Note: This page contains sample records for the topic sulfate reducing bacteria from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Sulfate-reducing bacteria in anaerobic bioreactors  

Microsoft Academic Search

The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrence of sulfate reduction was considered to be undesired. However, there are some recent developments in which sulfate

S. J. W. H. Oude Elferink

1998-01-01

2

Why do sulfate-reducing bacteria outcompete methanogenic bacteria for substrates?  

Microsoft Academic Search

The apparent Ks values for H2 of several phylogenetically distant strains of both methanogenic bacteria and sulfate-reducing bacteria were measured. The sulfate reducers had Ks values of about 2 µM whereas the Ks values of the methanogens were 6–20 µM. This indicates that probably all sulfate-reducing bacteria have a higher substrate affinity for H2 than the methanogenic bacteria. Difference in

J. K. Kristjansson; P. Schönheit

1983-01-01

3

Hydrogenases in sulfate-reducing bacteria function as chromium reductase  

Microsoft Academic Search

The ability of sulfate-reducing bacteria (SRB) to reduce chromate VI has been studied for possible application to the decontamination of polluted environments. Metal reduction can be achieved both chemically, by H 2S produced by the bacteria, and enzymatically, by polyhemic cytochromes c 3. We demonstrate that, in addition to low potential polyheme c-type cytochromes, the ability to reduce chromate is

B. Chardin; M.-T. Giudici-Orticoni; G. De Luca; B. Guigliarelli; M. Bruschi

2003-01-01

4

Methods for Engineering Sulfate Reducing Bacteria of the Genus Desulfovibrio  

SciTech Connect

Sulfate reducing bacteria are physiologically important given their nearly ubiquitous presence and have important applications in the areas of bioremediation and bioenergy. This chapter provides details on the steps used for homologous-recombination mediated chromosomal manipulation of Desulfovibrio vulgaris Hildenborough, a well-studied sulfate reducer. More specifically, we focus on the implementation of a 'parts' based approach for suicide vector assembly, important aspects of anaerobic culturing, choices for antibiotic selection, electroporation-based DNA transformation, as well as tools for screening and verifying genetically modified constructs. These methods, which in principle may be extended to other sulfate-reducing bacteria, are applicable for functional genomics investigations, as well as metabolic engineering manipulations.

Chhabra, Swapnil R; Keller, Kimberly L.; Wall, Judy D.

2011-03-15

5

Remediation of acid mine drainage with sulfate reducing bacteria  

SciTech Connect

Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed changes in dissolved metal concentrations and pH. Using synthetic acid mine drainage and combinations of inputs, students monitor their bioreactors for decreases in dissolved copper and iron concentrations.

Hauri, J.F.; Schaider, L.A. [Assumption College, Worcester, MA (USA)

2009-02-15

6

Commensal symbiosis between agglutinated polychaetes and sulfate-reducing bacteria.  

PubMed

Pendant bioconstructions occur within submerged caves in the Plemmirio Marine Protected Area in SE Sicily, Italy. These rigid structures, here termed biostalactites, were synsedimentarily lithified by clotted-peloidal microbial carbonate that has a high bacterial lipid biomarker content with abundant compounds derived from sulfate-reducing bacteria. The main framework builders are polychaete serpulid worms, mainly Protula with subordinate Semivermilia and Josephella. These polychaetes have lamellar and/or fibrillar wall structure. In contrast, small agglutinated terebellid tubes, which are a minor component of the biostalactites, are discontinuous and irregular with a peloidal micritic microfabric. The peloids, formed by bacterial sulfate reduction, appear to have been utilized by terebellids to construct tubes in an environment where other particulate sediment is scarce. We suggest that the bacteria obtained food from the worms in the form of fecal material and/or from the decaying tissue of surrounding organisms and that the worms obtained peloidal micrite with which to construct their tubes, either as grains and/or as tube encompassing biofilm. Peloidal worm tubes have rarely been reported in the recent but closely resemble examples in the geological record that extend back at least to the early Carboniferous. This suggests a long-lived commensal relationship between some polychaete worms and heterotrophic, especially sulfate-reducing, bacteria. PMID:24636469

Guido, A; Mastandrea, A; Rosso, A; Sanfilippo, R; Tosti, F; Riding, R; Russo, F

2014-05-01

7

Corrosion control in the presence of sulfate-reducing bacteria  

SciTech Connect

Impressed current and magnesium anode-type cathodic protection usually provide appreciable protection to the buried and underground telephone plant. However, in the laboratory, a medium containing sulfate-reducing bacteria (SRB) strongly reduces the output current from the magnesium anode. This explains the lack of success with magnesium anodes in the field where the ratio of protected surface area to current output is orders of magnitude higher than in the laboratory test. Low concentrations of sodium hypochlorite (NaOCl) additive to the solution provide minimal protection. However, high concentrations and/or aeration can eliminate the high concentration of SRB in the aqueous medium.

Schick, G. (Bellcore, Morristown, NJ (US))

1990-07-01

8

Quantifying sulfate reducing bacteria in microbiologically influenced corrosion. (Reannouncement with new availability information). Final report  

Microsoft Academic Search

Iron-oxidizing, sulfur-oxidizing, iron-reducing, sulfate-reducing, acid producing, slime-producing, ammonium-producing, and hydrogen-producing bacteria in addition to other physiological groups have been implicated in the corrosion of metals and alloys. However, the most widely recognized and most easily detected bacteria in most corrosion processes are the bacteria that reduce sulfate to sulfide that are collectively called sulfate-reducing bacteria (SRB). SRB constitute a physiological-ecological

B. Little; P. Wagner

1992-01-01

9

Reduction of molybdate by sulfate-reducing bacteria.  

PubMed

Molybdate is an essential trace element required by biological systems including the anaerobic sulfate-reducing bacteria (SRB); however, detrimental consequences may occur if molybdate is present in high concentrations in the environment. While molybdate is a structural analog of sulfate and inhibits sulfate respiration of SRB, little information is available concerning the effect of molybdate on pure cultures. We followed the growth of Desulfovibrio gigas ATCC 19364, Desulfovibrio vulgaris Hildenborough, Desulfovibrio desulfuricans DSM 642, and D. desulfuricans DSM 27774 in media containing sub-lethal levels of molybdate and observed a red-brown color in the culture fluid. Spectral analysis of the culture fluid revealed absorption peaks at 467, 395 and 314 nm and this color is proposed to be a molybdate-sulfide complex. Reduction of molybdate with the formation of molybdate disulfide occurs in the periplasm D. gigas and D. desulfuricans DSM 642. From these results we suggest that the occurrence of poorly crystalline Mo-sulfides in black shale may be a result from SRB reduction and selective enrichment of Mo in paleo-seawater. PMID:19130259

Biswas, Keka C; Woodards, Nicole A; Xu, Huifang; Barton, Larry L

2009-02-01

10

Anaerobic degradation of benzene by marine sulfate-reducing bacteria  

NASA Astrophysics Data System (ADS)

Benzene, the archetypal aromatic hydrocarbon is a common constituent of crude oil and oil-refined products. As such, it can enter the biosphere through natural oil seeps or as a consequence of exploitation of fossil fuel reservoirs. Benzene is chemically very stable, due to the stabilizing aromatic electron system and to the lack of functional groups. Although the anaerobic degradation of benzene has been reported under denitrifying, sulfate-reducing and methanogenic conditions, the microorganisms involved and the initial biochemical steps of degradation remain insufficiently understood. Using marine sediment from a Mediterranean lagoon a sulfate-reducing enrichment culture with benzene as the sole organic substrate was obtained. Application of 16S rRNA gene-based methods showed that the enrichment was dominated (more than 85% of total cells) by a distinct phylotype affiliated with a clade of Deltaproteobacteria that include degraders of other aromatic hydrocarbons, such as naphthalene, ethylbenzene and m-xylene. Using benzoate as a soluble substrate in agar dilution series, several pure cultures closely related to Desulfotignum spp. and Desulfosarcina spp. were isolated. None of these strains was able to utilize benzene as a substrate and hybridizations with specific oligonucleotide probes showed that they accounted for as much as 6% of the total cells. Incubations with 13C-labeled benzene followed by Halogen in situ Hybridization - Secondary Ion Mass Spectroscopy (HISH-SIMS) analysis showed that cells of the dominant phylotype were highly enriched in 13C, while the accompanying bacteria had little or no 13C incorporation. These results demonstrate that the dominant phylotype was indeed the apparent benzene degrader. Dense-cell suspensions of the enrichment culture did not show metabolic activity toward added phenol or toluene, suggesting that benzene degradation did not proceed through anaerobic hydroxylation or methylation. Instead, benzoate was identified in analyses of metabolites with benzene-grown cultures, suggesting an activation of benzene via carboxylation.

Musat, Florin; Wilkes, Heinz; Musat, Niculina; Kuypers, Marcel; Widdel, Friedrich

2010-05-01

11

STUDIES ON THERMOPHILIC SULFATE-REDUCING BACTERIA II.  

PubMed Central

Akagi, J. M. (Western Reserve University, Cleveland, Ohio) and L. Leon Campbell. Studies on thermophilic sulfate-reducing bacteria. II. Hydrogenase activity of Clostridium nigrificans. J. Bacteriol. 82:927–932. 1961.—The hydrogenase of Clostridium nigrificans has been found to be associated with the cell-free particulate fraction which can be sedimented at 105,000 × g in 1 hr. The specific activity of this fraction was increased 2 to 3 fold over that of the crude extract. It was not found possible to liberate the enzyme from the particulate fraction by methods of enzymatic digestion, chemical extraction, or physical disruption. The optimum temperature for H2 utilization using benzyl viologen as an electron acceptor was found to be 55 C, and the optimum pH range was 7 to 8. Employing metal complexing agents it was found that the enzyme required Fe++ ions for H2 utilization. In contrast, Fe++ ions were not required to catalyze the evolution of H2 from reduced methyl viologen. The role of Fe++ ions in the hydrogenase activity of this organism is discussed.

Akagi, J. M.; Campbell, L. Leon

1961-01-01

12

Modeling Reduction of Uranium U(VI) under Variable Sulfate Concentrations by Sulfate-Reducing Bacteria  

PubMed Central

The kinetics for the reduction of sulfate alone and for concurrent uranium [U(VI)] and sulfate reduction, by mixed and pure cultures of sulfate-reducing bacteria (SRB) at 21 ± 3°C were studied. The mixed culture contained the SRB Desulfovibrio vulgaris along with a Clostridium sp. determined via 16S ribosomal DNA analysis. The pure culture was Desulfovibrio desulfuricans (ATCC 7757). A zero-order model best fit the data for the reduction of sulfate from 0.1 to 10 mM. A lag time occurred below cell concentrations of 0.1 mg (dry weight) of cells/ml. For the mixed culture, average values for the maximum specific reaction rate, Vmax, ranged from 2.4 ± 0.2 ?mol of sulfate/mg (dry weight) of SRB · h?1) at 0.25 mM sulfate to 5.0 ± 1.1 ?mol of sulfate/mg (dry weight) of SRB · h?1 at 10 mM sulfate (average cell concentration, 0.52 mg [dry weight]/ml). For the pure culture, Vmax was 1.6 ± 0.2 ?mol of sulfate/mg (dry weight) of SRB · h?1 at 1 mM sulfate (0.29 mg [dry weight] of cells/ml). When both electron acceptors were present, sulfate reduction remained zero order for both cultures, while uranium reduction was first order, with rate constants of 0.071 ± 0.003 mg (dry weight) of cells/ml · min?1 for the mixed culture and 0.137 ± 0.016 mg (dry weight) of cells/ml · min?1 (U0 = 1 mM) for the D. desulfuricans culture. Both cultures exhibited a faster rate of uranium reduction in the presence of sulfate and no lag time until the onset of U reduction in contrast to U alone. This kinetics information can be used to design an SRB-dominated biotreatment scheme for the removal of U(VI) from an aqueous source.

Spear, John R.; Figueroa, Linda A.; Honeyman, Bruce D.

2000-01-01

13

The function of sulfate-reducing bacteria in corrosion of potable water mains  

Microsoft Academic Search

Growing awareness of the detrimental effect of corrosion in conjunction with bacterial activity in potable drinking water systems has led to an increase in research sponsored by water companies. In particular, sulfate-reducing bacteria (SRB), found in anaerobic conditions underneath the main corrosion shell, are noted for their effects in promoting localized corrosion. This study investigates the presence of sulfate-reducing bacteria

A. D. Seth; R. G. J. Edyvean

2006-01-01

14

Novel thermophilic sulfate-reducing bacteria from a geothermally active underground mine in Japan.  

PubMed

Thermophilic sulfate-reducing bacteria were enriched from samples obtained from a geothermal underground mine in Japan. The enrichment cultures contained bacteria affiliated with the genera Desulfotomaculum, Thermanaeromonas, Thermincola, Thermovenabulum, Moorella, "Natronoanaerobium," and Clostridium. Two novel thermophilic sulfate-reducing strains, RL50JIII and RL80JIV, affiliated with the genera Desulfotomaculum and Thermanaeromonas, respectively, were isolated. PMID:16672530

Kaksonen, Anna H; Plumb, Jason J; Robertson, Wendy J; Spring, Stefan; Schumann, Peter; Franzmann, Peter D; Puhakka, Jaakko A

2006-05-01

15

STUDIES ON THERMOPHILIC SULFATE-REDUCING BACTERIA III.  

PubMed Central

Akagi, J. M. (University of Kansas, Lawrence) and L. Leon Campbell. Studies on thermophilic sulfate-reducing bacteria. III. Adenosine triphosphate-sulfurylase of Clostridium nigrificans and Desulfovibrio desulfuricans. J. Bacteriol. 84:1194–1201. 1962.—Adenosine triphosphate (ATP)-sulfurylase, which catalyzes the formation of adenosine-5?-phosphosulfate (APS) from ATP and SO4=, has been purified from crude extracts of Clostridium nigrificans and Desulfovibrio desulfuricans by (NH4)2SO4 fractionation and triethylaminoethyl column chromatography. The enzyme from both sources operates over a broad pH range from 6.0 to 9.5. Below pH 6.0, activity decreases sharply, with no detectable activity at pH 5.0. Of the nucleotides tested (ATP and the triphosphates of deoxyadenosine, uridine, inosine, and guanosine), only ATP was acted upon by the enzyme from either source. The enzyme requires Mg++ for activity. Incubation of the enzyme from both organisms with ATP and S35O4= in the presence of helium resulted in the formation of an S35-labeled nucleotide whose electrophoretic mobility was identical to that of chemically prepared APS. When incubated with ATP and the group VI anions (CrO4, MoO4, WO4), the enzyme from both organisms formed an unstable intermediate, resulting in the accumulation of pyrophosphate. Thermal stability studies revealed that the ATP-sulfurylase of C. nigrificans was stable at higher temperatures than the enzyme obtained from D. desulfuricans. Exposure of the enzyme from C. nigrificans to 65 C for 2 hr gave virtually no decrease in activity. In contrast, the enzyme from D. desulfuricans was completely inactivated after 30 min at 55 C, after 3 min at 60 C, or after 1 min at 65 C.

Akagi, J. M.; Campbell, L. Leon

1962-01-01

16

Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria. Final Report.  

National Technical Information Service (NTIS)

Bioremediation of radionuclides and metals in the subsurface necessitate an understanding of the metabolic capacities and interactions of the anaerobic microorganisms that are found there, including members of the sulfate-reducing bacteria (SRB). Genetic ...

J. D. Wall

2009-01-01

17

Scanning Auger Microprobe analysis of corrosion products associated with sulfate reducing bacteria.  

National Technical Information Service (NTIS)

A Scanning Auger Microprobe analysis was performed on the corrosion products of an austenitic AISI type 304 SS after a potentiostatic polarization of one volt for ten minutes in a modified Postgate's C media containing sulfate reducing bacteria. The corro...

R. A. Sadowski G. Chen C. R. Clayton J. R. Kearns J. B. Gillow

1995-01-01

18

Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments  

SciTech Connect

The numbers of sulfate reducers in two Arctic sediments with in situ temperatures of 2.6 and {minus}1.7C were determined. Most-probable-number counts were higher at 10 C than at 20 C, indicating the predominance of a psychrophilic community. Mean specific sulfate reduction rates of 19 isolated psychrophiles were compared to corresponding rates of 9 marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have considerably higher specific metabolic rates than their mesophilic counterparts at similarly low temperatures.

Knoblauch, C.; Joergensen, B.B.; Harder, J.

1999-09-01

19

Methods for enrichment and pure culture isolation of filamentous gliding sulfate-reducing bacteria  

Microsoft Academic Search

Multicellular gliding filaments were observed among high numbers of other bacteria on the bottom of anaerobic marine enrichment culture flasks with sulfate and acetate or benzoate as substrates. An electronmicroscopical grid fixed in a glass tube was used as a sieve to wash the filaments free from the bulk of smaller bacteria with sterile sulfide-reduced medium. Subsequent dilution series in

Friedrich Widdel; Universitfit Konstanz

1983-01-01

20

Sulfate reducing and methane producing bacteria in aerobic wastewater treatment systems  

Microsoft Academic Search

A selection of aerobic biofilm reactors and activated sludge plants were investigated for the presence of methane producing bacteria (MPB) and sulfate reducing bacteria (SRB). Detection tests showed that acetotrophic and hydrogenotrophic MPB as well as lactate, acetate and propionate oxidizing SRB were present in all reactor types investigated, except in an activated sludge reactor aerated with pure oxygen. Methane

P. N. Lens; M.-P. De Poorter; C. C. Cronenberg; W. H. Verstraete

1995-01-01

21

Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria  

USGS Publications Warehouse

Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum. Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+ ???SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O???SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.

Lovley, D. R.; Phillips, E. J. P.

1994-01-01

22

Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt)  

SciTech Connect

The sulfate-reducing bacteria within the surface layer of the hypersaline cyanobacterial mat of Solar Lake (Sinai, Egypt) were investigated with combined microbiological, molecular, and biogeochemical approaches. The diurnally oxic surface layer contained between 10{sup 6} and 10{sup 7} cultivable sulfate-reducing bacteria ml{sup {minus}1} day{sup {minus}1}, both in the same range as and sometimes higher than those in anaerobic deeper mat layers. In the oxic surface layer and in the mat layers below, filamentous sulfate-reducing Desulfonema bacteria were found in variable densities of 10{sup 4} and 10{sup 6} cells ml{sup {minus}1}. A Desulfonema-related, diurnally migrating bacterium was detected with PCR and denaturing gradient gel electrophoresis within and below the oxic surface layer. Facultative aerobic respiration, filamentous morphology, motility, diurnal migration, and aggregate formation were the most conspicuous adaptations of Solar Lake sulfate-reducing bacteria to the mat matrix and to diurnal oxygen stress. A comparison of sulfate reduction rates within the mat and previously published photosynthesis rates showed that CO{sub 2} from sulfate reduction in the upper 5 mm accounted for 7 to 8% of the total photosynthetic CO{sub 2} demand of the mat.

Teske, A.; Ramsing, N.B.; Habicht, K.; Kuever, J.; Joergensen, B.B. [Max Planck Inst. for Marine Microbiology, Bremen (Germany); Fukui, Manabu [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan); Cohen, Y. [Hebrew Univ. of Jerusalem (Israel)

1998-08-01

23

Colonization of aerobic biofilms by sulfate?reducing bacteria  

Microsoft Academic Search

The ability of the SRB Desulfovibrio desulfuricans to colonize aerobic heterotrophic or nitrifying biofilms on stainless steel surfaces was investigated by fluorescence in situ hybridization (FISH) in combination with confocal laser scanning microscopy (CLSM), the polymerase chain reaction (PCR) directed to the dissimilatory sulfite reductase and by oxygen microelectrodes. Biofilms of heterotrophic bacteria and of nitrifying bacteria pregrown on steel

Mary E Power; Jan Roelof Van Der Meer; Hauke Harms; Oskar Wanner

2001-01-01

24

Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm.  

PubMed

Biological sulfur removal can be achieved by reducing sulfate to sulfide with sulfate-reducing bacteria (SRB) and then oxidising sulfide to elemental sulfur (S(0)) with sulfide oxidising bacteria (SOB) for recovery. In sulfate-carbon wastewaters lacking electron acceptor for sulfide, excess sulfide will be produced and accumulated in the reactor. This study applied the microbial fuel cell (MFC) cultivated with the SRB+SOB anodic biofilm for treating the sulfate+organic carbon wastewaters. Excess sulfate ions were efficiently converted to sulfide by SRB cells in the biofilm, while the formed sulfide was diffused to the neighboring SOB cells to be irreversibly converted to S(0) with produced electrons being transferred to the anode. The cell-cell sulfide transport principally determined the electron flux of the MFC. Short diffusional distance of sulfide ions between cells significantly reduced the polarization resistances, hence enhancing performance of the MFC. PMID:24480414

Lee, Duu-Jong; Liu, Xiang; Weng, Hsiang-Ling

2014-03-01

25

Separation and concentration of hazardous metals from aqueous solutions using sulfate-reducing bacteria  

SciTech Connect

The removal of metals from aqueous solutions using sulfate-reducing bacteria was investigated. The sulfate-reducing bacteria utilized consisted of a consortium isolated from oil well brine. The consortium was capable of using lactate as a carbon and energy source and producing significant quantities of sulfide which reacted with solubilized metals to form insoluble metal sulfides. After formation, the metal sulfides were removed from solution via filtration. A variety of solubilized metals including lead, cadmium, cobalt, copper, iron, and chromium were removed from solution using sulfate-reducing bacteria. Removal efficiencies varied from metal to metal with lead exhibiting the highest levels of removal and chromium the lowest. 13 refs., 9 figs.

Apel, W.A.; Wiebe, M.R.; Dugan, P.R.

1990-01-01

26

Quantifying sulfate reducing bacteria in microbiologically influenced corrosion. (Reannouncement with new availability information). Final report  

SciTech Connect

Iron-oxidizing, sulfur-oxidizing, iron-reducing, sulfate-reducing, acid producing, slime-producing, ammonium-producing, and hydrogen-producing bacteria in addition to other physiological groups have been implicated in the corrosion of metals and alloys. However, the most widely recognized and most easily detected bacteria in most corrosion processes are the bacteria that reduce sulfate to sulfide that are collectively called sulfate-reducing bacteria (SRB). SRB constitute a physiological-ecological assemblage of morphologically very different types of anaerobic bacteria that have in common the capacity to reduce sulfate to hydrogen sulfide in dissimilatory energy-conserving reactions. Hydrogen sulfide can react with metals to produce metal sulfides as corrosion products. Most techniques for the evaluation of SRB populations are related to their potential to cause microbiologically influenced corrosion (MIC). Standard practices for evaluating the contribution of SRB to corrosion processes depend on the detection and quantification of SRB using culturing techniques that enumerate organisms or quantify intrinsic characteristics of SRB including enzymes and antibodies. Mineralogy of metal sulfides and sulfur isotope fractionation can also be used to verify the involvement of SRB in corrosion. This paper will review standard practices and innovative techniques for detecting and quantifying SRB.

Little, B.; Wagner, P.

1992-11-01

27

Evaluation of support materials for the immobilization of sulfate-reducing bacteria and methanogenic archaea  

Microsoft Academic Search

This paper reports on the adhesion of sulfate-reducing bacteria (SRB) and methanogenic archaea on polyurethane foam (PU), vegetal carbon (VC), low-density polyethylene (PE) and alumina-based ceramics (CE). Anaerobic differential reactors fed with a sulfate-rich synthetic wastewater were used to evaluate the formation of a biofilm. The PU presented the highest specific biomass concentration throughout the experiment, achieving 872mg TVS\\/g support,

A. J. Silva; J. S. Hirasawa; M. B. Varesche; E. Foresti; M. Zaiat

2006-01-01

28

Phylogenetic Characteristics of Sulfate-reducing Bacteria Having Ability to Reduce Polysulfide  

SciTech Connect

To find an efficient bacterium, which has the strong capacity to produce hydrogen sulfide from polysulfide as the waste of process generating hydrogen from hydrogen sulfide by photocatalytic reaction using sun light, is very important for constructing hydrogen producing system. 10 strains of sulfate-reducing bacteria (SRB), which can reduce polysulfide directly, have been isolated from various natural samples such as TCE contaminated soil, soil and sludge around hot spring environment, and the cooling tower of a geothermal plant. This study describes physiological and phylogenetic characterization of SRB which can reduce polysulfide. All of isolates had the ability to reduce polusulfide but these reduction rates were difference depend on isolates. Phylogetetically, all of isolates located difference position for general SRB including Desulfovibrio desulfuricans, which is used standard strain in this study, so they do not belong to Proteobacteria. These have close relation to the genus Desulfotomaculum which can reduce elemental sulfur. It suggests that the ability of reducing elemental sulfur is important for reducing polysulfide to hydrogen sulfide.

Takahashi, Yui; Suto, Koichi; Inoue, Chihiro; Chida, Tadashi [Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai (Japan)

2006-05-15

29

Influence of Sulfate-Reducing Bacteria on Alloy 625 and Austenitic Stainless Steel Weldments  

Microsoft Academic Search

A series of welded austenitic stainless steel and alloy 625 clad specimens were exposed to natural lake water inoculated with a mixed culture of anaerobic organisms high in sulfate-reducing bacteria. Total exposure was 300 days. The water and bacteria were taken from an actual service water system. Electrochemical testing included electrochemical impedance spectroscopy, monitoring of open-circuit potential (E{sub oc}), and

D. G. Enos; S. R. Taylor

1996-01-01

30

COMPUTER SIMULATOR (BEST) FOR DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS  

EPA Science Inventory

BEST (bioreactor economics, size and time of operation) is a spreadsheet-based model that is used in conjunction with public domain software, PhreeqcI. BEST is used in the design process of sulfate-reducing bacteria (SRB) field bioreactors to passively treat acid mine drainage (A...

31

Mine Waste Technology Program. In Situ Source Control Of Acid Generation Using Sulfate-Reducing Bacteria  

EPA Science Inventory

This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 3, In Situ Source Control of Acid Generation Using Sulfate-Reducing Bacteria, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S....

32

ADSORPTION OF RADIOACTIVE METALS BY STRONGLY MAGNETIC IRON SULFIDE NANOPARTICLES PRODUCED BY SULFATE-REDUCING BACTERIA  

Microsoft Academic Search

The adsorption of a number of radioactive ions from solution by a strongly magnetic iron sulfide material was studied. The material was produced by sulfate-reducing bacteria in a novel bioreactor. The uptake was rapid and loading on the adsorbent was high due to the high surface area of the adsorbent and because many of the ions were chemisorbed. The structural

J. H. P. Watson; I. W. Croudace; P. E. Warwick; P. A. B. James; J. M. Charnock; D. C. Ellwood

2001-01-01

33

DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS USING THE BEST MODEL  

EPA Science Inventory

BEST (bioreactor economics, size and time of operation) is a spreadsheet-based model that is used in conjunction with a public domain computer software package, PHREEQCI. BEST is intended to be used in the design process of sulfate-reducing bacteria (SRB)field bioreactors to pas...

34

DESIGNING SULFATE-REDUCING BACTERIA FIELD-BIOREACTORS USING THE BEST MODEL  

EPA Science Inventory

DESIGNING SULFATE-REDUCING BACTERIA FIELD-BIOREACTORS USING THE BEST MODEL Marek H. Zaluski1,3, Brian T. Park1, Diana R. Bless2 1 MSE Technology Applications; 200 Technology Way, Butte, Montana 59701, USA 2 U.S. EPA, Office of Research and Development, Cincinna...

35

Role of sulfate?reducing bacteria in corrosion of mild steel: A review  

Microsoft Academic Search

The influence of sulfate?reducing bacteria on corrosion of mild steel is reviewed, with special emphasis on the effects of biofilm structure and function, medium composition (dissolved oxygen and ferrous ion concentrations) and the physical and chemical properties of iron sulfides. A summary of different corrosion mechanisms is critically discussed, based on electrochemical and rate process analyses. A mechanism is proposed

Whonchee Lee; Zbigniew Lewandowski; Per H Nielsen; W Allan Hamilton

1995-01-01

36

Activity of sulfate-reducing bacteria in North Sea oil reservoirs.  

National Technical Information Service (NTIS)

The main objective of this thesis is to investigate activity of thermophilic sulfate-reducing bacteria (SRB) in waterflooded North Sea oil reservoirs. SRB produce hydrogen sulfide (H(sub 2)S), which is a poisonous and reactive gas that may lead to reservo...

J. T. Rosnes

1992-01-01

37

Occurence of sulfate- and iron-reducing bacteria in stratal waters of the Romashkinskoe oil field  

SciTech Connect

The occurrence of microorganisms and the rates of terminal biogenic processes-sulfate reduction and methane synthesis-were studied in stratial waters in bed 302 of the Bashkir Carboniferous deposit at the Romashkinskoe oil field. It was shown that bed 302 was a dynamic, highly reduced ecosystem containing sulfates and hydrogen sulfide in considerable concentrations, in which active biogenic processes occurred. Sulfate reduction was a dominating anaerobic process by which the transformation of organic matter occurred. The sulfate-reducing microflora was diverse and characterized by a wide range of metabolic potentials. Enrichment cultures capable of oxidizing many organic substances, such as benzoate, acetate, ethanol, or lactate, at the expense of reduction of sulfates and ferric ion were isolated from 302. It was suggested that the sulfate-reducing microflora might be responsible not only for sulfate reduction in the stratum but also for mobilization of some insoluble iron oxides in the oil-bearing rock. These findings indicate that bacteria carrying out dissimilatory reduction of sulfate and iron can contribute to the geochemistry of organic and mineral compounds in subsurface ecosystems. 24 refs., 2 figs., 6 tabs.

Nazina, T.N.; Ivanova, A.E.; Goulbeva, O.V.; Ibatullin, R.R.; Belyaev, S.S.; Ivanov, M.V. [Institute of Microbiology, Moscow (Russian Federation)

1995-03-01

38

Anaerobic degradation of methylmercaptan and dimethyl sulfide by newly isolated thermophilic sulfate-reducing bacteria.  

PubMed Central

The complete oxidation of methylmercaptan (MSH) and dimethyl sulfide (DMS) with sulfate or nitrate as electron acceptors was observed in enrichment cultures and dilution series using thermophilic fermentor sludge as the inoculum. Three new strains of thermophilic sulfate reducers were isolated in pure culture (strains MTS5, TDS2, and SDN4). Strain MTS5 grew on MSH and strain TDS2 grew on DMS whereas strain SDN4 grew on either MSH or DMS. The cellular growth yields were 2.57 g (dry weight)/mol of MSH for strain MTS5 and 6.02 g (dry weight)/mol of DMS for strain TDS2. All strains used sulfate, sulfite, or thiosulfate as electron acceptors, but only strain SDN4 used nitrate. DMS and MSH were oxidized to CO2 and sulfide with either sulfate or nitrate as the electron acceptor. Sulfate was stoichiometrically reduced to sulfide while nitrate was reduced to ammonium. All strains were motile rods, required biotin for growth, lacked desulfoviridin, had DNA with G+C contents of 48 to 57 mol% and probably belonged to the genus Desulfotomaculum. This is the first report of the oxidation of MSH and DMS by pure cultures of sulfate-reducing bacteria. Images

Tanimoto, Y; Bak, F

1994-01-01

39

Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria.  

PubMed Central

Granules from an upflow anaerobic sludge blanket system treating a brewery wastewater that contained mainly ethanol, propionate, and acetate as carbon sources and sulfate (0.6 to 1.0 mM) were characterized for their physical and chemical properties, metabolic performance on various substrates, and microbial composition. Transmission electron microscopic examination showed that at least three types of microcolonies existed inside the granules. One type consisted of Methanothrix-like rods with low levels of Methanobacterium-like rods; two other types appeared to be associations between syntrophic-like acetogens and Methanobacterium-like organisms. The granules were observed to be have numerous vents or channels on the surface that extended into the interior portions of the granules that may be involved in release of gas formed within the granules. The maximum substrate conversion rates (millimoles per gram of volatile suspended solids per day) at 35 degrees C in the absence of sulfate were 45.1, 8.04, 4.14, and 5.75 for ethanol, acetate, propionate, and glucose, respectively. The maximum methane production rates (millimoles per gram of volatile suspended solids per day) from H2-CO2 and formate were essentially equal for intact granules (13.7 and 13.5) and for physically disrupted granules (42 and 37). During syntrophic ethanol conversion, both hydrogen and formate were formed by the granules. The concentrations of these two intermediates were maintained at a thermodynamic equilibrium, indicating that both are intermediate metabolites in degradation. Formate accumulated and was then consumed during methanogenesis from H2-CO2. Higher concentrations of formate accumulated in the absence of sulfate than in the presence of sulfate. The addition of sulfate (8 to 9 mM) increased the maximum substrate degradation rates for propionate and ethanol by 27 and 12%, respectively. In the presence of this level of sulfate, sulfate-reducing bacteria did not play a significant role in the metabolism of H2, formate, and acetate, but ethanol and propionate were converted via sulfate reduction by approximately 28 and 60%, respectively. In the presence of 2.0 mM molybdate, syntrophic propionate and ethanol conversion by the granules was inhibited by 97 and 29%, respectively. The data show that in this granular microbial consortium, methanogens and sulfate-reducing bacteria did not compete for common substrates. Syntrophic propionate and ethanol conversion was likely performed primarily by sulfate-reducing bacteria, while H2, formate, and acetate were consumed primarily by methanogens. Images

Wu, W M; Hickey, R F; Zeikus, J G

1991-01-01

40

Sulfur compounds, potential turnover of sulfate and thiosulfate, and numbers of sulfate-reducing bacteria in planted and unplanted paddy soil  

Microsoft Academic Search

Sulfate reduction potentials (SRP), thiosulfate consumption potentials (TCP), numbers of sulfate-reducing bacteria (SRB) and the vertical profiles of sulfate, thiosulfate, acid volatile sulfides (AVS) and chromium reducible sulfides (CRS) were measured within 10-cm-deep 13-week-old planted and unplanted paddy soil microcosms. The soil pore water of unplanted microcosms showed sulfate concentrations 300 ?M and > 150 ?M, respectively, indicating that oxidation

Thorsten Wind; Ralf Conrad

1995-01-01

41

Temperature effect on acetate and propionate consumption by sulfate-reducing bacteria in saline wastewater.  

PubMed

Seawater toilet flushing, seawater intrusion in the sewerage, and discharge of sulfate-rich industrial effluents elevates sulfate content in wastewater. The application of sulfate-reducing bacteria (SRB) in wastewater treatment is very beneficial; as for example, it improves the pathogen removal and reduces the volume of waste sludge, energy requirement and costs. This paper evaluates the potential to apply biological sulfate reduction using acetate and propionate to saline sewage treatment in moderate climates. Long-term biological sulfate reduction experiments at 10 and 20 °C were conducted in a sequencing batch reactor with synthetic saline domestic wastewater. Subsequently, acetate and propionate (soluble organic carbon) conversion rate were determined in both reactors, in the presence of either or both fatty acids. Both acetate and propionate consumption rates by SRB were 1.9 times lower at 10 °C than at 20 °C. At 10 °C, propionate was incompletely oxidized to acetate. At 10 °C, complete removal of soluble organic carbon requires a significantly increased hydraulic retention time as compared to 20 °C. The results of the study showed that biological sulfate reduction can be a feasible and promising process for saline wastewater treatment in moderate climate. PMID:24463759

van den Brand, T P H; Roest, K; Brdjanovic, D; Chen, G H; van Loosdrecht, M C M

2014-05-01

42

Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora  

Microsoft Academic Search

The population composition and biogeochemistry of sulfate-reducing bacteria (SRB) in the rhizosphere of the marsh grass Spartina alterniflora was investigated over two growing seasons by molecular probing, enumerations of culturable SRB, and measurements of SOâ²⁻ reduction rates and geochemical parameters. Soâ²⁻ reduction was rapid in marsh sediments with rates up to 3.5 μmol ml⁻¹ day⁻¹. Rates increased greatly when plant

MARK E. HINES; ROBERT S. EVANS; S. G. Willis; J. N. Rooney-Varga; B. R. S. Genthner; S. Friedman; RICHARD DEVEREUX

1999-01-01

43

Inhibiting sulfate-reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin  

Microsoft Academic Search

  To identify novel, less-toxic compounds capable of inhibiting sulfate-reducing bacteria (SRB), Desulfovibrio vulgaris and Desulfovibrio gigas in suspension cultures were exposed to several antimicrobial peptides. The bacterial peptide antimicrobials gramicidin S,\\u000a gramicidin D, and polymyxin B as well as the cationic peptides indolicidin and bactenecin from bovine neutrophils decreased\\u000a the viability of both SRB by 90% after a 1-h exposure

A Jayaraman; F B Mansfeld; T K Wood

1999-01-01

44

Electrochemical analysis of the microbiologically influenced corrosion of steels by sulfate-reducing bacteria  

Microsoft Academic Search

The differences between the general corrosion and microbiologically influenced corrosion (MIC) of steels were investigated\\u000a in terms of its electrochemical behavior and surface phenomena. The corrosion potential of steels in the absence of SRB (sulfate-reducing\\u000a bacteria) shifted to a negative value with the immersion time. However, the potential of the presence of SRB shifted to a\\u000a positive value after 30

Kyung-Man Moon; Hwang-Rae Cho; Myung-Hoon Lee; Sung-Kyu Shin; Sung-Cheol Koh

2007-01-01

45

High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment  

Microsoft Academic Search

The community structure of sulfate-reducing bacteria in littoral and profundal sediments of the oligotrophic Lake Stechlin (Germany) was investigated. A collection of 32 strains was isolated from the highest positive dilutions of most-probable-number series, and their partial 16S rRNA gene sequences and genomic fingerprints based on ERIC (enterobacterial repetitive intergenic consensus)-PCR were analyzed. The strains fell into eight distinct phylogenetic

Henrik Sass; Elze Wieringa; Heribert Cypionka; Hans-Dietrich Babenzien; Jörg Overmann

1998-01-01

46

Corrosion behavior of some transition metals and 4340 steel metals exposed to sulfate-reducing bacteria  

SciTech Connect

Microbial colonization of metals (zirconium, chromium, niobium, tantalum, molybdenum, tungsten, and type 4340 steel [UNS G43400]) and susceptibility of these metals to microbiologically influenced corrosion by sulfate-reducing bacteria was investigated. Environmental scanning electron microscopy characterization after 12 months and 21 months showed patchy biofilms on all metals except tungsten. Weight loss after 24 months for zirconium and niobium were either nonexistent or negligible, indicating that these metals did not experience MIC under the test conditions.

Natishan, P.M.; Jones-Meehan, J.; Loeb, G.I.; Little, B.J.; Ray, R.; Beard, M.

1999-11-01

47

A Scanning Auger Microprobe analysis of corrosion products associated with sulfate reducing bacteria  

SciTech Connect

A Scanning Auger Microprobe analysis was performed on the corrosion products of an austenitic AISI type 304 SS after a potentiostatic polarization of one volt for ten minutes in a modified Postgate`s C media containing sulfate reducing bacteria. The corrosion products were characterized and mapped in local regions where pitting was observed. A critical evaluation of the applicability of this technique for the examination of microbially influenced corrosion (MIC) is presented.

Sadowski, R.A.; Chen, G.; Clayton, C.R.; Kearns, J.R. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Materials Science and Engineering; Gillow, J.B.; Francis, A.J. [Brookhaven National Lab., Upton, NY (United States). Biosystems and Process Sciences Div.

1995-03-01

48

Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site  

Microsoft Academic Search

Microbially mediated reduction and immobilization of U(VI) to U(TV) plays a role in both natural attenuation and accelerated bioremediation of uranium contaminated sites. To realize bioremediation potential and accurately predict natural attenuation, it is important to first understand the microbial diversity of such sites. In this paper, the distribution of sulfate-reducing bacteria (SRB) in contaminated groundwater associated with a uranium

Yun-Juan Chang; A D. Peacock; Philip E. Long; John R. Stephen; James P. McKinley; Sarah J. Mcnaughton; A K M A. Hussain; A M. Saxton; D C. White

2000-01-01

49

Bacteria in gel probes: comparison of the activity of immobilized sulfate-reducing bacteria with in situ sulfate reduction in a wetland sediment.  

PubMed

A novel method was used to examine the microbial ecology of iron-rich wetland sediments receiving neutral-pH coal mine drainage. Gel probes inserted into the sediments allowed analysis of the distribution and activity of bacterial sulfate reduction (BSR). A mixed population of sulfate-reducing bacteria enriched from anoxic wetland sediments was immobilized in low temperature-gelling agarose held in grooved rods or probes. The probes were inserted vertically into sediments and were allowed to incubate in situ for 48 h. After their retrieval, the gels were sectioned and analyzed for residual BSR activity and were compared to in situ BSR rates and chemical porewater profiles. The depth distribution of residual BSR activity in the immobilized cell gel probes differed significantly from the BSR measured in situ. Approximately 51% of the total integrated residual sulfate reduction activity measured in the gel probes occurred between 0 and 7 cm of the upper 20 cm of sediment. In contrast, ca. 99% of the integrated in situ BSR occurred between 7- and 20-cm depth, and only 1% of the total integrated rate occurred between 0- and 7-cm depth. Lactate-enriched bacteria immobilized in the gel may have been atypical of the majority of sulfate-reducing bacteria in the sediment. Agarose-immobilized sulfate-reducing bacteria might also be able to proliferate in the otherwise inhospitable zone of iron reduction, where sulfate and labile carbon compounds for which they are usually outcompeted can diffuse freely into the gel matrix. Gel probes containing particulate iron monosulfide (FeS) indicated that FeS remained stable in sediments at depths greater than 2 to 3 cm below the sediment-water interface, consistent with the shallow penetration of oxygen into surface sediments. PMID:11412913

Edenborn, H M; Brickett, L A

2001-07-30

50

Nickel, manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio.  

