were dominant when nitrate was present in the bioreactor. Analysis of cocultures of Desulfovibrio sp. strain Lac3, Lac6, or Lac15 and Sulfurospirillum sp. strain KW indicated its hNRB activity and ability to produce inhibitory concentrations of nitrite to be key factors for it to successfully outcompete oil field SRB. PMID:17308184

Hubert, Casey; Voordouw, Gerrit

2007-01-01

55

Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors.  

PubMed

Nitrate injection into oil reservoirs can prevent and remediate souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Nitrate stimulates nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) and heterotrophic nitrate-reducing bacteria (hNRB) that compete with SRB for degradable oil organics. Up-flow, packed-bed bioreactors inoculated with water produced from an oil field and injected with lactate, sulfate, and nitrate served as sources for isolating several NRB, including Sulfurospirillum and Thauera spp. The former coupled reduction of nitrate to nitrite and ammonia with oxidation of either lactate (hNRB activity) or sulfide (NR-SOB activity). Souring control in a bioreactor receiving 12.5 mM lactate and 6, 2, 0.75, or 0.013 mM sulfate always required injection of 10 mM nitrate, irrespective of the sulfate concentration. Community analysis revealed that at all but the lowest sulfate concentration (0.013 mM), significant SRB were present. At 0.013 mM sulfate, direct hNRB-mediated oxidation of lactate by nitrate appeared to be the dominant mechanism. The absence of significant SRB indicated that sulfur cycling does not occur at such low sulfate concentrations. The metabolically versatile Sulfurospirillum spp. were dominant when nitrate was present in the bioreactor. Analysis of cocultures of Desulfovibrio sp. strain Lac3, Lac6, or Lac15 and Sulfurospirillum sp. strain KW indicated its hNRB activity and ability to produce inhibitory concentrations of nitrite to be key factors for it to successfully outcompete oil field SRB. PMID:17308184

Hubert, Casey; Voordouw, Gerrit

2007-04-01

56

Methane-oxidizing Archaea Fix Nitrogen in Cooperation with Sulfate-reducing Bacteria in Deep-Sea Methane Seeps  

Microsoft Academic Search

Using 15N2 incubation experiments of deep-sea sediments combined with FISH-nanoSIMS, we show that uncultured syntrophic consortia of ANME-2 and sulfate-reducing bacteria are capable of nitrogen fixation.

V. J. Orphan; A. E. Dekas; R. Poretsky; J. Amend

2010-01-01

57

Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments  

PubMed Central

The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages (ANME-1 and ANME-2), peripherally related to the order Methanosarcinales, were consistently associated with methane seep marine sediments. The same sediments contained abundant 13C-depleted archaeal lipids, indicating that one or both of these archaeal groups are members of anaerobic methane-oxidizing consortia. 13C-depleted lipids and the signature 16S rDNAs for these archaeal groups were absent in nearby control sediments. Concurrent surveys of bacterial rDNAs revealed a predominance of ?-proteobacteria, in particular, close relatives of Desulfosarcina variabilis. Biomarker analyses of the same sediments showed bacterial fatty acids with strong 13C depletion that are likely products of these sulfate-reducing bacteria. Consistent with these observations, whole-cell fluorescent in situ hybridization revealed aggregations of ANME-2 archaea and sulfate-reducing Desulfosarcina and Desulfococcus species. Additionally, the presence of abundant 13C-depleted ether lipids, presumed to be of bacterial origin but unrelated to ether lipids of members of the order Desulfosarcinales, suggests the participation of additional bacterial groups in the methane-oxidizing process. Although the Desulfosarcinales and ANME-2 consortia appear to participate in the anaerobic oxidation of methane in marine sediments, our data suggest that other bacteria and archaea are also involved in methane oxidation in these environments. PMID:11282650

Orphan, V. J.; Hinrichs, K.-U.; Ussler, W.; Paull, C. K.; Taylor, L. T.; Sylva, S. P.; Hayes, J. M.; Delong, E. F.

2001-01-01

58

Isolation of Sulfate-Reducing Bacteria from Sediments Above the Deep-Subseafloor Aquifer  

PubMed Central

On a global scale, crustal fluids fuel a large part of the deep-subseafloor biosphere by providing electron acceptors for microbial respiration. In this study, we examined bacterial cultures from sediments of the Juan de Fuca Ridge, Northeast Pacific (IODP Site U1301). The sediments comprise three distinctive compartments: an upper sulfate-containing zone, formed by bottom-seawater diffusion, a sulfate-depleted zone, and a second (?140?m thick) sulfate-containing zone influenced by fluid diffusion from the basaltic aquifer. In order to identify and characterize sulfate-reducing bacteria, enrichment cultures from different sediment layers were set up, analyzed by molecular screening, and used for isolating pure cultures. The initial enrichments harbored specific communities of heterotrophic microorganisms. Strains affiliated to Desulfosporosinus lacus, Desulfotomaculum sp., and Desulfovibrio aespoeensis were isolated only from the top layers (1.3–9.1?meters below seafloor, mbsf), while several strains of Desulfovibrio indonesiensis and a relative of Desulfotignum balticum were obtained from near-basement sediments (240–262?mbsf). Physiological tests on three selected strains affiliated to Dv. aespoeensis, Dv. indonesiensis, and Desulfotignum balticum indicated that all reduce sulfate with a limited number of short-chain n-alcohols or fatty acids and were able to ferment either ethanol, pyruvate, or betaine. All three isolates shared the capacity of growing chemolithotrophically with H2 as sole electron donor. Strain P23, affiliating with Dv. indonesiensis, even grew autotrophically in the absence of any organic compounds. Thus, H2 might be an essential electron donor in the deep-subseafloor where the availability of organic substrates is limited. The isolation of non-sporeforming sulfate reducers from fluid-influenced layers indicates that they have survived the long-term burial as active populations even after the separation from the seafloor hundreds of meters above. PMID:22363336

Fichtel, Katja; Mathes, Falko; Könneke, Martin; Cypionka, Heribert; Engelen, Bert

2011-01-01

59

Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles.  

PubMed

Batch microcosms were setup to determine the impact of different sized zero valent iron (Fe(0)) particles on microbial sulfate reduction during the in situ bio-precipitation of metals. The microcosms were constructed with aquifer sediment and groundwater from a low pH (3.1), heavy-metal contaminated aquifer. Nano (nFe(0)), micro (mFe(0)) and granular (gFe(0)) sized Fe(0) particles were added to separate microcosms. Additionally, selected microcosms were also amended with glycerol as a C-source for sulfate-reducing bacteria. In addition to metal removal, Fe(0) in microcosms also raised the pH from 3.1 to 6.5, and decreased the oxidation redox potential from initial values of 249 to -226 mV, providing more favorable conditions for microbial sulfate reduction. mFe(0) and gFe(0) in combination with glycerol were found to enhance microbial sulfate reduction. However, no sulfate reduction occurred in the controls without Fe(0) or in the microcosm amended with nFe(0). A separate dose test confirmed the inhibition for sulfate reduction in presence of nFe(0). Hydrogen produced by Fe(0) was not capable of supporting microbial sulfate reduction as a lone electron donor in this study. Microbial analysis revealed that the addition of Fe(0) and glycerol shifted the microbial community towards Desulfosporosinus sp. from a population initially dominated by low pH and metal-resisting Acidithiobacillus ferrooxidans. PMID:24388832

Kumar, Naresh; Omoregie, Enoma O; Rose, Jerome; Masion, Armand; Lloyd, Jonathan R; Diels, Ludo; Bastiaens, Leen

2014-03-15

60

Competitive Oxidation of Volatile Fatty Acids by Sulfate and Nitrate-Reducing Bacteria from an Oil Field in Argentina  

Microsoft Academic Search

Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquen Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3

Aleksandr A. Grigoryan; Sabrina L. Cornish; Brenton Buziak; Shiping Lin; Adriana Cavallaro; Joseph J. Arensdorf; Gerrit Voordouw

2008-01-01

61

Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria  

SciTech Connect

Objective A: Electron transfer components necessary for uranium reduction. Objective B: Possible FNR-analog in the sulfate-reducing bacteria. Attempts to isolate FNR or FIKJ analogs from Desuflovibrio through the design of degenerate primers for amplification of portions of the genes has not been successful. In contrast, several amplicons have been generated for the genes encoding the regulators of two-component signal sequences. Since several global regulators fall into this class, we are attempting to obtain sufficient sequence information to indicate what metabolic pathways are affected by the regulators. Cloning and sequencing of two such amplicons has revealed that bona fide two-component regulators are present in Desulfovibrio.

Wall, Judy D.

1999-06-01

62

Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria  

SciTech Connect

The objectives of the previous grant period were designed to explore the electron transport pathway employed by the sulfate-reducing bacteria (SRB) for the reduction of U(VI) to U(IV). More specifically experiments were designed to determine whether U(VI) reduction by members of the genus Desulfovibrio was mediated by a unique, dedicated reductase or occurred as a fortuitous reaction with a reductase naturally involved in alternative reduction processes. In addition, the regulation of the hierarchical expression of terminal electron acceptors (reductases) in the SRB was to be examined.

Wall, Judy D.

2001-06-01

63

Contribution of enrichments and resampling for sulfate reducing bacteria diversity assessment by high-throughput cultivation.  

PubMed

The development of new high-throughput cultivation methods aims to increase the isolation efficiency as compared to standard techniques that often require enrichment procedures to compensate the low microbial recovery. In the current study, estuarine sulfate-reducing bacteria were isolated using an anaerobic isolation procedure in 384-well microplates. Ninety-nine strains were recovered from initial sediments. Isolates were identified according to their partial 16S rRNA sequences and clustered into 13 phylotypes. Besides, the increase in species richness obtained through enrichments or resampling was investigated. Forty-four enrichment procedures were conducted and shifts in sulfate-reducing bacterial communities were investigated through dsrAB gene fingerprinting. Despite efforts in conducting numerous enrichment conditions only few of them were statistically different from initial sample. The cultural diversity obtained from 3 of the most divergent enrichments, as well as from resampled sediments equally contributed to raise the sulfate-reducing diversity up to 22 phylotypes. Enrichments (selection of metabolism) or resampling (transient populations and micro-heterogeneity) may still be helpful to assess new microbial phylotypes. Nevertheless, all the newly cultivated strains were all representatives of minor Operational Taxonomic Units and could eventually be recovered by maintaining high-throughput isolation effort from the initial sediments. PMID:25578508

Colin, Yannick; Goñi-Urriza, Marisol; Caumette, Pierre; Guyoneaud, Rémy

2015-03-01

64

Effects of iron-reducing bacteria on carbon steel corrosion induced by thermophilic sulfate-reducing consortia.  

PubMed

Four thermophilic bacterial species, including the iron-reducing bacterium Geobacillus sp. G2 and the sulfate-reducing bacterium Desulfotomaculum sp. SRB-M, were employed to integrate a bacterial consortium. A second consortium was integrated with the same bacteria, except for Geobacillus sp. G2. Carbon steel coupons were subjected to batch cultures of both consortia. The corrosion induced by the complete consortium was 10 times higher than that induced by the second consortium, and the ferrous ion concentration was consistently higher in iron-reducing consortia. Scanning electronic microscopy analysis of the carbon steel surface showed mineral films colonized by bacteria. The complete consortium caused profuse fracturing of the mineral film, whereas the non-iron-reducing consortium did not generate fractures. These data show that the iron-reducing activity of Geobacillus sp. G2 promotes fracturing of mineral films, thereby increasing steel corrosion. PMID:24225375

Valencia-Cantero, Eduardo; Peña-Cabriales, Juan José

2014-02-28

65

D/H fractionation in lipids of facultative and obligate denitrifying and sulfate reducing bacteria  

NASA Astrophysics Data System (ADS)

The hydrogen isotopic composition of lipids has been shown to vary broadly in both cultured bacteria and in environmental samples. Culturing studies have indicated that this variability may primarily reflect metabolism; however, the limited number of organisms studied thus far prevents application of these trends to interpretation of environmental samples. Here we report D/H fractionations in anaerobic bacteria, including both facultative and obligate anaerobic organisms with a range of electron donors, acceptors, and metabolic pathways. Experiments using the metabolically flexible alphaproteobacterium Paracoccus denitrificans probe particular central metabolic pathways using a range of terminal electron acceptors. While a large range of ?D values has been observed during aerobic metabolism, denitrifying cultures produce a more limited range in ?D values that are more similar to each other than the corresponding aerobic culture. Data from the sulfate reducing bacteria Desulfobacterium autotrophicum and Desulfobacter hydrogenophilus indicate that chemolithoautotrophy and anaerobic heterotrophy can produce similar ?D values, and are similar between bacteria despite differing metabolic pathways. These results suggest that the fractionation of D/H depends both on the specific metabolic pathway and the electron acceptor. While this is not inconsistent with previous studies, it suggests the simple correspondence between ?D and metabolism previously understood from aerobic bacteria is not universally applicable.

Osburn, M. R.; Sessions, A. L.

2012-12-01

66

Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica.  

PubMed

The permanently frozen freshwater Lake Fryxell, located in the Dry Valleys of Antarctica, exhibits an ideal geochemistry for microbial sulfate reduction. To investigate the population of sulfate-reducing bacteria in Lake Fryxell, both 16S rRNA gene and metabolic primer sets targeting the dsrA gene for the dissimilatory sulfite reductase alpha subunit were employed to analyze environmental DNA obtained from the water column and sediments of Lake Fryxell. In addition, enrichment cultures of sulfate-reducing bacteria established at 4 degrees C from Lake Fryxell water were also screened using the dsrA primer set. The sequence information obtained showed that a diverse group of sulfate-reducing prokaryotes of the domain Bacteria inhabit Lake Fryxell. With one exception, the enrichment culture sequences were not represented within the environmental sequences. Sequence data were compared with the geochemical profile of Lake Fryxell to identify possible connections between the diversity of sulfate-reducing bacteria and limnological conditions. Several clone groups were highly localized with respect to lake depth and, therefore, experienced specific physiochemical conditions. However, all sulfate-reducing bacteria inhabiting Lake Fryxell must function under the constantly cold conditions characteristic of this extreme environment. PMID:16204557

Karr, Elizabeth A; Sattley, W Matthew; Rice, Melissa R; Jung, Deborah O; Madigan, Michael T; Achenbach, Laurie A

2005-10-01

67

PHYLOGENETIC TREE OF 16S RIBOSOMAL RNA SEQUENCES FROM SULFATE-REDUCING BACTERIA IN A SANDY MARINE ENVIRONMENT  

EPA Science Inventory

Phylogenetic divergence among sulfate-reducing bacteria in an estuarine sediment sample was investigated by PCR amplification and comparison of partial 16S rDNA sequences. wenty unique 16S RDNA sequences were found, 12 from delta subclass bacteria based on overall sequence simila...

68

Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem  

PubMed Central

About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen (“chemical microbially influenced corrosion”; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons (“electrical microbially influenced corrosion”; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments. PMID:24317078

Garrelfs, Julia

2014-01-01

69

Corrosion of iron by sulfate-reducing bacteria: new views of an old problem.  

PubMed

About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen ("chemical microbially influenced corrosion"; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons ("electrical microbially influenced corrosion"; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments. PMID:24317078

Enning, Dennis; Garrelfs, Julia

2014-02-01

70

Bioremediation of acid mine water using facultatively methylotrophic metal-tolerant sulfate-reducing bacteria  

Microsoft Academic Search

A microbial process is proposed for the decontamination of acid uranium mine water high in sulfates and metals. Sulfate reducers are suitable for such a process. Anaerobic reduction of sulfate results in the formation of H2S which leads to an increase in pH and the precipitation of the metals. As cheap an readily available carbon and energy source methanol was

Barbara C. Hard; S. Friedrich; W. Babel

1997-01-01

71

New Family of Tungstate-Responsive Transcriptional Regulators in Sulfate-Reducing Bacteria  

PubMed Central

The trace elements molybdenum and tungsten are essential components of cofactors of many metalloenzymes. However, in sulfate-reducing bacteria, high concentrations of molybdate and tungstate oxyanions inhibit growth, thus requiring the tight regulation of their homeostasis. By a combination of bioinformatic and experimental techniques, we identified a novel regulator family, tungstate-responsive regulator (TunR), controlling the homeostasis of tungstate and molybdate in sulfate-reducing deltaproteobacteria. The effector-sensing domains of these regulators are similar to those of the known molybdate-responsive regulator ModE, while their DNA-binding domains are homologous to XerC/XerD site-specific recombinases. Using a comparative genomics approach, we identified DNA motifs and reconstructed regulons for 40 TunR family members. Positional analysis of TunR sites and putative promoters allowed us to classify most TunR proteins into two groups: (i) activators of modABC genes encoding a high-affinity molybdenum and tungsten transporting system and (ii) repressors of genes for toluene sulfonate uptake (TSUP) family transporters. The activation of modA and modBC genes by TunR in Desulfovibrio vulgaris Hildenborough was confirmed in vivo, and we discovered that the activation was diminished in the presence of tungstate. A predicted 30-bp TunR-binding motif was confirmed by in vitro binding assays. A novel TunR family of bacterial transcriptional factors controls tungstate and molybdate homeostasis in sulfate-reducing deltaproteobacteria. We proposed that TunR proteins participate in protection of the cells from the inhibition by these oxyanions. To our knowledge, this is a unique case of a family of bacterial transcriptional factors evolved from site-specific recombinases. PMID:23913324

Rajeev, Lara; Luning, Eric G.; Zane, Grant M.; Siddartha, Kavya; Rodionov, Dmitry A.; Dubchak, Inna; Arkin, Adam P.; Wall, Judy D.; Mukhopadhyay, Aindrila

2013-01-01

72

Application Of Immobilized Sulfate Reducing Bacteria For Permeable Reactive Barriers In Abandoned Coal Mines  

NASA Astrophysics Data System (ADS)

The decline of the Korean coal industry has been drastic in production and consumption. This has been resulted mainly from the environmental concern and the collapse of commercial viability, which has eventually necessitated the government to implement the coal industry rationalization policies to reduce coal production and close down uneconomical mines. The overall drainage rates from abandoned coal mines reaches up to 80,000 ton/day. As a measure of controlling the acid mine drainage from abandoned coal mines, reactive materials in the pathways of drainage, designed to intercept and to transform the contaminants into environmentally acceptable forms can be applied at mines with small drainage rates. The main objective of this study is to design a permeable reactive barrier(PRB) to treat low flow and/or low contaminant loads of acid mine drainage. The PRB is comprised of immobilized sulfate reducing bacteria in hard beads and limestone to remove heavy metals and to raise the pH of AMD. A laboratory reactor was used to prepare a mixed culture of sulfate reducing bacteria. The microbes were separated and mixed with biodegradable matrix to form spherical beads. In order to maintain the viability of micro-organisms for a prolonged period, substrates such as saw dust, polysaccharide or glycerol was supplemented for the beads preparation. The strength of beads fortified by powered limestone to control the permeability of PRB. Different mixtures of limestone and the immobilized beads were tested to determine hydraulic conductivity and AMD treatment capacities. The characteristics of the spherical beads at various pH of AMD was investigated.

Kim, K.; Hur, W.; Choi, S.; Min, K.; Baek, H.

2006-05-01

73

Analyses of Spatial Distributions of Sulfate-Reducing Bacteria and Their Activity in Aerobic Wastewater Biofilms  

PubMed Central

The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O2, H2S, NO2?, NO3?, NH4+, and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 109 to 1010 cells per cm3 of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 108 to 109 cells per cm3). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 ?m below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S0) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 ?m), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate. PMID:10543829

Okabe, Satoshi; Itoh, Tsukasa; Satoh, Hisashi; Watanabe, Yoshimasa

1999-01-01

74

Arsenic Thiolation and the Role of Sulfate-Reducing Bacteria from the Human Intestinal Tract  

PubMed Central

Background: Arsenic (As) toxicity is primarily based on its chemical speciation. Although inorganic and methylated As species are well characterized in terms of metabolism and formation in the human body, the origin of thiolated methylarsenicals is still unclear. Objectives: We sought to determine whether sulfate-reducing bacteria (SRB) from the human gut are actively involved in the thiolation of monomethylarsonic acid (MMAV). Methods: We incubated human fecal and colon microbiota in a batch incubator and in a dynamic gut simulator with a dose of 0.5 mg MMAV in the absence or presence of sodium molybdate, an SRB inhibitor. We monitored the conversion of MMAV into monomethyl monothioarsonate (MMMTAV) and other As species by high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry analysis. We monitored the sulfate-reducing activity of the SRB by measuring hydrogen sulfide (H2S) production. We used molecular analysis to determine the dominant species of SRB responsible for As thiolation. Results: In the absence of sodium molybdate, the SRB activity—primarily derived from Desulfovibrio desulfuricans (piger)—was specifically and proportionally correlated (p < 0.01) to MMAV conversion into MMMTAV. Inactivating the SRB with molybdate did not result in MMAV thiolation; however, we observed that the microbiota from a dynamic gut simulator were capable of demethylating 4% of the incubated MMAV into arsenous acid (iAsIII), the trivalent and more toxic form of arsenic acid (iAsV). Conclusion: We found that SRB of human gastrointestinal origin, through their ability to produce H2S, were necessary and sufficient to induce As thiolation. The toxicological consequences of this microbial As speciation change are not yet clear. However, given the efficient epithelial absorption of thiolated methylarsenicals, we conclude that the gut microbiome—and SRB activity in particular—should be incorporated into toxicokinetic analysis carried out after As exposure. Citation: DC.Rubin SS, Alava P, Zekker I, Du Laing G, Van de Wiele T. 2014. Arsenic thiolation and the role of sulfate-reducing bacteria from the human intestinal tract. Environ Health Perspect 122:817–822;?http://dx.doi.org/10.1289/ehp.1307759 PMID:24833621

Alava, Pradeep; Zekker, Ivar; Du Laing, Gijs

2014-01-01

75

Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs  

Microsoft Academic Search

Mildly acidic metal (Cu, Zn, Ni, Fe, Al and Mg), arsenic and sulfate contaminated waters were treated, over a 14 day period at 25°C, in a bench-scale upflow anaerobic packed bed reactor filled with silica sand and employing a mixed population of sulfate-reducing bacteria (SRB). The activity of SRB increased the water pH from ?4.5 to 7.0, and enhanced the

Tony Jong; David L Parry

2003-01-01

76

Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments.  

PubMed

Marine gas and hydrocarbon seeps are hot spots of sulfate reduction which is fuelled by methane, other short-chain alkanes or a complex mixture of hydrocarbons. In this study, we investigated the global distribution and abundance of sulfate-reducing bacteria (SRB) in eight gas and hydrocarbon seeps by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH). The majority of Deltaproteobacteria were assigned to specific SRB groups, i.e. 83 ± 14% at gas seeps and 61 ± 35% at hydrocarbon seeps, indicating that the probe set used was sufficient for classification of marine SRB. Statistical analysis showed that SRB abundance and distribution were significantly influenced by habitat type and sediment depth. Members of the Desulfosarcina/Desulfococcus (DSS) clade strongly dominated all sites. Our data indicated the presence of many diverse and highly specialized DSS species of low abundance rather than a single abundant subgroup. In addition, SEEP-SRB2, an uncultured deep-branching deltaproteobacterial group, was ubiquitously found in high abundances at all sites. SEEP-SRB2 members occurred either in a novel association with methanotrophic archaea in shell-type ANME-2/SEEP-SRB2 consortia, in association with ANME-1 archaea in Black Sea microbial mats or as single cells. Two other uncultured groups, SEEP-SRB3 and SEEP-SRB4, were preferentially detected in surface sediments from mud volcanoes. PMID:22882476

Kleindienst, Sara; Ramette, Alban; Amann, Rudolf; Knittel, Katrin

2012-10-01

77

Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments  

PubMed Central

The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5 × 0.8 ?m. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkane n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes. PMID:25806023

Jaekel, Ulrike; Zedelius, Johannes; Wilkes, Heinz; Musat, Florin

2015-01-01

78

Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria  

NASA Astrophysics Data System (ADS)

We present a travel-time based reactive transport model to simulate an in-situ bioremediation experiment for demonstrating enhanced bioreduction of uranium(VI). The model considers aquatic equilibrium chemistry of uranium and other groundwater constituents, uranium sorption and precipitation, and the microbial reduction of nitrate, sulfate and U(VI). Kinetic sorption/desorption of U(VI) is characterized by mass transfer between stagnant micro-pores and mobile flow zones. The model describes the succession of terminal electron accepting processes and the growth and decay of sulfate-reducing bacteria, concurrent with the enzymatic reduction of aqueous U(VI) species. The effective U(VI) reduction rate and sorption site distributions are determined by fitting the model simulation to an in-situ experiment at Oak Ridge, TN. Results show that (1) the presence of nitrate inhibits U(VI) reduction at the site; (2) the fitted effective rate of in-situ U(VI) reduction is much smaller than the values reported for laboratory experiments; (3) U(VI) sorption/desorption, which affects U(VI) bioavailability at the site, is strongly controlled by kinetics; (4) both pH and bicarbonate concentration significantly influence the sorption/desorption of U(VI), which therefore cannot be characterized by empirical isotherms; and (5) calcium-uranyl-carbonate complexes significantly influence the model performance of U(VI) reduction.

Luo, Jian; Weber, Frank-Andreas; Cirpka, Olaf A.; Wu, Wei-Min; Nyman, Jennifer L.; Carley, Jack; Jardine, Philip M.; Criddle, Craig S.; Kitanidis, Peter K.

2007-06-01

79

Immunological Cross-Reactivities of Adenosine-5?-Phosphosulfate Reductases from Sulfate-Reducing and Sulfide-Oxidizing Bacteria  

PubMed Central

Crude extracts from 14 species of sulfate-reducing bacteria comprising the genera Desulfovibrio, Desulfotomaculum, Desulfobulbus, and Desulfosarcina and from three species of sulfide-oxidizing bacteria were tested in an enzyme-linked immunosorbent assay with polyclonal antisera to adenosine 5?-phosphosulfate reductase from Desulfovibrio desulfuricans G100A. The results showed that extracts from Desulfovibrio species were all highly cross-reactive, whereas extracts from the other sulfate-reducing genera showed significantly less cross-reaction. An exception was Desulfotomaculum orientis, which responded more like Desulfovibrio species than the other Desulfotomaculum strains tested. Extracts from colorless or photosynthetic sulfur bacteria were either unreactive or exhibited very low levels of reactivity with the antibodies to the enzyme from sulfate reducers. These results were confirmed by using partially purified enzymes from sulfate reducers and the most cross-reactive sulfide oxidizer, Thiobacillus denitrificans. Two types of monoclonal antibodies to adenosine 5?-phosphosulfate reductase were also isolated. One type reacted more variably with the enzymes of the sulfate reducers and poorly with the Thiobacillus enzyme, whereas the second reacted strongly with Desulfovibrio, Desulfotomaculum orientis, and Thiobacillus enzymes. Images PMID:16348440

Odom, J. Martin; Jessie, Karen; Knodel, Elinor; Emptage, Mark

1991-01-01

80

Phototropic sulfur and sulfate-reducing bacteria in the chemocline of meromictic Lake Cadagno, Switzerland  

Microsoft Academic Search

Lake Cadagno, a crenogenic meromictic lake located in the catchment area of a dolomite vein rich in gypsum in the Piora Valley in the southern Alps of Switzerland, is characterized by a compact chemocline with high concentrations of sulfate, steep gradients of oxygen, sulfide and light and a turbidity maximum that correlates to large numbers of bacteria (up to 107

Mauro TONOLLA; Sandro PEDUZZI; Antonella DEMARTA; Raffaele PEDUZZI; Dittmar HAHN

81

Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust  

PubMed Central

Iron (Fe0) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H2S, and scavenge of ‘cathodic’ H2 from chemical reaction of Fe0 with H2O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe0 year?1), while conventional H2-scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO3, Mg/CaCO3) deposited on the corroding metal exhibited electrical conductivity (50 S m?1). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe0 ? 4Fe2+ + 8e?) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e? + SO42? + 9H+ ? HS? + 4H2O). Hence, anaerobic microbial iron corrosion obviously bypasses H2 rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments. PMID:22616633

Enning, Dennis; Venzlaff, Hendrik; Garrelfs, Julia; Dinh, Hang T; Meyer, Volker; Mayrhofer, Karl; Hassel, Achim W; Stratmann, Martin; Widdel, Friedrich

2012-01-01

82

BIOREACTOR ECONOMICS, SIZE AND TIME OF OPERATION (BEST) COMPUTER SIMULATOR FOR DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS  

EPA Science Inventory

BEST (bioreactor economics, size and time of operation) is an Excel? spreadsheet-based model that is used in conjunction with the public domain geochemical modeling software, PHREEQCI. The BEST model is used in the design process of sulfate-reducing bacteria (SRB) field bioreacto...

83

USING RESPIROMETRY TO MEASURE HYDROGEN UTILIZATION IN SULFATE REDUCING BACTERIA IN THE PRESENCE OF COPPER AND ZINC  

EPA Science Inventory

A respirometric method has been developed to measure hydrogen utilization by sulfate reducing bacteria (SRB). One application of this method has been to test inhibitory metals effects on the SRB culture used in a novel acid mine drainage treatment technology. As a control param...

84

A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde  

E-print Network

A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde Jie Wen a , Kaili Zhao a , Tingyue Gu a,*, Issam I. Raad b: Desulfovibrio desulfuricans Biofilm treatment EDDS Glutaraldehyde MIC a b s t r a c t Generally speaking, a much

Gu, Tingyue

85

GENUS- AND GROUP-SPECIFIC HYBRIDIZATION PROBES FOR DETERMINATIVE AND ENVIRONMENTAL STUDIES OF SULFATE-REDUCING BACTERIA  

EPA Science Inventory

A set of six oligonucleotides, complementary to conserved tracts of 16S rRNA from phylogenetically-defined groups of sulfate-reducing bacteria, was characterized for use as hybridization probes in determinative and environmental microbiology. our probes were genus specific and id...

86

Stable Carbon Isotope Ratios of Lipid Biomarkers and Biomass for Sulfate-reducing Bacteria Grown with Different Substrates  

NASA Technical Reports Server (NTRS)

We have determined isotope ratios of biomass and Fatty Acids Methyl Esters (FAME) for four Sulfate-Reducing Bacteria (SRB) grown lithotrophically and heterotrophically, and are investigating whether these biomarker signatures can reveal the ecological role and distribution of SRB within microbial mats. Additional information is contained in the original extended abstract.

Londry, K. L.; Jahnke, L. L.; Des Marais, D. J.

2001-01-01

87

Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria  

Microsoft Academic Search

1. Dry weight yields from mixed cultures ofProsthecochloris aestuarii orChlorobium limicola with the sulfur reducingDesulfuromonas acetoxidans were determined on different growth limiting amounts of acetate, ethanol or propanol. The obtained yields agreed well with values predicted from stoichiometric calculations. 2. From mixed cultures of twoChlorobium limicola strains withDesulfovibrio desulfuricans orD. gigas on ethanol as the growth limiting substrate, dry weight

Hanno Biebl; Norbert Pfennig

1978-01-01

88

Tackling the minority: sulfate-reducing bacteria in an archaea-dominated subsurface biofilm  

PubMed Central

Archaea are usually minor components of a microbial community and dominated by a large and diverse bacterial population. In contrast, the SM1 Euryarchaeon dominates a sulfidic aquifer by forming subsurface biofilms that contain a very minor bacterial fraction (5%). These unique biofilms are delivered in high biomass to the spring outflow that provides an outstanding window to the subsurface. Despite previous attempts to understand its natural role, the metabolic capacities of the SM1 Euryarchaeon remain mysterious to date. In this study, we focused on the minor bacterial fraction in order to obtain insights into the ecological function of the biofilm. We link phylogenetic diversity information with the spatial distribution of chemical and metabolic compounds by combining three different state-of-the-art methods: PhyloChip G3 DNA microarray technology, fluorescence in situ hybridization (FISH) and synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy. The results of PhyloChip and FISH technologies provide evidence for selective enrichment of sulfate-reducing bacteria, which was confirmed by the detection of bacterial dissimilatory sulfite reductase subunit B (dsrB) genes via quantitative PCR and sequence-based analyses. We further established a differentiation of archaeal and bacterial cells by SR-FTIR based on typical lipid and carbohydrate signatures, which demonstrated a co-localization of organic sulfate, carbonated mineral and bacterial signatures in the biofilm. All these results strongly indicate an involvement of the SM1 euryarchaeal biofilm in the global cycles of sulfur and carbon and support the hypothesis that sulfidic springs are important habitats for Earth's energy cycles. Moreover, these investigations of a bacterial minority in an Archaea-dominated environment are a remarkable example of the great power of combining highly sensitive microarrays with label-free infrared imaging. PMID:23178669

Probst, Alexander J; Holman, Hoi-Ying N; DeSantis, Todd Z; Andersen, Gary L; Birarda, Giovanni; Bechtel, Hans A; Piceno, Yvette M; Sonnleitner, Maria; Venkateswaran, Kasthuri; Moissl-Eichinger, Christine

2013-01-01

89

Dechlorination of trichlorofluoromethane (CFC-11) by sulfate-reducing bacteria from an aquifer contaminated with halogenated aliphatic compounds.  

PubMed Central

Groundwater samples were obtained from a deep aquifer contaminated with halogenated aliphatic compounds. One-milliliter samples contained 9.2 x 10(5) total bacteria (by acridine orange microscopic counts) and 2.5 x 10(3) sulfate-reducing bacteria (by most probable number analysis). Samples were incubated anaerobically in a basal salts medium with acetate as the electron donor and nitrate and sulfate as the electron acceptors. Residual levels of trichlorofluoromethane (CFC-11) in samples were biotically degraded, while trichloroethylene was not. When successively higher levels of CFC-11 were added, increasingly rapid degradation rates were observed. Concomitant with CFC-11 degradation was the near stoichiometric production of fluorodichloromethane (HCFC-21); the production of HCFC-21 was verified by mass spectrometry. CFC-11 degradation was dependent on the presence of acetate (or butyrate) and sulfate but was independent of nitrate. Other carbon sources such as lactate and isopropanol did not support the degradation. The addition of 1 mM sodium sulfide completely inhibited CFC-11 degradation; however, degradation occurred in the presence of 2 mM 2-bromoethanesulfonic acid. These results indicate that the anaerobic dechlorination of CFC-11 is carried out by sulfate-reducing bacteria and not by denitrifying or methanogenic bacteria. Images PMID:7811093

Sonier, D N; Duran, N L; Smith, G B

1994-01-01

90

A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea.  

PubMed

The number of sequenced genomes of sulfate reducing organisms (SRO) has increased significantly in the recent years, providing an opportunity for a broader perspective into their energy metabolism. In this work we carried out a comparative survey of energy metabolism genes found in 25 available genomes of SRO. This analysis revealed a higher diversity of possible energy conserving pathways than classically considered to be present in these organisms, and permitted the identification of new proteins not known to be present in this group. The Deltaproteobacteria (and Thermodesulfovibrio yellowstonii) are characterized by a large number of cytochromes c and cytochrome c-associated membrane redox complexes, indicating that periplasmic electron transfer pathways are important in these bacteria. The Archaea and Clostridia groups contain practically no cytochromes c or associated membrane complexes. However, despite the absence of a periplasmic space, a few extracytoplasmic membrane redox proteins were detected in the Gram-positive bacteria. Several ion-translocating complexes were detected in SRO including H(+)-pyrophosphatases, complex I homologs, Rnf, and Ech/Coo hydrogenases. Furthermore, we found evidence that cytoplasmic electron bifurcating mechanisms, recently described for other anaerobes, are also likely to play an important role in energy metabolism of SRO. A number of cytoplasmic [NiFe] and [FeFe] hydrogenases, formate dehydrogenases, and heterodisulfide reductase-related proteins are likely candidates to be involved in energy coupling through electron bifurcation, from diverse electron donors such as H(2), formate, pyruvate, NAD(P)H, ?-oxidation, and others. In conclusion, this analysis indicates that energy metabolism of SRO is far more versatile than previously considered, and that both chemiosmotic and flavin-based electron bifurcating mechanisms provide alternative strategies for energy conservation. PMID:21747791

Pereira, Inês A Cardoso; Ramos, Ana Raquel; Grein, Fabian; Marques, Marta Coimbra; da Silva, Sofia Marques; Venceslau, Sofia Santos

2011-01-01

91

A Comparative Genomic Analysis of Energy Metabolism in Sulfate Reducing Bacteria and Archaea  

PubMed Central

The number of sequenced genomes of sulfate reducing organisms (SRO) has increased significantly in the recent years, providing an opportunity for a broader perspective into their energy metabolism. In this work we carried out a comparative survey of energy metabolism genes found in 25 available genomes of SRO. This analysis revealed a higher diversity of possible energy conserving pathways than classically considered to be present in these organisms, and permitted the identification of new proteins not known to be present in this group. The Deltaproteobacteria (and Thermodesulfovibrio yellowstonii) are characterized by a large number of cytochromes c and cytochrome c-associated membrane redox complexes, indicating that periplasmic electron transfer pathways are important in these bacteria. The Archaea and Clostridia groups contain practically no cytochromes c or associated membrane complexes. However, despite the absence of a periplasmic space, a few extracytoplasmic membrane redox proteins were detected in the Gram-positive bacteria. Several ion-translocating complexes were detected in SRO including H+-pyrophosphatases, complex I homologs, Rnf, and Ech/Coo hydrogenases. Furthermore, we found evidence that cytoplasmic electron bifurcating mechanisms, recently described for other anaerobes, are also likely to play an important role in energy metabolism of SRO. A number of cytoplasmic [NiFe] and [FeFe] hydrogenases, formate dehydrogenases, and heterodisulfide reductase-related proteins are likely candidates to be involved in energy coupling through electron bifurcation, from diverse electron donors such as H2, formate, pyruvate, NAD(P)H, ?-oxidation, and others. In conclusion, this analysis indicates that energy metabolism of SRO is far more versatile than previously considered, and that both chemiosmotic and flavin-based electron bifurcating mechanisms provide alternative strategies for energy conservation. PMID:21747791

Pereira, Inês A. Cardoso; Ramos, Ana Raquel; Grein, Fabian; Marques, Marta Coimbra; da Silva, Sofia Marques; Venceslau, Sofia Santos

2011-01-01

92

Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats  

PubMed Central

Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB). However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico—permanently submerged Microcoleus microbial mat (GN-S), and intertidal Lyngbya microbial mat (GN-I)—were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of DsrA phylotypes were responsible for H2 consumption. Incubation with 13C-acetate and NanoSIMS (secondary ion mass-spectrometry) indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen) was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi. PMID:24616716

Lee, Jackson Z.; Burow, Luke C.; Woebken, Dagmar; Everroad, R. Craig; Kubo, Mike D.; Spormann, Alfred M.; Weber, Peter K.; Pett-Ridge, Jennifer; Bebout, Brad M.; Hoehler, Tori M.

2013-01-01

93

Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy  

NASA Astrophysics Data System (ADS)

Enhanced process understanding of engineered geothermal systems is a prerequisite to optimize plant reliability and economy. We investigated microbial, geochemical and mineralogical aspects of a geothermal groundwater system located in the Molasse Basin by fluid analysis. Fluids are characterized by temperatures ranging from 61°C to 103°C, salinities from 600 to 900 mg/l and a dissolved organic carbon content (DOC) between 6.4 to 19.3 mg C/l. The microbial population of fluid samples was analyzed by genetic fingerprinting techniques based on PCR-amplified 16S rRNA- and dissimilatory sulfite reductase genes. Despite of the high temperatures, microbes were detected in all investigated fluids. Fingerprinting and DNA sequencing enabled a correlation to metabolic classes and biogeochemical processes. The analysis revealed a broad diversity of sulfate-reducing bacteria. Overall, the detection of microbes known to be involved in biocorrosion and mineral precipitation indicates that microorganisms could play an important role for the understanding of processes in engineered geothermal systems.

Alawi, Mashal; Lerm, Stephanie; Vetter, Alexandra; Wolfgramm, Markus; Seibt, Andrea; Würdemann, Hilke

2011-06-01

94

Monitoring microbial populations of sulfate-reducing bacteria using an impedimetric immunosensor based on agglutination assay.  

PubMed

An impedimetric immunosensor was fabricated for rapid and non-labeled detection of sulfate-reducing bacteria, Desulforibrio caledoiensis (SRB) by immobilizing lectin-Concanavalin A using an agglutination assay. The immobilization of lectin was conducted using amine coupling on the surface of a gold (Au) electrode assembled with 11-Mercaptoundecanoic acid. Electrochemical impedance spectroscopy (EIS) was used to verify the stepwise assembly of the sensor system. The work conditions of the impedimetric immunosensor, such as pH of the buffer solutions and the incubation time of lectin, were optimized. Faradic impedance spectra for charge transfer for the redox probe Fe(CN)(6)(3-/4-)were measured to determine SRB concentrations. The diameter of the Nyquist diagram that is equal to the charge-transfer resistance (R(ct)) increased with increasing SRB concentration. A linear relationship between R(ct) and SRB concentration was obtained in SRB concentration range of 1.8 to 1.8 x 10(7)cfu/ml. The variation of the SRB population during the growth process was also monitored using the impedimetric immunosensor. This approach has great potential for simple, low-cost, and time-saving monitoring of microbial populations. PMID:19782217

Wan, Yi; Zhang, Dun; Hou, Baorong

2009-11-15

95

Immunomagnetically Captured Thermophilic Sulfate-Reducing Bacteria from North Sea Oil Field Waters  

PubMed Central

Immunomagnetic beads (IMB) were used to recover thermophilic sulfate-reducing bacteria from oil field waters from oil production platforms in the Norwegian sector of the North Sea. IMB coated with polyclonal antibodies against whole-cell antigens of the thermophilic Thermodesulfobacterium mobile captured strains GFA1, GFA2, and GFA3. GFA1 was serologically and morphologically identical to T. mobile. GFA2 and GFA3 were spore forming and similar to the Desulfotomaculum strains T90A and T93B previously isolated from North Sea oil field waters by a classical enrichment procedure. Western blots (immunoblots) of whole cells showed that GFA2, GFA3, T90A, and T93B are different serotypes of the same Desulfotomaculum species. Monoclonal antibodies (MAb) against T. mobile type strain cells were produced and used as capture agents on IMB. These MAb, named A4F4, were immunoglobulin M; they were specific to T. mobile and directed against lipopolysaccharides. The prevailing cells immunocaptured with MAb A4F4 were morphologically and serologically similar to T. mobile type strain cells. T. mobile was not detected in these oil field waters by classical enrichment procedures. Furthermore, extraction with antibody-coated IMB allowed pure strains to be isolated directly from primary enrichment cultures without prior time-consuming subculturing and consecutive transfers to selective media. Images PMID:16348693

Christensen, Bjørn; Torsvik, Terje; Lien, Torleiv

1992-01-01

96

Anaerobic Oxidation of o-Xylene, m-Xylene, and Homologous Alkylbenzenes by New Types of Sulfate-Reducing Bacteria  

PubMed Central

Various alkylbenzenes were depleted during growth of an anaerobic, sulfate-reducing enrichment culture with crude oil as the only source of organic substrates. From this culture, two new types of mesophilic, rod-shaped sulfate-reducing bacteria, strains oXyS1 and mXyS1, were isolated with o-xylene and m-xylene, respectively, as organic substrates. Sequence analyses of 16S rRNA genes revealed that the isolates affiliated with known completely oxidizing sulfate-reducing bacteria of the ? subclass of the class Proteobacteria. Strain oXyS1 showed the highest similarities to Desulfobacterium cetonicum and Desulfosarcina variabilis (similarity values, 98.4 and 98.7%, respectively). Strain mXyS1 was less closely related to known species, the closest relative being Desulfococcus multivorans (similarity value, 86.9%). Complete mineralization of o-xylene and m-xylene was demonstrated in quantitative growth experiments. Strain oXyS1 was able to utilize toluene, o-ethyltoluene, benzoate, and o-methylbenzoate in addition to o-xylene. Strain mXyS1 oxidized toluene, m-ethyltoluene, m-isoproyltoluene, benzoate, and m-methylbenzoate in addition to m-xylene. Strain oXyS1 did not utilize m-alkyltoluenes, whereas strain mXyS1 did not utilize o-alkyltoluenes. Like the enrichment culture, both isolates grew anaerobically on crude oil with concomitant reduction of sulfate to sulfide. PMID:10049854

Harms, Gerda; Zengler, Karsten; Rabus, Ralf; Aeckersberg, Frank; Minz, Dror; Rosselló-Mora, Ramon; Widdel, Friedrich

1999-01-01

97

Biomarkers of sulfate reducing bacteria from a variety of different aged samples including a modern microbial mat  

NASA Astrophysics Data System (ADS)

Most biomarkers present in sediments occur in only trace concentrations, trapped in kerogen or may be highly functionalised especially in recent sedimentary deposits making them difficult to chromatographically resolve, thus presenting considerable analytical challenges, especially for isotope studies. Innovative hydro (Hy) pyrolysis (Py) techniques are able to target or convert many of these compounds into free hydrocarbons more amenable to gas chromatography mass-spectrometry (GC-MS) and compound-specific isotope analysis (CSIA). HyPy has been applied to a modern layered smooth mat from Shark Bay, Western Australia. Saturate and aromatic fractions from different layers of the mat have been analysed by GC-MS and CSIA. After HyPy, an even-odd distribution of n-alkanes has been revealed as well as very long-chain n-alkanes up to n-C38. Stable carbon isotopic values of the n-alkanes indicated the presence of at least two bacterial communities. The short-chain n-alkanes were likely to be representative of a cyanobacteria community (?13C, C15-C23, - 18 to -25 %VPDB) while the carbon isotopic values of the long-chain n-alkanes supported the presence of sulfate reducing bacteria (?13C, C25-C33, - 30 to - 34 %VPDB). Long-chain fatty acids have been previously reported in sulfate reducing bacteria. It is hypothesised that this distribution and isotopic character representing sulfate reducing bacteria consortia may be preserved in the rock record. This hypothesis has been tested in Australian rocks: a Devonian carbonaceous concretion containing an exceptionally well preserved fossil invertebrate from the Canning Basin, Western Australia, a Paleoproterozoic sample (1.6 billion years old) from a lead-zinc ore deposit from the McArthur Basin, Northern Territories and a Paleoproterozoic chert (2.3 billion years old) from the Pilbara, Western Australia. Biomarkers of these samples showed a strong predominance of long-chain n-alkanes, up to n-C38 with an even-odd distribution of the n-alkanes. Stable carbon isotope values were highly depleted and were concordant with the values obtained in the modern mat for sulfate reducing bacteria. The general similarity in the n-alkane distributions of these samples point to a sulfate reducing bacteria consortia.

Pages, A.; Grice, K.; Lockhart, R.; Holman, A.; Melendez, I.; Van Kranendonk, M.; Jaraula, C.

2011-12-01

98

Enzymatic catalysis of mercury methylation by planktonic and biofilm cultures of sulfate- reducing bacteria  

NASA Astrophysics Data System (ADS)

While biofilms are now known to be the predominant form of microbial growth in nature, little is known about their role in environmental mercury (Hg) methylation. Due to its long-range atmospheric transport, Hg contamination of food chains is a worldwide problem, impacting even pristine areas. Among different forms of mercury species, methylmercury (MeHg) is an extremely neurotoxic and biomagnification-prone compound that can lead to severely adverse health effects on wildlife and humans. Considerable studies have shown that in the aquatic environment the external supply of MeHg is not sufficient to account for MeHg accumulation in biota and in situ biological MeHg formation plays a critical role in determining the amount of MeHg in food webs; moreover, sulfate-reducing bacteria (SRB) has been identified as the principal Hg-methylating organisms in nature. In a wide range of aquatic systems wetlands are considered important sites for Hg methylation mostly because of the environmental factors that promote microbial activity within, and biofilms are especially important in wetland ecosystems due to large amount of submerged surfaces. Although recent work has focused on the environmental factors that control MeHg production and the conditions that affect the availability of inorganic Hg to SRB, much remains to be understood about the biochemical mechanism of the Hg methylation process in SRB, especially in the biofilm-growth of these microbes. Data from our previous study with SRB strains isolated from a coastal wetland suggested that the specific Hg methylation rate found was approximately an order of magnitude higher in biofilm cells than in planktonic cells. In order to investigate possible reasons for this observed difference, and to test if this phenomenon is observed in other strains, we conducted chloroform, fluroacetate and molybdate inhibition assays in both complete and incomplete-oxidizing SRB species (Desulfovibrio desulfuricans M8, Desulfococcus sp. Desulfobactor sp. BG8) grown in planktonic and biofilm form, as the acetyl- coenzyme A pathway involved with cobalamin has been hypothesized to be the pathway for Hg methylation. The purpose of this study was to probe whether differences in the enzymatically catalyzed process caused differential methylation rates between the species and also between the different forms of culture growth. Any attempts to control the environmentally undesirable Hg methylation process would benefit from a better understanding of the biochemical mechanism involved.

Lin, C.; Kampalath, R.; Jay, J.

2007-12-01

99

Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina.  