PubMed

The use of sulfate-reducing bacteria (SRB) in passive treatments of acidic effluents containing heavy metals has become an attractive alternative biotechnology. Treatment efficiency may be linked with the effluent conditions (pH and metal concentration) and also to the amount and nature of the organic substrate. Variations on organic substrate and sulfate ratios clearly interfere with the biological removal of this ion by mixed cultures of SRB. This study aimed to cultivate a mixed culture of SRB using different lactate concentrations at pH 7.0 in the presence of Ni, Mn and Cu. The highest sulfate removal efficiency obtained was 98 %, at a COD/sulfate ratio of 2.0. The organic acid analyses indicated an acetate accumulation as a consequence of lactate degradation. Different concentrations of metals were added to the system at neutral pH conditions. Cell proliferation and sulfate consumption in the presence of nickel (4, 20 and 50 mg l(-1)), manganese (1.5, 10 and 25 mg l(-1)) and copper (1.5, 10 and 25 mg l(-1)) were measured. The presence of metals interfered in the sulfate biological removal however the concentration of sulfide produced was high enough to remove over 90 % of the metals in the environment. The molecular characterization of the bacterial consortium based on dsrB gene sequencing indicated the presence of Desulfovibrio desulfuricans, Desulfomonas pigra and Desulfobulbus sp. The results here presented indicate that this SRB culture may be employed for mine effluent bioremediation due to its potential for removing sulfate and metals, simultaneously. PMID:24710619

Barbosa, L P; Costa, P F; Bertolino, S M; Silva, J C C; Guerra-Sá, R; Leão, V A; Teixeira, M C

2014-08-01

51

Oil Field Souring Control by Nitrate-Reducing Sulfurospirillum spp. That Outcompete Sulfate-Reducing Bacteria for Organic Electron Donors? †  

PubMed Central

Nitrate injection into oil reservoirs can prevent and remediate souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Nitrate stimulates nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) and heterotrophic nitrate-reducing bacteria (hNRB) that compete with SRB for degradable oil organics. Up-flow, packed-bed bioreactors inoculated with water produced from an oil field and injected with lactate, sulfate, and nitrate served as sources for isolating several NRB, including Sulfurospirillum and Thauera spp. The former coupled reduction of nitrate to nitrite and ammonia with oxidation of either lactate (hNRB activity) or sulfide (NR-SOB activity). Souring control in a bioreactor receiving 12.5 mM lactate and 6, 2, 0.75, or 0.013 mM sulfate always required injection of 10 mM nitrate, irrespective of the sulfate concentration. Community analysis revealed that at all but the lowest sulfate concentration (0.013 mM), significant SRB were present. At 0.013 mM sulfate, direct hNRB-mediated oxidation of lactate by nitrate appeared to be the dominant mechanism. The absence of significant SRB indicated that sulfur cycling does not occur at such low sulfate concentrations. The metabolically versatile Sulfurospirillum spp. were dominant when nitrate was present in the bioreactor. Analysis of cocultures of Desulfovibrio sp. strain Lac3, Lac6, or Lac15 and Sulfurospirillum sp. strain KW indicated its hNRB activity and ability to produce inhibitory concentrations of nitrite to be key factors for it to successfully outcompete oil field SRB.

Hubert, Casey; Voordouw, Gerrit

2007-01-01

52

Influence of sulfate-reducing bacteria on alloy 625 and austenitic stainless steel weldments  

SciTech Connect

A series of welded austenitic stainless steel and alloy 625 clad specimens were exposed to natural lake water inoculated with a mixed culture of anaerobic organisms high in sulfate-reducing bacteria. Total exposure was 300 days. The water and bacteria were taken from an actual service water system. Electrochemical testing included electrochemical impedance spectroscopy, monitoring of open-circuit potential (E{sub oc}), and zero resistance ammetry tests. Comparison of electrochemical and visual observations to sterile controls indicated electrochemical behavior of all materials in the test matrix was influenced by the bacteria. Polarization resistance and E{sub oc} values were reduced dramatically. Attack was along the fusion line of the weld. The magnitude of these effects followed a trend predicted by the pitting index for each material.

Enos, D.G.; Taylor, S.R. [Univ. of Virginia, Charlottesville, VA (United States)

1996-11-01

53

Kinetics of sulfate and hydrogen uptake by the thermophilic sulfate-reducing bacteria Thermodesulfobacterium sp. strain JSP and Thermodesulfovibrio sp. strain R1Ha3  

SciTech Connect

Dissimilatory sulfate reduction and methanogenesis are the main terminal processes in the anaerobic food chain. Both the sulfate-reducing bacteria (SRB) and the methane-producing archaea (MPA) use acetate and hydrogen as substrates and, therefore, compete for common electron donors in sulfate-containing natural environments. Due to a higher affinity for the electron donors acetate and hydrogen, SRB outcompete MPA for these compounds whenever sulfate is present in sufficient concentrations. Half-saturation constants (K{sub m}), maximum uptake rates (V{sub max}), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. K{sub m} values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.

Sonne-Hansen, J.; Ahring, B.K. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Biotechnology; Westermann, P. [Univ. of Copenhagen (Denmark). Dept. of General Microbiology

1999-03-01

54

Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments  

PubMed Central

The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages (ANME-1 and ANME-2), peripherally related to the order Methanosarcinales, were consistently associated with methane seep marine sediments. The same sediments contained abundant 13C-depleted archaeal lipids, indicating that one or both of these archaeal groups are members of anaerobic methane-oxidizing consortia. 13C-depleted lipids and the signature 16S rDNAs for these archaeal groups were absent in nearby control sediments. Concurrent surveys of bacterial rDNAs revealed a predominance of ?-proteobacteria, in particular, close relatives of Desulfosarcina variabilis. Biomarker analyses of the same sediments showed bacterial fatty acids with strong 13C depletion that are likely products of these sulfate-reducing bacteria. Consistent with these observations, whole-cell fluorescent in situ hybridization revealed aggregations of ANME-2 archaea and sulfate-reducing Desulfosarcina and Desulfococcus species. Additionally, the presence of abundant 13C-depleted ether lipids, presumed to be of bacterial origin but unrelated to ether lipids of members of the order Desulfosarcinales, suggests the participation of additional bacterial groups in the methane-oxidizing process. Although the Desulfosarcinales and ANME-2 consortia appear to participate in the anaerobic oxidation of methane in marine sediments, our data suggest that other bacteria and archaea are also involved in methane oxidation in these environments.

Orphan, V. J.; Hinrichs, K.-U.; Ussler, W.; Paull, C. K.; Taylor, L. T.; Sylva, S. P.; Hayes, J. M.; Delong, E. F.

2001-01-01

55

Isolation of sulfate-reducing bacteria from sediments above the deep-subseafloor aquifer.  

PubMed

On a global scale, crustal fluids fuel a large part of the deep-subseafloor biosphere by providing electron acceptors for microbial respiration. In this study, we examined bacterial cultures from sediments of the Juan de Fuca Ridge, Northeast Pacific (IODP Site U1301). The sediments comprise three distinctive compartments: an upper sulfate-containing zone, formed by bottom-seawater diffusion, a sulfate-depleted zone, and a second (?140?m thick) sulfate-containing zone influenced by fluid diffusion from the basaltic aquifer. In order to identify and characterize sulfate-reducing bacteria, enrichment cultures from different sediment layers were set up, analyzed by molecular screening, and used for isolating pure cultures. The initial enrichments harbored specific communities of heterotrophic microorganisms. Strains affiliated to Desulfosporosinus lacus, Desulfotomaculum sp., and Desulfovibrio aespoeensis were isolated only from the top layers (1.3-9.1?meters below seafloor, mbsf), while several strains of Desulfovibrio indonesiensis and a relative of Desulfotignum balticum were obtained from near-basement sediments (240-262?mbsf). Physiological tests on three selected strains affiliated to Dv. aespoeensis, Dv. indonesiensis, and Desulfotignum balticum indicated that all reduce sulfate with a limited number of short-chain n-alcohols or fatty acids and were able to ferment either ethanol, pyruvate, or betaine. All three isolates shared the capacity of growing chemolithotrophically with H(2) as sole electron donor. Strain P23, affiliating with Dv. indonesiensis, even grew autotrophically in the absence of any organic compounds. Thus, H(2) might be an essential electron donor in the deep-subseafloor where the availability of organic substrates is limited. The isolation of non-sporeforming sulfate reducers from fluid-influenced layers indicates that they have survived the long-term burial as active populations even after the separation from the seafloor hundreds of meters above. PMID:22363336

Fichtel, Katja; Mathes, Falko; Könneke, Martin; Cypionka, Heribert; Engelen, Bert

2012-01-01

56

Genus- and Group-Specific Hybridization Probes for Determinative and Environmental Studies of Sulfate-Reducing Bacteria.  

National Technical Information Service (NTIS)

A set of six oligonucleotides, complementary to conserved tracts of 16S rRNA from phylogenetically-defined groups of sulfate-reducing bacteria, was characterized for use as hybridization probes in determinative and environmental microbiology. Four probes ...

R. Devereux M. D. Kane J. Winfrey D. A. Stahl

1992-01-01

57

Methane-oxidizing Archaea Fix Nitrogen in Cooperation with Sulfate-reducing Bacteria in Deep-Sea Methane Seeps  

NASA Astrophysics Data System (ADS)

Using 15N2 incubation experiments of deep-sea sediments combined with FISH-nanoSIMS, we show that uncultured syntrophic consortia of ANME-2 and sulfate-reducing bacteria are capable of nitrogen fixation.

Orphan, V. J.; Dekas, A. E.; Poretsky, R.; Amend, J.

2010-04-01

58

Identification of thiosulfate- and sulfur-reducing bacteria unable to reduce sulfate in ricefield soils  

Microsoft Academic Search

Using peptides as energy sources, H2 as electron donor, thiosulfate as electron acceptors, we isolated, from four ricefield soils originating from France and the Philippines, 52 strains of anaerobes, among which 18 reduced thiosulfate but not sulfate. These 18 strains were strict proteolytic asaccharolytic anaerobes producing H2S when grown on thiosulfate + H2. They exhibited the same restriction fragment length polymorphism (RFLP)

Sylvie Escoffier; Jean-Luc Cayol; Bernard Ollivier; Bharat K. C Patel; Marie-Laure Fardeau; Pierre Thomas; Pierre A Roger

2001-01-01

59

Microbial control of the production of hydrogen sulfide by sulfate-reducing bacteria.  

PubMed

A sulfide-resistant ctrain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium or in Berea sandstone cores. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. These data suggest that strain F would be effective in controlling sulfide production in oil reservoirs and other environments. PMID:18592547

Montgomery, A D; McLnerney, M J; Sublette, K L

1990-03-01

60

Hydrogen sulfide production by sulfate-reducing bacteria utilizing additives eluted from plastic resins.  

PubMed

In the present study it was demonstrated that organic additives eluted from plastic resins could be utilized as substrates by sulfate-reducing bacteria. Two laboratory-scale experiments, a microcosm experiment and a leaching experiment, were conducted using polyvinyl chloride (PVC) as a model plastic resin. In the former experiment, the conversion of sulfate to sulfide was evident in microcosms that received plasticized PVC as the sole carbon source, but not in those that received PVC homopolymer. Additionally, dissolved organic carbon accumulated only in microcosms that received plasticized PVC, indicating that the dissolved organic carbon originated from additives. In the leaching experiment, phenol and bisphenol A were found in the leached solutions. These results suggest that the disposal of waste plastics in inert waste landfills may result in the production of H(2)S. PMID:21135024

Tsuchida, Daisuke; Kajihara, Yusuke; Shimidzu, Nobuhiro; Hamamura, Kengo; Nagase, Makoto

2011-06-01

61

Kinetics of sulfate and hydrogen uptake by the thermophilic sulfate-reducing bacteria Thermodesulfobacterium sp. strain JSP and Thermodesulfovibrio sp. strain R1Ha3  

Microsoft Academic Search

Dissimilatory sulfate reduction and methanogenesis are the main terminal processes in the anaerobic food chain. Both the sulfate-reducing bacteria (SRB) and the methane-producing archaea (MPA) use acetate and hydrogen as substrates and, therefore, compete for common electron donors in sulfate-containing natural environments. Due to a higher affinity for the electron donors acetate and hydrogen, SRB outcompete MPA for these compounds

JACOB SONNE-HANSEN; B. K. Ahring; P. Westermann

1999-01-01

62

Molecular Phylogenetic and Biogeochemical Studies of Sulfate-Reducing Bacteria in the Rhizosphere of Spartina alterniflora  

PubMed Central

The population composition and biogeochemistry of sulfate-reducing bacteria (SRB) in the rhizosphere of the marsh grass Spartina alterniflora was investigated over two growing seasons by molecular probing, enumerations of culturable SRB, and measurements of SO42? reduction rates and geochemical parameters. SO42? reduction was rapid in marsh sediments with rates up to 3.5 ?mol ml?1 day?1. Rates increased greatly when plant growth began in April and decreased again when plants flowered in late July. Results with nucleic acid probes revealed that SRB rRNA accounted for up to 43% of the rRNA from members of the domain Bacteria in marsh sediments, with the highest percentages occurring in bacteria physically associated with root surfaces. The relative abundance (RA) of SRB rRNA in whole-sediment samples compared to that of Bacteria rRNA did not vary greatly throughout the year, despite large temporal changes in SO42? reduction activity. However, the RA of root-associated SRB did increase from <10 to >30% when plants were actively growing. rRNA from members of the family Desulfobacteriaceae comprised the majority of the SRB rRNA at 3 to 34% of Bacteria rRNA, with Desulfobulbus spp. accounting for 1 to 16%. The RA of Desulfovibrio rRNA generally comprised from <1 to 3% of the Bacteria rRNA. The highest Desulfobacteriaceae RA in whole sediments was 26% and was found in the deepest sediment samples (6 to 8 cm). Culturable SRB abundance, determined by most-probable-number analyses, was high at >107 ml?1. Ethanol utilizers were most abundant, followed by acetate utilizers. The high numbers of culturable SRB and the high RA of SRB rRNA compared to that of Bacteria rRNA may be due to the release of SRB substrates in plant root exudates, creating a microbial food web that circumvents fermentation.

Hines, Mark E.; Evans, Robert S.; Sharak Genthner, Barbara R.; Willis, Stephanie G.; Friedman, Stephanie; Rooney-Varga, Juliette N.; Devereux, Richard

1999-01-01

63

Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of spartina alterniflora  

PubMed

The population composition and biogeochemistry of sulfate-reducing bacteria (SRB) in the rhizosphere of the marsh grass Spartina alterniflora was investigated over two growing seasons by molecular probing, enumerations of culturable SRB, and measurements of SO42- reduction rates and geochemical parameters. SO42- reduction was rapid in marsh sediments with rates up to 3.5 &mgr;mol ml-1 day-1. Rates increased greatly when plant growth began in April and decreased again when plants flowered in late July. Results with nucleic acid probes revealed that SRB rRNA accounted for up to 43% of the rRNA from members of the domain Bacteria in marsh sediments, with the highest percentages occurring in bacteria physically associated with root surfaces. The relative abundance (RA) of SRB rRNA in whole-sediment samples compared to that of Bacteria rRNA did not vary greatly throughout the year, despite large temporal changes in SO42- reduction activity. However, the RA of root-associated SRB did increase from <10 to >30% when plants were actively growing. rRNA from members of the family Desulfobacteriaceae comprised the majority of the SRB rRNA at 3 to 34% of Bacteria rRNA, with Desulfobulbus spp. accounting for 1 to 16%. The RA of Desulfovibrio rRNA generally comprised from <1 to 3% of the Bacteria rRNA. The highest Desulfobacteriaceae RA in whole sediments was 26% and was found in the deepest sediment samples (6 to 8 cm). Culturable SRB abundance, determined by most-probable-number analyses, was high at >10(7) ml-1. Ethanol utilizers were most abundant, followed by acetate utilizers. The high numbers of culturable SRB and the high RA of SRB rRNA compared to that of Bacteria rRNA may be due to the release of SRB substrates in plant root exudates, creating a microbial food web that circumvents fermentation. PMID:10224021

Hines; Evans; Sharak Genthner BR; Willis; Friedman; Rooney-Varga; Devereux

1999-05-01

64

Styrene N-vinylpyrrolidone metal-nanocomposites as antibacterial coatings against Sulfate Reducing Bacteria.  

PubMed

Copolymer of styrene, and vinylpyrrolidone was prepared by various techniques. Different nanometals and nanometal oxides were added into the copolymer as antimicrobial agents against Sulfate Reducing Bacteria (SRB). The nanocomposite chemical structure was confirmed by using FTIR, (1)H NMR spectroscopy and thermogravimetric analysis (TGA). The biocidal action of these nanocomposites against the SRB was detected using sulfide determination method in Postgate medium B. The data indicated that the nanocomposites had an inhibitory effect on the growth of SRB and reduced the bacterial corrosion rate of mild steel coupons. The prepared nanocomposites have high inhibition efficiency when applied as coatings and show less efficiency when applied as solids or solution into SRB medium. The copolymer and its nanocomposites effectively reduced the total corrosion rate as determined by total weight loss method. PMID:23910315

Fathy, M; Badawi, A; Mazrouaa, A M; Mansour, N A; Ghazy, E A; Elsabee, M Z

2013-10-01

65

Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth.  

PubMed Central

The metabolism of Desulfovibrio vulgaris Hildenborough grown on medium containing lactate or pyruvate plus a high concentration of sulfate (36 mM) was studied. Molecular growth yields were 6.7 +/- 1.3 and 10.1 +/- 1.7 g/mol for lactate and pyruvate, respectively. Under conditions in which the energy source was the sole growth-limiting factor, we observed the formation of 0.5 mol of hydrogen per mol of lactate and 0.1 mol of hydrogen per mol of pyruvate. The determination of metabolic end products revealed that D. vulgaris produced, in addition to normal end products (acetic acid, carbon dioxide, hydrogen sulfide) and molecular hydrogen, 2 and 5% of ethanol per mol of lactate and pyruvate, respectively. Power-time curves of growth of D. vulgaris on lactate and pyruvate were obtained, by the microcalorimetric Tian-Calvet apparatus. The enthalpies (delta Hmet) associated with the oxidation of these substrates and calculated from growth thermograms were -36.36 +/- 5 and -70.22 +/- 3 kJ/mol of lactate and pyruvate, respectively. These experimental values were in agreement with the homologous values assessed from the theoretical equations of D. vulgaris metabolism of both lactate and pyruvate. The hydrogen production by this sulfate reducer constitutes an efficient regulatory system of electrons, from energy source through the pathway of sulfate reduction. This hydrogen value may thus facilitate interactions between this strain and other environmental microflora, especially metagenic bacteria.

Traore, A S; Hatchikian, C E; Belaich, J P; Le Gall, J

1981-01-01

66

Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem  

PubMed Central

About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen (“chemical microbially influenced corrosion”; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons (“electrical microbially influenced corrosion”; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments.

Garrelfs, Julia

2014-01-01

67

Cadmium Accumulation and DNA Homology with Metal Resistance Genes in Sulfate-Reducing Bacteria  

PubMed Central

Cadmium resistance (0.1 to 1.0 mM) was studied in four pure and one mixed culture of sulfate-reducing bacteria (SRB). The growth of the bacteria was monitored with respect to carbon source (lactate) oxidation and sulfate reduction in the presence of various concentrations of cadmium chloride. Two strains Desulfovibrio desulfuricans DSM 1926 and Desulfococcus multivorans DSM 2059 showed the highest resistance to cadmium (0.5 mM). Transmission electron microscopy of the two strains showed intracellular and periplasmic accumulation of cadmium. Dot blot DNA hybridization using the probes for the smtAB, cadAC, and cadD genes indicated the presence of similar genetic determinants of heavy metal resistance in the SRB tested. DNA sequencing of the amplified DNA showed strong nucleotide homology in all the SRB strains with the known smtAB genes encoding synechococcal metallothioneins. Protein homology with the known heavy metal-translocating ATPases was also detected in the cloned amplified DNA of Desulfomicrobium norvegicum I1 and Desulfovibrio desulfuricans DSM 1926, suggesting the presence of multiple genetic mechanisms of metal resistance in the two strains.

Naz, Naghma; Young, Hilary K.; Ahmed, Nuzhat; Gadd, Geoffrey M.

2005-01-01

68

Sulfonates as Terminal Electron Acceptors for Growth of Sulfite-Reducing Bacteria (Desulfitobacterium spp.) and Sulfate-Reducing Bacteria: Effects of Inhibitors of Sulfidogenesis  

PubMed Central

This study demonstrates the ability of Desulfitobacterium spp. to utilize aliphatic sulfonates as terminal electron acceptors (TEA) for growth. Isethionate (2-hydroxyethanesulfonate) reduction by Desulfitobacterium hafniense resulted in acetate as well as sulfide accumulation in accordance with the expectation that the carbon portion of isethionate was oxidized to acetate and the sulfur was reduced to sulfide. The presence of a polypeptide, approximately 97 kDa, was evident in isethionate-grown cells of Desulfitobacterium hafniense, Desulfitobacterium sp. strain PCE 1, and the two sulfate-reducing bacteria (SRB)—Desulfovibrio desulfuricans IC1 (T. J. Lie, J. R. Leadbetter, and E. R. Leadbetter, Geomicrobiol. J. 15:135–149, 1998) and Desulfomicrobium norvegicum; this polypeptide was not detected when these bacteria were grown on TEA other than isethionate, suggesting involvement in its metabolism. The sulfate analogs molybdate and tungstate, effective in inhibiting sulfate reduction by SRB, were examined for their effects on sulfonate reduction. Molybdate effectively inhibited sulfonate reduction by strain IC1 and selectively inhibited isethionate (but not cysteate) reduction by Desulfitobacterium dehalogenans and Desulfitobacterium sp. strain PCE 1. Desulfitobacterium hafniense, however, grew with both isethionate and cysteate in the presence of molybdate. In contrast, tungstate only partially inhibited sulfonate reduction by both SRB and Desulfitobacterium spp. Similarly, another inhibitor of sulfate reduction, 1,8-dihydroxyanthraquinone, effectively inhibited sulfate reduction by SRB but only partially inhibited sulfonate reduction by both SRB and Desulfitobacterium hafniense.

Lie, Thomas J.; Godchaux, Walter; Leadbetter, Edward R.

1999-01-01

69

Evaluation of support materials for the immobilization of sulfate-reducing bacteria and methanogenic archaea.  

PubMed

This paper reports on the adhesion of sulfate-reducing bacteria (SRB) and methanogenic archaea on polyurethane foam (PU), vegetal carbon (VC), low-density polyethylene (PE) and alumina-based ceramics (CE). Anaerobic differential reactors fed with a sulfate-rich synthetic wastewater were used to evaluate the formation of a biofilm. The PU presented the highest specific biomass concentration throughout the experiment, achieving 872 mg TVS/g support, while 84 mg TVS/g support was the maximum value obtained for the other materials. FISH results showed that bacterial cells rather than archaeal cells were predominant on the biofilms. These cells, detected with EUB338 probe, accounted for 76.2% (+/-1.6%), 79.7% (+/-1.3%), 84.4% (+/-1.4%) and 60.2% (+/-1.0%) in PU, VC, PE and CE, respectively, of the 4'6-diamidino-2-phenylindole (DAPI)-stained cells. From these percentages, 44.8% (+/-2.1%), 55.4% (+/-1.2%), 32.7% (+/-1.4%) and 18.1% (+/-1.1%), respectively, represented the SRB group. Archaeal cells, detected with ARC915 probe, accounted for 33.1% (+/-1.6%), 25.4% (+/-1.3%), 22.6% (+/-1.1%) and 41.9% (+/-1.0%) in PU, VC, PE and CE, respectively, of the DAPI-stained cells. Sulfate reduction efficiencies of 39% and 45% and mean chemical oxygen demand (COD) removal efficiencies of 86% and 90% were achieved for PU and VC, respectively. The other two supports, PE and CE, provided mean COD removal efficiencies of 84% and 86%, respectively. However, no sulfate reduction was observed with these supports. PMID:16701621

Silva, A J; Hirasawa, J S; Varesche, M B; Foresti, E; Zaiat, M

2006-04-01

70

New family of tungstate-responsive transcriptional regulators in sulfate-reducing bacteria.  

PubMed

The trace elements molybdenum and tungsten are essential components of cofactors of many metalloenzymes. However, in sulfate-reducing bacteria, high concentrations of molybdate and tungstate oxyanions inhibit growth, thus requiring the tight regulation of their homeostasis. By a combination of bioinformatic and experimental techniques, we identified a novel regulator family, tungstate-responsive regulator (TunR), controlling the homeostasis of tungstate and molybdate in sulfate-reducing deltaproteobacteria. The effector-sensing domains of these regulators are similar to those of the known molybdate-responsive regulator ModE, while their DNA-binding domains are homologous to XerC/XerD site-specific recombinases. Using a comparative genomics approach, we identified DNA motifs and reconstructed regulons for 40 TunR family members. Positional analysis of TunR sites and putative promoters allowed us to classify most TunR proteins into two groups: (i) activators of modABC genes encoding a high-affinity molybdenum and tungsten transporting system and (ii) repressors of genes for toluene sulfonate uptake (TSUP) family transporters. The activation of modA and modBC genes by TunR in Desulfovibrio vulgaris Hildenborough was confirmed in vivo, and we discovered that the activation was diminished in the presence of tungstate. A predicted 30-bp TunR-binding motif was confirmed by in vitro binding assays. A novel TunR family of bacterial transcriptional factors controls tungstate and molybdate homeostasis in sulfate-reducing deltaproteobacteria. We proposed that TunR proteins participate in protection of the cells from the inhibition by these oxyanions. To our knowledge, this is a unique case of a family of bacterial transcriptional factors evolved from site-specific recombinases. PMID:23913324

Kazakov, Alexey E; Rajeev, Lara; Luning, Eric G; Zane, Grant M; Siddartha, Kavya; Rodionov, Dmitry A; Dubchak, Inna; Arkin, Adam P; Wall, Judy D; Mukhopadhyay, Aindrila; Novichkov, Pavel S

2013-10-01

71

New Family of Tungstate-Responsive Transcriptional Regulators in Sulfate-Reducing Bacteria  

PubMed Central

The trace elements molybdenum and tungsten are essential components of cofactors of many metalloenzymes. However, in sulfate-reducing bacteria, high concentrations of molybdate and tungstate oxyanions inhibit growth, thus requiring the tight regulation of their homeostasis. By a combination of bioinformatic and experimental techniques, we identified a novel regulator family, tungstate-responsive regulator (TunR), controlling the homeostasis of tungstate and molybdate in sulfate-reducing deltaproteobacteria. The effector-sensing domains of these regulators are similar to those of the known molybdate-responsive regulator ModE, while their DNA-binding domains are homologous to XerC/XerD site-specific recombinases. Using a comparative genomics approach, we identified DNA motifs and reconstructed regulons for 40 TunR family members. Positional analysis of TunR sites and putative promoters allowed us to classify most TunR proteins into two groups: (i) activators of modABC genes encoding a high-affinity molybdenum and tungsten transporting system and (ii) repressors of genes for toluene sulfonate uptake (TSUP) family transporters. The activation of modA and modBC genes by TunR in Desulfovibrio vulgaris Hildenborough was confirmed in vivo, and we discovered that the activation was diminished in the presence of tungstate. A predicted 30-bp TunR-binding motif was confirmed by in vitro binding assays. A novel TunR family of bacterial transcriptional factors controls tungstate and molybdate homeostasis in sulfate-reducing deltaproteobacteria. We proposed that TunR proteins participate in protection of the cells from the inhibition by these oxyanions. To our knowledge, this is a unique case of a family of bacterial transcriptional factors evolved from site-specific recombinases.

Rajeev, Lara; Luning, Eric G.; Zane, Grant M.; Siddartha, Kavya; Rodionov, Dmitry A.; Dubchak, Inna; Arkin, Adam P.; Wall, Judy D.; Mukhopadhyay, Aindrila

2013-01-01

72

Application Of Immobilized Sulfate Reducing Bacteria For Permeable Reactive Barriers In Abandoned Coal Mines  

NASA Astrophysics Data System (ADS)

The decline of the Korean coal industry has been drastic in production and consumption. This has been resulted mainly from the environmental concern and the collapse of commercial viability, which has eventually necessitated the government to implement the coal industry rationalization policies to reduce coal production and close down uneconomical mines. The overall drainage rates from abandoned coal mines reaches up to 80,000 ton/day. As a measure of controlling the acid mine drainage from abandoned coal mines, reactive materials in the pathways of drainage, designed to intercept and to transform the contaminants into environmentally acceptable forms can be applied at mines with small drainage rates. The main objective of this study is to design a permeable reactive barrier(PRB) to treat low flow and/or low contaminant loads of acid mine drainage. The PRB is comprised of immobilized sulfate reducing bacteria in hard beads and limestone to remove heavy metals and to raise the pH of AMD. A laboratory reactor was used to prepare a mixed culture of sulfate reducing bacteria. The microbes were separated and mixed with biodegradable matrix to form spherical beads. In order to maintain the viability of micro-organisms for a prolonged period, substrates such as saw dust, polysaccharide or glycerol was supplemented for the beads preparation. The strength of beads fortified by powered limestone to control the permeability of PRB. Different mixtures of limestone and the immobilized beads were tested to determine hydraulic conductivity and AMD treatment capacities. The characteristics of the spherical beads at various pH of AMD was investigated.

Kim, K.; Hur, W.; Choi, S.; Min, K.; Baek, H.

2006-05-01

73

Biodesulfurization of flue gases and other sulfate/sulfite waste streams using immobilized mixed sulfate-reducing bacteria.  

PubMed

Sulfur dioxide (SO2) is one of the major pollutants in the atmosphere that cause acid rain. Microbial processes for reducing SO2 to hydrogen sulfide (H2S) have previously been demonstrated by utilizing mixed cultures of sulfate-reducing bacteria (SRB) with municipal sewage digest as the carbon and energy source. To maximize the productivity of the bioreactor for SO2 reduction in this study, various immobilized cell bioreactors were investigated: a stirred tank with SRB flocs and columnar reactors with cells immobilized in either potassium-carrageenan gel matrix or polymeric porous BIO-SEP beads. The maximum volumetric productivity for SO2 reduction in the continuous stirred-tank reactor (CSTR) with SRB flocs was 2.1 mmol of SO2/(h.L). The potassium-carrageenan gell matrix used for cell immobilization was not durable at feed sulfite concentrations greater than 2000 mg/L (1.7 mmol/(h.L)). A columnar reactor with mixed SRB cells that had been allowed to grow into highly stable BIO-SEP polymeric beads exhibited the highest sulfite conversion rates, in the range 16.5 mmol/(h.L) (with 100% conversion) to 20 mmol/(h.L) (with 95% conversion). The average specific activity for sulfite reduction in the column, in terms of dry weight of SRB biomass, was 9.5 mmol of sulfite/(h.g). In addition to flue gas desulfurization, potential applications of this microbial process include the treatment of sulfate/sulfite-laden wastewater from the pulp and paper, petroleum, mining, and chemical industries. PMID:9376112

Selvaraj, P T; Little, M H; Kaufman, E N

1997-01-01

74

Sulfate-reducing bacteria release barium and radium from naturally occurring radioactive material in oil-field barite  

USGS Publications Warehouse

Scale and sludge deposits formed during oil production can contain elevated levels of Ra, often coprecipitated with barium sulfate (barite). The potential for sulfate-reducing bacteria to release 226 Ra and Ba (a Ra analog) from oil-field barite was evaluated. The concentration of dissolved Ba increased when samples containing pipe scale, tank sludge, or oil-field brine pond sediment were incubated with sulfate-reducing bacteria Desulfovibrio sp., Str LZKI, isolated from an oil-field brine pond. However, Ba release was not stoichiometric with sulfide production in oil-field samples, and <0.1% of the Ba was released. Potential for the release of 226Ra was demonstrated, and the 226 Ra release associated with sulfate-reducing activity was predictable from the amount of Ba released. As with Ba, only a fraction of the 226Ra expected from the amount of sulfide produced was released, and most of the Ra remained associated with the solid material.

Phillips, E. J. P.; Landa, E. R.; Kraemer, T.; Zielinski, R.

2001-01-01

75

Analyses of Spatial Distributions of Sulfate-Reducing Bacteria and Their Activity in Aerobic Wastewater Biofilms  

PubMed Central

The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O2, H2S, NO2?, NO3?, NH4+, and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 109 to 1010 cells per cm3 of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 108 to 109 cells per cm3). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 ?m below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S0) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 ?m), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate.

Okabe, Satoshi; Itoh, Tsukasa; Satoh, Hisashi; Watanabe, Yoshimasa

1999-01-01

76

Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora  

SciTech Connect

The population composition and biogeochemistry of sulfate-reducing bacteria (SRB) in the rhizosphere of the marsh grass Spartina alterniflora was investigated over two growing seasons by molecular probing, enumerations of culturable SRB, and measurements of SO{sub 4}{sup 2{minus}} reduction rates and geochemical parameters. So{sub 4}{sup 2{minus}} reduction was rapid in marsh sediments with rates up to 3.5 {micro}mol ml{sup {minus}1} day{sup {minus}1}. Rates increased greatly when plant growth began in April and decreased again when plants flowered in late July. Results with nucleic acid probes revealed that SRB rRNA accounted for up to 43% of the rRNA from members of the domain Bacteria in marsh sediments, with the highest percentages occurring in bacteria physically associated with root surfaces. The relative abundance (RA) of SRB rRNA in whole-sediment samples compared to that of Bacteria rRNA did not vary greatly throughout the year, despite large temporal changes in SO{sub 4}{sup 2{minus}} reduction activity. However, the RA of root-associated SRB did increase from < 10 to > 30% when plants were actively growing. rRNA from members of the family Desulfobacteriaceae comprised the majority of the SRB rRNA at 3 to 34% of Bacteria rRNA, with Desulfobulbus spp. accounting for 1 to 16%. The RA of Desulfovibrio rRNA generally comprised from < 1 to 3% of the Bacteria rRNA. The highest Desulfobacteriaceae RA in whole sediments was 26% and was found in the deepest sediment samples (6 to 8 cm). Culturable SRB abundance, determined by most-probable-number analyses, was high at > 10{sup 7} ml{sup {minus}1}. Ethanol utilizers were most abundant, followed by acetate utilizers. The high numbers of culturable SRB and the high RA of SRB rRNA compared to that of Bacteria rRNA may be due to the release of SRB substrates in plant root exudates, creating a microbial food web that circumvents fermentation.

Hines, M.E. [Univ. of Alaska, Anchorage, AK (United States). Dept. of Biological Sciences; Evans, R.S.; Willis, S.G.; Rooney-Varga, J.N. [Univ. of New Hampshire, Durham, NH (United States). Inst. for the Study of Earth, Oceans and Space; Genthner, B.R.S. [Univ. of West Florida, Pensacola, FL (United States). Center for Environmental Diagnostics and Bioremediation; Friedman, S.; Devereux, R. [Environmental Protection Agency, Gulf Breeze, FL (United States). National Health and Environmental Effects Research Lab.

1999-05-01

77

Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments.  

PubMed

Marine gas and hydrocarbon seeps are hot spots of sulfate reduction which is fuelled by methane, other short-chain alkanes or a complex mixture of hydrocarbons. In this study, we investigated the global distribution and abundance of sulfate-reducing bacteria (SRB) in eight gas and hydrocarbon seeps by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH). The majority of Deltaproteobacteria were assigned to specific SRB groups, i.e. 83 ± 14% at gas seeps and 61 ± 35% at hydrocarbon seeps, indicating that the probe set used was sufficient for classification of marine SRB. Statistical analysis showed that SRB abundance and distribution were significantly influenced by habitat type and sediment depth. Members of the Desulfosarcina/Desulfococcus (DSS) clade strongly dominated all sites. Our data indicated the presence of many diverse and highly specialized DSS species of low abundance rather than a single abundant subgroup. In addition, SEEP-SRB2, an uncultured deep-branching deltaproteobacterial group, was ubiquitously found in high abundances at all sites. SEEP-SRB2 members occurred either in a novel association with methanotrophic archaea in shell-type ANME-2/SEEP-SRB2 consortia, in association with ANME-1 archaea in Black Sea microbial mats or as single cells. Two other uncultured groups, SEEP-SRB3 and SEEP-SRB4, were preferentially detected in surface sediments from mud volcanoes. PMID:22882476

Kleindienst, Sara; Ramette, Alban; Amann, Rudolf; Knittel, Katrin

2012-10-01

78

Geolipids produced by methanogens and sulfate-reducing bacteria at the Lost City Hydrothermal Field  

NASA Astrophysics Data System (ADS)

Molecular biomarkers document the presence in a geologic system of particular microbial lineages, or of microbes that use specific metabolic processes. Lipid extracts from carbonate rocks of the Lost City Hydrothermal Field yield a predominance of biomarkers diagnostic for methanogenic archaea including the ether lipids archaeol, sn-2 and sn-3 hydroxyarchaeol, and dihydroxyarchaeol and the hydrocarbon 2,6,10,15,19-pentamethylicosane (PMI). Sterols and hopanoids, diagnostic for eukaryotes and bacteria respectively, were subordinate. At ten sites surveyed thus far, biomarker types were not correlated with vent temperature or activity. Hydroxyarchaeols were detected in three active (T >= 70° C) and two inactive vents. Glycerol monoethers with saturated and unsaturated C15-C20 n-alkyl chains, diagnostic for sulfate-reducing bacteria, were detected in five active and three inactive vents. Carbohydrates were detected in four active vents, but not in the inactive vents. High concentrations of sn-2 and sn-3 hydroxyarchaeol and a dihydroxyarchaeol at a 70° C site (sample 3869-1404) suggest that methane cycling is the dominant metabolic processes at this location. The presence of methanogens at this site is confirmed by the presence of pentamethylicosane. Stable isotopic compositions of these biomarkers will be used to determine whether these methanogens are consuming or producing methane. This sample also contains C16 and C18 saturated glycerol monoethers. In conjunction with genomic studies, the biomarker analyses will document the metabolic roles of microbes in this system.

Bradley, A. S.; Hayes, J. M.; Summons, R. E.

2003-12-01

79

Phototropic sulfur and sulfate-reducing bacteria in the chemocline of meromictic Lake Cadagno, Switzerland  

Microsoft Academic Search

Lake Cadagno, a crenogenic meromictic lake located in the catchment area of a dolomite vein rich in gypsum in the Piora Valley in the southern Alps of Switzerland, is characterized by a compact chemocline with high concentrations of sulfate, steep gradients of oxygen, sulfide and light and a turbidity maximum that correlates to large numbers of bacteria (up to 107

Mauro TONOLLA; Sandro PEDUZZI; Antonella DEMARTA; Raffaele PEDUZZI; Dittmar HAHN

80

Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust.  

PubMed

Iron (Fe(0) ) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H(2) S, and scavenge of 'cathodic' H(2) from chemical reaction of Fe(0) with H(2) O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10?mm?×?10?mm?×?1?mm) within five months, which is a technologically highly relevant corrosion rate (0.7?mm?Fe(0) year(-1) ), while conventional H(2) -scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO(3) , Mg/CaCO(3) ) deposited on the corroding metal exhibited electrical conductivity (50?S?m(-1) ). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe(0) ???4Fe(2+) ?+?8e(-) ) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e(-) ?+?SO(4) (2-) ?+?9H(+) ???HS(-) ?+?4H(2) O). Hence, anaerobic microbial iron corrosion obviously bypasses H(2) rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments. PMID:22616633

Enning, Dennis; Venzlaff, Hendrik; Garrelfs, Julia; Dinh, Hang T; Meyer, Volker; Mayrhofer, Karl; Hassel, Achim W; Stratmann, Martin; Widdel, Friedrich

2012-07-01

81

Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria  

Microsoft Academic Search

Localized corrosion behavior of 316L stainless steel was investigated in the presence of sulfate-reducing bacteria (SRB) and iron-oxidizing bacteria (IOB) isolated from cooling water system using polarization measurement, scanning electron microscopy (SEM) examinations and energy dispersive spectrum (EDS) analysis. The results show the corrosion potential (Ecorr) and breakdown potential (Eb) of SS decreased in turn with the presence of IOB,

Congmin Xu; Yaoheng Zhang; Guangxu Cheng; Wensheng Zhu

2007-01-01

82

Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria  

Microsoft Academic Search

1. Dry weight yields from mixed cultures ofProsthecochloris aestuarii orChlorobium limicola with the sulfur reducingDesulfuromonas acetoxidans were determined on different growth limiting amounts of acetate, ethanol or propanol. The obtained yields agreed well with values predicted from stoichiometric calculations. 2. From mixed cultures of twoChlorobium limicola strains withDesulfovibrio desulfuricans orD. gigas on ethanol as the growth limiting substrate, dry weight

Hanno Biebl; Norbert Pfennig

1978-01-01

83

USING RESPIROMETRY TO MEASURE HYDROGEN UTILIZATION IN SULFATE REDUCING BACTERIA IN THE PRESENCE OF COPPER AND ZINC  

EPA Science Inventory

A respirometric method has been developed to measure hydrogen utilization by sulfate reducing bacteria (SRB). One application of this method has been to test inhibitory metals effects on the SRB culture used in a novel acid mine drainage treatment technology. As a control param...

84

Base composition of deoxyribonucleic acid of sulfate-reducing bacteria deduced from buoyant density measurements in cesium chloride.  

PubMed

Saunders, Grady F. (University of Illinois, Urbana), L. Leon Campbell, and John R. Postgate. Base composition of deoxyribonucleic acid of sulfate-reducing bacteria deduced from buoyant density measurements in cesium chloride. J. Bacteriol. 87:1073-1078. 1964.-The base composition of the deoxyribonucleic acid (DNA) of sulfate-reducing bacteria was calculated from buoyant density measurements in CsCl. The sporulating sulfate-reducing bacteria fell into two groups: Desulfovibrio orientis with a DNA base composition of 42% guanine plus cytosine (G + C), and Clostridium nigrificans with a DNA base composition of 45% G + C. The mesophilic relative of C. nigrificans had a DNA base composition of 46% G + C. Thirty strains of nonsporulating sulfate-reducing bacteria called D. desulfuricans were studied. They fell into three groups as judged by DNA base composition: group I (11 strains), 60 to 62% G + C; group II (13 strains), 54 to 56% G + C; and group III (6 strains), 46 to 47% G + C. These data underline the need for a taxonomic revision of this group of microorganisms. PMID:5874533

Saunders, G F; Campbell, L L; Postgate, J R

1964-05-01

85

BASE COMPOSITION OF DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA DEDUCED FROM BUOYANT DENSITY MEASUREMENTS IN CESIUM CHLORIDE  

PubMed Central

Saunders, Grady F. (University of Illinois, Urbana), L. Leon Campbell, and John R. Postgate. Base composition of deoxyribonucleic acid of sulfate-reducing bacteria deduced from buoyant density measurements in cesium chloride. J. Bacteriol. 87:1073–1078. 1964.—The base composition of the deoxyribonucleic acid (DNA) of sulfate-reducing bacteria was calculated from buoyant density measurements in CsCl. The sporulating sulfate-reducing bacteria fell into two groups: Desulfovibrio orientis with a DNA base composition of 42% guanine plus cytosine (G + C), and Clostridium nigrificans with a DNA base composition of 45% G + C. The mesophilic relative of C. nigrificans had a DNA base composition of 46% G + C. Thirty strains of nonsporulating sulfate-reducing bacteria called D. desulfuricans were studied. They fell into three groups as judged by DNA base composition: group I (11 strains), 60 to 62% G + C; group II (13 strains), 54 to 56% G + C; and group III (6 strains), 46 to 47% G + C. These data underline the need for a taxonomic revision of this group of microorganisms.

Saunders, Grady F.; Campbell, L. Leon; Postgate, John R.

1964-01-01

86

BIOREACTOR ECONOMICS, SIZE AND TIME OF OPERATION (BEST) COMPUTER SIMULATOR FOR DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS  

EPA Science Inventory

BEST (bioreactor economics, size and time of operation) is an Excel? spreadsheet-based model that is used in conjunction with the public domain geochemical modeling software, PHREEQCI. The BEST model is used in the design process of sulfate-reducing bacteria (SRB) field bioreacto...

87

Identification of Distinct Communities of Sulfate-Reducing Bacteria in Oil Fields by Reverse Sample Genome Probing  

PubMed Central

Thirty-five different standards of sulfate-reducing bacteria, identified by reverse sample genome probing and defined as bacteria with genomes showing little or no cross-hybridization, were in part characterized by Southern blotting, using 16S rRNA and hydrogenase gene probes. Samples from 56 sites in seven different western Canadian oil field locations were collected and enriched for sulfate-reducing bacteria by using different liquid media containing one of the following carbon sources: lactate, ethanol, benzoate, decanoate, propionate, or acetate. DNA was isolated from the enrichments and probed by reverse sample genome probing using master filters containing denatured chromosomal DNAs from the 35 sulfate-reducing bacterial standards. Statistical analysis of the microbial compositions at 44 of the 56 sites indicated the presence of two distinct communities of sulfate-reducing bacteria. The discriminating factor between the two communities was the salt concentration of the production waters, which were either fresh water or saline. Of 34 standards detected, 10 were unique to the fresh water and 18 were unique to the saline oil field environment, while only 6 organisms were cultured from both communities. Images

Voordouw, Gerrit; Voordouw, Johanna K.; Jack, Thomas R.; Foght, Julia; Fedorak, Phillip M.; Westlake, Donald W. S.

1992-01-01

88

Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments  

Microsoft Academic Search

Colony counts of acetate-, propionate- and l-lactate-oxidizing sulfate-reducing bacteria in marine sediments were made. The vertical distribution of these organisms were equal for the three types considered. The highest numbers were found just beneath the border of aerobic and anaerobic layers.

Hendrikus J. Laanbroek; Norbert Pfennig

1981-01-01

89

Studies on thermophilic sulfate-reducing bacteria. II. Hydrogenase activity of Clostridium nigrificans.  

PubMed

Akagi, J. M. (Western Reserve University, Cleveland, Ohio) and L. Leon Campbell. Studies on thermophilic sulfate-reducing bacteria. II. Hydrogenase activity of Clostridium nigrificans. J. Bacteriol. 82:927-932. 1961.-The hydrogenase of Clostridium nigrificans has been found to be associated with the cell-free particulate fraction which can be sedimented at 105,000 x g in 1 hr. The specific activity of this fraction was increased 2 to 3 fold over that of the crude extract. It was not found possible to liberate the enzyme from the particulate fraction by methods of enzymatic digestion, chemical extraction, or physical disruption. The optimum temperature for H(2) utilization using benzyl viologen as an electron acceptor was found to be 55 C, and the optimum pH range was 7 to 8. Employing metal complexing agents it was found that the enzyme required Fe(++) ions for H(2) utilization. In contrast, Fe(++) ions were not required to catalyze the evolution of H(2) from reduced methyl viologen. The role of Fe(++) ions in the hydrogenase activity of this organism is discussed. PMID:13859876

AKAGI, J M; CAMPBELL, L L

1961-12-01

90

Tackling the minority: sulfate-reducing bacteria in an archaea-dominated subsurface biofilm  

PubMed Central

Archaea are usually minor components of a microbial community and dominated by a large and diverse bacterial population. In contrast, the SM1 Euryarchaeon dominates a sulfidic aquifer by forming subsurface biofilms that contain a very minor bacterial fraction (5%). These unique biofilms are delivered in high biomass to the spring outflow that provides an outstanding window to the subsurface. Despite previous attempts to understand its natural role, the metabolic capacities of the SM1 Euryarchaeon remain mysterious to date. In this study, we focused on the minor bacterial fraction in order to obtain insights into the ecological function of the biofilm. We link phylogenetic diversity information with the spatial distribution of chemical and metabolic compounds by combining three different state-of-the-art methods: PhyloChip G3 DNA microarray technology, fluorescence in situ hybridization (FISH) and synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy. The results of PhyloChip and FISH technologies provide evidence for selective enrichment of sulfate-reducing bacteria, which was confirmed by the detection of bacterial dissimilatory sulfite reductase subunit B (dsrB) genes via quantitative PCR and sequence-based analyses. We further established a differentiation of archaeal and bacterial cells by SR-FTIR based on typical lipid and carbohydrate signatures, which demonstrated a co-localization of organic sulfate, carbonated mineral and bacterial signatures in the biofilm. All these results strongly indicate an involvement of the SM1 euryarchaeal biofilm in the global cycles of sulfur and carbon and support the hypothesis that sulfidic springs are important habitats for Earth's energy cycles. Moreover, these investigations of a bacterial minority in an Archaea-dominated environment are a remarkable example of the great power of combining highly sensitive microarrays with label-free infrared imaging.

Probst, Alexander J; Holman, Hoi-Ying N; DeSantis, Todd Z; Andersen, Gary L; Birarda, Giovanni; Bechtel, Hans A; Piceno, Yvette M; Sonnleitner, Maria; Venkateswaran, Kasthuri; Moissl-Eichinger, Christine

2013-01-01

91

Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats  

PubMed Central

Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB). However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico—permanently submerged Microcoleus microbial mat (GN-S), and intertidal Lyngbya microbial mat (GN-I)—were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of DsrA phylotypes were responsible for H2 consumption. Incubation with 13C-acetate and NanoSIMS (secondary ion mass-spectrometry) indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen) was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi.

Lee, Jackson Z.; Burow, Luke C.; Woebken, Dagmar; Everroad, R. Craig; Kubo, Mike D.; Spormann, Alfred M.; Weber, Peter K.; Pett-Ridge, Jennifer; Bebout, Brad M.; Hoehler, Tori M.

2013-01-01

92

Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy  

NASA Astrophysics Data System (ADS)

Enhanced process understanding of engineered geothermal systems is a prerequisite to optimize plant reliability and economy. We investigated microbial, geochemical and mineralogical aspects of a geothermal groundwater system located in the Molasse Basin by fluid analysis. Fluids are characterized by temperatures ranging from 61°C to 103°C, salinities from 600 to 900 mg/l and a dissolved organic carbon content (DOC) between 6.4 to 19.3 mg C/l. The microbial population of fluid samples was analyzed by genetic fingerprinting techniques based on PCR-amplified 16S rRNA- and dissimilatory sulfite reductase genes. Despite of the high temperatures, microbes were detected in all investigated fluids. Fingerprinting and DNA sequencing enabled a correlation to metabolic classes and biogeochemical processes. The analysis revealed a broad diversity of sulfate-reducing bacteria. Overall, the detection of microbes known to be involved in biocorrosion and mineral precipitation indicates that microorganisms could play an important role for the understanding of processes in engineered geothermal systems.

Alawi, Mashal; Lerm, Stephanie; Vetter, Alexandra; Wolfgramm, Markus; Seibt, Andrea; Würdemann, Hilke

2011-06-01

93

Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures.  

PubMed

In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically active SRB within five natural corrosion deposits located within tidal or low water zone and showing either normal or accelerated corrosion. By using molecular techniques, such as quantitative real-time polymerase chain reaction, denaturing gel gradient electrophoresis, and sequence cloning based on 16S rRNA, dsrB genes, and their transcripts, we demonstrated a clear distinction between SRB population structure inhabiting normal or accelerated low-water corrosion deposits. Although SRB were present in both normal and accelerated low-water corrosion deposits, they dominated and were exclusively active in the inner and intermediate layers of accelerated corrosion deposits. We also highlighted that some of these SRB populations are specific to the accelerated low-water corrosion deposit environment in which they probably play a dominant role in the sulfured corrosion product enrichment. PMID:23086338

Païssé, Sandrine; Ghiglione, Jean-François; Marty, Florence; Abbas, Ben; Gueuné, Hervé; Amaya, José Maria Sanchez; Muyzer, Gerard; Quillet, Laurent

2013-08-01

94

Long-term surveillance of sulfate-reducing bacteria in highly saline industrial wastewater evaporation ponds  

PubMed Central

Abundance and seasonal dynamics of sulfate-reducing bacteria (SRB), in general, and of extreme halophilic SRB (belonging to Desulfocella halophila) in particular, were examined in highly saline industrial wastewater evaporation ponds over a forty one month period. Industrial wastewater was sampled and the presence of SRB was determined by quantitative real-time PCR (qPCR) with a set of primers designed to amplify the dissimilatory sulfite reductase (dsrA) gene. SRB displayed higher abundance during the summer (106–108 targets ml-1) and lower abundance from the autumn-spring (103–105 targets ml-1). However, addition of concentrated dissolved organic matter into the evaporation ponds during winter immediately resulted in a proliferation of SRB, despite the lower wastewater temperature (12–14°C). These results indicate that the qPCR approach can be used for rapid measurement of SRB to provide valuable information about the abundance of SRB in harsh environments, such as highly saline industrial wastewaters. Low level of H2S has been maintained over five years, which indicates a possible inhibition of SRB activity, following artificial salination (?16% w/v of NaCl) of wastewater evaporation ponds, despite SRB reproduction being detected by qPCR.

Ben-Dov, Eitan; Kushmaro, Ariel; Brenner, Asher

2009-01-01

95

Immunomagnetically Captured Thermophilic Sulfate-Reducing Bacteria from North Sea Oil Field Waters  

PubMed Central

Immunomagnetic beads (IMB) were used to recover thermophilic sulfate-reducing bacteria from oil field waters from oil production platforms in the Norwegian sector of the North Sea. IMB coated with polyclonal antibodies against whole-cell antigens of the thermophilic Thermodesulfobacterium mobile captured strains GFA1, GFA2, and GFA3. GFA1 was serologically and morphologically identical to T. mobile. GFA2 and GFA3 were spore forming and similar to the Desulfotomaculum strains T90A and T93B previously isolated from North Sea oil field waters by a classical enrichment procedure. Western blots (immunoblots) of whole cells showed that GFA2, GFA3, T90A, and T93B are different serotypes of the same Desulfotomaculum species. Monoclonal antibodies (MAb) against T. mobile type strain cells were produced and used as capture agents on IMB. These MAb, named A4F4, were immunoglobulin M; they were specific to T. mobile and directed against lipopolysaccharides. The prevailing cells immunocaptured with MAb A4F4 were morphologically and serologically similar to T. mobile type strain cells. T. mobile was not detected in these oil field waters by classical enrichment procedures. Furthermore, extraction with antibody-coated IMB allowed pure strains to be isolated directly from primary enrichment cultures without prior time-consuming subculturing and consecutive transfers to selective media. Images

Christensen, Bj?rn; Torsvik, Terje; Lien, Torleiv

1992-01-01

96

A study on the potential of metal corrosion by sulfate-reducing bacteria in animal buildings  

SciTech Connect

The potential of sulfate-reducing bacteria (SRB) to cause metal corrosion in animal buildings was examined in this study. An analysis was done on the bacterial colonization and the corrosion products on the surfaces of metals exposed to three animal buildings and one environmentally controlled building over a two-year period. Data from this study showed that the levels of SRB on metal surfaces were low after two-year's exposure (maximum count: 1.7 x 10{sup 4}/cm{sup 2}). SRB colonization levels after two years were not sufficient to corrode metal products exposed in animal environments. In addition, metal surface analysis data using X-ray photoelectron spectroscopy showed that the corrosion compounds formed on the surfaces of different metals were not due to the SERB-induced corrosion mechanisms. These compounds were mainly oxides and carbonates (FeO, Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, and Fe(CO){sub 5} on iron samples; ZnO and ZnCO{sub 3} on galvanized steel samples: Al{sub 2}O{sub 3}, ZnO, and ZnCO{sub 3} on Galvalume samples), and were normally generated due to the classic types of corrosion mechanisms. Some sulfur was present to form ZnS on the galvanized steel samples, but might not be attributed to SRB. The origin of this sulfur was not clear.

Zhu, J.; Riskowski, G.L.; Mackie, R.I.

1999-06-01

97

A XPS Study of the Passivity of Stainless Steels Influenced by Sulfate-Reducing Bacteria.  

NASA Astrophysics Data System (ADS)

The influence of sulfate-reducing bacteria (SRB) on the passivity of type 304 and 317L stainless steels (SS) was investigated by x-ray photoelectron spectroscopy (XPS), microbiological and electrochemical techniques. Samples were exposed to SRB, and then the resultant surfaces were analyzed by XPS, and the corrosion resistance by potentiodynamic polarization in deaerated 0.1 M HCl. To further understand their passivity, the SRB-exposed samples were analyzed by XPS after potentiostatic polarization at a passive potential in the hydrochloric solution. The characterization was performed under two surface conditions: unrinsed and rinsed by deaerated alcohol and deionized water. Comparisons were made with control samples immersed in uninoculated medium. SRB caused a severe loss of the passivity of 304 SS through sulfide formation and possible additional activation to form hexavalent chromium. The sulfides included FeS, FeS_2, Cr_2S _3, NiS and possibly Fe_ {rm 1-x}S. The interaction took place nonuniformly, resulting in undercutting of the passive film and preferential hydration of inner surface layers. The bacterial activation of the Cr^{6+ }^ecies was magnified by subsequent potentiostatic polarization. In contrast, 317L SS exhibited a limited passivity. The sulfides were formed mainly in the outer layers. Although Cr^{6+}^ecies were observed after the exposure, they were dissolved upon polarization. Since 317L SS has a higher Mo content, its higher passivity was ascribed to Mo existing as molybdate on the surface and Mo^{5+} species in the biofilm. Consequently, the interaction of SRB with Mo was studied. It was observed that molybdate could be retained on the surfaces of Mo coupons by corrosion products. In the presence of SRB, however, a considerable portion of the molybdate interacted with intermediate sulfur -containing proteins, forming Mo(V)-S complexes and reducing bacterial growth and sulfate reduction. The limited insolubility of the Mo(V)-S complexes in 0.1 M HCl provided a certain protection so that the pitting potential of the SRB-exposed Mo coupons was not considerably decreased. The interaction of the sulfur-containing proteins with Mo also provided mechanistic information about the adhesion of biofilm to Mo-bearing steels. Additionally, the interactions of SRB with other alloying elements, Cr and Ni, were investigated.

Chen, Guocun

98

Improved Methodology for Bioremoval of Black Crusts on Historical Stone Artworks by Use of Sulfate-Reducing Bacteria  

PubMed Central

An improved methodology to remove black crusts from stone by using Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, a sulfate-reducing bacterium, is presented. The strain removed 98% of the sulfates of the crust in a 45-h treatment. Precipitation of black iron sulfide was avoided using filtration of a medium devoid of iron. Among three cell carriers, Carbogel proved to be superior to both sepiolite and Hydrobiogel-97, as it allowed an easy application of the bacteria, kept the system in a state where microbial activity was maintained, and allowed easy removal of the cells after the treatment.

Cappitelli, Francesca; Zanardini, Elisabetta; Ranalli, Giancarlo; Mello, Emilio; Daffonchio, Daniele; Sorlini, Claudia

2006-01-01

99

Mo enrichment in black shale and reduction of molybdate by sulfate-reducing bacteria (SRB) (Invited)  

NASA Astrophysics Data System (ADS)

The Lower Cambrian Black shale in Zunyi area of Guizhou Province, Southern China contains significant amount of Mo, As, and sulfide minerals. Additionally, Mo and sulfides are closely associated with organic matter of kerogen. Transmission electron microscopy (TEM) results show pyrite micro-crystals and Mo-As-S-bearing carbon (kerogen). High-resolution TEM image shows that Mo-rich areas are Mo-sulfide (molybdenite) layers that form poorly crystalline structures in organic carbon matrix. X-ray energy-dispersive spectra (EDS) indicate composition from the pyrite and the Mo-rich area. The black shale is very unique because of its high Mo concentration. One possible mechanism for enriching Mo from paleo-seawater is the involvement of SRB. Molybdate is an essential trace element required by biological systems including the anaerobic sulfate-reducing bacteria (SRB); however, detrimental consequences may occur if molybdate is present in high concentrations in the environment. We followed the growth of Desulfovibrio gigas ATCC 19364, D. vulgaris Hildenborough, D. desulfuricans DSM 642, and D. desulfuricans DSM 27774 in media containing sub-lethal levels of molybdate and observed a red-brown color in the culture fluid. Spectral analysis of the culture fluid revealed absorption peaks at 467 nm, 395 nm and 314 nm and this color is proposed to be a molybdate-sulfide complex. Reduction of molybdate with the formation of molybdate disulfide occurs in the periplasm D. gigas and D. desulfuricans DSM 642. From these results we suggest that the occurrence of poorly crystalline Mo-sulfides in black shale may be a result from SRB reduction and selective enrichment of Mo in paleo-seawater. We suggest that similar SRB mechanism could cause the Mo enrichment in a ~ 2.5 billion years old late Archean McRae Shale, which is related to the great oxidation event of early earth atmosphere.

Xu, H.; Barton, L. L.

2010-12-01

100

Effect of oxidized leachate on degradation of lignin by sulfate-reducing bacteria.  

PubMed

Municipal solid waste materials (MSWs) in landfills need a long period of stabilization because lignin compounds in MSWs and leachate are not readily biodegraded, but inhibit methanogenic metabolism. Recirculation of leachate into the landfill offers the potential advantage of increasing the rate of decomposition of organic matter. However, the degradation of lignin by leachate recirculation alone is quite difficult. Several recent studies have demonstrated that sulfate-reducing bacteria (SRB) were able to degrade lignin compounds. In this study, batch tests were conducted to investigate the impacts of SRB enrichment on lignin decomposition rates as well as the decomposition of other biodegradable organics. Further, the effects of nitrite and nitrate on lignin degradation rates were also studied. A 16S rRNA assay showed that the SRB used herein, which were obtained by enriching solid waste collected from a closed MSW landfill, were Thaurea sp. and Desulfovibrio sp. Lignin was found to be biodegraded by the SRB and the rate of lignin removal per unit of waste volatile suspended solid was 2.9 mg lignin g(-1) VSS day(- 1). It was found that the initial degradation rate increased under higher initial lignin concentrations. However, the degradation rate during days 6-19 became slower than that during the initial 9 days because lignin consisted of complexly bonded aromatic compounds that were not readily biodegradable. Adding other organics such as lactate seemed to improve the rate and amount of lignin degradation, probably due to the increase in SRB associated with consumption of the additional organics. The lignin removal percentage decreased with increases in oxidized nitrogen (nitrite or nitrate) concentrations, indicating that oxidized nitrogen could inhibit SRB activity. Conclusively, the study verified the existence of SRB in the landfill and showed that the SRB could be activated for the degradation of lignin by the recirculation of the leachate, which is consistent with other studies showing that leachate recirculation could shorten the stabilization period of the landfill. PMID:19423591

Kim, Jong-Ho; Kim, Moonil; Bae, Wooken

2009-08-01

101

Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site.  

PubMed

Microbially mediated reduction and immobilization of U(VI) to U(IV) plays a role in both natural attenuation and accelerated bioremediation of uranium-contaminated sites. To realize bioremediation potential and accurately predict natural attenuation, it is important to first understand the microbial diversity of such sites. In this paper, the distribution of sulfate-reducing bacteria (SRB) in contaminated groundwater associated with a uranium mill tailings disposal site at Shiprock, N.Mex., was investigated. Two culture-independent analyses were employed: sequencing of clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) gene fragments and phospholipid fatty acid (PLFA) biomarker analysis. A remarkable diversity among the DSR sequences was revealed, including sequences from delta-Proteobacteria, gram-positive organisms, and the Nitrospira division. PLFA analysis detected at least 52 different mid-chain-branched saturate PLFA and included a high proportion of 10me16:0. Desulfotomaculum and Desulfotomaculum-like sequences were the most dominant DSR genes detected. Those belonging to SRB within delta-Proteobacteria were mainly recovered from low-uranium (< or =302 ppb) samples. One Desulfotomaculum-like sequence cluster overwhelmingly dominated high-U (>1,500 ppb) sites. Logistic regression showed a significant influence of uranium concentration over the dominance of this cluster of sequences (P = 0.0001). This strong association indicates that Desulfotomaculum has remarkable tolerance and adaptation to high levels of uranium and suggests the organism's possible involvement in natural attenuation of uranium. The in situ activity level of Desulfotomaculum in uranium-contaminated environments and its comparison to the activities of other SRB and other functional groups should be an important area for future research. PMID:11425735

Chang, Y J; Peacock, A D; Long, P E; Stephen, J R; McKinley, J P; Macnaughton, S J; Hussain, A K; Saxton, A M; White, D C

2001-07-01

102

Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site  

SciTech Connect

Microbially mediated reduction and immobilization of U(VI) to U(TV) plays a role in both natural attenuation and accelerated bioremediation of uranium contaminated sites. To realize bioremediation potential and accurately predict natural attenuation, it is important to first understand the microbial diversity of such sites. In this paper, the distribution of sulfate-reducing bacteria (SRB) in contaminated groundwater associated with a uranium mill tailings disposal site at Shiprock, N.Mex,, was investigated. Two culture-independent analyses were employed: sequencing of clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) gene fragments and phospholipid fatty acid (PLFA) biomarker analysis. A remarkable diversity among the DSR sequences was revealed, including sequences from F-Proteobacteria, gram-positive organisms, and the Nitrospira division. PLFA analysis detected at least,52 different mid-chain-branched saturate PLFA and included a high proportion of 10me16:0, Desulfotomaculum and Desulfotomaculum-like sequences were the most dominant DSR genes detected. Those belonging to SRB within F-Proteobacteria were mainly recovered from low-uranium (less than or equal to 302 ppb) samples. One Desulfotomaculum like sequence cluster overwhelmingly dominated high-U (> 1,500 ppb) sites. Logistic regression showed a significant influence of uranium concentration over the dominance of this cluster of sequences (P= 0.0001), This strong association indicates that Desulfotomaculum has remarkable tolerance and adaptation to high levels of uranium and suggests the organism's possible involvement in natural attenuation of uranium. The in situ activity level of Desulfotomaculum in uranium-contaminated environments and its comparison to the activities of other SRB and other functional groups should be an important area for future research.

Chang, Yun-Juan (Unknown); Peacock, A D. (Tennessee, Univ Of); Long, Philip E. (BATTELLE (PACIFIC NW LAB)); Stephen, John R. (Unknown); McKinley, James P. (BATTELLE (PACIFIC NW LAB)); Mcnaughton, Sarah J. (Unknown); Hussain, A K M A.; Saxton, A M.; White, D C. (Unknown)

2000-12-01

103

S Cycling: Characterization of Natural Communities of Sulfate-Reducing Bacteria by 16S rRNA Sequence Comparisons  

Microsoft Academic Search

Past studies of microbial communities responsible for geochemical transformations have been limited by an inability to representatively cultivate, and then identify, the constituent members. Ribosomal RNA sequences, particularly 16S-like rRNAs, provide a measure of phylogenetic relationship that can now be used to examine the structure and diversity of microbial communities. Sulfate-reducing bacteria (SRB) play an important role in the sulfur

R. Devereux; M. E. Hines; D. A. Stahl

1996-01-01

104

A review of some characteristics of MIC caused by sulfate-reducing bacteria: past, present and future  

Microsoft Academic Search

Microbiologically-influenced corrosion (MIC) is extremely harmful to both the industry and the environment. Sulfate-reducing bacteria (SRB) are also important: we have to know what they really are and what they really do to us; this means we have to improve our understanding of SRB and their characteristics. MIC is the officially accepted terminology by NACE[1] to address this type of

Reza Javaherdashti

1999-01-01

105

Hydrogen Embrittlement of Cathodically Protected High-Strength, Low-Alloy Steels Exposed to Sulfate-Reducing Bacteria  

Microsoft Academic Search

Hydrogen embrittlement (HE) of two high-strength, low-alloy steels was studied in conditions typical of the marine environment. Double-cantilever beam specimens, heat-treated to produce the microstructure in the heat-affected zone of a weld, were tested in seawater containing sulfate-reducing bacteria (SRB) at a range of cathodic protection potentials. The threshold stress intensities (K[sub th]) required to cause subcritical crack propagation were

M. J. Robinson; P. J. Kilgallon

1994-01-01

106

MONITORING MICROBIAL ADHESION AND CORROSION OF CARBON STEEL EXPOSED TO SEA WATER CONTAINING PSEUDOMONAS AND SULFATE-REDUCING BACTERIA  

Microsoft Academic Search

The corrosivity of Pseudomonas aeruginosa and sulfate-reducing bacteria (SRB) in seawater was evaluated in aerobic and anaerobic conditions. The experiments were conducted in a 1L reactor at room temperature and under agitation in order to establish dynamic conditions. To this system 800 mL of previously sterilized sea water was added in which 9 metallic coupons of AISI 1020 carbon steel

S. L. D. C. Brasil; M. M. Galvão; R. R. Fonseca

107

Anaerobic Oxidation of o-Xylene, m-Xylene, and Homologous Alkylbenzenes by New Types of Sulfate-Reducing Bacteria  

PubMed Central

Various alkylbenzenes were depleted during growth of an anaerobic, sulfate-reducing enrichment culture with crude oil as the only source of organic substrates. From this culture, two new types of mesophilic, rod-shaped sulfate-reducing bacteria, strains oXyS1 and mXyS1, were isolated with o-xylene and m-xylene, respectively, as organic substrates. Sequence analyses of 16S rRNA genes revealed that the isolates affiliated with known completely oxidizing sulfate-reducing bacteria of the ? subclass of the class Proteobacteria. Strain oXyS1 showed the highest similarities to Desulfobacterium cetonicum and Desulfosarcina variabilis (similarity values, 98.4 and 98.7%, respectively). Strain mXyS1 was less closely related to known species, the closest relative being Desulfococcus multivorans (similarity value, 86.9%). Complete mineralization of o-xylene and m-xylene was demonstrated in quantitative growth experiments. Strain oXyS1 was able to utilize toluene, o-ethyltoluene, benzoate, and o-methylbenzoate in addition to o-xylene. Strain mXyS1 oxidized toluene, m-ethyltoluene, m-isoproyltoluene, benzoate, and m-methylbenzoate in addition to m-xylene. Strain oXyS1 did not utilize m-alkyltoluenes, whereas strain mXyS1 did not utilize o-alkyltoluenes. Like the enrichment culture, both isolates grew anaerobically on crude oil with concomitant reduction of sulfate to sulfide.

Harms, Gerda; Zengler, Karsten; Rabus, Ralf; Aeckersberg, Frank; Minz, Dror; Rossello-Mora, Ramon; Widdel, Friedrich

1999-01-01

108

Biomarkers of sulfate reducing bacteria from a variety of different aged samples including a modern microbial mat  

NASA Astrophysics Data System (ADS)

Most biomarkers present in sediments occur in only trace concentrations, trapped in kerogen or may be highly functionalised especially in recent sedimentary deposits making them difficult to chromatographically resolve, thus presenting considerable analytical challenges, especially for isotope studies. Innovative hydro (Hy) pyrolysis (Py) techniques are able to target or convert many of these compounds into free hydrocarbons more amenable to gas chromatography mass-spectrometry (GC-MS) and compound-specific isotope analysis (CSIA). HyPy has been applied to a modern layered smooth mat from Shark Bay, Western Australia. Saturate and aromatic fractions from different layers of the mat have been analysed by GC-MS and CSIA. After HyPy, an even-odd distribution of n-alkanes has been revealed as well as very long-chain n-alkanes up to n-C38. Stable carbon isotopic values of the n-alkanes indicated the presence of at least two bacterial communities. The short-chain n-alkanes were likely to be representative of a cyanobacteria community (?13C, C15-C23, - 18 to -25 %VPDB) while the carbon isotopic values of the long-chain n-alkanes supported the presence of sulfate reducing bacteria (?13C, C25-C33, - 30 to - 34 %VPDB). Long-chain fatty acids have been previously reported in sulfate reducing bacteria. It is hypothesised that this distribution and isotopic character representing sulfate reducing bacteria consortia may be preserved in the rock record. This hypothesis has been tested in Australian rocks: a Devonian carbonaceous concretion containing an exceptionally well preserved fossil invertebrate from the Canning Basin, Western Australia, a Paleoproterozoic sample (1.6 billion years old) from a lead-zinc ore deposit from the McArthur Basin, Northern Territories and a Paleoproterozoic chert (2.3 billion years old) from the Pilbara, Western Australia. Biomarkers of these samples showed a strong predominance of long-chain n-alkanes, up to n-C38 with an even-odd distribution of the n-alkanes. Stable carbon isotope values were highly depleted and were concordant with the values obtained in the modern mat for sulfate reducing bacteria. The general similarity in the n-alkane distributions of these samples point to a sulfate reducing bacteria consortia.

Pages, A.; Grice, K.; Lockhart, R.; Holman, A.; Melendez, I.; Van Kranendonk, M.; Jaraula, C.

2011-12-01

109

Enzymatic catalysis of mercury methylation by planktonic and biofilm cultures of sulfate- reducing bacteria  

NASA Astrophysics Data System (ADS)

While biofilms are now known to be the predominant form of microbial growth in nature, little is known about their role in environmental mercury (Hg) methylation. Due to its long-range atmospheric transport, Hg contamination of food chains is a worldwide problem, impacting even pristine areas. Among different forms of mercury species, methylmercury (MeHg) is an extremely neurotoxic and biomagnification-prone compound that can lead to severely adverse health effects on wildlife and humans. Considerable studies have shown that in the aquatic environment the external supply of MeHg is not sufficient to account for MeHg accumulation in biota and in situ biological MeHg formation plays a critical role in determining the amount of MeHg in food webs; moreover, sulfate-reducing bacteria (SRB) has been identified as the principal Hg-methylating organisms in nature. In a wide range of aquatic systems wetlands are considered important sites for Hg methylation mostly because of the environmental factors that promote microbial activity within, and biofilms are especially important in wetland ecosystems due to large amount of submerged surfaces. Although recent work has focused on the environmental factors that control MeHg production and the conditions that affect the availability of inorganic Hg to SRB, much remains to be understood about the biochemical mechanism of the Hg methylation process in SRB, especially in the biofilm-growth of these microbes. Data from our previous study with SRB strains isolated from a coastal wetland suggested that the specific Hg methylation rate found was approximately an order of magnitude higher in biofilm cells than in planktonic cells. In order to investigate possible reasons for this observed difference, and to test if this phenomenon is observed in other strains, we conducted chloroform, fluroacetate and molybdate inhibition assays in both complete and incomplete-oxidizing SRB species (Desulfovibrio desulfuricans M8, Desulfococcus sp. Desulfobactor sp. BG8) grown in planktonic and biofilm form, as the acetyl- coenzyme A pathway involved with cobalamin has been hypothesized to be the pathway for Hg methylation. The purpose of this study was to probe whether differences in the enzymatically catalyzed process caused differential methylation rates between the species and also between the different forms of culture growth. Any attempts to control the environmentally undesirable Hg methylation process would benefit from a better understanding of the biochemical mechanism involved.

Lin, C.; Kampalath, R.; Jay, J.

2007-12-01

110

Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ  

Microsoft Academic Search

In batch and continuous fermentations, the reduction in corrosion of SAE 1018 mild steel and 304 stainless steel caused by\\u000a inhibition of the reference sulfate-reducing bacterium (SRB) Desulfovibrio vulgaris by a protective, antimicrobial-producing Bacillus brevis biofilm was investigated. The presence of D. vulgaris produced a thick black precipitate on mild steel and a higher corrosion rate in batch cultures than

A. Jayaraman; P. J. Hallock; R. M. Carson; C.-C. Lee; F. B. Mansfeld; T. K. Wood

1999-01-01

111

Effect of Salinity on Mercury-Methylating Activity of Sulfate-Reducing Bacteria in Estuarine Sediments †  

PubMed Central

The biomethylation of mercury was measured in anoxic estuarine sediments that ranged in salinity from 0.03 to 2.4% with or without added molybdate, an inhibitor of sulfate reducers. Mercury methylation was inhibited by molybdate by more than 95%, regardless of sediment salinity. In the absence of inhibitor, high-salinity sediments methylated mercury at only 40% of the level observed in low-salinity sediments. In response to molybdate inhibition of sulfate reducers, methanogenesis increased up to 258% in high-salinity sediments but only up to 25% in low-salinity sediments. In contrast to an earlier low-salinity isolate, a Desulfovibrio desulfuricans strain from high-salinity sediment required 0.5 M sodium for optimal growth and mercury methylation activity. The formation of negatively charged mercuric chloride complexes at high salinity did not noticeably interfere with the methylation process. Results of these studies demonstrate that sulfate reducers are responsible for mercury methylation in anoxic estuarine sediments, regardless of the prevailing salinity.

Compeau, Geoffrey C.; Bartha, Richard

1987-01-01

112

Iron Sulfides and Sulfur Species Produced at (001) Hematite Surfaces in the Presence of Sulfate-Reducing Bacteria  

SciTech Connect

In the presence of sulfate-reducing bacteria (Desulfovibrio desulfuricans) hematite (a-Fe2O3) dissolution is affected and hydrogen sulfide, the product of sulfate reduction is released. As a consequence, ferrous ions are free to react with excess H2S to form insoluble iron sulfides. X-ray photoelectron spectra indicate binding energies consistent with the iron sulfides having a pyrrhotite structure (Fe2p3/2 708.4 eV; S2p3/2 161.5 eV). Other sulfur species identified at the surface include sulfate, sulfite and polysulfides. X-ray diffraction suggests an unidentifiable crystal structure at the hematite surface develops within 3 months, HRTEM confirms the presence of a hexagonal structure again suggesting the formation of pyrrhotite. The identification of pyrrhotite is inconsistent with previous reports in which mackinawite and greigite were products of biological sulfate reduction (Rickard 1969; Herbert et al 1998). The apparent differences in stoiciometries may be related to the availability of Fe2+(aq.) at the mineral surface through respiratory iron reduction by subsurface bacteria. The significance of pyrrhotite and polysulfide production in relation to the S- and Fe-cycles and to trace metal bioavailability is discussed.

Neal, Andrew L.; Techkarnjanaruk, Somkiet; Dohnalkova, Alice; McCready, David E.; Peyton, Brent M.; Geesey, Gill G.

2001-01-01

113

Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule wrightii†  

PubMed Central

Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizospheres that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacteria and clostridia were enriched in sediments colonized by the sea grasses Halodule wrightii and Thalassia testudinum compared to an adjacent unvegetated sediment. Most-probable-number analyses found that in contrast to butyrate-producing clostridia, acetogens and acetate-utilizing sulfate reducers were enriched by an order of magnitude in rhizosphere sediments. Although sea grass roots are oxygenated in the daytime, colorimetric root incubation studies demonstrated that acetogenic O-demethylation and sulfidogenic iron precipitation activities were tightly associated with washed, sediment-free H. wrightii roots. This suggests that the associated anaerobes are able to tolerate exposure to oxygen. To localize and quantify the anaerobic microbial colonization, root thin sections were hybridized with newly developed 33P-labeled probes that targeted (i) low-G+C-content gram-positive bacteria, (ii) cluster I species of clostridia, (iii) species of Acetobacterium, and (iv) species of Desulfovibrio. Microautoradiography revealed intercellular colonization of the roots by Acetobacterium and Desulfovibrio species. Acetogenic bacteria occurred mostly in the rhizoplane and outermost cortex cell layers, and high numbers of sulfate reducers were detected on all epidermal cells and inward, colonizing some 60% of the deepest cortex cells. Approximately 30% of epidermal cells were colonized by bacteria that hybridized with an archaeal probe, strongly suggesting the presence of methanogens. Obligate anaerobes within the roots might contribute to the vitality of sea grasses and other aquatic plants and to the biogeochemistry of the surrounding sediment.

Kusel, Kirsten; Pinkart, Holly C.; Drake, Harold L.; Devereux, Richard

1999-01-01

114

Sulfur Isotropic Studies of Archean Slate and Graywacke from Northern Minnesota: Evidence for the Existence of Sulfate Reducing Bacteria  

NASA Technical Reports Server (NTRS)

Sulfur isotopic studies of pyrite from metasediments in the 2.6 b.y. old Deer Lake greenstone sequence, Minnesota, were conducted in order to evaluate the possible importance of sulfate reducing bacteria in sulfide formation. Pyrite occurs as ovules up to 2 cm in diameter within graphitic slates, and as fine disseminations in metagraywacke units. SEM studies indicate the pyrite is framboidal in morphology. Delta notation values of pyrite from the Deer Lake sediments range from -2.3 to 11.1 0/00, with a peak at approximately +2 o/oo. Isotopic data is consistent with either high temperature inorganic reduction of circulating seawater sulfate, or low temperature bacterial reduction. However, the lack of sulfide bands or massive occurrences in the sediments, the restriction of pyrite mineralization to the sediments, and the absence of evidence for hot spring activity suggest that a diagenetic origin of pyrite is more feasible. Sulfide in such an environment would be produced principally by the action of sulfate reducing bacteria.

Ripley, E. M.; Nicol, D. L.

1979-01-01

115

Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria  

SciTech Connect

Surprising results were obtained following an attempt to induce or derepress the machinery for U(VI) reduction by growing Desulfovibrio desulfuricans G20 in the presence of 1 mM uranyl acetate. G20 cells grown on lactate-sulfate medium amended with U(VI) reduced uranium at a slower rate than cells grown in the absence of this metal. When periplasmic extracts of these cells were prepared, Western analysis of the proteins revealed that the cytochrome c3 was absent. This observation has been further investigated.

Wall, Judy D.

2003-06-01

116

Desulfotomaculum spp. and related gram-positive sulfate-reducing bacteria in deep subsurface environments  

PubMed Central

Gram-positive spore-forming sulfate reducers and particularly members of the genus Desulfotomaculum are commonly found in the subsurface biosphere by culture based and molecular approaches. Due to their metabolic versatility and their ability to persist as endospores. Desulfotomaculum spp. are well-adapted for colonizing environments through a slow sedimentation process. Because of their ability to grow autotrophically (H2/CO2) and produce sulfide or acetate, these microorganisms may play key roles in deep lithoautotrophic microbial communities. Available data about Desulfotomaculum spp. and related species from studies carried out from deep freshwater lakes, marine sediments, oligotrophic and organic rich deep geological settings are discussed in this review.