PubMed

Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquén Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3 mM each) and excess sulfate, SRB first used propionate and butyrate for the production of acetate, which reached concentrations of up to 12 mM prior to being used as an electron donor for sulfate reduction. In contrast, hNRB used all three organic acids with similar kinetics, while reducing nitrate to nitrite and nitrogen. Transient inhibition of VFA-utilizing SRB was observed with 0.5 mM nitrite and permanent inhibition with concentrations of 1 mM or more. The addition of nitrate to medium flowing into an upflow, packed-bed bioreactor with an established VFA-oxidizing SRB consortium led to a spike of nitrite up to 3 mM. The nitrite-mediated inhibition of SRB led, in turn, to the transient accumulation of up to 13 mM of acetate. The complete utilization of nitrate and the incomplete utilization of VFA, especially propionate, and sulfate indicated that SRB remained partially inhibited. Hence, in addition to lower sulfide concentrations, an increase in the concentration of acetate in the presence of sulfate in waters produced from an oil field subjected to nitrate injection may indicate whether the treatment is successful. The microbial community composition in the bioreactor, as determined by culturing and culture-independent techniques, indicated shifts with an increasing fraction of nitrate. With VFA and sulfate, the SRB genera Desulfobotulus, Desulfotignum, and Desulfobacter as well as the sulfur-reducing Desulfuromonas and the NR-SOB Arcobacter were detected. With VFA and nitrate, Pseudomonas spp. were present. hNRB/NR-SOB from the genus Sulfurospirillum were found under all conditions. PMID:18502934

Grigoryan, Aleksandr A; Cornish, Sabrina L; Buziak, Brenton; Lin, Shiping; Cavallaro, Adriana; Arensdorf, Joseph J; Voordouw, Gerrit

2008-07-01

100

Competitive Oxidation of Volatile Fatty Acids by Sulfate- and Nitrate-Reducing Bacteria from an Oil Field in Argentina? †  

PubMed Central

Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquén Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3 mM each) and excess sulfate, SRB first used propionate and butyrate for the production of acetate, which reached concentrations of up to 12 mM prior to being used as an electron donor for sulfate reduction. In contrast, hNRB used all three organic acids with similar kinetics, while reducing nitrate to nitrite and nitrogen. Transient inhibition of VFA-utilizing SRB was observed with 0.5 mM nitrite and permanent inhibition with concentrations of 1 mM or more. The addition of nitrate to medium flowing into an upflow, packed-bed bioreactor with an established VFA-oxidizing SRB consortium led to a spike of nitrite up to 3 mM. The nitrite-mediated inhibition of SRB led, in turn, to the transient accumulation of up to 13 mM of acetate. The complete utilization of nitrate and the incomplete utilization of VFA, especially propionate, and sulfate indicated that SRB remained partially inhibited. Hence, in addition to lower sulfide concentrations, an increase in the concentration of acetate in the presence of sulfate in waters produced from an oil field subjected to nitrate injection may indicate whether the treatment is successful. The microbial community composition in the bioreactor, as determined by culturing and culture-independent techniques, indicated shifts with an increasing fraction of nitrate. With VFA and sulfate, the SRB genera Desulfobotulus, Desulfotignum, and Desulfobacter as well as the sulfur-reducing Desulfuromonas and the NR-SOB Arcobacter were detected. With VFA and nitrate, Pseudomonas spp. were present. hNRB/NR-SOB from the genus Sulfurospirillum were found under all conditions. PMID:18502934

Grigoryan, Aleksandr A.; Cornish, Sabrina L.; Buziak, Brenton; Lin, Shiping; Cavallaro, Adriana; Arensdorf, Joseph J.; Voordouw, Gerrit

2008-01-01

101

Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule wrightii†  

PubMed Central

Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizospheres that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacteria and clostridia were enriched in sediments colonized by the sea grasses Halodule wrightii and Thalassia testudinum compared to an adjacent unvegetated sediment. Most-probable-number analyses found that in contrast to butyrate-producing clostridia, acetogens and acetate-utilizing sulfate reducers were enriched by an order of magnitude in rhizosphere sediments. Although sea grass roots are oxygenated in the daytime, colorimetric root incubation studies demonstrated that acetogenic O-demethylation and sulfidogenic iron precipitation activities were tightly associated with washed, sediment-free H. wrightii roots. This suggests that the associated anaerobes are able to tolerate exposure to oxygen. To localize and quantify the anaerobic microbial colonization, root thin sections were hybridized with newly developed 33P-labeled probes that targeted (i) low-G+C-content gram-positive bacteria, (ii) cluster I species of clostridia, (iii) species of Acetobacterium, and (iv) species of Desulfovibrio. Microautoradiography revealed intercellular colonization of the roots by Acetobacterium and Desulfovibrio species. Acetogenic bacteria occurred mostly in the rhizoplane and outermost cortex cell layers, and high numbers of sulfate reducers were detected on all epidermal cells and inward, colonizing some 60% of the deepest cortex cells. Approximately 30% of epidermal cells were colonized by bacteria that hybridized with an archaeal probe, strongly suggesting the presence of methanogens. Obligate anaerobes within the roots might contribute to the vitality of sea grasses and other aquatic plants and to the biogeochemistry of the surrounding sediment. PMID:10543830

Küsel, Kirsten; Pinkart, Holly C.; Drake, Harold L.; Devereux, Richard

1999-01-01

102

Biologically-induced precipitation of sphalerite-wurtzite nanoparticles by sulfate-reducing bacteria: implications for acid mine drainage treatment.  

PubMed

Several experiments were conducted to evaluate zinc-tolerance of sulfate-reducing bacteria (SRB) obtained from three environmental samples, two inocula from sulfide-mining districts and another inoculum from a wastewater treatment plant. The populations of SRB resisted zinc concentrations of 260 mg/L for 42 days in a sulfate-rich medium. During the experiments, sulfate was reduced to sulfide and concentrations in solution decreased. Zinc concentrations also decreased from 260 mg/L to values below detection limit. Both decreases were consistent with the precipitation of newly-formed sphalerite and wurtzite, two polymorphs of ZnS, forming <2.5-?m-diameter spherical aggregates identified by microscopy and synchrotron-?-XRD. Sulfate and zinc are present in high concentrations in acid mine drainage (AMD) even after passive treatments based on limestone dissolution. The implementation of a SRB-based zinc removal step in these systems could completely reduce the mobility of all metals, which would improve the quality of stream sediments, water and soils in AMD-affected landscapes. PMID:22414495

Castillo, Julio; Pérez-López, Rafael; Caraballo, Manuel A; Nieto, José M; Martins, Mónica; Costa, M Clara; Olías, Manuel; Cerón, Juan C; Tucoulou, Rémi

2012-04-15

103

Sulfur Isotropic Studies of Archean Slate and Graywacke from Northern Minnesota: Evidence for the Existence of Sulfate Reducing Bacteria  

NASA Technical Reports Server (NTRS)

Sulfur isotopic studies of pyrite from metasediments in the 2.6 b.y. old Deer Lake greenstone sequence, Minnesota, were conducted in order to evaluate the possible importance of sulfate reducing bacteria in sulfide formation. Pyrite occurs as ovules up to 2 cm in diameter within graphitic slates, and as fine disseminations in metagraywacke units. SEM studies indicate the pyrite is framboidal in morphology. Delta notation values of pyrite from the Deer Lake sediments range from -2.3 to 11.1 0/00, with a peak at approximately +2 o/oo. Isotopic data is consistent with either high temperature inorganic reduction of circulating seawater sulfate, or low temperature bacterial reduction. However, the lack of sulfide bands or massive occurrences in the sediments, the restriction of pyrite mineralization to the sediments, and the absence of evidence for hot spring activity suggest that a diagenetic origin of pyrite is more feasible. Sulfide in such an environment would be produced principally by the action of sulfate reducing bacteria.

Ripley, E. M.; Nicol, D. L.

1979-01-01

104

Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria  

SciTech Connect

Surprising results were obtained following an attempt to induce or derepress the machinery for U(VI) reduction by growing Desulfovibrio desulfuricans G20 in the presence of 1 mM uranyl acetate. G20 cells grown on lactate-sulfate medium amended with U(VI) reduced uranium at a slower rate than cells grown in the absence of this metal. When periplasmic extracts of these cells were prepared, Western analysis of the proteins revealed that the cytochrome c3 was absent. This observation has been further investigated.

Wall, Judy D.

2003-06-01

105

Desulfotomaculum spp. and related gram-positive sulfate-reducing bacteria in deep subsurface environments  

PubMed Central

Gram-positive spore-forming sulfate reducers and particularly members of the genus Desulfotomaculum are commonly found in the subsurface biosphere by culture based and molecular approaches. Due to their metabolic versatility and their ability to persist as endospores. Desulfotomaculum spp. are well-adapted for colonizing environments through a slow sedimentation process. Because of their ability to grow autotrophically (H2/CO2) and produce sulfide or acetate, these microorganisms may play key roles in deep lithoautotrophic microbial communities. Available data about Desulfotomaculum spp. and related species from studies carried out from deep freshwater lakes, marine sediments, oligotrophic and organic rich deep geological settings are discussed in this review. PMID:24348471

Aüllo, Thomas; Ranchou-Peyruse, Anthony; Ollivier, Bernard; Magot, Michel

2013-01-01

106

Field-scale isotopic labeling of phospholipid fatty acids from acetate-degrading sulfate-reducing bacteria.  

PubMed

Isotopic labeling of biomarker molecules is a technique applied to link microbial community structure with activity. Previously, we successfully labeled phospholipid fatty acids (PLFA) of suspended nitrate-reducing bacteria in an aquifer. However, the application of the method to low energy-yielding processes such as sulfate reduction, and extension of the analysis to attached communities remained to be studied. To test the feasibility of the latter application, an anoxic test solution of 500 l of groundwater with addition of 0.5 mM Br- as a conservative tracer, 1.1 mM SO4(2-), and 2.0 mM [2-13C]acetate was injected in the transition zone of a petroleum hydrocarbon-contaminated aquifer where sulfate-reducing and methanogenic conditions prevailed. Thousand liters of test solution/groundwater mixture were extracted in a stepwise fashion after 2-46 h incubation. Computed apparent first-order rate coefficients were 0.31+/-0.04 day(-1) for acetate and 0.34+/-0.05 day(-1) for SO4(2-) consumption. The delta13C increased from -71.03 per thousand to +3352.50 per thousand in CH4 and from -16.15 per thousand to +32.13 per thousand in dissolved inorganic carbon (DIC). A mass balance suggested that 43% of the acetate-derived (13)C appeared in DIC and 57% appeared in CH4. Thus, acetate oxidation coupled to sulfate reduction and acetoclastic methanogenesis occurred simultaneously. The delta13C of PLFA increased on average by 27 per thousand in groundwater samples and 4 per thousand in sediment samples. Hence, both suspended and attached communities actively degraded acetate. The PLFA labeling patterns and fluorescent in situ hybridization (FISH) analyses of sediment and groundwater samples suggested that the main sulfate-reducing bacteria degrading the acetate were Desulfotomaculum acetoxidans and Desulfobacter sp. in groundwater, and D. acetoxidans in sediment. PMID:16329868

Pombo, Silvina A; Kleikemper, Jutta; Schroth, Martin H; Zeyer, Josef

2005-01-01

107

Effectiveness of the bran media and bacteria inoculum treatments in increasing pH and reducing sulfur-total of acid sulfate soils  

NASA Astrophysics Data System (ADS)

This study was carried out to determine the effectiveness ofsulfate reducing bacteria (SRB) in using bran as a source of food and energy, and to see the effectiveness of the bran media and bacteria inoculums treatments for pH and sulfur-total of acid sulfate reduction insoils. This study used two factors in group random designs with four treatments for bacteria inoculum of B1 (1%), B2 (5%), B3 (10%), B4 (15%) and two treatments for organic media (bran) of D1 (1:1) and D2 (1:19). Based on three replications, the combination resulted in a total of 24 treatments. Soil pH was measured using the Duddridge and Wainright method and determination of sulfate content in soil was conducted by the spectrophotometry method. The data obtained was analyzed for significance by Analysis of Variance and the Least Significant Difference Test. The pH of the initial acid sulfate soils ranged from 3 to 4 and the soil sulfur-total ranged from 1.4% to 10%. After mixing sulfate reducing bacteria with the bran mediaand incubated for four days, the pH of the acid sulfate soils increased from 3.67 to 4.20, while the soil sulfur-total contents had been reduced by 2.85% to 0.35%. This experiment has proven that an acid sulfate soil with low pH is a good growth medium for the sulfate reducing bacteria. The bestincubation period to achieve an effective bioremediation resultthrough sulfate percentage reduction by sulfate reducing bacteria was 10 days, while the optimum bran media dose was 1:19, and the bacteria inoculums dose was 10%.

Taufieq, Nur Anny Suryaningsih; Rahim, Sahibin Abdul; Jamil, Habibah

2013-11-01

108

Dechlorination of trichlorofluoromethane (CFC-11) by sulfate-reducing bacteria from an aquifer contaminated with halogenated aliphatic compounds  

SciTech Connect

Halogenated aliphatic hydrocarbons such as trichlorofluomethane (CFC-11) have been widely used as solvents, refrigerants, and aerosol and polystyrene propellants. This has relusted in contamination of the environment in the form of volatized gases, industrial waste water contamination or leakage from underground storage tanks. In situ bioremediation of CFC-11 resulting in complete mineralization or production of less harmful intermediates would be more environmentally appropriate. This study examines whether microorganisms present in anaerobic samples obtained from an aquifer contaminated with CFC-11 and TCE were capable of degrading these compounds. CFC-11 biodegradation, but not TCE. The researchers determined that the anaerobic process was dependent on the presence of acetate and sulfate, but independent of nitrate and bromethane sulfonic acid, indicating that sulfate-reducing bacteria are the responsible agents. 22 refs., 5 figs.

Sonier, D.N.; Duran, N.L.; Smith, G.B. [New Mexico State Univ., Las Cruces, NM (United States)

1994-12-01

109

[Inhibition of the activity of sulfate-reducing bacteria in produced water from oil reservoir by nitrate].  

PubMed

Growth and metabolic activity of sulfate-reducing bacteria (SRB) can result in souring of oil reservoirs, leading to various problems in aspects of environmental pollution and corrosion. Nitrate addition and management of nitrate-reducing bacteria (NRB) offer potential solutions to controlling souring in oil reservoirs. In this paper, a facultive chemolithotrophic NRB, designated as DNB-8, was isolated from the produced fluid of a water-flooded oil reservoir at Daqing oilfield. Then the efficacies and mechanisms of various concentrations of nitrate in combination with DNB-8 in the inhibition of the activity of SRB enriched culture were compared. Results showed that 1.0 mmol x L(-1) of nitrate or 0.45 mmol x L(-1) of nitrite inhibited the sulfate-reducing activity of SRB enrichments; the competitive reduction of nitrate by DNB-8 and the nitrite produced were responsible for the suppression. Besides, the SRB enrichment cultures showed a metabolic pathway of dissimilatory nitrate reduction to ammonium (DNRA) via nitrite. The SRB cultures could possibly alleviate the nitrite inhibition by DNRA when they were subjected to high-strength nitrate. PMID:24720222

Yang, De-Yu; Zhang, Ying; Shi, Rong-Jiu; Han, Si-Qin; Li, Guang-Zhe; Li, Guo-Qiao; Zhao, Jin-Yi

2014-01-01

110

Genetics and Molecular Biology of Hydrogen Metabolism in Sulfate-Reducing Bacteria  

SciTech Connect

The degradation of our environment and the depletion of fossil fuels make the exploration of alternative fuels evermore imperative. Among the alternatives is biohydrogen which has high energy content by weight and produces only water when combusted. Considerable effort is being expended to develop photosynthetic systems -- algae, cyanobacteria, and anaerobic phototrophs -- for sustainable H2 production. While promising, this approach also has hurdles such as the harvesting of light in densely pigmented cultures that requires costly constant mixing and large areas for exposure to sunlight. Little attention is given to fermentative H2 generation. Thus understanding the microbial pathways to H2 evolution and metabolic processes competing for electrons is an essential foundation that may expand the variety of fuels that can be generated or provide alternative substrates for fine chemical production. We studied a widely found soil anaerobe of the class Deltaproteobacteria, a sulfate-reducing bacterium to determine the electron pathways used during the oxidation of substrates and the potential for hydrogen production.

Wall, Judy D. [University of Missouri-Columbia

2014-12-23

111

Sulfate-Reducing Bacteria in Tubes Constructed by the Marine Infaunal Polychaete Diopatra cuprea  

PubMed Central

Marine infaunal burrows and tubes greatly enhance solute transport between sediments and the overlying water column and are sites of elevated microbial activity. Biotic and abiotic controls of the compositions and activities of burrow and tube microbial communities are poorly understood. The microbial communities in tubes of the marine infaunal polychaete Diopatria cuprea collected from two different sediment habitats were examined. The bacterial communities in the tubes from a sandy sediment differed from those in the tubes from a muddy sediment. The difference in community structure also extended to the sulfate-reducing bacterial (SRB) assemblage, although it was not as pronounced for this functional group of species. PCR-amplified 16S rRNA gene sequences recovered from Diopatra tube SRB by clonal library construction and screening were all related to the family Desulfobacteriaceae. This finding was supported by phospholipid fatty acid analysis and by hybridization of 16S rRNA probes specific for members of the genera Desulfosarcina, Desulfobacter, Desulfobacterium, Desulfobotulus, Desulfococcus, and Desulfovibrio and some members of the genera Desulfomonas, Desulfuromonas, and Desulfomicrobium with 16S rRNA gene sequences resolved by denaturing gradient gel electrophoresis. Two of six SRB clones from the clone library were not detected in tubes from the sandy sediment. The habitat in which the D. cuprea tubes were constructed had a strong influence on the tube bacterial community as a whole, as well as on the SRB assemblage. PMID:15574900

Matsui, George Y.; Ringelberg, David B.; Lovell, Charles R.

2004-01-01

112

Reduction of chromate (CrO 4 2?) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria  

Microsoft Academic Search

An enrichment consortium and an isolate (isolate TKW) of sulfate-reducing bacteria (SRB) have been obtained from metal-contaminated marine sediments of Tokwawan, Hong Kong SAR. These bacteria are capable of reducing highly toxic and soluble hexavalent chromium (Cr6+) enzymatically into less toxic and insoluble trivalent chromium (Cr3+) under anaerobic conditions. The enrichment consortium almost completely (98.5%) reduced 0.6 mM Cr6+ in

K. H. Cheung; Ji-Dong Gu

2003-01-01

113

Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps.  

PubMed

Biogeochemical and microbiological data indicate that the anaerobic oxidation of non-methane hydrocarbons by sulfate-reducing bacteria (SRB) has an important role in carbon and sulfur cycling at marine seeps. Yet, little is known about the bacterial hydrocarbon degraders active in situ. Here, we provide the link between previous biogeochemical measurements and the cultivation of degraders by direct identification of SRB responsible for butane and dodecane degradation in complex on-site microbiota. Two contrasting seep sediments from Mediterranean Amon mud volcano and Guaymas Basin (Gulf of California) were incubated with (13)C-labeled butane or dodecane under sulfate-reducing conditions and analyzed via complementary stable isotope probing (SIP) techniques. Using DNA- and rRNA-SIP, we identified four specialized clades of alkane oxidizers within Desulfobacteraceae to be distinctively active in oxidation of short- and long-chain alkanes. All clades belong to the Desulfosarcina/Desulfococcus (DSS) clade, substantiating the crucial role of these bacteria in anaerobic hydrocarbon degradation at marine seeps. The identification of key enzymes of anaerobic alkane degradation, subsequent ?-oxidation and the reverse Wood-Ljungdahl pathway for complete substrate oxidation by protein-SIP further corroborated the importance of the DSS clade and indicated that biochemical pathways, analog to those discovered in the laboratory, are of great relevance for natural settings. The high diversity within identified subclades together with their capability to initiate alkane degradation and growth within days to weeks after substrate amendment suggest an overlooked potential of marine benthic microbiota to react to natural changes in seepage, as well as to massive hydrocarbon input, for example, as encountered during anthropogenic oil spills. PMID:24722631

Kleindienst, Sara; Herbst, Florian-Alexander; Stagars, Marion; von Netzer, Frederick; von Bergen, Martin; Seifert, Jana; Peplies, Jörg; Amann, Rudolf; Musat, Florin; Lueders, Tillmann; Knittel, Katrin

2014-10-01

114

Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage  

Microsoft Academic Search

The aim of this investigation was to develop a system for the remediation of acid mine drainage using sulphate-reducing bacteria. An upflow porous medium bioreactor was inoculated with sulphate-reducing bacteria (SRB) and operated under acidic conditions. The reactor was operated under continuous flow and was shown to be capable of sulfate reduction at pH 4.5, 4.0, 3.5 and 3.25 in

Phillip Elliott; Santo Ragusa; David Catcheside

1998-01-01

115

USE OF HYDROGEN RESPIROMETRY TO DETERMINE METAL TOXICITY TO SULFATE REDUCING BACTERIA  

EPA Science Inventory

Acid mine drainage (AMD), an acidic metal-bearing wastewater poses a severe pollution problem attributed to post-mining activities. The metals (metal sulfates) encountered in AMD and considered of concern for risk assessment are: arsenic, cadmium, aluminum, manganese, iron, zinc ...

116

Modeling in-situ U(VI) bioreduction by sulfate-reducing bacteria in the presence of nitrate.  

SciTech Connect

We present a travel-time based reactive transport model to simulate an in-situ bioremediation experiment for demonstrating enhanced bioreduction of uranium(VI). The model considers aquatic equilibrium chemistry of uranium and other groundwater constituents, uranium sorption and precipitation, and the microbial reduction of nitrate, sulfate and U(VI). Kinetic sorption/desorption of U(VI) is characterized by mass transfer between stagnant micro-pores and mobile flow zones. The model describes the succession of terminal electron accepting processes and the growth and decay of sulfate-reducing bacteria, concurrent with the enzymatic reduction of aqueous U(VI) species. The effective U(VI) reduction rate and sorption site distributions are determined by fitting the model simulation to an in-situ experiment at Oak Ridge, TN. Results show that (1) the presence of nitrate inhibits U(VI) reduction at the site; (2) the fitted effective rate of in-situ U(VI) reduction is much smaller than the values reported for laboratory experiments; (3) U(VI) sorption/desorption, which affects U(VI) bioavailability at the site, is strongly controlled by kinetics; (4) both pH and bicarbonate concentration significantly influence the sorption/desorption of U(VI), which therefore cannot be characterized by empirical isotherms; and (5) calcium-uranyl-carbonate complexes significantly influence the model performance of U(VI) reduction.

Luo, Jian [ORNL; Cirpka, Olaf [ORNL; Wu, Weimin [ORNL; Carley, Jack M [ORNL; Nyman, Jennifer L [ORNL; Jardine, Philip M [ORNL; Criddle, Craig [ORNL; Kitanidis, Peter K [ORNL

2007-06-01

117

Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment  

NASA Technical Reports Server (NTRS)

Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).

Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)

2000-01-01

118

Acid-Tolerant Sulfate-Reducing Bacteria Play a Major Role in Iron Cycling in Acidic Iron Rich Sediments  

NASA Astrophysics Data System (ADS)

Climate change drives drying and acidification of many rivers and lakes. Abundant sedimentary iron in these systems oxidizes chemically and biologically to form iron-ox(yhydrox)ide crusts and "hardpans". Given generally high sulfate concentrations, the mobilization and cycling of iron in these environments can be strongly influenced by bacterial sulfate reduction. Sulfate-reducing bacteria (SRB) induce reductive dissolution of oxidized iron phases by producing the reductant bisulfide as a metabolic product. These environmentally ubiquitous microbes also recycle much of the fixed carbon in sediment-hosted microbial mat communities. With prevalent drying, the buffering capacity for protons liberated from iron oxidation is exceeded, and the activity of sulfate-reducers is restricted to those species capable of tolerating low pH (and generally highly saline, i.e. sulfate-rich) conditions. These species will sustain the recycling of iron from more crystalline phases to more bioavailable species, as well as act as the only source of bisulfide for photosynthesizing microbial communities. The phylogeny and physiology of acid-tolerant SRB is therefore important to Fe, S and C cycling in iron-rich sedimentary environments, particularly those on a geochemical trajectory towards acidification. Previous studies have shown that these SRB species tend to be highly novel. We studied two distinct environments along a geochemical continuum towards acidification. In both settings, iron redox transformations exert a major, if not controlling, influence on reduction potential. An acidified, iron- rich tidal marsh receiving acid-mine drainage (San Francisco Bay, CA, USA) contained abundant textural evidence for reductive dissolution of Fe(III) in sediments with pH values varying from 2.4 - 3.8. From these sediments, full-length novel dsrAB gene sequences from acid-tolerant SRB were recovered, and sulfur isotope profiles reflected biological fractionation of sulfur under even the most acidic conditions. The dsrAB genes are related to other novel SRB lineages derived from acidic environments in previous reports, suggesting that these species have adapted to the acidity rather than colonized more circumneutral microenvironments. In an acidic hypersaline lake system in NW Victoria (Australia), previous studies suggested that pore water bisulfide derived from anoxic groundwater transported from distal locations. However, isolated potholes of oxic Fe(III)-rich springwater exhibited nearly a two-fold increase in conductivity and pH increase from 4.5 to 8.0 over time periods on the order of days; and biogeochemical and mineralogical observations were consistent with the presence of active acid- and halo-tolerant SRB. Furthermore, stratified active microbial mat communities, with zones of black FeS formation localized several millimeters below the sediment-air interface, were identified in cross-section from lakeshore sediments near groundwater discharge springs. Culture-independent and culture-based work to characterize the SRB population is ongoing at this site. We infer, from previous sulfur isotope tracer experiments at the lake, that overall sulfate reduction rates may be slow, but are nonetheless proceeding and contributing to the recycling of oxidized iron to a significant degree given the abundance of sulfate evidenced by widespread gypsum precipitation. We conclude from the two study-sites described above that acid-tolerant SRB species play an important role in the linked S, Fe and C cycles in acidifying, iron-rich environments, and their phylogenetic and physiological diversity should be further investigated.

Enright, K. A.; Moreau, J. W.

2008-12-01

119

Gene Expression Correlates with Process Rates Quantified for Sulfate- and Fe(III)-Reducing Bacteria in U(VI)-Contaminated Sediments  

PubMed Central

Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI) reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III) and sulfate reduction pathways in order to monitor these processes during in situ U(VI) remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA) and the dissimilatory (bi)sulfite reductase gene (dsrA), were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy’s Oak Ridge Integrated Field Research Challenge (OR-IFRC) site at Oak Ridge, TN, USA. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III)-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation. PMID:22908009

Akob, Denise M.; Lee, Sang Hyon; Sheth, Mili; Küsel, Kirsten; Watson, David B.; Palumbo, Anthony V.; Kostka, Joel E.; Chin, Kuk-Jeong

2012-01-01

120

Oxidation of H 2 , organic compounds and inorganic sulfur compounds coupled to reduction of O 2 or nitrate by sulfate-reducing bacteria  

Microsoft Academic Search

All of fourteen sulfate-reducing bacteria tested were able to carry out aerobic respiration with at least one of the following electron donors: H2, lactate, pyruvate, formate, acetate, butyrate, ethanol, sulfide, thiosulfate, sulfite. Generally, we did not obtain growth with O2 as electron acceptor. The bacteria were microaerophilic, since the respiration rates increased with decreasing O2 concentrations or ceased after repeated

Simone Dannenberg; Michael Kroder; Waltraud Dilling; Heribert Cypionka

1992-01-01

121

Improved Methodology for Bioremoval of Black Crusts on Historical Stone Artworks by Use of Sulfate-Reducing Bacteria  

Microsoft Academic Search

An improved methodology to remove black crusts from stone by using Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, a sulfate-reducing bacterium, is presented. The strain removed 98% of the sulfates of the crust in a 45-h treatment. Precipitation of black iron sulfide was avoided using filtration of a medium devoid of iron. Among three cell carriers, Carbogel proved to be superior

Francesca Cappitelli; Elisabetta Zanardini; Giancarlo Ranalli; Emilio Mello; Daniele Daffonchio; Claudia Sorlini

2006-01-01

122

COMPARISON OF PHYLOGENETIC RELATIONSHIPS BASED ON PHOSPHOLIPID FATTY ACID PROFILES AND RIBOSOMAL RNA SEQUENCE SIMILARITIES AMONG DISSIMILATORY SULFATE-REDUCING BACTERIA  

EPA Science Inventory

Twenty-five isolates of dissimilatory sulfate-reducing bacteria were clustered based on similarity analysis of their phospholipid ester-linked fatty acids (PLFA). f these, twenty-three showed the phylogenetic relationships based on the sequence similarity of their 16S rRNA direct...

123

Effect of dietary inorganic sulfur level on growth performance, fecal composition, and measures of inflammation and sulfate-reducing bacteria in the intestine of growing pigs  

Technology Transfer Automated Retrieval System (TEKTRAN)

Two experiments were conducted to investigate the impact of dietary inorganic S on growth performance, markers of intestinal inflammation, fecal composition, and the presence of sulfate-reducing bacteria (SRB). In Exp. 1, pigs (n = 42; 13.8 kg) were fed diets formulated to contain either 2,300 or 2,...

124

Sulfate-Reducing Bacteria in Floating Macrophyte Rhizospheres from an Amazonian Floodplain Lake in Bolivia and Their Association with Hg Methylation  

Microsoft Academic Search

Five subgroups of sulfate-reducing bacteria (SRB) were detected by PCR in three macrophyte rhizospheres (Polygonum densiflorum, Hymenachne donacifolia, and Ludwigia helminthorriza) and three subgroups in Eich- hornia crassipes from La Granja, a floodplain lake from the upper Madeira basin. The SRB community varied according to the macrophyte species but with different degrees of association with their roots. The rhizosphere of

Darõ ´ o Acha ´; Volga Iniguez; Marc Roulet; J. R. D. Guimaraes; R. Luna; L. Alanoca; S. Sanchez

2005-01-01

125

ACUTE TOXICITY OF HEAVY METALS TO ACETATE-UTILIZING MIXED CULTURES OF SULFATE-REDUCING BACTERIA: EC100 AND EC50  

EPA Science Inventory

Acid mine drainage (AMD) from abandoned mines and acid mine pitlakes is an important environmental contaminant concern and usually contains appreciable concentrations of heavy metals. Since sulfate-reducing bacteria (SRB) are involved in the treatment of AMD, knowledge of acute m...

126

Distinctive Oxidative Stress Responses to Hydrogen Peroxide in Sulfate Reducing Bacteria Desulfovibrio vulgaris Hildenborough  

SciTech Connect

Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide (H2O2, 1 mM) was investigated with transcriptomic, proteomic and genetic approaches. Microarray data demonstrated that gene expression was extensively affected by H2O2 with the response peaking at 120 min after H2O2 treatment. Genes affected include those involved with energy production, sulfate reduction, ribosomal structure and translation, H2O2 scavenging, posttranslational modification and DNA repair as evidenced by gene coexpression networks generated via a random matrix-theory based approach. Data from this study support the hypothesis that both PerR and Fur play important roles in H2O2-induced oxidative stress response. First, both PerR and Fur regulon genes were significantly up-regulated. Second, predicted PerR regulon genes ahpC and rbr2 were derepressedin Delta PerR and Delta Fur mutants and induction of neither gene was observed in both Delta PerR and Delta Fur when challenged with peroxide, suggesting possible overlap of these regulons. Third, both Delta PerR and Delta Fur appeared to be more tolerant of H2O2 as measured by optical density. Forth, proteomics data suggested de-repression of Fur during the oxidative stress response. In terms of the intracellular enzymatic H2O2 scavenging, gene expression data suggested that Rdl and Rbr2 may play major roles in the detoxification of H2O2. In addition, induction of thioredoxin reductase and thioredoxin appeared to be independent of PerR and Fur. Considering all data together, D. vulgaris employed a distinctive stress resistance mechanism to defend against increased cellular H2O2, and the temporal gene expression changes were consistent with the slowdown of cell growth at the onset of oxidative stress.

Zhou, Aifen; He, Zhili; Redding, A.M.; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Joachimiak, Marcin P.; Bender, Kelly S.; Keasling, Jay D.; Stahl, David A.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

2009-01-01

127

Assessing the Role of Iron Sulfides in the Long Term Sequestration of Uranium by Sulfate-Reducing Bacteria  

SciTech Connect

This overarching aim of this project was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. The work reported herein was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM). Research at ASU, focused on the biogenesis aspects, examined the biogeochemical bases for iron-sulfide production by Desulfovibrio vulgaris, a Gram-negative bacterium that is one of the most-studied strains of sulfate-reducing bacteria. A series of experimental studies were performed to investigate comprehensively important metabolic and environmental factors that affect the rates of sulfate reduction and iron-sulfide precipitation, the mineralogical characteristics of the iron sulfides, and how uranium is reduced or co-reduced by D. vulagaris. FeS production studies revealed that controlling the pH affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH produced larger-sized mackinawite (Fe1+xS). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and stimulated mackinawite transformation to greigite (Fe3S4) when the free sulfide concentration was 29.3 mM. On the other hand, using solid Fe(III) (hydr)oxides as the iron source led to less productivity of FeS due to their slow and incomplete dissolution and scavenging of sulfide. Furthermore, sufficient free Fe2+, particularly during Fe(III) (hydr)oxide reductions, led to the additional formation of vivianite [Fe3(PO4)2•8(H2O)]. The U(VI) reduction studies revealed that D. vulgaris reduced U(VI) fastest when accumulating sulfide from concomitant sulfate reduction, since direct enzymatic and sulfide-based reductions of U(VI) occurred in parallel. The UO2 produced in presence of ferrous iron was poorly crystalline. At UM, laboratory-scale reactor studies were performed to assess the potential for the predominant abiotic reductants formed under sulfate reducing conditions (SRCs) to: (1) reduce U(VI) in contaminated groundwater sediments), and (2) inhibit the re-oxidation of U(IV) species, and in particular, uraninite (UO2(s)). Under SRCs, mackinawite and aqueous sulfide are the key reductants expected to form. To assess their potential for abiotic reduction of U(VI) species, a series of experiments were performed in which either FeS or S(-II) was added to solutions of U(VI), with the rates of conversion to U(IV) solids monitored as a function of pH, and carbonate and calcium concentration. In the presence of FeS and absence of oxygen or carbonate, U(IV) was completely reduced uraninite. S(-II) was also found to be an effective reductant of aqueous phase U(VI) species and produced uraninite, with the kinetics and extent of reduction depending on geochemical conditions. U(VI) reduction to uraninite was faster under higher S(-II) concentrations but was slowed by an increase in the dissolved Ca or carbonate concentration. Rapid reduction of U(VI) occurred at circumneutral pH but virtually no reduction occurred at pH 10.7. In general, dissolved Ca and carbonate slowed abiotic U(VI) reduction by forming stable Ca-U(VI)-carbonate soluble complexes that are resistant to reaction with aqueous sulfide. To investigate the stability of U(IV) against re-oxidation in the presence of iron sulfides by oxidants in simulated groundwater environments, and to develop a mechanistic understanding the controlling redox processes, continuously-mixed batch reactor (CMBR) and flow-through reactor (CMFR) studies were performed at UM. In these studies a series of experiments were conducted under various oxic groundwater conditions to examine the effectiveness of FeS as an oxygen scavenger to retard UO2 dissolution. The results indicate that FeS is an effective oxygen scavenger, and can lower the rate of oxidative dissolution of UO2 by over an order of magnitude compared to

Hayes, Kim F.; Bi, Yuqiang; Carpenter, Julian; Hyng, Sung Pil; Rittmann, Bruce E.; Zhou, Chen; Vannela, Raveender; Davis, James A.

2014-01-01

128

Application Of Immobilized Sulfate Reducing Bacteria For Permeable Reactive Barriers In Abandoned Coal Mines  

Microsoft Academic Search

The decline of the Korean coal industry has been drastic in production and consumption. This has been resulted mainly from the environmental concern and the collapse of commercial viability, which has eventually necessitated the government to implement the coal industry rationalization policies to reduce coal production and close down uneconomical mines. The overall drainage rates from abandoned coal mines reaches

K. Kim; W. Hur; S. Choi; K. Min; H. Baek

2006-01-01

129

Sulfate-reducing bacteria detection based on the photocatalytic property of microbial synthesized ZnS nanoparticles.  

PubMed

This work presented a novel method for specific detection of sulfate-reducing bacteria (SRB) based on the photocatalytic property of ZnS nanoparticles. ZnS semiconductor nanoparticles were synthesized by taking advantage of the characteristic bacterial metabolite, sulfide, and then ZnS nanomaterials were used as photocatalyst for methylene blue (MB) photodegradation. As the amount of ZnS photocatalyst synthesized from microbe metabolized sulfide was affected by initial bacterial concentration before cultivation, the photodegradation ratio of MB was highly related with initial SRB concentration. Under the optimized conditions, a linear relationship between the MB photodegradation ratio and the logarithm of SRB concentration was observed in the range of 1.0×10(3)-1.0×10(8) cfu mL(-1). Besides, this proposed method showed excellent specificity for SRB detection. To the best of our knowledge, this is the first example of using the photocatalytic property of microbial synthesized ZnS for bacterial detection. PMID:24120169

Qi, Peng; Zhang, Dun; Wan, Yi

2013-10-24

130

Bacterial community structure and activity of sulfate reducing bacteria in a membrane aerated biofilm analyzed by microsensor and molecular techniques.  

PubMed

The activities and vertical spatial distribution of sulfate reducing bacteria (SRB) in an oxygen (O2 )-based membrane aerated biofilm (MAB) were investigated using microsensor (O2 and H2 S) measurements and molecular techniques (polymerase chain reaction-denaturing gradient gel electrophoresis [PCR-DGGE] and fluorescence in situ hybridization [FISH]). The O2 concentration profile revealed that O2 penetrated from the bottom (substratum) of the gas permeable membrane, and was gradually consumed within the biofilm until it was completely depleted near the biofilm/bulk liquid interface, indicating oxic and anoxic zone in the MAB. The H2 S concentration profile showed that H2 S production was found in the upper 285?µm of the biofilm, indicating a high activity of SRB in this region. The results from DGGE of the PCR-amplified dissimilatory sulfite reductase subunit B (dsrB) gene and FISH showed an uneven spatial distribution of SRB. The maximum SRB biomass was located in the upper biofilm. The information from the molecular analysis can be supplemented with that from microsensor measurements to better understand the microbial community and activity of SRB in the MAB. PMID:24890472

Liu, Hong; Tan, Shuying; Sheng, Zhiya; Liu, Yang; Yu, Tong

2014-11-01

131

Stable isotope fractionation of gamma-hexachlorocyclohexane (lindane) during reductive dechlorination by two strains of sulfate-reducing bacteria.  

PubMed

Carbon isotope fractionation factors were determined with the dichloro elimination of gamma-hexachlorocyclohexane (gamma-HCH) by the sulfate-reducing bacteria Desulfococcus multivorans DSM 2059 and Desulfovibrio gigas DSM 1382. Both strains are known for cometabolic HCH dechlorination. Degradation experiments with gamma-HCH in concentrations of 22-25 gammaM were carried out using benzoate (for D. multivorans) and lactate (for D. gigas) as electron donors, respectively. Gamma-HCH was dechlorinated by both bacterial strains within four weeks, and the metabolites gamma-3,4,5,6-tetrachlorocyclohexene (gamma-TCCH), chlorobenzene (CB), and benzene were formed. The carbon isotope fractionation of gamma-HCH dechlorination was quantified by the Rayleigh model, using a bulk enrichment factor (epsilon C) of -3.9 +/- 0.6 for D. gigas and -3.4 +/- 0.5 for D. multivorans, which correspond to apparent kinetic isotope effect (AKIEc) values of 1.023 +/- 0.004 or 1.02 +/- 0.003 for stepwise Cl-C bond cleavage. The extent and range of isotope fractionation suggest that gamma-HCH dechlorination can be monitored in anoxic environments by compound-specific isotope analysis (CSIA). PMID:19534128

Badea, Silviu-Laurentiu; Vogt, Carsten; Weber, Stefanie; Danet, Andrei-Florin; Richnow, Hans-Hermann

2009-05-01

132

Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov.  

PubMed

Deep subsurface sandstones in the area of Berlin (Germany) located 600 to 1060 m below the surface were examined for the presence of viable microorganisms. The in situ temperatures at the sampling sites ranged from 37 to 45 degrees C. Investigations focussed on sulfate-reducing bacteria able to grow on methanol and triethylene glycol, which are added as chemicals to facilitate the long-term underground storage of natural gas. Seven strains were isolated from porewater brines in the porous sandstone. Three of them were obtained with methanol (strains H1M, H3M, and B1M), three strains with triethylene glycol (strains H1T, B1T, and B2T) and one strain with a mixture of lactate, acetate and butyrate (strain H1-13). Due to phenotypic properties six isolates could be identified as members of the genus Desulfovibrio, and strain B2T as a Desulfotomaculum. The salt tolerance and temperature range for growth indicated that the isolates originated from the indigenous deep subsurface sandstones. They grew in mineral media reflecting the in situ ionic composition of the different brines, which contained 1.5 to 190 g NaCl x l(-1) and high calcium and magnesium concentrations. The Desulfovibrio strains grew at temperatures between 20 and 50 degrees C, while the Desulfotomaculum strain was thermophilic and grew between 30 and 65 degrees C. The strains utilized a broad spectrum of electron donors and acceptors. They grew with carbon compounds like lactate, pyruvate, formate, n-alcohols (C1-C5), glycerol, ethylene glycol, malate, succinate, and fumarate. Some strains even utilized glucose as electron donor and carbon source. All strains were able to use sulfate, sulfite and nitrate as electron acceptors. Additionally, three Desulfovibrio strains reduced manganese oxide, the Desulfotomaculum strain reduced manganese oxide, iron oxide, and elemental sulfur. The 16S rRNA analysis revealed that the isolates belong to three different species. The strains H1T, H3M and B1M could be identified as Desulfovibrio indonesiensis, and strain B2T as Desulfotomaculum geothermicum. The other Desulfovibrio strains (H1M, H1-13, and B1T) showed identical 16S rDNA sequences and similarities as low as 93% to their closest relative, Desulfovibrio aminophilusT. Therefore, these isolates were assigned to a new species, Desulfovibrio cavernae sp. nov., with strain H1M as the type strain. PMID:15490555

Sass, Henrik; Cypionka, Heribert

2004-09-01

133

Simultaneous degradation of waste phosphogypsum and liquid manure from industrial pig farm by a mixed community of sulfate-reducing bacteria.  

PubMed

The utilization of pig manure as a source of nutrients for the dissimilatory reduction of sulfates present in phosphogypsum was investigated. In both types of media used (synthetic medium and raw pig manure) increased utilization of sulfates with growing COD/SO4(2-)ratio in the medium was observed. The percent of sulfate reduction obtained in synthetic medium was from 18 to 99%, whereas the value for cultures set up in raw liquid manure was from 12% (at COD/SO4(2-) of 0.3) up to as high as 98% (at COD/SO4(2-) equal 3.80). Even with almost complete reduction of sulfates the percent of COD reduction did not exceed 55%. Based on the results obtained it was concluded that the effectiveness of removal of sulfates and organic matter by sulfate-reducing bacteria (SRB) depends to a considerable degree on the proportion between organic matter and sulfates in the purified wastewaters. The optimal COD/SO4(2-)ratio for the removal oforganic matter was between 0.6 and 1.2 whereas the optimal ratio for the removal of sulfates was between 2.4 and 4.8. PMID:21466041

Rzeczycka, Marzenna; Miernik, Antoni; Markiewicz, Zdzislaw

2010-01-01

134

Passive Treatment of Acid Mine Drainage in Bioreactors using Sulfate-Reducing Bacteria: Critical Review and Research Needs  

Microsoft Academic Search

Acid mine drainage (AMD), characterized by low pH and high concentrations of sulfate and heavy metals, is an important and widespread environmental problem related to the mining industry. Sulfate-reducing passive bioreactors have received much attention lately as promising biotechnologies for AMD treatment. They offer advantages such as high metal removal at low pH, stable sludge, very low operation costs, and

Carmen-Mihaela Neculita; Gerald J. Zagury; Bruno Bussiere

2007-01-01

135

Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria  

PubMed Central

Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1) that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS). It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched ?-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 ?g/ml). Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential alternative to the chemical biocides or surface coating agents currently used to prevent SRB growth in petroleum industries. PMID:23131170

2012-01-01

136

A combined massively parallel sequencing indicator species approach revealed significant association between sulfate-reducing bacteria and uranium-reducing microbial communities  

SciTech Connect

Massively parallel sequencing has provided a more affordable and high throughput method to study microbial communities, although it has been mostly used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium (VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee, USA. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 {micro}M, and created geochemical gradients in electron donors from the inner loop injection well towards the outer loop and down-gradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical created conditions. Castellaniella, and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity; while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. Abundance of these bacteria as well as the Fe(III)- and U(VI)-reducer Geobacter correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to the electron donor addition and by the groundwater flow path. A false discovery rate approach was implemented to discard false positives by chance given the large amount of data compared.

Cardenas, Erick [Michigan State University, East Lansing; Wu, Wei-min [Stanford University; Leigh, Mary Beth [Michigan State University, East Lansing; Carley, Jack M [ORNL; Carroll, Sue L [ORNL; Gentry, Terry [Texas A& M University; Luo, Jian [Georgia Institute of Technology; Watson, David B [ORNL; Gu, Baohua [ORNL; Ginder-Vogel, Matthew A. [Stanford University; Kitanidis, Peter K. [Stanford University; Jardine, Philip [University of Tennessee; Kelly, Shelly D [Argonne National Laboratory (ANL); Zhou, Jizhong [University of Oklahoma, Norman; Criddle, Craig [Stanford University; Marsh, Terence [Michigan State University, East Lansing; Tiedje, James [Michigan State University, East Lansing

2010-08-01

137

Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach  

SciTech Connect

Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 M and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared.

Cardenas, Erick [Michigan State University, East Lansing; Leigh, Mary Beth [Michigan State University, East Lansing; Marsh, Terence [Michigan State University, East Lansing; Tiedje, James M. [Michigan State University, East Lansing; Wu, Wei-min [Stanford University; Luo, Jian [Stanford University; Ginder-Vogel, Matthew [Stanford University; Kitanidis, Peter K. [Stanford University; Criddle, Craig [Stanford University; Carley, Jack M [ORNL; Carroll, Sue L [ORNL; Gentry, Terry J [ORNL; Watson, David B [ORNL; Gu, Baohua [ORNL; Jardine, Philip M [ORNL; Zhou, Jizhong [ORNL

2010-10-01

138

Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach? †  

PubMed Central

Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 ?M and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared. PMID:20729318

Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Jardine, Philip M.; Zhou, Jizhong; Criddle, Craig S.; Marsh, Terence L.; Tiedje, James M.

2010-01-01

139

Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach.  

PubMed

Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 ?M and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared. PMID:20729318

Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K; Jardine, Philip M; Zhou, Jizhong; Criddle, Craig S; Marsh, Terence L; Tiedje, James M

2010-10-01

140

Application of denaturing high-performance liquid chromatography for monitoring sulfate-reducing bacteria in oil fields.  

PubMed

Sulfate-reducing bacteria (SRB) participate in microbially induced corrosion (MIC) of equipment and H2S-driven reservoir souring in oil field sites. Successful management of industrial processes requires methods that allow robust monitoring of microbial communities. This study investigated the applicability of denaturing high-performance liquid chromatography (DHPLC) targeting the dissimilatory sulfite reductase ß-subunit (dsrB) gene for monitoring SRB communities in oil field samples from the North Sea, the United States, and Brazil. Fifteen of the 28 screened samples gave a positive result in real-time PCR assays, containing 9 × 10(1) to 6 × 10(5) dsrB gene copies ml(-1). DHPLC and denaturing gradient gel electrophoresis (DGGE) community profiles of the PCR-positive samples shared an overall similarity; both methods revealed the same samples to have the lowest and highest diversity. The SRB communities were diverse, and different dsrB compositions were detected at different geographical locations. The identified dsrB gene sequences belonged to several phylogenetic groups, such as Desulfovibrio, Desulfococcus, Desulfomicrobium, Desulfobulbus, Desulfotignum, Desulfonatronovibrio, and Desulfonauticus. DHPLC showed an advantage over DGGE in that the community profiles were very reproducible from run to run, and the resolved gene fragments could be collected using an automated fraction collector and sequenced without a further purification step. DGGE, on the other hand, included casting of gradient gels, and several rounds of rerunning, excising, and reamplification of bands were needed for successful sequencing. In summary, DHPLC proved to be a suitable tool for routine monitoring of the diversity of SRB communities in oil field samples. PMID:23793633

Priha, Outi; Nyyssönen, Mari; Bomberg, Malin; Laitila, Arja; Simell, Jaakko; Kapanen, Anu; Juvonen, Riikka

2013-09-01

141

Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria.  