Aullo, Thomas; Ranchou-Peyruse, Anthony; Ollivier, Bernard; Magot, Michel

2013-01-01

117

Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria 1  

NASA Astrophysics Data System (ADS)

In the presence of sulfate-reducing bacteria ( Desulfovibrio desulfuricans) hematite (?-Fe 2O 3) dissolution is affected potentially by a combination of enzymatic (hydrogenase) reduction and hydrogen sulfide oxidation. As a consequence, ferrous ions are free to react with excess H 2S to form insoluble ferrous sulfides. X-ray photoelectron spectra indicate binding energies similar to ferrous sulfides having pyrrhotite-like structures (Fe2 p3/2 708.4 eV; S2 p3/2 161.5 eV). Other sulfur species identified at the surface include sulfate, sulfite and polysulfides. Thin film X-ray diffraction identifies a limited number of peaks, the principal one of which may be assigned to the hexagonal pyrrhotite (102) peak (d = 2.09 Å; 2? = 43.22°), at the hematite surface within 3 months exposure to sulfate-reducing bacteria (SRB). High-resolution transmission electron microscopy identifies the presence of a hexagonal structure associated with observed crystallites. Although none of the analytical techniques employed provide unequivocal evidence as to the nature of the ferrous sulfide formed in the presence of SRB at hematite surfaces, we conclude from the available evidence that a pyrrhotite stiochiometry and structure is the best description of the sulfides we observe. Such ferrous sulfide production is inconsistent with previous reports in which mackinawite and greigite were products of biological sulfate reduction (Rickard 1969a; Herbert et al., 1998; Benning et al., 1999). The apparent differences in stoichiometry may be related to sulfide activity at the mineral surface, controlled in part by H 2S autooxidation in the presence of iron oxides. Due to the relative stability of pyrrhotite at low temperatures, ferrous sulfide dissolution is likely to be reduced compared to the more commonly observed products of SRB activity. Additionally, biogenic pyrrhotite formation will also have implications for geomagnetic field behavior of sediments.

Neal, Andrew L.; Techkarnjanaruk, Somkiet; Dohnalkova, Alice; McCready, David; Peyton, Brent M.; Geesey, Gill G.

2001-01-01

118

INFLUENCE OF THE SEAGRASS THALASSIA TESTUDINUM ON THE COMMUNITY COMPOSITION AND ACTIVITY OF SULFATE-REDUCING BACTERIA IN AN ESSENTIAL COAST MARINE HABITAT  

EPA Science Inventory

Biogeochemical cycling of nutrients and sulfate reduction rates (SRR) were studied in relation to the community composition of sulfate-reducing bacteria SRB) in a Thalassia testudinum bed and in adjacent unvegetated areas. Sampling took place in Santa Rosa Sound, Pensacola, Flori...

119

[Inhibition of the activity of sulfate-reducing bacteria in produced water from oil reservoir by nitrate].  

PubMed

Growth and metabolic activity of sulfate-reducing bacteria (SRB) can result in souring of oil reservoirs, leading to various problems in aspects of environmental pollution and corrosion. Nitrate addition and management of nitrate-reducing bacteria (NRB) offer potential solutions to controlling souring in oil reservoirs. In this paper, a facultive chemolithotrophic NRB, designated as DNB-8, was isolated from the produced fluid of a water-flooded oil reservoir at Daqing oilfield. Then the efficacies and mechanisms of various concentrations of nitrate in combination with DNB-8 in the inhibition of the activity of SRB enriched culture were compared. Results showed that 1.0 mmol x L(-1) of nitrate or 0.45 mmol x L(-1) of nitrite inhibited the sulfate-reducing activity of SRB enrichments; the competitive reduction of nitrate by DNB-8 and the nitrite produced were responsible for the suppression. Besides, the SRB enrichment cultures showed a metabolic pathway of dissimilatory nitrate reduction to ammonium (DNRA) via nitrite. The SRB cultures could possibly alleviate the nitrite inhibition by DNRA when they were subjected to high-strength nitrate. PMID:24720222

Yang, De-Yu; Zhang, Ying; Shi, Rong-Jiu; Han, Si-Qin; Li, Guang-Zhe; Li, Guo-Qiao; Zhao, Jin-Yi

2014-01-01

120

Antagonistic activity of Bacillus sp. obtained from an Algerian oilfield and chemical biocide THPS against sulfate-reducing bacteria consortium inducing corrosion in the oil industry  

Microsoft Academic Search

The present study enlightens the role of the antagonistic potential of nonpathogenic strain B21 against sulfate-reducing bacteria\\u000a (SRB) consortium. The inhibitor effects of strain B21 were compared with those of the chemical biocide tetrakishydroxymethylphosphonium\\u000a sulfate (THPS), generally used in the petroleum industry. The biological inhibitor exhibited much better and effective performance.\\u000a Growth of SRB in coculture with bacteria strain B21 antagonist exhibited

Mohamed Lamine Gana; Salima Kebbouche-Gana; Abdelkader Touzi; Mohamed Amine Zorgani; André Pauss; Hakim Lounici; Nabil Mameri

2011-01-01

121

Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria: Desulfovibrio mutants with altered sensitivity to oxidative stress  

SciTech Connect

Sulfate-reducing bacteria of the genus Desulfovibrio are ubiquitous in anaerobic environments such as groundwater, sediments, and the gastrointestinal tract of animals. Because of the ability of Desulfovibrio to reduce radionuclides and metals through both enzymatic and chemical means, they have been proposed as a means to bioremediate heavy metal contaminated sites. Although classically thought of as strict anaerobes, Desulfovibrio species are surprisingly aerotolerant. Our objective is to understand the response of Desulfovibrio to oxidative stress so that we may more effectively utilize them in bioremediation of heavy metals in mixed aerobic-anaerobic environments. The enzymes superoxide dismutase, superoxide reductase, catalase, and rubrerythrin have been shown by others to be involved in the detoxification of reactive oxygen species in Desulfovibrio. Some members of the genus Desulfovibrio can even reduce molecular oxygen to water via a membrane bound electron transport chain with the concomitant production of ATP, although their ability to grow with oxygen as the sole electron acceptor is still questioned.

Payne, Rayford B.; Ringbauer, Joseph A., Jr.; Wall, Judy D.

2006-04-05

122

Fate of Arsenate adsorbed on Nano-TiO2 in the presence of sulfate reducing bacteria.  

PubMed

Arsenic removal using nanomaterials has attracted increasing attention worldwide, whereas the potential release of As from spent nanomaterials to groundwater in reducing environments is presently underappreciated. This research investigated the fate of As(V) adsorbed on nano-TiO2 in the presence of sulfate reducing bacteria (SRB) Desulfovibrio vulgaris strains DP4 and ATCC 7757. The incubation results demonstrated that As(V) was desorbed from nano TiO2, and subsequently reduced to As(III) in aqueous solution. The release of adsorbed As(V) was two to three times higher in biotic samples than that in abiotic controls. Reduction of As(V) to As(III) in biotic samples was coupled with the conversion of sulfate to sulfide, while no As(III) was observed in abiotic controls. STXM results provided the direct evidence of appreciable As(III) and As(V) on TiO2. XANES analysis indicated that As(V) was the predominant species for three As loads of 150, 300, and 5700 mg/g, whereas 15-28% As precipitated as orpiment for a high As load of 5700 mg/g. In spite of orpiment formation, As mobilized in higher amounts in the SRB presence than in abiotic controls, highlighting the key role of SRB in the fate of As in the presence of nanomaterials. PMID:24015946

Luo, Ting; Tian, Haixia; Guo, Zhi; Zhuang, Guoqiang; Jing, Chuanyong

2013-10-01

123

Improved Most-Probable-Number Method To Detect Sulfate-Reducing Bacteria with Natural Media and a Radiotracer  

PubMed Central

A greatly improved most-probable-number (MPN) method for selective enumeration of sulfate-reducing bacteria (SRB) is described. The method is based on the use of natural media and radiolabeled sulfate (35SO42?). The natural media used consisted of anaerobically prepared sterilized sludge or sediment slurries obtained from sampling sites. The densities of SRB in sediment samples from Kysing Fjord (Denmark) and activated sludge were determined by using a normal MPN (N-MPN) method with synthetic cultivation media and a tracer MPN (T-MPN) method with natural media. The T-MPN method with natural media always yielded significantly higher (100- to 1,000-fold-higher) MPN values than the N-MPN method with synthetic media. The recovery of SRB from environmental samples was investigated by simultaneously measuring sulfate reduction rates (by a 35S-radiotracer method) and bacterial counts by using the T-MPN and N-MPN methods, respectively. When bacterial numbers estimated by the T-MPN method with natural media were used, specific sulfate reduction rates (qSO42?) of 10?14 to 10?13 mol of SO42? cell?1 day?1 were calculated, which is within the range of qSO42? values previously reported for pure cultures of SRB (10?15 to 10?14 mol of SO42? cell?1 day?1). qSO42? values calculated from N-MPN values obtained with synthetic media were several orders of magnitude higher (2 × 10?10 to 7 × 10?10 mol of SO42? cell?1 day?1), showing that viable counts of SRB were seriously underestimated when standard enumeration media were used. Our results demonstrate that the use of natural media results in significant improvements in estimates of the true numbers of SRB in environmental samples.

Vester, Flemming; Ingvorsen, Kjeld

1998-01-01

124

Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode.  

PubMed

An anoxic biocathode was developed using sulfate-reducing bacteria (SRB) consortium on activated carbon fabric (ACF) and the effect of stainless steel (SS) mesh as additional current collector was investigated. Improved performance of biocathode was observed with SS mesh leading to nearly five folds increase in power density (from 4.79 to 23.11 mW/m(2)) and threefolds increase in current density (from 75 to 250 mA/m(2)). Enhanced redox currents and lower Tafel slopes observed from cyclic voltammograms of ACF with SS mesh indicated the positive role of uniform electron collecting points. Differential pulse voltammetry technique was employed as an additional tool to assess the redox carriers involved in bioelectrochemical reactions. SRB biocathode was also tested for reduction of volatile fatty acids (VFA) present in the fermentation effluent stream and the results indicated the possibility of integration of this system with anaerobic fermentation for efficient product recovery. PMID:24161648

Sharma, Mohita; Jain, Pratiksha; Varanasi, Jhansi L; Lal, Banwari; Rodríguez, Jorge; Lema, Juan M; Sarma, Priyangshu M

2013-12-01

125

Controlling sulfate reducing bacteria by slug dosing with quick-kill antimicrobials and by continuous dosing with isothiazolones  

SciTech Connect

This patent describes a process for controlling biological contamination of oil production water injection systems by sulfate-reducing sessile bacteria wherein a slug dose of a quick-kill antimicrobial selected from one or more of the group consisting of (C{sub 3}-C{sub 7}) alkanedials, formaldehyde, cationic polymeric biguanides, quaternary ammonium compounds (alkyldimethylbenzylammonium chlorides), quarternary phosphodium compounds, phenolics, cocodiamine, 2-bromo-2-nitropropanediol, acrolein, dibromonitrilopropionamide and organic thiocyanates is applied to the injection water, the improvement comprising substantially continuously dosing the injection water at a concentration of about 0.25 to 5 ppm based on the weight of injection water with a maintenance antimicrobial selected from the group consisting of an isothiazolone.

Haack, T.K.; Greenley, D.E.

1991-06-25

126

Application of antisera raised against sulfate-reducing bacteria for indirect immunofluorescent detection of immunoreactive bacteria in sediment from the German Baltic Sea.  

PubMed Central

Polyclonal rabbit antisera raised against sulfate-reducing bacteria (SRB) could detect several distinct populations of bacteria in sediment from the German Baltic Sea. The depth distribution of immunoreactive bacteria was determined by an indirect immunofluorescence filter method. Anti-Desulfovibrio desulfuricans DSM 1926 serum showed maximum bacterial numbers at a depth of 18 cm, with a concentration of 60 x 10(6) cells cm-3. With anti-Desulfovibrio baculatus DSM 2555 serum, counts were highest at the same depth, approaching 0.7 x 10(6) cells cm-3. Other significantly smaller populations were observed. Anti-SRBStrain 1 (lactate,vibrio) maxima were at 0 to 4 cm and at 17 to 18 cm. Anti-SRBStrain 2 (lactate,vibrio) serum showed several local maxima. Anti-SRBStrain 3 (lactate,oval) serum detected one single peak at a depth of 10 to 12 cm. Also determined were rates of sulfate reduction, total bacterial counts by acridine orange staining, and the viable counts by dilution series on anaerobic lactate medium. The total bacterial counts were highest (180 x 10(6) cells cm-3) at 3 to 4 cm and dropped to 24 x 10(6) cells cm-3 at 10 to 11 cm but showed additional local maxima reaching 140 x 10(6) cells cm-3 at a depth of 17 to 18 cm. Viable counts probable number) were above 10(5) CFU cm-3 at 0 to 3.6 cm but remained below 10(3) CFU at 7.2 to 18 cm. The sulfate reduction rate was maximal (107 nmol cm-3 day-1) at a depth of 1 to 2 cm, dropped to 10 nmol cm-3 day-1 at 12 to 13 cm, and reached 38 nmol cm-3 day-1 at 17 to 18 cm.

Lillebaek, R

1995-01-01

127

Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus Desulfonema)  

Microsoft Academic Search

Microscopy of organic-rich, sulfidic sediment samples of marine and freshwater origin revealed filamentous, multicellular\\u000a microorganisms with gliding motility. Many of these neither contained sulfur droplets such as the Beggiatoa species nor exhibited the autofluorescence of the chlorophyll-containing cyanobacteria. A frequently observed morphological\\u000a type of filamentous microorganism was enriched under anoxic conditions in the dark with isobutyrate plus sulfate. Two strains

Manabu Fukui; Andreas Teske; B. Aßmus; G. Muyzer; F. Widdel

1999-01-01

128

Co-existence of physiologically similar sulfate-reducing bacteria in a full-scale sulfidogenic bioreactor fed with a single organic electron donor  

Microsoft Academic Search

A combination of culture-dependent and independent methods was used to study the co-existence of different sulfate-reducing\\u000a bacteria (SRB) in an upflow anaerobic sludge bed reactor treating sulfate-rich wastewater. The wastewater was fed with ethanol\\u000a as an external electron donor. Twenty six strains of SRB were randomly picked and isolated from the highest serial dilution\\u000a that showed growth (i.e. 108). Repetitive

Shabir A. Dar; Alfons J. M. Stams; J. Gijs Kuenen; Gerard Muyzer

2007-01-01

129

Draft Genome Sequences for Three Mercury-Methylating, Sulfate-Reducing Bacteria  

PubMed Central

The genetic basis for bacterial mercury methylation has been described recently. For insights into the physiology of mercury-methylating bacteria, we present genome sequences for Desulfococcus multivorans strain DSM 2059, Desulfovibrio alkalitolerans strain DSM 16529, and Desulfovibrio species strain X2.

Brown, Steven D.; Hurt, Richard A.; Gilmour, Cynthia C.

2013-01-01

130

Gene Expression Correlates with Process Rates Quantified for Sulfate- and Fe(III)-Reducing Bacteria in U(VI)-Contaminated Sediments  

PubMed Central

Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI) reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III) and sulfate reduction pathways in order to monitor these processes during in situ U(VI) remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA) and the dissimilatory (bi)sulfite reductase gene (dsrA), were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy’s Oak Ridge Integrated Field Research Challenge (OR-IFRC) site at Oak Ridge, TN, USA. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III)-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation.

Akob, Denise M.; Lee, Sang Hyon; Sheth, Mili; Kusel, Kirsten; Watson, David B.; Palumbo, Anthony V.; Kostka, Joel E.; Chin, Kuk-Jeong

2012-01-01

131

Improved 16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in situ hybridization  

Microsoft Academic Search

An updated dataset of in silico specificities for 54 previously published 16S rRNA-targeted oligonucleotides was assembled to provide guidance for reliable fluorescence in situ hybridization (FISH) analysis of sulfate-reducing bacteria. Additionally, six new FISH probes were developed for major deltaproteobacterial taxa, including a probe trio targeting most Deltaproteobacteria and Gemmatimonadetes.

Sebastian Lücker; Doris Steger; Kasper Urup Kjeldsen; Barbara J. MacGregor; Michael Wagner; Alexander Loy

2007-01-01

132

COMPARISON OF PHYLOGENETIC RELATIONSHIPS BASED ON PHOSPHOLIPID FATTY ACID PROFILES AND RIBOSOMAL RNA SEQUENCE SIMILARITIES AMONG DISSIMILATORY SULFATE-REDUCING BACTERIA  

EPA Science Inventory

Twenty-five isolates of dissimilatory sulfate-reducing bacteria were clustered based on similarity analysis of their phospholipid ester-linked fatty acids (PLFA). f these, twenty-three showed the phylogenetic relationships based on the sequence similarity of their 16S rRNA direct...

133

Distinctive Oxidative Stress Responses to Hydrogen Peroxide in Sulfate Reducing Bacteria Desulfovibrio vulgaris Hildenborough  

SciTech Connect

Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide (H2O2, 1 mM) was investigated with transcriptomic, proteomic and genetic approaches. Microarray data demonstrated that gene expression was extensively affected by H2O2 with the response peaking at 120 min after H2O2 treatment. Genes affected include those involved with energy production, sulfate reduction, ribosomal structure and translation, H2O2 scavenging, posttranslational modification and DNA repair as evidenced by gene coexpression networks generated via a random matrix-theory based approach. Data from this study support the hypothesis that both PerR and Fur play important roles in H2O2-induced oxidative stress response. First, both PerR and Fur regulon genes were significantly up-regulated. Second, predicted PerR regulon genes ahpC and rbr2 were derepressedin Delta PerR and Delta Fur mutants and induction of neither gene was observed in both Delta PerR and Delta Fur when challenged with peroxide, suggesting possible overlap of these regulons. Third, both Delta PerR and Delta Fur appeared to be more tolerant of H2O2 as measured by optical density. Forth, proteomics data suggested de-repression of Fur during the oxidative stress response. In terms of the intracellular enzymatic H2O2 scavenging, gene expression data suggested that Rdl and Rbr2 may play major roles in the detoxification of H2O2. In addition, induction of thioredoxin reductase and thioredoxin appeared to be independent of PerR and Fur. Considering all data together, D. vulgaris employed a distinctive stress resistance mechanism to defend against increased cellular H2O2, and the temporal gene expression changes were consistent with the slowdown of cell growth at the onset of oxidative stress.

Zhou, Aifen; He, Zhili; Redding, A.M.; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Joachimiak, Marcin P.; Bender, Kelly S.; Keasling, Jay D.; Stahl, David A.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

2009-01-01

134

Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini  

Microsoft Academic Search

A new, rod-shaped, Gram-negative, non-sporing sulfate reducer (strain Ani1) was enriched and isolated from marine sediment with aniline as sole electron donor and carbon source. The strain degraded aniline completely to CO2 and NH3 with stoichiometric reduction of sulfate to sulfide. Strain Ani1 also degraded aminobenzoates and further aromatic and aliphatic compounds. The strain grew in sulfide-reduced mineral medium supplemented

Sylvia Schnell; Friedhelm Bak; Norbert Pfennig

1989-01-01

135

Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria  

Microsoft Academic Search

Many types of metal waste are produced from nonferrous industries such as mining and surface treatments; in general, physicochemical and biotechnological methods are available to treat these wastes. Worldwide usage of platinum group metals is increasing, prompting new recovery technologies. Resting cells of Desulfovibrio desulfuricans reduced soluble Pd{sup 2+} to elemental, cell-bound Pd° supported by pyruvate, formate, or Hâ as

JON R. LLOYD; PING YONG; LYNNE E. MACASKIE

1998-01-01

136

Sulfate-reducing bacteria detection based on the photocatalytic property of microbial synthesized ZnS nanoparticles.  

PubMed

This work presented a novel method for specific detection of sulfate-reducing bacteria (SRB) based on the photocatalytic property of ZnS nanoparticles. ZnS semiconductor nanoparticles were synthesized by taking advantage of the characteristic bacterial metabolite, sulfide, and then ZnS nanomaterials were used as photocatalyst for methylene blue (MB) photodegradation. As the amount of ZnS photocatalyst synthesized from microbe metabolized sulfide was affected by initial bacterial concentration before cultivation, the photodegradation ratio of MB was highly related with initial SRB concentration. Under the optimized conditions, a linear relationship between the MB photodegradation ratio and the logarithm of SRB concentration was observed in the range of 1.0×10(3)-1.0×10(8) cfu mL(-1). Besides, this proposed method showed excellent specificity for SRB detection. To the best of our knowledge, this is the first example of using the photocatalytic property of microbial synthesized ZnS for bacterial detection. PMID:24120169

Qi, Peng; Zhang, Dun; Wan, Yi

2013-10-24

137

Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria  

PubMed Central

Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1) that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS). It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched ?-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 ?g/ml). Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential alternative to the chemical biocides or surface coating agents currently used to prevent SRB growth in petroleum industries.

2012-01-01

138

Characterization of sulfate-reducing bacteria dominated surface communities during start-up of a down-flow fluidized bed reactor  

Microsoft Academic Search

An anaerobic down-flow fluidized bed reactor was inoculated with granular sludge and started-up with sulfate containing synthetic\\u000a wastewater to promote the formation of a biofilm enriched in sulfate-reducing bacteria (SRB), to produce biogenic sulfide.\\u000a The start-up was done in two stages operating the reactor in batch for 45 days followed by 85 days of continuous operation.\\u000a Low-density polyethylene was used as support.

Lourdes B. Celis; Denys Villa-Gómez; Angel G. Alpuche-Solís; B. Otto Ortega-Morales; Elías Razo-Flores

2009-01-01

139

STUDIES ON THERMOPHILIC SULFATE-REDUCING BACTERIA III. : Adenosine Triphosphate-sulfurylase of Clostridium nigrificans and Desulfovibrio desulfuricans.  

PubMed

Akagi, J. M. (University of Kansas, Lawrence) and L. Leon Campbell. Studies on thermophilic sulfate-reducing bacteria. III. Adenosine triphosphate-sulfurylase of Clostridium nigrificans and Desulfovibrio desulfuricans. J. Bacteriol. 84:1194-1201. 1962.-Adenosine triphosphate (ATP)-sulfurylase, which catalyzes the formation of adenosine-5'-phosphosulfate (APS) from ATP and SO(4) (=), has been purified from crude extracts of Clostridium nigrificans and Desulfovibrio desulfuricans by (NH(4))(2)SO(4) fractionation and triethylaminoethyl column chromatography. The enzyme from both sources operates over a broad pH range from 6.0 to 9.5. Below pH 6.0, activity decreases sharply, with no detectable activity at pH 5.0. Of the nucleotides tested (ATP and the triphosphates of deoxyadenosine, uridine, inosine, and guanosine), only ATP was acted upon by the enzyme from either source. The enzyme requires Mg(++) for activity. Incubation of the enzyme from both organisms with ATP and S(35)O(4) (=) in the presence of helium resulted in the formation of an S(35)-labeled nucleotide whose electrophoretic mobility was identical to that of chemically prepared APS. When incubated with ATP and the group VI anions (CrO(4), MoO(4), WO(4)), the enzyme from both organisms formed an unstable intermediate, resulting in the accumulation of pyrophosphate. Thermal stability studies revealed that the ATP-sulfurylase of C. nigrificans was stable at higher temperatures than the enzyme obtained from D. desulfuricans. Exposure of the enzyme from C. nigrificans to 65 C for 2 hr gave virtually no decrease in activity. In contrast, the enzyme from D. desulfuricans was completely inactivated after 30 min at 55 C, after 3 min at 60 C, or after 1 min at 65 C. PMID:16561978

Akagi, J M; Campbell, L L

1962-12-01

140

Application of Denaturing High-Performance Liquid Chromatography for Monitoring Sulfate-Reducing Bacteria in Oil Fields  

PubMed Central

Sulfate-reducing bacteria (SRB) participate in microbially induced corrosion (MIC) of equipment and H2S-driven reservoir souring in oil field sites. Successful management of industrial processes requires methods that allow robust monitoring of microbial communities. This study investigated the applicability of denaturing high-performance liquid chromatography (DHPLC) targeting the dissimilatory sulfite reductase ß-subunit (dsrB) gene for monitoring SRB communities in oil field samples from the North Sea, the United States, and Brazil. Fifteen of the 28 screened samples gave a positive result in real-time PCR assays, containing 9 × 101 to 6 × 105 dsrB gene copies ml?1. DHPLC and denaturing gradient gel electrophoresis (DGGE) community profiles of the PCR-positive samples shared an overall similarity; both methods revealed the same samples to have the lowest and highest diversity. The SRB communities were diverse, and different dsrB compositions were detected at different geographical locations. The identified dsrB gene sequences belonged to several phylogenetic groups, such as Desulfovibrio, Desulfococcus, Desulfomicrobium, Desulfobulbus, Desulfotignum, Desulfonatronovibrio, and Desulfonauticus. DHPLC showed an advantage over DGGE in that the community profiles were very reproducible from run to run, and the resolved gene fragments could be collected using an automated fraction collector and sequenced without a further purification step. DGGE, on the other hand, included casting of gradient gels, and several rounds of rerunning, excising, and reamplification of bands were needed for successful sequencing. In summary, DHPLC proved to be a suitable tool for routine monitoring of the diversity of SRB communities in oil field samples.

Nyyssonen, Mari; Bomberg, Malin; Laitila, Arja; Simell, Jaakko; Kapanen, Anu; Juvonen, Riikka

2013-01-01

141

Application of denaturing high-performance liquid chromatography for monitoring sulfate-reducing bacteria in oil fields.  

PubMed

Sulfate-reducing bacteria (SRB) participate in microbially induced corrosion (MIC) of equipment and H2S-driven reservoir souring in oil field sites. Successful management of industrial processes requires methods that allow robust monitoring of microbial communities. This study investigated the applicability of denaturing high-performance liquid chromatography (DHPLC) targeting the dissimilatory sulfite reductase ß-subunit (dsrB) gene for monitoring SRB communities in oil field samples from the North Sea, the United States, and Brazil. Fifteen of the 28 screened samples gave a positive result in real-time PCR assays, containing 9 × 10(1) to 6 × 10(5) dsrB gene copies ml(-1). DHPLC and denaturing gradient gel electrophoresis (DGGE) community profiles of the PCR-positive samples shared an overall similarity; both methods revealed the same samples to have the lowest and highest diversity. The SRB communities were diverse, and different dsrB compositions were detected at different geographical locations. The identified dsrB gene sequences belonged to several phylogenetic groups, such as Desulfovibrio, Desulfococcus, Desulfomicrobium, Desulfobulbus, Desulfotignum, Desulfonatronovibrio, and Desulfonauticus. DHPLC showed an advantage over DGGE in that the community profiles were very reproducible from run to run, and the resolved gene fragments could be collected using an automated fraction collector and sequenced without a further purification step. DGGE, on the other hand, included casting of gradient gels, and several rounds of rerunning, excising, and reamplification of bands were needed for successful sequencing. In summary, DHPLC proved to be a suitable tool for routine monitoring of the diversity of SRB communities in oil field samples. PMID:23793633

Priha, Outi; Nyyssönen, Mari; Bomberg, Malin; Laitila, Arja; Simell, Jaakko; Kapanen, Anu; Juvonen, Riikka

2013-09-01

142

Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes  

Microsoft Academic Search

Sequence analysis of genes encoding dissimilatory sulfite reductase (DSR) was used to identify sulfate-reducing bacteria in a hypersaline microbial mat and to evaluate their distribution in relation to levels of oxygen. The most highly diverse DSR sequences, most related to those of the Desulfonema-like organisms within the δ-proteobacteria, were recovered from oxic regions of the mat. This observation extends those

DROR MINZ; JODI L. FLAX; STEFAN J. GREEN; GERARD MUYZER; YEHUDA COHEN; MICHAEL WAGNER; BRUCE E. RITTMANN; DAVID A. STAHL

1999-01-01

143

Nested PCR-Denaturing Gradient Gel Electrophoresis Approach To Determine the Diversity of Sulfate-Reducing Bacteria in Complex Microbial Communities  

Microsoft Academic Search

Here, we describe a three-step nested-PCR-denaturing gradient gel electrophoresis (DGGE) strategy to de- tect sulfate-reducing bacteria (SRB) in complex microbial communities from industrial bioreactors. In the first step, the nearly complete 16S rRNA gene was amplified using bacterial primers. Subsequently, this product was used as a template in a second PCR with group-specific SRB primers. A third round of amplification

Shabir A. Dar; J. Gijs Kuenen; Gerard Muyzer

2005-01-01

144

Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes  

SciTech Connect

Sequence analysis of genes encoding dissimilatory sulfite reductase (DSR) was used to identify sulfate-reducing bacteria in a hypersaline microbial mat and to evaluate their distribution in relation to levels of oxygen. The most highly diverse DSR sequences, most related to those of the Desulfonema-like organisms within the {delta}-proteobacteria, were recovered from oxic regions of the mat. This observation extends those of previous studies by the authors and others associating Desulfonema-like organisms with oxic habitats.

Minz, D.; Flax, J.L.; Green, S.J.; Muyzer, G.; Cohen, Y.; Wagner, M.; Rittmann, B.E.; Stahl, D.A.

1999-10-01

145

Evaluation of a fuel-soluble organoboron biocide for control of sulfate-reducing bacteria in shipboard fuel tanks. Interim report  

Microsoft Academic Search

A biocide composed of a mixture of two dioxaborinane derivatives has been evaluated in test-tube assays and in large-scale test systems simulating conditions in shipboard, seawater-displacement fuel tanks. A concentration of approximately 20,000 ppm in the water phase was required to control sulfate-reducing bacteria of marine origin in a mixed population of microorganisms. It is not likely that this concentration

D. E. Klemme; R. A. Neihof

1976-01-01

146

Quantification of Sulfate-reducing Bacteria in Industrial Wastewater, by Real-time Polymerase Chain Reaction (PCR) Using dsrA and apsA Genes  

Microsoft Academic Search

Real-time polymerase chain reaction (PCR) is considered a highly sensitive method for the quantification of microbial organisms\\u000a in environmental samples. This study was conducted to evaluate real-time PCR with SybrGreen detection as a quantification\\u000a method for sulfate-reducing bacteria (SRB) in industrial wastewater produced by several chemical industries. We designed four\\u000a sets of primers and developed standard curves based on genomic

Eitan Ben-Dov; Asher Brenner; Ariel Kushmaro

2007-01-01

147

Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water  

Microsoft Academic Search

Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris)

R. Zuo; D. Örnek; B. C. Syrett; R. M. Green; C.-H. Hsu; F. B. Mansfeld; T. K. Wood

2004-01-01

148

Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil  

Microsoft Academic Search

For 503 days, unoiled control and artificially oiled sediments were incubated in situ at 20m water depth in a Mediterranean coastal area. Degradation of the aliphatic fraction of the oil added was followed by GC–MS. At the same time, terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA encoding genes was used to detect dynamics in the sulfate-reducing bacteria (SRB)

Gilles Miralles; Vincent Grossi; Monique Acquaviva; Robert Duran; Jean Claude Bertrand; Philippe Cuny

2007-01-01

149

Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms  

Microsoft Academic Search

A gramicidin-S-producing Bacillus brevis 18-3 biofilm was shown to reduce corrosion rates of mild steel by inhibiting both the sulfate-reducing bacterium Desulfosporosinus orientis and the iron-oxidizing bacterium Leptothrix discophora SP-6. When L. discophora SP-6 was introduced along with D. orientis to a non-antimicrobial-producing biofilm control, Paenibacillus polymyxa ATCC 10401, a corrosive synergy was created and mild steel coupons underwent more

Rongjun Zuo; Thomas K. Wood

2004-01-01

150

Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments  

PubMed Central

The effect of plant invasion on the microorganisms of soil sediments is very important for estuary ecology. The community structures of methanogens and sulfate-reducing bacteria (SRB) as a function of Spartina alterniflora invasion in Phragmites australis-vegetated sediments of the Dongtan wetland in the Yangtze River estuary, China, were investigated using 454 pyrosequencing and quantitative real-time PCR (qPCR) of the methyl coenzyme M reductase A (mcrA) and dissimilatory sulfite-reductase (dsrB) genes. Sediment samples were collected from two replicate locations, and each location included three sampling stands each covered by monocultures of P. australis, S. alterniflora and both plants (transition stands), respectively. qPCR analysis revealed higher copy numbers of mcrA genes in sediments from S. alterniflora stands than P. australis stands (5- and 7.5-fold more in the spring and summer, respectively), which is consistent with the higher methane flux rates measured in the S. alterniflora stands (up to 8.01 ± 5.61 mg m?2 h?1). Similar trends were observed for SRB, and they were up to two orders of magnitude higher than the methanogens. Diversity indices indicated a lower diversity of methanogens in the S. alterniflora stands than the P. australis stands. In contrast, insignificant variations were observed in the diversity of SRB with the invasion. Although Methanomicrobiales and Methanococcales, the hydrogenotrophic methanogens, dominated in the salt marsh, Methanomicrobiales displayed a slight increase with the invasion and growth of S. alterniflora, whereas the later responded differently. Methanosarcina, the metabolically diverse methanogens, did not vary with the invasion of, but Methanosaeta, the exclusive acetate utilizers, appeared to increase with S. alterniflora invasion. In SRB, sequences closely related to the families Desulfobacteraceae and Desulfobulbaceae dominated in the salt marsh, although they displayed minimal changes with the S. alterniflora invasion. Approximately 11.3 ± 5.1% of the dsrB gene sequences formed a novel cluster that was reduced upon the invasion. The results showed that in the sediments of tidal salt marsh where S. alterniflora displaced P. australis, the abundances of methanogens and SRB increased, but the community composition of methanogens appeared to be influenced more than did the SRB.

Zeleke, Jemaneh; Sheng, Qiang; Wang, Jian-Gong; Huang, Ming-Yao; Xia, Fei; Wu, Ji-Hua; Quan, Zhe-Xue

2013-01-01

151

Quantification of Tinto River Sediment Microbial Communities: Importance of Sulfate-Reducing Bacteria and Their Role in Attenuating Acid Mine Drainage  

PubMed Central

Tinto River (Huelva, Spain) is a natural acidic rock drainage (ARD) environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. This study quantified the abundance of diverse microbial populations inhabiting ARD-related sediments from two physicochemically contrasting sampling sites (SN and JL dams). Depth profiles of total cell numbers differed greatly between the two sites yet were consistent in decreasing sharply at greater depths. Although catalyzed reporter deposition fluorescence in situ hybridization with domain-specific probes showed that Bacteria (>98%) dominated over Archaea (<2%) at both sites, important differences were detected at the class and genus levels, reflecting differences in pH, redox potential, and heavy metal concentrations. At SN, where the pH and redox potential are similar to that of the water column (pH 2.5 and +400 mV), the most abundant organisms were identified as iron-reducing bacteria: Acidithiobacillus spp. and Acidiphilium spp., probably related to the higher iron solubility at low pH. At the JL dam, characterized by a banded sediment with higher pH (4.2 to 6.2), more reducing redox potential (?210 mV to 50 mV), and a lower solubility of iron, members of sulfate-reducing genera Syntrophobacter, Desulfosporosinus, and Desulfurella were dominant. The latter was quantified with a newly designed CARD-FISH probe. In layers where sulfate-reducing bacteria were abundant, pH was higher and redox potential and levels of dissolved metals and iron were lower. These results suggest that the attenuation of ARD characteristics is biologically driven by sulfate reducers and the consequent precipitation of metals and iron as sulfides.

Sanchez-Andrea, Irene; Knittel, Katrin; Amann, Rudolf; Amils, Ricardo

2012-01-01

152

Quantification of Tinto River sediment microbial communities: importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage.  

PubMed

Tinto River (Huelva, Spain) is a natural acidic rock drainage (ARD) environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. This study quantified the abundance of diverse microbial populations inhabiting ARD-related sediments from two physicochemically contrasting sampling sites (SN and JL dams). Depth profiles of total cell numbers differed greatly between the two sites yet were consistent in decreasing sharply at greater depths. Although catalyzed reporter deposition fluorescence in situ hybridization with domain-specific probes showed that Bacteria (>98%) dominated over Archaea (<2%) at both sites, important differences were detected at the class and genus levels, reflecting differences in pH, redox potential, and heavy metal concentrations. At SN, where the pH and redox potential are similar to that of the water column (pH 2.5 and +400 mV), the most abundant organisms were identified as iron-reducing bacteria: Acidithiobacillus spp. and Acidiphilium spp., probably related to the higher iron solubility at low pH. At the JL dam, characterized by a banded sediment with higher pH (4.2 to 6.2), more reducing redox potential (-210 mV to 50 mV), and a lower solubility of iron, members of sulfate-reducing genera Syntrophobacter, Desulfosporosinus, and Desulfurella were dominant. The latter was quantified with a newly designed CARD-FISH probe. In layers where sulfate-reducing bacteria were abundant, pH was higher and redox potential and levels of dissolved metals and iron were lower. These results suggest that the attenuation of ARD characteristics is biologically driven by sulfate reducers and the consequent precipitation of metals and iron as sulfides. PMID:22544246

Sánchez-Andrea, Irene; Knittel, Katrin; Amann, Rudolf; Amils, Ricardo; Sanz, José Luis

2012-07-01

153

Reverse Sample Genome Probing, a New Technique for Identification of Bacteria in Environmental Samples by DNA Hybridization, and Its Application to the Identification of Sulfate-Reducing Bacteria in Oil Field Samples  

PubMed Central

A novel method for the identification of bacteria in environmental samples by DNA hybridization is presented. It is based on the fact that, even within a genus, the genomes of different bacteria may have little overall sequence homology. This allows the use of the labeled genomic DNA of a given bacterium (referred to as a “standard”) to probe for its presence and that of bacteria with highly homologous genomes in total DNA obtained from an environmental sample. Alternatively, total DNA extracted from the sample can be labeled and used to probe filters on which denatured chromosomal DNA from relevant bacterial standards has been spotted. The latter technique is referred to as reverse sample genome probing, since it is the reverse of the usual practice of deriving probes from reference bacteria for analyzing a DNA sample. Reverse sample genome probing allows identification of bacteria in a sample in a single step once a master filter with suitable standards has been developed. Application of reverse sample genome probing to the identification of sulfate-reducing bacteria in 31 samples obtained primarily from oil fields in the province of Alberta has indicated that there are at least 20 genotypically different sulfate-reducing bacteria in these samples. Images

Voordouw, Gerrit; Voordouw, Johanna K.; Karkhoff-Schweizer, Roxann R.; Fedorak, Phillip M.; Westlake, Donald W. S.

1991-01-01

154

Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.  

PubMed

A gramicidin-S-producing Bacillus brevis 18-3 biofilm was shown to reduce corrosion rates of mild steel by inhibiting both the sulfate-reducing bacterium Desulfosporosinus orientis and the iron-oxidizing bacterium Leptothrix discophora SP-6. When L. discophora SP-6 was introduced along with D. orientis to a non-antimicrobial-producing biofilm control, Paenibacillus polymyxa ATCC 10401, a corrosive synergy was created and mild steel coupons underwent more severe corrosion than when only D. orientis was present, showing a 2.3-fold increase via electrochemical impedance spectroscopy (EIS) and a 1.8-fold difference via mass-loss measurements. However, when a gramicidin-S-producing, protective B. brevis 18-3 biofilm was established on mild steel, the metal coupons were protected against the simultaneous attack of D. orientis and L. discophora SP-6. EIS data showed that the protective B. brevis 18-3 biofilm decreased the corrosion rate about 20-fold compared with the non-gramicidin-producing P. polymyxa ATCC 10401 biofilm control. The mass loss for the protected mild steel coupons was also significantly lower than that for the unprotected ones (4-fold decrease). Scanning electron microscope images corroborated the corrosion inhibition by the gramicidin-S-producing B. brevis biofilm on mild steel by showing that the metal surface remained untarnished, i.e., the polishing grooves were still visible after exposure to the simultaneous attack of the sulfate-reducing bacterium and the iron-oxidizing bacterium. PMID:15278311

Zuo, Rongjun; Wood, Thomas K

2004-11-01

155

Antagonistic activity of Bacillus sp. obtained from an Algerian oilfield and chemical biocide THPS against sulfate-reducing bacteria consortium inducing corrosion in the oil industry.  

PubMed

The present study enlightens the role of the antagonistic potential of nonpathogenic strain B21 against sulfate-reducing bacteria (SRB) consortium. The inhibitor effects of strain B21 were compared with those of the chemical biocide tetrakishydroxymethylphosphonium sulfate (THPS), generally used in the petroleum industry. The biological inhibitor exhibited much better and effective performance. Growth of SRB in coculture with bacteria strain B21 antagonist exhibited decline in SRB growth, reduction in production of sulfides, with consumption of sulfate. The observed effect seems more important in comparison with the effect caused by the tested biocide (THPS). Strain B21, a dominant facultative aerobic species, has salt growth requirement always above 5% (w/v) salts with optimal concentration of 10-15%. Phylogenetic analysis based on partial 16S rRNA gene sequences showed that strain B21 is a member of the genus Bacillus, being most closely related to Bacillus qingdaonensis DQ115802 (94.0% sequence similarity), Bacillus aidingensis DQ504377 (94.0%), and Bacillus salarius AY667494 (92.2%). Comparative analysis of partial 16S rRNA gene sequence data plus physiological, biochemical, and phenotypic features of the novel isolate and related species of Bacillus indicated that strain B21 may represent a novel species within the genus Bacillus, named Bacillus sp. (EMBL, FR671419). The results of this study indicate the application potential of Bacillus strain B21 as a biocontrol agent to fight corrosion in the oil industry. PMID:20949304

Gana, Mohamed Lamine; Kebbouche-Gana, Salima; Touzi, Abdelkader; Zorgani, Mohamed Amine; Pauss, André; Lounici, Hakim; Mameri, Nabil

2011-03-01

156

Microcalorimetric studies of the growth of sulfate-reducing bacteria: comparison of the growth parameters of some Desulfovibrio species.  

PubMed Central

We performed a comparative study of the growth energetics of some species of Desulfovibrio by measuring microcalorimetric and molar growth yield values. Lactate and pyruvate were used as energy sources for sulfate reduction. On lactate-sulfate media Desulfovibrio desulfuricans Norway, Desulfovibrio gigas, and Desulfovibrio africanus exhibited molar growth yields of 4.1 +/- 0.6, 3.7 +/- 1.7, and 1.8 +/- 0.1 g/mol, respectively, whereas on pyruvate-sulfate media the molar growth yields were higher (8.5 +/- 0.8, 7.7 +/- 1.6, and 3.5 +/- 0.5 g/mol, respectively). Thus, we found that D. africanus was the least efficient species in converting energy into cell material. The uncoupling of energy in this strain was obvious since its catabolic activities were high compared with those of the two other strains. The enthalpy changes associated with lactate and pyruvate metabolism were -49 +/- 0.7 and -70.2 +/- 6.0 jK/mol, respectively, for D. desulfuricans, -76.6 +/- 1.8 and -91.2 +/- 1.1 kJ/mol, respectively, for D. gigas, and -78.8 +/- 7.2 and -88.0 +/- 6.2 kJ/mol, respectively, for D. africanus. D. gigas and D. africanus produced only acetate, CO2 and hydrogen sulfide as metabolic end products. In addition to these normal end products, D. desulfuricans Norway produced a small amount of butanol. This butanol production was interpreted as reflecting a regulatory system of electron flow during the catabolism of both substrates. Such metabolism was comparable to that reported for D. vulgaris, which lost part of the reducing power of its energy sources through hydrogen evolution.

Traore, A S; Hatchikian, C E; Le Gall, J; Belaich, J P

1982-01-01

157

The Sulfate-Rich and Extreme Saline Sediment of the Ephemeral Tirez Lagoon: A Biotope for Acetoclastic Sulfate-Reducing Bacteria and Hydrogenotrophic Methanogenic Archaea  

PubMed Central

Our goal was to examine the composition of methanogenic archaea (MA) and sulfate-reducing (SRP) and sulfur-oxidizing (SOP) prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain). Thus, adenosine-5?-phosphosulfate (APS) reductase ? (aprA) and methyl coenzyme M reductase ? (mcrA) gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE) fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ?-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in ?-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA.

Montoya, Lilia; Lozada-Chavez, Irma; Amils, Ricardo; Rodriguez, Nuria; Marin, Irma

2011-01-01

158

The sulfate-rich and extreme saline sediment of the ephemeral tirez lagoon: a biotope for acetoclastic sulfate-reducing bacteria and hydrogenotrophic methanogenic archaea.  

PubMed

Our goal was to examine the composition of methanogenic archaea (MA) and sulfate-reducing (SRP) and sulfur-oxidizing (SOP) prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain). Thus, adenosine-5'-phosphosulfate (APS) reductase ? (aprA) and methyl coenzyme M reductase ? (mcrA) gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE) fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ?-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in ?-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible "salt-in" signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA. PMID:21915180

Montoya, Lilia; Lozada-Chávez, Irma; Amils, Ricardo; Rodriguez, Nuria; Marín, Irma

2011-01-01

159

Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps.  

PubMed

The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20?°C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with (13)C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in (13)C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture. PMID:23254512

Jaekel, Ulrike; Musat, Niculina; Adam, Birgit; Kuypers, Marcel; Grundmann, Olav; Musat, Florin

2013-05-01

160

Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps  

PubMed Central

The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20?°C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with 13C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in 13C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture.

Jaekel, Ulrike; Musat, Niculina; Adam, Birgit; Kuypers, Marcel; Grundmann, Olav; Musat, Florin

2013-01-01

161

Managing the interactions between sulfate- and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration.  

PubMed

A groundwater containing an unusually high concentration (?4000 ?g/L) of perchlorate (ClO4(-)) and significant (?60 mg/L) sulfate (SO4(2-)) was treated with hydrogen (H2)-fed biofilms. The objective was to manage the interactions between sulfate-reducing bacteria (SRB) and perchlorate-reducing bacteria (PRB) by controlling the H2-delivery capacity to achieve ClO4(-) reduction to below the detection limit (4 ?g/L). Complete ClO4(-) reduction with minimized SO4(2-) reduction was achieved by using two membrane biofilm reactors (MBfRs) in series. The lead MBfR removed >96% ClO4(-), and the lag MBfR further reduced ClO4(-) to below the detection limit. SO4(2-) reduction ranged from 10 to 60%, and lower SO4(2-) reduction corresponded to lower H2 availability (i.e., lower H2 pressure or membranes with lower H2-delivery capacity). Minimizing SO4(2-) reduction improved ClO4(-) removal by increasing the fraction of PRB in the biofilm. High SO4(2-) flux correlated with enrichment of Desulfovibrionales, autotrophic SRB that can compete strongly with denitrifying bacteria (DB) and PRB. Increased SO4(2-) reduction also led to enrichment of: 1) Ignavibacteriales and Thiobacteriales, sulfide-oxidizing bacteria that allow sulfur cycling in the biofilm; 2) Bacteroidales, heterotrophic microorganisms likely using organic sources of carbon (e.g., acetate); and 3) Spirochaetales, which potentially utilize soluble microbial products (SMPs) from autotrophic SRB to produce acetate. PMID:24607522

Ontiveros-Valencia, Aura; Tang, Youneng; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

2014-05-15

162

Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex  

NASA Astrophysics Data System (ADS)

A sulfate-reducing bacterial (SRB) enrichment, from the Driefontein Consolidated Gold Mine, Witwatersrand Basin, Republic of South Africa, was able to destabilize gold(I)-thiosulfate complex (Au(SO)23-) and precipitate elemental gold. The precipitation of gold was observed in the presence of active (live) SRB due to the formation and release of hydrogen sulfide as an end-product of metabolism, and occurred by three possible mechanisms involving iron sulfide, localized reducing conditions, and metabolism. The presence of biogenic iron sulfide caused significant removal of gold from solutions by adsorption and reduction processes on the iron sulfide surfaces. The presence of gold nanoparticles within and immediately surrounding the bacterial cell envelope highlights the presence of localized reducing conditions produced by the bacterial electron transport chain via energy generating reactions within the cell. Specifically, the decrease in redox conditions caused by the release of hydrogen sulfide from the bacterial cells destabilized the Au(SO)23- solutions. The presence of gold as nanoparticles (<10 nm) inside a sub-population of SRB suggests that the reduction of gold was a part of metabolic process. In late stationary phase or death phase, gold nanoparticles that were initially precipitated inside the bacterial cells, were released from the cells and deposited in the bulk solution as addition of gold nanoparticles that already precipitated in the solution. Ultimately, the formation of micrometer-scale sub-octahedral and octahedral gold and spherical aggregates containing octahedral gold was observed.

Lengke, Maggy; Southam, Gordon

2006-07-01

163

Molecular analysis of deep subsurface Cretaceous rock indicates abundant Fe(III)- and S(zero)-reducing bacteria in a sulfate-rich environment.  

PubMed

A multilevel sampler (MLS) was emplaced in a borehole straddling anaerobic, sulfate-rich Cretaceous-era shale and sandstone rock formations approximately 200 m below ground surface at Cerro Negro, New Mexico. Sterile quartzite sand contained in chambers in the sampler allowed in situ colonization and recovery of nucleic acids for molecular analyses. Denaturing gradient gel electrophoresis and 16S rRNA gene cloning results indicated a homogeneously distributed bacterial community across the shale-sandstone interface. delta-Proteobacteria sequences were common at all depths, and were dominated by members of the Geobacteraceae family (Pelobacter, Desulphuromonas and Geobacter). Other members of this group are capable of dissimilatory Fe(III) and/or S degrees reduction, but not sulfate reduction. RNA hybridization data also suggested that Fe(III)-/S degrees -reducing bacteria were predominant. These findings are striking considering the lack of significant concentrations of these electron acceptors in this environment. The next most abundant bacterial group indicated was the sulfate reducers, including Desulfobacterium, Desulfocapsa and Desulfobulbus. Sequences related to fermenters, denitrifiers and acetogens were also recovered. The presence of a phylogenetically and functionally diverse microbial community in this deep subsurface environment likely reflects the complex nature of the primary energy and carbon sources, kerogen associated with the shale. PMID:16343329

Kovacik, William P; Takai, Ken; Mormile, Melanie R; McKinley, James P; Brockman, Fred J; Fredrickson, James K; Holben, William E

2006-01-01

164

Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes.  

PubMed Central

The vertical distribution of sulfate-reducing bacteria (SRB) in photosynthetic biofilms from the trickling filter of a sewage treatment plant was investigated with oligonucleotide probes binding to 16S rRNA. To demonstrate the effect of daylight and photosynthesis and thereby of increased oxygen penetration, we incubated two 4-mm-thick biofilm samples in darkness or exposed to light at natural intensity. Gradients of O2, H2S, and pH were examined with microelectrodes during incubation. The samples were subsequently frozen with liquid nitrogen and sliced on a cryomicrotome in 20-microns vertical slices. Fluorescent-dye-conjugated oligonucleotides were used as "phylogenetic" probes to identify single cells in the slices. Oligonucleotide sequences were selected which were complementary to short sequence elements (16 to 20 nucleotides) within the 16S rRNA of sulfate-reducing bacteria. The probes were labeled with fluorescein or rhodamine derivatives for subsequent visualization by epifluorescence microscopy. Five probes were synthesized for eukaryotes, eubacteria, SRB (including most species of the delta group of purple bacteria), Desulfobacter spp., and a nonhybridizing control. The SRB were unevenly distributed in the biofilm, being present in all states from single scattered cells to dense clusters of several thousand cells. To quantify the vertical distribution of SRB, we counted cells along vertical transects through the biofilm. This was done in a blind experiment to ascertain the reliability of the staining. A negative correlation between the vertical distribution of positively stained SRB cells and the measured O2 profiles was found. The distribution differed in light- and dark-incubated samples presumably because of the different extensions of the oxic surface layer. In both cases the SRB were largely restricted to anoxic layers. Images

Ramsing, N B; Kuhl, M; J?rgensen, B B

1993-01-01

165

Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio  

Microsoft Academic Search

The microbial population structure and function of natural anaerobic communities maintained in lab-scale continuously stirred\\u000a tank reactors at different lactate to sulfate ratios and in the absence of sulfate were analyzed using an integrated approach\\u000a of molecular techniques and chemical analysis. The population structure, determined by denaturing gradient gel electrophoresis\\u000a and by the use of oligonucleotide probes, was linked to

Shabir A. Dar; Robbert Kleerebezem; Alfons J. M. Stams; J. Gijs Kuenen; Gerard Muyzer

2008-01-01

166

Role of interspecies H 2 transfer to sulfate and ferric iron-reducing bacteria in acetate consumption in anoxic paddy soil  

Microsoft Academic Search

Addition of sulfate resulted in complete inhibition of methanogenesis in anoxic paddy soil. About 20% of the CH4 was produced from H214CO2, the rest from acetate. Inhibition of H2-dependent methanogenesis was explained by successful competition by sulfate reducers for H2, as the H2 partial pressures decreased upon addition of sulfate. However, acetate concentrations did not decrease. Sulfate reduction was stimulated

Christof Achtnich; Alexandra Schuhmann; Thorsten Wind; Ralf Conrad

1995-01-01

167

Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.  

PubMed

Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50-90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel. PMID:12898064

Zuo, R; Ornek, D; Syrett, B C; Green, R M; Hsu, C-H; Mansfeld, F B; Wood, T K

2004-04-01

168

Inhibition of hydrogen sulfide, methane, and total gas production and sulfate-reducing bacteria in in vitro swine manure by tannins, with focus on condensed quebracho tannins.  

PubMed

Management practices from large-scale swine production facilities have resulted in the increased collection and storage of manure for off-season fertilization use. Odor and emissions produced during storage have increased the tension among rural neighbors and among urban and rural residents. Production of these compounds from stored manure is the result of microbial activity of the anaerobic bacteria populations during storage. In the current study, the inhibitory effects of condensed quebracho tannins on in vitro swine manure for reduction of microbial activity and reduced production of gaseous emissions, including the toxic odorant hydrogen sulfide produced by sulfate-reducing bacteria (SRB), was examined. Swine manure was collected from a local swine facility, diluted in anaerobic buffer, and mixed with 1 %?w/v fresh feces. This slurry was combined with quebracho tannins, and total gas and hydrogen sulfide production was monitored over time. Aliquots were removed periodically for isolation of DNA to measure the SRB populations using quantitative PCR. Addition of tannins reduced overall gas, hydrogen sulfide, and methane production by greater than 90 % after 7 days of treatment and continued to at least 28 days. SRB population was also significantly decreased by tannin addition. qRT-PCR of 16S rDNA bacteria genes showed that the total bacterial population was also decreased in these incubations. These results indicate that the tannins elicited a collective effect on the bacterial population and also suggest a reduction in the population of methanogenic microorganisms as demonstrated by reduced methane production in these experiments. Such a generalized effect could be extrapolated to a reduction in other odor-associated emissions during manure storage. PMID:23149758

Whitehead, Terence R; Spence, Cheryl; Cotta, Michael A

2013-09-01

169

A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde  

Microsoft Academic Search

Generally speaking, a much higher concentration of biocide is needed to treat biofilms compared to the dosage used to for planktonic bacteria. With increasing restrictions of environmental regulations and safety concerns on large-scale biocide uses such as oil field applications, it is highly desirable to make more effective use of biocides. In this paper a green biocide enhancer ethylenediaminedisuccinate (EDDS)

Jie Wen; Kaili Zhao; Tingyue Gu; Issam I. Raad

2009-01-01

170

Pitting initiation of 316L stainless steel in the media of sulfate-reducing and iron-oxidizing bacteria  

Microsoft Academic Search

Pitting corrosion behavior of stainless steel 316L in the presence of aerobic and anaerobic bacteria isolated from cooling\\u000a water system in oil refinery was investigated using open circuit potential measurement, electrochemically impedance spectroscopy,\\u000a scanning electron microscopy examinations, and energy dispersive spectrum analysis. The results show the corrosion potential\\u000a (E\\u000a cor) and polarization resistance (R\\u000a p) decrease in the presence of

Y. H. Zhang; C. M. Xu; G. X. Cheng; W. S. Zhu

2007-01-01

171

Corrosion and Electrochemical Behavior of 316L Stainless Steel in Sulfate-reducing and Iron-oxidizing Bacteria Solutions 1 1 Supported by the National Natural Science Foundation of China (No.20576108)  

Microsoft Academic Search

Corrosion and electrochemical behavior of 316L stainless steel was investigated in the presence of aerobic iron-oxidizing bacteria (IOB) and anaerobic sulfate-reducing bacteria (SRB) isolated from cooling water systems in an oil refinery using electrochemical measurement, scanning electron microscopy (SEM) and energy dispersive atom X-ray analysis(EDAX). The results show the corrosion potential and pitting potential of 316L stainless steel decrease distinctly

Congmin XU; Yaoheng ZHANG; Guangxu CHENG; Wensheng ZHU

2006-01-01

172

Effects of Long-Term Acid-Mine Drainage Contamination on Diversity and Activity of Sulfate-Reducing Bacteria in a Natural Salt Marsh.  

NASA Astrophysics Data System (ADS)

Constructed wetlands have been studied as sites or analogs for in situ bioremediation of metal contaminants from acid mine drainage (AMD) or industrial sources (e.g. Webb et al. 1998). Wetlands bioremediation necessarily invokes the ubiquity and robustness of sulfate-reducing bacteria (SRB) to sequester dissolved metals into various poorly soluble metal-sulfides (e.g. PbS, CdS). However, few studies of natural wetlands under long-term ecological forcing by AMD or other contaminant sources are available for context. We are investigating the microbial diversity, mineralogy and geochemistry of a highly contaminated salt marsh along the East Central San Francisco Bay. For nearly a half-century, areas within this marsh have received acidic and/or metal-rich groundwaters from near-surface pyrite tailings (transported there from Iron Mountain Mine, near Redding, CA) and local industrial sources (e.g. paint and explosives manufacturers). Sediment cores (30-40 cm long) were taken from six contaminated sites in the marsh with pH range of ˜2 to ˜8. Previous analyses (URS Corp. 2001) reported As, Cd, Cu, Se, Zn, and Pb present in sediments at extremely high concentrations (100s of ppm), yet our ICP-AES analyses of pore waters showed only As present at concentrations of 10-50 ppb. We infer, from high-resolution transmission electron microscope (HRTEM) studies of biogenic (SRB biofilm) ZnS (Moreau et al. 2003, in review) and marsh sediments, that contaminant metals have been sequestered into aggregates of nanocrystalline metal-sulfides. Continuous-flow isotope ratio mass spectrometer (CF-IRMS) analyses of pore-water sulfate and sedimentary sulfides allow resolution of contributions to dissolved sulfate and sulfide from tailings oxidation and dissimilatory sulfate reduction. Sulfate analyses from subsections of three cores (pH 2-3, 6-7, 7-8, respectively) all yield ? 34S values consistent with bacterial sulfate reduction. We note that all three cores also contain very fine-grained black muds that are distinguishable from coarser pyrite cinders, and exhibit a noticeably strong sulfide odor. Aero- and halo-tolerant SRB were enriched from circumneutral pH cores, and we hypothesize that acido-tolerant SRB may also be present. Analysis of restriction fragment length polymorphism of whole community 16S rDNA extracted from each core shows an expected increase in diversity between acidic and circumneutal sediments, and clone libraries from both contaminated and uncontaminated marsh sediments are being compared to assess the impact of long-term contamination. References: Webb et al. 1998, J. Appl. Microbio., 84, 240-248; Moreau et al. 2003, Amer. Min., in review; URS Corp. 2001, Report 51.09967067.00.

Moreau, J. W.; Banfield, J. F.

2003-12-01

173

Carbon assimilation pathways in sulfate-reducing bacteria II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus  

Microsoft Academic Search

The strict anaerobe Desulfobacter hydrogenophilus is able to grow autotrophically with CO2, H2, and sulfate as sole carbon and energy sources. The generation time at 30°C under autotrophic conditions in a pure mineral medium was 15 h, the growth yield was 8 g cell dry mass per mol sulfate reduced to H2S. Enzymes of the autotrophic CO2 assimilation pathway were

R. Schauder; F. Widdel; G. Fuchs

1987-01-01

174

Methane production correlates positively with methanogens, sulfate-reducing bacteria and pore water acetate at an estuarine brackish-marsh landscape scale  

NASA Astrophysics Data System (ADS)

Methane production is influenced by the abundance of methanogens and the availability of terminal substrates. Sulfate-reducing bacteria (SRB) also play an important role in the anaerobic decomposition of organic matter. However, the relationships between methane production and methanogen populations, pore water terminal substrates in estuarine brackish marshes are poorly characterized, and even to our knowledge, no published research has explored the relationship between methane production rate and abundance of SRB and pore water dimethyl sulfide (DMS) concentration. We investigated methane production rate, abundances of methanogens and SRB, concentrations of pore water terminal substrates and electron acceptors at a brackish marsh landscape dominated by Phragmites australis, Cyperus malaccensis and Spatina alterniflora marshes zones in the Min River estuary. The average rates of methane production at a soil depth of 30 cm in the three marsh zones were 0.142, 0.058 and 0.067 ?g g-1 d-1, respectively. The abundance of both methanogens and SRB in the soil of the P. australis marsh with highest soil organic carbon content was higher than in the C. malaccensis and S. alterniflora marshes. The abundance of methanogens and SRB in the three soil layers was statistically indistinguishable. Mean pore water DMS concentrations at a soil depth of 30 cm under the S. alterniflora marsh were higher than those in the C. malaccensis and P. australis marshes. Methane production rate increased with the abundance of both methanogens and SRB across three marsh zones together at the landscape scale, and also increased with the concentration of pore water acetate, but did not correlate with concentrations of pore water DMS and dissolved CO2. Our results suggest that, provided that substrates are available in ample supply, methanogens can continue to produce methane regardless of whether SRB are prevalent in estuarine brackish marshes.

Tong, C.; She, C. X.; Jin, Y. F.; Yang, P.; Huang, J. F.

2013-11-01

175

Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil.  

PubMed

For 503 days, unoiled control and artificially oiled sediments were incubated in situ at 20m water depth in a Mediterranean coastal area. Degradation of the aliphatic fraction of the oil added was followed by GC-MS. At the same time, terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA encoding genes was used to detect dynamics in the sulfate-reducing bacteria (SRB) community in response to the oil contamination. Specific polymerase chain reaction (PCR) primer sets for five generic or suprageneric groups of SRB were used for PCR amplification of DNA extracted from sediments. During the experiment, hydrocarbons from C(17) to C(30) were significantly degraded even in strictly anoxic sediment layers. Of the five SRB groups, only two groups were detected in the sediments (control and oiled), namely the Desulfococcus-Desulfonema-Desulfosarcina-like group and the Desulfovibrio-Desulfomicrobium-like group. Statistical analysis of community patterns revealed dynamic changes over time within these two groups following the contamination. Significant differences in community patterns were recorded in artificially oiled compared with control sediments. Cloning and sequencing of 16S rRNA encoding genes performed after 503 days showed that many of the most abundant sequences were closely related to hydrocarbonoclastic SRB which could have played an active role in the observed biodegradation of aliphatic hydrocarbons. Results from the present study provide useful information on the dynamics of dominant SRB in heavily oil-contaminated sediments and their potential for anaerobic biodegradation for the treatment of spilled oil in anoxic marine environments. PMID:17337033

Miralles, Gilles; Grossi, Vincent; Acquaviva, Monique; Duran, Robert; Claude Bertrand, Jean; Cuny, Philippe

2007-07-01

176

Polyhydroxyalkanoate (PHA) Accumulation in Sulfate-Reducing Bacteria and Identification of a Class III PHA Synthase (PhaEC) in Desulfococcus multivorans  

PubMed Central

Seven strains of sulfate-reducing bacteria (SRB) were tested for the accumulation of polyhydroxyalkanoates (PHAs). During growth with benzoate Desulfonema magnum accumulated large amounts of poly(3-hydroxybutyrate) [poly(3HB)]. Desulfosarcina variabilis (during growth with benzoate), Desulfobotulus sapovorans (during growth with caproate), and Desulfobacterium autotrophicum (during growth with caproate) accumulated poly(3HB) that accounted for 20 to 43% of cell dry matter. Desulfobotulus sapovorans and Desulfobacterium autotrophicum also synthesized copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyvalerate when valerate was used as the growth substrate. Desulfovibrio vulgaris and Desulfotalea psychrophila were the only SRB tested in which PHAs were not detected. When total DNA isolated from Desulfococcus multivorans and specific primers deduced from highly conserved regions of known PHA synthases (PhaC) were used, a PCR product homologous to the central region of class III PHA synthases was obtained. The complete pha locus of Desulfococcus multivorans was subsequently obtained by inverse PCR, and it contained adjacent phaEDm and phaCDm genes. PhaCDm and PhaEDm were composed of 371 and 306 amino acid residues and showed up to 49 or 23% amino acid identity to the corresponding subunits of other class III PHA synthases. Constructs of phaCDm alone (pBBRMCS-2::phaCDm) and of phaEDmCDm (pBBRMCS-2::phaEDmCDm) in various vectors were obtained and transferred to several strains of Escherichia coli, as well as to the PHA-negative mutants PHB?4 and GPp104 of Ralstonia eutropha and Pseudomonas putida, respectively. In cells of the recombinant strains harboring phaEDmCDm small but significant amounts (up to 1.7% of cell dry matter) of poly(3HB) and of PHA synthase activity (up to 1.5 U/mg protein) were detected. This indicated that the cloned genes encode functionally active proteins. Hybrid synthases consisting of PhaCDm and PhaE of Thiococcus pfennigii or Synechocystis sp. strain PCC 6308 were also constructed and were shown to be functionally active.

Hai, Tran; Lange, Daniela; Rabus, Ralf; Steinbuchel, Alexander

2004-01-01

177

Evidence and quantification of thiosulfate reducers unable to reduce sulfate in ricefield soils  

Microsoft Academic Search

We provide the first evidence that thiosulfate reduction can be performed in soil under anaerobic conditions by nonsulfate-reducing bacteria. Culturable thiosulfate-reducing bacteria were enumerated in five ricefield soils by MPN counts, using peptides and H2 as energy sources, and thiosulfate as the electron acceptor. Such conditions favoured the growth of (i) thiosulfatereducing bacteria unable to use sulfate as electron acceptor

Sylvie Escoffier; Bernard Ollivier; Jean Le Mer; Joël Garcin; Pierre Roger

1998-01-01

178

A Possible Role for Sulfate Reducers in the Corrosion of Aluminum Alloys.  

National Technical Information Service (NTIS)

Evidence was obtained for the presence of sulfate-reducing bacteria (Desulfovibrio sp.) in pits of an epoxy-topcoated aluminum alloy (7178) tank, and in tubercles and pits in a similar tank coated with Buna N. The sulfate-reducing bacteria were found in t...

W. P. Iverson

1966-01-01

179

Sulfate formation via ATP sulfurylase in thiosulfate- and sulfite-disproportionating bacteria  

Microsoft Academic Search

Disproportionation of thiosulfate or sulfite to sulfate plus sulfide was found in several sulfate-reducing bacteria. Out of nineteen strains tested, eight disproportionated thiosulfate, and four sulfite. Growth with thiosulfate or sulfite as the sole energy source was obtained with three strains (Desulfovibrio sulfodismutans and the strains Bra02 and NTA3); additionally, D. desulfuricans strain CSN grew with sulfite but not with

Michael Kriimer; Heribert Cypionka

1989-01-01

180

Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral.  

PubMed

The anti-corrosion effect and the antimicrobial activity of lemongrass essential oil (LEO) against the planktonic and sessile growth of a sulfate reducing bacterium (SRB) were evaluated. Minimum inhibitory concentration (MIC) of LEO and its major component, the citral, was 0.17 mg ml-1. In addition, both LEO and citral showed an immediate killing effect against SRB in liquid medium, suggesting that citral is responsible for the antimicrobial activity of LEO against SRB. Transmission electron microscopy revealed that the MIC of LEO caused discernible cell membrane alterations and formed electron-dense inclusions. Neither biofilm formation nor corrosion was observed on carbon steel coupons after LEO treatment. LEO was effective for the control of the planktonic and sessile SRB growth and for the protection of carbon steel coupons against biocorrosion. The application of LEO as a potential biocide for SRB growth control in petroleum reservoirs and, consequently, for souring prevention, and/or as a coating protection against biocorrosion is of great interest for the petroleum industries. PMID:23938023

Korenblum, Elisa; Regina de Vasconcelos Goulart, Fátima; de Almeida Rodrigues, Igor; Abreu, Fernanda; Lins, Ulysses; Alves, Péricles Barreto; Blank, Arie Fitzgerald; Valoni, Erika; Sebastián, Gina V; Alviano, Daniela Sales; Alviano, Celuta Sales; Seldin, Lucy

2013-01-01

181

Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria.  

PubMed

The anaerobic degradation of propane and butane is typically initiated by activation via addition to fumarate. Here we investigated the mechanism of activation under sulfate-reducing conditions by one pure culture (strain BuS5) and three enrichment cultures employing stable isotope analysis. Stable isotope fractionation was compared for cultures incubated with or without substrate diffusion limitation. Bulk enrichment factors were significantly higher in mixed vs. static incubations. Two dimensional factors, given by the correlation of stable isotope fractionation of both carbon and hydrogen at their reactive positions (Lambda reactive position, ?rp), were compared to analyse the activation mechanisms. A characteristic reactive position isotope fractionation pattern was observed, distinct from aerobic degradation. ?rp values ranged from 10.5 to 11.8 for propane and from 7.8 to 9.4 for butane. Incubations of strain BuS5 with deuterium-labelled n-alkanes indicated that butane was activated solely at the subterminal C atom. In contrast, propane was activated mainly at the subterminal C atom but also significantly at the terminal C atoms. A conservative estimate suggests that about 70% of the propane activation events occurred at the subterminal C atom and about 30% at the terminal C atoms. PMID:24028539

Jaekel, Ulrike; Vogt, Carsten; Fischer, Anko; Richnow, Hans-Hermann; Musat, Florin

2014-01-01

182

Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral  

PubMed Central

The anti-corrosion effect and the antimicrobial activity of lemongrass essential oil (LEO) against the planktonic and sessile growth of a sulfate reducing bacterium (SRB) were evaluated. Minimum inhibitory concentration (MIC) of LEO and its major component, the citral, was 0.17 mg ml-1. In addition, both LEO and citral showed an immediate killing effect against SRB in liquid medium, suggesting that citral is responsible for the antimicrobial activity of LEO against SRB. Transmission electron microscopy revealed that the MIC of LEO caused discernible cell membrane alterations and formed electron-dense inclusions. Neither biofilm formation nor corrosion was observed on carbon steel coupons after LEO treatment. LEO was effective for the control of the planktonic and sessile SRB growth and for the protection of carbon steel coupons against biocorrosion. The application of LEO as a potential biocide for SRB growth control in petroleum reservoirs and, consequently, for souring prevention, and/or as a coating protection against biocorrosion is of great interest for the petroleum industries.

2013-01-01

183

HYDROGENASE OF COLEMAN'S SULFATE-REDUCING BACTERIUM  

PubMed Central

Buller, C. S. (University of Kansas, Lawrence), and J. M. Akagi. Hydrogenase of Coleman's sulfate-reducing bacterium. J. Bacteriol. 88:440–443. 1964.—The hydrogenase of the Coleman organism was found to be associated with the particulate fraction of cell-free extracts. This enzyme catalyzed the oxidation of molecular hydrogen in the presence of various electron acceptors. It was also able to evolve hydrogen from reduced methyl viologen and reduced ferredoxin isolated from Clostridium pasteurianum. Other electron donors such as pyruvate and formate were capable of furnishing electrons for hydrogen evolution when suitable carriers were incorporated. Images

Buller, C. S.; Akagi, J. M.

1964-01-01

184

Effect of Hydrogenase and Mixed Sulfate-Reducing Bacterial Populations on the Corrosion of Steel  

PubMed Central

The importance of hydrogenase activity to corrosion of steel was assessed by using mixed populations of sulfate-reducing bacteria isolated from corroded and noncorroded oil pipelines. Biofilms which developed on the steel studs contained detectable numbers of sulfate-reducing bacteria (104 increasing to 107/0.5 cm2). However, the biofilm with active hydrogenase activity (i.e., corrosion pipeline organisms), as measured by a semiquantitative commercial kit, was associated with a significantly higher corrosion rate (7.79 mm/year) relative to noncorrosive biofilm (0.48 mm/year) with 105 sulfate-reducing bacteria per 0.5 cm2 but no measurable hydrogenase activity. The importance of hydrogenase and the microbial sulfate-reducing bacterial population making up the biofilm are discussed relative to biocorrosion. Images

Bryant, Richard D.; Jansen, Wayne; Boivin, Joe; Laishley, Edward J.; Costerton, J. William

1991-01-01

185

Uranium Immobilization by Sulfate-reducing Biofilms  

SciTech Connect

Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI) was continuously fed into the reactor for 32 weeks at a concentration of 126 íM. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite.

Beyenal, Haluk; Sani, Rajesh K.; Peyton, Brent M.; Dohnalkova, Alice; Amonette, James E.; Lewandowski, Zbigniew

2004-04-01

186

Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments  

USGS Publications Warehouse

Washed cell suspension of Desulfovibrio desulfuricans subsp. aestuarii were capable of reducing nanomolar levels of selenate to selenide as well as sulfate to sulfide. Reduction of these species was inhibited by 1 mM selenate or tungstate. The addition of 1 mM sulfate decreased the reduction of selenate and enhanced the reduction of sulfate. Increasing concentrations of sulfate inhibited rates of selenate reduction but enhanced sulfate reduction rates. Cell suspensions kept in 1 mM selenate were incapable of reducing either selenate or sulfate when the selenate/sulfate ratio was ???0.02, indicating that irreversible inhibition occurs at high selenate concentrations. Anoxic estuarine sediments having an active flora of sulfate-respiring bacteria were capable of a small amount of selenate reduction when ambient sulfate concentrations were low (<4 mM). These results indicate that sulfate is an inhibitor of the reduction of trace qunatitites of selenate. Therefore, direct reduction of traces of selenate to selenide by sulfate-respiring bacteria in natural environments is constrained by the ambient concentration of sulfate ions. The significance of this observation with regard to the role sediments play in sequestering selenium is discussed.

Zehr, J. P.; Oremland, R. S.

1987-01-01

187

Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture.  

PubMed

Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting. PMID:23116719

Lee, Duu-Jong; Lee, Chin-Yu; Chang, Jo-Shu

2012-12-01

188

Distinguishing iron-reducing from sulfate-reducing conditions.  

PubMed

Ground water systems dominated by iron- or sulfate-reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe(2+)) and sulfide (sum of H(2)S, HS(-), and S(=) species and denoted here as "H(2)S"). This approach is based on the observation that concentrations of Fe(2+) and H(2)S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe(2+) concentrations are high, H(2)S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe(2+) with H(2)S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron- and the sulfate-reducing microorganisms that catalyze the production of Fe(2+) and H(2)S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe(2+) and H(2)S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H(2)) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe(2+)/H(2)S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H(2) approximately 0.2 to 0.8 nM). Conversely, if the Fe(2+)/H(2)S ratio was less than 0.30, consistent sulfate-reducing (H(2) approximately 1 to 5 nM) conditions were observed over time. Concomitantly high Fe(2+) and H(2)S concentrations were associated with H(2) concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron- and sulfate-reducing zones or concomitant iron and sulfate reduction under nonelectron donor-limited conditions. These observations suggest that Fe(2+)/H(2)S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems. PMID:19191885

Chapelle, Francis H; Bradley, Paul M; Thomas, Mary Ann; McMahon, Peter B

2009-01-01

189

Benzylsuccinate Formation as a Means of Anaerobic Toluene Activation by Sulfate-Reducing Strain PRTOL1  

PubMed Central

Permeabilized cells of toluene-mineralizing, sulfate-reducing strain PRTOL1 catalyzed the addition of toluene to fumarate to form benzylsuccinate under anaerobic conditions. Recent in vitro studies with two toluene-mineralizing, denitrifying bacteria demonstrated the same fumarate addition reaction and indicated that it may be the first step of anaerobic toluene degradation. This study with strain PRTOL1 shows that anaerobic toluene activation by fumarate addition occurs in bacteria as disparate as sulfate-reducing and denitrifying species (members of the delta and beta subclasses of the Proteobacteria, respectively).

Beller, H. R.; Spormann, A. M.

1997-01-01

190

Structural and Functional Dynamics of Sulfate-Reducing Populations in Bacterial Biofilms  

PubMed Central

We describe the combined application of microsensors and molecular techniques to investigate the development of sulfate reduction and of sulfate-reducing bacterial populations in an aerobic bacterial biofilm. Microsensor measurements for oxygen showed that anaerobic zones developed in the biofilm within 1 week and that oxygen was depleted in the top 200 to 400 ?m during all stages of biofilm development. Sulfate reduction was first detected after 6 weeks of growth, although favorable conditions for growth of sulfate-reducing bacteria (SRB) were present from the first week. In situ hybridization with a 16S rRNA probe for SRB revealed that sulfate reducers were present in high numbers (approximately 108 SRB/ml) in all stages of development, both in the oxic and anoxic zones of the biofilm. Denaturing gradient gel electrophoresis (DGGE) showed that the genetic diversity of the microbial community increased during the development of the biofilm. Hybridization analysis of the DGGE profiles with taxon-specific oligonucleotide probes showed that Desulfobulbus and Desulfovibrio were the main sulfate-reducing bacteria in all biofilm samples as well as in the bulk activated sludge. However, different Desulfobulbus and Desulfovibrio species were found in the 6th and 8th weeks of incubation, respectively, coinciding with the development of sulfate reduction. Our data indicate that not all SRB detected by molecular analysis were sulfidogenically active in the biofilm.

Santegoeds, Cecilia M.; Ferdelman, Timothy G.; Muyzer, Gerard; de Beer, Dirk

1998-01-01

191

Microbial community of sulfate-reducing up-flow sludge bed in the SANI ® process for saline sewage treatment  

Microsoft Academic Search

This study investigated the microbial community of the sulfate-reducing up-flow sludge bed (SRUSB) of a novel sulfate reduction,\\u000a autotrophic denitrification, and nitrification integrated (SANI®) process for saline sewage treatment. The investigation involved\\u000a a lab-scale SANI® system treating synthetic saline sewage and a pilot-scale SANI® plant treating 10 m3\\/day of screened saline sewage. Sulfate-reducing bacteria (SRB) were the dominant population, responsible for

Jin Wang; Manyuan Shi; Hui Lu; Di Wu; Ming-Fei Shao; Tong Zhang; George A. Ekama; Mark C. M. van Loosdrecht; Guang-Hao Chen

2011-01-01

192

Diversity of Sulfur Isotope Fractionations by Sulfate-Reducing Prokaryotes†  

PubMed Central

Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2.0 to 42.0‰. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation. Sulfate reducers that oxidized the carbon source completely to CO2 showed greater fractionations than sulfate reducers that released acetate as the final product of carbon oxidation. Different metabolic pathways and variable regulation of sulfate transport across the cell membrane all potentially affect isotope fractionation. Previous models that explained fractionation only in terms of sulfate reduction rates appear to be oversimplified. The species-specific physiology of each sulfate reducer thus needs to be taken into account to understand the regulation of sulfur isotope fractionation during dissimilatory sulfate reduction.

Detmers, Jan; Bruchert, Volker; Habicht, Kirsten S.; Kuever, Jan

2001-01-01

193

Electron transfer from sulfate-reducing becteria biofilm promoted by reduced graphene sheets  

NASA Astrophysics Data System (ADS)

Reduced graphene sheets (RGSs) mediate electron transfer between sulfate-reducing bacteria (SRB) and solid electrodes, and promote the development of microbial fuel cells (MFC). We have investigated RSG-promoted electron transfer between SRB and a glassy carbon (GC) electrode. The RGSs were produced at high yield by a chemical sequence involving graphite oxidation, ultrasonic exfoliation of nanosheets, and N2H4 reduction. Cyclic voltammetric testing showed that the characteristic anodic peaks (around 0.3 V) might arise from the combination of bacterial membrane surface cytochrome c3 and the metabolic products of SRB. After 6 d, another anodic wave gradually increased to a maximum current peak and a third anodic signal became visible at around 0 V. The enhancements of two characteristic anodic peaks suggest that RSGs mediate electron-transfer kinetics between bacteria and the solid electrode. Manipulation of these recently-discovered electron-transport mechanisms will lead to significant advances in MFC engineering.

Wan, Yi; Zhang, Dun; Wang, Yi; Wu, Jiajia

2012-01-01

194

Reduced sulfation of chondroitin sulfate but not heparan sulfate in kidneys of diabetic db/db mice.  

PubMed

Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes. PMID:23757342

Reine, Trine M; Grøndahl, Frøy; Jenssen, Trond G; Hadler-Olsen, Elin; Prydz, Kristian; Kolset, Svein O

2013-08-01

195

Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria.  

PubMed Central

Evolutionary relationships among strictly anaerobic dissimilatory Fe(III)-reducing bacteria obtained from a diversity of sedimentary environments were examined by phylogenetic analysis of 16S rRNA gene sequences. Members of the genera Geobacter, Desulfuromonas, Pelobacter, and Desulfuromusa formed a monophyletic group within the delta subdivision of the class Proteobacteria. On the basis of their common ancestry and the shared ability to reduce Fe(III) and/or S0, we propose that this group be considered a single family, Geobacteraceae. Bootstrap analysis, characteristic nucleotides, and higher-order secondary structures support the division of Geobacteraceae into two subgroups, designated the Geobacter and Desulfuromonas clusters. The genus Desulfuromusa and Pelobacter acidigallici make up a distinct branch within the Desulfuromonas cluster. Several members of the family Geobacteraceae, none of which reduce sulfate, were found to contain the target sequences of probes that have been previously used to define the distribution of sulfate-reducing bacteria and sulfate-reducing bacterium-like microorganisms. The recent isolations of Fe(III)-reducing microorganisms distributed throughout the domain Bacteria suggest that development of 16S rRNA probes that would specifically target all Fe(III) reducers may not be feasible. However, all of the evidence suggests that if a 16S rRNA sequence falls within the family Geobacteraceae, then the organism has the capacity for Fe(III) reduction. The suggestion, based on geological evidence, that Fe(III) reduction was the first globally significant process for oxidizing organic matter back to carbon dioxide is consistent with the finding that acetate-oxidizing Fe(III) reducers are phylogenetically diverse.