PubMed

Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on Earth. Two factors that contribute to carbonate mineral precipitation are the saturation index (SI) and the presence of nucleation sites. Both of these can be influenced by micro-organisms, which can either alter SI through their metabolisms, or produce and consume organic substances such as extracellular polymeric substances (EPS) that can affect nucleation. It is the balance of individual metabolisms within the mat community that determines the pH and the dissolved inorganic carbon concentration, thereby potentially increasing the alkalinity and consequently the SI. Sulfate-reducing bacteria (SRB) are an important component of this 'alkalinity engine.' The activity of SRB often peaks in layers where CaCO(3) precipitates, and mineral precipitation has been demonstrated in SRB cultures; however, the effect of their metabolism on the alkalinity engine and actual contribution to mineral precipitation is the subject of controversy. Here, we show through culture experiments, theoretical calculations, and geochemical modeling studies that the pH, alkalinity, and organomineralization potential will vary depending on the type of electron donor. Specifically, hydrogen and formate can increase the pH, but electron donors like lactate and ethanol, and to a lesser extent glycolate, decrease the pH. The implication of this for the lithification of mats is that the combination of processes supplying electron donors and the utilization of these compounds by SRB may be critical to promoting mineral precipitation. PMID:22925453

Gallagher, K L; Kading, T J; Braissant, O; Dupraz, C; Visscher, P T

2012-11-01

142

Application of Denaturing High-Performance Liquid Chromatography for Monitoring Sulfate-Reducing Bacteria in Oil Fields  

PubMed Central

Sulfate-reducing bacteria (SRB) participate in microbially induced corrosion (MIC) of equipment and H2S-driven reservoir souring in oil field sites. Successful management of industrial processes requires methods that allow robust monitoring of microbial communities. This study investigated the applicability of denaturing high-performance liquid chromatography (DHPLC) targeting the dissimilatory sulfite reductase ß-subunit (dsrB) gene for monitoring SRB communities in oil field samples from the North Sea, the United States, and Brazil. Fifteen of the 28 screened samples gave a positive result in real-time PCR assays, containing 9 × 101 to 6 × 105 dsrB gene copies ml?1. DHPLC and denaturing gradient gel electrophoresis (DGGE) community profiles of the PCR-positive samples shared an overall similarity; both methods revealed the same samples to have the lowest and highest diversity. The SRB communities were diverse, and different dsrB compositions were detected at different geographical locations. The identified dsrB gene sequences belonged to several phylogenetic groups, such as Desulfovibrio, Desulfococcus, Desulfomicrobium, Desulfobulbus, Desulfotignum, Desulfonatronovibrio, and Desulfonauticus. DHPLC showed an advantage over DGGE in that the community profiles were very reproducible from run to run, and the resolved gene fragments could be collected using an automated fraction collector and sequenced without a further purification step. DGGE, on the other hand, included casting of gradient gels, and several rounds of rerunning, excising, and reamplification of bands were needed for successful sequencing. In summary, DHPLC proved to be a suitable tool for routine monitoring of the diversity of SRB communities in oil field samples. PMID:23793633

Nyyssönen, Mari; Bomberg, Malin; Laitila, Arja; Simell, Jaakko; Kapanen, Anu; Juvonen, Riikka

2013-01-01

143

Diversity of Sulfate-Reducing Bacteria Inhabiting the Rhizosphere of Phragmites australis in Lake Velencei (Hungary) Revealed by a Combined Cultivation-based and Molecular approach  

Microsoft Academic Search

The community structure of sulfate-reducing bacteria (SRB) associated with reed (Phragmites australis) rhizosphere in Lake Velencei (Hungary) was investigated by using cultivation-based and molecular methods. The cultivation\\u000a methods were restricted to recover lactate-utilizing species with the exclusion of Desulfobacter and some Desulfobacterium species presumably not being dominant members of the examined community. The most-probable-number (MPN) estimations of lactate-utilizing\\u000a SRB showed

Péter Vladár; Anna Rusznyák; Károly Márialigeti; Andrea K. Borsodi

2008-01-01

144

EPR characterization of the new Qrc complex from sulfate reducing bacteria and its ability to form a supercomplex with hydrogenase and TpI c 3  

Microsoft Academic Search

The Quinone-reductase complex (Qrc) is a respiratory complex with Type I cytochrome c3:menaquinone reductase activity, recently described in sulfate-reducing bacteria. Qrc is related to the complex iron–sulfur molybdoenzyme family and to the alternative complex III. In this work we report a detailed characterization of the redox properties of the metal cofactors of Qrc using EPR spectroscopy, which allowed the determination

Sofia S. Venceslau; Daniela Matos; Inês A. C. Pereira

2011-01-01

145

Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes  

SciTech Connect

Sequence analysis of genes encoding dissimilatory sulfite reductase (DSR) was used to identify sulfate-reducing bacteria in a hypersaline microbial mat and to evaluate their distribution in relation to levels of oxygen. The most highly diverse DSR sequences, most related to those of the Desulfonema-like organisms within the {delta}-proteobacteria, were recovered from oxic regions of the mat. This observation extends those of previous studies by the authors and others associating Desulfonema-like organisms with oxic habitats.

Minz, D.; Flax, J.L.; Green, S.J.; Muyzer, G.; Cohen, Y.; Wagner, M.; Rittmann, B.E.; Stahl, D.A.

1999-10-01

146

Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes  

Microsoft Academic Search

Sequence analysis of genes encoding dissimilatory sulfite reductase (DSR) was used to identify sulfate-reducing bacteria in a hypersaline microbial mat and to evaluate their distribution in relation to levels of oxygen. The most highly diverse DSR sequences, most related to those of the Desulfonema-like organisms within the δ-proteobacteria, were recovered from oxic regions of the mat. This observation extends those

DROR MINZ; JODI L. FLAX; STEFAN J. GREEN; GERARD MUYZER; YEHUDA COHEN; MICHAEL WAGNER; BRUCE E. RITTMANN; DAVID A. STAHL

1999-01-01

147

Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water  

Microsoft Academic Search

Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris)

R. Zuo; D. Örnek; B. C. Syrett; R. M. Green; C.-H. Hsu; F. B. Mansfeld; T. K. Wood

2004-01-01

148

Assessing the Role of Iron Sulfides in the Long Term Sequestration of U by Sulfate Reducing Bacteria  

SciTech Connect

This four-year project’s overarching aim was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. As stated in this final report, significant progress was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM).

Rittman, Bruce; Zhou, Chen; Vannela, Raveender

2013-12-31

149

Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments  

PubMed Central

The effect of plant invasion on the microorganisms of soil sediments is very important for estuary ecology. The community structures of methanogens and sulfate-reducing bacteria (SRB) as a function of Spartina alterniflora invasion in Phragmites australis-vegetated sediments of the Dongtan wetland in the Yangtze River estuary, China, were investigated using 454 pyrosequencing and quantitative real-time PCR (qPCR) of the methyl coenzyme M reductase A (mcrA) and dissimilatory sulfite-reductase (dsrB) genes. Sediment samples were collected from two replicate locations, and each location included three sampling stands each covered by monocultures of P. australis, S. alterniflora and both plants (transition stands), respectively. qPCR analysis revealed higher copy numbers of mcrA genes in sediments from S. alterniflora stands than P. australis stands (5- and 7.5-fold more in the spring and summer, respectively), which is consistent with the higher methane flux rates measured in the S. alterniflora stands (up to 8.01 ± 5.61 mg m?2 h?1). Similar trends were observed for SRB, and they were up to two orders of magnitude higher than the methanogens. Diversity indices indicated a lower diversity of methanogens in the S. alterniflora stands than the P. australis stands. In contrast, insignificant variations were observed in the diversity of SRB with the invasion. Although Methanomicrobiales and Methanococcales, the hydrogenotrophic methanogens, dominated in the salt marsh, Methanomicrobiales displayed a slight increase with the invasion and growth of S. alterniflora, whereas the later responded differently. Methanosarcina, the metabolically diverse methanogens, did not vary with the invasion of, but Methanosaeta, the exclusive acetate utilizers, appeared to increase with S. alterniflora invasion. In SRB, sequences closely related to the families Desulfobacteraceae and Desulfobulbaceae dominated in the salt marsh, although they displayed minimal changes with the S. alterniflora invasion. Approximately 11.3 ± 5.1% of the dsrB gene sequences formed a novel cluster that was reduced upon the invasion. The results showed that in the sediments of tidal salt marsh where S. alterniflora displaced P. australis, the abundances of methanogens and SRB increased, but the community composition of methanogens appeared to be influenced more than did the SRB. PMID:23986751

Zeleke, Jemaneh; Sheng, Qiang; Wang, Jian-Gong; Huang, Ming-Yao; Xia, Fei; Wu, Ji-Hua; Quan, Zhe-Xue

2013-01-01

150

Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil.  

PubMed Central

A mesophilic sulfate-reducing enrichment culture growing anaerobically on crude oil was used as a model system to study which nutritional types of sulfate-reducing bacteria may develop on original petroleum constituents in oil wells, tanks, and pipelines. Chemical analysis of oil hydrocarbons during growth revealed depletion of toluene and o-xylene within 1 month and of m-xylene, o-ethyltoluene, m-ethyltoluene, m-propyltoluene, and m-isopropyltoluene within approximately 2 months. In anaerobic counting series, the highest numbers of CFU (6 x 10(6) to 8 x 10(6) CFU ml-1) were obtained with toluene and benzoate. Almost the same numbers were obtained with lactate, a substrate often used for detection of the vibrio-shaped, incompletely oxidizing Desulfovibrio sp. In the present study, however, lactate yielded mostly colonies of oval to rod-shaped, completely oxidizing, sulfate-reducing bacteria which were able to grow slowly on toluene or crude oil. Desulfovibrio species were detected only at low numbers (3 x 10(5) CFU ml-1). In agreement with this finding, a fluorescently labeled, 16S rRNA-targeted oligonucleotide probe described in the literature as specific for members of the Desulfovibrionaceae (suggested family) hybridized only with a small portion (< 5%) of the cells in the enrichment culture. These results are consistent with the observation that known Desulfovibrio species do not utilize aromatic hydrocarbons, the predominant substrates in the enrichment culture. All known sulfate-reducing bacteria which utilize aromatic compounds belong to a separate branch, the Desulfobacteriaceae (suggested family). Most members of this family are complete oxidizers. For specific hybridization with members of this branch, the probe had to be modified by a nucleotide exchange. Indeed, this modified probe hybridized with more than 95% of the cells in the enrichment culture. The results show that completely oxidizing, alkylbenzene-utilizing sulfate-reducing bacteria rather than Desulfovibrio species have to be considered in attempts to understand the microbiology of sulfide production in oil wells, tanks, and pipelines when no electron donors other than the indigenous oil constituents are available. PMID:8837415

Rabus, R; Fukui, M; Wilkes, H; Widdle, F

1996-01-01

151

Quantification of Tinto River sediment microbial communities: importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage.  

PubMed

Tinto River (Huelva, Spain) is a natural acidic rock drainage (ARD) environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. This study quantified the abundance of diverse microbial populations inhabiting ARD-related sediments from two physicochemically contrasting sampling sites (SN and JL dams). Depth profiles of total cell numbers differed greatly between the two sites yet were consistent in decreasing sharply at greater depths. Although catalyzed reporter deposition fluorescence in situ hybridization with domain-specific probes showed that Bacteria (>98%) dominated over Archaea (<2%) at both sites, important differences were detected at the class and genus levels, reflecting differences in pH, redox potential, and heavy metal concentrations. At SN, where the pH and redox potential are similar to that of the water column (pH 2.5 and +400 mV), the most abundant organisms were identified as iron-reducing bacteria: Acidithiobacillus spp. and Acidiphilium spp., probably related to the higher iron solubility at low pH. At the JL dam, characterized by a banded sediment with higher pH (4.2 to 6.2), more reducing redox potential (-210 mV to 50 mV), and a lower solubility of iron, members of sulfate-reducing genera Syntrophobacter, Desulfosporosinus, and Desulfurella were dominant. The latter was quantified with a newly designed CARD-FISH probe. In layers where sulfate-reducing bacteria were abundant, pH was higher and redox potential and levels of dissolved metals and iron were lower. These results suggest that the attenuation of ARD characteristics is biologically driven by sulfate reducers and the consequent precipitation of metals and iron as sulfides. PMID:22544246

Sánchez-Andrea, Irene; Knittel, Katrin; Amann, Rudolf; Amils, Ricardo; Sanz, José Luis

2012-07-01

152

Properties of Desulfovibrio carbinolicus sp. nov. and Other Sulfate-Reducing Bacteria Isolated from an Anaerobic-Purification Plant  

PubMed Central

Several sulfate-reducing microorganisms were isolated from an anaerobic-purification plant. Four strains were classified as Desulfovibrio desulfuricans, Desulfovibrio sapovorans, Desulfobulbus propionicus, and Desulfovibrio sp. The D. sapovorans strain contained poly-?-hydroxybutyrate granules and seemed to form extracellular vesicles. A fifth isolate, Desulfovibrio sp. strain EDK82, was a gram-negative, non-spore-forming, nonmotile, curved organism. It was able to oxidize several substrates, including methanol. Sulfate, sulfite, thiosulfate, and sulfur were utilized as electron acceptors. Pyruvate, fumarate, malate, and glycerol could be fermented. Because strain EDK82 could not be ascribed to any of the existing species, a new species, Desulfovibrio carbinolicus, is proposed. The doubling times of the isolates were determined on several substrates. Molecular hydrogen, lactate, propionate, and ethanol yielded the shortest doubling times (3.0 to 6.3 h). Due to the presence of support material in an anaerobic filter system, these species were able to convert sulfate to sulfide very effectively at a hydraulic retention time as short as 0.5 h. Images PMID:16347324

Nanninga, Henk J.; Gottschal, Jan C.

1987-01-01

153

Antagonistic activity of Bacillus sp. obtained from an Algerian oilfield and chemical biocide THPS against sulfate-reducing bacteria consortium inducing corrosion in the oil industry.  

PubMed

The present study enlightens the role of the antagonistic potential of nonpathogenic strain B21 against sulfate-reducing bacteria (SRB) consortium. The inhibitor effects of strain B21 were compared with those of the chemical biocide tetrakishydroxymethylphosphonium sulfate (THPS), generally used in the petroleum industry. The biological inhibitor exhibited much better and effective performance. Growth of SRB in coculture with bacteria strain B21 antagonist exhibited decline in SRB growth, reduction in production of sulfides, with consumption of sulfate. The observed effect seems more important in comparison with the effect caused by the tested biocide (THPS). Strain B21, a dominant facultative aerobic species, has salt growth requirement always above 5% (w/v) salts with optimal concentration of 10-15%. Phylogenetic analysis based on partial 16S rRNA gene sequences showed that strain B21 is a member of the genus Bacillus, being most closely related to Bacillus qingdaonensis DQ115802 (94.0% sequence similarity), Bacillus aidingensis DQ504377 (94.0%), and Bacillus salarius AY667494 (92.2%). Comparative analysis of partial 16S rRNA gene sequence data plus physiological, biochemical, and phenotypic features of the novel isolate and related species of Bacillus indicated that strain B21 may represent a novel species within the genus Bacillus, named Bacillus sp. (EMBL, FR671419). The results of this study indicate the application potential of Bacillus strain B21 as a biocontrol agent to fight corrosion in the oil industry. PMID:20949304

Gana, Mohamed Lamine; Kebbouche-Gana, Salima; Touzi, Abdelkader; Zorgani, Mohamed Amine; Pauss, André; Lounici, Hakim; Mameri, Nabil

2011-03-01

154

The use of a solid adsorber resin for enrichment of bacteria with toxic substrates and to identify metabolites: degradation of naphthalene, o-, and m-xylene by sulfate-reducing bacteria  

Microsoft Academic Search

Anaerobic sulfate-reducing bacteria were enriched from contaminated aquifer samples with naphthalene, o-, and m-xylene as sole carbon and energy source in the presence of Amberlite-XAD7, a solid adsorber resin. XAD7 served as a substrate reservoir maintaining a constantly low substrate concentration in the culture medium. In equilibration experiments with XAD7, the aromatic hydrocarbons needed up to 5 days to achieve

Barbara Morasch; Eva Annweiler; Rolf J. Warthmann; Rainer U. Meckenstock

2001-01-01

155

Managing the interactions between sulfate- and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration.  

PubMed

A groundwater containing an unusually high concentration (?4000 ?g/L) of perchlorate (ClO4(-)) and significant (?60 mg/L) sulfate (SO4(2-)) was treated with hydrogen (H2)-fed biofilms. The objective was to manage the interactions between sulfate-reducing bacteria (SRB) and perchlorate-reducing bacteria (PRB) by controlling the H2-delivery capacity to achieve ClO4(-) reduction to below the detection limit (4 ?g/L). Complete ClO4(-) reduction with minimized SO4(2-) reduction was achieved by using two membrane biofilm reactors (MBfRs) in series. The lead MBfR removed >96% ClO4(-), and the lag MBfR further reduced ClO4(-) to below the detection limit. SO4(2-) reduction ranged from 10 to 60%, and lower SO4(2-) reduction corresponded to lower H2 availability (i.e., lower H2 pressure or membranes with lower H2-delivery capacity). Minimizing SO4(2-) reduction improved ClO4(-) removal by increasing the fraction of PRB in the biofilm. High SO4(2-) flux correlated with enrichment of Desulfovibrionales, autotrophic SRB that can compete strongly with denitrifying bacteria (DB) and PRB. Increased SO4(2-) reduction also led to enrichment of: 1) Ignavibacteriales and Thiobacteriales, sulfide-oxidizing bacteria that allow sulfur cycling in the biofilm; 2) Bacteroidales, heterotrophic microorganisms likely using organic sources of carbon (e.g., acetate); and 3) Spirochaetales, which potentially utilize soluble microbial products (SMPs) from autotrophic SRB to produce acetate. PMID:24607522

Ontiveros-Valencia, Aura; Tang, Youneng; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

2014-05-15

156

The Sulfate-Rich and Extreme Saline Sediment of the Ephemeral Tirez Lagoon: A Biotope for Acetoclastic Sulfate-Reducing Bacteria and Hydrogenotrophic Methanogenic Archaea  

PubMed Central

Our goal was to examine the composition of methanogenic archaea (MA) and sulfate-reducing (SRP) and sulfur-oxidizing (SOP) prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain). Thus, adenosine-5?-phosphosulfate (APS) reductase ? (aprA) and methyl coenzyme M reductase ? (mcrA) gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE) fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ?-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in ?-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA. PMID:21915180

Montoya, Lilia; Lozada-Chávez, Irma; Amils, Ricardo; Rodriguez, Nuria; Marín, Irma

2011-01-01

157

Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps.  

PubMed

The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20?°C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with (13)C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in (13)C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture. PMID:23254512

Jaekel, Ulrike; Musat, Niculina; Adam, Birgit; Kuypers, Marcel; Grundmann, Olav; Musat, Florin

2013-05-01

158

Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps  

PubMed Central

The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20?°C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with 13C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in 13C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture. PMID:23254512

Jaekel, Ulrike; Musat, Niculina; Adam, Birgit; Kuypers, Marcel; Grundmann, Olav; Musat, Florin

2013-01-01

159

Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane  

PubMed Central

Diverse associations between methanotrophic archaea (ANME) and sulfate-reducing bacterial groups (SRB) often co-occur in marine methane seeps; however, the ecophysiology of these different symbiotic associations has not been examined. Here, we applied a combination of molecular, geochemical and Fluorescence in situ hybridization (FISH) coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS) analyses of in situ seep sediments and methane-amended sediment incubations from diverse locations (Eel River Basin, Hydrate Ridge and Costa Rican Margin seeps) to investigate the distribution and physiology of a newly identified subgroup of the Desulfobulbaceae (seepDBB) found in consortia with ANME-2c archaea, and compared these with the more commonly observed associations between the same ANME partner and the Desulfobacteraceae (DSS). FISH analyses revealed aggregates of seepDBB cells in association with ANME-2 from both environmental samples and laboratory incubations that are distinct in their structure relative to co-occurring ANME/DSS consortia. ANME/seepDBB aggregates were most abundant in shallow sediment depths below sulfide-oxidizing microbial mats. Depth profiles of ANME/seepDBB aggregate abundance revealed a positive correlation with elevated porewater nitrate relative to ANME/DSS aggregates in all seep sites examined. This relationship with nitrate was supported by sediment microcosm experiments, in which the abundance of ANME/seepDBB was greater in nitrate-amended incubations relative to the unamended control. FISH-NanoSIMS additionally revealed significantly higher 15N-nitrate incorporation levels in individual aggregates of ANME/seepDBB relative to ANME/DSS aggregates from the same incubation. These combined results suggest that nitrate is a geochemical effector of ANME/seepDBB aggregate distribution, and provides a unique niche for these consortia through their utilization of a greater range of nitrogen substrates than the ANME/DSS. PMID:24008326

Green-Saxena, A; Dekas, A E; Dalleska, N F; Orphan, V J

2014-01-01

160

Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane.  

PubMed

Diverse associations between methanotrophic archaea (ANME) and sulfate-reducing bacterial groups (SRB) often co-occur in marine methane seeps; however, the ecophysiology of these different symbiotic associations has not been examined. Here, we applied a combination of molecular, geochemical and Fluorescence in situ hybridization (FISH) coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS) analyses of in situ seep sediments and methane-amended sediment incubations from diverse locations (Eel River Basin, Hydrate Ridge and Costa Rican Margin seeps) to investigate the distribution and physiology of a newly identified subgroup of the Desulfobulbaceae (seepDBB) found in consortia with ANME-2c archaea, and compared these with the more commonly observed associations between the same ANME partner and the Desulfobacteraceae (DSS). FISH analyses revealed aggregates of seepDBB cells in association with ANME-2 from both environmental samples and laboratory incubations that are distinct in their structure relative to co-occurring ANME/DSS consortia. ANME/seepDBB aggregates were most abundant in shallow sediment depths below sulfide-oxidizing microbial mats. Depth profiles of ANME/seepDBB aggregate abundance revealed a positive correlation with elevated porewater nitrate relative to ANME/DSS aggregates in all seep sites examined. This relationship with nitrate was supported by sediment microcosm experiments, in which the abundance of ANME/seepDBB was greater in nitrate-amended incubations relative to the unamended control. FISH-NanoSIMS additionally revealed significantly higher (15)N-nitrate incorporation levels in individual aggregates of ANME/seepDBB relative to ANME/DSS aggregates from the same incubation. These combined results suggest that nitrate is a geochemical effector of ANME/seepDBB aggregate distribution, and provides a unique niche for these consortia through their utilization of a greater range of nitrogen substrates than the ANME/DSS. PMID:24008326

Green-Saxena, A; Dekas, A E; Dalleska, N F; Orphan, V J

2014-01-01

161

Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.  

PubMed

Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50-90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel. PMID:12898064

Zuo, R; Ornek, D; Syrett, B C; Green, R M; Hsu, C-H; Mansfeld, F B; Wood, T K

2004-04-01

162

EPR characterization of the new Qrc complex from sulfate reducing bacteria and its ability to form a supercomplex with hydrogenase and TpIc3.  

PubMed

The Quinone-reductase complex (Qrc) is a respiratory complex with Type I cytochrome c(3):menaquinone reductase activity, recently described in sulfate-reducing bacteria. Qrc is related to the complex iron-sulfur molybdoenzyme family and to the alternative complex III. In this work we report a detailed characterization of the redox properties of the metal cofactors of Qrc using EPR spectroscopy, which allowed the determination of the reduction potentials of five out of six hemes c, one [3Fe-4S](1+/0) center and the three [4Fe-4S](2+/1+) centers. In addition, we show that Qrc forms a supercomplex with [NiFe] hydrogenase and TpIc(3), its physiological electron donors. PMID:21651911

Venceslau, Sofia S; Matos, Daniela; Pereira, Inês A C

2011-07-21

163

Inhibition of hydrogen sulfide, methane, and total gas production and sulfate-reducing bacteria in in vitro swine manure by tannins, with focus on condensed quebracho tannins.  

PubMed

Management practices from large-scale swine production facilities have resulted in the increased collection and storage of manure for off-season fertilization use. Odor and emissions produced during storage have increased the tension among rural neighbors and among urban and rural residents. Production of these compounds from stored manure is the result of microbial activity of the anaerobic bacteria populations during storage. In the current study, the inhibitory effects of condensed quebracho tannins on in vitro swine manure for reduction of microbial activity and reduced production of gaseous emissions, including the toxic odorant hydrogen sulfide produced by sulfate-reducing bacteria (SRB), was examined. Swine manure was collected from a local swine facility, diluted in anaerobic buffer, and mixed with 1 %?w/v fresh feces. This slurry was combined with quebracho tannins, and total gas and hydrogen sulfide production was monitored over time. Aliquots were removed periodically for isolation of DNA to measure the SRB populations using quantitative PCR. Addition of tannins reduced overall gas, hydrogen sulfide, and methane production by greater than 90 % after 7 days of treatment and continued to at least 28 days. SRB population was also significantly decreased by tannin addition. qRT-PCR of 16S rDNA bacteria genes showed that the total bacterial population was also decreased in these incubations. These results indicate that the tannins elicited a collective effect on the bacterial population and also suggest a reduction in the population of methanogenic microorganisms as demonstrated by reduced methane production in these experiments. Such a generalized effect could be extrapolated to a reduction in other odor-associated emissions during manure storage. PMID:23149758

Whitehead, Terence R; Spence, Cheryl; Cotta, Michael A

2013-09-01

164

A green triple biocide cocktail consisting of a biocide, EDDS and methanol for the mitigation of planktonic and sessile sulfate-reducing bacteria.  

PubMed

Sulfate-reducing bacteria (SRB) cause souring and their biofilms are often the culprit in Microbiologically Influenced Corrosion (MIC). The two most common green biocides for SRB treatment are tetrakis-hydroxymethylphosphonium sulfate (THPS) and glutaraldehyde. It is unlikely that there will be another equally effective green biocide in the market any time soon. This means more effective biocide treatment probably will rely on biocide cocktails. In this work a triple biocide cocktail consisting of glutaraldehyde or THPS, ethylenediaminedisuccinate (EDDS) and methanol was used to treat planktonic SRB and to remove established SRB biofilms. Desulfovibrio vulgaris (ATCC 7757), a corrosive SRB was used as an example in the tests. Laboratory results indicated that with the addition of 10-15% (v/v) methanol to the glutaraldehyde and EDDS double combination, mitigation of planktonic SRB growth in ATCC 1249 medium and a diluted medium turned from inhibition to a kill effect while the chelator dosage was cut from 2,000 to 1,000 ppm. Biofilm removal was achieved when 50 ppm glutaraldehyde combined with 15% methanol and 1,000 ppm EDDS was used. THPS showed similar effects when it was used to replace glutaraldehyde in the triple biocide cocktail to treat planktonic SRB. PMID:22806837

Wen, J; Xu, D; Gu, T; Raad, I

2012-02-01

165

A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde  

Microsoft Academic Search

Generally speaking, a much higher concentration of biocide is needed to treat biofilms compared to the dosage used to for planktonic bacteria. With increasing restrictions of environmental regulations and safety concerns on large-scale biocide uses such as oil field applications, it is highly desirable to make more effective use of biocides. In this paper a green biocide enhancer ethylenediaminedisuccinate (EDDS)

Jie Wen; Kaili Zhao; Tingyue Gu; Issam I. Raad

2009-01-01

166

Corrosion and Electrochemical Behavior of 316L Stainless Steel in Sulfate-reducing and Iron-oxidizing Bacteria Solutions 1 1 Supported by the National Natural Science Foundation of China (No.20576108)  

Microsoft Academic Search

Corrosion and electrochemical behavior of 316L stainless steel was investigated in the presence of aerobic iron-oxidizing bacteria (IOB) and anaerobic sulfate-reducing bacteria (SRB) isolated from cooling water systems in an oil refinery using electrochemical measurement, scanning electron microscopy (SEM) and energy dispersive atom X-ray analysis(EDAX). The results show the corrosion potential and pitting potential of 316L stainless steel decrease distinctly

Congmin XU; Yaoheng ZHANG; Guangxu CHENG; Wensheng ZHU

2006-01-01

167

Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system.  

PubMed

The microbial diversity of ZnS-forming biofilms in 8 degrees C, circumneutral-pH groundwater in tunnels within the abandoned Piquette Zn, Pb mine (Tennyson, Wisconsin, USA) has been investigated by molecular methods, fluorescence in situ hybridization (FISH), and cultivation techniques. These biofilms are growing on old mine timbers that generate locally anaerobic zones within the mine drainage system. Sulfate-reducing bacteria (SRB) exclusively of the family Desulfobacteriaceae comprise a significant fraction of the active microbiota. Desulfosporosinus strains were isolated, but could not be detected by molecular methods. Other important microbial clusters belonged to the beta-, gamma-, and epsilon-Proteobacteria, the Cytophaga/Flexibacter/Bacteroides-group (CFB), Planctomycetales, Spirochaetales, Clostridia, and green nonsulfur bacteria. Our investigations indicated a growth dependence of SRB on fermentative, cellulolytic, and organic acid-producing Clostridia. A few clones related to sulfur-oxidizing bacteria were detected, suggesting a sulfur cycle related to redox gradients within the biofilm. Sulfur oxidation prevents sulfide accumulation that would lead to precipitation of other sulfide phases. FISH analyses indicated that Desulfobacteriaceae populations were not early colonizers in freshly grown and ZnS-poor biofilms, whereas they were abundant in older, naturally established, and ZnS-rich biofilms. Gram-negative SRB have been detected in situ over a period of 6 months, supporting the important role of these organisms in selective ZnS precipitation in Tennyson mine. Results demonstrate the complex nature of biofilms responsible for in situ bioremediation of toxic metals in a subsurface mine drainage system. PMID:14994175

Labrenz, M; Banfield, J F

2004-04-01

168

Identification of bacteria in enrichment cultures of sulfate reducers in the Cariaco Basin water column employing Denaturing Gradient Gel Electrophoresis of 16S ribosomal RNA gene fragments  

PubMed Central

Background The Cariaco Basin is characterized by pronounced and predictable vertical layering of microbial communities dominated by reduced sulfur species at and below the redox transition zone. Marine water samples were collected in May, 2005 and 2006, at the sampling stations A (10°30? N, 64°40? W), B (10°40? N, 64°45? W) and D (10°43’N, 64°32’W) from different depths, including surface, redox interface, and anoxic zones. In order to enrich for sulfate reducing bacteria (SRB), water samples were inoculated into anaerobic media amended with lactate or acetate as carbon source. To analyze the composition of enrichment cultures, we performed DNA extraction, PCR-DGGE, and sequencing of selected bands. Results DGGE results indicate that many bacterial genera were present that are associated with the sulfur cycle, including Desulfovibrio spp., as well as heterotrophs belonging to Vibrio, Enterobacter, Shewanella, Fusobacterium, Marinifilum, Mariniliabilia, and Spirochaeta. These bacterial populations are related to sulfur coupling and carbon cycles in an environment of variable redox conditions and oxygen availability. Conclusions In our studies, we found an association of SRB-like Desulfovibrio with Vibrio species and other genera that have a previously defined relevant role in sulfur transformation and coupling of carbon and sulfur cycles in an environment where there are variable redox conditions and oxygen availability. This study provides new information about microbial species that were culturable on media for SRB at anaerobic conditions at several locations and water depths in the Cariaco Basin. PMID:23981583

2013-01-01

169

Effects of Long-Term Acid-Mine Drainage Contamination on Diversity and Activity of Sulfate-Reducing Bacteria in a Natural Salt Marsh.  

NASA Astrophysics Data System (ADS)

Constructed wetlands have been studied as sites or analogs for in situ bioremediation of metal contaminants from acid mine drainage (AMD) or industrial sources (e.g. Webb et al. 1998). Wetlands bioremediation necessarily invokes the ubiquity and robustness of sulfate-reducing bacteria (SRB) to sequester dissolved metals into various poorly soluble metal-sulfides (e.g. PbS, CdS). However, few studies of natural wetlands under long-term ecological forcing by AMD or other contaminant sources are available for context. We are investigating the microbial diversity, mineralogy and geochemistry of a highly contaminated salt marsh along the East Central San Francisco Bay. For nearly a half-century, areas within this marsh have received acidic and/or metal-rich groundwaters from near-surface pyrite tailings (transported there from Iron Mountain Mine, near Redding, CA) and local industrial sources (e.g. paint and explosives manufacturers). Sediment cores (30-40 cm long) were taken from six contaminated sites in the marsh with pH range of ˜2 to ˜8. Previous analyses (URS Corp. 2001) reported As, Cd, Cu, Se, Zn, and Pb present in sediments at extremely high concentrations (100s of ppm), yet our ICP-AES analyses of pore waters showed only As present at concentrations of 10-50 ppb. We infer, from high-resolution transmission electron microscope (HRTEM) studies of biogenic (SRB biofilm) ZnS (Moreau et al. 2003, in review) and marsh sediments, that contaminant metals have been sequestered into aggregates of nanocrystalline metal-sulfides. Continuous-flow isotope ratio mass spectrometer (CF-IRMS) analyses of pore-water sulfate and sedimentary sulfides allow resolution of contributions to dissolved sulfate and sulfide from tailings oxidation and dissimilatory sulfate reduction. Sulfate analyses from subsections of three cores (pH 2-3, 6-7, 7-8, respectively) all yield ? 34S values consistent with bacterial sulfate reduction. We note that all three cores also contain very fine-grained black muds that are distinguishable from coarser pyrite cinders, and exhibit a noticeably strong sulfide odor. Aero- and halo-tolerant SRB were enriched from circumneutral pH cores, and we hypothesize that acido-tolerant SRB may also be present. Analysis of restriction fragment length polymorphism of whole community 16S rDNA extracted from each core shows an expected increase in diversity between acidic and circumneutal sediments, and clone libraries from both contaminated and uncontaminated marsh sediments are being compared to assess the impact of long-term contamination. References: Webb et al. 1998, J. Appl. Microbio., 84, 240-248; Moreau et al. 2003, Amer. Min., in review; URS Corp. 2001, Report 51.09967067.00.

Moreau, J. W.; Banfield, J. F.

2003-12-01

170

Mono- and Dialkyl Glycerol Ether Lipids in Anaerobic Bacteria: Biosynthetic Insights from the Mesophilic Sulfate Reducer Desulfatibacillum alkenivorans PF2803T.  

PubMed

Bacterial glycerol ether lipids (alkylglycerols) have received increasing attention during the last decades, notably due to their potential role in cell resistance or adaptation to adverse environmental conditions. Major uncertainties remain, however, regarding the origin, biosynthesis, and modes of formation of these uncommon bacterial lipids. We report here the preponderance of monoalkyl- and dialkylglycerols (1-O-alkyl-, 2-O-alkyl-, and 1,2-O-dialkylglycerols) among the hydrolyzed lipids of the marine mesophilic sulfate-reducing proteobacterium Desulfatibacillum alkenivorans PF2803(T) grown on n-alkenes (pentadec-1-ene or hexadec-1-ene) as the sole carbon and energy source. Alkylglycerols account for one-third to two-thirds of the total cellular lipids (alkylglycerols plus acylglycerols), depending on the growth substrate, with dialkylglycerols contributing to one-fifth to two-fifths of the total ether lipids. The carbon chain distribution of the lipids of D. alkenivorans also depends on that of the substrate, but the chain length and methyl-branching patterns of fatty acids and monoalkyl- and dialkylglycerols are systematically congruent, supporting the idea of a biosynthetic link between the three classes of compounds. Vinyl ethers (1-alken-1'-yl-glycerols, known as plasmalogens) are not detected among the lipids of strain PF2803(T). Cultures grown on different (per)deuterated n-alkene, n-alkanol, and n-fatty acid substrates further demonstrate that saturated alkylglycerols are not formed via the reduction of hypothetic alken-1'-yl intermediates. Our results support an unprecedented biosynthetic pathway to monoalkyl/monoacyl- and dialkylglycerols in anaerobic bacteria and suggest that n-alkyl compounds present in the environment can serve as the substrates for supplying the building blocks of ether phospholipids of heterotrophic bacteria. PMID:25724965

Grossi, Vincent; Mollex, Damien; Vinçon-Laugier, Arnauld; Hakil, Florence; Pacton, Muriel; Cravo-Laureau, Cristiana

2015-05-01

171

Phylogeography of Sulfate-Reducing Bacteria among Disturbed Sediments, Disclosed by Analysis of the Dissimilatory Sulfite Reductase Genes (dsrAB)  

PubMed Central

Sediment samples were collected worldwide from 16 locations on four continents (in New York, California, New Jersey, Virginia, Puerto Rico, Venezuela, Italy, Latvia, and South Korea) to assess the extent of the diversity and the distribution patterns of sulfate-reducing bacteria (SRB) in contaminated sediments. The SRB communities were examined by terminal restriction fragment (TRF) length polymorphism (TRFLP) analysis of the dissimilatory sulfite reductase genes (dsrAB) with NdeII digests. The fingerprints of dsrAB genes contained a total of 369 fluorescent TRFs, of which <20% were present in the GenBank database. The global sulfidogenic communities appeared to be significantly different among the anthropogenically impacted (petroleum-contaminated) sites, but nearly all were less diverse than pristine habitats, such as mangroves. A global SRB indicator species of petroleum pollution was not identified. However, several dsrAB gene sequences corresponding to hydrocarbon-degrading isolates or consortium members were detected in geographically widely separated polluted sites. Finally, a cluster analysis of the TRFLP fingerprints indicated that many SRB microbial communities were most similar on the basis of close geographic proximity (tens of kilometers). Yet, on larger scales (hundreds to thousands of kilometers) SRB communities could cluster with geographically widely separated sites and not necessarily with the site with the closest proximity. These data demonstrate that SRB populations do not adhere to a biogeographic distribution pattern similar to that of larger eukaryotic organisms, with the greatest species diversity radiating from the Indo-Pacific region. Rather, a patchy SRB distribution is encountered, implying an initially uniform SRB community that has differentiated over time. PMID:15691959

Pérez-Jiménez, J. R.; Kerkhof, L. J.

2005-01-01

172

Phylogeography of sulfate-reducing bacteria among disturbed sediments, disclosed by analysis of the dissimilatory sulfite reductase genes (dsrAB).  

PubMed

Sediment samples were collected worldwide from 16 locations on four continents (in New York, California, New Jersey, Virginia, Puerto Rico, Venezuela, Italy, Latvia, and South Korea) to assess the extent of the diversity and the distribution patterns of sulfate-reducing bacteria (SRB) in contaminated sediments. The SRB communities were examined by terminal restriction fragment (TRF) length polymorphism (TRFLP) analysis of the dissimilatory sulfite reductase genes (dsrAB) with NdeII digests. The fingerprints of dsrAB genes contained a total of 369 fluorescent TRFs, of which <20% were present in the GenBank database. The global sulfidogenic communities appeared to be significantly different among the anthropogenically impacted (petroleum-contaminated) sites, but nearly all were less diverse than pristine habitats, such as mangroves. A global SRB indicator species of petroleum pollution was not identified. However, several dsrAB gene sequences corresponding to hydrocarbon-degrading isolates or consortium members were detected in geographically widely separated polluted sites. Finally, a cluster analysis of the TRFLP fingerprints indicated that many SRB microbial communities were most similar on the basis of close geographic proximity (tens of kilometers). Yet, on larger scales (hundreds to thousands of kilometers) SRB communities could cluster with geographically widely separated sites and not necessarily with the site with the closest proximity. These data demonstrate that SRB populations do not adhere to a biogeographic distribution pattern similar to that of larger eukaryotic organisms, with the greatest species diversity radiating from the Indo-Pacific region. Rather, a patchy SRB distribution is encountered, implying an initially uniform SRB community that has differentiated over time. PMID:15691959

Pérez-Jiménez, J R; Kerkhof, L J

2005-02-01

173

Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil  

Microsoft Academic Search

Production of sulfide in oil field waters, a process which is referred to as souring, has been of concern. Hydrogen sulfide may lead to poisoning, contamination of oil and gas, corrosion of pipelines, conversion of iron mineral to ferrous sulfide. This study used a previously established sulfate-reducing enrichment culture on crude oil as a model system of bacterial habitats in

RALF RABUS; F. Widdel; Manabu Fukui

1996-01-01

174

A Bioreactor for Growth of Sulfate-Reducing Bacteria: Online Estimation of Specific Growth Rate and Biomass for the Deep-Sea  

E-print Network

of Specific Growth Rate and Biomass for the Deep-Sea Hydrothermal Vent Thermophile Thermodesulfatator indicus to maintain a constant pH, and a computer program controlling the process records the NaOH additions, which, a chemolithotrophic, thermophilic, sulfate-reducing bac- terium recently isolated from a deep-sea hydrothermal vent

Reysenbach, Anna-Louise

175

Polyhydroxyalkanoate (PHA) Accumulation in Sulfate-Reducing Bacteria and Identification of a Class III PHA Synthase (PhaEC) in Desulfococcus multivorans  

PubMed Central

Seven strains of sulfate-reducing bacteria (SRB) were tested for the accumulation of polyhydroxyalkanoates (PHAs). During growth with benzoate Desulfonema magnum accumulated large amounts of poly(3-hydroxybutyrate) [poly(3HB)]. Desulfosarcina variabilis (during growth with benzoate), Desulfobotulus sapovorans (during growth with caproate), and Desulfobacterium autotrophicum (during growth with caproate) accumulated poly(3HB) that accounted for 20 to 43% of cell dry matter. Desulfobotulus sapovorans and Desulfobacterium autotrophicum also synthesized copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyvalerate when valerate was used as the growth substrate. Desulfovibrio vulgaris and Desulfotalea psychrophila were the only SRB tested in which PHAs were not detected. When total DNA isolated from Desulfococcus multivorans and specific primers deduced from highly conserved regions of known PHA synthases (PhaC) were used, a PCR product homologous to the central region of class III PHA synthases was obtained. The complete pha locus of Desulfococcus multivorans was subsequently obtained by inverse PCR, and it contained adjacent phaEDm and phaCDm genes. PhaCDm and PhaEDm were composed of 371 and 306 amino acid residues and showed up to 49 or 23% amino acid identity to the corresponding subunits of other class III PHA synthases. Constructs of phaCDm alone (pBBRMCS-2::phaCDm) and of phaEDmCDm (pBBRMCS-2::phaEDmCDm) in various vectors were obtained and transferred to several strains of Escherichia coli, as well as to the PHA-negative mutants PHB?4 and GPp104 of Ralstonia eutropha and Pseudomonas putida, respectively. In cells of the recombinant strains harboring phaEDmCDm small but significant amounts (up to 1.7% of cell dry matter) of poly(3HB) and of PHA synthase activity (up to 1.5 U/mg protein) were detected. This indicated that the cloned genes encode functionally active proteins. Hybrid synthases consisting of PhaCDm and PhaE of Thiococcus pfennigii or Synechocystis sp. strain PCC 6308 were also constructed and were shown to be functionally active. PMID:15294771

Hai, Tran; Lange, Daniela; Rabus, Ralf; Steinbüchel, Alexander

2004-01-01

176

Acetate Production from Oil under Sulfate-Reducing Conditions in Bioreactors Injected with Sulfate and Nitrate  

PubMed Central

Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266–269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio, which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields. PMID:23770914

Callbeck, Cameron M.; Agrawal, Akhil

2013-01-01

177

Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria.  

PubMed

The anaerobic degradation of propane and butane is typically initiated by activation via addition to fumarate. Here we investigated the mechanism of activation under sulfate-reducing conditions by one pure culture (strain BuS5) and three enrichment cultures employing stable isotope analysis. Stable isotope fractionation was compared for cultures incubated with or without substrate diffusion limitation. Bulk enrichment factors were significantly higher in mixed vs. static incubations. Two dimensional factors, given by the correlation of stable isotope fractionation of both carbon and hydrogen at their reactive positions (Lambda reactive position, ?rp), were compared to analyse the activation mechanisms. A characteristic reactive position isotope fractionation pattern was observed, distinct from aerobic degradation. ?rp values ranged from 10.5 to 11.8 for propane and from 7.8 to 9.4 for butane. Incubations of strain BuS5 with deuterium-labelled n-alkanes indicated that butane was activated solely at the subterminal C atom. In contrast, propane was activated mainly at the subterminal C atom but also significantly at the terminal C atoms. A conservative estimate suggests that about 70% of the propane activation events occurred at the subterminal C atom and about 30% at the terminal C atoms. PMID:24028539

Jaekel, Ulrike; Vogt, Carsten; Fischer, Anko; Richnow, Hans-Hermann; Musat, Florin

2014-01-01

178

Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral.  

PubMed

The anti-corrosion effect and the antimicrobial activity of lemongrass essential oil (LEO) against the planktonic and sessile growth of a sulfate reducing bacterium (SRB) were evaluated. Minimum inhibitory concentration (MIC) of LEO and its major component, the citral, was 0.17 mg ml-1. In addition, both LEO and citral showed an immediate killing effect against SRB in liquid medium, suggesting that citral is responsible for the antimicrobial activity of LEO against SRB. Transmission electron microscopy revealed that the MIC of LEO caused discernible cell membrane alterations and formed electron-dense inclusions. Neither biofilm formation nor corrosion was observed on carbon steel coupons after LEO treatment. LEO was effective for the control of the planktonic and sessile SRB growth and for the protection of carbon steel coupons against biocorrosion. The application of LEO as a potential biocide for SRB growth control in petroleum reservoirs and, consequently, for souring prevention, and/or as a coating protection against biocorrosion is of great interest for the petroleum industries. PMID:23938023

Korenblum, Elisa; Regina de Vasconcelos Goulart, Fátima; de Almeida Rodrigues, Igor; Abreu, Fernanda; Lins, Ulysses; Alves, Péricles Barreto; Blank, Arie Fitzgerald; Valoni, Erika; Sebastián, Gina V; Alviano, Daniela Sales; Alviano, Celuta Sales; Seldin, Lucy

2013-01-01

179

Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral  

PubMed Central

The anti-corrosion effect and the antimicrobial activity of lemongrass essential oil (LEO) against the planktonic and sessile growth of a sulfate reducing bacterium (SRB) were evaluated. Minimum inhibitory concentration (MIC) of LEO and its major component, the citral, was 0.17 mg ml-1. In addition, both LEO and citral showed an immediate killing effect against SRB in liquid medium, suggesting that citral is responsible for the antimicrobial activity of LEO against SRB. Transmission electron microscopy revealed that the MIC of LEO caused discernible cell membrane alterations and formed electron-dense inclusions. Neither biofilm formation nor corrosion was observed on carbon steel coupons after LEO treatment. LEO was effective for the control of the planktonic and sessile SRB growth and for the protection of carbon steel coupons against biocorrosion. The application of LEO as a potential biocide for SRB growth control in petroleum reservoirs and, consequently, for souring prevention, and/or as a coating protection against biocorrosion is of great interest for the petroleum industries. PMID:23938023

2013-01-01

180

Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea.  

PubMed

The Black Sea, with its highly sulfidic water column, is the largest anoxic basin in the world. Within its sediments, the mineralization of organic matter occurs essentially through sulfate reduction and methanogenesis. In this study, the sulfate-reducing community was investigated in order to understand how these microorganisms are distributed relative to the chemical zonation: in the upper sulfate zone, at the sulfate-methane transition zone, and deeply within the methane zone. Total bacteria were quantified by real-time PCR of 16S rRNA genes whereas sulfate-reducing microorganisms (SRM) were quantified by targeting their metabolic key gene, the dissimilatory (bi)sulfite reductase (dsrA). Sulfate-reducing microorganisms were predominant in the sulfate zone but occurred also in the methane zone, relative proportion was maximal around the sulfate-methane transition, c. 30%, and equally high in the sulfate and methane zones, 5-10%. The dsrAB clone library from the sulfate-methane transition zone, showed mostly sequences affiliated with the Desulfobacteraceae. While, the dsrAB clone libraries from the upper, sulfate-rich zone and the deep, sulfate-poor zone were dominated by similar, novel deeply branching sequences which might represent Gram-positive spore-forming sulfate- and/or sulfite-reducing microorganisms. We thus hypothesize that terminal carbon mineralization in surface sediments of the Black Sea is largely due to the sulfate reduction activity of previously hidden SRM. Although these novel SRM were also abundant in sulfate-poor, methanogenic areas of the Black Sea sediment, their activities and possibly very versatile metabolic capabilities remain subject of further study. PMID:17227418

Leloup, Julie; Loy, Alexander; Knab, Nina J; Borowski, Christian; Wagner, Michael; Jørgensen, Bo Barker

2007-01-01

181

IN SITU RT-PCR WITH A SULFATE-REDUCING BACTERIUM ISOLATED FROM SEAGRASS ROOTS  

EPA Science Inventory

Bacteria considered to be obligate anaerobes internally colonize roots of the submerged macrophyte Halodule wrightii. A sulfate reducing bacterium, Summer lac 1, was isolated on lactate from H. wrightii roots. The isolate has physiological characteristics typical of Desulfovibri...

182

The sulphate-reducing bacteria  

Microsoft Academic Search

This monograph surveys knowledge about an unusual and little-studied group of microbes, bringing together information that has hitherto been widely scattered throughout the scientific literature. The sulphate-reducing bacteria cannot grow in air; they respire sulphates instead of oxygen and are difficult to isolate and study. Nevertheless, much progress has been made in recent years and has revealed novelties of biochemistry

1984-01-01

183

Arsenic Mobility Under Sulfate Reducing Conditions  

NASA Astrophysics Data System (ADS)

At a former landfill site in southern Maine approximately 300 ppb arsenic has been observed in groundwater over the last two decades. Laboratory and field measurements support the hypothesis that this arsenic originates within the underlying glaciofluvial sediments containing natural arsenic at concentrations of approximately 6 ppm. Arsenic is mobilized under the landfill by reducing conditions induced by decomposition of organic-rich landfill leachate. The feasibility of arsenic removal by in situ oxidation was investigated with laboratory and pilot field experiments. The high redox buffering capacity of the aquifer solids makes this remediation strategy very difficult to accomplish. A more promising remediation strategy may involve the sequestration of arsenic through the formation of solid phase sulfides under sulfate-reducing conditions. To test this hypothesis, laboratory microcosm experiments were conducted with sediment from beneath the landfill. Acetate was added to the sediments to stimulate sulfate reducing conditions. Microcosms were monitored for changes to the solid and aqueous phase chemistry along with changes to the microbial community. The addition of acetate enabled the native microbial community to establish sulfate reducing conditions. The production of sulfide coincided with a decrease in the observed iron and arsenic concentrations. Over ten days, roughly 70 to 80% of the dissolved arsenic and >99% of the dissolved iron was removed from solution. Arsenic was subsequently partially remobilized, possibly due to continued sulfate reduction and an increase in pH. Results indicated that laboratory manipulations of the microbial community and subsurface redox state were able to lower the dissolved arsenic concentrations.

Keimowitz, A. R.; Mailloux, B. J.; Cole, P.; Simpson, H. J.; Stute, M.; Chillrud, S. N.; Kujawinski, E. B.; Zheng, Y.