Lonergan, D J; Jenter, H L; Coates, J D; Phillips, E J; Schmidt, T M; Lovley, D R

1996-01-01

196

Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium  

Microsoft Academic Search

Field and laboratory studies of anoxic sediments from Cape Lookout Bight, North Carolina, suggest that anaerobic methane oxidation is mediated by a consortium of methanogenic and sulfate-reducing bacteria. A seasonal survey of methane oxidation and COâ reduction rates indicates that methane production was confined to sulfate-depleted sediments at all times of year, while methane oxidation occurred in two modes. In

Tori M. Hoehler; Marc J. Alperin; Daniel B. Albert; Christopher S. Martens

1994-01-01

197

Growth of Desulfovibrio in Lactate or Ethanol Media Low in Sulfate in Association with H2-Utilizing Methanogenic Bacteria  

PubMed Central

In the analysis of an ethanol-CO2 enrichment of bacteria from an anaerobic sewage digestor, a strain tentatively identified as Desulfovibrio vulgaris and an H2-utilizing methanogen resembling Methanobacterium formicicum were isolated, and they were shown to represent a synergistic association of two bacterial species similar to that previously found between S organism and Methanobacterium strain MOH isolated from Methanobacillus omelianskii. In lowsulfate media, the desulfovibrio produced acetate and H2 from ethanol and acetate, H2, and, presumably, CO2 from lactate; but growth was slight and little of the energy source was catabolized unless the organism was combined with an H2-utilizing methanogenic bacterium. The type strains of D. vulgaris and Desulfovibrio desulfuricans carried out the same type of synergistic growth with methanogens. In mixtures of desulfovibrio and strain MOH growing on ethanol, lactate, or pyruvate, diminution of methane produced was stoichiometric with the moles of sulfate added, and the desulfovibrios grew better with sulfate addition. The energetics of the synergistic associations and of the competition between the methanogenic system and sulfate-reducing system as sinks for electrons generated in the oxidation of organic materials such as ethanol, lactate, and acetate are discussed. It is suggested that lack of availability of H2 for growth of methanogens is a major factor in suppression of methanogenesis by sulfate in natural ecosystems. The results with these known mixtures of bacteria suggest that hydrogenase-forming, sulfate-reducing bacteria could be active in some methanogenic ecosystems that are low in sulfate.

Bryant, M. P.; Campbell, L. Leon; Reddy, C. A.; Crabill, M. R.

1977-01-01

198

Effect of dietary copper sulfate, Aureo SP250, or clinoptilolite on ureolytic bacteria found in the pig large intestine.  

PubMed

The predominant ureolytic bacteria in the pig large intestine were determined while growing pigs were fed a basal diet or basal diet plus copper sulfate, Aureo SP250, or clinoptilolite. Fecal samples were collected from four pigs fed each diet at 3, 9, and 14 weeks and analyzed for total colony counts and percent ureolytic bacteria. Fecal urease activity, ammonia nitrogen, and identity of the ureolytic bacteria were determined at 14 weeks. Copper sulfate and Aureo SP250 reduced the number of ureolytic organisms, with a marked decrease occurring in the Streptococcus spp., which made up 74% of the ureolytic isolates from the pigs on the basal diet. Other ureolytic species detected at lower concentrations were Staphylococcus spp., Selenomonas ruminantium, Bacteroides multiacidus, and Eubacterium limosum. Copper sulfate also reduced fecal urease activity (P less than 0.10). Fecal ammonia concentrations were not different between pigs fed the various diets. These data suggest that the streptococci are the most numerous ureolytic species in the pig intestinal tract and are significantly reduced by copper sulfate and Aureo SP250; however, only copper sulfate reduced intestinal urease activity. PMID:2823707

Varel, V H; Robinson, I M; Pond, W G

1987-09-01

199

The Use of Seaweed and Sugarcane Bagasse for the Biological Treatment of Metal-contaminated Waters Under Sulfate-reducing Conditions  

Microsoft Academic Search

When wetlands reach maximum treatment capacity to remove heavy metals, removal can still take place through precipitation as sulfide because of the biological reduction of sulfate. To achieve this goal, anaerobic conditions must be attained, a sulfate source must exist, and an adequate substrate for sulfate-reducing bacteria (SRB) is also required. In the present work, two ligneous-cellulosic materials, a brown

Márcia Monteiro Machado Gonçalves; Luiz Antonio Oliveira de Mello; Antonio Carlos Augusto da Costa

2008-01-01

200

Multiple Lateral Transfers of Dissimilatory Sulfite Reductase Genes between Major Lineages of Sulfate-Reducing Prokaryotes  

Microsoft Academic Search

A large fragment of the dissimilatory sulfite reductase genes (dsrAB) was PCR amplified and fully sequenced from 30 reference strains representing all recognized lineages of sulfate-reducing bacteria. In addition, the sequence of the dsrAB gene homologs of the sulfite reducer Desulfitobacterium dehalogenans was determined. In contrast to previous reports, comparative analysis of all available DsrAB sequences produced a tree topology

MICHAEL KLEIN; MICHAEL FRIEDRICH; ANDREW J. ROGER; PHILIP HUGENHOLTZ; SUSAN FISHBAIN; HEIKE ABICHT; LINDA L. BLACKALL; DAVID A. STAHL; MICHAEL WAGNER

2001-01-01

201

Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions  

USGS Publications Warehouse

[14C]naphthalene and phenanthrene were oxidized to 14CO2 without a detectable lag under strict anaerobic conditions in sediments from San Diego Bay, San Diego, Calif., that were heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) but not in less contaminated sediments. Sulfate reduction was necessary for PAH oxidation. These results suggest that the self-purification capacity of PAH-contaminated sulfate-reducing environments may be greater than previously recognized.

Coates, J. D.; Anderson, R. T.; Lovley, D. R.

1996-01-01

202

Oxidation of Polycyclic Aromatic Hydrocarbons under Sulfate-Reducing Conditions  

PubMed Central

[(sup14)C]naphthalene and phenanthrene were oxidized to (sup14)CO(inf2) without a detectable lag under strict anaerobic conditions in sediments from San Diego Bay, San Diego, Calif., that were heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) but not in less contaminated sediments. Sulfate reduction was necessary for PAH oxidation. These results suggest that the self-purification capacity of PAH-contaminated sulfate-reducing environments may be greater than previously recognized.

Coates, J. D.; Anderson, R. T.; Lovley, D. R.

1996-01-01

203

Uranium immobilization by sulfate-reducing biofilms grown on hematite, dolomite, and calcite.  

SciTech Connect

Biofilms of sulfate-reducing bacteria Desulfovibrio desulfuricans G20 wereused to reduce dissolved U(VI)and subsequently immobilize U(IV) in the presence of uranium-complexing carbonates. The biofilms were grown in three identically operated fixed bed reactors, filled with three types of minerals: one noncarbonate-bearing mineral(hematite) and two carbonate-bearing minerals (calcite and dolomite). The source of carbonates in the reactors filled with calcite and dolomite were the minerals, while in the reactor filled with hematite it was a 10 mM carbonate buffer, pH 7.2, which we added to the growth medium. Our five-month study demonstrated that the sulfate-reducing biofilms grown in all reactors were able to immobilize/reduce uranium efficiently, despite the presence of uranium-complexing carbonates.

Marsili, E.; Beyenal, Haluk; Di Palma, L.; Merli, C.; Dohnalkova, Alice; Amonette, James E.; Lewandowski, Zbigniew

2007-12-15

204

Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions  

USGS Publications Warehouse

The potential use of iron(III) oxide to stimulate in-situ hydrocarbon degradation in anaerobic petroleum-contaminated harbor sediments was investigated. Previous studies have indicated that Fe(III)-reducing bacteria (FeRB) can oxidize some electron donors more effectively than sulfate- reducing bacteria (SRB). In contrast to previous results in freshwater sediments, the addition of Fe(III) to marine sediments from San Diego Bay, CA did not switch the terminal electron-accepting process (TEAP) from sulfate reduction to Fe-(III) reduction. Addition of Fe(III) also did not stimulate anaerobic hydrocarbon oxidation. Exposure of the sediment to air [to reoxidize Fe(II) to Fe(III)] followed by anaerobic incubation of the sediments, resulted in Fe-(III) reduction as the TEAP, but contaminant degradation was not stimulated and in some instances was inhibited. The difference in the ability of FeRB to compete with the SRB in the different sediment treatments was related to relative population sizes. Although the addition of Fe(III) did not stimulate hydrocarbon degradation, the results presented here as well as other recent studies demonstrate that there may be significant anaerobic hydrocarbon degradation under sulfate-reducing conditions in harbor sediments.

Coates, J. D.; Anderson, R. T.; Woodward, J. C.; Phillips, E. J. P.; Lovley, D. R.

1996-01-01

205

Characterization of sulfate-reducing granular sludge in the SANI(®) process.  

PubMed

Hong Kong practices seawater toilet flushing covering 80% of the population. A sulfur cycle-based biological nitrogen removal process, the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process, had been developed to close the loop between the hybrid water supply and saline sewage treatment. To enhance this novel process, granulation of a Sulfate-Reducing Up-flow Sludge Bed (SRUSB) reactor has recently been conducted for organic removal and provision of electron donors (sulfide) for subsequent autotrophic denitrification, with a view to minimizing footprint and maximizing operation resilience. This further study was focused on the biological and physicochemical characteristics of the granular sulfate-reducing sludge. A lab-scale SRUSB reactor seeded with anaerobic digester sludge was operated with synthetic saline sewage for 368 days. At 1 h nominal hydraulic retention time (HRT) and 6.4 kg COD/m(3)-d organic loading rate, the SRUSB reactor achieved 90% COD and 75% sulfate removal efficiencies. Granular sludge was observed within 30 days, and became stable after 4 months of operation with diameters of 400-500 ?m, SVI5 of 30 ml/g, and extracellular polymeric substances of 23 mg carbohydrate/g VSS. Fluorescence in situ hybridization (FISH) analysis revealed that the granules were enriched with abundant sulfate-reducing bacteria (SRB) as compared with the seeding sludge. Pyrosequencing analysis of the 16S rRNA gene in the sulfate-reducing granules on day 90 indicated that the microbial community consisted of a diverse SRB genera, namely Desulfobulbus (18.1%), Desulfobacter (13.6%), Desulfomicrobium (5.6%), Desulfosarcina (0.73%) and Desulfovibrio (0.6%), accounting for 38.6% of total operational taxonomic units at genera level, with no methanogens detected. The microbial population and physicochemical properties of the granules well explained the excellent performance of the granular SRUSB reactor. PMID:24200003

Hao, Tianwei; Wei, Li; Lu, Hui; Chui, Hokwong; Mackey, Hamish R; van Loosdrecht, Mark C M; Chen, Guanghao

2013-12-01

206

Determination of kinetic coefficients for the simultaneous reduction of sulfate and uranium by Desulfovibrio desulfuricans bacteria  

SciTech Connect

Uranium contamination of groundwaters and surface waters near abandoned mill tailings piles is a serious concern in many areas of the western United States. Uranium usually exists in either the U(IV) or the U(VI) oxidation state. U(VI) is soluble in water and, as a result, is very mobile in the environment. U(IV), however, is generally insoluble in water and, therefore, is not subject to aqueous transport. In recent years, researchers have discovered that certain anaerobic microorganisms, such as the sulfate-reducing bacteria Desulfovibrio desulfuricans, can mediate the reduction of U(VI) to U(IV). Although the ability of this microorganism to reduce U(VI) has been studied in some detail by previous researchers, the kinetics of the reactions have not been characterized. The purpose of this research was to perform kinetic studies on Desulfovibrio desulficans bacteria during simultaneous reduction of sulfate and uranium and to determine the phase in which uranium exists after it has been reduced and precipitated from solution. The studies were conducted in a laboratory-scale chemostat under substrate-limited growth conditions with pyruvate as the substrate. Kinetic coefficients for substrate utilization and cell growth were calculated using the Monod equation. The maximum rate of substrate utilization (k) was determined to be 4.70 days{sup {minus}1} while the half-velocity constant (K{sub s}) was 140 mg/l COD. The yield coefficient (Y) was determined to be 0.17 mg cells/mg COD while the endogenous decay coefficient (k{sub d}) was calculated as 0.072 days{sup {minus}1}. After reduction, U(IV) Precipitated from solution in the uraninite (UO{sub 2}) phase. Uranium removal efficiency as high as 90% was achieved in the chemostat.

Tucker, M.D.

1995-05-01

207

Salttolerant and high-pH-resistant hydrogenase from the haloalkaliphilic, sulfate-reducing bacterium Desulfonatronum thiodismutans  

Microsoft Academic Search

Hydrogenase is the key enzyme of energetic metabolism in cells, catalyzing the converse reaction of hydrogen oxidation and responsible for the consumption and excretion of hydrogen in bacteria. Hydrogenases are proteins, most of which contain either nickel and iron or iron alone in their active center. Hydrogenases have been found in many microorganisms, such as methanogenic, acetogenic, nitrogen-fixing, sulfate-reducing, photosynthetic

Ekaterina N. Detkova; Elena V. Pikuta; Richard B. Hoover

2004-01-01

208

Complete genome sequence of the acetate-degrading sulfate reducer Desulfobacca acetoxidans type strain (ASRB2).  

PubMed

Desulfobacca acetoxidans Elferink et al. 1999 is the type species of the genus Desulfobacca, which belongs to the family Syntrophaceae in the class Deltaproteobacteria. The species was first observed in a study on the competition of sulfate-reducers and acetoclastic methanogens for acetate in sludge. D. acetoxidans is considered to be the most abundant acetate-degrading sulfate reducer in sludge. It is of interest due to its isolated phylogenetic location in the 16S rRNA-based tree of life. This is the second completed genome sequence of a member of the family Syntrophaceae to be published and only the third genome sequence from a member of the order Syntrophobacterales. The 3,282,536 bp long genome with its 2,969 protein-coding and 54 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21886866

Göker, Markus; Teshima, Hazuki; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Huntemann, Marcel; Liolios, Konstantinos; Ivanova, Natalia; Pagani, Ioanna; Mavromatis, Konstantinos; Ovchinikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

2011-07-01

209

The Use of Seaweed and Sugarcane Bagasse for the Biological Treatment of Metal-contaminated Waters Under Sulfate-reducing Conditions  

Microsoft Academic Search

When wetlands reach maximum treatment capacity to remove heavy metals, removal can still take place through precipitation\\u000a as sulfide because of the biological reduction of sulfate. To achieve this goal, anaerobic conditions must be attained, a\\u000a sulfate source must exist, and an adequate substrate for sulfate-reducing bacteria (SRB) is also required. In the present\\u000a work, two ligneous-cellulosic materials, a brown

Márcia Monteiro Machado Gonçalves; Luiz Antonio de Oliveira Mello; Antonio Carlos Augusto Costa

210

The Use of Seaweed and Sugarcane Bagasse for the Biological Treatment of Metal-contaminated Waters Under Sulfate-reducing Conditions  

Microsoft Academic Search

When wetlands reach maximum treatment capacity to remove heavy metals, removal can still take place through precipitation\\u000a as sulfide because of the biological reduction of sulfate. To achieve this goal, anaerobic conditions must be attained, a\\u000a sulfate source must exist, and an adequate substrate for sulfate-reducing bacteria (SRB) is also required. In the present\\u000a work, two ligneous-cellulosic materials, a brown

Márcia Monteiro Machado Gonçalves; Luiz Antonio de Oliveira Mello; Antonio Carlos Augusto da Costa

2008-01-01

211

Metabolic niche of a prominent sulfate-reducing human gut bacterium  

PubMed Central

Sulfate-reducing bacteria (SRB) colonize the guts of ?50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger, the most common SRB in a surveyed cohort of healthy US adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types of carbohydrates and sulfur sources. Diet was a major determinant of functions expressed by this artificial nine-member community and of the genes that impact D. piger fitness; the latter includes high- and low-affinity systems for using ammonia, a limiting resource for D. piger in mice consuming a polysaccharide-rich diet. Although genes involved in hydrogen consumption and sulfate reduction are necessary for its colonization, varying dietary-free sulfate levels did not significantly alter levels of D. piger, which can obtain sulfate from the host in part via cross-feeding mediated by Bacteroides-encoded sulfatases. Chondroitin sulfate, a common dietary supplement, increased D. piger and H2S levels without compromising gut barrier integrity. A chondroitin sulfate-supplemented diet together with D. piger impacted the assemblage’s substrate utilization preferences, allowing consumption of more reduced carbon sources and increasing the abundance of the H2-producing Actinobacterium, Collinsella aerofaciens. Our findings provide genetic and metabolic details of how this H2-consuming SRB shapes the responses of a microbiota to diet ingredients and a framework for examining how individuals lacking D. piger differ from those who harbor it.

Rey, Federico E.; Gonzalez, Mark D.; Cheng, Jiye; Ahern, Philip P.; Gordon, Jeffrey I.

2013-01-01

212

Bacteriophage Infection of Model Metal Reducing Bacteria  

NASA Astrophysics Data System (ADS)

Microbially-mediated metal reduction plays a significant role controlling contaminant mobility in aqueous, soil, and sedimentary environments. From among environmentally relevant microorganisms mediating metal reduction, Geobacter spp. have been identified as predominant metal-reducing bacteria under acetate- oxidizing conditions. Due to the significance of these bacteria in environmental systems, it is necessary to understand factors influencing their metabolic physiology. Examination of the annotated finished genome sequence of G. sulfurreducens PCA, G. uraniumreducens Rf4, G. metallireduceans GS-15 as well as a draft genome sequence of Geobacter sp. FRC-32 have identified gene sequences of putative bacteriophage origin. Presence of these sequences indicates that these bacteria are susceptible to phage infection. Polymerase chain reaction (PCR) primer sets designed tested for the presence of 12 of 25 annotated phage-like sequences in G. sulfurreducens PCA and 9 of 17 phage-like sequences in FRC- 32. The following genes were successfully amplified in G. sulfurreducens PCA: prophage type transcription regulator, phage-induced endonuclease, phage tail sheath, 2 phage tail proteins, phage protein D, phage base plate protein, phage-related DNA polymerase, integrase, phage transcriptional regulator, and Cro-like transcription regulator. Nine of the following sequences were present in FRC-32: 4 separate phage- related proteins, phage-related tail component, viron core protein, phage Mu protein, phage base plate, and phage tail sheath. In addition to the bioinformatics evidence, incubation of G. sulfurreducens PCA with 1 ?g mL-1 mytomycin C (mutagen stimulating prophage induction) during mid-log phase resulted in significant cell lysis relative to cultures that remained unamended. Cell lysis was concurrent with an increase in viral like particles enumerated using epifluorescent microscopy. In addition, samples collected following this lytic event (~44hours) were filtered through a 0.22 ? m sterile nylon filter, stained with phosphotungstic acid (PTA), and examined using transmission electron microscopy (TEM). TEM revealed the presence of viral like particles in the culture exposed to mytomycin C. Together these results suggest an active infection with a lysogenic bacteriophage in the model metal reducing bacteria, Geobacter spp., which could affect metabolic physiology and subsequently metal reduction in environmental systems.

Weber, K. A.; Bender, K. S.; Gandhi, K.; Coates, J. D.

2008-12-01

213

Penetration of Sulfate Reducers through a Porous North Sea Oil Reservoir  

PubMed Central

The presence of mesophilic benzoate-degrading sulfate-reducing bacteria in the water systems of three Norwegian oil platforms was investigated. Strain 4502 was isolated from the injection water system, and specific antibodies were produced against this isolate. It was present in the injection water system during a period of 3 years, but not in the in situ reservoir water. Later it was found in water samples collected from the oil field production system. This showed that strain 4502 had penetrated the reservoir together with the injection water and eventually reached the production well.

Beeder, J.; Nilsen, R. K.; Thorstenson, T.; Torsvik, T.

1996-01-01

214

Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage.  

PubMed

The effectiveness of a passive flow sulfate-reducing bioreactor processing acid mine drainage (AMD) generated from an abandoned coal mine in Southern Illinois was evaluated using geochemical and microbial community analysis 10 months post bioreactor construction. The results indicated that the treatment system was successful in both raising the pH of the AMD from 3.09 to 6.56 and in lowering the total iron level by 95.9%. While sulfate levels did decrease by 67.4%, the level post treatment (1153 mg/l) remained above recommended drinking water levels. Stimulation of biological sulfate reduction was indicated by a +2.60‰ increase in ?(34)S content of the remaining sulfate in the water post-treatment. Bacterial community analysis targeting 16S rRNA and dsrAB genes indicated that the pre-treated samples were dominated by bacteria related to iron-oxidizing Betaproteobacteria, while the post-treated water directly from the reactor outflow was dominated by sequences related to sulfur-oxidizing Epsilonproteobacteria and complex carbon degrading Bacteroidetes and Firmicutes phylums. Analysis of the post-treated water, prior to environmental release, revealed that the community shifted back to predominantly iron-oxidizing Betaproteobacteria. DsrA analysis implied limited diversity in the sulfate-reducing population present in both the bioreactor outflow and oxidation pond samples. These results support the use of passive flow bioreactors to lower the acidity, metal, and sulfate levels present in the AMD at the Tab-Simco mine, but suggest modifications of the system are necessary to both stimulate sulfate-reducing bacteria and inhibit sulfur-oxidizing bacteria. PMID:22083105

Burns, Andrew S; Pugh, Charles W; Segid, Yosief T; Behum, Paul T; Lefticariu, Liliana; Bender, Kelly S

2012-06-01

215

Reducing sulfates concentration in the tannery effluent by applying pollution prevention techniques and nanofiltration  

Microsoft Academic Search

The use of large quantities of sulfuric acid and other sulfur-containing chemicals causes high sulfate concentrations in the wastewater of a tannery. The aim of this work was reducing the sulfate concentration in the final wastewater from a tannery. For that, firstly a study about the main sulfate sources in a tannery was carried out and the total sulfates load

María-Vicenta Galiana-Aleixandre; José-Antonio Mendoza-Roca; Amparo Bes-Piá

2011-01-01

216

Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system  

Microsoft Academic Search

Microbially induced concrete corrosion (MICC) caused by sulfuric acid attack in sewer systems has been a serious problem for a long time. A better understanding of microbial community structures of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) and their in situ activities is essential for the efficient control of MICC. In this study, the microbial community structures and the in

Hisashi Satoh; Mitsunori Odagiri; Tsukasa Ito; Satoshi Okabe

2009-01-01

217

Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles.  

PubMed

For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds. PMID:24008263

Im, A-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

2013-10-01

218

Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles  

NASA Astrophysics Data System (ADS)

For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

2013-10-01

219

Anaerobic Naphthalene Degradation by a Sulfate-Reducing Enrichment Culture†  

PubMed Central

Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture was studied by substrate utilization tests and identification of metabolites by gas chromatography-mass spectrometry. In substrate utilization tests, the culture was able to oxidize naphthalene, 2-methylnaphthalene, 1- and 2-naphthoic acids, phenylacetic acid, benzoic acid, cyclohexanecarboxylic acid, and cyclohex-1-ene-carboxylic acid with sulfate as the electron acceptor. Neither hydroxylated 1- or 2-naphthoic acid derivatives and 1- or 2-naphthol nor the monoaromatic compounds ortho-phthalic acid, 2-carboxy-1-phenylacetic acid, and salicylic acid were utilized by the culture within 100 days. 2-Naphthoic acid accumulated in all naphthalene-grown cultures. Reduced 2-naphthoic acid derivatives could be identified by comparison of mass spectra and coelution with commercial reference compounds such as 1,2,3,4-tetrahydro-2-naphthoic acid and chemically synthesized decahydro-2-naphthoic acid. 5,6,7,8-Tetrahydro-2-naphthoic acid and octahydro-2-naphthoic acid were tentatively identified by their mass spectra. The metabolites identified suggest a stepwise reduction of the aromatic ring system before ring cleavage. In degradation experiments with [1-13C]naphthalene or deuterated D8-naphthalene, all metabolites mentioned derived from the introduced labeled naphthalene. When a [13C]bicarbonate-buffered growth medium was used in conjunction with unlabeled naphthalene, 13C incorporation into the carboxylic group of 2-naphthoic acid was shown, indicating that activation of naphthalene by carboxylation was the initial degradation step. No ring fission products were identified.

Meckenstock, Rainer U.; Annweiler, Eva; Michaelis, Walter; Richnow, Hans H.; Schink, Bernhard

2000-01-01

220

Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors.  

PubMed

The uncontrolled release of acid mine drainage (AMD) from abandoned mines and tailing piles threatens water resources in many sites worldwide. AMD introduces elevated concentrations of sulfate ions and dissolved heavy metals as well as high acidity levels to groundwater and receiving surface water. Anaerobic biological processes relying on the activity of sulfate reducing bacteria are being considered for the treatment of AMD and other heavy metal containing effluents. Biogenic sulfides form insoluble complexes with heavy metals resulting in their precipitation. The objective of this study was to investigate the remediation of AMD in sulfate reducing bioreactors inoculated with anaerobic granular sludge and fed with an influent containing ethanol. Biological treatment of an acidic (pH 4.0) synthetic AMD containing high concentrations of heavy metals (100 mg Cu(2+)l(-1); 10 mg Ni(2+)l(-1), 10 mg Zn(2+)l(-1)) increased the effluent pH level to 7.0-7.2 and resulted in metal removal efficiencies exceeding 99.2%. The highest metal precipitation rates attained for Cu, Ni and Zn averaged 92.5, 14.6 and 15.8 mg metal l(-1) of reactor d(-1). The results of this work demonstrate that an ethanol-fed sulfidogenic reactor was highly effective to remove heavy metal contamination and neutralized the acidity of the synthetic wastewater. PMID:16939100

Sierra-Alvarez, R; Karri, S; Freeman, S; Field, J A

2006-01-01

221

Hydrogen and acetate cycling in two sulfate-reducing sediments: Buzzards Bay and Town Cove, Massachusetts  

SciTech Connect

Molecular hydrogen and acetate are believed to be key intermediates in the anaerobic remineralization of organic carbon. The authors have made measurements of the cycling of both these compounds in two marine sediments: the bioturbated sediments of Buzzards Bay, Mass., and the much more reducing sediments of Town Cove, Orleans, Mass. Hydrogen concentrations are similar in these environments (from less than 5 to 30 nM), and are within the range previously reported for coastal sediments. However, apparent hydrogen production rates differ by a factor of 60 between these two sediments and at both sites show strong correlation with measured rates of sulfate reduction. Acetate concentrations generally increased with depth in both environments; this increase was greater in Buzzards Bay (22.5 to 71.5 {mu}M) than in Town Cove (26 to 44 {mu}M). Acetate oxidation rates calculated from measured concentrations and {sup 14}C-acetate consumption rate constants suggest that the measured acetate was not all available to sulfate-reducing bacteria. Using the measured sulfate reduction rates, they estimate that between 2% and 100% of the measured acetate pool is biologically available, and that the bioavailable pool decreases with depth. A diagenetic model of the total acetate concentration suggests that consumption may be first order with respect to only a fraction of the total pool.

Novelli, P.C. (SUNY, Stony Brook, NY (USA) Univ. of Colorado, Boulder (USA)); Michelson, A.R.; Scranton, M.I. (SUNY, Stony Brook, NY (USA)); Banta, G.T.; Hobbie, J.E. (Marine Biological Laboratory, Woods, Hole, MA (USA)); Howarth, R.W. (Cornell Univ., Ithaca, NY (USA))

1988-10-01

222

Distribution of Thermophilic Marine Sulfate Reducers in North Sea Oil Field Waters and Oil Reservoirs  

PubMed Central

The distribution of thermophilic marine sulfate reducers in produced oil reservoir waters from the Gullfaks oil field in the Norwegian sector of the North Sea was investigated by using enrichment cultures and genus-specific fluorescent antibodies produced against the genera Archaeoglobus, Desulfotomaculum, and Thermodesulforhabdus. The thermophilic marine sulfate reducers in this environment could mainly be classified as species belonging to the genera Archaeoglobus and Thermodesulforhabdus. In addition, some unidentified sulfate reducers were present. Culturable thermophilic Desulfotomaculum strains were not detected. Specific strains of thermophilic sulfate reducers inhabited different parts of the oil reservoir. No correlation between the duration of seawater injection and the numbers of thermophilic sulfate reducers in the produced waters was observed. Neither was there any correlation between the concentration of hydrogen sulfide and the numbers of thermophilic sulfate reducers. The results indicate that thermophilic and hyperthermophilic sulfate reducers are indigenous to North Sea oil field reservoirs and that they belong to a deep subterranean biosphere.

Nilsen, R. K.; Beeder, J.; Thorstenson, T.; Torsvik, T.

1996-01-01

223

Anaerobic Biodegradation of Pristane by Nitrate Reducing Bacteria  

NASA Astrophysics Data System (ADS)

In recent sediments, microbial biodegradation provides a control on the long-term preservation of organic matter, through the preferential loss of certain biomolecules and the alteration and concentration of other more recalcitrant molecules. Biodegradation of hydrocarbons derived from membrane lipids, has been demonstrated by both aerobic and strictly anaerobic culturing experiments. The isoprenoid pristane, once considered stable under anaerobic conditions, is in fact degraded by a denitrifying microcosm (BREGNARD et al., 1997) and a methanogenic, sulphate-reducing enrichment culture (GROSSI, 2000). We recently demonstrated pristane biodegradation and accompanying loss of nitrate by an activated sludge isolate. The measured nitrate consumption accounts for a 7.1 +/- 0.4 mg loss of pristane, 4.74% of the initial substrate, in 181 days, assuming pristane conversion to CO2. We have characterized the microorganisms active in the biodegradation process, through the creation of a 16S rDNA clone library, as well as fluorescence in situ hybridization (FISH). Experiments are in progress to enrich cultures of sulfate reducing bacteria that utilize pristane as a sole carbon source and to characterize reaction mechanisms in pristane-oxidizing pathways.

Dawson, K. S.; Freeman, K. H.; Macalady, J. L.

2007-12-01

224

Direct analysis of sulfate reducing bacterial communities in gas hydrate-impacted marine sediments by PCR-DGGE.  

PubMed

Molecular investigations of the sulfate reducing bacteria that target the dissimilatory sulfite-reductase subunit A gene (dsr A) are plagued by the nonspecific performance of conventional PCR primers. Here we describe the incorporation of the FailSafe PCR System to optimize environmental analysis of dsr A by PCR amplification and denaturing gradient gel electrophoresis. PCR-DGGE analysis of dsr A composition revealed that SRB diversity was greater and more variable throughout the vertical profile of a marine sediment core obtained from a gas hydrate site (GC234) in the Gulf of Mexico than in a sediment core collected from a nearby site devoid of gas hydrates (NBP). Depth profiled dsr B abundance corresponded with sulfate reduction rates at both sites, though measurements were higher at GC234. This study exemplifies the numerical and functional importance of sulfate reducing bacteria in deep-sea sedimentary environments, and incremental methodological advancements, as described herein, will continue to streamline the analysis of sulfate reducer communities in situ. PMID:19322839

Bagwell, Christopher E; Formolo, Michael; Ye, Qi; Yeager, Chris M; Lyons, Timothy W; Zhang, Chuanlun L

2009-09-01

225

Enrichment and characterization of sulfate reducing, naphthalene degrading microorganisms  

NASA Astrophysics Data System (ADS)

Polycyclic aromatic hydrocarbons (PAH) are pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. PAH are widely distributed in the environment by accidental discharges during the transport, use and disposal of petroleum products, and during forest and grass fires. Caused by their hydrophobic nature, PAH basically accumulate in sediments from where they are slowly released into the groundwater. Although generally limited by the low water solubility of PAH, microbial degradation is one of the major mechanisms leading to the complete clean-up of PAH-contaminated sites. Whereas organisms and biochemical pathways responsible for the aerobic breakdown of PAH are well known, anaerobic PAH biodegradation is less understood; only a few anaerobic PAH degrading cultures have been described. We studied the anaerobic PAH degradation in a microcosm approach to enrich anaerobic PAH degraders. Anoxic groundwater and sediment samples were used as inoculum. Groundwater samples were purchased from the erstwhile gas works facility and a former wood impregnation site. In contrast, sources of sediment samples were a former coal refining area and an old fuel depot. Samples were incubated in anoxic mineral salt medium with naphthalene as sole carbon source and sulfate as terminal electron acceptor. Grown cultures were characterized by feeding with 13C-labeled naphthalene, 16S rRNA gene sequencing using an Illumina® approach, and functional proteome analyses. Finally, six enrichment cultures able to degrade naphthalene under anoxic conditions were established. First results point to a dominance of identified sequences affiliated to the freshwater sulfate-reducing strain N47, which is a known anaerobic naphthalene degrader, in four out of the six enrichments. In those enrichments, peptides related to the pathway of anoxic naphthalene degradation in N47 were abundant. Overall the data underlines the importance of Desulfobacteria for natural attenuation of environmental contaminants. Understanding of diversity and physiology of anaerobic PAH degradation will contribute to remediation efforts of low-oxygen environments such as aquifers or river sediments.

Steffen, Kümmel; Florian-Alexander, Herbst; Márcia, Duarte; Dietmar, Pieper; Jana, Seifert; Bergen Martin, von; Hans-Hermann, Richnow; Carsten, Vogt

2014-05-01

226

Chromate reduction by immobilized palladized sulfate-reducing bacteria.  

PubMed

Resting cells of Desulfovibrio vulgaris NCIMB 8303 and Desulfovibrio desulfuricans NCIMB 8307 were used for the hydrogenase-mediated reduction of Pd(II) to Pd(0). The resulting hybrid palladium bionanocatalyst (Bio-Pd(0)) was used in the reduction of Cr(VI) to the less environmentally problematic Cr(III) species. The reduction of Cr(VI) by free and agar-immobilized Bio-Pd(0) was evaluated. Investigations using catalyst suspensions showed that Cr(VI) reduction was similar ( approximately 170 nmol Cr(VI)/h/mg Bio-Pd(0)) when Bio-Pd(0) was produced using D. vulgaris or D. desulfuricans. Continuous-flow studies using D. vulgaris Bio-Pd(0) with agar as the immobilization matrix investigated the effect of Bio-Pd(0) loading, inlet Cr(VI) concentration, and flow rate on the efficiency of Cr(VI) reduction. Reduction of Cr(VI) was highest at a D. vulgaris Bio-Pd(0) loading of 7.5 mg Bio-Pd(0)/mL agar (3:1 dry cell wt: Pd(0)), an input [Cr(VI)] of 100 microM, and a flow rate of 1.75 mL/h (approx. 3.5 column volumes/h). A mathematical interpretation predicted the activity of the immobilized Bio-Pd(0) for a given set of conditions within 5% of the value found by experiment. Considering the system as an 'artificial enzyme' analog and application of applied enzyme kinetics gave an apparent K(m) value (K(m app)) of 430 microM Cr(VI) and a determined value of flow-through reactor activity which differed by 11% from that predicted mathematically. PMID:16570313

Humphries, A C; Mikheenko, I P; Macaskie, L E

2006-05-01

227

Visualization of Mercury Methylating Pure-Culture Sulfate-Reducing Biofilms  

NASA Astrophysics Data System (ADS)

Methylmercury is a potent neurotoxin that can accumulate in food chains posing a serious ecological problem in certain aquatic systems. Relatively less toxic inorganic mercury (Hg) is converted to methylmercury (CH3Hg+) by bacteria, and it has been shown that sulfate reducing bacteria (SRB) are the major mediators of this process in many aquatic systems. To date, all laboratory studies on bacterial mercury methylation by SRB have been conducted using planktonic, free floating, bacterial cultures, yet bacteria exist mostly as attached communities or biofilms in the environment. We hypothesized that biofilms composed of different SRB would differ in their ability to bind and methylate mercury compared to planktonic cultures. To test our hypothesis ten SRB isolates capable of producing biofilms in the laboratory were enriched from a marine sediment. We identified the isolates by 16S rDNA sequence analysis, compared pure-culture biofilm structure using fluorescent in situ hybridization (FISH) and confocal microscopy, and measured mercury methylation in biofilms of these SRB.

Lin, C.; Reyes, C.; Mendez, C.; Jay, J. A.

2005-12-01

228

Complete genome sequence of the sulfate-reducing firmicute Desulfotomaculum ruminis type strain (DLT)  

PubMed Central

Desulfotomaculum ruminis Campbell and Postgate 1965 is a member of the large genus Desulfotomaculum which contains 30 species and is contained in the family Peptococcaceae. This species is of interest because it represents one of the few sulfate-reducing bacteria that have been isolated from the rumen. Here we describe the features of D. ruminis together with the complete genome sequence and annotation. The 3,969,014 bp long chromosome with a total of 3,901 protein-coding and 85 RNA genes is the second completed genome sequence of a type strain of the genus Desulfotomaculum to be published, and was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program 2009.

Spring, Stefan; Visser, Michael; Lu, Megan; Copeland, Alex; Lapidus, Alla; Lucas, Susan; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Ivanova, Natalia; Land, Miriam; Hauser, Loren; Larimer, Frank; Rohde, Manfred; Goker, Markus; Detter, John C.; Kyrpides, Nikos C.; Woyke, Tanja; Schaap, Peter J.; Plugge, Caroline M.; Muyzer, Gerard; Kuever, Jan; Pereira, Ines A. C.; Parshina, Sofiya N.; Bernier-Latmani, Rizlan; Stams, Alfons J.M.; Klenk, Hans-Peter

2012-01-01

229

Complete genome sequence of the sulfate-reducing firmicute Desulfotomaculum ruminis type strain (DLT)  

SciTech Connect

Desulfotomaculum ruminis Campbell and Postgate 1965 is a member of the large genus Desulfotomaculum which contains 30 species and is contained in the family Peptococcaceae. This species is of interest because it represents one of the few sulfate- reducing bacteria that have been isolated from the rumen. Here we describe the features of D. ruminis together with the complete genome sequence and annotation. The 3,969,014 bp long chromosome with a total of 3,901 protein-coding and 85 RNA genes is the second completed genome sequence of a type strain of the genus Desulfotomaculum to be pub- lished, and was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program 2009.

Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Visser, Michael [Wageningen University and Research Centre, The Netherlands; Lu, Megan [Los Alamos National Laboratory (LANL); Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Larimer, Frank W [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Schaap, Peter J [Wageningen University and Research Centre, The Netherlands; Plugge, Caroline M. [Wageningen University and Research Centre, The Netherlands; Muyzer, Gerard [Universitate Amsterdam; Kuever, Jan [Bremen Institute for Materials Testing, Bremen, Germany; Pereira, Ines A. C. [Universidade Nova de Lisboa, Oeiras, Portugal; Parshina, Sofiya N. [Russian Academy of Sciences, Moscow; Bernier-Latmani, Rizlan [Ecole Polytechnique Federale de Lausanne, Switzerland; Stams, Alfons J. M. [Wageningen University and Research Centre, The Netherlands; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

2012-01-01

230

Production of drag reducing polymers by hydrogen bacteria  

NASA Astrophysics Data System (ADS)

(1) A screening program of natural isolates and their mutants of a tribe of bacteria capable of utilizing hydrogen gas as feedstock has led to the finding that several different hydrogen bacteria have evolved genes for the synthesis of drag reducing materials. (2) The yield of drag reducing polysaccharides has been found to be environmentally as well as genetically controlled. (3) A conventional mutational approach was used to alter both the yield and quality of drag reducing polysaccharides.

Kern, Roger

1986-01-01

231

Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium?  

Microsoft Academic Search

In situ remediation of uranium contaminated soil and groundwater is attractive because a diverse range of microbial and abiotic\\u000a processes reduce soluble and mobile U(VI) to sparingly soluble and immobile U(IV). Often these processes are linked. Sulfate-reducing\\u000a bacteria (SRB), for example, enzymatically reduce U(VI) to U(IV), but they also produce hydrogen sulfide that can itself reduce\\u000a U(VI). This study evaluated

Benjaporn Boonchayaanant; Baohua Gu; Wei Wang; Monica E. Ortiz; Craig S. Criddle

2010-01-01

232

Uranium removal by sulfate reducing biofilms in the presence of carbonates  

SciTech Connect

Hexavalent uranium [U(VI)] was immobilized in biofilms composed of the sulfate reducing bacteria (SRB), Desulfovibrio desulfuricans G20. The biofilms were grown in two flat-plate, continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. The growth medium contained uranium U(VI) and the pH was maintained constant using bicarbonate buffer. The reactors were operated for 5 months, and during that time biofilm activity and uranium removal were evaluated. The efficiency of uranium removal strongly depended on the concentration of uranium in the influent, and was estimated to be 30.4% in the reactor supplied with 3 mg/L of U(VI) and 73.9% in the reactor supplied with 30 mg/L of U(VI). TEM and SAED analysis showed that uranium in both reactors accumulated mostly on microbial cell membranes and in the periplasmic space. The deposits had amorphous or poor nanocrystalline structures.

Marsili, E.; Beyenal, Haluk; Di Palma, L.; Merli, C.; Dohnalkova, Alice; Amonette, James E.; Lewandowski, Zbigniew

2005-12-01

233

Desulfofrigus sp. prevails in sulfate-reducing dilution cultures from sediments of the Benguela upwelling area.  