2004-12-01

184

Anaerobic Cometabolic Conversion of Benzothiophene by a Sulfate-Reducing Enrichment Culture and in a Tar-Oil-Contaminated Aquifer  

Microsoft Academic Search

Anaerobic cometabolic conversion of benzothiophene was studied with a sulfate-reducing enrichment culture growing with naphthalene as the sole source of carbon and energy. The sulfate-reducing bacteria were not able to grow with benzothiophene as the primary substrate. Metabolite analysis was performed with culture super- natants obtained by cometabolization experiments and revealed the formation of three isomeric carboxyben- zothiophenes. Two isomers

EVA ANNWEILER; WALTER MICHAELIS; RAINER U. MECKENSTOCK

2001-01-01

185

Structural and Functional Dynamics of Sulfate-Reducing Populations in Bacterial Biofilms  

PubMed Central

We describe the combined application of microsensors and molecular techniques to investigate the development of sulfate reduction and of sulfate-reducing bacterial populations in an aerobic bacterial biofilm. Microsensor measurements for oxygen showed that anaerobic zones developed in the biofilm within 1 week and that oxygen was depleted in the top 200 to 400 ?m during all stages of biofilm development. Sulfate reduction was first detected after 6 weeks of growth, although favorable conditions for growth of sulfate-reducing bacteria (SRB) were present from the first week. In situ hybridization with a 16S rRNA probe for SRB revealed that sulfate reducers were present in high numbers (approximately 108 SRB/ml) in all stages of development, both in the oxic and anoxic zones of the biofilm. Denaturing gradient gel electrophoresis (DGGE) showed that the genetic diversity of the microbial community increased during the development of the biofilm. Hybridization analysis of the DGGE profiles with taxon-specific oligonucleotide probes showed that Desulfobulbus and Desulfovibrio were the main sulfate-reducing bacteria in all biofilm samples as well as in the bulk activated sludge. However, different Desulfobulbus and Desulfovibrio species were found in the 6th and 8th weeks of incubation, respectively, coinciding with the development of sulfate reduction. Our data indicate that not all SRB detected by molecular analysis were sulfidogenically active in the biofilm. PMID:9758792

Santegoeds, Cecilia M.; Ferdelman, Timothy G.; Muyzer, Gerard; de Beer, Dirk

1998-01-01

186

Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms  

SciTech Connect

The authors describe the combined application of microsensors and molecular techniques to investigate the development of sulfate reduction and of sulfate-reducing bacterial populations in an aerobic bacterial biofilm. Microsensor measurements for oxygen showed that anaerobic zones developed in the biofilm within 1 week and that oxygen was depleted in the top 200 to 400 {micro}m during all stages of biofilm development. Sulfate reduction was first detected after 6 weeks of growth, although favorable conditions for growth of sulfate-reducing bacteria (SRB) were present from the first week. In situ hybridization with a 16S rRNA probe for SRB revealed that sulfate reducers were present in high numbers in all stages of development, both in the oxic and anoxic zones of the biofilm. Denaturing gradient gel electrophoresis (DGGE) showed that the genetic diversity of the microbial community increased during the development of the biofilm. Hybridization analysis of the DGGE profiles with taxon-specific oligonucleotide probes showed that Desulfobulbus and Desulfovibrio were the main sulfate-reducing bacteria in all biofilm samples as well as in the bulk activated sludge. However, different Desulfobulbus and Desulfovibrio species were found in the 6th and 8th weeks of incubation, respectively, coinciding with the development of sulfate reduction. Their data indicate that not all SRB detected by molecular analysis were sulfidogenically active in the biofilm.

Santegoeds, C.M.; Ferdelman, T.G.; Muyzer, G.; Beer, D. de [Max Planck Inst. for Marine Microbiology, Bremen (Germany)

1998-10-01

187

Electron transfer from sulfate-reducing becteria biofilm promoted by reduced graphene sheets  

NASA Astrophysics Data System (ADS)

Reduced graphene sheets (RGSs) mediate electron transfer between sulfate-reducing bacteria (SRB) and solid electrodes, and promote the development of microbial fuel cells (MFC). We have investigated RSG-promoted electron transfer between SRB and a glassy carbon (GC) electrode. The RGSs were produced at high yield by a chemical sequence involving graphite oxidation, ultrasonic exfoliation of nanosheets, and N2H4 reduction. Cyclic voltammetric testing showed that the characteristic anodic peaks (around 0.3 V) might arise from the combination of bacterial membrane surface cytochrome c3 and the metabolic products of SRB. After 6 d, another anodic wave gradually increased to a maximum current peak and a third anodic signal became visible at around 0 V. The enhancements of two characteristic anodic peaks suggest that RSGs mediate electron-transfer kinetics between bacteria and the solid electrode. Manipulation of these recently-discovered electron-transport mechanisms will lead to significant advances in MFC engineering.

Wan, Yi; Zhang, Dun; Wang, Yi; Wu, Jiajia

2012-01-01

188

Reduced Sulfation of Chondroitin Sulfate but Not Heparan Sulfate in Kidneys of Diabetic db/db Mice  

PubMed Central

Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes. PMID:23757342

Reine, Trine M.; Grøndahl, Frøy; Jenssen, Trond G.; Hadler-Olsen, Elin; Prydz, Kristian

2013-01-01

189

Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor.  

PubMed

A sulfate-reducing bacterium, strain WW1, was isolated from a thermophilic bioreactor operated at 65 degrees C with methanol as sole energy source in the presence of sulfate. Growth of strain WW1 on methanol or acetate was inhibited at a sulfide concentration of 200 mg l(-1), while on H2/CO2, no apparent inhibition occurred up to a concentration of 500 mg l(-1). When strain WW1 was co-cultured under the same conditions with the methanol-utilizing, non-sulfate-reducing bacteria, Thermotoga lettingae and Moorella mulderi, both originating from the same bioreactor, growth and sulfide formation were observed up to 430 mg l(-1). These results indicated that in the co-cultures, a major part of the electron flow was directed from methanol via H2/CO2 to the reduction of sulfate to sulfide. Besides methanol, acetate, and hydrogen, strain WW1 was also able to use formate, malate, fumarate, propionate, succinate, butyrate, ethanol, propanol, butanol, isobutanol, with concomitant reduction of sulfate to sulfide. In the absence of sulfate, strain WW1 grew only on pyruvate and lactate. On the basis of 16S rRNA analysis, strain WW1 was most closely related to Desulfotomaculum thermocisternum and Desulfotomaculum australicum. However, physiological properties of strain WW1 differed in some aspects from those of the two related bacteria. PMID:17028873

Balk, Melike; Weijma, Jan; Goorissen, Heleen P; Ronteltap, Mariska; Hansen, Theo A; Stams, Alfons J M

2007-01-01

190

Mine wastewater treatment using Phalaris arundinacea plant material hydrolyzate as substrate for sulfate-reducing bioreactor.  

PubMed

A low-cost substrate, Phalaris arundinacea was acid hydrolyzed (Reed Canary Grass hydrolyzate, RCGH) and used to support sulfate reduction. The experiments included batch bottle assays (35 degrees C) and a fluidized-bed bioreactor (FBR) experiment (35 degrees C) treating synthetic mine wastewater. Dry plant material was also tested as substrate in batch bottle assays. The batch assays showed sulfate reduction with the studied substrates, producing 540 and 350mgL(-1) dissolved sulfide with RCGH and dry plant material, respectively. The soluble sugars of the RCGH presumably fermented into volatile fatty acids and hydrogen, which served as electron donors for sulfate reducing bacteria. A sulfate reduction rate of 2.2-3.3gL(-1)d(-1) was obtained in the FBR experiment. The acidic influent was neutralized and the highest metal precipitation rates were 0.84g FeL(-1)d(-1) and 15mg ZnL(-1)d(-1). The sulfate reduction rate in the FBR was limited by the acetate oxidation rate of the sulfate-reducing bacteria. PMID:20137922

Lakaniemi, Aino-Maija; Nevatalo, Laura M; Kaksonen, Anna H; Puhakka, Jaakko A

2010-06-01

191

Influence of Sulfate on the Transport of Bacteria in Quartz Sand  

NASA Astrophysics Data System (ADS)

The influence of sulfate on the transport of bacteria in packed quartz sand was examined at a constant 25 mM ionic strength with the sulfate concentration progressively increased from 0 to 20 mM at pH 6.0. Two representative cell types, Escherichia coli BL21 (Gram-negative) and Bacillus subtilis (Gram-positive), were used to determine the effect of sulfate on cell transport behavior. For both examined cell types, the breakthrough plateaus in the presence of sulfate in suspensions were higher and the corresponding retained profiles were lower than those without sulfate ions, indicating that the presence of sulfate in suspensions increased cell transport in packed quartz sand regardless of the examined cell types (Gram-positive or Gram-negative). Moreover, the enhancement of bacteria transport induced by the presence of sulfate was more pronounced with increasing sulfate concentration from 5 to 20 mM. In contrast with the results for EPS-present bacteria, the presence of sulfate in solutions did not change the transport behavior for EPS-removed cells. The zeta potentials of EPS-present cells with sulfate were found to be more negative relative to those without sulfate in suspensions, whereas, the zeta potentials for EPS-removed cells in the presence of sulfate were similar as those without sulfate. We proposed that sulfate could interact with EPS on cell surfaces and thus negatively increased the zeta potentials of bacteria, contributing to the increased transport in the presence of sulfate in suspensions.

Shen, Xiufang; Han, Peng; Yang, Haiyan; Kim, Hyunjung; Tong, Meiping

2013-04-01

192

Diversity of sulfate-reducing genes (dsrAB) in sediments from Puget Sound.  

PubMed

The aims of this study were to characterize the population structure and diversity of sulfate-reducing bacteria (SRB) from three distinct sites at Puget Sound, and relate the biogeochemical properties of the sediments to the sulfate-reducer communities. The population composition and diversity of sulfate-reducing bacteria carrying dsrAB genes from surface Puget Sound sediments was investigated using a polymerase chain reaction-based cloning approach. Sediment cores were collected from three different locations: Carr Inlet (C1A), Shallow Bud Inlet (S1A), and Turning Basin (T1A). A total of 498 dsrAB clones were sequenced from the three sites. Ecological indices indicated that T1A had the highest diversity and evenness values and C1A had the lowest. Correlations were also found between diversity indices and geochemical parameters. The diversity of the SRB decreased with decreasing carbon concentrations and sulfate reduction rates, and increasing levels of oxygen. A phylogenetic comparison revealed that the majority of the dsrAB sequences were associated with the delta-proteobacterial phylotypes Desulfonema, Desulfococcus and Desulfosarcina, suggesting that complete oxidizers with high substrate versatility dominate in the sediments. The environmental conditions and energy sources available in the sediments may have dictated microbial community structure and diversity of SRBs. Distinctive community structures of SRBs in Puget Sound sediments were found to vary at different sites with different redox profiles. The dominance of the Desulfobacteraceae-like sequences may be due to the presence of a diverse spectrum of substrates in the sediments. This study represents one of the first efforts to characterize the population of sulfate-reducing microbes in the oxygenated regions of Puget Sound sediments. The phylogenetic identification of dsrAB genes in the sediment samples allows the composition of sulfate-reducing prokaryotic communities to be inferred, and working hypotheses about their likely carbon substrates to be formed. PMID:18942577

Tiquia, S M

2008-10-01

193

Melamine nanosensing with chondroitin sulfate-reduced gold nanoparticles.  

PubMed

Gold nanoparticles were green-synthesized using a glycosaminoglycan, chondroitin sulfate, as the reducing agent by mixing Au3+ and chondroitin sulfate under heating. Chondroitin sulfate-reduced gold nanoparticles were characterized by UV-Vis spectrophotometry, high resolution transmission electron microscopy and atomic force microscopy. The yield of Au3+ to Au0 was measured as 80.1% by inductively coupled plasma-atomic emission spectroscopy. A mostly spherical shape, with an average diameter of 44.68 +/- 11.25 nm, was observed from the atomic force microscopy images. Using chondroitin sulfate-reduced gold nanoparticles, we developed a melamine nanosensor that provides a simplified method to detect melamine in infant formula. With an increase in the melamine concentration in the gold nanoparticle solution, the characteristic surface plasmon resonance band of gold nanoparticles at 530 nm decreased, whereas a new peak appeared at 620 nm. There was a linear relationship between the absorbance ratio (A620/A530) and the melamine concentration in the range of 0.1-10 microM. The practical use of the proposed method was verified by quantifying melamine spiked in real infant formula at concentrations as low as 12.6 ppb. The nanosensing of melamine using chondroitin sulfate-reduced gold nanoparticles can be a promising technique for quick on-site melamine screening of milk products. PMID:24266218

Noh, Hwa Jung; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie

2013-12-01

194

Arsenic Mobility Under Sulfate Reducing Conditions  

Microsoft Academic Search

At a former landfill site in southern Maine approximately 300 ppb arsenic has been observed in groundwater over the last two decades. Laboratory and field measurements support the hypothesis that this arsenic originates within the underlying glaciofluvial sediments containing natural arsenic at concentrations of approximately 6 ppm. Arsenic is mobilized under the landfill by reducing conditions induced by decomposition of

A. R. Keimowitz; B. J. Mailloux; P. Cole; H. J. Simpson; M. Stute; S. N. Chillrud; E. B. Kujawinski; Y. Zheng

2004-01-01

195

Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions  

USGS Publications Warehouse

The potential use of iron(III) oxide to stimulate in-situ hydrocarbon degradation in anaerobic petroleum-contaminated harbor sediments was investigated. Previous studies have indicated that Fe(III)-reducing bacteria (FeRB) can oxidize some electron donors more effectively than sulfate- reducing bacteria (SRB). In contrast to previous results in freshwater sediments, the addition of Fe(III) to marine sediments from San Diego Bay, CA did not switch the terminal electron-accepting process (TEAP) from sulfate reduction to Fe-(III) reduction. Addition of Fe(III) also did not stimulate anaerobic hydrocarbon oxidation. Exposure of the sediment to air [to reoxidize Fe(II) to Fe(III)] followed by anaerobic incubation of the sediments, resulted in Fe-(III) reduction as the TEAP, but contaminant degradation was not stimulated and in some instances was inhibited. The difference in the ability of FeRB to compete with the SRB in the different sediment treatments was related to relative population sizes. Although the addition of Fe(III) did not stimulate hydrocarbon degradation, the results presented here as well as other recent studies demonstrate that there may be significant anaerobic hydrocarbon degradation under sulfate-reducing conditions in harbor sediments.

Coates, J.D.; Anderson, R.T.; Woodward, J.C.; Phillips, E.J.P.; Lovley, D.R.

1996-01-01

196

Determination of kinetic coefficients for the simultaneous reduction of sulfate and uranium by Desulfovibrio desulfuricans bacteria  

SciTech Connect

Uranium contamination of groundwaters and surface waters near abandoned mill tailings piles is a serious concern in many areas of the western United States. Uranium usually exists in either the U(IV) or the U(VI) oxidation state. U(VI) is soluble in water and, as a result, is very mobile in the environment. U(IV), however, is generally insoluble in water and, therefore, is not subject to aqueous transport. In recent years, researchers have discovered that certain anaerobic microorganisms, such as the sulfate-reducing bacteria Desulfovibrio desulfuricans, can mediate the reduction of U(VI) to U(IV). Although the ability of this microorganism to reduce U(VI) has been studied in some detail by previous researchers, the kinetics of the reactions have not been characterized. The purpose of this research was to perform kinetic studies on Desulfovibrio desulficans bacteria during simultaneous reduction of sulfate and uranium and to determine the phase in which uranium exists after it has been reduced and precipitated from solution. The studies were conducted in a laboratory-scale chemostat under substrate-limited growth conditions with pyruvate as the substrate. Kinetic coefficients for substrate utilization and cell growth were calculated using the Monod equation. The maximum rate of substrate utilization (k) was determined to be 4.70 days{sup {minus}1} while the half-velocity constant (K{sub s}) was 140 mg/l COD. The yield coefficient (Y) was determined to be 0.17 mg cells/mg COD while the endogenous decay coefficient (k{sub d}) was calculated as 0.072 days{sup {minus}1}. After reduction, U(IV) Precipitated from solution in the uraninite (UO{sub 2}) phase. Uranium removal efficiency as high as 90% was achieved in the chemostat.

Tucker, M.D.

1995-05-01

197

Characterization of sulfate-reducing granular sludge in the SANI(®) process.  

PubMed

Hong Kong practices seawater toilet flushing covering 80% of the population. A sulfur cycle-based biological nitrogen removal process, the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process, had been developed to close the loop between the hybrid water supply and saline sewage treatment. To enhance this novel process, granulation of a Sulfate-Reducing Up-flow Sludge Bed (SRUSB) reactor has recently been conducted for organic removal and provision of electron donors (sulfide) for subsequent autotrophic denitrification, with a view to minimizing footprint and maximizing operation resilience. This further study was focused on the biological and physicochemical characteristics of the granular sulfate-reducing sludge. A lab-scale SRUSB reactor seeded with anaerobic digester sludge was operated with synthetic saline sewage for 368 days. At 1 h nominal hydraulic retention time (HRT) and 6.4 kg COD/m(3)-d organic loading rate, the SRUSB reactor achieved 90% COD and 75% sulfate removal efficiencies. Granular sludge was observed within 30 days, and became stable after 4 months of operation with diameters of 400-500 ?m, SVI5 of 30 ml/g, and extracellular polymeric substances of 23 mg carbohydrate/g VSS. Fluorescence in situ hybridization (FISH) analysis revealed that the granules were enriched with abundant sulfate-reducing bacteria (SRB) as compared with the seeding sludge. Pyrosequencing analysis of the 16S rRNA gene in the sulfate-reducing granules on day 90 indicated that the microbial community consisted of a diverse SRB genera, namely Desulfobulbus (18.1%), Desulfobacter (13.6%), Desulfomicrobium (5.6%), Desulfosarcina (0.73%) and Desulfovibrio (0.6%), accounting for 38.6% of total operational taxonomic units at genera level, with no methanogens detected. The microbial population and physicochemical properties of the granules well explained the excellent performance of the granular SRUSB reactor. PMID:24200003

Hao, Tianwei; Wei, Li; Lu, Hui; Chui, Hokwong; Mackey, Hamish R; van Loosdrecht, Mark C M; Chen, Guanghao

2013-12-01

198

Bacteriophage Infection of Model Metal Reducing Bacteria  

NASA Astrophysics Data System (ADS)

Microbially-mediated metal reduction plays a significant role controlling contaminant mobility in aqueous, soil, and sedimentary environments. From among environmentally relevant microorganisms mediating metal reduction, Geobacter spp. have been identified as predominant metal-reducing bacteria under acetate- oxidizing conditions. Due to the significance of these bacteria in environmental systems, it is necessary to understand factors influencing their metabolic physiology. Examination of the annotated finished genome sequence of G. sulfurreducens PCA, G. uraniumreducens Rf4, G. metallireduceans GS-15 as well as a draft genome sequence of Geobacter sp. FRC-32 have identified gene sequences of putative bacteriophage origin. Presence of these sequences indicates that these bacteria are susceptible to phage infection. Polymerase chain reaction (PCR) primer sets designed tested for the presence of 12 of 25 annotated phage-like sequences in G. sulfurreducens PCA and 9 of 17 phage-like sequences in FRC- 32. The following genes were successfully amplified in G. sulfurreducens PCA: prophage type transcription regulator, phage-induced endonuclease, phage tail sheath, 2 phage tail proteins, phage protein D, phage base plate protein, phage-related DNA polymerase, integrase, phage transcriptional regulator, and Cro-like transcription regulator. Nine of the following sequences were present in FRC-32: 4 separate phage- related proteins, phage-related tail component, viron core protein, phage Mu protein, phage base plate, and phage tail sheath. In addition to the bioinformatics evidence, incubation of G. sulfurreducens PCA with 1 ?g mL-1 mytomycin C (mutagen stimulating prophage induction) during mid-log phase resulted in significant cell lysis relative to cultures that remained unamended. Cell lysis was concurrent with an increase in viral like particles enumerated using epifluorescent microscopy. In addition, samples collected following this lytic event (~44hours) were filtered through a 0.22 ? m sterile nylon filter, stained with phosphotungstic acid (PTA), and examined using transmission electron microscopy (TEM). TEM revealed the presence of viral like particles in the culture exposed to mytomycin C. Together these results suggest an active infection with a lysogenic bacteriophage in the model metal reducing bacteria, Geobacter spp., which could affect metabolic physiology and subsequently metal reduction in environmental systems.

Weber, K. A.; Bender, K. S.; Gandhi, K.; Coates, J. D.

2008-12-01

199

Uranium reduction and resistance to reoxidation under iron-reducing and sulfate-reducing conditions.  

PubMed

Oxidation and mobilization of microbially-generated U(IV) is of great concern for in situ uranium bioremediation. This study investigated the reoxidation of uranium by oxygen and nitrate in a sulfate-reducing enrichment and an iron-reducing enrichment derived from sediment and groundwater from the Field Research Center in Oak Ridge, Tennessee. Both enrichments were capable of reducing U(VI) rapidly. 16S rRNA gene clone libraries of the two enrichments revealed that Desulfovibrio spp. are dominant in the sulfate-reducing enrichment, and Clostridium spp. are dominant in the iron-reducing enrichment. In both the sulfate-reducing enrichment and the iron-reducing enrichment, oxygen reoxidized the previously reduced uranium but to a lesser extent in the iron-reducing enrichment. Moreover, in the iron-reducing enrichment, the reoxidized U(VI) was eventually re-reduced to its previous level. In both, the sulfate-reducing enrichment and the iron-reducing enrichment, uranium reoxidation did not occur in the presence of nitrate. The results indicate that the Clostridium-dominated iron-reducing communities created conditions that were more favorable for uranium stability with respect to reoxidation despite the fact that fewer electron equivalents were added to these systems. The likely reason is that more of the added electrons are present in a form that can reduce oxygen to water and U(VI) back to U(IV). PMID:19651424

Boonchayaanant, Benjaporn; Nayak, Dipti; Du, Xin; Criddle, Craig S

2009-10-01

200

Penetration of Sulfate Reducers through a Porous North Sea Oil Reservoir  

PubMed Central

The presence of mesophilic benzoate-degrading sulfate-reducing bacteria in the water systems of three Norwegian oil platforms was investigated. Strain 4502 was isolated from the injection water system, and specific antibodies were produced against this isolate. It was present in the injection water system during a period of 3 years, but not in the in situ reservoir water. Later it was found in water samples collected from the oil field production system. This showed that strain 4502 had penetrated the reservoir together with the injection water and eventually reached the production well. PMID:16535415

Beeder, J.; Nilsen, R. K.; Thorstenson, T.; Torsvik, T.

1996-01-01

201

Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium.  

PubMed

Anaerobic degradation of the aromatic hydrocarbon ethylbenzene was studied with sulfate as the electron acceptor. Enrichment cultures prepared with marine sediment samples from different locations showed ethylbenzene-dependent reduction of sulfate to sulfide and always contained a characteristic cell type that formed gas vesicles towards the end of growth. A pure culture of this cell type, strain EbS7, was isolated from sediment from Guaymas Basin (Gulf of California). Complete mineralization of ethylbenzene coupled to sulfate reduction was demonstrated in growth experiments with strain EbS7. Sequence analysis of the 16S rRNA gene revealed a close relationship between strain EbS7 and the previously described marine sulfate-reducing strains NaphS2 and mXyS1 (similarity values, 97.6 and 96.2%, respectively), which grow anaerobically with naphthalene and m-xylene, respectively. However, strain EbS7 did not oxidize naphthalene, m-xylene, or toluene. Other compounds utilized by strain EbS7 were phenylacetate, 3-phenylpropionate, formate, n-hexanoate, lactate, and pyruvate. 1-Phenylethanol and acetophenone, the characteristic intermediates in anaerobic ethylbenzene degradation by denitrifying bacteria, neither served as growth substrates nor were detectable as metabolites by gas chromatography-mass spectrometry in ethylbenzene-grown cultures of strain EbS7. Rather, (1-phenylethyl)succinate and 4-phenylpentanoate were detected as specific metabolites in such cultures. Formation of these intermediates can be explained by a reaction sequence involving addition of the benzyl carbon atom of ethylbenzene to fumarate, carbon skeleton rearrangement of the succinate moiety (as a thioester), and loss of one carboxyl group. Such reactions are analogous to those suggested for anaerobic n-alkane degradation and thus differ from the initial reactions in anaerobic ethylbenzene degradation by denitrifying bacteria which employ dehydrogenations. PMID:12570993

Kniemeyer, Olaf; Fischer, Thomas; Wilkes, Heinz; Glöckner, Frank Oliver; Widdel, Friedrich

2003-02-01

202

Evaluation of organic substrates to enhance the sulfate-reducing activity in phosphogypsum.  

PubMed

Several experiments were conducted to evaluate the activity and growth of sulfate-reducing bacteria (SRB) in a metal-rich culture medium (approx. 250 mg/L Fe, 75 mg/L Zn and Cu, 10mg/L Cd) with phosphogypsum as bacterial inoculum. Phosphogypsum was collected from the stack covering the salt-marshes of the Tinto river (SW Spain). Three organic amendments were used as carbon sources, two low-cost wastes (horse manure and legume compost) and one sample of natural soil (vegetal cover). In the experiments, sulfate was reduced to sulfide during the growth of SRB populations, and concentrations were decreased in the solution. Metal concentrations also decreased to values below the detection limit. Metal removal took place by precipitation of newly-formed sulfides. Pyrite-S was the main sulfide component (approx. 200 ?mol/g and 80% of pyritization) and occurred mainly as framboidal grains and rarely as isolated polyhedral crystals. Horse manure was the most successful organic substrate to promote SRB activity (sulfate removal of 61%), followed by vegetal cover (49%) and legume compost (31%). These findings propose the possibility of using naturally-occurring SRB in the phosphogypsum for bioremediation strategies based on natural soil covers with organic amendments. PMID:23063915

Castillo, Julio; Pérez-López, Rafael; Sarmiento, Aguasanta M; Nieto, José M

2012-11-15

203

Distribution of Thermophilic Marine Sulfate Reducers in North Sea Oil Field Waters and Oil Reservoirs  

PubMed Central

The distribution of thermophilic marine sulfate reducers in produced oil reservoir waters from the Gullfaks oil field in the Norwegian sector of the North Sea was investigated by using enrichment cultures and genus-specific fluorescent antibodies produced against the genera Archaeoglobus, Desulfotomaculum, and Thermodesulforhabdus. The thermophilic marine sulfate reducers in this environment could mainly be classified as species belonging to the genera Archaeoglobus and Thermodesulforhabdus. In addition, some unidentified sulfate reducers were present. Culturable thermophilic Desulfotomaculum strains were not detected. Specific strains of thermophilic sulfate reducers inhabited different parts of the oil reservoir. No correlation between the duration of seawater injection and the numbers of thermophilic sulfate reducers in the produced waters was observed. Neither was there any correlation between the concentration of hydrogen sulfide and the numbers of thermophilic sulfate reducers. The results indicate that thermophilic and hyperthermophilic sulfate reducers are indigenous to North Sea oil field reservoirs and that they belong to a deep subterranean biosphere. PMID:16535321

Nilsen, R. K.; Beeder, J.; Thorstenson, T.; Torsvik, T.

1996-01-01

204

Eliminating aluminum toxicity in an Acid sulfate soil for rice cultivation using plant growth promoting bacteria.  

PubMed

Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 ?M). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase. PMID:25710843

Panhwar, Qurban Ali; Naher, Umme Aminun; Radziah, Othman; Shamshuddin, Jusop; Razi, Ismail Mohd

2015-01-01

205

Magnetic bacteria against MIC  

SciTech Connect

In this article, it is suggested to use the sensitivity of magnetotactic bacteria to changes of magnetic field direction and the natural ability of this bacteria in rapid growth during relatively short time intervals against corrosion-enhancing bacteria and especially sulfate-reducing bacteria. If colonies of sulfate-reducing bacteria could be packed among magnetotactic bacteria, then, by applying sufficiently powerful magnetic field (about 0.5 gauss), all of these bacteria (magnetic and non-magnetic) will be oriented towards an Anti-bacteria agent (oxygen or biocide). So, Microbiologically-Influenced Corrosion in the system would be controlled to a large extent.

Javaherdashti, R. [I.D.R.O.-IR, Tehran (Iran, Islamic Republic of)

1997-12-01

206

MINE WASTE TECHNOLOGY PROGRAM - SULFATE REDUCING BACTERIA REACTIVE WALL DEMO  

EPA Science Inventory

Efforts reported in this document focused on the demonstration of a passive technology that could be used for remediation of thousands of abandoned mines existing in the Western United States that emanate acid mine drainage (AMD). This passive remedial technology takes ad...

207

[Activity and structure of the sulfate-reducing bacterial community in the sediments of the southern part of Lake Baikal].  

PubMed

The rates of sulfate reduction (SR) and the diversity of sulfate-reducing bacteria (SRB) were studied in the sediments of the Posol'skaya banka elevation in the southern part of Lake Baikal. SR rates varied from 1.2 to 1641 nmol/(dm3 day), with high rates (> 600 nmol/(dm3 day)) observed at both deep-water stations and in subsurface silts. Integral SR rates calculated for the uppermost 50 cm of the sediments were higher for gas-saturated and gas hydrate-bearing sediments than in those with low methane content. Enrichment SRB cultures were obtained in Widdel medium for freshwater SRB. Analysis of the 16S rRNA gene fragments from clone libraries obtained from the enrichments revealed the presence of SRB belonged to Desulfosporosinus genus, with D. lacus as the most closely related member (capable of sulfate, sulfite, and thiosulfate reduction), as well as members of the order Clostridiales. PMID:25507445

2014-01-01

208

[Activity and structure of the sulfate-reducing bacterial community in the sediments of the southern part of Lake Baikal].  

PubMed

The rates of sulfate reduction (SR) and the diversity of sulfate-reducing bacteria (SRB) were studied in the sediments of the Posol'skaya banka elevation in the southern part of Lake Baikal. SR rates varied from 1.2 to 1641 nmol/(dm3 day), with high rates (> 600 nmol/(dm3 day)) observed at both deep-water stations and in subsurface silts. Integral SR rates calculated for the uppermost 50 cm of the sediments were higher for gas-saturated and gas hydrate-bearing sediments than in those with low methane content. Enrichment SRB cultures were obtained in Widdel medium for freshwater SRB. Analysis of the 16S rRNA gene fragments from clone libraries obtained from the enrichments revealed the presence of SRB belonged to Desulfosporosinus genus, with D. lacus as the most closely related member (capable of sulfate, sulfite, and thiosulfate reduction), as well as members of the order Clostridiales. PMID:25423722

Pimenov, N V; Zakharova, E E; Briukhanov, A L; Korneeva, V A; Kuznetsov, B B; Turova, T P; Pogodaeva, T V; Kalmychkov, G V; Zemskaia, T I

2014-01-01

209

Enrichment and characterization of sulfate reducing, naphthalene degrading microorganisms  

NASA Astrophysics Data System (ADS)

Polycyclic aromatic hydrocarbons (PAH) are pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. PAH are widely distributed in the environment by accidental discharges during the transport, use and disposal of petroleum products, and during forest and grass fires. Caused by their hydrophobic nature, PAH basically accumulate in sediments from where they are slowly released into the groundwater. Although generally limited by the low water solubility of PAH, microbial degradation is one of the major mechanisms leading to the complete clean-up of PAH-contaminated sites. Whereas organisms and biochemical pathways responsible for the aerobic breakdown of PAH are well known, anaerobic PAH biodegradation is less understood; only a few anaerobic PAH degrading cultures have been described. We studied the anaerobic PAH degradation in a microcosm approach to enrich anaerobic PAH degraders. Anoxic groundwater and sediment samples were used as inoculum. Groundwater samples were purchased from the erstwhile gas works facility and a former wood impregnation site. In contrast, sources of sediment samples were a former coal refining area and an old fuel depot. Samples were incubated in anoxic mineral salt medium with naphthalene as sole carbon source and sulfate as terminal electron acceptor. Grown cultures were characterized by feeding with 13C-labeled naphthalene, 16S rRNA gene sequencing using an Illumina® approach, and functional proteome analyses. Finally, six enrichment cultures able to degrade naphthalene under anoxic conditions were established. First results point to a dominance of identified sequences affiliated to the freshwater sulfate-reducing strain N47, which is a known anaerobic naphthalene degrader, in four out of the six enrichments. In those enrichments, peptides related to the pathway of anoxic naphthalene degradation in N47 were abundant. Overall the data underlines the importance of Desulfobacteria for natural attenuation of environmental contaminants. Understanding of diversity and physiology of anaerobic PAH degradation will contribute to remediation efforts of low-oxygen environments such as aquifers or river sediments.

Steffen, Kümmel; Florian-Alexander, Herbst; Márcia, Duarte; Dietmar, Pieper; Jana, Seifert; Bergen Martin, von; Hans-Hermann, Richnow; Carsten, Vogt

2014-05-01

210

[Research on removal efficiency of Cd (II)-bearing wastewater by sulfate-reducing biological filter].  

PubMed

At the temperature of 18.0-22.3 degrees C, biological carriers were produce from pure SRB and zeolite by the embedding immobilized method, and a sulfate-reducing biological filter filled with filter carriers was built to treat cadmium-containing wastewater. Experimental research on removal efficiency of Cd2+, COD and SO4(2-) in wastewater by the biological filter was carried out after SRB domestication. Results show that cadmium can be removed satisfactorily from wastewater using SRB by the biological filter filled with sulfate-reducing bacteria. When the filtration rate was 0.4 m x h(-1) and the cadmium concentration in wastewater was not more than 15 mg x L(-1), the processing efficiency was the best. In the formal running period, the removal rates of Cd2+, COD and SO4(2-) by the biological filter were more than 99%, 75% and 50%. The effluent Cd2+ concentration was less than 0.1 mg x L(-1), which could meet the cadmium emission requirements in the wastewater quality standards for discharge to municipal sewers (CJ 343-2010). The removal of Cd2+, COD and SO4(2-) by biological filter mainly occurs in the top 60 cm of the filter bed during stable operation. When the filtration rate was less than 0.6 m x h(-1), Cd(2+) can be removed by the biological filter with high efficiency and stability. PMID:24946589

Wu, Xuan; Tan, Ke-Yan; Hu, Xi-Jia; Gu, Yun; Yang, Hong

2014-04-01

211

Complete genome sequence of the sulfate-reducing firmicute Desulfotomaculum ruminis type strain (DLT)  

SciTech Connect

Desulfotomaculum ruminis Campbell and Postgate 1965 is a member of the large genus Desulfotomaculum which contains 30 species and is contained in the family Peptococcaceae. This species is of interest because it represents one of the few sulfate- reducing bacteria that have been isolated from the rumen. Here we describe the features of D. ruminis together with the complete genome sequence and annotation. The 3,969,014 bp long chromosome with a total of 3,901 protein-coding and 85 RNA genes is the second completed genome sequence of a type strain of the genus Desulfotomaculum to be pub- lished, and was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program 2009.

Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Visser, Michael [Wageningen University and Research Centre, The Netherlands; Lu, Megan [Los Alamos National Laboratory (LANL); Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Larimer, Frank W [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Schaap, Peter J [Wageningen University and Research Centre, The Netherlands; Plugge, Caroline M. [Wageningen University and Research Centre, The Netherlands; Muyzer, Gerard [Universitate Amsterdam; Kuever, Jan [Bremen Institute for Materials Testing, Bremen, Germany; Pereira, Ines A. C. [Universidade Nova de Lisboa, Oeiras, Portugal; Parshina, Sofiya N. [Russian Academy of Sciences, Moscow; Bernier-Latmani, Rizlan [Ecole Polytechnique Federale de Lausanne, Switzerland; Stams, Alfons J. M. [Wageningen University and Research Centre, The Netherlands; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

2012-01-01

212

Linking Microbial Ecology to Geochemistry in Sulfate Reducing Systems  

NASA Astrophysics Data System (ADS)

Sulfate reducing bioreactors (SRBRs) can serve as passive treatment systems for mining influenced waters (MIW). An enhanced understanding of the biogeochemistry and efficacy of SRBRs can be achieved by combining molecular biological and geochemical techniques in both field and column settings. To this end, a spatial and temporal sequence of eight pilot-scale columns were analyzed employing a multidisciplinary approach using ICP-AES, next-generation sequencing, and SEM-EDX to explore the effects of variable substrate on community structure and performance (measured by Zn removal). All pilot scale reactors contained 30% limestone by mass, 7 of the 8 had variable amounts of woodchips, sawdust, and alfalfa hay, and an 8th column where the only carbon source was walnut shells. High throughput sequencing of DNA extracted from liquid in pilot-scale columns reveals, similarly to an analogous field system in Arizona, a dominance of Proteobacteria. However, after the first pore volume, performance differences between substrate permutations emerged, where columns containing exclusively walnut shells or sawdust exhibited a more effective startup and metal removal than did columns containing exclusively woodchips or alfalfa hay. SEM-EDX analysis revealed the initial formation of gypsum (CaSO4) precipitates regardless of substrate. Zn was observed in the presence of Ca, S, and O in some column samples, suggesting there was co-precipitation of Zn and CaSO4. This is congruent with micro-XAS analysis of field data suggesting iron sulfides were co-precipitating with gypsum. A SEM-EDX analysis from a subsequent sampling event (8 months into operation) indicated that precipitation may be shifting to ZnS and ZnCO3. Biplots employing Canonical Correspondence Analysis (CCA) describe how diversity scales with performance and substrate selection, and how community shifts may result in differential performance and precipitation in response to selective pressure of bioreactor material on community composition. CCA of Shannon diversity data after one pore volume revealed that zinc removal, walnut shell content, and abundance of delta-Proteobacteria (sulfate reducing organisms) were all corresponding elements. However, after several pore volumes, the walnut shell column was no longer removing Zn as effectively, and community shifts were observed throughout the columns. Analysis of field and laboratory scale microbiological and geochemical shifts, in parallel, gives insight into key biogeochemical variables linked to the performance of passive remediation systems used for the treatment of contaminated MIW, while also providing further insight into metal immobilization at the microbe-mineral interface.

Drennan, D. M.; Lee, I.; Landkamer, L.; Almstrand, R.; Figueroa, L. A.; Sharp, J. H.

2013-12-01

213

Dynamics of lead immobilization in sulfate reducing biofilms.  

PubMed

We have evaluated the effects of selected minerals present in subsoil environment on the efficiency of lead removal from contaminated groundwaters using biofilms composed of sulfate-reducing microorganisms, and examined the stability of metal deposits after the biofilms had been temporarily exposed to the air. To quantify the studied effects, lead was immobilized in biofilms of Desulfovibrio desulfuricans grown anaerobically in two flat-plate flow reactors, one filled with hematite and the other with quartz. While the biofilms in both reactors were heterogeneous and consisted of voids and channels, the biofilms grown on hematite were denser, thicker, and more porous than those grown on quartz. The average H2S concentrations, measured using microelectrodes, were higher in the biofilms grown on quartz than those measured in the biofilms grown on hematite. During 18 weeks of operation, iron was continuously released from the hematite. Lead was immobilized more efficiently in the biofilms grown on quartz than it was in the biofilms grown on hematite. Lead deposits were partially reoxidized, especially in biofilms grown on hematite, and the biofilms in both reactors responded to the presence of oxygen by lowering their density and increasing the H2S production rate. PMID:15207603

Beyenal, Haluk; Lewandowski, Zbigniew

2004-06-01

214

ASSESSMENT OF MICROBIAL ACTIVITY IN FIELD SITE SULFATE REDUCING BIOREACTORS1  

Microsoft Academic Search

The purpose of this study is to evaluate the microbial activity in field site sulfate reducing bioreactors. Three separate systems were investigated, two of which are passive treatment systems located in 10-mile Creek Basin, Montana, which are designated Peerless Jenny King, Luttrel. The third system is the Leviathan bioreactor, which is an ethanol- fed, flow- through sulfate reducing reactor located

E. Buccambuso; L. Figueroa; D. Reisman

215

Introduction Magnetotactic bacteria (MTB) biomineralize intracellular, membrane-  

E-print Network

Introduction Magnetotactic bacteria (MTB) biomineralize intracellular, membrane- bounded, magnetic in the environment. Abstract Magnetotactic bacteria is the categorical name for a group of prokaryotes of this study is on two magnetite-producing, magnetotactic sulfate-reducing bacteria (SRB), Desulfovibrio

Walker, Lawrence R.

216

Diversity and composition of sulfate- and sulfite-reducing prokaryotes as affected by marine-freshwater gradient and sulfate availability.  

PubMed

Sulfate- and sulfite-reducing prokaryotes (SSRP) communities play a key role in both sulfur and carbon cycles. In estuarine ecosystems, sulfate concentrations change with tides and could be limited in tidal freshwater reach or deep sediments. In a subtropical estuary of northern Taiwan in December 2007, we examined the compositional changes of SSRP communities. We examined three sites: from the lower estuarine brackish-water reach (site GR and mangrove vegetation site, GM) to the upper estuarine tidal freshwater reach (site HR), as well as from surface to a 50-cm depth. The partial sequence of sulfite reductase (dsrB) genes was used as a molecular marker of SSRP, linked to polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE) techniques. SSRP communities of the DGGE profiles varied with sites according to one-way analyses of similarities (Global R?=?0.69, P?=?0.001). Using cluster analysis, the DGGE profile was found to show site-specific clusters and a distinct depth zonation (five, six, and two SSRP communities at the GM, GR, and HR sites, respectively). SSRP composition was highly correlated to the combination of salinity, reduced sulfur, and total organic carbon contents (BIO-ENV analysis, r ( s )?=?0.56). After analyzing a total of 35 dsrB sequences in the DGGE gel, six groups with 15 phylotypes were found, which were closely related to marine-freshwater gradient. Moreover, sequences neighboring sulfite-reducing prokaryotes were observed, in addition to those affiliated to sulfate-reducing prokaryotes. Four phylotypes harvested in HR resembled the genus Desulfitobacterium, a sulfite-reducing prokaryote, which failed to use sulfate as an electron acceptor and were active in freshwater and sulfate-limited habitat. The other five phylotypes in the HR reach belonged to the sulfate-reducing prokaryotes of the genera Desulfatiferula, Desulfosarcina, Desulfovibrio, and Desulfotomaculum, which appeared to tolerate low salinity and low sulfate supply. SSRP phylotypes at the mangrove-vegetated GM site (five phylotypes in two groups) were phylogenetically less diverse, when compared with those at the non-mangrove-vegetated GR site (three phylotypes in three groups) and the tidally influenced freshwater HR site (nine phylotypes in five groups). Phylotypes found at GR and GM were all affiliated to marine sulfate-reducing prokaryote strains of the genera Desulfofaba, Desulfobotulus, Desulfatiferula, Desulfosarcina, and Desulfotomaculum. Notably, a phylotype recorded in the surface sediment at GR resembled the genus Desulfobulbus, which was recorded from freshwater environment consisting of the freshwater input at GR during ebb tides. PMID:21785985

Fan, Lan-Feng; Tang, Sen-Lin; Chen, Chang-Po; Hsieh, Hwey-Lian

2012-01-01

217

Magnesium Sulfate Reduces Intra- and Postoperative Analgesic Requirements  

Microsoft Academic Search

In a randomized, double-blind study with two parallel groups, we assessed the analgesic effect of periopera- tive magnesium sulfate administration in 46 ASA phys- ical status I or II patients undergoing arthroscopic knee surgery with total IV anesthesia. The patients received either magnesium sulfate 50 mg\\/kg preoperatively and Smg*kg-i * hP ' intraoperatively or the same volume of isotonic sodium

Herbert Koinig; Thomas Wallner; Peter Marhofer; Harald Andel; Klaus Horauf; Nikolaus Mayer

1998-01-01

218

Complete genome sequence of the acetate-degrading sulfate reducer Desulfobacca acetoxidans type strain (ASRB2T)  

SciTech Connect

Desulfobacca acetoxidans Elferink et al. 1999 is the type species of the genus Desulfobacca, which belongs to the family Syntrophaceae in the class Deltaproteobacteria. The species was first observed in a study on the competition of sulfate-reducers and acetoclastic methanogens for acetate in sludge. D. acetoxidans is considered to be the most abundant acetate-degrading sulfate reducer in sludge. It is of interest due to its isolated phylogenetic location in the 16S rRNA-based tree of life. This is the second completed genome sequence of a member of the family Syntrophaceae to be published and only the third genome sequence from a member of the order Syntrophobacterales. The 3,282,536 bp long genome with its 2,969 protein-coding and 54 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

2011-01-01

219

Desulfofrigus sp. prevails in sulfate-reducing dilution cultures from sediments of the Benguela upwelling area.  

PubMed

Sediments of coastal upwelling areas are generally characterized by a high content of organic carbon that is mainly degraded via anaerobic microbial processes including sulfate reduction as a major terminal oxidation step. Despite the high importance of sulfate reduction in these sediments, the identity of sulfate-reducing bacteria (SRB) has remained almost unknown. Here, we applied a cultivation-based approach using selective enrichment conditions to study the diversity and distribution of active SRB in sediments along a transect perpendicular to the continental slope off the coast of Namibia (Meteor-cruise M76/1). To promote growth of the most abundant SRB, dilution series were prepared and amended with hydrogen, acetate, or a mixture of monomers representing typical substrates for SRB. Growth of SRB could be detected in the presence of all electron donors and from sediment down to 4 m depth. 16S rRNA gene-based DGGE analysis and sequencing revealed the predominance of SRB related to psychrophiles in particular to the genus Desulfofrigus, which made up 1 % of the total microbial community, accounting for an absolute abundance of up to 4.8 × 10(7)  cells mL(-1) . In general, the abundance of cultured SRB changed with depth and between the different sampling sites and correlated with the content of organic carbon as previously reported. Growth of chemolithotrophic SRB in relatively high dilution steps and the enrichment of methanogens as well as acetogens from deeper sediment point to a competition between hydrogen-utilizing microbial processes and their biogeochemical significance in deep sediment layers of the Benguela upwelling area. PMID:23157459

Kraft, Beate; Engelen, Bert; Goldhammer, Tobias; Lin, Yu-Shih; Cypionka, Heribert; Könneke, Martin

2013-04-01

220

Indicators of Microbial Sulfate Reduction in Acidic Sulfide-Rich Mine Tailings  

Microsoft Academic Search

Sulfate-reducing bacteria (SRB) are thought to be actively involved in the cycling of sulfur in acidic mine tailings. However, most studies have used circumstantial evidence to assess microbial sulfate activity in such environments. In order to fully ascertain the role of sulfate-reducing bacteria (SRB) in sulfur cycling in acidic mine tailings, we measured sulfate reduction rates, sulfur isotopic composition of

Tanmay Praharaj; Danielle Fortin

2004-01-01

221

Monitoring structural transformation of hydroxy-sulphate green rust in the presence of sulphate reducing bacteria  

NASA Astrophysics Data System (ADS)

The activities of bacterial consortia enable organisms to maximize their metabolic capabilities. This article assesses the synergetic relationship between iron reducing bacteria (IRB), Shewanella putrefaciens and sulphate reducing bacteria (SRB) Desulfovibrio alaskensis. Thus, the aim of this study was first to form a biogenic hydroxysulpahte green rust GR2(SO{4/2-}) through the bioreduction of lepidocrocite by S. putrefaciens and secondly to investigate if sulfate anions intercalated in the biogenic GR2(SO{4/2-}) could serve as final electron acceptor for a sulfate reducing bacterium, D. alaskensis. The results indicate that the IRB lead to the formation of GR2(SO{4/2-}) and this mineral serve as an electron acceptor for SRB. GR2(SO{4/2-}) precipitation and its transformation was demonstrated by using X-ray diffraction (DRX), Mössbauer spectroscopy (TMS) and transmission electron spectroscopy (TEM). These observations point out the possible acceleration of steel corrosion in marine environment in presence of IRB/SRB consortia.

Abdelmoula, M.; Zegeye, A.; Jorand, F.; Carteret, C.

222

Monitoring structural transformation of hydroxy-sulphate green rust in the presence of sulphate reducing bacteria  

NASA Astrophysics Data System (ADS)

The activities of bacterial consortia enable organisms to maximize their metabolic capabilities. This article assesses the synergetic relationship between iron reducing bacteria (IRB), Shewanella putrefaciens and sulphate reducing bacteria (SRB) Desulfovibrio alaskensis. Thus, the aim of this study was first to form a biogenic hydroxy-sulpahte green rust GR2( {text{SO}}_{{text{4}}} ^{{2 - }} ) through the bioreduction of lepidocrocite by S. putrefaciens and secondly to investigate if sulfate anions intercalated in the biogenic GR2( {text{SO}}_{{text{4}}} ^{{2 - }} ) could serve as final electron acceptor for a sulfate reducing bacterium, D. alaskensis. The results indicate that the IRB lead to the formation of GR2( {text{SO}}_{{text{4}}} ^{{2 - }} ) and this mineral serve as an electron acceptor for SRB. GR2( {text{SO}}_{{text{4}}} ^{{2 - }} ) precipitation and its transformation was demonstrated by using X-ray diffraction (DRX), Mössbauer spectroscopy (TMS) and transmission electron spectroscopy (TEM). These observations point out the possible acceleration of steel corrosion in marine environment in presence of IRB/SRB consortia.

Abdelmoula, M.; Zegeye, A.; Jorand, F.; Carteret, C.

2006-01-01

223

Draft Genome Sequence of the Obligately Alkaliphilic Sulfate-Reducing Bacterium Desulfonatronum thiodismutans Strain MLF1  

PubMed Central

Desulfonatronum thiodismutans strain MLF1, an alkaliphilic bacterium capable of sulfate reduction, was isolated from Mono Lake, California. Here we report the 3.92-Mb draft genome sequence comprising 34 contigs and some results of its automated annotation. These data will improve our knowledge of mechanisms by which bacteria withstand extreme environments. PMID:25081260

Trubitsyn, Denis; Geurink, Corey; Pikuta, Elena; Lefèvre, Christopher T.; McShan, W. Michael; Gillaspy, Allison F.

2014-01-01

224

Draft Genome Sequence of the Obligately Alkaliphilic Sulfate-Reducing Bacterium Desulfonatronum thiodismutans Strain MLF1.  

PubMed

Desulfonatronum thiodismutans strain MLF1, an alkaliphilic bacterium capable of sulfate reduction, was isolated from Mono Lake, California. Here we report the 3.92-Mb draft genome sequence comprising 34 contigs and some results of its automated annotation. These data will improve our knowledge of mechanisms by which bacteria withstand extreme environments. PMID:25081260

Trubitsyn, Denis; Geurink, Corey; Pikuta, Elena; Lefèvre, Christopher T; McShan, W Michael; Gillaspy, Allison F; Bazylinski, Dennis A

2014-01-01

225

U(VI) Reduction in Sulfate-Reducing Subsurface Sediments Amended with Ethanol or Acetate  

PubMed Central

An experiment was conducted with subsurface sediments from Oak Ridge National Laboratory to determine the potential for reduction of U(VI) under sulfate-reducing conditions with either ethanol or acetate as the electron donor. The results showed extensive U(VI) reduction in sediments supplied with either electron donor, where geochemical and microbiological analyses demonstrated active sulfate reduction. PMID:23624470

Converse, Brandon J.; Wu, Tao; Findlay, Robert H.

2013-01-01

226

An ultracapacitor circuit for reducing sulfation in lead acid batteries for Mild Hybrid Electric Vehicles  

Microsoft Academic Search

The nickel metal hydride (NiMH) batteries used in most hybrid electric vehicles (HEVs) provide satisfactory performance, but are quite expensive. In spite of their lower energy density, lead acid batteries would be much more economical except they are prone to sulfation in HEV applications. However, sulfation can be greatly reduced by a circuit that uses an ultracapacitor in conjunction with

Adam W. Stienecker; Thomas Stuart; Cyrus Ashtiani

2006-01-01

227

MODELING SULFATE-REDUCING PERMEABLE REACTIVE BARRIERS FOR TREATMENT OF ACID MINE DRAINAGE1  

Microsoft Academic Search

The performance of sulfate-reducing permeable reactive barriers (PRB) used for the treatment of acid-mine drainage is critically affected by kinetics of cellulose decomposition and substrate production, as well as by kinetics of sulfate reduction and methanogenesis. When biofilm models are considered, the rate of substrate diffusion into the biofilm also affects performance. In this regard, results from an algorithm adapted

Paulo S. Hemsi; Charles D. Shackelford; Linda A. Figueroa

228

High-Quality Draft Genome Sequence of Desulfovibrio carbinoliphilus FW-101-2B, an Organic Acid-Oxidizing Sulfate-Reducing Bacterium Isolated from Uranium(VI)-Contaminated Groundwater.  

PubMed

Desulfovibrio carbinoliphilus subsp. oakridgensis FW-101-2B is an anaerobic, organic acid/alcohol-oxidizing, sulfate-reducing ?-proteobacterium. FW-101-2B was isolated from contaminated groundwater at The Field Research Center at Oak Ridge National Lab after in situ stimulation for heavy metal-reducing conditions. The genome will help elucidate the metabolic potential of sulfate-reducing bacteria during uranium reduction. PMID:25767232

Ramsay, Bradley D; Hwang, Chiachi; Woo, Hannah L; Carroll, Sue L; Lucas, Susan; Han, James; Lapidus, Alla L; Cheng, Jan-Fang; Goodwin, Lynne A; Pitluck, Samuel; Peters, Lin; Chertkov, Olga; Held, Brittany; Detter, John C; Han, Cliff S; Tapia, Roxanne; Land, Miriam L; Hauser, Loren J; Kyrpides, Nikos C; Ivanova, Natalia N; Mikhailova, Natalia; Pagani, Ioanna; Woyke, Tanja; Arkin, Adam P; Dehal, Paramvir; Chivian, Dylan; Criddle, Craig S; Wu, Weimin; Chakraborty, Romy; Hazen, Terry C; Fields, Matthew W

2015-01-01

229

High-Quality Draft Genome Sequence of Desulfovibrio carbinoliphilus FW-101-2B, an Organic Acid-Oxidizing Sulfate-Reducing Bacterium Isolated from Uranium(VI)-Contaminated Groundwater  

PubMed Central

Desulfovibrio carbinoliphilus subsp. oakridgensis FW-101-2B is an anaerobic, organic acid/alcohol-oxidizing, sulfate-reducing ?-proteobacterium. FW-101-2B was isolated from contaminated groundwater at The Field Research Center at Oak Ridge National Lab after in situ stimulation for heavy metal-reducing conditions. The genome will help elucidate the metabolic potential of sulfate-reducing bacteria during uranium reduction. PMID:25767232

Ramsay, Bradley D.; Hwang, Chiachi; Carroll, Sue L.; Lucas, Susan; Han, James; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Samuel; Peters, Lin; Chertkov, Olga; Held, Brittany; Detter, John C.; Han, Cliff S.; Tapia, Roxanne; Land, Miriam L.; Hauser, Loren J.; Kyrpides, Nikos C.; Ivanova, Natalia N.; Mikhailova, Natalia; Pagani, Ioanna; Woyke, Tanja; Arkin, Adam P.; Dehal, Paramvir; Chivian, Dylan; Criddle, Craig S.; Wu, Weimin; Chakraborty, Romy

2015-01-01

230

Chondroitin sulfate  

MedlinePLUS

... contain chondroitin sulfate, in combination with glucosamine sulfate, shark cartilage, and camphor. But as far as we ... containing chondroitin sulfate in combination with glucosamine sulfate, shark cartilage, and camphor seems to reduce arthritis symptoms. ...

231

Genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812T)  

SciTech Connect

Thermodesulfatator indicus Moussard et al. 2004 is a member of the genomically so far poorly characterized family Thermodesulfobacteriaceae in the phylum Thermodesulfobacteria. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chang, Yun-Juan [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

2012-01-01

232

Perspectives of sulfate reducing bioreactors in environmental biotechnology  

Microsoft Academic Search

Although the study of sulfur cycle bacteria wasalready started around the 1890's by the famousmicrobiologists Winogradsky and Beijerinck,there are nowadays still many new discoveriesto be made about the metabolic properties,phylogenetic position and ecological behaviourof bacteria that play a role in the biologicalsulfur cycle. The current interest of thescientific community in the biological sulfurcycle is very high, especially because of themany

P. Lens; M. Vallerol; G. Esposito; M. Zandvoort

2002-01-01

233

Evidence that crude oil alkane activation proceeds by different mechanisms under sulfate-reducing and methanogenic conditions  

NASA Astrophysics Data System (ADS)

Fumarate addition has been widely proposed as an initial step in the anaerobic oxidation of both aromatic and aliphatic hydrocarbons. Alkyl and aryl succinates have been reported as metabolites of hydrocarbon degradation in laboratory studies with both pure and enrichment cultures of sulfate-, nitrate-, and iron-reducing bacteria. In addition these compounds have been reported in samples from environments such as hydrocarbon contaminated aquifers where, in addition to the above redox processes, hydrocarbon degradation linked to methanogenesis was observed. Here we report data from anaerobic crude oil degrading microcosms which revealed significant differences between the acid metabolite profiles of crude oil degraded under sulfate-reducing or methanogenic conditions. Under sulfate-reducing conditions fumarate addition and the formation of alkylsuccinate metabolites was the principal mechanism for the anaerobic degradation of n-alkanes and branched chain alkanes. Other than alkyl succinates that represent indigenous metabolites in the sediment inoculum, alkyl succinate metabolites were never detected in sediment microcosms where methane generation was quantitatively linked to n-alkane degradation. This indicates that alternative mechanisms of alkane activation may operate under methanogenic conditions.

Aitken, C. M.; Jones, D. M.; Maguire, M. J.; Gray, N. D.; Sherry, A.; Bowler, B. F. J.; Ditchfield, A. K.; Larter, S. R.; Head, I. M.

2013-05-01

234

Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers  

SciTech Connect

Elucidating the in situ metabolic activity of phylogenetically diverse populations of sulfate-reducing microorganisms that populate anoxic sedimentary environments is key to understanding subsurface ecology. Previous pure culture studies have demonstrated that transcript abundance of dissimilatory (bi)sulfite reductase genes is correlated with the sulfate reducing activity of individual cells. To evaluate whether expression of these genes was diagnostic for subsurface communities, dissimilatory (bi)sulfite reductase gene transcript abundance in phylogenetically distinct sulfate-reducing populations was quantified during a field experiment in which acetate was added to uranium-contaminated groundwater. Analysis of dsrAB sequences prior to the addition of acetate indicated that Desulfobacteraceae, Desulfobulbaceae, and Syntrophaceae-related sulfate reducers were the most abundant. Quantifying dsrB transcripts of the individual populations suggested that Desulfobacteraceae initially had higher dsrB transcripts per cell than Desulfobulbaceae or Syntrophaceae populations, and that the activity of Desulfobacteraceae increased further when the metabolism of dissimilatory metal reducers competing for the added acetate declined. In contrast, dsrB transcript abundance in Desulfobulbaceae and Syntrophaceae remained relatively constant, suggesting a lack of stimulation by added acetate. The indication of higher sulfate-reducing activity in the Desulfobacteraceae was consistent with the finding that Desulfobacteraceae became the predominant component of the sulfate-reducing community. Discontinuing acetate additions resulted in a decline in dsrB transcript abundance in the Desulfobacteraceae. These results suggest that monitoring transcripts of dissimilatory (bi)sulfite reductase genes in distinct populations of sulfate reducers can provide insight into the relative rates of metabolism of different components of the sulfate-reducing community and their ability to respond to environmental perturbations.

Miletto, M.; Williams, K.H.; N'Guessan, A.L.; Lovley, D.R.

2011-04-01

235

Solubilization of plutonium hydrous oxide by iron-reducing bacteria  

Microsoft Academic Search

The removal of plutonium from soils id challenging because of its strong sorption to soils and limited solubility, Microbial reduction of metals is known to affect the speciation and solubility of sparingly soluble metals in the environment, notably iron and manganese. The similarity in reduction potential for [alpha]-FeOOH(s) and hydrous PuO[sub 2](s) suggests that iron-reducing bacteria may also reduce and

Patricia A. Rusin; Leticia Quintana; James R. Brainard; B. A. Strietelmeler; C. Drew Tait; Scott A. Ekberg; Phillip D. Palmer; Thomas W. Newton; David L. Clark

1994-01-01

236

Temperature-Dependent Variations in Sulfate-Reducing Communities Associated with a Terrestrial Hydrocarbon Seep  

PubMed Central

Terrestrial hydrocarbon seeps are an important source of naturally emitted methane over geological time. The exact community compositions responsible for carbon cycling beneath these surface features remain obscure. As sulfate reduction represents an essential process for anoxic organic mineralization, this study collected muddy fluids from a high-temperature hydrocarbon seep in Taiwan and analyzed community structures of sulfate-supplemented sediment slurries incubated anoxically at elevated temperatures. The results obtained demonstrated that sulfate consumption occurred between 40°C and 80°C. Dominant potential sulfate reducers included Desulfovibrio spp., Desulfonatronum spp., Desulforhabdus spp., and Desulfotomaculum spp. at 40°C, Thermodesulfovibrio spp. at 50°C, Thermodesulfovibrio spp. and Thermacetogenium spp. at 60°C, Thermacetogenium spp. and Archaeoglobus spp. at 70°C, and Archaeoglobus spp. at 80°C. None of these potential sulfate reducers exceeded 7% of the community in the untreated sample. Since no exogenous electron donor was provided during incubation, these sulfate reducers appeared to rely on the degradation of organic matter inherited from porewater and sediments. Aqueous chemistry indicated that fluids discharged in the region represented a mixture of saline formation water and low-salinity surface water; therefore, these lines of evidence suggest that deeply-sourced, thermophilic and surface-input, mesophilic sulfate-reducing populations entrapped along the subsurface fluid transport could respond rapidly once the ambient temperature is adjusted to a range close to their individual optima.

Cheng, Ting-Wen; Lin, Li-Hung; Lin, Yue-Ting; Song, Sheng-Rong; Wang, Pei-Ling

2014-01-01

237

Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.  

PubMed

Clay minerals are ubiquitous in soils, sediments, and sedimentary rocks and could coexist with sulfate-reducing bacteria (SRB) in anoxic environments, however, the interactions of clay minerals and SRB are not well understood. The objective of this study was to understand the reduction rate and capacity of structural Fe(III) in dioctahedral clay minerals by a mesophilic SRB, Desulfovibrio vulgaris and the potential role in catalyzing smectite illitization. Bioreduction experiments were performed in batch systems, where four different clay minerals (nontronite NAu-2, mixed-layer illite-smectite RAr-1 and ISCz-1, and illite IMt-1) were exposed to D. vulgaris in a non-growth medium with and without anthraquinone-2,6-disulfonate (AQDS) and sulfate. Our results demonstrated that D. vulgaris was able to reduce structural Fe(III) in these clay minerals, and AQDS enhanced the reduction rate and extent. In the presence of AQDS, sulfate had little effect on Fe(III) bioreduction. In the absence of AQDS, sulfate increased the reduction rate and capacity, suggesting that sulfide produced during sulfate reduction reacted with the phyllosilicate Fe(III). The extent of bioreduction of structural Fe(III) in the clay minerals was positively correlated with the percentage of smectite and mineral surface area of these minerals. X-ray diffraction, and scanning and transmission electron microscopy results confirmed formation of illite after bioreduction. These data collectively showed that D. vulgaris could promote smectite illitization through reduction of structural Fe(III) in clay minerals. PMID:22074236

Liu, D; Dong, H; Bishop, M E; Zhang, J; Wang, H; Xie, S; Wang, S; Huang, L; Eberl, D D

2012-03-01

238

Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments.  

PubMed

Three strains of sulfate-reducing bacteria (M1(T), D, and E) were isolated from acidic sediments (White river and Tinto river) and characterized phylogenetically and physiologically. All three strains were obligately anaerobic, mesophilic, spore-forming straight rods, stained Gram-negative and displayed variable motility during active growth. The pH range for growth was 3.8-7.0, with an optimum at pH 5.5. The temperature range for growth was 15-40 °C, with an optimum at 30 °C. Strains M1(T), D, and E used a wide range of electron donors and acceptors, with certain variability within the different strains. The nominated type strain (M1(T)) used ferric iron, nitrate, sulfate, elemental sulfur, and thiosulfate (but not arsenate, sulfite, or fumarate) as electron acceptors, and organic acids (formate, lactate, butyrate, fumarate, malate, and pyruvate), alcohols (glycerol, methanol, and ethanol), yeast extract, and sugars (xylose, glucose, and fructose) as electron donors. It also fermented some substrates such as pyruvate and formate. Strain M1(T) tolerated up to 50 mM ferrous iron and 10 mM aluminum, but was inhibited by 1 mM copper. On the basis of phenotypic, phylogenetic, and genetic characteristics, strains M1(T), D, and E represent a novel species within the genus Desulfosporosinus, for which the name Desulfosporosinus acididurans sp. nov. is proposed. The type strain is M1(T) (=DSM 27692(T) = JCM 19471(T)). Strain M1(T) was the first acidophilic SRB isolated, and it is the third described species of acidophilic SRB besides Desulfosporosinus acidiphilus and Thermodesulfobium narugense. PMID:25370366

Sánchez-Andrea, Irene; Stams, Alfons J M; Hedrich, Sabrina; ?ancucheo, Ivan; Johnson, D Barrie

2015-01-01

239

Analysis of the Sulfate-Reducing Bacterial and Methanogenic Archaeal Populations in Contrasting Antarctic Sediments  

PubMed Central

The distribution and activity of communities of sulfate-reducing bacteria (SRB) and methanogenic archaea in two contrasting Antarctic sediments were investigated. Methanogenesis dominated in freshwater Lake Heywood, while sulfate reduction dominated in marine Shallow Bay. Slurry experiments indicated that 90% of the methanogenesis in Lake Heywood was acetoclastic. This finding was supported by the limited diversity of clones detected in a Lake Heywood archaeal clone library, in which most clones were closely related to the obligate acetate-utilizing Methanosaeta concilii. The Shallow Bay archaeal clone library contained clones related to the C1-utilizing Methanolobus and Methanococcoides and the H2-utilizing Methanogenium. Oligonucleotide probing of RNA extracted directly from sediment indicated that archaea represented 34% of the total prokaryotic signal in Lake Heywood and that Methanosaeta was a major component (13.2%) of this signal. Archaea represented only 0.2% of the total prokaryotic signal in RNA extracted from Shallow Bay sediments. In the Shallow Bay bacterial clone library, 10.3% of the clones were SRB-like, related to Desulfotalea/Desulforhopalus, Desulfofaba, Desulfosarcina, and Desulfobacter as well as to the sulfur and metal oxidizers comprising the Desulfuromonas cluster. Oligonucleotide probes for specific SRB clusters indicated that SRB represented 14.7% of the total prokaryotic signal, with Desulfotalea/Desulforhopalus being the dominant SRB group (10.7% of the total prokaryotic signal) in the Shallow Bay sediments; these results support previous results obtained for Arctic sediments. Methanosaeta and Desulfotalea/Desulforhopalus appear to be important in Lake Heywood and Shallow Bay, respectively, and may be globally important in permanently low-temperature sediments. PMID:12788715

Purdy, K. J.; Nedwell, D. B.; Embley, T. M.

2003-01-01

240

Biogeochemistry of molecular hydrogen in sulfate-reducing sediments  

SciTech Connect

Concentrations of molecular hydrogen (H{sub 2}) have been measured using an equilibration-vacuum transfer method coupled to mercuric oxide reduction. In hemipelagic sediments (Eastern Tropical North Pacific (ETNP)) and bioturbated sediments (Princess Louisa Inlet, BC (PLI), and Buzzards Bay, MA (BB)) hydrogen levels were lowest in surface sediments and increased with depth. Sharp increases in H{sub 2} concentrations were observed just below the zone of bioturbation (PLI and BB), or below the depth of nitrate depletion (ETNP). Apparent hydrogen production rates were determined in laboratory incubations of sediments amended with inhibitors of sulfate reduction and methanogenesis. Hydrogen production ranged from 30 nmol 1{sup {minus}1} h{sup {minus}1} to 20 {times} 10{sup 3} nmol 1{sup {minus}1} h{sup {minus}1}. Apparent hydrogen production rates generally decreased in parallel with measured sulfate reduction rates. Experiments examined the response of apparent H{sub 2} production rates to additions of both specific organic chemicals and to additions of naturally occurring, complex organic materials. Organic sources typically considered labile (sucrose, and algae) stimulated apparent production up to a factor of 70. More refractory compounds (humic acids, chitin), stimulated rates of hydrogen production only slightly or not at all. These results show that hydrogen production is, in part, a function of the type of organic matter being degraded.

Novelli, P.C.

1987-01-01

241

Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments.  

PubMed

To contribute to the identification of methanogens, methanotrophs and sulfate-reducing bacteria (SRB) in microbial communities from the 13 degrees N (East Pacific Rise) and Rainbow (Mid-Atlantic Ridge) hydrothermal vent fields, we investigated the diversity of mcrA, pmoA and dsrAB genes sequences. Clone libraries were obtained using DNA isolated from fragments of diffuse vents, sediment and in situ samplers. The clones were categorized by restriction fragment length polymorphism, and representatives of each group were sequenced. Sequences were related to that of hyperthermophilic (order Methanopyrales and family Methanocaldococcaceae), thermophilic and mesophilic (family Methanococcaceae) methanogens, thermophilic (proposed genus 'Methylothermus') and mesophilic type I methanotrophs, and hyperthermophilic (order Archaeoglobales), thermophilic (order Thermodesulfobacteriales) and mesophilic (family Desulfobulbaceae) SRB. Several of the obtained sequences were distantly related to the genes of cultivated organisms, providing evidence of the existence of novel lineages in the three functional groups. This study provides for the first time an insight into the diversity of several functional genes of deep-sea hydrothermal system microorganisms. PMID:15643942

Nercessian, Olivier; Bienvenu, Nadège; Moreira, David; Prieur, Daniel; Jeanthon, Christian

2005-01-01

242

Systematic mapping of two component response regulators to gene targets in a model sulfate reducing bacterium  

PubMed Central

Background Two component regulatory systems are the primary form of signal transduction in bacteria. Although genomic binding sites have been determined for several eukaryotic and bacterial transcription factors, comprehensive identification of gene targets of two component response regulators remains challenging due to the lack of knowledge of the signals required for their activation. We focused our study on Desulfovibrio vulgaris Hildenborough, a sulfate reducing bacterium that encodes unusually diverse and largely uncharacterized two component signal transduction systems. Results We report the first systematic mapping of the genes regulated by all transcriptionally acting response regulators in a single bacterium. Our results enabled functional predictions for several response regulators and include key processes of carbon, nitrogen and energy metabolism, cell motility and biofilm formation, and responses to stresses such as nitrite, low potassium and phosphate starvation. Our study also led to the prediction of new genes and regulatory networks, which found corroboration in a compendium of transcriptome data available for D. vulgaris. For several regulators we predicted and experimentally verified the binding site motifs, most of which were discovered as part of this study. Conclusions The gene targets identified for the response regulators allowed strong functional predictions to be made for the corresponding two component systems. By tracking the D. vulgaris regulators and their motifs outside the Desulfovibrio spp. we provide testable hypotheses regarding the functions of orthologous regulators in other organisms. The in vitro array based method optimized here is generally applicable for the study of such systems in all organisms. PMID:21992415

2011-01-01

243

Elucidating microbial processes in nitrate- and sulfate-reducing systems using sulfur and oxygen isotope ratios: The example of oil reservoir souring control  

NASA Astrophysics Data System (ADS)

Sulfate-reducing bacteria (SRB) are ubiquitous in anoxic environments where they couple the oxidation of organic compounds to the production of hydrogen sulfide. This can be problematic for various industries including oil production where reservoir "souring" (the generation of H 2S) requires corrective actions. Nitrate or nitrite injection into sour oil fields can promote SRB control by stimulating organotrophic nitrate- or nitrite-reducing bacteria (O-NRB) that out-compete SRB for electron donors (biocompetitive exclusion), and/or by lithotrophic nitrate- or nitrite-reducing sulfide oxidizing bacteria (NR-SOB) that remove H 2S directly. Sulfur and oxygen isotope ratios of sulfide and sulfate were monitored in batch cultures and sulfidic bioreactors to evaluate mitigation of SRB activities by nitrate or nitrite injection. Sulfate reduction in batch cultures of Desulfovibrio sp. strain Lac15 indicated typical Rayleigh-type fractionation of sulfur isotopes during bacterial sulfate reduction (BSR) with lactate, whereas oxygen isotope ratios in unreacted sulfate remained constant. Sulfur isotope fractionation in batch cultures of the NR-SOB Thiomicrospira sp. strain CVO was minimal during the oxidation of sulfide to sulfate, which had ?18O SO4 values similar to that of the water-oxygen. Treating an up-flow bioreactor with increasing doses of nitrate to eliminate sulfide resulted in changes in sulfur isotope ratios of sulfate and sulfide but very little variation in oxygen isotope ratios of sulfate. These observations were similar to results obtained from SRB-only, but different from those of NR-SOB-only pure culture control experiments. This suggests that biocompetitive exclusion of SRB took place in the nitrate-injected bioreactor. In two replicate bioreactors treated with nitrite, less pronounced sulfur isotope fractionation and a slight decrease in ?18O SO4 were observed. This indicated that NR-SOB played a minor role during dosing with low nitrite and that biocompetitive exclusion was the major process. The results demonstrate that stable isotope data can contribute unique information for understanding complex microbial processes in nitrate- and sulfate-reducing systems, and offer important information for the management of H 2S problems in oil reservoirs and elsewhere.

Hubert, Casey; Voordouw, Gerrit; Mayer, Bernhard

2009-07-01

244

Biochemical and Molecular Characterization of Potential Phosphate-Solubilizing Bacteria in Acid Sulfate Soils and Their Beneficial Effects on Rice Growth  

PubMed Central

A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmolc kg?1, respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils. PMID:25285745

Panhwar, Qurban Ali; Naher, Umme Aminun; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

2014-01-01

245

Functional Genomics with a Comprehensive Library of Transposon Mutants for the Sulfate-Reducing Bacterium Desulfovibrio alaskensis G20  

PubMed Central

ABSTRACT The genomes of sulfate-reducing bacteria remain poorly characterized, largely due to a paucity of experimental data and genetic tools. To meet this challenge, we generated an archived library of 15,477 mapped transposon insertion mutants in the sulfate-reducing bacterium Desulfovibrio alaskensis G20. To demonstrate the utility of the individual mutants, we profiled gene expression in mutants of six regulatory genes and used these data, together with 1,313 high-confidence transcription start sites identified by tiling microarrays and transcriptome sequencing (5? RNA-Seq), to update the regulons of Fur and Rex and to confirm the predicted regulons of LysX, PhnF, PerR, and Dde_3000, a histidine kinase. In addition to enabling single mutant investigations, the D. alaskensis G20 transposon mutants also contain DNA bar codes, which enables the pooling and analysis of mutant fitness for thousands of strains simultaneously. Using two pools of mutants that represent insertions in 2,369 unique protein-coding genes, we demonstrate that the hypothetical gene Dde_3007 is required for methionine biosynthesis. Using comparative genomics, we propose that Dde_3007 performs a missing step in methionine biosynthesis by transferring a sulfur group to O-phosphohomoserine to form homocysteine. Additionally, we show that the entire choline utilization cluster is important for fitness in choline sulfate medium, which confirms that a functional microcompartment is required for choline oxidation. Finally, we demonstrate that Dde_3291, a MerR-like transcription factor, is a choline-dependent activator of the choline utilization cluster. Taken together, our data set and genetic resources provide a foundation for systems-level investigation of a poorly studied group of bacteria of environmental and industrial importance. PMID:24865553

Kuehl, Jennifer V.; Price, Morgan N.; Ray, Jayashree; Wetmore, Kelly M.; Esquivel, Zuelma; Kazakov, Alexey E.; Nguyen, Michelle; Kuehn, Raquel; Davis, Ronald W.; Hazen, Terry C.; Arkin, Adam P.

2014-01-01

246

In situ BTEX biotransformation under intrinsic and nitrate- and sulfate-reducing conditions  

SciTech Connect

Controlled amounts of BTEX compounds added to slugs of treated ground water were released into a gasoline-contaminated aquifer at Seal Beach (CA). In a series of studies, the slugs 470 to 1,700 L in volume were released into the aquifer. To evaluate nitrate-reducing and sulfate-reducing conditions, the injectate was also deionized and augmented with 200-300 {mu}g/L BTEX, nitrate or sulfate, and background electrolytes. Under intrinsic conditions, transformation appeared to be limited to slow removal of toluene and m,p-xylene. Under nitrate-reducing conditions, toluene, ethylbenzene, m-xylene, and o-xylene were transformed without a lag in less than 4, 6, and 70 days, respectively. Under sulfate-reducing conditions, toluene, m-xylene and o-xylene were completely transformed in less than 50 days, and ethylbenzene was removed in 60 days. Benzene was slowly removed, but the mechanism of removal could not be ascertained.

Reinhard, M.; Shang, S.; Kitanidis, P.K.; Orwin, E. [Stanford Univ., CA (United States)] [and others

1996-10-01

247

In situ BTEX biotransformation under enhanced nitrate- and sulfate-reducing conditions  

SciTech Connect

In situ anaerobic biotransformation of BTEX (benzene, toluene, ethylbenzene, o-xylene, and m-xylene) was investigated under enhanced nitrate- and sulfate-reducing conditions. Controlled amounts of BTEX compounds added to slugs of treated groundwater were released into a gasoline-contaminated aquifer at Seal Beach, CA. In a series of studies, the slugs, 470-1700 L in volume, were released into the aquifer through a multi-port injection/extraction well and were subsequently withdrawn over a 2-3 month period. To evaluate unamended in situ conditions, the injectate was treated with granular activated carbon (GAC) and augmented with bromide as a tracer. To evaluate nitrate- and sulfate-reducing conditions, the injectate was also deionized and augmented with 200-300 {mu}g/L BTEX, nitrate or sulfate, and background electrolytes. Under unamended conditions, transformation appeared to be limited to the slow removal of toluene and m,p-xylene (i.e. sum of m+p-xylene). Under nitrate-reducing conditions, toluene, ethylbenzene, and m-xylene were transformed without a lag phase in less than 10 days, and o-xylene was transformed in 72 days. Under sulfate-reducing conditions, toluene, m-xylene and o-xylene were completely transformed in less then 50 days, and ethylbenzene was removed in 60 days. Benzene appeared to be removed under sulfate-reducing conditions, but the trend was pronounced only at some levels. 47 refs., 11 figs., 2 tabs.

Reinhard, M.; Shang, S.; Kitanidis, P.K.; Orwin, E.; Hopkins, G.D. [Stanford Univ., CA (United States); LeBron, C.A. [Naval Facilities Engineering Service Center, Port Hueneme, CA (United States)

1997-01-01

248

Septage treatments to reduce the numbers of bacteria and polioviruses.  

PubMed

Disposal of the pumped contents of septic tanks (septage) represents a possible means of dissemination of enteric pathogens including viruses, since persistence of enteroviruses in septic tank sludge for greater than 100 days has been demonstrated. The risk of exposure to potentially infectious agents can be reduced by disinfecting septages before their disposal. Of the septage disinfectants examined (technical and analytical grade glutaraldehyde, hydrogen peroxide, heat treatments, and a combination of heat and hydrogen peroxide), the treatment including hydrogen peroxide (5 mg, plus 0.33 mg of trichloroacetic acid, per ml of septage) and 55 degrees C killed virtually all the bacteria in septage within 1 h, whereas 55 degrees C alone inactivated inoculated polioviruses within 30 min. Virus was the most sensitive to heat, whereas fecal coliforms appeared to be the most sensitive to all chemical treatments. The responses of fecal streptococci and virus to both grades of glutaraldehyde (each at 1 mg/ml) were similar. Virus was more resistant than either fecal streptococci or total bacteria to low concentrations of hydrogen peroxide (1 to 5 mg/ml); however, virus and fecal streptococci were more labile than total bacteria to the highest peroxide concentration (10 mg/ml) examined. It is possible that the treatment combining heat and hydrogen peroxide was the most effective in reducing the concentrations of all bacteria, because catalase and peroxidases as well as other enzymes were heat inactivated, although catalase seems the most likely cause of damage. However, this most effective treatment does not appear to be practical for on-site use as performed, so further work on septage disinfection is recommended. PMID:6093691

Stramer, S L; Cliver, D O

1984-09-01

249

Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions  

SciTech Connect

This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

Coyne, P.; Smith, G. [New Mexico State Univ., Las Cruces, NM (United States)

1995-08-15

250

Sulfate-Reducing Ammonium Oxidation: A Thermodynamically Feasible Metabolic Pathway in Subseafloor Sediment  

NASA Astrophysics Data System (ADS)

Sulfate-reducing ammonium oxidation, a process that has not been previously inferred in natural environments, is indicated based on dissolved chemical fluxes and Gibbs energies of reaction in sedimentary porewaters. Bay of Bengal (Indian Ocean) porewater profiles demonstrate that significant ammonium is consumed in the interface between ammonium and sulfate containing waters. Loss of ammonium in this interval greatly exceeds possible nitrogen demand by biomass production. In situ Gibbs energies of reaction (?G) for the reaction, 8NH4+ +3SO42- = 4N2 + 3HS- + 12 H2O + 5H+) in Bay of Bengal sediment and Greenwich Bay (Rhode Island) sediment indicate that sulfate-reducing ammonium oxidation is energy yielding. Relatively small and constant but consistently negative in-situ Gibbs energies in both locations suggest that microorganisms can derive energy from this reaction. In combination, the Gibbs energies and the substantial ammonium loss suggest that sulfate-reducing ammonium oxidation occurs in Bay of Bengal sediments. The Greenwich Bay DG results suggest that the process may also occur in anoxic sediment where the ammonium concentration profile shows no net loss of ammonium These sites are not geochemically unique; large areas of the ocean floor have conditions favorable for sulfate-reducing ammonium oxidation. If this reaction occurs globally, it may be a significant sink for fixed nitrogen.

Schrum, H. N.; Spivack, A. J.; Kastner, M.; D'Hondt, S. L.

2009-12-01

251

Anaerobic Cometabolic Conversion of Benzothiophene by a Sulfate-Reducing Enrichment Culture and in a Tar-Oil-Contaminated Aquifer†  

PubMed Central

Anaerobic cometabolic conversion of benzothiophene was studied with a sulfate-reducing enrichment culture growing with naphthalene as the sole source of carbon and energy. The sulfate-reducing bacteria were not able to grow with benzothiophene as the primary substrate. Metabolite analysis was performed with culture supernatants obtained by cometabolization experiments and revealed the formation of three isomeric carboxybenzothiophenes. Two isomers were identified as 2-carboxybenzothiophene and 5-carboxybenzothiophene. In some experiments, further reduced dihydrocarboxybenzothiophene was identified. No other products of benzothiophene degradation could be determined. In isotope-labeling experiments with a [13C]bicarbonate-buffered culture medium, carboxybenzothiophenes which were significantly enriched in the 13C content of the carboxyl group were formed, indicating the addition of a C1 unit from bicarbonate to benzothiophene as the initial activation reaction. This finding was consistent with the results of earlier studies on anaerobic naphthalene degradation with the same culture, and we therefore propose that benzothiophene was cometabolically converted by the same enzyme system. Groundwater analyses of the tar-oil-contaminated aquifer from which the naphthalene-degrading enrichment culture was isolated exhibited the same carboxybenzothiophene isomers as the culture supernatants. In addition, the benzothiophene degradation products, in particular, dihydrocarboxybenzothiophene, were significantly enriched in the contaminated groundwater to concentrations almost the same as those of the parent compound, benzothiophene. The identification of identical metabolites of benzothiophene conversion in the sulfate-reducing enrichment culture and in the contaminated aquifer indicated that the same enzymatic reactions were responsible for the conversion of benzothiophene in situ. PMID:11679329

Annweiler, Eva; Michaelis, Walter; Meckenstock, Rainer U.

2001-01-01

252

Characterization of a new thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain  

NASA Technical Reports Server (NTRS)

A thermophilic sulfate-reducing vibrio isolated from thermal vent water in Yellowstone Lake, Wyoming, USA is described. The gram-negative, curved rod-shaped cells averaged 0.3 micrometer wide and 1.5 micrometers long. They were motile by means of a single polar flagellum. Growth was observed between 40 degrees and 70 degrees C with optimal growth at 65 degrees C. Cultures remained viable for one year at 27 degrees C although spore-formation was not observed. Sulfate, thiosulfate and sulfite were used as electron acceptors. Sulfur, fumarate and nitrate were not reduced. In the presence of sulfate, growth was observed only with lactate, pyruvate, hydrogen plus acetate, or formate plus acetate. Pyruvate was the only compound observed to support fermentative growth. Pyruvate and lactate were oxidized to acetate. Desulfofuscidin and c-type cytochromes were present. The G + C content was 29.5 mol%. The divergence in the 16 S ribosomal RNA sequences between the new isolate and Thermodesulfobacterium commune suggests that these two thermophilic sulfate-reducing bacteria represent different genera. These two bacteria depict a lineage that branches deeply within the Bacteria domain and which is clearly distinct from previously defined phylogenetic lines of sulfate-reducing bacteria. Strain YP87 is described as the type strain of the new genus and species Thermodesulfovibrio yellowstonii.

Henry, E. A.; Devereux, R.; Maki, J. S.; Gilmour, C. C.; Woese, C. R.; Mandelco, L.; Schauder, R.; Remsen, C. C.; Mitchell, R.

1994-01-01

253

Microbial mineralization of ethene under sulfate-reducing conditions  

USGS Publications Warehouse

A limited investigation of the potential for anaerobic ethylene biodegradation under SO4-reducing conditions was performed. Microorganisms indigenous to a lake-bed sediment completely mineralized [1,2-14C] ethylene to 14CO2 when incubated under SO4-reducing conditions. Reliance on ethylene and/or ethane accumulation as a quantitative indicator of complete reductive dechlorination of chloroethylene contaminants may not be warranted. SO4 addition stimulated SO4 reduction as indicated by decreasing SO4 concentrations (> 40% decrease) and production of dissolved sulfide (880 ??M). SO4 amendment completely suppressed the production of ethane and methane. The concomitant absence of ethane and methane production under SO4-amended conditions was consistent with previous conclusions that reduction of ethylene to ethane occurred under methanogenic conditions. A lack of ethylene accumulation under SO4-reducing conditions may reflect insignificant reductive dechlorination of vinyl chloride or efficient anaerobic mineralization of ethylene to CO2.

Bradley, P.M.; Chapelle, F.H.

2002-01-01

254

The Use of Seaweed and Sugarcane Bagasse for the Biological Treatment of Metal-contaminated Waters Under Sulfate-reducing Conditions  

NASA Astrophysics Data System (ADS)

When wetlands reach maximum treatment capacity to remove heavy metals, removal can still take place through precipitation as sulfide because of the biological reduction of sulfate. To achieve this goal, anaerobic conditions must be attained, a sulfate source must exist, and an adequate substrate for sulfate-reducing bacteria (SRB) is also required. In the present work, two ligneous-cellulosic materials, a brown seaweed and sugarcane bagasse, have been selected as substrates for SRB growth. Experiments were simultaneously conducted in continuous operation in two columns (0.57 L each), one containing the ligneous-cellulosic material plus inoculum and another containing only the ligneous-cellulosic material. In this work, the removal of cadmium and zinc was studied because of their presence in effluents from mining/metallurgy operations. Results obtained indicated that the inoculated reactor was able to treat the effluent more efficiently than the noninoculated reactor considering the time course of the tests.

Gonçalves, Márcia Monteiro Machado; de Mello, Luiz Antonio Oliveira; da Costa, Antonio Carlos Augusto

255

Magnesium Sulfate Only Slightly Reduces the Shivering Threshold in Humans  

PubMed Central

Background: Hypothermia may be an effective treatment for stroke or acute myocardial infarction; however, it provokes vigorous shivering, which causes potentially dangerous hemodynamic responses and prevents further hypothermia. Magnesium is an attractive antishivering agent because it is used for treatment of postoperative shivering and provides protection against ischemic injury in animal models. We tested the hypothesis that magnesium reduces the threshold (triggering core temperature) and gain of shivering without substantial sedation or muscle weakness. Methods: We studied nine healthy male volunteers (18-40 yr) on two randomly assigned treatment days: 1) Control and 2) Magnesium (80 mg·kg-1 followed by infusion at 2 g·h-1). Lactated Ringer's solution (4°C) was infused via a central venous catheter over a period of approximately 2 hours to decrease tympanic membrane temperature ?1.5°C·h-1. A significant and persistent increase in oxygen consumption identified the threshold. The gain of shivering was determined by the slope of oxygen consumption vs. core temperature regression. Sedation was evaluated using verbal rating score (VRS, 0-10) and bispectral index of the EEG (BIS). Peripheral muscle strength was evaluated using dynamometry and spirometry. Data were analyzed using repeated-measures ANOVA; P<0.05 was statistically significant. Results: Magnesium reduced the shivering threshold (36.3±0.4 [mean±SD] vs. 36.6±0.3°C, P=0.040). It did not affect the gain of shivering (Control: 437±289, Magnesium: 573±370 ml·min-1·°C-1, P=0.344). The magnesium bolus did not produce significant sedation or appreciably reduce muscle strength. Conclusions: Magnesium significantly reduced the shivering threshold; however, due to the modest absolute reduction, this finding is considered to be clinically unimportant for induction of therapeutic hypothermia. PMID:15749735

Wadhwa, Anupama; Sengupta, Papiya; Durrani, Jaleel; Akça, Ozan; Lenhardt, Rainer; Sessler, Daniel I.

2005-01-01

256

Prokaryotic Community Structure and Sulfate Reducer Activity in Water from High-Temperature Oil Reservoirs with and without Nitrate Treatment? †  

PubMed Central

Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. One strategy to control SRP activity is the addition of nitrate to the injection water. Production waters from two adjacent, hot (80°C) oil reservoirs, one with and one without nitrate treatment, were compared for prokaryotic community structure and activity of SRP. Bacterial and archaeal 16S rRNA gene analyses revealed higher prokaryotic abundance but lower diversity for the nitrate-treated field. The 16S rRNA gene clone libraries from both fields were dominated by sequences affiliated with Firmicutes (Bacteria) and Thermococcales (Archaea). Potential heterotrophic nitrate reducers (Deferribacterales) were exclusively found at the nitrate-treated field, possibly stimulated by nitrate addition. Quantitative PCR of dsrAB genes revealed that archaeal SRP (Archaeoglobus) dominated the SRP communities, but with lower relative abundance at the nitrate-treated site. Bacterial SRP were found in only low abundance at both sites and were nearly exclusively affiliated with thermophilic genera (Desulfacinum and Desulfotomaculum). Despite the high abundance of archaeal SRP, no archaeal SRP activity was detected in [35S]sulfate incubations at 80°C. Sulfate reduction was found at 60°C in samples from the untreated field and accompanied by the growth of thermophilic bacterial SRP in batch cultures. Samples from the nitrate-treated field generally lacked SRP activity. These results indicate that (i) Archaeoglobus can be a major player in hot oil reservoirs, and (ii) nitrate may act in souring control—not only by inhibiting SRP, but also by changing the overall community structure, including the stimulation of competitive nitrate reducers. PMID:19801479

Gittel, Antje; Sørensen, Ketil Bernt; Skovhus, Torben Lund; Ingvorsen, Kjeld; Schramm, Andreas

2009-01-01

257

Prokaryotic community structure and sulfate reducer activity in water from high-temperature oil reservoirs with and without nitrate treatment.  

PubMed

Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. One strategy to control SRP activity is the addition of nitrate to the injection water. Production waters from two adjacent, hot (80 degrees C) oil reservoirs, one with and one without nitrate treatment, were compared for prokaryotic community structure and activity of SRP. Bacterial and archaeal 16S rRNA gene analyses revealed higher prokaryotic abundance but lower diversity for the nitrate-treated field. The 16S rRNA gene clone libraries from both fields were dominated by sequences affiliated with Firmicutes (Bacteria) and Thermococcales (Archaea). Potential heterotrophic nitrate reducers (Deferribacterales) were exclusively found at the nitrate-treated field, possibly stimulated by nitrate addition. Quantitative PCR of dsrAB genes revealed that archaeal SRP (Archaeoglobus) dominated the SRP communities, but with lower relative abundance at the nitrate-treated site. Bacterial SRP were found in only low abundance at both sites and were nearly exclusively affiliated with thermophilic genera (Desulfacinum and Desulfotomaculum). Despite the high abundance of archaeal SRP, no archaeal SRP activity was detected in [(35)S]sulfate incubations at 80 degrees C. Sulfate reduction was found at 60 degrees C in samples from the untreated field and accompanied by the growth of thermophilic bacterial SRP in batch cultures. Samples from the nitrate-treated field generally lacked SRP activity. These results indicate that (i) Archaeoglobus can be a major player in hot oil reservoirs, and (ii) nitrate may act in souring control-not only by inhibiting SRP, but also by changing the overall community structure, including the stimulation of competitive nitrate reducers. PMID:19801479

Gittel, Antje; Sørensen, Ketil Bernt; Skovhus, Torben Lund; Ingvorsen, Kjeld; Schramm, Andreas

2009-11-01

258

Genome sequence of the model sulfate reducer Desulfovibrio gigas: a comparative analysis within the Desulfovibrio genus*  

PubMed Central

Desulfovibrio gigas is a model organism of sulfate-reducing bacteria of which energy metabolism and stress response have been extensively studied. The complete genomic context of this organism was however, not yet available. The sequencing of the D. gigas genome provides insights into the integrated network of energy conserving complexes and structures present in this bacterium. Comparison with genomes of other Desulfovibrio spp. reveals the presence of two different CRISPR/Cas systems in D. gigas. Phylogenetic analysis using conserved protein sequences (encoded by rpoB and gyrB) indicates two main groups of Desulfovibrio spp, being D. gigas more closely related to D. vulgaris and D. desulfuricans strains. Gene duplications were found such as those encoding fumarate reductase, formate dehydrogenase, and superoxide dismutase. Complexes not yet described within Desulfovibrio genus were identified: Mnh complex, a v-type ATP-synthase as well as genes encoding the MinCDE system that could be responsible for the larger size of D. gigas when compared to other members of the genus. A low number of hydrogenases and the absence of the codh/acs and pfl genes, both present in D. vulgaris strains, indicate that intermediate cycling mechanisms may contribute substantially less to the energy gain in D. gigas compared to other Desulfovibrio spp. This might be compensated by the presence of other unique genomic arrangements of complexes such as the Rnf and the Hdr/Flox, or by the presence of NAD(P)H related complexes, like the Nuo, NfnAB or Mnh. PMID:25055974

Morais-Silva, Fabio O; Rezende, Antonio Mauro; Pimentel, Catarina; Santos, Catia I; Clemente, Carla; Varela–Raposo, Ana; Resende, Daniela M; da Silva, Sofia M; de Oliveira, Luciana Márcia; Matos, Marcia; Costa, Daniela A; Flores, Orfeu; Ruiz, Jerónimo C; Rodrigues-Pousada, Claudina

2014-01-01

259

Geomicrobiological aspects of the oxidation of reduced sulfur compounds by photosynthesizing bacteria.  

PubMed

The activity of photosynthesizing sulfur bacteria in a continuous culture was studied. The bacteria were isolated from the natural environment with the use of the Winogradski column. Isolated bacteria were cultured in synthetic medium and in the effluent from the column containig HS-. Sulphides, the main product of reduction of sulfates in phosphogypsum, were used by green sulfur bacteria in the photosynthetic column. Almost 70% reduction of the concentration of sulfides was observed. After the experiment, diffractometric methods where employed to analyze the sediment from the column. PMID:17419190

Borkowski, Andrzej; Wolicka, Dorota

2007-01-01

260

Microbial Activity In The Peerless Jenny King Sulfate Reducing Bioreactor System (Presentation)  

EPA Science Inventory

The Peerless Jenny King treatment system is a series of four sulfate reducing bioreactor cells installed to treat acid mine drainage in the Upper Tenmile Creek Superfund Site located in the Rimini Mining District, near Helena MT. The system consists of a wetland pretreatment fol...

261

Microbial Activity In The Peerless Jenny King Sulfate Reducing Bioreactors System  

EPA Science Inventory

The Peerless Jenny King treatment system is a series of four sulfate reducing bioreactor cells installed to treat acid mine drainage in the Upper Tenmile Creek Superfund Site located in the Rimini Mining District, near Helena, MT. The system consists of a wetland pretreatment fo...

262

MULTIPLE SULFUR ISOTOPE FRACTIONATIONS IN BIOLOGICAL SYSTEMS: A CASE STUDY WITH SULFATE REDUCERS  

E-print Network

MULTIPLE SULFUR ISOTOPE FRACTIONATIONS IN BIOLOGICAL SYSTEMS: A CASE STUDY WITH SULFATE REDUCERS AND SULFUR DISPROPORTIONATORS DAVID T. JOHNSTON* , JAMES FARQUHAR*, BOSWELL A. WING*, ALAN J. KAUFMAN*, DONALD E. CANFIELD**, and KIRSTEN S. HABICHT** ABSTRACT. Multiple sulfur isotope measurements of sulfur

Kaufman, Alan Jay

263

Seasonal composition and activity of sulfate-reducing prokaryotic communities in seagrass bed sediments  

EPA Science Inventory

Sulfate-reducing prokaryotes (SRP) play a key role in the carbon and nutrient cycles of coastal marine, vegetated ecosystems, but the interactions of SRP communities with aquatic plants remain little studied. The abundance, activity, and community composition of SRP was studied i...

264

Physicochemical and biological characterization of long-term operated sulfate reducing granular sludge in the SANI(®) process.  

PubMed

The SANI(®) process (Sulfate reduction, Autotrophic denitrification and Nitrification Integrated) is a treatment system with low energy demands. The major bioreactor of this new technology is a sulfate-reducing up-flow sludge bed (SRUSB) that converts organics and provides electron donors for subsequent autotrophic denitrification. This research characterizes the granules inside the SRUSB, with the aim of improving its efficiency, maximizing its operational flexibility, and minimizing its footprint. The unique sulfate-reducing bacteria (SRB) granules serving in the SRUSB were found to increase the resilience and compactness of the SRUSB. The granules, with a compact and porous structure, showed high cohesion resisting breakage with a shear force G > 3400 s(-1). The hydrophobicity of the external surface of the mature granules remained stable at around 70% and acid volatile sulfide (AVS) accumulated at the bottom of the SRUSB. 16s rRNA gene analysis of the microbial communities revealed that Desulfobulbus (42.1%), Prosthecochloris (19%) and Trichococcus (12%) dominated the mature granular sludge. Fluorescence in situ hybridization (FISH) further showed that SRB organisms were located internally and then surrounded by non-SRB. According to the FISH results, the spatial distribution of extracellular polymeric substances (EPS) displayed protein and ?-polysaccharides in the exterior and ?-polysaccharide in the core of the granules. Such biological structure suggests that each SRB granule acts as an efficient and independent unit, capable of achieving both fermentation and organic conversion. The present investigation sheds light on the physicochemical and biological characteristics of the SRB granulate. This information provides valuable information for scaling-up the SANI(®) process to treat real saline sewage in Hong Kong. PMID:25600299

Hao, Tianwei; Luo, Jinghai; Wei, Li; Mackey, Hamish R; Liu, Rulong; Rey Morito, Guillermo; Chen, Guang-Hao

2015-03-15

265

34S/ 32S fractionation by sulfate-reducing microbial communities in estuarine sediments  

NASA Astrophysics Data System (ADS)

Sulfur isotope fractionation during microbial sulfate reduction in brackish estuarine sediments was studied using an experimental flow-through reactor approach designed to preserve the in situ physical, geochemical and microbial structure of the sediment. Concurrent measurements of potential sulfate reduction rates and 34S/ 32S fractionations were carried out using intact sediment slices (2 cm thick, 4.2 cm diameter) from unvegetated, intertidal sites adjoining a salt marsh along the Scheldt estuary, The Netherlands. A total of 30 reactor experiments were performed with sediments collected in February, May and October 2006. The effects of incubation temperature (10, 20, 30 and 50 °C) and sediment depth (0-2, 4-6 and 8-10 cm) were investigated. Sulfate was supplied in non-limiting concentrations via the reactor inflow solutions; no external electron donor was supplied. Isotope fractionations ( ? values) were calculated from the measured differences in sulfate ? 34S between in- and outflow solutions of the reactors, under quasi-steady state conditions. Potential sulfate reduction rates (SRR) varied over one order of magnitude (5-49 nmol cm -3 h -1) and were highest in the 30 °C incubations. They decreased systematically with depth, and were highest in the sediments collected closest to the vegetated marsh. Isotope fractionations ranged from 9‰ to 34‰ and correlated inversely with SRR, as predicted by the standard fractionation model for enzymatic sulfate reduction of Rees (1973). The ? versus SRR relationship, however, varied between sampling times, with higher ? values measured in February, at comparable SRRs, than in May and October. The observed ? versus SRR relationships also deviated from the previously reported inverse trend for sediments collected in a marine lagoon in Denmark ( Canfield, 2001b). Thus, isotope fractionation during sulfate reduction is not uniquely determined by SRR, but is site- and time-dependent. Factors that may affect the ? versus SRR relationship include the structure and size of the sulfate-reducing community, and the nature and accessibility of organic substrates. Whole-sediment data such as those presented here provide a link between isotopic fractionations measured with pure cultures of sulfate-reducing prokaryotes and sulfur isotopic signatures recorded in sedimentary deposits.