PubMed

Sediments of coastal upwelling areas are generally characterized by a high content of organic carbon that is mainly degraded via anaerobic microbial processes including sulfate reduction as a major terminal oxidation step. Despite the high importance of sulfate reduction in these sediments, the identity of sulfate-reducing bacteria (SRB) has remained almost unknown. Here, we applied a cultivation-based approach using selective enrichment conditions to study the diversity and distribution of active SRB in sediments along a transect perpendicular to the continental slope off the coast of Namibia (Meteor-cruise M76/1). To promote growth of the most abundant SRB, dilution series were prepared and amended with hydrogen, acetate, or a mixture of monomers representing typical substrates for SRB. Growth of SRB could be detected in the presence of all electron donors and from sediment down to 4 m depth. 16S rRNA gene-based DGGE analysis and sequencing revealed the predominance of SRB related to psychrophiles in particular to the genus Desulfofrigus, which made up 1 % of the total microbial community, accounting for an absolute abundance of up to 4.8 × 10(7)  cells mL(-1) . In general, the abundance of cultured SRB changed with depth and between the different sampling sites and correlated with the content of organic carbon as previously reported. Growth of chemolithotrophic SRB in relatively high dilution steps and the enrichment of methanogens as well as acetogens from deeper sediment point to a competition between hydrogen-utilizing microbial processes and their biogeochemical significance in deep sediment layers of the Benguela upwelling area. PMID:23157459

Kraft, Beate; Engelen, Bert; Goldhammer, Tobias; Lin, Yu-Shih; Cypionka, Heribert; Könneke, Martin

2013-04-01

234

Toxicity of copper to acetoclastic and hydrogenotrophic activities of methanogens and sulfate reducers in anaerobic sludge.  

PubMed

Heavy metals could potentially negatively impact microorganisms in anaerobic sulfate reducing bioreactors. The objective of this is study was to evaluate the inhibitory effect of copper to acetoclastic and hydrogenotrophic activities of methanogens and sulfate reducers in sludge obtained from a full-scale sulfate reducing bioreactor. The 50% inhibiting concentration (50%IC) of Cu(2+) to acetoclastic and hydrogenotrophic methanogens was 20.7 and 8.9 mg l(-1), respectively. The 50%IC of Cu(2+) to acetoclastic sulfate reduction was 32.3 mg l(-1). The hydrogenotrophic sulfate reducers were only inhibited by 27% at the highest concentration of Cu(2+) tested, 200 mg l(-1), indicating a high level of tolerance. The soluble Cu(2+) was observed to decrease rapidly in both the methanogenic and sulfate reducing assays. The highest level of decrease was observed in the hydrogenotrophic sulfate reducing assay which was over 99% in 5h. The results of this study indicate that sulfate reducing biotechnologies would be robust at relatively high inlet concentrations of Cu(2+). PMID:15936054

Karri, Srilakshmi; Sierra-Alvarez, Reyes; Field, Jim A

2006-01-01

235

Complete genome sequence of the acetate-degrading sulfate reducer Desulfobacca acetoxidans type strain (ASRB2T)  

SciTech Connect

Desulfobacca acetoxidans Elferink et al. 1999 is the type species of the genus Desulfobacca, which belongs to the family Syntrophaceae in the class Deltaproteobacteria. The species was first observed in a study on the competition of sulfate-reducers and acetoclastic methanogens for acetate in sludge. D. acetoxidans is considered to be the most abundant acetate-degrading sulfate reducer in sludge. It is of interest due to its isolated phylogenetic location in the 16S rRNA-based tree of life. This is the second completed genome sequence of a member of the family Syntrophaceae to be published and only the third genome sequence from a member of the order Syntrophobacterales. The 3,282,536 bp long genome with its 2,969 protein-coding and 54 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

2011-01-01

236

Identification of key components in the energy metabolism of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus by transcriptome analyses.  

PubMed

Energy conservation via the pathway of dissimilatory sulfate reduction is present in a diverse group of prokaryotes, but is most comprehensively studied in Deltaproteobacteria. In this study, whole-genome microarray analyses were used to provide a model of the energy metabolism of the sulfate-reducing archaeon Archaeoglobus fulgidus, based on comparative analysis of litoautotrophic growth with H2/CO2 and thiosulfate, and heterotrophic growth on lactate with sulfate or thiosulfate. Only 72 genes were expressed differentially between the cultures utilizing sulfate or thiosulfate, whereas 269 genes were affected by a shift in energy source. We identified co-located gene cluster encoding putative lactate dehydrogenases (LDHs; lldD, dld, lldEFG), also present in sulfate-reducing bacteria. These enzymes may take part in energy conservation in A. fulgidus by specifically linking lactate oxidation with APS reduction via the Qmo complex. High transcriptional levels of Fqo confirm an important role of F420H2, as well as a menaquinone-mediated electron transport chain, during heterotrophic growth. A putative periplasmic thiosulfate reductase was identified by specific up-regulation. Also, putative genes for transport of sulfate and sulfite are discussed. We present a model for hydrogen metabolism, based on the probable bifurcation reaction of the Mvh:Hdl hydrogenase, which may inhibit the utilization of Fdred for energy conservation. Energy conservation is probably facilitated via menaquinone to multiple membrane-bound heterodisulfide reductase (Hdr) complexes and the DsrC protein-linking periplasmic hydrogenase (Vht) to the cytoplasmic reduction of sulfite. The ambiguous roles of genes corresponding to fatty acid metabolism induced during growth with H2 are discussed. Putative co-assimilation of organic acids is favored over a homologous secondary carbon fixation pathway, although both mechanisms may contribute to conserve the amount of Fdred needed during autotrophic growth with H2. PMID:24672515

Hocking, William P; Stokke, Runar; Roalkvam, Irene; Steen, Ida H

2014-01-01

237

Identification of key components in the energy metabolism of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus by transcriptome analyses  

PubMed Central

Energy conservation via the pathway of dissimilatory sulfate reduction is present in a diverse group of prokaryotes, but is most comprehensively studied in Deltaproteobacteria. In this study, whole-genome microarray analyses were used to provide a model of the energy metabolism of the sulfate-reducing archaeon Archaeoglobus fulgidus, based on comparative analysis of litoautotrophic growth with H2/CO2 and thiosulfate, and heterotrophic growth on lactate with sulfate or thiosulfate. Only 72 genes were expressed differentially between the cultures utilizing sulfate or thiosulfate, whereas 269 genes were affected by a shift in energy source. We identified co-located gene cluster encoding putative lactate dehydrogenases (LDHs; lldD, dld, lldEFG), also present in sulfate-reducing bacteria. These enzymes may take part in energy conservation in A. fulgidus by specifically linking lactate oxidation with APS reduction via the Qmo complex. High transcriptional levels of Fqo confirm an important role of F420H2, as well as a menaquinone-mediated electron transport chain, during heterotrophic growth. A putative periplasmic thiosulfate reductase was identified by specific up-regulation. Also, putative genes for transport of sulfate and sulfite are discussed. We present a model for hydrogen metabolism, based on the probable bifurcation reaction of the Mvh:Hdl hydrogenase, which may inhibit the utilization of Fdred for energy conservation. Energy conservation is probably facilitated via menaquinone to multiple membrane-bound heterodisulfide reductase (Hdr) complexes and the DsrC protein—linking periplasmic hydrogenase (Vht) to the cytoplasmic reduction of sulfite. The ambiguous roles of genes corresponding to fatty acid metabolism induced during growth with H2 are discussed. Putative co-assimilation of organic acids is favored over a homologous secondary carbon fixation pathway, although both mechanisms may contribute to conserve the amount of Fdred needed during autotrophic growth with H2.

Hocking, William P.; Stokke, Runar; Roalkvam, Irene; Steen, Ida H.

2014-01-01

238

U(VI) Reduction in Sulfate-Reducing Subsurface Sediments Amended with Ethanol or Acetate  

PubMed Central

An experiment was conducted with subsurface sediments from Oak Ridge National Laboratory to determine the potential for reduction of U(VI) under sulfate-reducing conditions with either ethanol or acetate as the electron donor. The results showed extensive U(VI) reduction in sediments supplied with either electron donor, where geochemical and microbiological analyses demonstrated active sulfate reduction.

Converse, Brandon J.; Wu, Tao; Findlay, Robert H.

2013-01-01

239

Anaerobic degradation of halogenated phenols by sulfate-reducing consortia  

SciTech Connect

Sulfidogenic consortia enriched from an estuarine sediment were maintained on either 2-, 3-, or 4-chlorophenol as the only source of carbon and energy for over 5 years. The enrichment culture on 4-chlorophenol was the most active and this consortium was selected for further characterization. Utilization of chlorophenol resulted in sulfate depletion corresponding to the values expected for complete mineralization to CO{sub 2}. Degradation of 4-chlorophenol was coupled to sulfate reduction, since substrate utilization was dependent on sulfidogenesis and chlorophenol loss did not proceed in the absence of sulfate. Other sulfur oxyanions, sulfite or thiosulfate, also served as electron acceptors for chlorophenol utilization, while carbonate, nitrate, and fumarate did not. The sulfidogenic consortium utilized phenol, 4-bromophenol, and 4-iodophenol in addition to 4-chlorophenol. 4-Fluorophenol, however, did not serve as a substrate. 4-Bromo- and 4-iodophenol were degraded with stoichiometric release of halide, and 4-[{sup 14}C]bromophenol was mineralized, with 90% of the radiolabel recovered as CO{sub 2}.

Haeggblom, M.M.; Young, L.Y. [State Univ. of New Jersey, New Brunswick, NJ (United States)

1995-04-01

240

Biogeochemistry of a Field-Scale Sulfate Reducing Bioreactor Treating Mining Influenced Water  

NASA Astrophysics Data System (ADS)

Acidity, metal release, and toxicity may be environmental health concerns in areas influenced by mining. Mining influenced waters (MIW) can be remediated through the establishment of Sulfate Reducing Bioreactors (SRBRs) as part of engineered passive treatment systems. The objective of our research is an enhanced understanding of the biogeochemistry in SRBRs by combining molecular biological and geochemical techniques. Bioreactor reactive substrate, settling pond water, and effluent (from the SRBR) were collected from a field scale SRBR in Arizona, which has been in operation for approximately 3 years. Schematically, the water passes through the SRBR; combines with flow that bypasses the SRBR into the and goes into the mixing pond, and finally is released as effluent to aerobic polishing cells. High throughput sequencing of extracted DNA revealed that Proteobacteria dominated the reactive substrate (61%), settling pond (93%), and effluent (50%), with the next most abundant phylum in all samples (excluding uncultured organisms) being Bacteriodes (1-17%). However, at the superclass level, the three samples were more variable. Gammaproteobacteria dominated the reactive substrate (35%), Betaproteobacteria in the settling pond (63%) and finally the effluent was dominated by Epsilonproteobacteria (Helicobacteraceae) (43%). Diversity was most pronounced in association with the reactor matrix, and least diverse in the settling pond. Putative functional analysis revealed a modest presence of sulfate/sulfur reducing bacteria (SRB) (>5%) in both the matrix and settling pond but a much higher abundance (43%) of sulfur reducing bacteria in the effluent. Interestingly this effluent population was composed entirely of the family Helicobacteraceae (sulfur reduction II via polysulfide pathway). Other putative functions of interest include metal reduction in the matrix (3%) and effluent (3%), as well as polysaccharide degradation, which was largely abundant in all samples (21-38%). Acid digests and micro-focused X-ray fluorescent and absorption spectroscopy revealed precipitation heterogeneities exist between surface samples taken near the front of the influent pipe (west) and downstream (east). Zinc was disproportionately immobilized at the front of the reactor (~10-fold higher), while a higher portion (~3-fold) of iron precipitates was observed downstream. Microfocused XAS further revealed matrix heterogeneities consisting of clusters of stellar shaped sulfur / iron precipitates. An enhanced understanding of the biogeochemistry of SRBRs has applications in passive remediation of contaminated MIW and an interdisciplinary understanding of metal immobilization at the microbe-mineral interface.

Drennan, D.; Lee, I.; Landkamer, L.; Figueroa, L. A.; Webb, S.; Sharp, J. O.

2012-12-01

241

Genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812T)  

SciTech Connect

Thermodesulfatator indicus Moussard et al. 2004 is a member of the genomically so far poorly characterized family Thermodesulfobacteriaceae in the phylum Thermodesulfobacteria. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chang, Yun-Juan [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

2012-01-01

242

IDENTIFICATION OF COLEMAN'S SULFATE-REDUCING BACTERIUM AS A MESOPHILIC RELATIVE OF CLOSTRIDIUM NIGRIFICANS  

PubMed Central

Postgate, John R. (University of Illinois, Urbana) and L. Leon Campbell. Identification of Coleman's sulfate-reducing bacterium as a mesophilic relative of Clostridium nigrificans. J. Bacteriol. 86:274–279. 1963.—Coleman's sulfate-reducing bacterium is immunologically and morphologically similar to Clostridium nigrificans and unlike Desulfovibrio species. It is not thermophilic and does not acquire the thermophilic habit; it is thus the first naturally occurring mesophilic member of this group to be described. Images

Postgate, John R.; Campbell, L. Leon

1963-01-01

243

IDENTIFICATION OF COLEMAN'S SULFATE-REDUCING BACTERIUM AS A MESOPHILIC RELATIVE OF CLOSTRIDIUM NIGRIFICANS.  

PubMed

Postgate, John R. (University of Illinois, Urbana) and L. Leon Campbell. Identification of Coleman's sulfate-reducing bacterium as a mesophilic relative of Clostridium nigrificans. J. Bacteriol. 86:274-279. 1963.-Coleman's sulfate-reducing bacterium is immunologically and morphologically similar to Clostridium nigrificans and unlike Desulfovibrio species. It is not thermophilic and does not acquire the thermophilic habit; it is thus the first naturally occurring mesophilic member of this group to be described. PMID:14058952

POSTGATE, J R; CAMPBELL, L L

1963-08-01

244

Standard Practices in the United States for Quantifying and Qualifying Sulphate Reducing Bacteria in Microbiologically Influenced Corrosion. (Reannouncement with New Availability Information).  

National Technical Information Service (NTIS)

Iron-oxidizing, 1-10 sulfur-oxidizing,1,2.11,12 iron-reducing, sulfate-reducing,14-22 acid-producing,3,4,23-32 slime-producing, 3-5,31,33 ammonium-producing, 3-5.34 and hydrogen-producing bacteria 35 in addition to other physiological groups have been imp...

B. Little P. Wagner

1992-01-01

245

Solubilization of plutonium hydrous oxide by iron-reducing bacteria  

Microsoft Academic Search

The removal of plutonium from soils id challenging because of its strong sorption to soils and limited solubility, Microbial reduction of metals is known to affect the speciation and solubility of sparingly soluble metals in the environment, notably iron and manganese. The similarity in reduction potential for [alpha]-FeOOH(s) and hydrous PuO[sub 2](s) suggests that iron-reducing bacteria may also reduce and

Patricia A. Rusin; Leticia Quintana; James R. Brainard; B. A. Strietelmeler; C. Drew Tait; Scott A. Ekberg; Phillip D. Palmer; Thomas W. Newton; David L. Clark

1994-01-01

246

Isotope fractionation during the anaerobic consumption of acetate by methanogenic and sulfate-reducing microorganisms  

NASA Astrophysics Data System (ADS)

During the anaerobic degradation of organic matter in anoxic sediments and soils acetate is the most important substrate for the final step in production of CO2 and/or CH4. Sulfate-reducing bacteria (SRB) and methane-producing archaea both compete for the available acetate. Knowledge about the fractionation of 13C/12C of acetate carbon by these microbial groups is still limited. Therefore, we determined carbon isotope fractionation in different cultures of acetate-utilizing SRB (Desulfobacter postgatei, D. hydrogenophilus, Desulfobacca acetoxidans) and methanogens (Methanosarcina barkeri, M. acetivorans). Including literature values (e.g., Methanosaeta concilii), isotopic enrichment factors (epsilon) ranged between -35 and +2 permil, possibly involving equilibrium isotope effects besides kinetic isotope effects. The values of epsilon were dependent on the acetate-catabolic pathway of the particular microorganism, the methyl or carboxyl position of acetate, and the relative availability or limitation of the substrate acetate. Patterns of isotope fractionation in anoxic lake sediments and rice field soil seem to reflect the characteristics of the microorganisms actively involved in acetate catabolism. Hence, it might be possible using environmental isotopic information to determine the type of microbial metabolism converting acetate to CO2 and/or CH4.

Gövert, D.; Conrad, R.

2009-04-01

247

Systematic mapping of two component response regulators to gene targets in a model sulfate reducing bacterium  

PubMed Central

Background Two component regulatory systems are the primary form of signal transduction in bacteria. Although genomic binding sites have been determined for several eukaryotic and bacterial transcription factors, comprehensive identification of gene targets of two component response regulators remains challenging due to the lack of knowledge of the signals required for their activation. We focused our study on Desulfovibrio vulgaris Hildenborough, a sulfate reducing bacterium that encodes unusually diverse and largely uncharacterized two component signal transduction systems. Results We report the first systematic mapping of the genes regulated by all transcriptionally acting response regulators in a single bacterium. Our results enabled functional predictions for several response regulators and include key processes of carbon, nitrogen and energy metabolism, cell motility and biofilm formation, and responses to stresses such as nitrite, low potassium and phosphate starvation. Our study also led to the prediction of new genes and regulatory networks, which found corroboration in a compendium of transcriptome data available for D. vulgaris. For several regulators we predicted and experimentally verified the binding site motifs, most of which were discovered as part of this study. Conclusions The gene targets identified for the response regulators allowed strong functional predictions to be made for the corresponding two component systems. By tracking the D. vulgaris regulators and their motifs outside the Desulfovibrio spp. we provide testable hypotheses regarding the functions of orthologous regulators in other organisms. The in vitro array based method optimized here is generally applicable for the study of such systems in all organisms.

2011-01-01

248

Benzene oxidation under sulfate-reducing conditions in columns simulating in situ conditions.  

PubMed

The oxidation of benzene under sulfate-reducing conditions was examined in column and batch experiments under close to in situ conditions. Mass balances and degradation rates for benzene oxidation were determined in four sand and four lava granules filled columns percolated with groundwater from an anoxic benzene-contaminated aquifer. The stoichiometry of oxidized benzene, produced hydrogen carbonate and reduced sulfate correlated well with the theoretical equation for mineralization of benzene with sulfate as electron acceptor. Mean retention times of water in four columns were determined using radon ((222)Rn) as tracer. The retention times were used to calculate average benzene oxidation rates of 8-36 microM benzene day(-1). Benzene-degrading, sulfide-producing microcosms were successfully established from sand material of all sand filled columns, strongly indicating that the columns were colonized by anoxic benzene-degrading microorganisms. In general, these data indicate a high potential for Natural Attenuation of benzene under sulfate-reducing conditions at the field site Zeitz. In spite of this existing potential to degrade benzene with sulfate as electron acceptor, the benzene plume at the field site is much longer than expected if benzene would be degraded at the rates observed in the column experiment, indicating that benzene oxidation under sulfate-reducing conditions is limited in situ. PMID:17160546

Vogt, Carsten; Gödeke, Stefan; Treutler, Hanns-Christian; Weiss, Holger; Schirmer, Mario; Richnow, Hans-Hermann

2007-10-01

249

A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans  

Microsoft Academic Search

A new strictly anaerobic, polarly flagellated, sporing, acetate-oxidizing, sulfate-reducing bacterium was isolated from anaerobic fresh or sea water mud samples. The oxidation of acetate to CO2 is stoichiometrically linked to the formation of H2S from sulfate. Ethanol, butanol and butyrate are also used. Hydrogen, lactate or pyruvate are not used as electron donors; organic substances are not fermented. A cytochrome

Friedrich Widdel; Norbert Pfennig

1977-01-01

250

Elucidating microbial processes in nitrate- and sulfate-reducing systems using sulfur and oxygen isotope ratios: The example of oil reservoir souring control  

NASA Astrophysics Data System (ADS)

Sulfate-reducing bacteria (SRB) are ubiquitous in anoxic environments where they couple the oxidation of organic compounds to the production of hydrogen sulfide. This can be problematic for various industries including oil production where reservoir "souring" (the generation of H 2S) requires corrective actions. Nitrate or nitrite injection into sour oil fields can promote SRB control by stimulating organotrophic nitrate- or nitrite-reducing bacteria (O-NRB) that out-compete SRB for electron donors (biocompetitive exclusion), and/or by lithotrophic nitrate- or nitrite-reducing sulfide oxidizing bacteria (NR-SOB) that remove H 2S directly. Sulfur and oxygen isotope ratios of sulfide and sulfate were monitored in batch cultures and sulfidic bioreactors to evaluate mitigation of SRB activities by nitrate or nitrite injection. Sulfate reduction in batch cultures of Desulfovibrio sp. strain Lac15 indicated typical Rayleigh-type fractionation of sulfur isotopes during bacterial sulfate reduction (BSR) with lactate, whereas oxygen isotope ratios in unreacted sulfate remained constant. Sulfur isotope fractionation in batch cultures of the NR-SOB Thiomicrospira sp. strain CVO was minimal during the oxidation of sulfide to sulfate, which had ?18O SO4 values similar to that of the water-oxygen. Treating an up-flow bioreactor with increasing doses of nitrate to eliminate sulfide resulted in changes in sulfur isotope ratios of sulfate and sulfide but very little variation in oxygen isotope ratios of sulfate. These observations were similar to results obtained from SRB-only, but different from those of NR-SOB-only pure culture control experiments. This suggests that biocompetitive exclusion of SRB took place in the nitrate-injected bioreactor. In two replicate bioreactors treated with nitrite, less pronounced sulfur isotope fractionation and a slight decrease in ?18O SO4 were observed. This indicated that NR-SOB played a minor role during dosing with low nitrite and that biocompetitive exclusion was the major process. The results demonstrate that stable isotope data can contribute unique information for understanding complex microbial processes in nitrate- and sulfate-reducing systems, and offer important information for the management of H 2S problems in oil reservoirs and elsewhere.

Hubert, Casey; Voordouw, Gerrit; Mayer, Bernhard

2009-07-01

251

Biomolecular and Isotopic Signatures Related to Cr(VI) Reduction by a Sulfate-Reducing Bacterium Isolated from the Hanford 100H Aquifer  

NASA Astrophysics Data System (ADS)

Chromium contamination of groundwater is widespread within the Dept. of Energy (DOE) complex. At DOE's Hanford 100H area, we have conducted Cr bioremediation (in situ reductive immobilization) studies involving injection of a lactate-containing polymer, and have observed sequential use of the dissolved electron acceptors present in groundwater (namely, oxygen, nitrate, and sulfate). Sulfate-reducing bacteria are of particular interest for chromate reduction because they can reduce Cr(VI) enzymatically (e.g., using cytochrome c3 or thioredoxin reductase) and abiotically with hydrogen sulfide, the end product of their respiration. In this poster, we use studies of a sulfate-reducing bacterium isolated from the Hanford 100H aquifer, Desulfovibrio vulgaris strain RCH1, to explore (a) isotopic signatures that might allow us to distinguish between enzymatic and sulfide-mediated Cr(VI) reduction and (b) biomolecular signatures (gene or transcript copy number of diagnostic genes) that might be used as proxies of in situ metabolic rates. In order to differentiate between the mechanisms of Cr reduction by sulfate reducers, we analyzed the isotopic fractionation during Cr(VI) reduction by strain RCH1. Cell suspension studies of strain RCH1 demonstrated that Cr(VI) reduction could occur in the presence of lactate (electron donor) alone or with both lactate and sulfate. Cr(VI) reduction in the presence of lactate and sulfate was 25-30% more rapid than enzymatic Cr reduction when only lactate was added, suggesting that biogenic hydrogen sulfide increases the specific rate of Cr(VI) reduction beyond purely enzymatic activity. Cr isotopic measurements showed different fractionation behavior for the lactate-only and lactate+sulfate systems, with fractionation (epsilon) values of 2.3 and 1.66 per mil, respectively. In order to determine whether gene or transcript copy number for diagnostic sulfate and chromate reduction genes could serve as proxies to estimate in situ metabolic rates, chemostat studies were conducted with strain RCH1. Genes assayed by qPCR and RT-qPCR included aprB (APS reductase, beta subunit), dsrA (dissimilatory sulfite reductase, alpha subunit), cyc3 (cytochrome c3), and trxB (thioredoxin reductase). Strong linear relationships were observed between sulfate reduction rates and the gene and transcript copy numbers of all of the targeted genes. These results suggest that use of gene and transcript copy numbers in groundwater samples may be a useful approach for estimating in situ metabolic rates of sulfate-reducing bacteria during Cr bioremediation.

Han, R.; Qin, L.; Geller, J. T.; Chakraborty, R.; Christensen, J. N.; Beller, H. R.

2011-12-01

252

Functional Genomics with a Comprehensive Library of Transposon Mutants for the Sulfate-Reducing Bacterium Desulfovibrio alaskensis G20  

PubMed Central

ABSTRACT The genomes of sulfate-reducing bacteria remain poorly characterized, largely due to a paucity of experimental data and genetic tools. To meet this challenge, we generated an archived library of 15,477 mapped transposon insertion mutants in the sulfate-reducing bacterium Desulfovibrio alaskensis G20. To demonstrate the utility of the individual mutants, we profiled gene expression in mutants of six regulatory genes and used these data, together with 1,313 high-confidence transcription start sites identified by tiling microarrays and transcriptome sequencing (5? RNA-Seq), to update the regulons of Fur and Rex and to confirm the predicted regulons of LysX, PhnF, PerR, and Dde_3000, a histidine kinase. In addition to enabling single mutant investigations, the D. alaskensis G20 transposon mutants also contain DNA bar codes, which enables the pooling and analysis of mutant fitness for thousands of strains simultaneously. Using two pools of mutants that represent insertions in 2,369 unique protein-coding genes, we demonstrate that the hypothetical gene Dde_3007 is required for methionine biosynthesis. Using comparative genomics, we propose that Dde_3007 performs a missing step in methionine biosynthesis by transferring a sulfur group to O-phosphohomoserine to form homocysteine. Additionally, we show that the entire choline utilization cluster is important for fitness in choline sulfate medium, which confirms that a functional microcompartment is required for choline oxidation. Finally, we demonstrate that Dde_3291, a MerR-like transcription factor, is a choline-dependent activator of the choline utilization cluster. Taken together, our data set and genetic resources provide a foundation for systems-level investigation of a poorly studied group of bacteria of environmental and industrial importance.

Kuehl, Jennifer V.; Price, Morgan N.; Ray, Jayashree; Wetmore, Kelly M.; Esquivel, Zuelma; Kazakov, Alexey E.; Nguyen, Michelle; Kuehn, Raquel; Davis, Ronald W.; Hazen, Terry C.; Arkin, Adam P.

2014-01-01

253

Anaerobic degradation of p-xylene in sediment-free sulfate-reducing enrichment culture.  

PubMed

Anaerobic degradation of p-xylene was studied with sulfate-reducing enrichment culture. The enrichment culture was established with sediment-free sulfate-reducing consortium on crude oil. The crude oil-degrading consortium prepared with marine sediment revealed that toluene, and xylenes among the fraction of alkylbenzene in the crude oil were consumed during the incubation. The PCR-denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene for the p-xylene degrading sulfate-reducing enrichment culture showed the presence of the single dominant DGGE band pXy-K-13 coupled with p-xylene consumption and sulfide production. Sequence analysis of the DGGE band revealed a close relationship between DGGE band pXy-K-13 and the previously described marine sulfate-reducing strain oXyS1 (similarity value, 99%), which grow anaerobically with o-xylene. These results suggest that microorganism corresponding to pXy-K-13 is an important sulfate-reducing bacterium to degrade p-xylene in the enrichment culture. PMID:18409067

Nakagawa, Tatsunori; Sato, Shinya; Fukui, Manabu

2008-11-01

254

In situ BTEX biotransformation under enhanced nitrate- and sulfate-reducing conditions  

SciTech Connect

In situ anaerobic biotransformation of BTEX (benzene, toluene, ethylbenzene, o-xylene, and m-xylene) was investigated under enhanced nitrate- and sulfate-reducing conditions. Controlled amounts of BTEX compounds added to slugs of treated groundwater were released into a gasoline-contaminated aquifer at Seal Beach, CA. In a series of studies, the slugs, 470-1700 L in volume, were released into the aquifer through a multi-port injection/extraction well and were subsequently withdrawn over a 2-3 month period. To evaluate unamended in situ conditions, the injectate was treated with granular activated carbon (GAC) and augmented with bromide as a tracer. To evaluate nitrate- and sulfate-reducing conditions, the injectate was also deionized and augmented with 200-300 {mu}g/L BTEX, nitrate or sulfate, and background electrolytes. Under unamended conditions, transformation appeared to be limited to the slow removal of toluene and m,p-xylene (i.e. sum of m+p-xylene). Under nitrate-reducing conditions, toluene, ethylbenzene, and m-xylene were transformed without a lag phase in less than 10 days, and o-xylene was transformed in 72 days. Under sulfate-reducing conditions, toluene, m-xylene and o-xylene were completely transformed in less then 50 days, and ethylbenzene was removed in 60 days. Benzene appeared to be removed under sulfate-reducing conditions, but the trend was pronounced only at some levels. 47 refs., 11 figs., 2 tabs.

Reinhard, M.; Shang, S.; Kitanidis, P.K.; Orwin, E.; Hopkins, G.D. [Stanford Univ., CA (United States); LeBron, C.A. [Naval Facilities Engineering Service Center, Port Hueneme, CA (United States)

1997-01-01

255

Roles of HynAB and Ech, the only two hydrogenases found in the model sulfate reducer Desulfovibrio gigas.  

PubMed

Sulfate-reducing bacteria are characterized by a high number of hydrogenases, which have been proposed to contribute to the overall energy metabolism of the cell, but exactly in what role is not clear. Desulfovibrio spp. can produce or consume H2 when growing on organic or inorganic substrates in the presence or absence of sulfate. Because of the presence of only two hydrogenases encoded in its genome, the periplasmic HynAB and cytoplasmic Ech hydrogenases, Desulfovibrio gigas is an excellent model organism for investigation of the specific function of each of these enzymes during growth. In this study, we analyzed the physiological response to the deletion of the genes that encode the two hydrogenases in D. gigas, through the generation of ?echBC and ?hynAB single mutant strains. These strains were analyzed for the ability to grow on different substrates, such as lactate, pyruvate, and hydrogen, under respiratory and fermentative conditions. Furthermore, the expression of both hydrogenase genes in the three strains studied was assessed through quantitative reverse transcription-PCR. The results demonstrate that neither hydrogenase is essential for growth on lactate-sulfate, indicating that hydrogen cycling is not indispensable. In addition, the periplasmic HynAB enzyme has a bifunctional activity and is required for growth on H2 or by fermentation of pyruvate. Therefore, this enzyme seems to play a dominant role in D. gigas hydrogen metabolism. PMID:23974026

Morais-Silva, Fabio O; Santos, Catia I; Rodrigues, Rute; Pereira, Inês A C; Rodrigues-Pousada, Claudina

2013-10-01

256

Distribution of anaerobic methane-oxidizing and sulfate-reducing communities in the G11 Nyegga pockmark, Norwegian Sea.  

PubMed

Pockmarks are seabed geological structures sustaining methane seepage in cold seeps. Based on RNA-derived sequences the active fraction of the archaeal community was analysed in sediments associated with the G11 pockmark, in the Nyegga region of the Norwegian Sea. The anaerobic methanotrophic Archaea (ANME) and sulfate-reducing bacteria (SRB) communities were studied as well. The vertical distribution of the archaeal community assessed by PCR-DGGE highlighted the presence of ANME-2 in surface sediments, and ANME-1 in deeper sediments. Enrichments of methanogens showed the presence of hydrogenotrophic methanogens of the Methanogenium genus in surface sediment layers as well. The active fraction of the archaeal community was uniquely composed of ANME-2 in the shallow sulfate-rich sediments. Functional methyl coenzyme M reductase gene libraries showed that sequences affiliated with the ANME-1 and ANME-3 groups appeared in the deeper sediments but ANME-2 dominated both surface and deeper layers. Finally, dissimilatory sulfite reductase gene libraries revealed a high SRB diversity (i.e. Desulfobacteraceae, Desulfobulbaceae, Syntrophobacteraceae and Firmicutes) in the shallow sulfate-rich sediments. The SRB diversity was much lower in the deeper section. Overall, these results show that the microbial community in sediments associated with a pockmark harbour classical cold seep ANME and SRB communities. PMID:21751028

Lazar, Cassandre Sara; Dinasquet, Julie; L'Haridon, Stéphane; Pignet, Patricia; Toffin, Laurent

2011-11-01

257

Polysulfide as a possible substrate for sulfur-reducing bacteria  

Microsoft Academic Search

Because of its low solubility it is unlikely that elemental sulfur serves as the direct substrate for sulfur-reducing bacteria. To test the hypothesis that polysulfide may represent a soluble intermediate of sulfur reduction, the maximal polysulfide concentrations formed from elemental sulfur in aqueous sulfide solutions were measured at near neutral pH and at temperatures up to 90°C. The saturation concentrations

Rolf Schauder; Eva Miiller

1993-01-01

258

Response And Recovery Of Sulfate-Reducing Biochemical Reactors From Aerobic Stress Events (Presentation)  

EPA Science Inventory

Microbially-mediated treatment of mining-influenced water (MIW) through the implementation of sulfate-reducing biochemical reactors (BCR) is an attractive option for passive, in situ remediation with low operating costs and reduced maintenance requirements. However, BCRs can be ...

259

Magnesium Sulfate Only Slightly Reduces the Shivering Threshold in Humans  

PubMed Central

Background: Hypothermia may be an effective treatment for stroke or acute myocardial infarction; however, it provokes vigorous shivering, which causes potentially dangerous hemodynamic responses and prevents further hypothermia. Magnesium is an attractive antishivering agent because it is used for treatment of postoperative shivering and provides protection against ischemic injury in animal models. We tested the hypothesis that magnesium reduces the threshold (triggering core temperature) and gain of shivering without substantial sedation or muscle weakness. Methods: We studied nine healthy male volunteers (18-40 yr) on two randomly assigned treatment days: 1) Control and 2) Magnesium (80 mg·kg-1 followed by infusion at 2 g·h-1). Lactated Ringer's solution (4°C) was infused via a central venous catheter over a period of approximately 2 hours to decrease tympanic membrane temperature ?1.5°C·h-1. A significant and persistent increase in oxygen consumption identified the threshold. The gain of shivering was determined by the slope of oxygen consumption vs. core temperature regression. Sedation was evaluated using verbal rating score (VRS, 0-10) and bispectral index of the EEG (BIS). Peripheral muscle strength was evaluated using dynamometry and spirometry. Data were analyzed using repeated-measures ANOVA; P<0.05 was statistically significant. Results: Magnesium reduced the shivering threshold (36.3±0.4 [mean±SD] vs. 36.6±0.3°C, P=0.040). It did not affect the gain of shivering (Control: 437±289, Magnesium: 573±370 ml·min-1·°C-1, P=0.344). The magnesium bolus did not produce significant sedation or appreciably reduce muscle strength. Conclusions: Magnesium significantly reduced the shivering threshold; however, due to the modest absolute reduction, this finding is considered to be clinically unimportant for induction of therapeutic hypothermia.

Wadhwa, Anupama; Sengupta, Papiya; Durrani, Jaleel; Akca, Ozan; Lenhardt, Rainer; Sessler, Daniel I.

2005-01-01

260

Anaerobic Cometabolic Conversion of Benzothiophene by a Sulfate-Reducing Enrichment Culture and in a Tar-Oil-Contaminated Aquifer†  

PubMed Central

Anaerobic cometabolic conversion of benzothiophene was studied with a sulfate-reducing enrichment culture growing with naphthalene as the sole source of carbon and energy. The sulfate-reducing bacteria were not able to grow with benzothiophene as the primary substrate. Metabolite analysis was performed with culture supernatants obtained by cometabolization experiments and revealed the formation of three isomeric carboxybenzothiophenes. Two isomers were identified as 2-carboxybenzothiophene and 5-carboxybenzothiophene. In some experiments, further reduced dihydrocarboxybenzothiophene was identified. No other products of benzothiophene degradation could be determined. In isotope-labeling experiments with a [13C]bicarbonate-buffered culture medium, carboxybenzothiophenes which were significantly enriched in the 13C content of the carboxyl group were formed, indicating the addition of a C1 unit from bicarbonate to benzothiophene as the initial activation reaction. This finding was consistent with the results of earlier studies on anaerobic naphthalene degradation with the same culture, and we therefore propose that benzothiophene was cometabolically converted by the same enzyme system. Groundwater analyses of the tar-oil-contaminated aquifer from which the naphthalene-degrading enrichment culture was isolated exhibited the same carboxybenzothiophene isomers as the culture supernatants. In addition, the benzothiophene degradation products, in particular, dihydrocarboxybenzothiophene, were significantly enriched in the contaminated groundwater to concentrations almost the same as those of the parent compound, benzothiophene. The identification of identical metabolites of benzothiophene conversion in the sulfate-reducing enrichment culture and in the contaminated aquifer indicated that the same enzymatic reactions were responsible for the conversion of benzothiophene in situ.

Annweiler, Eva; Michaelis, Walter; Meckenstock, Rainer U.

2001-01-01

261

Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions  

SciTech Connect

This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

Coyne, P.; Smith, G. [New Mexico State Univ., Las Cruces, NM (United States)

1995-08-15

262

Characterization of a new thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain.  

PubMed

A thermophilic sulfate-reducing vibrio isolated from thermal vent water in Yellowstone Lake, Wyoming, USA is described. The gram-negative, curved rod-shaped cells averaged 0.3 micrometer wide and 1.5 micrometers long. They were motile by means of a single polar flagellum. Growth was observed between 40 degrees and 70 degrees C with optimal growth at 65 degrees C. Cultures remained viable for one year at 27 degrees C although spore-formation was not observed. Sulfate, thiosulfate and sulfite were used as electron acceptors. Sulfur, fumarate and nitrate were not reduced. In the presence of sulfate, growth was observed only with lactate, pyruvate, hydrogen plus acetate, or formate plus acetate. Pyruvate was the only compound observed to support fermentative growth. Pyruvate and lactate were oxidized to acetate. Desulfofuscidin and c-type cytochromes were present. The G + C content was 29.5 mol%. The divergence in the 16 S ribosomal RNA sequences between the new isolate and Thermodesulfobacterium commune suggests that these two thermophilic sulfate-reducing bacteria represent different genera. These two bacteria depict a lineage that branches deeply within the Bacteria domain and which is clearly distinct from previously defined phylogenetic lines of sulfate-reducing bacteria. Strain YP87 is described as the type strain of the new genus and species Thermodesulfovibrio yellowstonii. PMID:11541228

Henry, E A; Devereux, R; Maki, J S; Gilmour, C C; Woese, C R; Mandelco, L; Schauder, R; Remsen, C C; Mitchell, R

1994-01-01

263

DMSP: tetrahydrofolate methyltransferase from the marine sulfate-reducing bacterium strain WN  

NASA Astrophysics Data System (ADS)

Dimethylsulfoniopropionate (DMSP), an important compatible solute of many marine algae, can be metabolised by bacteria via cleavage to dimethylsulfide and acrylate or via an initial demethylation. This is the first report on the purification of an enzyme that specifically catalyses the demethylation of DMSP. The enzyme was isolated from the sulfate-reducing bacterium strain WN, which grows on DMSP and demethylates it to methylthiopropionate. DMSP:tetrahydrofolate (THF) methyltransferase from strain WN was purified 76-fold [to a specific activity of 40.5 ?mol min -1 (mg protein) -1]. SDS polyacrylamide gel electrophoresis showed two bands of approximately 10 and 35 kDa; in particular the 35 kDa polypeptide became significantly enriched during the purification. Storage of the purified fraction at -20°C under nitrogen resulted in a 99% loss of activity in two days. The activity could be partially restored by addition of 200 ?M cyanocobalamin, hydroxocobalamin or coenzyme B 12. ATP did not have any positive effect on activity. Reduction of the assay mixture by titanium(III)nitrilotriacetic acid slightly stimulated the activity. Gel filtration chromatography revealed a native molecular mass between 45 and 60 kDa for the DMSP:THF methyltransferase. The enzyme was most active at 35°C and pH 7.8. Glycine betaine, which can be considered an N-containing structural analogue of DMSP, did not serve as a methyl donor for DMSP:THF methyltransferase. Various sulfur-containing DMSP-analogues were tested but only methylethylsulfoniopropionate served as methyl donor. None of these compounds inhibited methyl transfer from DMSP to THF. Strain WN did not grow on any of the sulfur-containing DMSP-analogues.

Jansen, M.; Hansen, T. A.

2000-08-01

264

Prokaryotic community structure and sulfate reducer activity in water from high-temperature oil reservoirs with and without nitrate treatment.  