Stam, Marjolijn C.; Mason, Paul R. D.; Laverman, Anniet M.; Pallud, Céline; Cappellen, Philippe Van

2011-07-01

266

Extremophilic iron-reducing bacteria: Their implications for possible life in extraterrestrial environments  

SciTech Connect

Iron reduction is believed to be an early form of respiration and iron-reducing bacteria might have evolved very early on Earth. To support this hypothesis, the authors began to search for both thermophilic and psychrophilic iron-reducing bacteria because iron-reducing capacity may be a widely distributed trait if ancestral microorganisms include extremophilic iron-reducing bacteria. To date, they have obtained thermophilic Fe(III)-reducing and magnetite-forming enrichment cultures from geologically and hydrologically isolated, millions of years-old deep terrestrial subsurface samples. Three dominant bacteria were identified based on 16S ribosomal RNA gene sequences. Phylogenetical analysis indicated that these bacteria were closely related to Thermoanaerobacter ethanoliticus. Two pure thermophilic iron-reducing bacteria have been isolated and characterized from these enrichments, they also are able to degrade cellulose and xylan. Geological evidence indicated that these bacteria were separated from modern organisms for about 200 million years, and they are the oldest isolated bacteria available now. Evolutionary sequence analysis showed that the 16S rRNA genes evolved extremely slowly in these bacteria. In addition, the authors have obtained about 30 psychrophilic iron-reducing bacteria in samples from Siberia and Alaska permafrost soils, Pacific marine sediments and Hawaii deep sea water. These bacteria were also able to reduce other heavy metals. The isolation of both thermophilic and psychrophilic iron-reducing bacteria from surface and subsurface environments has significant implications for microbial evolution and for studying the origin of life in extraterrestrial environments.

Zhou, J.; Liu, S.V.; Zhang, C.; Palumbo, A.V.; Phelps, T.J.

1998-06-01

267

Monofluorophosphate is a selective inhibitor of respiratory sulfate-reducing microorganisms.  

PubMed

Despite the environmental and economic cost of microbial sulfidogenesis in industrial operations, few compounds are known as selective inhibitors of respiratory sulfate reducing microorganisms (SRM), and no study has systematically and quantitatively evaluated the selectivity and potency of SRM inhibitors. Using general, high-throughput assays to quantitatively evaluate inhibitor potency and selectivity in a model sulfate-reducing microbial ecosystem as well as inhibitor specificity for the sulfate reduction pathway in a model SRM, we screened a panel of inorganic oxyanions. We identified several SRM selective inhibitors including selenate, selenite, tellurate, tellurite, nitrate, nitrite, perchlorate, chlorate, monofluorophosphate, vanadate, molydate, and tungstate. Monofluorophosphate (MFP) was not known previously as a selective SRM inhibitor, but has promising characteristics including low toxicity to eukaryotic organisms, high stability at circumneutral pH, utility as an abiotic corrosion inhibitor, and low cost. MFP remains a potent inhibitor of SRM growing by fermentation, and MFP is tolerated by nitrate and perchlorate reducing microorganisms. For SRM inhibition, MFP is synergistic with nitrite and chlorite, and could enhance the efficacy of nitrate or perchlorate treatments. Finally, MFP inhibition is multifaceted. Both inhibition of the central sulfate reduction pathway and release of cytoplasmic fluoride ion are implicated in the mechanism of MFP toxicity. PMID:25698072

Carlson, Hans K; Stoeva, Magdalena K; Justice, Nicholas B; Sczesnak, Andrew; Mullan, Mark R; Mosqueda, Lorraine A; Kuehl, Jennifer V; Deutschbauer, Adam M; Arkin, Adam P; Coates, John D

2015-03-17

268

Inhibitory concentrations of 2,4D and its possible intermediates in sulfate reducing biofilms.  

PubMed

Different concentrations of the herbicide 2,4-dichlorophenoxyacetic acid (2,4D) and its possible intermediates such as 2,4-dichlorophenol (2,4DCP), 4-chlorophenol (4CP), 2-chlorophenol (2CP) and phenol, were assayed to evaluate the inhibitory effect on sulfate and ethanol utilization in a sulfate reducing biofilm. Increasing concentrations of the chlorophenolic compounds showed an adverse effect on sulfate reduction rate and ethanol conversion to acetate, being the intermediate 2,4DCP most toxic than the herbicide. The monochlorophenol 4CP (600 ppm) caused the complete cessation of sulfate reduction and ethanol conversion. The ratio of the electron acceptor to the electron donor utilized as well as the sulfate utilization volumetric rates, diminished when chlorophenols and phenol concentrations were increased, pointing out to the inhibition of the respiratory process and electrons transfer. The difference found in the IC(50) values obtained was due to the chemical structure complexity of the phenolic compounds, the number of chlorine atoms as much as the chlorine atom position in the phenol ring. The IC(50) values (ppm) indicated that the acute inhibition on the biofilm was caused by 2,4DCP (17.4) followed by 2,4D (29.0), 2CP (99.8), 4CP (108.0) and phenol (143.8). PMID:20388582

García-Cruz, Ulises; Celis, Lourdes B; Poggi, Héctor; Meraz, Mónica

2010-07-15

269

PIMLUCK KIJJANAPANICH SULFATE REDUCTION  

E-print Network

Metals from Acid Mine Drainage 37 3.1 Introduction 38 3.2 Material and Methods 39 3.2.1 Acid mine drainage (AMD) 39 3.2.2 Sulfate reducing bacteria (SRB) inoculums 40 3.2.3 Organic substrates 40 3 Reduction in Gypsiferous Mine Soils from Nakhon Si Tham

Paris-Sud XI, Université de

270

Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin?  

PubMed Central

Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in versican-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found that the skin collagen architecture was altered, and electron microscopy showed that the DS-epi1-null fibrils have a larger diameter than the wild-type fibrils. The altered chondroitin/dermatan sulfate chains carried by decorin in skin are likely to affect collagen fibril formation and reduce the tensile strength of DS-epi1-null skin. PMID:19687302

Maccarana, Marco; Kalamajski, Sebastian; Kongsgaard, Mads; Magnusson, S. Peter; Oldberg, Åke; Malmström, Anders

2009-01-01

271

Halotolerant and Resistant to High pH Hydrogenase from Haloalkaliphilic Sulfate-Reducing Bacterium Desulfonatronum thiodismutans  

NASA Technical Reports Server (NTRS)

Hydrogenase is the key enzyme of energetic metabolism in cells, it catalyzing the converse reaction of hydrogen oxidation and responsible for consumption and excretion of hydrogen in bacteria. Hydrogenases are proteins containing either Nickel and Iron, or the only Iron in theirs active center. Hydrogenases have been found in many microorganisms, such as Methanogenic, acetogenic, nitrogen-fixing, photosynthetic and sulfate-reducing bacteria that could utilize the hydrogen as energy source or use it as electron sink. Hydrogenases are subject for wide physiological, biochemical, physicochemical and genetic studies due to theirs abilities produce the molecular hydrogen as alternative source of pure energy. Notwithstanding on enough large quantity of works that deal with intracellular and extrasellular enzymes of halophilic bacteria, the data about hydrogenases and theirs functions of salts practically are absent. The study of hydrogenase in cell-free extracts of extremely halophilic eubacterium Acetohalobium mabaticum showed dramatic increasing activity of the enzyme at high concentrations of NaCl and KCI (close to saturated solution). Here we present the data of free-cells extracted hydrogenase from new haloalkaliphilic sulfate-reducing bacterium Desulfonatronum thiodismutans, which grow on highly miniralized carbonate-bicarbonate medium in salinity range 1 to 7 % and at pH 7.8 - 10.5. Studied enzyme was active in Concentration range from 0 to 4.3 M NaCl with optimum at 1.0 M NaCl. At 1.0 M NaCl the enzyme activity was increased on 20 %, but with changing concentration from 2.1 M to 3.4 M the activity decreased and was kept on constant level. NaHCO3 inhibited hydrogenase activity on more then 30 %. The maximum of enzyme activity was observed at pH 9.5 with limits 7.5 and 11.5 that practically equal to pH optimum of bacterial growth. Therefore the hydrogenase of Desulfanatronum thiodismutans is tolerant to high concentrations of sodium salts and it also resistant to high pH that make it the unique subject for different biochemical research and detects the possibility for biotechnological application.

Detkova, Ekaterina N.; Pikuta, Elena V.; Hoover, Richard B.

2004-01-01

272

Examining Deep Subsurface Sulfate Reducing Bacterial Diversity to Test Spatial and Temporal Biogeography  

NASA Astrophysics Data System (ADS)

In this study, we take advantage of the isolation and scale of the deep marine subsurface to examine microbial biogeography. Unlike other environments, deep marine subsurface provides a unique opportunity to study biogeography across four dimensions. These samples are not only isolated by linear space on a global scale, but they are also temporally isolated by, in some cases, tens of millions of years. Through the support of multiple Integrated Ocean Drilling Program expeditions, we characterized the metabolically active fraction of the subsurface microbial community by targeting and sequencing 16S rRNA gene transcripts (RNA-based analysis). By characterizing the metabolically active fraction, we described lineages that were currently under selective environmental pressure and not relic lineages that may have become dormant or dead at some point in the past. This study was narrowed from the total diversity obtained to provide a detailed examination of the distribution and diversity of sulfate reducing bacteria (SRB); a functional group highly important to and ubiquitous in marine systems. The biogeochemical importance of this functional group, compounded with defined clades makes it a valuable and feasible target for a global biogeography study. SRB lineages from the deep subsurface were compared to contemporary lineages collected from multiple shallow sediment sites that had been extracted and sequenced using the same techniques. The SRB sequences acquired from our databases were clustered using 97% sequence similarity and analyzed using a suite of diversity and statistical tools. The geochemical conditions of the sediments sampled were considered when analyzing the resulting dendrograms and datasets. As hypothesized, lineages from the deep subsurface phylogenetically grouped together. However, similarities were detected to lineages from the shallow modern sediments, suggesting novel lineages may have evolved at a slow rate due to predicted lengthened life cycles within energy starved subsurface environments. An additional explanation is that diversity may be more conservative over long time scales due to consistent, basic geochemical requirements for SRB metabolic activity. This study will be expanded to include additional SRB sequences collected using similar methods to avoid potential procedural biases.

Mills, H. J.; Reese, B. K.

2013-12-01

273

Sulfur Isotope Fractionation during the Evolutionary Adaptation of a Sulfate-Reducing Bacterium.  

PubMed

Dissimilatory sulfate reduction is a microbial catabolic pathway that preferentially processes less massive sulfur isotopes relative to their heavier counterparts. This sulfur isotope fractionation is recorded in ancient sedimentary rocks and generally is considered to reflect a phenotypic response to environmental variations rather than to evolutionary adaptation. Modern sulfate-reducing microorganisms isolated from similar environments can exhibit a wide range of sulfur isotope fractionations, suggesting that adaptive processes influence the sulfur isotope phenotype. To date, the relationship between evolutionary adaptation and isotopic phenotypes has not been explored. We addressed this by studying the covariation of fitness, sulfur isotope fractionation, and growth characteristics in Desulfovibrio vulgaris Hildenborough in a microbial evolution experiment. After 560 generations, the mean fitness of the evolved lineages relative to the starting isogenic population had increased by ?17%. After 927 generations, the mean fitness relative to the initial ancestral population had increased by ?20%. Growth rate in exponential phase increased during the course of the experiment, suggesting that this was a primary influence behind the fitness increases. Consistent changes were observed within different selection intervals between fractionation and fitness. Fitness changes were associated with changes in exponential growth rate but changes in fractionation were not. Instead, they appeared to be a response to changes in the parameters that govern growth rate: yield and cell-specific sulfate respiration rate. We hypothesize that cell-specific sulfate respiration rate, in particular, provides a bridge that allows physiological controls on fractionation to cross over to the adaptive realm. PMID:25662968

Pellerin, André; Anderson-Trocmé, Luke; Whyte, Lyle G; Zane, Grant M; Wall, Judy D; Wing, Boswell A

2015-04-15

274

Molecular characterization of a sulfate-reducing consortium which mineralizes benzene  

Microsoft Academic Search

A stable and sediment-free, benzene mineralizing, sulfate-reducing culture that resisted repeated attempts at isolation was examined using molecular approaches such as traditional cloning and sequencing and a direct PCR fingerprinting method for 16S rRNA genes. Despite the culture's long exposure to benzene as the only carbon and energy source (over 3 years) and repeated dilutions of the original enrichment, this

Craig D Phelps; Lee J Kerkhof; Lily Y Young

1998-01-01

275

In situ BTEX biotransformation under enhanced nitrate- and sulfate-reducing conditions  

Microsoft Academic Search

In situ anaerobic biotransformation of BTEX (benzene, toluene, ethylbenzene, o-xylene, and m-xylene) was investigated under enhanced nitrate- and sulfate-reducing conditions. Controlled amounts of BTEX compounds added to slugs of treated groundwater were released into a gasoline-contaminated aquifer at Seal Beach, CA. In a series of studies, the slugs, 470-1700 L in volume, were released into the aquifer through a multi-port

M. Reinhard; S. Shang; P. K. Kitanidis; E. Orwin; G. D. Hopkins; C. A. LeBron

1997-01-01

276

Professional Oral Health Care Reduces the Number of Oropharyngeal Bacteria  

Microsoft Academic Search

Silent aspiration of oropharyngeal pathogenic organisms is a significant risk factor causing pneumonia in the elderly. We hypothesized that regular oral hygiene care will affect the presence of oropharyngeal bacteria. Professional cleaning of the oral cavity and\\/or the gargling of a disinfectant liquid solution was performed over a five-month period in three facilities for the dependent elderly. Total oropharyngeal bacteria,

A. Ishikawa; T. Yoneyama; K. Hirota; Y. Miyake; K. Miyatake

2008-01-01

277

Ubiquity and Diversity of Dissimilatory (Per)chlorate-Reducing Bacteria  

PubMed Central

Environmental contamination with compounds containing oxyanions of chlorine, such as perchlorate or chlorate [(per)chlorate] or chlorine dioxide, has been a constantly growing problem over the last 100 years. Although the fact that microbes reduce these compounds has been recognized for more than 50 years, only six organisms which can obtain energy for growth by this metabolic process have been described. As part of a study to investigate the diversity and ubiquity of microorganisms involved in the microbial reduction of (per)chlorate, we enumerated the (per)chlorate-reducing bacteria (ClRB) in very diverse environments, including pristine and hydrocarbon-contaminated soils, aquatic sediments, paper mill waste sludges, and farm animal waste lagoons. In all of the environments tested, the acetate-oxidizing ClRB represented a significant population, whose size ranged from 2.31 × 103 to 2.4 × 106 cells per g of sample. In addition, we isolated 13 ClRB from these environments. All of these organisms could grow anaerobically by coupling complete oxidation of acetate to reduction of (per)chlorate. Chloride was the sole end product of this reductive metabolism. All of the isolates could also use oxygen as a sole electron acceptor, and most, but not all, could use nitrate. The alternative electron donors included simple volatile fatty acids, such as propionate, butyrate, or valerate, as well as simple organic acids, such as lactate or pyruvate. Oxidized-minus-reduced difference spectra of washed whole-cell suspensions of the isolates had absorbance maxima close to 425, 525, and 550 nm, which are characteristic of type c cytochromes. In addition, washed cell suspensions of all of the ClRB isolates could dismutate chlorite, an intermediate in the reductive metabolism of (per)chlorate, into chloride and molecular oxygen. Chlorite dismutation was a result of the activity of a single enzyme which in pure form had a specific activity of approximately 1,928 ?mol of chlorite per mg of protein per min. Analyses of the 16S ribosomal DNA sequences of the organisms indicated that they all belonged to the alpha, beta, or gamma subclass of the Proteobacteria. Several were closely related to members of previously described genera that are not recognized for the ability to reduce (per)chlorate, such as the genera Pseudomonas and Azospirllum. However, many were not closely related to any previously described organism and represented new genera within the Proteobacteria. The results of this study significantly increase the limited number of microbial isolates that are known to be capable of dissimilatory (per)chlorate reduction and demonstrate the hitherto unrecognized phylogenetic diversity and ubiquity of the microorganisms that exhibit this type of metabolism. PMID:10583970

Coates, John D.; Michaelidou, Urania; Bruce, Royce A.; O’Connor, Susan M.; Crespi, Jill N.; Achenbach, Laurie A.

1999-01-01

278

Sulfate-Reducing Microorganisms in Wetlands – Fameless Actors in Carbon Cycling and Climate Change  

PubMed Central

Freshwater wetlands are a major source of the greenhouse gas methane but at the same time can function as carbon sink. Their response to global warming and environmental pollution is one of the largest unknowns in the upcoming decades to centuries. In this review, we highlight the role of sulfate-reducing microorganisms (SRM) in the intertwined element cycles of wetlands. Although regarded primarily as methanogenic environments, biogeochemical studies have revealed a previously hidden sulfur cycle in wetlands that can sustain rapid renewal of the small standing pools of sulfate. Thus, dissimilatory sulfate reduction, which frequently occurs at rates comparable to marine surface sediments, can contribute up to 36–50% to anaerobic carbon mineralization in these ecosystems. Since sulfate reduction is thermodynamically favored relative to fermentative processes and methanogenesis, it effectively decreases gross methane production thereby mitigating the flux of methane to the atmosphere. However, very little is known about wetland SRM. Molecular analyses using dsrAB [encoding subunit A and B of the dissimilatory (bi)sulfite reductase] as marker genes demonstrated that members of novel phylogenetic lineages, which are unrelated to recognized SRM, dominate dsrAB richness and, if tested, are also abundant among the dsrAB-containing wetland microbiota. These discoveries point toward the existence of so far unknown SRM that are an important part of the autochthonous wetland microbiota. In addition to these numerically dominant microorganisms, a recent stable isotope probing study of SRM in a German peatland indicated that rare biosphere members might be highly active in situ and have a considerable stake in wetland sulfate reduction. The hidden sulfur cycle in wetlands and the fact that wetland SRM are not well represented by described SRM species explains their so far neglected role as important actors in carbon cycling and climate change. PMID:22403575

Pester, Michael; Knorr, Klaus-Holger; Friedrich, Michael W.; Wagner, Michael; Loy, Alexander

2012-01-01

279

Sulfur Isotope Enrichment during Maintenance Metabolism in the Thermophilic Sulfate-Reducing Bacterium Desulfotomaculum putei?  

PubMed Central

Values of ?34S (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}={\\delta}^{34}S_{HS}-{\\delta}^{34}S_{SO_{4}}\\end{equation*}\\end{document}, where ?34SHS and \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\delta}^{34}S_{SO_{4}}\\end{equation*}\\end{document} indicate the differences in the isotopic compositions of the HS? and SO42? in the eluent, respectively) for many modern marine sediments are in the range of ?55 to ?75‰, much greater than the ?2 to ?46‰ ?34S (kinetic isotope enrichment) values commonly observed for microbial sulfate reduction in laboratory batch culture and chemostat experiments. It has been proposed that at extremely low sulfate reduction rates under hypersulfidic conditions with a nonlimited supply of sulfate, isotopic enrichment in laboratory culture experiments should increase to the levels recorded in nature. We examined the effect of extremely low sulfate reduction rates and electron donor limitation on S isotope fractionation by culturing a thermophilic, sulfate-reducing bacterium, Desulfotomaculum putei, in a biomass-recycling culture vessel, or “retentostat.” The cell-specific rate of sulfate reduction and the specific growth rate decreased progressively from the exponential phase to the maintenance phase, yielding average maintenance coefficients of 10?16 to 10?18 mol of SO4 cell?1 h?1 toward the end of the experiments. Overall S mass and isotopic balance were conserved during the experiment. The differences in the ?34S values of the sulfate and sulfide eluting from the retentostat were significantly larger, attaining a maximum ?34S of ?20.9‰, than the ?9.7‰ observed during the batch culture experiment, but differences did not attain the values observed in marine sediments. PMID:19561180

Davidson, Mark M.; Bisher, M. E.; Pratt, Lisa M.; Fong, Jon; Southam, Gordon; Pfiffner, Susan M.; Reches, Z.; Onstott, Tullis C.

2009-01-01

280

Interface-mediated synthesis of monodisperse ZnS nanoparticles with sulfate-reducing bacterium culture.  

PubMed

We have created a new method of ZnS nanospheres synthesis. By interface-mediated precipitation method (IMPM), monodisperse ZnS nanoparticles was synthesized on the particle surface of sulfate-reducing bacterium nutritious agar culture. Sulfate-reducing bacterium (SRB) was used as a sulfide producer because of its dissimilatory sulfate reduction capability, meanwhile produced a variety of amino acids acting as templates for nanomaterials synthesis. Then zinc acetate was dispersed into nutritious agar plate. Subsequently agar plate was broken into particles bearing much external surface, which successfully mediated the synthesis of monodisperse ZnS nanoparticles. The morphology of monodisperse ZnS nanospheres and SRB were examined by scanning electron microscopy (SEM), and the microstructure was investigated by X-ray diffraction (XRD). The thermostability of ZnS nanoparticles was determined by thermo gravimetric-differential thermo gravimetric (TG-DTG). The maximum absorption wavelengh was analysed with an ultraviolet-visible spectrophotometer within a range of 199-700 nm. As a result, monodisperse ZnS nanoparticles were successfully synthesized, with an average diameter of 80 nm. Maximum absorption wavelengh was 228 nm, and heat decomposed temperature of monodisperse ZnS nanoparticles was 596°C. PMID:25078810

Liang, Zhanguo; Mu, Jun; Mu, Ying; Shi, Jiaming; Hao, Wenjing; Dong, Xuewei; Yu, Hongquan

2013-12-01

281

Effect of nitrate and nitrite on sulfide production by two thermophilic, sulfate-reducing enrichments from an oil field in the North Sea.  

PubMed

Thermophilic sulfate-reducing bacteria (tSRB) can be major contributors to the production of H(2)S (souring) in oil reservoirs. Two tSRB enrichments from a North Sea oil field, NS-tSRB1 and NS-tSRB2, were obtained at 58 degrees C with acetate-propionate-butyrate and with lactate as the electron donor, respectively. Analysis by rDNA sequencing indicated the presence of Thermodesulforhabdus norvegicus in NS-tSRB1 and of Archaeoglobus fulgidus in NS-tSRB2. Nitrate (10 mM) had no effect on H(2)S production by mid-log phase cultures of NS-tSRB1 and NS-tSRB2, whereas nitrite (0.25 mM or higher) inhibited sulfate reduction. NS-tSRB1 did not recover from inhibition, whereas sulfate reduction activity of NS-tSRB2 recovered after 500 h. Nitrite was also effective in souring inhibition and H(2)S removal in upflow bioreactors, whereas nitrate was similarly ineffective. Hence, nitrite may be preferable for souring prevention in some high-temperature oil fields because it reacts directly with sulfide and provides long-lasting inhibition of sulfate reduction. PMID:17245576

Kaster, Krista M; Grigoriyan, Alexander; Jenneman, Gary; Jennneman, Gary; Voordouw, Gerrit

2007-05-01

282

[NO3-/NO2- inhibits sulfate-reducing activity of the enrichment culture of sulfate-reducing prokaryotes from an off-shore oil reservoir at Bohai Bay, China].  

PubMed

Long-term injection of sulfate-rich water into oil reservoirs stimulates the proliferation of sulfate-reducing prokaryotes (SRP) therein and results in production of a great amount of H2S, leading to souring in oil reservoirs and related environmental problems. In this study, we first, using modified API RP 38 medium, enriched SRP present in production water from a producing well at Bohai Bay, China, and then examined the inhibitory effects of nitrate or nitrite on sulfate reduction activity of the SRP. Results showed that the enriched SRP culture exhibited a high sulfate reduction activity as indicated by a sulfate-reducing rate of 10.4 mmol SO4(2-) x d(-1) x g(-1) dry cell. In presence of 0.4, 0.8, 1.8, and 4.2 mmol x L(-1) nitrate, sulfate reduction was inhibited for 5, 9, 20, and over 35 days, respectively. With the addition of 0.6, 0.9, 1.4, 2.6 and 4.6 mmol x L(-1) of nitrite, the inhibitory period lasted 3, 12, 22, and over 39 days, respectively. The SRP enrichment culture could dissimilatorily reduce nitrate to ammonium. When sulfate, nitrate and nitrite coexisted, nitrate or nitrite was preferentially used over sulfate as electron acceptor by the enriched SRP. This competitive use of electron acceptor and the strong inhibitory effect of nitrite possibly accounted for the suppression of nitrate and nitrite on the sulfate-reducing activity of the enriched SRP cultures from offshore oil reservoir at Bohai Bay. PMID:25509091

Liu, Hong-Yu; Shi, Rong-Jiu; Zhang, Ying; Shi, Zhen-Guo; Zhang, Ying-Yue; Yu, Liang; Zhang, Xiao-Bo; Tan, Tao

2014-08-01

283

The First Genomic and Proteomic Characterization of a Deep-Sea Sulfate Reducer: Insights into the Piezophilic Lifestyle of Desulfovibrio piezophilus  

PubMed Central

Desulfovibrio piezophilus strain C1TLV30T is a piezophilic anaerobe that was isolated from wood falls in the Mediterranean deep-sea. D. piezophilus represents a unique model for studying the adaptation of sulfate-reducing bacteria to hydrostatic pressure. Here, we report the 3.6 Mbp genome sequence of this piezophilic bacterium. An analysis of the genome revealed the presence of seven genomic islands as well as gene clusters that are most likely linked to life at a high hydrostatic pressure. Comparative genomics and differential proteomics identified the transport of solutes and amino acids as well as amino acid metabolism as major cellular processes for the adaptation of this bacterium to hydrostatic pressure. In addition, the proteome profiles showed that the abundance of key enzymes that are involved in sulfate reduction was dependent on hydrostatic pressure. A comparative analysis of orthologs from the non-piezophilic marine bacterium D. salexigens and D. piezophilus identified aspartic acid, glutamic acid, lysine, asparagine, serine and tyrosine as the amino acids preferentially replaced by arginine, histidine, alanine and threonine in the piezophilic strain. This work reveals the adaptation strategies developed by a sulfate reducer to a deep-sea lifestyle. PMID:23383081

Pradel, Nathalie; Ji, Boyang; Gimenez, Grégory; Talla, Emmanuel; Lenoble, Patricia; Garel, Marc; Tamburini, Christian; Fourquet, Patrick; Lebrun, Régine; Bertin, Philippe; Denis, Yann; Pophillat, Matthieu; Barbe, Valérie; Ollivier, Bernard; Dolla, Alain

2013-01-01

284

The Impact of Simulated Sulfate Deposition on Peatland Testate Amoebae  

Microsoft Academic Search

Peatlands subjected to sulfate deposition have been shown to produce less methane, believed to be due to competitive exclusion\\u000a of methanogenic archaea by sulfate-reducing bacteria. Here, we address whether sulfate deposition produces impacts on a higher\\u000a microbial group, the testate amoebae. Sodium sulfate was applied to experimental plots on a Scottish peatland and samples\\u000a extracted after a period of more

Richard Payne; Vincent Gauci; Dan J. Charman

2010-01-01

285

High Motility Reduces Grazing Mortality of Planktonic Bacteria  

PubMed Central

We tested the impact of bacterial swimming speed on the survival of planktonic bacteria in the presence of protozoan grazers. Grazing experiments with three common bacterivorous nanoflagellates revealed low clearance rates for highly motile bacteria. High-resolution video microscopy demonstrated that the number of predator-prey contacts increased with bacterial swimming speed, but ingestion rates dropped at speeds of >25 ?m s?1 as a result of handling problems with highly motile cells. Comparative studies of a moderately motile strain (<25 ?m s?1) and a highly motile strain (>45 ?m s?1) further revealed changes in the bacterial swimming speed distribution due to speed-selective flagellate grazing. Better long-term survival of the highly motile strain was indicated by fourfold-higher bacterial numbers in the presence of grazing compared to the moderately motile strain. Putative constraints of maintaining high swimming speeds were tested at high growth rates and under starvation with the following results: (i) for two out of three strains increased growth rate resulted in larger and slower bacterial cells, and (ii) starved cells became smaller but maintained their swimming speeds. Combined data sets for bacterial swimming speed and cell size revealed highest grazing losses for moderately motile bacteria with a cell size between 0.2 and 0.4 ?m3. Grazing mortality was lowest for cells of >0.5 ?m3 and small, highly motile bacteria. Survival efficiencies of >95% for the ultramicrobacterial isolate CP-1 (?0.1 ?m3, >50 ?m s?1) illustrated the combined protective action of small cell size and high motility. Our findings suggest that motility has an important adaptive function in the survival of planktonic bacteria during protozoan grazing. PMID:15691949

Matz, Carsten; Jürgens, Klaus

2005-01-01

286

Temperature and nutrient induced responses of Lake Fryxell sulfate-reducing prokaryotes and description of Desulfovibrio lacusfryxellense , sp. nov., a pervasive, cold-active, sulfate-reducing bacterium from Lake Fryxell, Antarctica  

Microsoft Academic Search

The effects of temperature and carbon substrate availability on the stimulation of sulfate reduction by indigenous populations\\u000a of sulfate-reducing prokaryotes (SRP) in permanently ice-covered Lake Fryxell, Antarctica were investigated. Psychrophilic\\u000a and halotolerant, lactate-degrading SRP showed significant metabolic activity throughout all sampled depths of the water column,\\u000a suggesting that such organisms, possibly of marine origin, may be key contributors to carbon

W. Matthew SattleyMichael; Michael T. Madigan

2010-01-01

287

Microbial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated from an Oil Field  

NASA Astrophysics Data System (ADS)

This work investigates microbiologically influenced corrosion of API 5L X52 linepipe steel by a sulfate-reducing bacteria (SRB) consortium. The SRB consortium used in this study was cultivated from a sour oil well in Louisiana, USA. 16S rRNA gene sequence analysis indicated that the mixed bacterial consortium contained three phylotypes: members of Proteobacteria ( Desulfomicrobium sp.), Firmicutes ( Clostridium sp.), and Bacteroidetes ( Anaerophaga sp.). The biofilm and the pits that developed with time were characterized using field emission scanning electron microscopy (FE-SEM). In addition, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) and open circuit potential (OCP) were used to analyze the corrosion behavior. Through circuit modeling, EIS results were used to interpret the physicoelectric interactions between the electrode, biofilm and solution interfaces. The results confirmed that extensive localized corrosion activity of SRB is due to a formed biofilm in conjunction with a porous iron sulfide layer on the metal surface. X-ray diffraction (XRD) revealed semiconductive corrosion products predominantly composed of a mixture of siderite (FeCO3), iron sulfide (Fe x S y ), and iron (III) oxide-hydroxide (FeOOH) constituents in the corrosion products for the system exposed to the SRB consortium.

AlAbbas, Faisal M.; Williamson, Charles; Bhola, Shaily M.; Spear, John R.; Olson, David L.; Mishra, Brajendra; Kakpovbia, Anthony E.

2013-11-01

288

Microbial diversity in Los Azufres geothermal field (Michoacán, Mexico) and isolation of representative sulfate and sulfur reducers.  

PubMed

Los Azufres spa consists of a hydrothermal spring system in the Mexican Volcanic Axis. Five samples (two microbial mats, two mud pools and one cenote water), characterized by high acidity (pH between 1 and 3) and temperatures varying from 27 to 87 °C, were investigated for their microbial diversity by Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and 16S rRNA gene library analyses. These data are the first to describe microbial diversity from Los Azufres geothermal belt. The data obtained from both approaches suggested a low bacterial diversity in all five samples. Despite their proximity, the sampling points differed by their physico-chemical conditions (mainly temperature and matrix type) and thus exhibited different dominant bacterial populations: anoxygenic phototrophs related to the genus Rhodobacter in the biomats, colorless sulfur oxidizers Acidithiobacillus sp. in the warm mud and water samples, and Lyzobacter sp.-related populations in the hot mud sample (87 °C). Molecular data also allowed the detection of sulfate and sulfur reducers related to Thermodesulfobium and Desulfurella genera. Several strains affiliated to both genera were enriched or isolated from the mesophilic mud sample. A feature common to all samples was the dominance of bacteria involved in sulfur and iron biogeochemical cycles (Rhodobacter, Acidithiobacillus, Thiomonas, Desulfurella and Thermodesulfobium genera). PMID:24446065

Brito, Elcia M S; Villegas-Negrete, Norberto; Sotelo-González, Irene A; Caretta, César A; Goñi-Urriza, Marisol; Gassie, Claire; Hakil, Florence; Colin, Yannick; Duran, Robert; Gutiérrez-Corona, Felix; Piñón-Castillo, Hilda A; Cuevas-Rodríguez, Germán; Malm, Olaf; Torres, João P M; Fahy, Anne; Reyna-López, Georgina E; Guyoneaud, Rémy

2014-03-01

289

Multiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20  

E-print Network

Dissimilatory sulfate reduction serves as a key metabolic carbon remineralization process in anoxic marine environments. Sulfate reducing microorganisms can impart a wide range in mass-dependent sulfur isotopic fractionation. ...

Leavitt, William D.

290

Anaerobic biodegradation of long-chain n-alkanes under sulfate-reducing conditions  

SciTech Connect

The ability of anaerobic microorganisms to degrade a wide variety of crude oil components was investigated using chronically hydrocarbon-contaminated marine sediments as the source of inoculum. When sulfate reduction was the predominant electron-accepting process, gas chromatographic analysis revealed almost complete n-alkane removal (C{sub 15}-C{sub 34}) from a weathered oil within 201 d of incubation. No alteration of the oil was detected in sterile control incubations or when nitrate served as an alternate electron acceptor. The amount of sulfate reduced in the oil-amended nonsterile incubations was more than enough to account for the complete mineralization of the n-alkane fraction of the oil; no loss of this anion was observed in sterile control incubations. The mineralization of the alkanes was confirmed using {sup 14}C-14,15-octacosane (C{sub 28}H{sub 58}), with 97% of the radioactivity recovered as {sup 14}CO{sub 2}. These findings extend the range of hydrocarbons known to be amenable to anaerobic biodegradation. Moreover, the rapid and extensive alteration in the n-alkanes can no longer be considered a defining characteristic of aerobic oil biodegradation processes alone.

Caldwell, M.E.; Suflita, J.M. [Univ. of Oklahoma, Norman, OK (United States). Dept. of Botany and Microbiology] [Univ. of Oklahoma, Norman, OK (United States). Dept. of Botany and Microbiology; Garrett, R.M.; Prince, R.C. [Exxon Research and Engineering Co., Annandale, NJ (United States)] [Exxon Research and Engineering Co., Annandale, NJ (United States)

1998-07-15

291

Biodegradation of munitions compounds by a sulfate reducing bacterial enrichment culture  

SciTech Connect

The degradation of several munitions compounds was studied. The compounds included 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine, 2,4,6-trinitrobenzene (TNB), and 2,4-dinitrotoluene. All of the compounds studied were degraded by the sulfate reducing bacterial (SRB) enrichment culture. The SRB culture did not use the munitions compounds as their sole source of carbon. However, all the munitions compounds tested served as the sole source of nitrogen for the SRB culture. Degradation of munitions compounds was achieved by a co-metabolic process. The SRB culture used a variety of carbon sources including pyruvate, ethanol, formate, lactate, and H{sub 2}-CO{sub 2}. The SRB culture was an incomplete oxidizer, unable to carry out the terminal oxidation of organic substrates to CO{sub 2} as the sole product, and it did not use acetate or methanol as a carbon source. In addition to serving as nitrogen sources, the munitions compounds also served as electron acceptors in the absence of sulfate. A soil slurry experiment with 5% and 10% munitions compounds-contaminated soil showed that the contaminant TNT was metabolized by the SRB culture in the presence of pyruvate as electron donor. This culture may be useful in decontaminating munitions compounds-contaminated soil and water under anaerobic conditions.

Boopathy, R.; Manning, J. [Argonne National Lab., IL (United States). Environmental Research Div.

1997-08-01

292

Sulfate Fining Chemistry in Oxidized and Reduced Soda-Lime-Silica Glasses  

SciTech Connect

Various reducing agents were used and their additions were varied to (1) increase glass quality through eliminating defects from silica scum, (2) decrease SOx emissions through changing the kind and quantity of reducing agents, and (3) improve production efficiency through increased flexibility of glass redox control during continuous processing. The work included measuring silica sand dissolution and sulfate decomposition in melts from glass batches. Glass batches were heated at a temperature-increase rate deemed similar to that experienced in the melting furnace. The sulfate decomposition kinetics was investigated with thermogravimetric analysis-differential thermal analysis and evolved gas analysis. Sulfur concentrations in glasses quenched at different temperatures were determined using X-ray fluorescence spectroscopy. The distribution of residual sand (that which was not dissolved during the initial batch reactions) in the glass was obtained as a function of temperature with optical microscopy in thin-sections of melts. The fraction of undissolved sand was measured with X-ray diffraction. The results of the present study helped Visteon Inc. reduce the energy consumption and establish the batch containing 0.118 mass% of graphite as the best candidate for Visteon glass production. The improved glass batch has a lower potential for silica scum formation and for brown fault occurrence in the final glass product. It was established that bubbles trapped in the melt even at 1450 C have a high probability to be refined when reaching the hot zone in the glass furnace. Furthermore, silica sand does not accumulate at the glass surface and dissolves faster in the batch with graphite than in the batch with carbocite.

Matyas, Josef; Hrma, Pavel R.

2005-05-13

293

EFFECT OF BACTERIAL SULFATE REDUCTION ON IRON-CORROSION SCALES  

EPA Science Inventory

Iron-sulfur geochemistry is important in many natural and engineered environments including drinking water systems. In the anaerobic environment beneath scales of corroding iron drinking water distribution system pipes, sulfate reducing bacteria (SRB) produce sulfide from natura...

294

Exposure to common food additive carrageenan leads to reduced sulfatase activity and increase in sulfated glycosaminoglycans in human epithelial cells  

PubMed Central

The commonly used food additive carrageenan, including lambda (?), kappa (?) and iota (?) forms, is composed of galactose disaccharides linked in alpha-1,3 and beta-1,4 glycosidic bonds with up to three sulfate groups per disaccharide residue. Carrageenan closely resembles the endogenous galactose or N-acetylgalactosamine-containing glycosaminoglycans (GAGs), chondroitin sulfate (CS), dermatan sulfate (DS), and keratan sulfate. However, these GAGs have beta-1,3 and beta-1,4 glycosidic bonds, in contrast to the unusual alpha-1,3 glycosidic bond in carrageenan. Since sulfatase activity is inhibited by sulfate, and carrageenan is so highly sulfated, we tested the effect of carrageenan exposure on sulfatase activity in human intestinal and mammary epithelial cell lines and found that carrageenan exposure significantly reduced the activity of sulfatases, including N-acetylgalactosamine-4-sulfatase, galactose-6-sulfatase, iduronate sulfatase, steroid sulfatase, arylsulfatase A, SULF-1,2, and heparan sulfamidase. Consistent with the inhibition of sulfatase activity, following exposure to carrageenan, GAG content increased significantly and showed marked differences in disaccharide composition. Specific changes in CS disaccharides included increases in di-sulfated disaccharide components of CSD (2S6S) and CS-E (4S6S), with declines in CS-A (4S) and CS-C (6S). Specific changes in heparin-heparan sulfate disaccharides included increases in 6S disaccharides, as well as increases in NS and 2S6S disaccharides. Study results suggest that carrageenan inhibition of sulfatase activity leads to re-distribution of the cellular GAG composition with increase in di-sulfated CS and with potential consequences for cell structure and function. PMID:22410212

Yang, Bo; Bhattacharyya, Sumit; Linhardt, Robert; Tobacman, Joanne

2012-01-01

295

Effects of intestinal bacteria-derived p-cresyl sulfate on Th1-type immune response in vivo and in vitro  

SciTech Connect

Protein fermentation by intestinal bacteria generates various compounds that are not synthesized by their hosts. An example is p-cresol, which is produced from tyrosine. Patients with chronic kidney disease (CKD) accumulate high concentrations of intestinal bacteria-derived p-cresyl sulfate (pCS), which is the major metabolite of p-cresol, in their blood, and this accumulation contributes to certain CKD-associated disorders. Immune dysfunction is a CKD-associated disorder that frequently contributes to infectious diseases among CKD patients. Although some studies imply pCS as an etiological factor, the relation between pCS and immune systems is poorly understood. In the present study, we investigated the immunological effects of pCS derived from intestinal bacteria in mice. For this purpose, we fed mice a tyrosine-rich diet that causes the accumulation of pCS in their blood. The mice were shown to exhibit decreased Th1-driven 2, 4-dinitrofluorobenzene-induced contact hypersensitivity response. The concentration of pCS in blood was negatively correlated with the degree of the contact hypersensitivity response. In contrast, the T cell-dependent antibody response was not influenced by the accumulated pCS. We also examined the in vitro cytokine responses by T cells in the presence of pCS. The production of IFN-? was suppressed by pCS. Further, pCS decreased the percentage of IFN-?-producing Th1 cells. Our results suggest that intestinal bacteria-derived pCS suppressesTh1-type cellular immune responses. - Highlights: • Mice fed a tyrosine-rich diet accumulated p-cresyl sulfate in their blood. • p-Cresyl sulfate negatively correlated with contact hypersensitivity response. • The in vitro production of IFN-? was suppressed by p-cresyl sulfate. • p-Cresyl sulfate decreased the percentage of IFN-?-producing Th1 cells in vitro.

Shiba, Takahiro, E-mail: takahiro-shiba@yakult.co.jp; Kawakami, Koji; Sasaki, Takashi; Makino, Ikuyo; Kato, Ikuo; Kobayashi, Toshihide; Uchida, Kazumi; Kaneko, Kimiyuki

2014-01-15

296

Function of Periplasmic Hydrogenases in the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough? †  

PubMed Central

The sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough possesses four periplasmic hydrogenases to facilitate the oxidation of molecular hydrogen. These include an [Fe] hydrogenase, an [NiFeSe] hydrogenase, and two [NiFe] hydrogenases encoded by the hyd, hys, hyn1, and hyn2 genes, respectively. In order to understand their cellular functions, we have compared the growth rates of existing (hyd and hyn1) and newly constructed (hys and hyn-1 hyd) mutants to those of the wild type in defined media in which lactate or hydrogen at either 5 or 50% (vol/vol) was used as the sole electron donor for sulfate reduction. Only strains missing the [Fe] hydrogenase were significantly affected during growth with lactate or with 50% (vol/vol) hydrogen as the sole electron donor. When the cells were grown at low (5% [vol/vol]) hydrogen concentrations, those missing the [NiFeSe] hydrogenase suffered the greatest impairment. The growth rate data correlated strongly with gene expression results obtained from microarray hybridizations and real-time PCR using mRNA extracted from cells grown under the three conditions. Expression of the hys genes followed the order 5% hydrogen > 50% hydrogen > lactate, whereas expression of the hyd genes followed the reverse order. These results suggest that growth with lactate and 50% hydrogen is associated with high intracellular hydrogen concentrations, which are best captured by the higher activity, lower affinity [Fe] hydrogenase. In contrast, growth with 5% hydrogen is associated with a low intracellular hydrogen concentration, requiring the lower activity, higher affinity [NiFeSe] hydrogenase. PMID:17601789

Caffrey, Sean M.; Park, Hyung-Soo; Voordouw, Johanna K.; He, Zhili; Zhou, Jizhong; Voordouw, Gerrit

2007-01-01

297

Desulfonatronum Thiodismutans sp. nov., a Novel Alkaliphilic, Sulfate-reducing Bacterium Capable of Lithoautotrophic Growth  

NASA Technical Reports Server (NTRS)

A novel alkaliphilic, sulfate-reducing bacterium, strain MLF1(sup T), was isolated from sediments of soda Mono Lake, California. Gram-negative vibrio-shaped cells were observed, which were 0.6-0.7 x 1.2-2.7 microns in size, motile by a single polar flagellum and occurred singly, in pairs or as short spirilla. Growth was observed at 15-48 C (optimum, 37 C), > 1-7 % NaCI, w/v (optimum, 3%) and pH 8.0-10.0 (optimum, 9.5). The novel isolate is strictly alkaliphilic, requires a high concentration of carbonate in the growth medium and is obligately anaerobic and catalase-negative. As electron donors, strain MLF1(sup T) uses hydrogen, formate and ethanol. Sulfate, sulfite and thiosulfate (but not sulfur or nitrate) can be used as electron acceptors. The novel isolate is a lithoheterotroph and a facultative lithoautotroph that is able to grow on hydrogen without an organic source of carbon. Strain MLF1(sup T) is resistant to kanamycin and gentamicin, but sensitive to chloramphenicol and tetracycline. The DNA G+C content is 63.0 mol% (HPLC). DNA-DNA hybridization with the most closely related species, Desulfonatronum lacustre Z-7951(sup T), exhibited 51 % homology. Also, the genome size (1.6 x 10(exp 9) Da) and T(sub m) value of the genomic DNA (71 +/- 2 C) for strain MLF1(sup T) were significantly different from the genome size (2.1 x 10(exp 9) Da) and T(sub m) value (63 +/- 2 C) for Desulfonatronum lacustre Z-7951(sup T). On the basis of physiological and molecular properties, the isolate was considered to be a novel species of the genus Desulfonatronum, for which the name Desulfonatronum thiodismutans sp. nov. is proposed (the type strain is MLF1(sup T) = ATCC BAA-395(sup T) = DSM 14708(sup T)).

Pikuta, Elena V.; Hoover, Richard B.; Bej, Asim K.; Marsic, Damien; Whitman, William B.; Cleland, David; Krader, Paul

2003-01-01

298

BIOFILMS AND ADHESION PROTEIN IN ANAEROBE BACTERIA ISOLATED FROM MEXICAN GAS PIPELINES  

Microsoft Academic Search

The pipelines plugging, souring oil and corrosion by microorganisms are a big problem in the oil industry. The pipelines plugging is produced by bacterial consortium that can produce biofilms. In these attached microbial populations, aerobes bacteria growth in the superficial layers, and, anaerobes bacteria (fermenters, sulfate-reducing bacteria, tiosulfate-reducing bacteria, methanogen growth adhered to metal. In industrial areas, surfactants, emulsifiers and

299

Weed-suppressive bacteria to reduce annual grass weeds  

Technology Transfer Automated Retrieval System (TEKTRAN)

Cheatgrass (Bromus tectorum L.), medusahead (Taeniatherum caput-medusae [L.] Nevski) and jointed goatgrass (Aegilops cylindrica L.) are exotic, annual grasses that negatively affect cereal production in cropland; reduce protein-rich forage for cattle; choke out native plants in the shrub-steppe habi...

300

Successional Development of Sulfate-Reducing Bacterial Populations and Their Activities in a Wastewater Biofilm Growing under Microaerophilic Conditions  

PubMed Central

A combination of fluorescence in situ hybridization, microprofiles, denaturing gradient gel electrophoresis of PCR-amplified 16S ribosomal DNA fragments, and 16S rRNA gene cloning analysis was applied to investigate successional development of sulfate-reducing bacteria (SRB) community structure and in situ sulfide production activity within a biofilm growing under microaerophilic conditions (dissolved oxygen concentration in the bulk liquid was in the range of 0 to 100 ?M) and in the presence of nitrate. Microelectrode measurements showed that oxygen penetrated 200 ?m from the surface during all stages of biofilm development. The first sulfide production of 0.32 ?mol of H2S m?2 s?1 was detected below ca. 500 ?m in the 3rd week and then gradually increased to 0.70 ?mol H2S m?2 s?1 in the 8th week. The most active sulfide production zone moved upward to the oxic-anoxic interface and intensified with time. This result coincided with an increase in SRB populations in the surface layer of the biofilm. The numbers of the probe SRB385- and 660-hybridized SRB populations significantly increased to 7.9 × 109 cells cm?3 and 3.6 × 109 cells cm?3, respectively, in the surface 400 ?m during an 8-week cultivation, while those populations were relatively unchanged in the deeper part of the biofilm, probably due to substrate transport limitation. Based on 16S rRNA gene cloning analysis data, clone sequences that related to Desulfomicrobium hypogeium (99% sequence similarity) and Desulfobulbus elongatus (95% sequence similarity) were most frequently found. Different molecular analyses confirmed that Desulfobulbus, Desulfovibrio, and Desulfomicrobium were found to be the numerically important members of SRB in this wastewater biofilm. PMID:11872492

Ito, Tsukasa; Okabe, Satoshi; Satoh, Hisashi; Watanabe, Yoshimasa

2002-01-01

301

Inhibition of a U(VI)- and sulfate-reducing consortia by U(VI).  

PubMed

The stimulation of microbial U(VI) reduction is currently being investigated as a means to reduce uranium's mobility in groundwater, but little is known about the concentration at which U(VI) might inhibit microbial activity, or the effect of U(VI) on bacterial community structure. We investigated these questions with an ethanol-fed U(VI)- and sulfate-reducing enrichment developed from sediment from the site of an ongoing field biostimulation experiment at Area 3 of the Oak Ridge Field Research Center (FRC). Sets of triplicate enrichments were spiked with increasing concentrations of U(VI) (from 49 microm to 9.2 mM). As the U(VI) concentration increased to 224 microM, the culture's production of acetate from ethanol slowed, and at or above 1.6 mM U(VI) little acetate was produced over the time frame of the experiment. An uncoupling inhibition model was applied to the data, and the inhibition coefficient for U(VI), Ku, was found to be approximately 100 microM U(VI), or 24 mg/L, indicating the inhibitory effect is relevant at highly contaminated sites. Microbial community structure at the conclusion of the experiment was analyzed with terminal restriction fragment length polymorphism (T-RFLP) analysis. T-RFs associated with Desulfovibrio-like organisms decreased in relative abundance with increasing U(VI) concentration, whereas Clostridia-like T-RFs increased. PMID:17948804

Nyman, Jennifer L; Wu, Hsin-I; Gentile, Margaret E; Kitanidis, Peter K; Criddle, Craig S

2007-09-15

302

Accelerated biotransformation of carbon tetrachloride and chloroform by sulfate-reducing enrichment cultures  

SciTech Connect

The biotransformation of carbon tetrachloride (CT) and chloroform (CF) was examined with lactate- and acetate-grown sulfate-reducing enrichment cultures. Both cultures transformed CT, with approximately 50% reductively dechlorinated to CF and up to 10% to dichloromethane (DCM). Addition of cyanocobalamin increased the rate of CT transformation more than 100-fold. The principal product from [{sup 14}C]CT with cyanocobalamin added was carbon disulfide (CS{sub 2}); less than 3% was reduced to CF plus DCM. Autoclaved cultures that received cyanocobalamin were only one third as fast as their live counterparts, but produced similar amounts of CS{sub 2}. With CF, addition of cyanocobalamin to acetate- and lactate-grown cultures also increased the rate of transformation more than 100-fold. DCM was the principal transformation product until CF additions reached 270 mg/L, at which point almost no increase in DCM was observed. Thus, low levels of cyanocobalamin substantially accelerated the rate of CT and CF transformation and altered the distribution of products formed.

Freedman, D.L.; Hashsham, S. [Univ. of Illinois, Urbana, IL (United States). Dept. of Civil Engineering; Lasecki, M. [HDR Engineering Inc., Lake Oswego, OR (United States); Scholze, R. [Army Corps of Engineers, Champaign, IL (United States). Construction Engineering Research Labs.

1995-12-31

303

Effects of temperature on anaerobic decomposition of high-molecular weight organic matter under sulfate-reducing conditions  

NASA Astrophysics Data System (ADS)

Most sedimentary mineralization occurs along coasts under anaerobic conditions. In the absence of oxygen, high-molecular weight organic matter in marine sediments is gradually decomposed by hydrolysis, fermentation and sulfate reduction. Because of the different responses of the respective steps to temperature, degradation may be specifically slowed or stopped in certain step. To evaluate the effect of temperature on cellobiose degradation, culture experiments were performed at six different temperatures (3 °C, 8 °C, 13 °C, 18 °C, 23 °C, and 28 °C) under sulfate-reducing conditions. This study measured the concentrations of sulfide, dissolved organic carbon (DOC), and organic acids during that degradation. Degradation patterns were divided into three temperature groups: 3 °C, 8/13 °C, and 18/23/28 °C. The decrease in DOC proceeded in two steps, except at 3 °C. The length of the stagnant phase separating these two steps differed greatly between temperatures of 8/13 °C and 18/23/28 °C. In the first step, organic carbon was consumed by hydrolysis, fermentation and sulfate reduction. In the second step, acetate accumulated during the first step was oxidized by sulfate reduction. Bacterial communities in the cultures were analyzed by denaturing gradient gel electrophoresis (DGGE); the major differences among the three temperature groups were attributed to shifts in acetate-using sulfate reducers of the genus Desulfobacter. This suggests that temperature characteristics of dominant acetate oxidizers are important factors in determining the response of carbon flow in coastal marine sediments in relation to the changes in temperature.

Matsui, Takato; Kojima, Hisaya; Fukui, Manabu

2013-03-01

304

Electronic Detection of Bacteria Using Holey Reduced Graphene Oxide  

PubMed Central

Carbon nanomaterials have been widely explored for diverse biosensing applications including bacterial detection. However, covalent functionalization of these materials can lead to the destruction of attractive electronic properties. To this end, we utilized a new graphene derivative, holey reduced graphene oxide (hRGO), functionalized with Magainin I to produce a broad-spectrum bacterial probe. Unlike related carbon nanomaterials, hRGO retains the necessary electronic properties while providing the high percentage of available oxygen moieties required for effective covalent functionalization. PMID:24581028

2015-01-01

305

Recovery of Humic-Reducing Bacteria from a Diversity of Environments  

Microsoft Academic Search

To evaluate which microorganisms might be responsible for microbial reduction of humic substances in sedimentary environments, humic-reducing bacteria were isolated from a variety of sediment types. These included lake sediments, pristine and contaminated wetland sediments, and marine sediments. In each of the sediment types, all of the humic reducers recovered with acetate as the electron donor and the humic substance

JOHN D. COATES; DEBRA J. ELLIS; ELIZABETH L. BLUNT-HARRIS; CATHERINE V. GAW; ERIC E. RODEN; DEREK R. LOVLEY

1998-01-01

306

Desulfocarbo indianensis gen. nov., sp. nov., a benzoate-oxidizing, sulfate-reducing bacterium isolated from water extracted from a coal bed.  

PubMed

A novel, strictly anaerobic, sulfate-reducing bacterium, designated strain SCBM(T), was isolated from water extracted from a coal bed in Indiana, USA. The isolate was characterized by a polyphasic taxonomic approach that included phenotypic and genotypic characterizations. Cells of strain SCBM(T) were vibrio-shaped, polarly flagellated, Gram-negative, motile, oxidase-negative and weakly catalase-positive. Growth of strain SCBM(T) was observed at NaCl concentrations ranging from 0 to 300 mM. However, no growth was observed when 1 M or more NaCl was present. Growth was observed at 16-37 °C, with optimal growth at 30 °C. The optimum pH for growth was 7, although growth was observed from pH 6.5 to 8. The doubling time under optimal growth conditions (30 °C, pH 7, 2.5 mM benzoate, 14 mM sulfate) was 2.7 days. Bicarbonate, HEPES, PIPES and MES were effective buffers for growth of strain SCBM(T), but citrate inhibited growth. When sulfate was provided as the electron acceptor, strain SCBM(T) grew autotrophically with hydrogen as the electron donor and heterotrophically on benzoate, formate, acetate, pyruvate, butyrate, fumarate, succinate and palmitate. None of the substrates tested supported fermentative growth. Thiosulfate and sulfate were used as electron acceptors coupled to benzoate oxidation, but sulfite, elemental sulfur, DMSO, anthraquinone 2,6-disulfonate, nitrate, nitrite, ferric citrate, hydrous iron oxide and oxygen were not. The G+C content of genomic DNA was 62.5?mol%. The major cellular fatty acids were anteiso-C(15?:?0) and C(18?:?1)?7c. Phylogenetic analysis based on 16S rRNA gene sequencing placed strain SCBM(T) into a distinct lineage within the class Deltaproteobacteria. The closest, cultivated phylogenetic relative of strain SCBM(T) was Desulfarculus baarsii DSM 2075(T), with only 91.7% 16S rRNA gene sequence identity. On the basis of phenotypic and genotypic analyses, strain SCBM(T) represents a novel genus and species of sulfate-reducing bacteria, for which the name Desulfocarbo indianensis gen. nov., sp. nov. is proposed. The type strain of Desulfocarbo indianensis is SCBM(T) (?=?DSM 28127(T)?=?JCM 19826(T)). Desulfocarbo is the second genus of the order Desulfarculales. PMID:24876241

An, Thuy T; Picardal, Flynn W

2014-08-01

307

Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium.  

PubMed

A toluene-degrading sulfate-reducing bacterium, strain Tol2, was isolated from marine sediment under strictly anoxic conditions. Toluene was toxic if applied directly to the medium at concentrations higher than 0.5 mM. To provide toluene continuously at a nontoxic concentration, it was supplied in an inert hydrophobic carrier phase. The isolate had oval, sometimes motile cells (1.2 to 1.4 by 1.2 to 2.0 microns). The doubling time was 27 h. Toluene was completely oxidized to CO2, as demonstrated by measurement of the degradation balance. The presence of carbon monoxide dehydrogenase and formate dehydrogenase indicated a terminal oxidation of acetyl coenzyme A via the CO dehydrogenase pathway. The use of hypothetical intermediates of toluene degradation was tested in growth experiments and adaptation studies with dense cell suspensions. Results do not support a degradation of toluene via one of the cresols or methylbenzoates, benzyl alcohol, or phenylacetate as free intermediate. Benzyl alcohol did not serve as growth substrate; moreover, it was a strong, specific inhibitor of toluene degradation, whereas benzoate utilization was not affected by benzyl alcohol. Sequencing of 16S rRNA revealed a relationship to the metabolically dissimilar genus Desulfobacter and on a deeper level to the genus Desulfobacterium. The new genus and species Desulfobacula toluolica is proposed. PMID:7686000

Rabus, R; Nordhaus, R; Ludwig, W; Widdel, F

1993-05-01

308

Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust.  

PubMed

The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100°C) fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with (35)S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling. PMID:25642212

Robador, Alberto; Jungbluth, Sean P; LaRowe, Douglas E; Bowers, Robert M; Rappé, Michael S; Amend, Jan P; Cowen, James P

2014-01-01

309

Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust  

PubMed Central

The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100°C) fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with 35S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling. PMID:25642212

Robador, Alberto; Jungbluth, Sean P.; LaRowe, Douglas E.; Bowers, Robert M.; Rappé, Michael S.; Amend, Jan P.; Cowen, James P.

2015-01-01

310

Bidirectional sulfate diffusion in saline-lake sediments: evidence from Devils Lake, northeast North Dakota  

USGS Publications Warehouse

Chemical and isotopic gradients in pore water in Devils Lake indicate that maximum rates of sulfate reduction occur between 1 and 3 cm depth in the bottom sediments. The abundance of electron acceptors enables sulfate-reducing bacteria to outcompete methanogenic bacteria for organic material and thereby suppress methane production. Suppression of methanogenesis may be widespread in sulfate-rich lakes and wetlands and may limit methane fluxes from these water bodies to the atmostphere. -from Author

Komor, S.C.

1992-01-01

311

Paracetamol, Ondansetron, Granisetron, Magnesium Sulfate and Lidocaine and Reduced Propofol Injection Pain  

PubMed Central

Background: Propofol is a most widely used intravenous anesthetic drug. One of its most common complications is the pain upon injection; therefore, different methods, with various effects, have been proposed in order to alleviate the pain. Objectives: This study investigates the effects of paracetamol, ondansetron, granisetron, magnesium sulfate and lidocaine drugs on reducing the pain of propofol injection during anesthetic induction. Also, the hemodynamic changes will be analyzed. Patients and Methods: This is an interventional study containing 336 patients underwent elective orthopedic surgeries in Educational Hospitals of Mashhad University, using systematic sampling, the patients were divided into six groups. A 20-gauge needle was inserted into a venous vessel in the back of the hand and 100 cc of Ringer serum was injected into the vein, which was applied proximal to the injection site. Afterwards, paracetamol 2 mg/kg (group p), magnesium sulfate 2 mmol (group M), ondansetron 4 mg (group O), granisetron 2 mg (group G), lidocaine 40 mg (group L) and 5 cc saline (group S) were injected into the vessel, after 60 seconds, the tourniquet was opened. One quarter of the total dose of propofol (2.5 mg/kg) was injected with a flow rate of 4 mg/sec and then the injection pain was measured. Finally, the fentanyl (2 µg/kg), atracurium 0.5 mg/kg, and the remaining dose of propofol were injected and the vital signs were recorded before the administration of propofol and 1, 3, 5 and 10 minutes after the propofol injection. Results: The six groups did not significantly differ, regarding their gender, weight or age. Propofol injection pain was less in L and G groups, in comparison with the others (P ? 0.001). By analyzing the hemodynamic changes, it was observed that the least amount of change in mean arterial pressure was observed in the paracetamol group. Conclusions: The reduction of propofol injection pain was observed by using medications (in comparison with normal saline), but it was more significant in groups G and L. Moreover, Hypotension was higher in groups S and G and it was lessened in group P. PMID:24829787

Alipour, Mohammad; Tabari, Masoomeh; Alipour, Masoomeh

2014-01-01

312

Intravenous magnesium sulfate reduces rates of mechanical ventilation in pediatric asthma.  

PubMed

In this column, we examine an original research article by S. Torres et al. (2012) on the subject of magnesium sulfate use in pediatric patients with acute asthma. These researchers found that patients treated with 25 mg/kg of intravenous magnesium sulfate in addition to the conventional treatment options for acute asthma were less likely to require mechanical ventilation than patients in the control group. We review and critique this article and use a case study to illustrate the clinical implications of this research. We also examine some of the research and guidelines pertaining to the use of magnesium sulfate in acute asthma. PMID:24487258

Shedd, Glenn Clinton; Noe, Sarah M

2014-01-01

313

INNOVATIVE, IN SITU TREATMENT OF ACID MINE DRAINAGE USING SULFATE REDUCING BACTERIA  

EPA Science Inventory

Acid generation in abandoned mines is a widespread problem. There are a numberous quantity of abandoned mines in the west which have no power source, have limited physical accessibility and have limited remediation funds available. Acid is produced chemically, through pyritic min...

314

EVALUATION OF SULFATE-REDUCING BACTERIA TO PRECIPITATE MERCURY FROM CONTAMINATED GROUNDWATER  

EPA Science Inventory

Several regions in the Republic of Kazakhstan are contaminated with mercury as a result of releases from industrial plants. Operations at an old chemical plant, "Khimprom", which produced chlorine and alkali in the 1970s - 1990s, resulted in significant pollution of groundwater ...

315

Enzymatic catalysis of mercury methylation by planktonic and biofilm cultures of sulfate- reducing bacteria  

Microsoft Academic Search

While biofilms are now known to be the predominant form of microbial growth in nature, little is known about their role in environmental mercury (Hg) methylation. Due to its long-range atmospheric transport, Hg contamination of food chains is a worldwide problem, impacting even pristine areas. Among different forms of mercury species, methylmercury (MeHg) is an extremely neurotoxic and biomagnification-prone compound

C. Lin; R. Kampalath; J. Jay

2007-01-01

316

High gradient magnetic separation of a biologically produced FeS adsorbent using sulfate reducing bacteria  

SciTech Connect

A High Gradient Magnetic Separation (HGMS) technique has been used to selectively recover biologically produced iron sulfide (FeS) particles with adsorbed heavy metal ions, from a soil remediation effluent stream. The HGMS system has been optimized and its performance investigated as a function of the magnetic field, flow rate and concentration of biological particles, with time. Results have shown that an efficiency of over 95% can be obtained, proving that HGMS is a valuable method for the concentration of heavy metal contaminated soils, especially when the adsorbed heavy metals are toxic and difficult to handle by other means.

Coe, B.T.; Gerber, R. [Univ. of Salford (United Kingdom)] [Univ. of Salford (United Kingdom); Witts, D. [BNFL Capenhurst, Cheshire (United Kingdom). Product Development Centre] [BNFL Capenhurst, Cheshire (United Kingdom). Product Development Centre

1998-07-01

317

Influence of some essential environmental factors on the reductive precipitation of uranium by sulfate reducing bacteria  

Microsoft Academic Search

aligns with steady Ca : Mg ratio on cation diagram. The arsenic content in the water is more than 0.2 mg\\/L and the highest value reaches up to 0.52 mg\\/L. Drilling data show that Holocene sediments are divided into three zones on the basis of their color appearances; brown, grey and dark gray zones. The strata from 2m to 9-14m

Zhengji Yi; Kaixuan Tan; Aili Tan; Zhenxun Yu; Yanshi Xie

2006-01-01

318

Transformation of non-oxygenated, homocyclic aromatic compounds by aquifer microorganisms under methanogenic and sulfate-reducing conditions  

SciTech Connect

A mixed methanogenic culture was enriched from creosote-contaminated sediment that used toluene or o-xylene as sole source of carbon and energy. The adaptation periods before the onset of measurable degradation were long (120-255 days). Both toluene and o-xylene were completely degraded to stoichiometric amounts of methane, carbon dioxide and biomass. The enriched methanogenic cultures could not degrade benzene, m-xylene, p-xylene or ethylbenzene. The doubling times were 6 days and 10 days for the cultures growing on toluene or o-xylene, respectively. Toluene and o-xylene were toxic and inhibited degradation as initial concentrations increased. The presence of preferred substrates including glucose, methanol, and acetate inhibited toluene degradation. Isotope trapping and simultaneous adaptation experiments provided evidence that toluene was degraded via both methyl and ring hydroxylation. A mixed sulfate-reducing culture was enriched from gasoline-contaminated sediment that used toluene and all three isomers of xylene as sole sources of carbon and energy. The adaptation period before the onset of measurable degradation by the sulfate-reducing cultures was followed sequentially by m-, p-, and o-xylene. The doubling time for the sulfate-reducing cultures growing on toluene or xylenes was about 20 days. The build up of sulfide as a result of sulfate-reduction appeared to inhibit degradation. Benzoate was detected as a transient intermediate and benzylsuccinate accumulated in sulfate-reducing cultures fed toluene. Benzene degradation was not initially observed. However, after all other carbon sources were exhausted benzene was eventually completely mineralized to carbon dioxide under strictly anaerobic conditions. The rates of degradation were very slow, and were influenced by the initial benzene concentration and by the presence of other carbon sources that could be degraded preferentially over benzene.

Edwards, E.A.

1993-01-01

319

Method for reducing sulfate formation during regeneration of hot-gas desulfurization sorbents  

DOEpatents

The regeneration of sulfur sorbents having sulfate forming tendencies and used for desulfurizing hot product gas streams such as provided by coal gasification is provided by employing a two-stage regeneration method. Air containing a sub-stoichiometric quantity of oxygen is used in the first stage for substantially fully regenerating the sorbent without sulfate formation and then regeneration of the resulting partially regenerated sorbent is completed in the second stage with air containing a quantity of oxygen slightly greater than the stoichiometric amount adequate to essentially fully regenerate the sorbent. Sulfate formation occurs in only the second stage with the extent of sulfate formation being limited only to the portion of the sulfur species contained by the sorbent after substantially all of the sulfur species have been removed therefrom in the first stage.

Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV); Rockey, John M. (Westover, WV)

1994-01-01

320

MICROBIAL DEGRADATION OF TOLUENE UNDER SULFATE- REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS  

EPA Science Inventory

Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (Md.). Similar results were obtained for enrichment cultures in which toluene was ...

321

Anaerobic biodegradation of nonylphenol in river sediment under nitrate- or sulfate-reducing conditions and associated bacterial community.  

PubMed

Nonylphenol (NP) is a commonly detected pollutant in aquatic ecosystem and can be harmful to aquatic organisms. Anaerobic degradation is of great importance for the clean-up of NP in sediment. However, information on anaerobic NP biodegradation in the environment is still very limited. The present study investigated the shift in bacterial community structure associated with NP degradation in river sediment microcosms under nitrate- or sulfate-reducing conditions. Nearly 80% of NP (100mgkg(-1)) could be removed under these two anaerobic conditions after 90 or 110 days' incubation. Illumina MiSeq sequencing analysis indicated that Proteobacteria, Firmicutes, Bacteroidetes and Chloroflexi became the dominant phylum groups with NP biodegradation. The proportion of Gammaproteobacteria, Deltaproteobacteria and Choloroflexi showed a marked increase in nitrate-reducing microcosm, while Gammaproteobacteria and Firmicutes in sulfate-reducing microcosm. Moreover, sediment bacterial diversity changed with NP biodegradation, which was dependent on type of electron acceptor. PMID:25590825

Wang, Zhao; Yang, Yuyin; Dai, Yu; Xie, Shuguang

2015-04-01

322

Mine wastewater treatment using Phalaris arundinacea plant material hydrolyzate as substrate for sulfate-reducing bioreactor  

Microsoft Academic Search

A low-cost substrate, Phalaris arundinacea was acid hydrolyzed (Reed Canary Grass hydrolyzate, RCGH) and used to support sulfate reduction. The experiments included batch bottle assays (35°C) and a fluidized-bed bioreactor (FBR) experiment (35°C) treating synthetic mine wastewater. Dry plant material was also tested as substrate in batch bottle assays. The batch assays showed sulfate reduction with the studied substrates, producing

Aino-Maija Lakaniemi; Laura M. Nevatalo; Anna H. Kaksonen; Jaakko A. Puhakka

2010-01-01

323

Anaerobic Degradation of Ethylbenzene by a New Type of Marine Sulfate-Reducing Bacterium  

Microsoft Academic Search

Anaerobic degradation of the aromatic hydrocarbon ethylbenzene was studied with sulfate as the electron acceptor. Enrichment cultures prepared with marine sediment samples from different locations showed eth- ylbenzene-dependent reduction of sulfate to sulfide and always contained a characteristic cell type that formed gas vesicles towards the end of growth. A pure culture of this cell type, strain EbS7, was isolated

Olaf Kniemeyer; Thomas Fischer; Heinz Wilkes; Frank Oliver Glockner; Friedrich Widdel

2003-01-01

324

Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.  

PubMed

Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments. PMID:22572639

Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

2012-11-01

325

Lead removal and toxicity reduction from industrial wastewater through biological sulfate reduction process  

Microsoft Academic Search

The practicability of lead removal from sulfate-rich wastewater through biological sulfate reduction process with hydrogen as electron donor was investigated. Sulfide, which was converted from sulfate by a sulfate-reducing bacteria (SRB) in a gas-lift reactor, was used to remove lead as lead sulfide precipitate. Furthermore, the toxicity of wastewater in terms of whole effluent toxicity (WET) before and after treatment

Paphungkorn Teekayuttasakul; Ajit P. Annachhatre

2008-01-01

326

Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132 as a Model for Understanding Bacterial Mercury Methylation?†  

PubMed Central

We propose the use of Desulfovibrio desulfuricans ND132 as a model species for understanding the mechanism of microbial Hg methylation. Strain ND132 is an anaerobic dissimilatory sulfate-reducing bacterium (DSRB), isolated from estuarine mid-Chesapeake Bay sediments. It was chosen for study because of its exceptionally high rates of Hg methylation in culture and its metabolic similarity to the lost strain D. desulfuricans LS, the only organism for which methylation pathways have been partially defined. Strain ND132 is an incomplete oxidizer of short-chain fatty acids. It is capable of respiratory growth using fumarate as an electron acceptor, supporting growth without sulfide production. We used enriched stable Hg isotopes to show that ND132 simultaneously produces and degrades methylmercury (MeHg) during growth but does not produce elemental Hg. MeHg produced by cells is mainly excreted, and no MeHg is produced in spent medium. Mass balances for Hg and MeHg during the growth of cultures, including the distribution between filterable and particulate phases, illustrate how medium chemistry and growth phase dramatically affect Hg solubility and availability for methylation. The available information on Hg methylation among strains in the genus Desulfovibrio is summarized, and we present methylation rates for several previously untested species. About 50% of Desulfovibrio strains tested to date have the ability to produce MeHg. Importantly, the ability to produce MeHg is constitutive and does not confer Hg resistance. A 16S rRNA-based alignment of the genus Desulfovibrio allows the very preliminary assessment that there may be some evolutionary basis for the ability to produce MeHg within this genus. PMID:21515733

Gilmour, Cynthia C.; Elias, Dwayne A.; Kucken, Amy M.; Brown, Steven D.; Palumbo, Anthony V.; Schadt, Christopher W.; Wall, Judy D.

2011-01-01

327

Reducing phosphorus runoff and inhibiting ammonia loss from poultry manure with aluminum sulfate  

SciTech Connect

Applications of aluminum sulfate (Al{sub 2}(SO{sub 4}){sub 3} {center_dot} 14H{sub 2}O), commonly referred to as alum, to poultry litter have been shown to decrease P runoff from lands fertilized with litter and to inhibit NH{sub 3} volatilization. The objectives of this study were to evaluate the effects of alum applications in commercial broiler houses on: (1) NH{sub 3} volatilization (in-house), (2) poultry production, (3) litter chemistry, and (4) P runoff following litter application. Two farms were used for this study: one had six poultry houses and the other had four. The litter in half of the houses at each farm was treated with alum; the other houses were controls. Alum was applied at a rate of 1,816 kg/house, which corresponded to 0.091 kg/bird. Each year the houses were cleaned in the spring and the litter was broadcast onto paired watersheds in tall fescue at each farm. Results from this study showed that alum applications lowered the litter pH, particularly during the first 3 to 4 wk of each growout. Reductions in litter pH resulted in less NH{sub 3} volatilization, which led to reductions in atmospheric NH{sub 3} in the alum-treated houses. Broilers grown on alum-treated litter were significantly heavier than controls (1.73 kg vs. 1.66 kg). Soluble reactive phosphorus (SRP) concentrations in runoff from pastures fertilized with alum-treated litter averaged 73% lower than that from normal litter throughout a 3-yr period. These results indicate that alum-treatment of poultry litter is a very effective best management practice that reduces nonpoint source pollution while it increases agricultural productivity.

Moore, P.A. Jr.; Daniel, T.C.; Edwards, D.R.

2000-02-01

328

Changing microspatial patterns of sulfate-reducing microorganisms (SRM) during cycling of marine stromatolite mats.  

PubMed

Microspatial arrangements of sulfate-reducing microorganisms (SRM) in surface microbial mats (~1.5 mm) forming open marine stromatolites were investigated. Previous research revealed three different mat types associated with these stromatolites, each with a unique petrographic signature. Here we focused on comparing "non-lithifying" (Type-1) and "lithifying" (Type-2) mats. Our results revealed three major trends: (1) Molecular typing using the dsrA probe revealed a shift in the SRM community composition between Type-1 and Type-2 mats. Fluorescence in-situ hybridization (FISH) coupled to confocal scanning-laser microscopy (CSLM)-based image analyses, and 35SO4(2-)-silver foil patterns showed that SRM were present in surfaces of both mat types, but in significantly (p < 0.05) higher abundances in Type-2 mats. Over 85% of SRM cells in the top 0.5 mm of Type-2 mats were contained in a dense 130 µm thick horizontal layer comprised of clusters of varying sizes; (2) Microspatial mapping revealed that locations of SRM and CaCO3 precipitation were significantly correlated (p < 0.05); (3) Extracts from Type-2 mats contained acylhomoserine-lactones (C4- ,C6- ,oxo-C6,C7- ,C8- ,C10- ,C12- , C14-AHLs) involved in cell-cell communication. Similar AHLs were produced by SRM mat-isolates. These trends suggest that development of a microspatially-organized SRM community is closely-associated with the hallmark transition of stromatolite surface mats from a non-lithifying to a lithifying state. PMID:24413754

Petrisor, Alexandru I; Szyjka, Sandra; Kawaguchi, Tomohiro; Visscher, Pieter T; Norman, Robert Sean; Decho, Alan W

2014-01-01

329

Function of Periplasmic Hydrogenases in the Sulfate-ReducingBacterium Desulfovibrio vulgaris Hildenborough  

SciTech Connect

The sulfate-reducing bacterium Desulfovibrio vulgarisHildenborough possesses four periplasmic hydrogenases to facilitate theoxidation of molecular hydrogen. These include an [Fe]hydrogenase, an[NiFeSe]hydrogenase, and two [NiFe]hydrogenases encoded by the hyd,hys, hyn1, and hyn2 genes, respectively. In order to understand theircellular functions, we have compared the growth rates of existing (hydand hyn1) and newly constructed (hys and hyn-1 hyd) mutants to those ofthe wild type in defined media in which lactate or hydrogen at either 5or 50 percent (vol/vol) was used as the sole electron donor for sulfatereduction. Only strains missing the [Fe]hydrogenase were significantlyaffected during growth with lactate or with 50 percent (vol/vol) hydrogenas the sole electron donor. When the cells were grown at low (5 percent[vol/vol]) hydrogen concentrations, those missing the [NiFeSe]hydrogenase suffered the greatest impairment. The growth rate datacorrelated strongly with gene expression results obtained from microarrayhybridizations and real-time PCR using mRNA extracted from cells grownunder the three conditions. Expression of the hys genes followed theorder 5 percent hydrogen>50 percent hydrogen>lactate, whereasexpression of the hyd genes followed the reverse order. These resultssuggest that growth with lactate and 50 percent hydrogen is associatedwith high intracellular hydrogen concentrations, which are best capturedby the higher activity, lower affinity [Fe]hydrogenase. In contrast,growth with 5 percent hydrogen is associated with a low intracellularhydrogen concentration, requiring the lower activity, higher affinity[NiFeSe]hydrogenase.

Caffrey, Sean M.; Park, Hyung-Soo; Voordouw, Johanna K.; He,Zhili; Zhou, Jizhong; Voordouw, Gerrit

2007-09-24

330

Changing Microspatial Patterns of Sulfate-Reducing Microorganisms (SRM) during Cycling of Marine Stromatolite Mats  

PubMed Central

Microspatial arrangements of sulfate-reducing microorganisms (SRM) in surface microbial mats (~1.5 mm) forming open marine stromatolites were investigated. Previous research revealed three different mat types associated with these stromatolites, each with a unique petrographic signature. Here we focused on comparing “non-lithifying” (Type-1) and “lithifying” (Type-2) mats. Our results revealed three major trends: (1) Molecular typing using the dsrA probe revealed a shift in the SRM community composition between Type-1 and Type-2 mats. Fluorescence in-situ hybridization (FISH) coupled to confocal scanning-laser microscopy (CSLM)-based image analyses, and 35SO4 2?-silver foil patterns showed that SRM were present in surfaces of both mat types, but in significantly (p < 0.05) higher abundances in Type-2 mats. Over 85% of SRM cells in the top 0.5 mm of Type-2 mats were contained in a dense 130 ?m thick horizontal layer comprised of clusters of varying sizes; (2) Microspatial mapping revealed that locations of SRM and CaCO3 precipitation were significantly correlated (p < 0.05); (3) Extracts from Type-2 mats contained acylhomoserine-lactones (C4-, C6-, oxo-C6 C7-, C8-, C10-, C12-, C14-AHLs) involved in cell-cell communication. Similar AHLs were produced by SRM mat-isolates. These trends suggest that development of a microspatially-organized SRM community is closely-associated with the hallmark transition of stromatolite surface mats from a non-lithifying to a lithifying state. PMID:24413754

Petrisor, Alexandru I.; Szyjka, Sandra; Kawaguchi, Tomohiro; Visscher, Pieter T.; Norman, Robert Sean; Decho, Alan W.

2014-01-01

331

Subendothelial retention of lipoprotein (a). Evidence that reduced heparan sulfate promotes lipoprotein binding to subendothelial matrix.  

PubMed Central

Vessel wall subendothelial extracellular matrix, a dense mesh formed of collagens, fibronectin, laminin, and proteoglycans, has important roles in lipid and lipoprotein retention and cell adhesion. In atherosclerosis, vessel wall heparan sulfate proteoglycans (HSPG) are decreased and we therefore tested whether selective loss of HSPG affects lipoprotein retention. A matrix synthesized by aortic endothelial cells and a commercially available matrix (Matrigel; , Rutherford, NJ) were used. Treatment of matrix with heparinase/heparitinase (1 U/ml each) increased LDL binding by approximately 1.5-fold. Binding of lipoprotein (a) [Lp(a)] to both subendothelial matrix and Matrigel(R) increased 2-10-fold when the HSPG were removed by heparinase treatment. Incubation of endothelial cells with oxidized LDL (OxLDL) or lysolecithin resulted in decreased matrix proteoglycans and increased Lp(a) retention by matrix. The effect of OxLDL or lysolecithin on endothelial PG was abolished in the presence of HDL. The decrease in matrix HSPG was associated with production of a heparanase-like activity by OxLDL-stimulated endothelial cells. To test whether removal of HSPG exposes fibronectin, a candidate Lp(a) binding protein in the matrix, antifibronectin antibodies were used. The increased Lp(a) binding after HSPG removal was inhibited 60% by antifibronectin antibodies. Similarly, the increased Lp(a) binding to matrix from OxLDL-treated endothelial cells was inhibited by antifibronectin antibodies. We hypothesize that atherogenic lipoproteins stimulate endothelial cell production of heparanase. This enzyme reduces HSPG which in turn promotes Lp(a) retention. PMID:9259586

Pillarisetti, S; Paka, L; Obunike, J C; Berglund, L; Goldberg, I J

1997-01-01

332

Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation  

USGS Publications Warehouse

Demethylation of monomethylmercury in freshwater and estuarine sediments and in bacterial cultures was investigated with 14CH3HgI. Under anaerobiosis, results with inhibitors indicated partial involvement of both sulfate reducers and methanogens, the former dominating estuarine sediments, while both were active in freshwaters. Aerobes were the most significant demethylators in estuarine sediments, but were unimportant in freshwater sediments. Products of anaerobic demethylation were mainly 14CO2 as well as lesser amounts of 14CH4. Acetogenic activity resulted in fixation of some 14CO2 produced from 14CH3HgI into acetate. Aerobic demethylation in estuarine sediments produced only 14CH4, while aerobic demethylation in freshwater sediments produced small amounts of both 14CH4 and 14CO2. Two species of Desulfovibrio produced only traces of 14CH4 from 14CH3HgI, while a culture of a methylotrophic methanogen formed traces of 14CO2 and 14CH4 when grown on trimethylamine in the presence of the 14CH3HgI. These results indicate that both aerobes and anaerobes demethylate mercury in sediments, but that either group may dominate in a particular sediment type. Aerobic demethylation in the estuarine sediments appeared to proceed by the previously characterized organomercurial-lyase pathway, because methane was the sole product. However, aerobic demethylation in freshwater sediments as well as anaerobic demethylation in all sediments studied produced primarily carbon dioxide. This indicates the presence of an oxidative pathway, possibly one in which methylmercury serves as an analog of one-carbon substrates.

Oremland, R.S.; Culbertson, C.W.; Winfrey, M.R.

1991-01-01

333

Metagenomic Analysis of Nitrate-Reducing Bacteria in the Oral Cavity: Implications for Nitric Oxide Homeostasis  

PubMed Central

The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria. PMID:24670812

Hyde, Embriette R.; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K.; Torregrossa, Ashley C.; Tribble, Gena; Kaplan, Heidi B.; Petrosino, Joseph F.; Bryan, Nathan S.

2014-01-01

334

Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.  

PubMed

The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria. PMID:24670812

Hyde, Embriette R; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K; Torregrossa, Ashley C; Tribble, Gena; Kaplan, Heidi B; Petrosino, Joseph F; Bryan, Nathan S

2014-01-01

335

ACETOGENIC AND SULPHATE-REDUCING BACTERIA INHABITING THE RHIZOPLANE AND DEEP CORTEX CELLS OF THE SEAGRASS HALODULE WRIGHTII  

EPA Science Inventory

Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizosphere that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacter...

336

Composition, Reactivity, and Regulations of Extracellular Metal-Reducing Structures (Bacterial Nanowires) Produced by Dissimilatory Metal Reducing Bacteria  

SciTech Connect

This research proposal seeks to describe the composition and function of electrically conductive appendages known as bacterial nanowires. This project targets bacterial nanowires produced by dissimilatory metal reducing bacteria Shewanella and Geobacter. Specifically, this project will investigate the role of these structures in the reductive transformation of iron oxides as solid phase electron acceptors, as well as uranium as a dissolved electron acceptor that forms nanocrystalline particles of uraninite upon reduction.

Scholten, Johannes

2006-06-01

337

The Geomicrobiological Role of Sulphate-Reducing Bacteria in Environments Contaminated by Petroleum Products  

Microsoft Academic Search

This paper reviews the geomicrobiological role of sulphate-reducing bacteria (SRB) in environments contaminated with petroleum products and describes the habitats of SRB and their capacity for bioremediation in anaerobic conditions. Moreover, the participation of SRB in biocorrosion and formation of different minerals and sediments is discussed.

Dorota Wolicka; Andrzej Borkowski

2007-01-01

338

Reactive Iron and Iron-Reducing Bacteria in Louisiana Continental Shelf Sediments  

EPA Science Inventory

The Mississippi and Atchafalaya Rivers release sediments containing 15 x 106 t of iron onto the Louisiana continental shelf (LCS) each year. Iron oxides reaching the seafloor may be utilized as electron acceptors by iron-reducing bacteria for organic matter oxidation or become r...

339

Pitting of Type 304 stainless steee in the presence of a biofilm containing sulphate reducing bacteria  

Microsoft Academic Search

The effects of sulphate reducing bacteria (SRB) on pitting corrosion of Type 304 stainless steel in nearneutral solutions based on 0.1 M NaCl have been studied at ambient temperature. SRB are considered to have at least two potentially corrosive effects: they create a biofilm having a crevice like geometry on the metal surface and they produce hydrogen sulphide. Slow potentiodynamic

S. E. Werner; C. A. Johnson; N. J. Laycock; P. T. Wilson; B. J. Webster

1998-01-01

340

The potential contribution of plant growth-promoting bacteria to reduce environmental degradation – A comprehensive evaluation  

Microsoft Academic Search

Plant growth-promoting bacteria (PGPB) are commonly used to improve crop yields. In addition to their proven usefulness in agriculture, they possess potential in solving environmental problems. Some examples are highlighted. PGPB may prevent soil erosion in arid zones by improving growth of desert plants in reforestation programs; in turn, this reduces dust pollution. PGPB supports restoration of mangrove ecosystems that

Luz E. de-Bashan; Juan-Pablo Hernandez; Yoav Bashan

341

Effect of uranium (VI) on two sulphate-reducing bacteria cultures from a uranium mine site  

Microsoft Academic Search

This work was conducted to assess the impact of uranium (VI) on sulphate-reducing bacteria (SRB) communities obtained from environmental samples collected on the Portuguese uranium mining area of Urgeiriça. Culture U was obtained from a sediment, while culture W was obtained from sludge from the wetland of that mine. Temperature gradient gel electrophoresis (TGGE) was used to monitor community changes

Mónica Martins; Maria Leonor Faleiro; Sandra Chaves; Rogério Tenreiro; Maria Clara Costa

2010-01-01

342

Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment  

Microsoft Academic Search

Acid mine drainage (AMD), which contains high concentrations of sulphate and dissolved metals, is a serious environmental problem. It can be treated in situ by sulphate reducing bacteria (SRB), but effectiveness of the treatment process depends on the organic substrate chosen to supply the bacteria’s carbon source. Six natural organic materials were characterized in order to investigate how well these

Gerald J. Zagury; Viktors I. Kulnieks; Carmen M. Neculita

2006-01-01

343

Competition for hydrogen between acetogenic bacteria and methanogenic archaea  

E-print Network

Competition for hydrogen between acetogenic bacteria and methanogenic archaea B Morvan, G Fonty bacterial groups: the methanogenic archaea, the sulfate- reducing bacteria and the acetogenic bacteria contrary to other digestive ecosystems such as the gut of xylophagus termites (Breznak and Switzer, 1986

Paris-Sud XI, Université de

344

Thermophilic nitrate-reducing microorganisms prevent sulfate reduction in cold marine sediments incubated at high temperature  

NASA Astrophysics Data System (ADS)

Hydrogen sulphide produced during metabolism of sulphate-reducing microorganisms (SRM) is toxic, corrosive and causes detrimental oil reservoir souring. During secondary oil recovery, injecting oil reservoirs with seawater that is rich in sulphate and that also cools high temperature formations provides favourable growth conditions for SRM. Nitrate addition can prevent metabolism of SRM by stimulating nitrate-reducing microorganisms (NRM). The investigations of thermophilic NRM are needed to develop mechanisms to control the metabolism of SRM in high temperature oil field ecosystems. We therefore established a model system consisting of enrichment cultures of cold surface marine sediments from the Baltic Sea (Aarhus Bay) that were incubated at 60°C. Enrichments contained 25 mM nitrate and 40 mM sulphate as potential electron acceptors, and a mixture of the organic substrates acetate, lactate, propionate, butyrate (5 mM each) and yeast extract (0.01%) as potential carbon sources and electron donors. Slurries were incubated at 60°C both with and without initial pasteurization at 80°C for 2 hours. In the enrichments containing both nitrate and sulphate, the concentration of nitrate decreased indicating metabolic activity of NRM. After a four-hour lag phase the rate of nitrate reduction increased and the concentration of nitrate dropped to zero after 10 hours of incubation. The concentration of nitrite increased as the reduction of nitrate progressed and reached 16.3 mM after 12 hours, before being consumed and falling to 4.4 mM after 19-day of incubation. No evidence for sulphate reduction was observed in these cultures during the 19-day incubation period. In contrast, the concentration of sulphate decreased up to 50% after one week incubation in controls containing only sulphate but no nitrate. Similar sulfate reduction rates were seen in the pasteurized controls suggesting the presence of heat resistant SRM, whereas nitrate reduction rates were lower in the pasteurized experiment, suggesting either different populations of NRM or a population of NRM that was not resistant to the 80°C pre-treatment. These results demonstrate that thermophilic NRM exist in cold marine sediments from Aarhus Bay and can be enriched under appropriate conditions. Effective microbial control of SRM activity at high temperature in our Aarhus Bay sediment model system depends on the addition of nitrate to stimulate this group of microorganisms.

Nepomnyashchaya, Yana; Rezende, Julia; Hubert, Casey

2014-05-01

345

Hydrocarbon activation under sulfate-reducing and methanogenic conditions proceeds by different mechanisms.  

NASA Astrophysics Data System (ADS)

Microbial degradation of alkanes typically involves their conversion to fatty acids which are then catabolised by beta-oxidation. The critical step in this process is activation of the hydrocarbon. Under oxic conditions this is catalyzed by monooxygenase enzymes with the formation of long chain alcohols. In the absence of oxygen alternative alkane activation mechanisms have been observed or proposed. Fumarate addition to alkanes to form alkyl succinates is considered a central process in anaerobic hydrocarbon degradation. Comparative studies of crude oil degradation under sulphate-reducing and methanogenic conditions revealed distinctive patterns of compound class removal and metabolite formation. Alkyl succinates derived from C7 to C26 n-alkanes and branched chain alkanes were found in abundance in sulfate-reducing systems but these were not detected during methanogenic crude oil degradation. Only one other mechanism of alkane activation has been elucidated to date. This involves addition of carbon derived from bicarbonate/CO2 to C-3 of an alkane chain to form a 2-ethylalkane with subsequent removal of the ethyl group leading to the formation of a fatty acid 1 carbon shorter than the original alkane. 2-ethylalkanes have never been detected as metabolites of anaerobic alkane degradation and were not detected in crude oil-degrading methanogenic systems. Due to the range of alkanes present in crude oil it was not possible to infer the generation of C-odd acids from C-even alkanes which is characteristic of the C-3 carboxylation mechanism. Furthermore genes homologous to alkysuccinate synthetases were not detected in the methanogenic hydrocarbon degrading community by pyrosequencing of total DNA extracted from methanogenic enrichments cultures. beta-oxidation genes were detected and intriguingly, alcohol and aldehyde dehydrogenase genes were present. This offers the possibility that alkane activation in the methanogenic system does not proceed via acid metabolites, but may be initiated by an anaerobic hydroxylation reaction. This is not unprecedented and hydroxylation of ethylbenzene has been demonstrated. However the C-H bond dissociation energy of alkanes is typically considered too high to readily permit alkane hydroxylation. It is however clear that alkane activation in these methanogenic crude oil-degrading systems involves mechanisms other than the well-known fumarate-addition reactions.

Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

2010-05-01

346

Comparison of reduced volume versus four liters sulfate-free electrolyte lavage solutions for colonoscopy colon cleansing  

Microsoft Academic Search

OBJECTIVE:In an attempt to improve patient tolerance for colonoscopy cleansing, a reduced volume lavage regimen with 2 L sulfate-free electrolyte lavage solution (SF-ELS, NuLYTELY, Braintree Laboratories, Braintree, MA) plus 20 mg p.o. bisacodyl (Half Lytely, Braintree Laboratories) was compared with standard 4 L SF-ELS lavage for safety and efficacy.METHODS:At two centers, 200 patients undergoing colonoscopy for routine indications were randomized

Jack A. DiPalma; Bruce G. Wolff; Alan Meagher; Mark v B. Cleveland

2003-01-01

347

Improved PCR-DGGE for high resolution diversity screening of complex sulfate-reducing prokaryotic communities in soils and sediments  

Microsoft Academic Search

In this study we evaluated a high resolution PCR-DGGE strategy for the characterization of complex sulfate-reducing microbial communities inhabiting natural environments. dsrB fragments were amplified with a two-step nested PCR protocol using combinations of primers targeting the dissimilatory (bi)sulfite reductase genes. The PCR-DGGE conditions were initially optimized using a dsrAB clone library obtained from a vegetated intertidal riparian soil along

Marzia Miletto; Paul L. E. Bodelier; Hendrikus J. Laanbroek

2007-01-01

348

Anaerobic n-Alkane Metabolism by a Sulfate-Reducing Bacterium, Desulfatibacillum aliphaticivorans Strain CV2803T  

Microsoft Academic Search

The alkane-degrading, sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, recently isolated from marine sediments, was investigated for n-alkane metabolism. The total cellular fatty acids of this strain had predominantly odd numbers of carbon atoms (C odd) when the strain was grown on a C-odd alkane (pentadecane) and even numbers of carbon atoms (C even) when it was grown on a C-even

Cristiana Cravo-Laureau; Vincent Grossi; Danielle Raphel; Robert Matheron; Agnes Hirschler-Rea

2005-01-01

349

Bioenergetics of sulphate-reducing bacteria in relation to their environmental impact.  

PubMed

The cellular physiology of the sulphate-reducing bacteria, and of other sulphidogenic species, is determined by the energetic requirements consequent upon their respiratory mode of metabolism with sulphate and other oxyanions of sulphur as terminal electron acceptors. As a further consequence of their, relatively, restricted catabolic activities and their requirement for conditions of anaerobiosis, sulphidogenic bacteria are almost invariably found in nature as component organisms within microbial consortia. The capacity to generate significant quantities of sulphide influences the overall metabolic activity and species diversity of these consortia, and is the root cause of the environmental impact of the sulphidogenic species: corrosion, pollution and the souring of hydrocarbon reservoirs. PMID:10022064

Hamilton, W A

1998-01-01

350

Desulfosoma caldarium gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a terrestrial hot spring.  

PubMed

A thermophilic, sulfate-reducing bacterium, designated strain USBA-053(T), was isolated from a terrestrial hot spring located at a height of 2500 m in the Colombian Andes (5° 45' 33.29? N 73° 6' 49.89? W), Colombia. Cells of strain USBA-053(T) were oval- to rod-shaped, Gram-negative and motile by means of a single polar flagellum. The strain grew autotrophically with H(2) as the electron donor and heterotrophically on formate, propionate, butyrate, valerate, isovalerate, lactate, pyruvate, ethanol, glycerol, serine and hexadecanoic acid in the presence of sulfate as the terminal electron acceptor. The main end products from lactate degradation, in the presence of sulfate, were acetate, CO(2) and H(2)S. Strain USBA-053(T) fermented pyruvate in the absence of sulfate and grew optimally at 57 °C (growth temperature ranged from 50 °C to 62 °C) and pH 6.8 (growth pH ranged from 5.7 to 7.7). The novel strain was slightly halophilic and grew in NaCl concentrations ranging from 5 to 30 g l(-1), with an optimum at 25 g l(-1) NaCl. Sulfate, thiosulfate and sulfite were used as electron acceptors, but not elemental sulfur, nitrate or nitrite. The G+C content of the genomic DNA was 56±1 mol%. 16S rRNA gene sequence analysis indicated that strain USBA-053(T) was a member of the class Deltaproteobacteria, with Desulfacinum hydrothermale MT-96(T) as the closest relative (93?% gene sequence similarity). On the basis of physiological characteristics and phylogenetic analysis, it is suggested that strain USBA-053(T) represents a new genus and novel species for which the name Desulfosoma caldarium gen. nov., sp. nov. is proposed. The type strain of the type species is USBA-053(T) (?=?KCTC 5670(T)?=?DSM 22027(T)). PMID:20418410

Baena, Sandra; Perdomo, Natalia; Carvajal, Catalina; Díaz, Carolina; Patel, Bharat K C

2011-04-01

351

Toward a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough  

SciTech Connect

Protein–protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study E. coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio 5 vulgaris Hildenborough, a model anaerobe and sulfate reducer. In this paper we present the first attempt to identify protein-protein interactions in an obligate anaerobic bacterium. We used suicide vector-assisted chromosomal modification of 12 open reading frames encoded by this sulfate reducer to append an eight amino acid affinity tag to the carboxy-terminus of the chosen proteins. Three biological replicates of the 10 ‘pulled-down’ proteins were separated and analyzed using liquid chromatography-mass spectrometry. Replicate agreement ranged between 35% and 69%. An interaction network among 12 bait and 90 prey proteins was reconstructed based on 134 bait-prey interactions computationally identified to be of high confidence. We discuss the biological significance of several unique metabolic features of D. vulgaris revealed by this protein-protein interaction data 15 and protein modifications that were observed. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.

Chhabra, S.R.; Joachimiak, M.P.; Petzold, C.J.; Zane, G.M.; Price, M.N.; Gaucher, S.; Reveco, S.A.; Fok, V.; Johanson, A.R.; Batth, T.S.; Singer, M.; Chandonia, J.M.; Joyner, D.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Singh, A.K.; Keasling, J.D.

2011-05-01

352

Subcellular localization of proteins in the anaerobic sulfate reducer Desulfovibrio vulgaris via SNAP-tag labeling and photoconversion  

SciTech Connect

Systems Biology studies the temporal and spatial 3D distribution of macromolecular complexes with the aim that such knowledge will allow more accurate modeling of biological function and will allow mathematical prediction of cellular behavior. However, in order to accomplish accurate modeling precise knowledge of spatial 3D organization and distribution inside cells is necessary. And while a number of macromolecular complexes may be identified by its 3D structure and molecular characteristics alone, the overwhelming number of proteins will need to be localized using a reporter tag. GFP and its derivatives (XFPs) have been traditionally employed for subcelllar localization using photoconversion approaches, but this approach cannot be taken for obligate anaerobic bacteria, where the intolerance towards oxygen prevents XFP approaches. As part of the GTL-funded PCAP project (now ENIGMA) genetic tools have been developed for the anaerobe sulfate reducer Desulfovibrio vulgaris that allow the high-throughput generation of tagged-protein mutant strains, with a focus on the commercially available SNAP-tag cell system (New England Biolabs, Ipswich, MA), which is based on a modified O6-alkylguanine-DNA alkyltransferase (AGT) tag, that has a dead-end reaction with a modified O6-benzylguanine (BG) derivative and has been shown to function under anaerobic conditions. After initial challenges with respect to variability, robustness and specificity of the labeling signal we have optimized the labeling. Over the last year, as a result of the optimized labeling protocol, we now obtain robust labeling of 20 out of 31 SNAP strains. Labeling for 13 strains were confirmed at least five times. We have also successfully performed photoconversion on 5 of these 13 strains, with distinct labeling patterns for different strains. For example, DsrC robustly localizes to the periplasmic portion of the inner membrane, where as a DNA-binding protein localizes to the center of the cell, where the chromosome is located. Two other proteins - Thiosulfate reductase and ATP binding protein were found to be cytoplasmically distributed, whereas a molybdenum transporter was found to locate to the cell periphery. We judge labeling outcome by (1) SDS gel electrophoresis, followed by direct fluorescence imaging of the gel to address specificity of labeling/confirm expected molecular weight, and subsequent Coomassie analysis to ensure comparable protein levels (2) fluorescence intensity of culture by plate reader for statistical sampling (after adjustment for respective cell numbers) and (3) fluorescence microscopy for addressing cell-to-cell signal variation and potential localization patterns. All three assays were usually found to be consistent with one another. While we have been able to improve the efficacy of photoconversion by drastically reducing (eliminating) non-specific binding with our altered labeling protocol, we are currently working on reducing non-specific photoconversion reaction arising occasionally in non-labeled cells. In addition, we have confirmed the presence of SNAP tagged constructs in three recently cloned E.coli strains under promotor control, and are in the process of utilizing them for evaluating the sensitivity of the photoconversion protocol. Fluorescent Activated Cell Sorting was successfully applied to labeled E.coli cells containing SNAP tagged AtpA protein. Different batches of sorted cells, representing low and high labeling intensity, were re-grown and re-labeled and displayed a labeling efficiency similar to the starter culture, supporting the notion that cell-to-cell differences in labeling reflect difference in protein expression, rather then genetic differences.

Gorur, A.; Leung, C. M.; Jorgens, D.; Tauscher, A.; Remis, J. P.; Ball, D. A.; Chhabra, S.; Fok, V.; Geller, J. T.; Singer, M.; Hazen, T. C.; Juba, T.; Elias, D.; Wall, J.; Biggin, M.; Downing, K. H.; Auer, M.

2010-06-01

353

Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors.  

PubMed

Supercapacitors with potential high power are useful and have attracted much attention recently. Graphene-based composites have been demonstrated to be promising electrode materials for supercapacitors with enhanced properties. To improve the performance of graphene-based composites further and realize their synthesis with large scale, we report a green approach to synthesize bacteria-reduced graphene oxide-nickel sulfide (BGNS) networks. By using Bacillus subtilis as spacers, we deposited reduced graphene oxide/Ni3S2 nanoparticle composites with submillimeter pores directly onto substrate by a binder-free electrostatic spray approach to form BGNS networks. Their electrochemical capacitor performance was evaluated. Compared with stacked reduced graphene oxide-nickel sulfide (GNS) prepared without the aid of bacteria, BGNS with unique nm-?m structure exhibited a higher specific capacitance of about 1424 F g(-1) at a current density of 0.75 A g(-1). About 67.5% of the capacitance was retained as the current density increased from 0.75 to 15 A g(-1). At a current density of 75 A g(-1), a specific capacitance of 406 F g(-1) could still remain. The results indicate that the reduced graphene oxide-nickel sulfide network promoted by bacteria is a promising electrode material for supercapacitors. PMID:23751359

Zhang, Haiming; Yu, Xinzhi; Guo, Di; Qu, Baihua; Zhang, Ming; Li, Qiuhong; Wang, Taihong

2013-08-14

354

Reduction of Uranium(VI) under Sulfate-reducing Conditions in the Presence of Fe(III)-(hydr)oxides  

SciTech Connect

U(VI) dissolved in a modified lactate-C medium (either sulfate- or lactate-limited) was reacted with a mixture of an Fe(III)-(hydr)oxide mineral (hematite, goethite, or ferrihydrite) and quartz under anoxic conditions and equivalent mineral surface areas. After sorption equilibration, the suspensions were inoculated with a sulfate-reducing bacterium (SRB, Desulfovibrio desulfuricans G20). Inoculation of the suspensions containing sulfate-limited medium yielded significant SRB growth, along with concomitant reduction of sulfate and removal of U(VI) from solution. Inoculation of the suspensions containing lactate-limited medium yielded similar results while lactate was still present. Once the lactate was depleted, however, some of the U that had been removed from solution was re-solubilized in the hematite treatment and, to a lesser extent, in the goethite treatment. No re-solubilization was observed in the lactate-limited ferrihydrite treatment even after a prolonged incubation of four months. Analysis by U L3-edge XANES spectroscopy of mineral specimens sampled without inoculation yielded a typical U(VI) spectrum. Mineral specimens sampled at the end of the experiment yielded spectra similar to that of uraninite, thus providing strong evidence for SRB-promoted removal of U(VI) from solution by reductive precipitation of uraninite. Consequently, U re-solubilization was attributed to re-oxidation of the uraninite by Fe(III) present in the (hydr)oxide phases. Our results thus suggest that inoculation with SRB mediates reduction of soluble U(VI) to an insoluble U(IV) oxide so long as a suitable electron donor is available. Depletion of the electron donor may result in partial re-oxidation of the U(IV) to soluble U(VI) species when the surfaces of crystalline Fe(III) (hydr)oxides are incompletely reduced by reaction with SRB-generated sulfide.

Sani, Rajesh K.; Peyton, Brent M.; Amonette, James E.; Geesey, Gill G.

2004-06-01

355

Reducing dissolved phosphorus loading to the Salton Sea with aluminum sulfate  

Microsoft Academic Search

The primary productivity of the Salton Sea, California is excessively high, leading to low-oxygen conditions, low clarity,\\u000a and odors associated with algal decomposition. Treating the inflow water with aluminum sulfate (alum) to remove soluble phosphorus\\u000a (P), the limiting nutrient, is being considered to improve water quality. The objective of this study was to evaluate the\\u000a use of alum to remove

I. R. Rodriguez; C. Amrhein; M. A. Anderson

2008-01-01

356

Reducing dissolved phosphorus loading to the Salton Sea with aluminum sulfate  

Microsoft Academic Search

The primary productivity of the Salton Sea. California is excessively high, leading to lowoxygen conditions, low clarity,\\u000a and odors associated with algal decomposition. Treating the inflow water with aluminum sulfate (alum) to remove soluble phosphorus\\u000a (P), the limiting nutrient, is being considered to improve water quality. The objective of this study was to evaluate the\\u000a use of alum to remove

I. R. Rodriguez; C. Amrhein; M. A. Anderson

357

Enumeration and Detection of Anaerobic Ferrous Iron Oxidizing, Nitrate-Reducing Bacteria from Diverse European Sediments  

Microsoft Academic Search

Anaerobic, nitrate-dependent microbial oxidation of ferrous iron was recently recognized as a new type of metabolism. In order to study the occurrence of three novel groups of ferrous iron-oxidizing, nitrate-reducing bacteria (represented by strains BrG1, BrG2, and BrG3), 16S rRNA-targeted oligonucleotide probes were developed. In pure-culture experiments, these probes were shown to be suitable for fluorescent in situ hybrid- ization,

KRISTINA L. STRAUB; BERIT E. E. BUCHHOLZ-CLEVEN

1998-01-01

358

Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria  

Microsoft Academic Search

MANY crude oil constituents are biodegradable in the presence of oxygen; however, a substantial anaerobic degradation has never been demonstrated1,2. An unusually low content of n-alkanes in oils of certain deposits is commonly attributed to selective utilization of these hydrocarbons by aerobic microorganisms3,4. On the other hand, oil wells and production fluids were shown to harbour anaerobic sulphate-reducing bacteria5-8, but

Petra Rueter; Ralf Rabus; Heinz Wilkest; Frank Aeckersberg; Fred A. Rainey; Holger W. Jannasch; Friedrich Widdel

1994-01-01

359

Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen  

Microsoft Academic Search

A methanogenic bacterial consortium was obtained after inoculation of benzoate medium under N2\\/CO2 atmosphere with intertidal sediment. A hydrogen donating organotroph andMethanococcus mazei were isolated from this enrichment. H2-utilising sulphate reducing bacteria were isolated under H2\\/CO2 in the absence of organic electron donors. TheMethanococcus was able to produce methane in yeast extract medium under N2\\/CO2 if the H2 donating organism

Jeremy W. Abram; David B. Nedwell

1978-01-01

360

TEM investigation of U{sup 6+} and Re{sup 7+} reduction by Desulfovibrio desulfuricans, a sulfate-reducing bacterium  

SciTech Connect

Uranium and its fission product Tc in aerobic environment will be in the forms of UO{sub 2}{sup 2+} and TcO{sub 4}{sup {minus}}. Reduced forms of tetravalent U and Tc are sparingly soluble. As determined by transmission electron microscopy, the reduction of uranyl acetate by immobilized cells of Desulfovibrio desulfuricans results in the production of black uraninite nanocrystals precipitated outside the cell. Some nanocrystals are associated with outer membranes of the cell as revealed from cross sections of these metabolic active sulfate-reducing bacteria. The nanocrystals have an average diameter of 5 nm and have anhedral shape. The reduction of Re{sup 7+} by cells of Desulfovibrio desulfuricans is fast in media containing H{sub 2} an electron donor, and slow in media containing lactic acid. It is proposed that the cytochrome in these cells has an important role in the reduction of uranyl and Re{sup 7+} is (a chemical analogue for Tc{sup 7+}) through transferring an electron from molecular hydrogen or lactic acid to the oxyions of UO{sub 2}{sup 2+} and TcO{sub 4}{sup {minus}}.

XU,HUIFANG; BARTON,LARRY L.; CHOUDHURY,KEKA; ZHANG,PENGCHU; WANG,YIFENG

2000-03-14

361

Isolation and Characterization of Strains CVO and FWKO B, Two Novel Nitrate-Reducing, Sulfide-Oxidizing Bacteria Isolated from Oil Field Brine  

PubMed Central

Bacterial strains CVO and FWKO B were isolated from produced brine at the Coleville oil field in Saskatchewan, Canada. Both strains are obligate chemolithotrophs, with hydrogen, formate, and sulfide serving as the only known energy sources for FWKO B, whereas sulfide and elemental sulfur are the only known electron donors for CVO. Neither strain uses thiosulfate as an energy source. Both strains are microaerophiles (1% O2). In addition, CVO grows by denitrification of nitrate or nitrite whereas FWKO B reduces nitrate only to nitrite. Elemental sulfur is the sole product of sulfide oxidation by FWKO B, while CVO produces either elemental sulfur or sulfate, depending on the initial concentration of sulfide. Both strains are capable of growth under strictly autotrophic conditions, but CVO uses acetate as well as CO2 as its sole carbon source. Neither strain reduces sulfate; however, FWKO B reduces sulfur and displays chemolithoautotrophic growth in the presence of elemental sulfur, hydrogen, and CO2. Both strains grow at temperatures between 5 and 40°C. CVO is capable of growth at NaCl concentrations as high as 7%. The present 16s rRNA analysis suggests that both strains are members of the epsilon subdivision of the division Proteobacteria, with CVO most closely related to Thiomicrospira denitrifcans and FWKO B most closely related to members of the genus Arcobacter. The isolation of these two novel chemolithotrophic sulfur bacteria from oil field brine suggests the presence of a subterranean sulfur cycle driven entirely by hydrogen, carbon dioxide, and nitrate. PMID:10831429

Gevertz, Diane; Telang, Anita J.; Voordouw, Gerrit; Jenneman, Gary E.

2000-01-01

362

Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark)  

Microsoft Academic Search

Reductive and oxidative pathways of the sulfur cycle were studied in a marine sediment by parallel radiotracer experiments with ³⁵SOâ{sup 2 -}, Hâ³⁵S, and ³⁵SâOâ²⁻ injected into undisturbed sediment cores. The distributions of viable populations of sulfate- and thiosulfate-reducing bacteria and of thiosulfate-disproportionating bacteria were concurrently determined. Sulfate reduction occurred both in the reducing sediment layers, and in oxidized and

B. B. Joergensen; F. Bak

1991-01-01

363

THE ANAEROBIC BIODEGRADATION OF O-,M- AND P-CRESOL BY SULFATE-REDUCING BACTERIAL ENRICHMENT CULTURES OBTAINED FROM A SHALLOW ANOXIC AQUIFER  

EPA Science Inventory

Sulfate-reducing bacterial enrichments were obtained from a shallow anoxic aquifer for their ability to metabolize either o-, m-, orp-cresol. GC/MS and simultaneous adaptation experiments suggested that the anaerobic decomposition of p-cresol proceeds ...

364

Electron microscopic characterization of the sulfate reducer Desulfovibrio vulgaris: biofilms and clumps  

NASA Astrophysics Data System (ADS)

Numerous studies have helped characterize the stress response of the anaerobic sulfate reducer Desulfovibrio vulgaris Hildenborough (DvH). Yet all of these techniques represent bulk analyses of cells grown mostly under liquid culture conditions in large reactors. Such results represent an average over a large variety of individual cellular responses, hence assuming a homogeneous distribution of physiological traits. Moreover, only recently are those techniques applied to the environmentally more relevant condition of microbial communities (biofilms). What is missing is a detailed ultrastructural analysis of such biofilms in order to determine biofilm organization and its extracellular metal deposition distribution. Using sophisticated sample cryo-preparation approaches such as high-pressure freezing, freeze-substitution or microwave- assisted processing, followed serial section TEM imaging, we have found a large heterogeneity with respect to metal precipitation with some cells being surrounded by metal precipitates whereas neighboring cells, being genetically identical and seeing virtually the exact same microenvironment, completely lack extracellular metal deposits. Interestingly, apart from metal deposits near cell surfaces, we also found string- and sheet- like metal deposits in between neighboring cells that in mature biofilms can extend for hundreds of micrometers. In mature DvH biofilms such deposits were predominantly associated with areas of intact cells in biofilms, with areas devoid of such metal deposits displayed predominantly cell debris, suggesting a role of such deposits for cell survival, which may be of high significance to biofilms at DOE sites. Upon tomographic imaging we found that extracellular metal deposits were often associated with thin filaments and vesicle-like features. To complement our serial section 2D analysis of resin-embedded samples and the resulting limitation of sampling 3D biofilm as thin sections of arbitrary orientation, we have developed an on-grid culturing and whole-mount imaging approach, which under electron-acceptor limiting conditions resulted in the presence of filaments and vesicles making this system an interesting surrogate assay for DvH-related metal reduction under a number of environmentally relevant conditions, including stress conditions. Moreover efforts, as part of the GTL-PCAP project, are underway to correlate intracellular protein expression and localization patterns, as obtained by SNAP-tag labeling and photoconversion, with extracellular metal deposition in order to determine the respective role of the various proteins in physiology and metal reduction. We have further started to characterize by SEM and TEM the clumping behavior of DvH both wildtype and megaplasmid minus under batch liquid culture conditions, and found differences in the extracellular abundance of filaments as well as differences metal deposition patterns that occur at the onset of clumping and which may promote or indeed by responsible for clumping behavior. Clumping may be a first step of biofilm formation. For a complete understanding such morphological studies need to be accompanied by studies of protein expression through microarray analysis and possibly protein localization patterns.

Auer, M.; Remis, J.; Jorgens, D.; Zemla, M.; Singer, M.; Schmitt, J.; Gorby, Y.; Hazen, T.; Wall, J.; Elias, D.; Torok, T.

2008-12-01

365

Oligonucleotide Microarray for 16S rRNA Gene-Based Detection of All Recognized Lineages of Sulfate-Reducing Prokaryotes in the Environment  

Microsoft Academic Search

For cultivation-independent detection of sulfate-reducing prokaryotes (SRPs) an oligonucleotide microarray consisting of 132 16S rRNA gene-targeted oligonucleotide probes (18-mers) having hierarchical and parallel (identical) specificity for the detection of all known lineages of sulfate-reducing prokaryotes (SRP-PhyloChip) was designed and subsequently evaluated with 41 suitable pure cultures of SRPs. The applicability of SRP- PhyloChip for diversity screening of SRPs in environmental

Alexander Loy; Angelika Lehner; Natuschka Lee; Justyna Adamczyk; Harald Meier; Jens Ernst; Karl-Heinz Schleifer; Michael Wagner

2002-01-01

366

Isolation, identification and characterization of highly tellurite-resistant, tellurite-reducing bacteria from Antarctica  

NASA Astrophysics Data System (ADS)

The tellurium oxyanion, tellurite, is extremely noxious to most living organisms. Its toxicity has been mainly related to the generation of reactive oxygen species (ROS) as well as to an unbalancing of the thiol:redox buffering system. Nevertheless, a few bacteria are capable of thriving at high tellurite concentrations. One mechanism of resistance is the enzymatic and non-enzymatic reduction of tellurite to the less toxic elemental tellurium. This reduction generates nano- to micrometric tellurium crystals that display different shapes and sizes. To date, a very limited number of highly tellurite-resistant and tellurite-reducing bacterial species are available from international culture collections. In this work, we decided to look for tellurite-reducing bacteria from an extreme environment, Antarctica. This environment exhibits a combination of several extreme factors such as high UV-radiation and desiccation and freezing conditions that impact directly on the local biodiversity. Since, as does, all these factors induce ROS formation, we hypothesized that Antarctic bacteria could also exhibit tellurite-resistance. In this context, we isolated 123 tellurite-resistant bacteria, and characterized six new tellurite-resistant and tellurite-reducing bacterial strains from samples collected in Antarctica. These strains were identified according to their 16S rRNA gene sequence as Staphylococcus hameolyticus, Staphylococcus sciuri, Acinetobacter haemolyticus, Pseudomonas lini, and two strains of Psychrobacter immobilis. The isolates display tellurite-resistance about 35- to 500-fold higher than Escherichia coli (Te-sensitive organism), and a high level of tellurite reduction which might be interesting for an application in the field of bioremediation or nanoparticle biosynthesis.

Arenas, Felipe A.; Pugin, Benoit; Henríquez, Nicole A.; Arenas-Salinas, Mauricio A.; Díaz-Vásquez, Waldo A.; Pozo, María F.; Muñoz, Claudia M.; Chasteen, Thomas G.; Pérez-Donoso, José M.; Vásquez, Claudio C.

2014-03-01

367

Desulfovirgula thermocuniculi gen. nov., sp. nov., a thermophilic sulfate-reducer isolated from a geothermal underground mine in Japan.  

PubMed

A thermophilic, Gram-positive, endospore-forming, sulfate-reducing bacterial strain, designated RL80JIV(T), was isolated from a geothermally active underground mine in Japan. Cells were rod-shaped and motile. The temperature and pH ranges for growth were 61-80 degrees C (optimum at 69-72 degrees C) and pH 6.4-7.9 (optimum at pH 6.8-7.3), and the strain tolerated up to 0.5 % NaCl. Strain RL80JIV(T) utilized sulfate, sulfite, thiosulfate and elemental sulfur as electron acceptors. Electron donors utilized were H(2) in the presence of CO(2), and carboxylic acids. Fermentative growth occurred on lactate and pyruvate. The cell wall contained meso-diaminopimelic acid and the major respiratory isoprenoid quinone was menaquinone MK-7. Major whole-cell fatty acids were iso-C(15 : 0), iso-C(17 : 0) and C(16 : 0). Strain RL80JIV(T) was found to be affiliated with the thiosulfate-reducer Thermanaeromonas toyohensis DSM 14490(T) (90.9 % 16S rRNA gene sequence similarity) and with the sulfate-reducer Desulfotomaculum thermocisternum DSM 10259(T) (90.0 % similarity). Strain RL80JIV(T) is therefore considered to represent a novel species of a new genus, for which the name Desulfovirgula thermocuniculi gen. nov., sp. nov. is proposed. The type strain of Desulfovirgula thermocuniculi is RL80JIV(T) (=DSM 16036(T)=JCM 13928(T)). PMID:17220449

Kaksonen, Anna H; Spring, Stefan; Schumann, Peter; Kroppenstedt, Reiner M; Puhakka, Jaakko A

2007-01-01

368

Effect of titanium (III) citrate as reducing agent on growth of rumen bacteria.  

PubMed Central

We compared the growth of 10 strains of rumen bacteria in an anaerobic medium reduced with cysteine hydrochloride, dithiothreitol, or titanium (III) citrate. The redox potential of medium reduced with cysteine hydrochloride was -167.8 mV; with dithiothreitol it was -175.8 mV; and with titanium(III) citrate it was -302.4 mV at a concentration of 5 X 10(-4) M titanium and -403.9 mV at 2 X 10(-3) M titanium. Maximum growth of the strains was generally lower with dithiothreitol or titanium(III) citrate than with cysteine hydrochloride, although growth was greater than in medium lacking an added reducing agent. Strains for which cysteine was required or markedly stimulatory grew only poorly with titanium(III) citrate. No strain grew in medium with sodium citrate as the energy source. Titanium(III) citrate could be used to reduce anaerobic media for some rumen bacteria if the exclusion of a sulfur-containing reducing agent is required. PMID:7406484

Jones, G A; Pickard, M D

1980-01-01

369

Randomization of amyloid-?-peptide(1-42) conformation by sulfonated and sulfated nanoparticles reduces aggregation and cytotoxicity.  

PubMed

The amyloid-? peptide (A?) plays a central role in the mechanism of Alzheimer's disease, being the main constituent of the plaque deposits found in AD brains. A? amyloid formation and deposition are due to a conformational switching to a ?-enriched secondary structure. Our strategy to inhibit A? aggregation involves the re-conversion of A? conformation by adsorption to nanoparticles. NPs were synthesized by sulfonation and sulfation of polystyrene, leading to microgels and latexes. Both polymeric nanostructures affect the conformation of A? inducing an unordered state. Oligomerization was delayed and cytotoxicity reduced. The proper balance between hydrophilic moieties and hydrophobic chains seems to be an essential feature of effective NPs. PMID:20480510

Saraiva, Ana M; Cardoso, Isabel; Saraiva, Maria João; Tauer, Klaus; Pereira, M Carmo; Coelho, Manuel A N; Möhwald, Helmuth; Brezesinski, Gerald

2010-10-01

370

Bioleaching of arsenic in contaminated soil using metal-reducing bacteria  

NASA Astrophysics Data System (ADS)

A study on the extraction of arsenic in the contaminated soil collected from an old smelting site in Korea was carried out using metal-reducing bacteria. Two types of batch-type experiments, biostimulation and bioaugmentation, were conducted for 28 days under anaerobic conditions. The biostimulation experiments were performed through activation of indigenous bacteria by supply with glucose or lactate as a carbon source. The contaminated, autoclaved soil was inoculated with metal-reducing bacteria, Shewanella oneidensis MR-1 and S. algae BrY, in the bioaugmentation experiments. The results indicated that the maximum concentration of the extracted As was 11.2 mg/L at 4 days from the onset of the experiment when 20 mM glucose was supplied and the extraction efficiency of As ranged 60~63% in the biostimulation experiments. In the case of bioaugmentation, the highest dissolved As concentration was 24.4 mg/L at 2 days, though it dramatically decreased over time through re-adsorption onto soil particles. After both treatments, mode of As occurrence in the soil appeared to be changed to readily extractable fractions. This novel technique of bioleaching may be practically applied for remediation of As-contaminated soil after determination of optimum operational conditions such as operation time and proper carbon source and its concentration.

Lee, So-Ra; Lee, Jong-Un; Chon, Hyo-Taek

2014-05-01

371

Fractone-associated N-sulfated heparan sulfate shows reduced quantity in BTBR T+tf/J mice, a strong model of autism  

PubMed Central

BTBR T+tf/J (BTBR) mice show abnormal social, communicatory, and repetitive/stereotyped behaviors paralleling many of the symptoms of autism spectrum disorders. BTBR also show agenesis of the corpus callosum (CC) suggesting major perturbations of growth or guidance factors in the dorsal forebrain [1]. Heparan sulfate (HS) is a polysaccaride found in the brain and other animal tissues. It binds to a wide variety of ligands and through these ligands modulates a number of biological processes, including cell proliferation and differentiation, migration and guidance. It is aggregated on fractal-like structures (fractones) in the subventricular zone (SVZ), that may be visualized by laminin immunoreactivity (LAM-ir), as well as by HS immunoreactivity (HS-ir). We report that the lateral ventricles of BTBR mice were drastically reduced in area compared to C57BL/6J (B6) mice while the BTBR SVZ was significantly shorter than that of B6. In addition to much smaller fractones for BTBR, both HS and LAM-ir associated with fractones were significantly reduced in BTBR, and their anterior-posterior distributions were also altered. Finally, the ratio of HS to LAM in individual fractones was significantly higher in BTBR than in B6 mice. These data, in agreement with other findings linking HS to callosal development, suggest that variations in the quantity and distribution of HS in the SVZ of the lateral ventricles may be important modulators of the brain structural abnormalities of BTBR mice, and, potentially, contribute to the behavioral pathologies of these animals. PMID:22101175

Meyza, Ksenia Z.; Blanchard, D. Caroline; Pearson, Brandon L.; Pobbe, Roger L.H.; Blanchard, Robert J.

2012-01-01

372

Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria  

NASA Astrophysics Data System (ADS)

The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration of plutonium in the subsurface.

Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

2009-12-01

373

Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper.  

PubMed

The solubility of Cd in contaminated paddy soils controls Cd uptake by rice, which is an important food safety issue. We investigated the solution and solid-phase dynamics of Cd in a paddy soil spiked with ?20 mg kg(-1) Cd during 40 days of soil reduction followed by 28 days of soil reoxidation as a function of the amounts of sulfate available for microbial reduction and of Cu that competes with Cd for precipitation with biogenic sulfide. At an excess of sulfate over (Cd + Cu), dissolved Cd decreased during sulfate reduction and Cd was transformed into a poorly soluble phase identified as Cd-sulfide using Cd K-edge X-ray absorption spectroscopy (XAS). The extent of Cd-sulfide precipitation decreased with decreasing sulfate and increasing Cu contents, even if sulfate exceeded Cd. When both Cu and Cd exceeded sulfate, dissolved and mobilizable Cd remained elevated after 40 days of soil reduction. During soil reoxidation, Cd-sulfide was readily transformed back into more soluble species. Our data suggest that Cd-sulfide formation in flooded paddy soil may be limited when the amounts of Cd and other chalcophile metals significantly exceed reducible sulfate Therefore, in multimetal contaminated paddy soils with low sulfate contents, Cd may remain labile during soil flooding, which enhances the risk for Cd transfer into rice. PMID:24171446

Fulda, Beate; Voegelin, Andreas; Kretzschmar, Ruben

2013-11-19

374

Nitrate?reducing and ammonium?oxidizing bacteria in the vadose zone of the chalk aquifer of England  

Microsoft Academic Search

The vadose zone of the Chalk aquifer from two sites of different land use was found to contain large numbers of nitrate?reducing and ammonium?oxidizing bacteria. Relationships between the type of bacteria and nitrogen compounds produced showed that denitrification was occurring beneath the permanent grassland site, whereas the vadose zone beneath the fertilized arable site was essentially aerobic and little attenuation

K. Whitelaw; J. F. Rees

1980-01-01

375

Effect of sulfate addition on methane production and sulfate reduction in a mesophilic acetate-fed anaerobic reactor.  

PubMed

A mesophilic anaerobic moving bed biofilm reactor (MBBR) was operated to evaluate the effect of sulfate addition on methane production and sulfate reduction using acetate as the sole carbon source. The results show that at the organic loading rate of 4.0 g TOC/L/day, the TOC removal efficiencies and the biogas production rates achieved over 95 % and 7000 mL/L/day without sulfate, respectively, and slightly decreased with sulfate addition (500-800 mg/L). Methane production capacities were not influenced significantly with the addition of sulfate, while sulfate reduction efficiencies were not stable with 23-87 % in the acetate-fed reactor. Fluorescent in situ hybridization (FISH) was used to analyze the functional microbial compositions of acetate-degrading methane-producing bacteria (MPB) and sulfate-reducing bacteria (SRB) in the reactor. The results found that as the increase of sulfate concentration, the proportion of Methanomicrobiales increased up to 58?±?2 %, while Methanosaeta and Methanosarcina decreased. The dominant methanogens shifted into hydrogenotrophic methanogens from even distribution of acetoclastic and hydrogenotrophic methanogens. When hydrogenotrophic methanogens were dominant, sulfate reduction efficiency was high, while sulfate reduction efficiency was low as acetoclastic methanogens were dominant. PMID:25427678

Yang, Sen-Lin; Tang, Yue-Qin; Gou, Min; Jiang, Xia

2015-04-01

376

Sulfate inhibition of molybdate assimilation by planktonic algae and bacteria: some implications for the aquatic nitrogen cycle  

Microsoft Academic Search

Molybdenum is required for both dinitrogen fixation and nitrate assimilation. In oxic waters the primary form of molybdenum is the molybdate anion. Using radioactive [99Mol Na2MoO4, we have shown that the transport of molybdate by a natural assemblage of freshwater phytoplankton is light-dependent and follows typical saturation kinetics. The molybdate anion is strikingly similar to sulfate and we present data

Jonathan J. Cole; Robert W. Howarth; Scott S. Nolan; Roxanne Marino

1986-01-01

377

Removal of chromium and lead by a sulfate-reducing consortium using peat moss as carbon source.  

PubMed

The effect of pre-treated peat moss on the ability of a sulfate-reducing microbial consortium to remove chromium and lead in solution was evaluated. The most active bacterial community (235.7 mmol H2S/g VSS) was selected from among eight consortia. The peat moss was pre-treated with different HCl concentrations and contact times. The best combination of treatments was 20% HCl for 10 min. The constant substrate affinity Ks was 740 mg COD/L and the ratio COD/SO4(2-) was 0.71. At pH 5, higher production of biogenic sulfide was observed. The up-flowpacked bed bioreactor operated at a flow of 8.3 mL/min for 180 h to obtain removal efficiency (by sulfate-reducing activity) of 90% lead and 65% chromium. It is important to consider that peat moss is a natural adsorbent that further influences the removal efficiency of metal ions. PMID:23859988

Márquez-Reyes, Julia Mariana; López-Chuken, Ulrico Javier; Valdez-González, Arcadio; Luna-Olvera, Hugo Alberto

2013-09-01

378

Effects of dietary inorganic sulfate levels on growth performance and markers of intestinal inflammation in growing pigs  

Technology Transfer Automated Retrieval System (TEKTRAN)

Co-products from the ethanol industry may contain moderate amounts of inorganic sulfur. In the digestive tract, inorganic sulfate can be reduced to hydrogen sulfide by sulfate-reducing bacteria. Hydrogen sulfide has been found to alter the inflammatory response in cell culture and rodent models, b...

379

The effect of decreasing alkalinity on microbial community dynamics in a sulfate-reducing bioreactor as analyzed by PCR-SSCP  

Microsoft Academic Search

PCR-single-strand conformation polymorphism (SSCP) and Southern blotting techniques were adopted to investigate microbial\\u000a community dynamics in a sulfate-reducing bioreactor caused by decreasing influent alkalinity. Experimental results indicated\\u000a that the sulfate-removal rate approached 87% in 25 d under the conditions of influent alkalinity of 4000 mg\\/L (as CaCO3) and sulfate-loading rate of 4.8 g\\/(L·d), which indicated that the bioreactor started up

Nanqi Ren; Yangguo Zhao; Aijie Wang; Chongyang Gao; Huaixiang Shang; Yiwei Liu; Chunli Wan

2006-01-01

380

Sulfate Reduction Potential in Sediments in the Norilsk Mining Area, Northern Siberia  

Microsoft Academic Search

The purpose of this study was to characterize the distribution and activity of sulfate-reducing bacteria in tailings and sediments impacted by effluents from mining and smelting operations in the Norilsk area in northern Siberia. The Norilsk mining complex involves three smelter operations, a hydrometallurgical plant, and extensive tailings areas located in the permafrost zone. Sulfate reduction rates measured with a

Olia V. Karnachuk; Nikolay V. Pimenov; Sandjar K. Yusupov; Yulia A. Frank; Anna H. Kaksonen; Jaakko A. Puhakka; Mikhail V. Ivanov; E. Börje Lindström; Olli H. Tuovinen

2005-01-01

381

Physiological role for nitrate-reducing oral bacteria in blood pressure control  

PubMed Central

Circulating nitrate (NO3?), derived from dietary sources or endogenous nitric oxide production, is extracted from blood by the salivary glands, accumulates in saliva, and is then reduced to nitrite (NO2?) by the oral microflora. This process has historically been viewed as harmful, because nitrite can promote formation of potentially carcinogenic N-nitrosamines. More recent research, however, suggests that nitrite can also serve as a precursor for systemic generation of vasodilatory nitric oxide, and exogenous administration of nitrate reduces blood pressure in humans. However, whether oral nitrate-reducing bacteria participate in “setting” blood pressure is unknown. We investigated whether suppression of the oral microflora affects systemic nitrite levels and hence blood pressure in healthy individuals. We measured blood pressure (clinic, home, and 24-h ambulatory) in 19 healthy volunteers during an initial 7-day control period followed by a 7-day treatment period with a chlorhexidine-based antiseptic mouthwash. Oral nitrate-reducing capacity and nitrite levels were measured after each study period. Antiseptic mouthwash treatment reduced oral nitrite production by 90% (p < 0.001) and plasma nitrite levels by 25% (p = 0.001) compared to the control period. Systolic and diastolic blood pressure increased by 2–3 .5 mm Hg, increases correlated to a decrease in circulating nitrite concentrations (r2 = 0.56, p = 0.002). The blood pressure effect appeared within 1 day of disruption of the oral microflora and was sustained during the 7-day mouthwash intervention. These results suggest that the recycling of endogenous nitrate by oral bacteria plays an important role in determination of plasma nitrite levels and thereby in the physiological control of blood pressure. PMID:23183324

Kapil, Vikas; Haydar, Syed M.A.; Pearl, Vanessa; Lundberg, Jon O.; Weitzberg, Eddie; Ahluwalia, Amrita

2013-01-01

382

In-Situ Survival Mechanisms of U and Tc Reducing Bacteria in Contaminated Sediments  

SciTech Connect

Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 are model subsurface organisms for studying genes involving in situ radionuclide transformation and sediment survival. Our research objective for this project has been to develop a signature-tagged mutagenesis (STM) procedure and use it to identify mutants in genes of these subsurface bacteria involved in sediment survival and radionuclide reduction. The mutant genes identified in these studies allow us for the first time to describe at the genetic level microbial processes that are actually being used by environmental bacteria while growing in their natural ecosystems. Identification of these genes revealed facets of microbial physiology and ecology that are not accessible through laboratory studies. Ultimately, this information may be used to optimize bioremediation or other engineered microbial processes. Furthermore, the identification of a mutant in a gene conferring multidrug resistance in strain MR-1 shows that this widespread mechanism of antibiotic resistance, likely has its origins as a mechanism of bacterial defense against naturally occurring toxins. Studies with D. desulfuricans G20: The STM procedure first involved generating a library of 5760 G20 mutants and screening for potential non-survivors in subsurface sediment microcosms. After two rounds of screening, a total of 117 mutants were confirmed to be true non-survivors. 97 transposon insertion regions have been sequenced to date. Upon further analysis of these mutants, we classified the sediment survival genes into COG functional categories. STM mutant insertions were located in genes encoding proteins related to metabolism (33%), cellular processes (42%), and information storage and processing (17%). We also noted 8% of STM mutants identified had insertions in genes for hypothetical proteins or unknown functions. Interestingly, at least 64 of these genes encode cytoplasmic proteins, 46 encode inner membrane proteins, and only 7 encode periplasmic space and outer membrane associated proteins. Through blast search analysis, we also showed that 81 out of 94 proteins shown to be important in sediment survival have homologs in D. vulgaris, 70 have homologs in Geobacter metallireducens, and 69 have homologs in Geobacter sulfurreducens PCA. Some interesting proteins include ribonucleotide reductase and chemotaxis related proteins. Ribonucleotide reductase catalyzes the reductive synthesis of deoxyribonucleotides from their corresponding ribonucleotides, providing the precursors necessary for DNA synthesis. Two ribonucleotide reductase genes (nrdE, nrdD) were found to be essential for G20 survival in the sediment, but not essential for growth in the lactate-sulfate medium. Bacterial methyl-accepting chemotaxis proteins (MCP) respond to changes in the concentration of attractants and repellents in the environment.

Krumholz, Lee R.

2005-06-01

383

MAGNESIUM SULFATE REDUCES INFLAMMATION-ASSOCIATED BRAIN INJURY IN FETAL MICE  

PubMed Central

OBJECTIVE To investigate whether magnesium sulfate (MgSO4) prevents fetal brain injury in inflammation-associated preterm birth (PTB). STUDY DESIGN Utilising a mouse model of PTB, LPS or normal saline (NS)-exposed mice via intrauterine injection, were randomized to intraperitoneal treatment with MgSO4 or NS. From the 4 treatment groups, 1)NS+NS; 2)LPS+NS; 3)LPS+MgSO4; and 4)NS+MgSO4, fetal brains were collected for QPCR studies and primary neuronal cultures. mRNA expression of cytokines, cell death, and markers of neuronal and glial differentiation were assessed. Immunocytochemistry and confocal microscopy were performed. RESULTS There was no difference between LPS+NS and LPS+MgSO4 groups in expression of pro-inflammatory cytokines, cell death markers as well markers of pro-oligodendrocyte and astrocyte development (P>0.05 for all). Neuronal cultures from LPS+NS demonstrated morphological changes and this neuronal injury was prevented by MgSO4 (P<0.001). CONCLUSION Amelioration of neuronal injury in inflammation-associated PTB may be a key mechanism by which MgSO4 prevents cerebral palsy. PMID:20207246

Burd, Irina; Breen, Kelsey; Friedman, Alexander; Chai, Jinghua; Elovitz, Michal A.

2010-01-01

384

Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol.  

PubMed

A new mesophilic sulfate-reducing bacterium, strain Groll, was isolated from a benzoate enrichment culture inoculated with black mud from a freshwater ditch. The isolate was a spore-forming, rod-shaped, motile, gram-positive bacterium. This isolate was able of complete oxidation of several aromatic compounds including phenol, catechol, benzoate, p- and m-cresol, benzyl alcohol and vanillate. With hydrogen and carbon dioxide, formate or O-methylated aromatic compounds, autotrophic growth during sulfate reduction or homoacetogenesis was demonstrated. Lactate was not used as a substrate. SO4(2-), SO3(2-), and S2O3(2-) were utilized as electron acceptors. Although strain Groll originated from a freshwater habitat, salt concentrations of up to 30 g.l-1 were tolerated. The optimum temperature for growth was 35-37 degrees C. The G + C content of DNA was 42.1 mol%. This isolate is described as a new species of the genus Desulfotomaculum. PMID:8481092

Kuever, J; Kulmer, J; Jannsen, S; Fischer, U; Blotevogel, K H

1993-01-01

385

Unusual Starch Degradation Pathway via Cyclodextrins in the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus fulgidus Strain 7324?  

PubMed Central

The hyperthermophilic archaeon Archaeoglobus fulgidus strain 7324 has been shown to grow on starch and sulfate and thus represents the first sulfate reducer able to degrade polymeric sugars. The enzymes involved in starch degradation to glucose 6-phosphate were studied. In extracts of starch-grown cells the activities of the classical starch degradation enzymes, ?-amylase and amylopullulanase, could not be detected. Instead, evidence is presented here that A. fulgidus utilizes an unusual pathway of starch degradation involving cyclodextrins as intermediates. The pathway comprises the combined action of an extracellular cyclodextrin glucanotransferase (CGTase) converting starch to cyclodextrins and the intracellular conversion of cyclodextrins to glucose 6-phosphate via cyclodextrinase (CDase), maltodextrin phosphorylase (Mal-P), and phosphoglucomutase (PGM). These enzymes, which are all induced after growth on starch, were characterized. CGTase catalyzed the conversion of starch to mainly ?-cyclodextrin. The gene encoding CGTase was cloned and sequenced and showed highest similarity to a glucanotransferase from Thermococcus litoralis. After transport of the cyclodextrins into the cell by a transport system to be defined, these molecules are linearized via a CDase, catalyzing exclusively the ring opening of the cyclodextrins to the respective maltooligodextrins. These are degraded by a Mal-P to glucose 1-phosphate. Finally, PGM catalyzes the conversion of glucose 1-phosphate to glucose 6-phosphate, which is further degraded to pyruvate via the modified Embden-Meyerhof pathway. PMID:17921308

Labes, Antje; Schönheit, Peter

2007-01-01

386

Thermodesulfobacterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park  

SciTech Connect

A novel sulfate-reducing bacterium designated OPF15T was isolated from Obsidian Pool, Yellowstone National Park, Wyoming. The phylogeny of 16S rRNA and functional genes (dsrAB) placed the organism within the family Thermodesulfobacteriaceae. The organism displayed hyperthermophilic temperature requirements for growth with a range of 70 90 C and an optimum of 83 C. Optimal pH was around 6.5 7.0 and the organism required the presence of H2 or formate as an electron donor and CO2 as a carbon source. Electron acceptors supporting growth included sulfate, thiosulfate, and elemental sulfur. Lactate, acetate, pyruvate, benzoate, oleic acid, and ethanol did not serve as electron donors. Membrane lipid analysis revealed diacyl glycerols and acyl/ether glycerols which ranged from C14:0 to C20:0. Alkyl chains present in acyl/ether and diether glycerol lipids ranged from C16:0 to C18:0. Straight, iso- and anteiso-configurations were found for all lipid types. The presence of OPF15T was also shown to increase cellulose consumption during co-cultivation with Caldicellulosiruptor obsidiansis, a fermentative, cellulolytic extreme thermophile isolated from the same environment. On the basis of phylogenetic, phenotypic, and structural analyses, Thermodesulfobacterium geofontis sp. nov. is proposed as a new species with OPF15T representing the type strain.

Hamilton-Brehm, Scott [ORNL; Gibson, Robert [NIOZ Royal Netherlands Institute for Sea Research; Green, Stefan [University of Illinois, Chicago; Hopmans, Ellen [NIOZ Royal Netherlands Institute for Sea Research; Schouten, Stefan [NIOZ Royal Netherlands Institute for Sea Research; van der Meer, Marcel T. J. [NIOZ Royal Netherlands Institute for Sea Research; Shields, John [University of Georgia, Athens, GA; S. Damste, Jaap S. [NIOZ Royal Netherlands Institute for Sea Research; Elkins, James G [ORNL

2013-01-01

387

Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus.  

PubMed

The thermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain VC-16 (DSM 4304), which is known to oxidize fatty acids and n-alkenes, was shown to oxidize saturated hydrocarbons (n-alkanes in the range C10-C21) with thiosulfate or sulfate as a terminal electron acceptor. The amount of n-hexadecane degradation observed was in stoichiometric agreement with the theoretically expected amount of thiosulfate reduction. One of the pathways used by anaerobic microorganisms to activate alkanes is addition to fumarate that involves alkylsuccinate synthase as a key enzyme. A search for genes encoding homologous enzymes in A. fulgidus identified the pflD gene (locus-tag AF1449) that was previously annotated as a pyruvate formate lyase. A phylogenetic analysis revealed that this gene is of bacterial origin and was likely acquired by A. fulgidus from a bacterial donor through a horizontal gene transfer. Based on three-dimensional modeling of the corresponding protein and molecular dynamic simulations, we hypothesize an alkylsuccinate synthase activity for this gene product. The pflD gene expression was upregulated during the growth of A. fulgidus on an n-alkane (C16) compared with growth on a fatty acid. Our results suggest that anaerobic alkane degradation in A. fulgidus may involve the gene pflD in alkane activation through addition to fumarate. These findings highlight the possible importance of hydrocarbon oxidation at high temperatures by A. fulgidus in hydrothermal vents and the deep biosphere. PMID:24763368

Khelifi, Nadia; Amin Ali, Oulfat; Roche, Philippe; Grossi, Vincent; Brochier-Armanet, Céline; Valette, Odile; Ollivier, Bernard; Dolla, Alain; Hirschler-Réa, Agnès

2014-11-01

388

Desulfonatronum paiuteum sp. nov.: A New Alkaliphilic, Sulfate-Reducing Bacterium, Isolated from Soda Mono Lake, California  

NASA Technical Reports Server (NTRS)

A novel alkaliphilic, sulfate reducing bacterium strain MLF1(sup T) was isolated from sediments of soda Mono Lake, California. Gram-negative vibrion cells, motile by singular polar flagellum, with sizes 0.5 - 0.6x 1.2 - 2.0 micron occurred singly, in pairs or short spirilla. Growth was observed over the temperature range of +15 C to +48 C (optimum +37 C), NaCl concentration range is greater than 1 - 7 %, wt/vol (optimum 3 %, wt/vol) and pH range 7.8 - 10.5 (optimum pH 9.0 - 9.4). The novel isolate is strictly alkaliphilic, requires high carbonate concentration in medium, obligately anaerobic and catalase negative. As electron donors strain MLF1(sup T) uses hydrogen, formate, ethanol. Sulfate, sulfite, and thiosulfate (but not sulfur or nitrate) can be used as electron acceptors. The sole end product of growth on formate was H2S. Strain MLF1(sup T) is resistant to kanamycin and gentamycin, but sensitive to chloramphenicol and tetracycline. Na2MoO4 inhibits growth of strain MLF1(sup T). The sum of G+C in DNA is 63.1 mol% (by HPLC method). On the basis of physiological and molecular properties, the isolate was considered as novel species of genus Desulfonatronum; and the name Desulfonatronum paiuteum sp. nov., is proposed (type strain MLF1(sup T) = ATCC BAA-395(sup T) = DSMZ 14708(sup T).

Pikuta, Elena; Hoover, Richard B.; Marsic, Damien; Whitman, William; Cleland, David; Krader, Paul; Six, N. Frank (Technical Monitor)

2002-01-01

389

Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria.  

PubMed

Iron reduction and mercury methylation by dissimilatory iron-reducing bacteria (DIRB), Geobacter sulfurreducens and Shewanella oneidensis, were studied, and the relationship of mercury methylation coupled to iron reduction was determined. The ability of both bacteria for reducing iron was tested, and Fe(III) reduction occurred with the highest rate when ferric oxyhydroxide was used as a terminal electron acceptor. G. sulfurreducens had proven to mediate the production of methylmercury (MeHg), and a notable increase of MeHg following the addition of inorganic Hg was observed. When the initial concentration of HgCl2 was 500nM, about 177.03nM of MeHg was determined at 8d after G. sulfurreducens inoculation. S. oneidensis was tested negligible for Hg methylation and only 12.06nM of MeHg was determined. Iron reduction could potentially influence Hg methylation rates. The increase in MeHg was consistent with high rate of iron reduction, indicating that Fe(III) reduction stimulated the formation of MeHg. Furthermore, the net MeHg concentration increased at low Fe(III) additions from 1.78 to 3.57mM, and then decreased when the added Fe(III) was high from 7.14 to 17.85mM. The mercury methylation rate was suppressed with high Fe(III) additions, which might have been attributable to mercury complexation and low availability. PMID:25496739

Si, Youbin; Zou, Yan; Liu, Xiaohong; Si, Xiongyuan; Mao, Jingdong

2015-03-01

390

Prewashing with acidified sodium chlorite reduces pathogenic bacteria in lightly fermented Chinese cabbage.  

PubMed

Efficacy of prewashing with acidified sodium chlorite (ASC) for the sanitation of lightly fermented Chinese cabbage was evaluated. The population of the natural microflora on the cabbage leaves was reduced about 2.0 log CFU/g just after washing with ASC, a significant reduction compared with the control distilled water wash (P < or = 0.05). In the control experiment, viable aerobic bacteria increased gradually when incubated at 10 degrees C; however, ASC-washed cabbage maintained a lower microbial concentration. The treatment of Chinese cabbage with ASC reduced the population of artificially inoculated Escherichia coli O157:H7, Salmonella Enteritidis, Staphylococcus aureus, and Listeria monocytogenes by 2.4 log CFU/g. The sanitation efficacy of ASC was 1.6 log CFU/g higher than that of distilled water washing. The viable cell counts of all pathogenic bacteria tested remained constant during 8 days of storage at 10 degrees C for both washing treatments, with the exception of L. monocytogenes, whose viable cell counts increased gradually with time for both treatments. No significant differences in color, odor, taste, and texture in raw leaves were observed after the ASC wash compared with after the distilled water wash. These results indicate that prewashing with ASC could control bacterial growth in lightly fermented Chinese cabbage without changing the product quality. PMID:15895733

Inatsu, Yasuhiro; Maeda, Yutaka; Bari, M L; Kawasaki, Susumu; Kawamoto, Shinichi

2005-05-01

391

Influence of headspace composition on product diversity by sulphate reducing bacteria biocathode.  

PubMed

Mixed culture of sulphate reducing bacteria named TERI-MS-003 was used for development of biocathode on activated carbon fabric fastened to stainless steel mesh for conversion of volatile fatty acids to reduced organic compounds under chronoamperometric conditions of -0.85V vs. Ag/AgCl (3.5M KCl). A range of chemicals were bioelectrosynthesized, however the gases present in headspace environment of the bioelectrochemical reactor governed the product profile. Succinate, ethanol, hydrogen, glycerol and propionate were observed to be the predominant products when the reactor was hermetically sealed. On the other hand, acetone, propionate, isopropanol, propanol, isobutyrate, isovalerate and heptanoate were the predominant products when the reactor was continuously sparged with nitrogen. This study highlights the importance of head space composition in order to manoeuvre the final product profile desired during a microbial electro-synthesis operation and the need for simultaneously developing effective separation and recovery strategies from an economical and practical standpoint. PMID:24726774

Sharma, Mohita; Varanasi, Jhansi L; Jain, Pratiksha; Dureja, Prem; Lal, Banwari; Dominguez-Benetton, Xochitl; Pant, Deepak; Sarma, Priyangshu M

2014-08-01

392

Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines  

PubMed Central

Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55°C. Most-probable number (MPN) analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG) scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy) was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy), while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm2, while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens. PMID:24639674

Liang, Renxing; Grizzle, Robert S.; Duncan, Kathleen E.; McInerney, Michael J.; Suflita, Joseph M.

2014-01-01

393

Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds.  

PubMed

Bark beetles encounter a diverse array of constitutive and rapidly induced terpenes when attempting to colonize living conifers. Concentrations of these compounds at entry sites can rapidly reach levels toxic to beetles, their brood, and fungal symbionts. Large numbers of beetles can overwhelm tree defenses via pheromone-mediated mass attacks, but the mechanisms are poorly understood. We show that bacteria associated with mountain pine beetles can metabolize monote