PubMed

Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. One strategy to control SRP activity is the addition of nitrate to the injection water. Production waters from two adjacent, hot (80 degrees C) oil reservoirs, one with and one without nitrate treatment, were compared for prokaryotic community structure and activity of SRP. Bacterial and archaeal 16S rRNA gene analyses revealed higher prokaryotic abundance but lower diversity for the nitrate-treated field. The 16S rRNA gene clone libraries from both fields were dominated by sequences affiliated with Firmicutes (Bacteria) and Thermococcales (Archaea). Potential heterotrophic nitrate reducers (Deferribacterales) were exclusively found at the nitrate-treated field, possibly stimulated by nitrate addition. Quantitative PCR of dsrAB genes revealed that archaeal SRP (Archaeoglobus) dominated the SRP communities, but with lower relative abundance at the nitrate-treated site. Bacterial SRP were found in only low abundance at both sites and were nearly exclusively affiliated with thermophilic genera (Desulfacinum and Desulfotomaculum). Despite the high abundance of archaeal SRP, no archaeal SRP activity was detected in [(35)S]sulfate incubations at 80 degrees C. Sulfate reduction was found at 60 degrees C in samples from the untreated field and accompanied by the growth of thermophilic bacterial SRP in batch cultures. Samples from the nitrate-treated field generally lacked SRP activity. These results indicate that (i) Archaeoglobus can be a major player in hot oil reservoirs, and (ii) nitrate may act in souring control-not only by inhibiting SRP, but also by changing the overall community structure, including the stimulation of competitive nitrate reducers. PMID:19801479

Gittel, Antje; Sørensen, Ketil Bernt; Skovhus, Torben Lund; Ingvorsen, Kjeld; Schramm, Andreas

2009-11-01

265

The use of seaweed and sugarcane bagasse for the biological treatment of metal-contaminated waters under sulfate-reducing conditions.  

PubMed

When wetlands reach maximum treatment capacity to remove heavy metals, removal can still take place through precipitation as sulfide because of the biological reduction of sulfate. To achieve this goal, anaerobic conditions must be attained, a sulfate source must exist, and an adequate substrate for sulfate-reducing bacteria (SRB) is also required. In the present work, two ligneous-cellulosic materials, a brown seaweed and sugarcane bagasse, have been selected as substrates for SRB growth. Experiments were simultaneously conducted in continuous operation in two columns (0.57 L each), one containing the ligneous-cellulosic material plus inoculum and another containing only the ligneous-cellulosic material. In this work, the removal of cadmium and zinc was studied because of their presence in effluents from mining/metallurgy operations. Results obtained indicated that the inoculated reactor was able to treat the effluent more efficiently than the noninoculated reactor considering the time course of the tests. PMID:18401756

Gonçalves, Márcia Monteiro Machado; de Oliveira Mello, Luiz Antonio; da Costa, Antonio Carlos Augusto

2008-03-01

266

The Use of Seaweed and Sugarcane Bagasse for the Biological Treatment of Metal-contaminated Waters Under Sulfate-reducing Conditions  

NASA Astrophysics Data System (ADS)

When wetlands reach maximum treatment capacity to remove heavy metals, removal can still take place through precipitation as sulfide because of the biological reduction of sulfate. To achieve this goal, anaerobic conditions must be attained, a sulfate source must exist, and an adequate substrate for sulfate-reducing bacteria (SRB) is also required. In the present work, two ligneous-cellulosic materials, a brown seaweed and sugarcane bagasse, have been selected as substrates for SRB growth. Experiments were simultaneously conducted in continuous operation in two columns (0.57 L each), one containing the ligneous-cellulosic material plus inoculum and another containing only the ligneous-cellulosic material. In this work, the removal of cadmium and zinc was studied because of their presence in effluents from mining/metallurgy operations. Results obtained indicated that the inoculated reactor was able to treat the effluent more efficiently than the noninoculated reactor considering the time course of the tests.

Gonçalves, Márcia Monteiro Machado; de Mello, Luiz Antonio Oliveira; da Costa, Antonio Carlos Augusto

267

Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium.  

PubMed

A novel marine sulfate-reducing bacterium, strain CV2803T, which is able to oxidize aliphatic hydrocarbons, was isolated from a hydrocarbon-polluted marine sediment (Gulf of Fos, France). The cells were rod-shaped and slightly curved, measuring 0.6x2.2-5.5 microm. Strain CV2803T stained Gram-negative and was non-motile and non-spore-forming. Optimum growth occurred in the presence of 24 g NaCl l(-1), at pH 7.5 and at a temperature between 28 and 35 degrees C. Strain CV2803T oxidized alkanes (from C13 to C18) and alkenes (from C7 to C23). The DNA G+C content was 41.4 mol%. Comparative sequence analyses of the 16S rRNA gene and dissimilatory sulfite reductase (dsrAB) gene and those of other sulfate-reducing bacteria, together with its phenotypic properties, indicated that strain CV2803T was a member of a distinct cluster that contained unnamed species. Therefore, strain CV2803T (=DSM 15576T=ATCC BAA-743T) is proposed as the type strain of a novel species in a new genus, Desulfatibacillum aliphaticivorans gen. nov., sp. nov. PMID:14742462

Cravo-Laureau, Cristiana; Matheron, Robert; Cayol, Jean-Luc; Joulian, Catherine; Hirschler-Réa, Agnès

2004-01-01

268

Microbial Activity In The Peerless Jenny King Sulfate Reducing Bioreactor System (Presentation)  

EPA Science Inventory

The Peerless Jenny King treatment system is a series of four sulfate reducing bioreactor cells installed to treat acid mine drainage in the Upper Tenmile Creek Superfund Site located in the Rimini Mining District, near Helena MT. The system consists of a wetland pretreatment fol...

269

Microbial Activity In The Peerless Jenny King Sulfate Reducing Bioreactors System  

EPA Science Inventory

The Peerless Jenny King treatment system is a series of four sulfate reducing bioreactor cells installed to treat acid mine drainage in the Upper Tenmile Creek Superfund Site located in the Rimini Mining District, near Helena, MT. The system consists of a wetland pretreatment fo...

270

Complete Genome Sequence of the Subsurface, Mesophilic Sulfate-Reducing Bacterium Desulfovibrio aespoeensis Aspo-2.  

PubMed

Desulfovibrio aespoeensis Aspo-2, DSM 10631(T), is a mesophilic, hydrogenotrophic sulfate-reducing bacterium sampled from a 600-m-deep subsurface aquifer in hard rock under the island of Äspö in southeastern Sweden. We report the genome sequence of this bacterium, which is a 3,629,109-bp chromosome; plasmids were not found. PMID:24874683

Pedersen, Karsten; Bengtsson, Andreas; Edlund, Johanna; Rabe, Lisa; Hazen, Terry; Chakraborty, Romy; Goodwin, Lynne; Shapiro, Nicole

2014-01-01

271

Genome Sequence of the Sulfate-Reducing Bacterium Desulfotomaculum hydrothermale Lam5T  

PubMed Central

Here, we report the draft genome sequence of Desulfotomaculum hydrothermale, a sulfate-reducing, spore-forming bacterium isolated from a Tunisian hot spring. The genome is composed of 2.7 Mb, with a G+C content of 49.48%, and it contains 2,643 protein-coding sequences.

Amin, Oulfat; Fardeau, Marie-Laure; Valette, Odile; Hirschler-Rea, Agnes; Barbe, Valerie; Medigue, Claudine; Vacherie, Benoit; Ollivier, Bernard; Bertin, Philippe N.

2013-01-01

272

Complete Genome Sequence of the Subsurface, Mesophilic Sulfate-Reducing Bacterium Desulfovibrio aespoeensis Aspo-2  

PubMed Central

Desulfovibrio aespoeensis Aspo-2, DSM 10631T, is a mesophilic, hydrogenotrophic sulfate-reducing bacterium sampled from a 600-m-deep subsurface aquifer in hard rock under the island of Äspö in southeastern Sweden. We report the genome sequence of this bacterium, which is a 3,629,109-bp chromosome; plasmids were not found.

Bengtsson, Andreas; Edlund, Johanna; Rabe, Lisa; Hazen, Terry; Chakraborty, Romy; Goodwin, Lynne; Shapiro, Nicole

2014-01-01

273

Seasonal composition and activity of sulfate-reducing prokaryotic communities in seagrass bed sediments  

EPA Science Inventory

Sulfate-reducing prokaryotes (SRP) play a key role in the carbon and nutrient cycles of coastal marine, vegetated ecosystems, but the interactions of SRP communities with aquatic plants remain little studied. The abundance, activity, and community composition of SRP was studied i...

274

Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide  

PubMed Central

Sulfate-reducing bacteria (SRB) belonging to the metabolically versatile Desulfobacteriaceae are abundant in marine sediments and contribute to the global carbon cycle by complete oxidation of organic compounds. Desulfobacterium autotrophicum HRM2 is the first member of this ecophysiologically important group with a now available genome sequence. With 5.6 megabasepairs (Mbp) the genome of Db. autotrophicum HRM2 is about 2 Mbp larger than the sequenced genomes of other sulfate reducers (SRB). A high number of genome plasticity elements (> 100 transposon-related genes), several regions of GC discontinuity and a high number of repetitive elements (132 paralogous genes Mbp?1) point to a different genome evolution when comparing with Desulfovibrio spp. The metabolic versatility of Db. autotrophicum HRM2 is reflected in the presence of genes for the degradation of a variety of organic compounds including long-chain fatty acids and for the Wood–Ljungdahl pathway, which enables the organism to completely oxidize acetyl-CoA to CO2 but also to grow chemolithoautotrophically. The presence of more than 250 proteins of the sensory/regulatory protein families should enable Db. autotrophicum HRM2 to efficiently adapt to changing environmental conditions. Genes encoding periplasmic or cytoplasmic hydrogenases and formate dehydrogenases have been detected as well as genes for the transmembrane TpII-c3, Hme and Rnf complexes. Genes for subunits A, B, C and D as well as for the proposed novel subunits L and F of the heterodisulfide reductases are present. This enzyme is involved in energy conservation in methanoarchaea and it is speculated that it exhibits a similar function in the process of dissimilatory sulfate reduction in Db. autotrophicum HRM2.

Strittmatter, Axel W; Liesegang, Heiko; Rabus, Ralf; Decker, Iwona; Amann, Judith; Andres, Sonke; Henne, Anke; Fricke, Wolfgang Florian; Martinez-Arias, Rosa; Bartels, Daniela; Goesmann, Alexander; Krause, Lutz; Puhler, Alfred; Klenk, Hans-Peter; Richter, Michael; Schuler, Margarete; Glockner, Frank Oliver; Meyerdierks, Anke; Gottschalk, Gerhard; Amann, Rudolf

2009-01-01

275

Modification of Lignins by Growing Cells of the Sulfate-Reducing Anaerobe Desulfovibrio desulfuricans†  

PubMed Central

The anaerobic sulfate-reducing bacterium Desulfovibrio desulfuricans was grown on medium supplemented with either Kraft lignin or lignosulfonate. Only lignosulfonate contributed to the growth of D. desulfuricans cells, by replacing sulfate, a natural electron acceptor for this microorganism. Kraft lignin added to the culture medium could not substitute for lactate or sulfate, both necessary culture medium components. However, it was found to enhance the viability of D. desulfuricans cells. When changes occurring in lignin during growth of Desulfovibrio cultures were monitored, it was found that both lignin preparations could be partially depolymerized. Spectrophotometric and elemental analysis of biologically treated lignins suggested that both the polyphenolic backbone and lignin functional groups were affected by D. desulfuricans. After treatment, a twofold increase in the sulfur content of Kraft lignin and a minor decrease (14%) in the sulfur content of lignosulfonate were observed. After biological treatment, Kraft lignin and lignosulfonate both bound larger quantities of heavy metals.

Ziomek, E.; Williams, R. E.

1989-01-01

276

Fish skin bacteria: Production of friction-reducing polymers.  

PubMed

The supernatant fluids of cultures of four bacterial strains isolated from the skin of barracuda contained extracellular polymer concentrations of 0.2-0.5 mg/ml and reduced factional drag by 2.5-22% in a turbulent flow rheometer. The production and properties of one of the drag-reducing polymers, referred to as PS-6, were studied further. Polymer PS-6 was produced by strain NS-31 in minimal salts medium supplemented with ethanol or glucose. The polymer began to accumulate in the culture medium during exponential phase and continued to be produced during stationary phase. It reduced drag by 55% at a concentration of 0.75 mg/ ml. Acid-base titration of the deproteinized polymer PS-6A gave two inflection points: pK1=3.26 (2.4 ?eq/mg) and pK2=9.66 (0.8 ?eq/mg).(13)C-NMR spectroscopy of PS-6A resolved 25 peaks, including three methyl groups, three carbonyl groups, and four signals in the anomeric region (99-103 ppm), indicating the presence of four different monosaccharides. Strong acid hydrolysis of PS-6A yielded an amino acid, pyruvate, and four reducing sugars: a hexosamine, a uronic acid, and two hexoses which migrated on TLC similarly to glucose and galactose. The possible role of bacteria in production of drag-reducing mucus is discussed. PMID:24197121

Sar, N; Rosenberg, E

1989-01-01

277

Enhanced transformation of diphenylarsinic acid in soil under sulfate-reducing conditions.  

PubMed

Diphenylarsinic acid (DPAA) is known to be the major contaminant in soils where diphenylchloroarsine and diphenylcyanoarsine were abandoned after World Wars I and II. In this study, experimental model studies were performed to elucidate key factors regulating the transformation of DPAA under anaerobic soil conditions. The elimination of DPAA in Gleysol soils (Qiqihar and Shindori soils) was more rapid than in Mollisol and Regosol soils (Heihe and Ikarashi soils, respectively) during a 5-week incubation. No clear relationship between decreasing rates of DPAA concentrations and soil Eh values was found. The Ikarashi soil showed the slowest decrease in DPAA concentrations among the four soils, but the transformation of DPAA was notably enhanced by addition of exogenous sulfate together with acetate, cellulose or rice straw. Addition of molybdate, a specific inhibitor of sulfate reduction, resulted in the stagnation of DPAA transformation, suggesting that indigenous sulfate reducers play a role in DPAA transformation under anaerobic conditions. Arsenate, phenylarsonic acid, phenylmethylarsinic acid, diphenylmethylarsine oxide and three unknown compounds were detected as metabolites of DPAA. This is the first study to reveal enhancement of DPAA transformation under sulfate-reducing conditions. PMID:23069334

Guan, Ling; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

2012-11-30

278

Extremophilic iron-reducing bacteria: Their implications for possible life in extraterrestrial environments  

SciTech Connect

Iron reduction is believed to be an early form of respiration and iron-reducing bacteria might have evolved very early on Earth. To support this hypothesis, the authors began to search for both thermophilic and psychrophilic iron-reducing bacteria because iron-reducing capacity may be a widely distributed trait if ancestral microorganisms include extremophilic iron-reducing bacteria. To date, they have obtained thermophilic Fe(III)-reducing and magnetite-forming enrichment cultures from geologically and hydrologically isolated, millions of years-old deep terrestrial subsurface samples. Three dominant bacteria were identified based on 16S ribosomal RNA gene sequences. Phylogenetical analysis indicated that these bacteria were closely related to Thermoanaerobacter ethanoliticus. Two pure thermophilic iron-reducing bacteria have been isolated and characterized from these enrichments, they also are able to degrade cellulose and xylan. Geological evidence indicated that these bacteria were separated from modern organisms for about 200 million years, and they are the oldest isolated bacteria available now. Evolutionary sequence analysis showed that the 16S rRNA genes evolved extremely slowly in these bacteria. In addition, the authors have obtained about 30 psychrophilic iron-reducing bacteria in samples from Siberia and Alaska permafrost soils, Pacific marine sediments and Hawaii deep sea water. These bacteria were also able to reduce other heavy metals. The isolation of both thermophilic and psychrophilic iron-reducing bacteria from surface and subsurface environments has significant implications for microbial evolution and for studying the origin of life in extraterrestrial environments.

Zhou, J.; Liu, S.V.; Zhang, C.; Palumbo, A.V.; Phelps, T.J.

1998-06-01

279

Desulfovibrio africanus sp. n., a New Dissimilatory Sulfate-reducing Bacterium  

PubMed Central

Campbell, L. Leon (University of Illinois, Urbana), Mary A. Kasprzycki, and John R. Postgate. Desulfovibrio africanus sp. n., a new dissimilatory sulfate-reducing bacterium. J. Bacteriol. 92:1122–1127. 1966.—The strains Benghazi and Walvis Bay can be distinguished from 40 strains of Desulfovibrio and from D. gigas on the basis of morphological and immunological studies. Electron microscopy revealed polar lophotrichous flagellation similar to that of D. gigas but different from the characteristic single polar flagellum of the 40 strains of Desulfovibrio. Immunological evidence shows that the two strains are related to members of the genus Desulfovibrio but possess several common antigenic components not present in the other strains tested. The deoxyribonucleic acid of both strains has a buoyant density of 1.724 g/cc and a guanine plus cytosine content of 60.2%. Cell-free extracts of both organisms show absorption bands of cytochrome c3 and desulfoviridin, characteristic for Desulfovibrio. The two organisms carry out the sulfate-linked lactate fermentation and neither will grow in the absence of sulfate. Both strains contain the enzymes of the dissimilatory pathway of sulfate reduction. Therefore, these studies have demonstrated that the Benghazi and Walvis Bay strains should be regarded as taxonomically distinct from other species of Desulfovibrio. Images

Campbell, L. Leon; Kasprzycki, Mary A.; Postgate, John R.

1966-01-01

280

The Corrosion Effects of Sulfate and Ferric-Reducing Bacterial Consortia on Steel  

Microsoft Academic Search

Fourteen thermotolerant and thermophilic bacterial isolates from a hot spring in Guanajuato State, Mexico, were tested for their ability to induce the corrosion of carbon steel in monocultures and, in selected cases, in mixed cultures and co-culture with a sulfate-reducing strain, SRB-M. Characterization by 16S rDNA showed that three of the thermophilic isolates (G9a, G9c, and G11) belong to the

Eduardo Valencia-Cantero; Juan José Peña-Cabriales; Esperanza Martínez-Romero

2003-01-01

281

Molecular characterization of a sulfate-reducing consortium which mineralizes benzene  

Microsoft Academic Search

A stable and sediment-free, benzene mineralizing, sulfate-reducing culture that resisted repeated attempts at isolation was examined using molecular approaches such as traditional cloning and sequencing and a direct PCR fingerprinting method for 16S rRNA genes. Despite the culture's long exposure to benzene as the only carbon and energy source (over 3 years) and repeated dilutions of the original enrichment, this

Craig D Phelps; Lee J Kerkhof; Lily Y Young

1998-01-01

282

Isolation and Characterization of a Sulfate-Reducing Bacterium That Anaerobically Degrades Alkanes  

Microsoft Academic Search

An alkane-degrading, sulfate-reducing bacterial strain, AK-01, was isolated from an estuarine sediment with a history of chronic petroleum contamination. The bacterium is a short, nonmotile, non-spore-forming, gram-negative rod. It is mesophilic and grows optimally at pH 6.9 to 7.0 and at an NaCl concentration of 1%. Formate, fatty acids (C4 to C16) and hydrogen were readily utilized as electron donors.

CHI MING SO; L. Y. YOUNG

1999-01-01

283

Halotolerant and Resistant to High pH Hydrogenase from Haloalkaliphilic Sulfate-Reducing Bacterium Desulfonatronum thiodismutans  

NASA Technical Reports Server (NTRS)

Hydrogenase is the key enzyme of energetic metabolism in cells, it catalyzing the converse reaction of hydrogen oxidation and responsible for consumption and excretion of hydrogen in bacteria. Hydrogenases are proteins containing either Nickel and Iron, or the only Iron in theirs active center. Hydrogenases have been found in many microorganisms, such as Methanogenic, acetogenic, nitrogen-fixing, photosynthetic and sulfate-reducing bacteria that could utilize the hydrogen as energy source or use it as electron sink. Hydrogenases are subject for wide physiological, biochemical, physicochemical and genetic studies due to theirs abilities produce the molecular hydrogen as alternative source of pure energy. Notwithstanding on enough large quantity of works that deal with intracellular and extrasellular enzymes of halophilic bacteria, the data about hydrogenases and theirs functions of salts practically are absent. The study of hydrogenase in cell-free extracts of extremely halophilic eubacterium Acetohalobium mabaticum showed dramatic increasing activity of the enzyme at high concentrations of NaCl and KCI (close to saturated solution). Here we present the data of free-cells extracted hydrogenase from new haloalkaliphilic sulfate-reducing bacterium Desulfonatronum thiodismutans, which grow on highly miniralized carbonate-bicarbonate medium in salinity range 1 to 7 % and at pH 7.8 - 10.5. Studied enzyme was active in Concentration range from 0 to 4.3 M NaCl with optimum at 1.0 M NaCl. At 1.0 M NaCl the enzyme activity was increased on 20 %, but with changing concentration from 2.1 M to 3.4 M the activity decreased and was kept on constant level. NaHCO3 inhibited hydrogenase activity on more then 30 %. The maximum of enzyme activity was observed at pH 9.5 with limits 7.5 and 11.5 that practically equal to pH optimum of bacterial growth. Therefore the hydrogenase of Desulfanatronum thiodismutans is tolerant to high concentrations of sodium salts and it also resistant to high pH that make it the unique subject for different biochemical research and detects the possibility for biotechnological application.

Detkova, Ekaterina N.; Pikuta, Elena V.; Hoover, Richard B.

2004-01-01

284

Anaerobic Degradation of m-Cresol by a Sulfate-Reducing Bacterium  

PubMed Central

m-Cresol metabolism under sulfate-reducing conditions was studied with a pure culture of Desulfotomaculum sp. strain Groll. Previous studies with a sulfate-reducing consortium indicated that m-cresol was degraded via an initial para-carboxylation reaction. However, 4-hydroxy-2-methylbenzoic acid was not degraded by strain Groll, and no evidence for ring carboxylation of m-cresol was found. Strain Groll readily metabolized the putative metabolites of a methyl group oxidation pathway, including 3-hydroxybenzyl alcohol, 3-hydroxybenzaldehyde, 3-hydroxybenzoic acid, and benzoic acid. Degradation of these compounds preceded and inhibited m-cresol decay. 3-Hydroxybenzoic acid was detected in cultures that received either m-cresol or 3-hydroxybenzyl alcohol, and trace amounts of benzoic acid were detected in m-cresol-degrading cultures. Therefore, we propose that strain Groll metabolizes m-cresol by a methyl group oxidation pathway which is an alternate route for the catabolism of this compound under sulfate-reducing conditions.

Londry, K. L.; Fedorak, P. M.; Suflita, J. M.

1997-01-01

285

Sulfate-Reducing Microorganisms in Wetlands - Fameless Actors in Carbon Cycling and Climate Change  

PubMed Central

Freshwater wetlands are a major source of the greenhouse gas methane but at the same time can function as carbon sink. Their response to global warming and environmental pollution is one of the largest unknowns in the upcoming decades to centuries. In this review, we highlight the role of sulfate-reducing microorganisms (SRM) in the intertwined element cycles of wetlands. Although regarded primarily as methanogenic environments, biogeochemical studies have revealed a previously hidden sulfur cycle in wetlands that can sustain rapid renewal of the small standing pools of sulfate. Thus, dissimilatory sulfate reduction, which frequently occurs at rates comparable to marine surface sediments, can contribute up to 36–50% to anaerobic carbon mineralization in these ecosystems. Since sulfate reduction is thermodynamically favored relative to fermentative processes and methanogenesis, it effectively decreases gross methane production thereby mitigating the flux of methane to the atmosphere. However, very little is known about wetland SRM. Molecular analyses using dsrAB [encoding subunit A and B of the dissimilatory (bi)sulfite reductase] as marker genes demonstrated that members of novel phylogenetic lineages, which are unrelated to recognized SRM, dominate dsrAB richness and, if tested, are also abundant among the dsrAB-containing wetland microbiota. These discoveries point toward the existence of so far unknown SRM that are an important part of the autochthonous wetland microbiota. In addition to these numerically dominant microorganisms, a recent stable isotope probing study of SRM in a German peatland indicated that rare biosphere members might be highly active in situ and have a considerable stake in wetland sulfate reduction. The hidden sulfur cycle in wetlands and the fact that wetland SRM are not well represented by described SRM species explains their so far neglected role as important actors in carbon cycling and climate change.

Pester, Michael; Knorr, Klaus-Holger; Friedrich, Michael W.; Wagner, Michael; Loy, Alexander

2012-01-01

286

Complete Genome Sequence of the Thermophilic and Facultatively Chemolithoautotrophic Sulfate Reducer Archaeoglobus sulfaticallidus Strain PM70-1T  

PubMed Central

Dissimilatory sulfate-reducing archaea of the genus Archaeoglobus display divergent preferences in the use of energy sources and electron acceptors. Here we present the complete genome sequence of the thermophilic Archaeoglobus sulfaticallidus strain PM70-1T, which distinctly couples chemolithoautotrophic growth on H2/CO2 to sulfate reduction in addition to heterotrophic growth.

Stokke, Runar; Hocking, William Peter; Steinsbu, Bj?rn Olav

2013-01-01

287

Anaerobic oxidation of saturated hydrocarbons to CO 2 by a new type of sulfate-reducing bacterium  

Microsoft Academic Search

n-Hexadecane added as electron donor and carbon source to an anaerobic enrichment culture from an oil production plant or to anoxic marine sediment samples allowed dissimilatory sulfate reduction to sulfide. The enrichment from the oil field was purified via serial dilutions in liquid medium under a hexadecane phase and in agar medium with caprylate. A pure culture of a sulfate-reducing

Frank Aeckersberg; Friedhelm Bak; Friedrich Widdel

1991-01-01

288

Composition and Function of Sulfate-Reducing Prokaryotes in Eutrophic and Pristine Areas of the Florida Everglades  

Microsoft Academic Search

As a result of agricultural activities in regions adjacent to the northern boundary of the Florida Everglades, a nutrient gradient developed that resulted in physicochemical and ecological changes from the original system. Sulfate input from agricultural runoff and groundwater is present in soils of the Northern Everglades, and sulfate-reducing prokaryotes (SRP) may play an important role in biogeochemical processes such

Hector Castro; K. R. Reddy; Andrew Ogram

2002-01-01

289

Complete oxidation of benzoate and 4-hydroxybenzoate by a new sulfate-reducing bacterium resembling Desulfoarculus.  

PubMed

A new sulfate-reducer "strain SAX" was isolated from an anaerobic marine sediment [Saxild, Denmark]. The isolate was a gram-negative, motile and non-spore-forming rod which sometimes appeared as a curved rod. Strain SAX differed from all described Desulfovibrio-, Desulfobotulus- and Desulfoarculus-species by the ability to degrade aromatic compounds such as benzoate, 4-hydroxybenzoate and phenol completely to CO2. Electron donors used included lactate, pyruvate, malate, fumarate, crotonate and butyrate, while pyruvate was fermented in the absence of an external electron acceptor. Sulfate, thiosulfate or sulfite served as electron acceptors with benzoate as the donor, while nitrate and nitrite did not. The sulfate-reducing bacterium required vitamins and NaCl-concentrations of about 20 g/l. The optimum temperature for growth of strain SAX was 30 degrees C and the optimum pH value was 7.3. The DNA base composition was 62.4 mol% G+C. The strain possessed cytochrome c3, but no desulfoviridin. On the basis of these characteristics and because strain SAX could not be ascribed to any of the existing species therefore assignment as a new species to the genus Desulfoarculus was suggested. PMID:8439232

Drzyzga, O; Küver, J; Blotevogel, K H

1993-01-01

290

Genes required for alleviation of uranium toxicity in sulfate reducing bacterium Desulfovibio alaskensis G20.  

PubMed

The sulfate reducing bacterium Desulfovibrio alaskensis strain G20 can grow in lactate sulfate medium with up to 4 mM uranyl acetate. In order to identify the genes that are required for the growth of strain G20 at toxic levels of uranium(VI) (U(VI)), 5,760 transposon insertion mutants were screened for U(VI) resistance defects, and 24 of them showed loss of U(VI) resistance in lactate sulfate medium with 2 mM uranyl acetate. In the 24 mutants, 23 genes were disrupted by transposon insertions, and one transposon is located in a non-coding region. In the ten mutants that were completely inhibited by 2 mM uranyl acetate, the disrupted genes are involved in DNA repair, rRNA methylation, regulation of expression and RNA polymerase renaturation. The remaining 14 mutants showed partial inhibition of growth by 2 mM U(VI), in which the disrupted genes participate in DNA repair, regulation of transcription, membrane transport, etc. In addition, none except one of these 24 mutants showed loss in its ability to reduce U(VI) to U(IV) in the washed cell test. These results altogether suggest that U(VI) toxicity mainly involves damage to nucleic acids and proteins. PMID:24510447

Li, Xiangkai; Zhang, He; Ma, Yantian; Liu, Pu; Krumholz, Lee R

2014-05-01

291

Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria  

SciTech Connect

Environmental contamination with compounds containing oxyanions of chlorine, such as perchlorate or chlorate [(per)chlorate] or chlorine dioxide, has been a constantly growing problem over the last 100 years. Although the fact that microbes reduce these compounds has been recognized for more than 50 years, only six organisms which can obtain energy for growth by this metabolic process have been described. As part of a study to investigate the diversity and ubiquity of microorganisms involved in the microbial reduction of (per) chlorate, the authors enumerated the (per) chlorate-reducing bacteria (ClRB) in very diverse environments, including pristine and hydrocarbon-contaminated soils, aquatic sediments, paper mill waste sludges, and farm animal waste lagoons. In all of the environments tested, the acetate-oxidizing ClRB represented a significant population, whose size ranged from 2.31 x 10{sup 3} to 2.4 x 10{sup 6} cells per g of sample. In addition, the authors isolated 13 ClRB from these environments. All of these organisms could grow anaerobically by coupling complete oxidation of acetate to reduction of (per) chlorate. Chloride was the sole end product of this reductive metabolism. All of the isolates could also use oxygen as a sole electron acceptor, and most, but not all, could use nitrate. The alternative electron donors included simple volatile fatty acids, such as propionate, butyrate, or valerate, as well as simple organic acids, such as lactate or pyruvate. Oxidized-minus-reduced difference spectra of washed whole-cell suspensions of the isolates had absorbance maxima close to 425, 525, and 550 nm, which are characteristic of type c cytochromes. In addition, washed cell suspensions of all of the ClRB isolates could dismutate chlorite, an intermediate in the reductive metabolism of (per) chlorate, into chloride and molecular oxygen.

Coates, J.D.; Michaelidou, U.; Bruce, R.A.; O'Connor, S.M.; Crespi, J.N.; Achenbach, L.A.

1999-12-01

292

Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium.  

PubMed Central

A novel sulfate-reducing bacterium isolated from fuel-contaminated subsurface soil, strain PRTOL1, mineralizes toluene as the sole electron donor and carbon source under strictly anaerobic conditions. The mineralization of 80% of toluene carbon to CO2 was demonstrated in experiments with [ring-U-14C]toluene; 15% of toluene carbon was converted to biomass and nonvolatile metabolic by-products, primarily the former. The observed stoichiometric ratio of moles of sulfate consumed per mole of toluene consumed was consistent with the theoretical ratio for mineralization of toluene coupled with the reduction of sulfate to hydrogen sulfide. Strain PRTOL1 also transforms o- and p-xylene to metabolic products when grown with toluene. However, xylene transformation by PRTOL1 is slow relative to toluene degradation and cannot be sustained over time. Stable isotope-labeled substrates were used in conjunction with gas chromatography-mass spectrometry to investigate the by-products of toluene and xylene metabolism. The predominant by-products from toluene, o-xylene, and p-xylene were benzylsuccinic acid, (2-methylbenzyl)succinic acid, and 4-methylbenzoic acid (or p-toluic acid), respectively. Metabolic by-products accounted for nearly all of the o-xylene consumed. Enzyme assays indicated that acetyl coenzyme A oxidation proceeded via the carbon monoxide dehydrogenase pathway. Compared with the only other reported toluene-degrading, sulfate-reducing bacterium, strain PRTOL1 is distinct in that it has a novel 16S rRNA gene sequence and was derived from a freshwater rather than marine environment.

Beller, H R; Spormann, A M; Sharma, P K; Cole, J R; Reinhard, M

1996-01-01

293

Microarray and Functional Gene Analyses of Sulfate-Reducing Prokaryotes in Low-Sulfate, Acidic Fens Reveal Cooccurrence of Recognized Genera and Novel Lineages  

PubMed Central

Low-sulfate, acidic (approximately pH 4) fens in the Lehstenbach catchment in the Fichtelgebirge mountains in Germany are unusual habitats for sulfate-reducing prokaryotes (SRPs) that have been postulated to facilitate the retention of sulfur and protons in these ecosystems. Despite the low in situ availability of sulfate (concentration in the soil solution, 20 to 200 ?M) and the acidic conditions (soil and soil solution pHs, approximately 4 and 5, respectively), the upper peat layers of the soils from two fens (Schlöppnerbrunnen I and II) of this catchment displayed significant sulfate-reducing capacities. 16S rRNA gene-based oligonucleotide microarray analyses revealed stable diversity patterns for recognized SRPs in the upper 30 cm of both fens. Members of the family “Syntrophobacteraceae” were detected in both fens, while signals specific for the genus Desulfomonile were observed only in soils from Schlöppnerbrunnen I. These results were confirmed and extended by comparative analyses of environmentally retrieved 16S rRNA and dissimilatory (bi)sulfite reductase (dsrAB) gene sequences; dsrAB sequences from Desulfobacca-like SRPs, which were not identified by microarray analysis, were obtained from both fens. Hypotheses concerning the ecophysiological role of these three SRP groups in the fens were formulated based on the known physiological properties of their cultured relatives. In addition to these recognized SRP lineages, six novel dsrAB types that were phylogenetically unrelated to all known SRPs were detected in the fens. These dsrAB sequences had no features indicative of pseudogenes and likely represent novel, deeply branching, sulfate- or sulfite-reducing prokaryotes that are specialized colonists of low-sulfate habitats.

Loy, Alexander; Kusel, Kirsten; Lehner, Angelika; Drake, Harold L.; Wagner, Michael

2004-01-01

294

Characterization of cytochrome c3 from the thermophilic sulfate reducer Thermodesulfobacterium commune.  

PubMed Central

A c3 type cytochrome has been purified from the thermophilic, non-spore-forming, sulfate-reducing bacterium Thermodesulfobacterium commune. The purified protein was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel filtration, and isoelectric focusing. A pI of 6.83 was observed. The molecular weight of the cytochrome was estimated to be ca. 13,000 from both gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The hemoprotein exhibited absorption maxima at 530, 408.5, and 351 nm in the oxidized form and 551.5 (alpha band), 522.5 (beta band), and 418.5 nm (gamma band) in the reduced form. The extinction coefficients of T. commune cytochrome c3 were 130,000, 74,120, and 975,000 M-1 cm-1 at 551.5, 522.5, and 418.5 nm, respectively. It contains four hemes per molecule, on the basis of both the iron estimation and the extinction coefficient value of its pyridine hemochrome. The amino acid composition showed the presence of eight cysteine residues involved in heme binding. T. commune cytochrome c3 had low threonine, serine, and glycine contents and high glutamic acid and hydrophobic residue contents. The electrochemical study of T. commune cytochrome c3 by cyclic voltammetry and differential pulse polarography has shown that the cytochrome system behaves like a reversible system. Four redox potential values at Eh1 = -0.140 +/- 0.010 V, Eh2 = Eh3 = Eh4 = -0.280 +/- 0.010 V have been determined. T. commune cytochrome c3, which acts as the physiological electron carrier of hydrogenase, is similar in most respects to the multiheme low-potential cytochrome c3 which is characteristic of the genus Desulfovibrio.

Hatchikian, E C; Papavassiliou, P; Bianco, P; Haladjian, J

1984-01-01

295

In-Situ Survival Mechanisms of U and Tc Reducing Bacteria in Contaminated Sediments Final Report  

SciTech Connect

The proposed effort will identify genes and ultimately physiological mechanisms and pathways that are expressed under in situ conditions and are critical to functioning of aquifer dwelling anaerobic bacteria living in contaminated systems. The main objectives are: (1) Determine which Metal-reducer specific genes are important for activities in normal and contaminated subsurface sediment. To achieve these goals, we have generated a library of chromosomal mutants. These are introduced into contaminated sediments, incubated, allowed to grow, and then reisolated. A negative selection process allows us to determine which mutants have been selected against in sediments and thereby identify genes required for survival in subsurface sediments. (2) Delineate the function of these genes through GeneBank and Clusters of Orthologous Groups (COGs) comparisons and analyze other sediment microorganisms to determine if similar genes are present in these populations. After determining the sequence of the genes identified through the previous objectives, we delineate the role of those specific genes in the physiology of G20, MR-1 and perhaps other microorganisms. (3) Determine the loss in function of a select group of mutants. Cells with mutations in known genes with testable functions are assayed for the loss of that function if specific assays are available. Mutants with unknown loss of function and other mutants are run through a series of tests including motility, attachment, and rate of sulfate or iron reduction. These tests allow us to categorize mutants for subsequent more detailed study.

Lee Krumholz Jimmy Ballard

2005-07-11

296

Stable Isotopic Studies of n-Alkane Metabolism by a Sulfate-Reducing Bacterial Enrichment Culture  

PubMed Central

Gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy were used to study the metabolism of deuterated n-alkanes (C6 to C12) and 1-13C-labeled n-hexane by a highly enriched sulfate-reducing bacterial culture. All substrates were activated via fumarate addition to form the corresponding alkylsuccinic acid derivatives as transient metabolites. Formation of d14-hexylsuccinic acid in cell extracts from exogenously added, fully deuterated n-hexane confirmed that this reaction was the initial step in anaerobic alkane metabolism. Analysis of resting cell suspensions amended with 1-13C-labeled n-hexane confirmed that addition of the fumarate occurred at the C-2 carbon of the parent substrate. Subsequent metabolism of hexylsuccinic acid resulted in the formation of 4-methyloctanoic acid, and 3-hydroxy-4-methyloctanoic acid was tentatively identified. We also found that 13C nuclei from 1-13C-labeled n-hexane became incorporated into the succinyl portion of the initial metabolite in a manner that indicated that 13C-labeled fumarate was formed and recycled during alkane metabolism. Collectively, the findings obtained with a sulfate-reducing culture using isotopically labeled alkanes augment and support the previously proposed pathway (H. Wilkes, R. Rabus, T. Fischer, A. Armstroff, A. Behrends, and F. Widdel, Arch. Microbiol. 177:235-243, 2002) for metabolism of deuterated n-hexane by a denitrifying bacterium.

Davidova, Irene A.; Gieg, Lisa M.; Nanny, Mark; Kropp, Kevin G.; Suflita, Joseph M.

2005-01-01

297

Formation of diphenylthioarsinic acid from diphenylarsinic acid under anaerobic sulfate-reducing soil conditions.  

PubMed

Diphenylarsinic acid (DPAA) is a toxic phenylarsenical compound often found around sites contaminated with phenylarsenic chemical warfare agents, diphenylcyanoarsine or diphenylchloroarsine, which were buried in soil after the World Wars. This research concerns the elucidation of the chemical structure of an arsenic metabolite transformed from DPAA under anaerobic sulfate-reducing soil conditions. In LC/ICP-MS analysis, the retention time of the metabolite was identical to that of a major phenylarsenical compound synthesized by chemical reaction of DPAA and hydrogen sulfide. Moreover the mass spectra for the two compounds measured using LC/TOF-MS were similar. Subsequent high resolution mass spectral analysis indicated that two major ions at m/z 261 and 279, observed on both mass spectra, were attributable to C12H10AsS and C12H12AsSO, respectively. These findings strongly suggest that the latter ion is the molecular-related ion ([M+H](+)) of diphenylthioarsinic acid (DPTA; (C6H5)2AsS(OH)) and the former ion is its dehydrated fragment. Thus, our results reveal that DPAA can be transformed to DPTA, as a major metabolite, under sulfate-reducing soil conditions. Moreover, formation of diphenyldithioarsinic acid and subsequent dimerization were predicted by the chemical reaction analysis of DPAA with hydrogen sulfide. This is the first report to elucidate the occurrence of DPAA-thionation in an anaerobic soil. PMID:24007995

Hisatomi, Shihoko; Guan, Ling; Nakajima, Mami; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

2013-11-15

298

The First Genomic and Proteomic Characterization of a Deep-Sea Sulfate Reducer: Insights into the Piezophilic Lifestyle of Desulfovibrio piezophilus  

PubMed Central

Desulfovibrio piezophilus strain C1TLV30T is a piezophilic anaerobe that was isolated from wood falls in the Mediterranean deep-sea. D. piezophilus represents a unique model for studying the adaptation of sulfate-reducing bacteria to hydrostatic pressure. Here, we report the 3.6 Mbp genome sequence of this piezophilic bacterium. An analysis of the genome revealed the presence of seven genomic islands as well as gene clusters that are most likely linked to life at a high hydrostatic pressure. Comparative genomics and differential proteomics identified the transport of solutes and amino acids as well as amino acid metabolism as major cellular processes for the adaptation of this bacterium to hydrostatic pressure. In addition, the proteome profiles showed that the abundance of key enzymes that are involved in sulfate reduction was dependent on hydrostatic pressure. A comparative analysis of orthologs from the non-piezophilic marine bacterium D. salexigens and D. piezophilus identified aspartic acid, glutamic acid, lysine, asparagine, serine and tyrosine as the amino acids preferentially replaced by arginine, histidine, alanine and threonine in the piezophilic strain. This work reveals the adaptation strategies developed by a sulfate reducer to a deep-sea lifestyle.

Pradel, Nathalie; Ji, Boyang; Gimenez, Gregory; Talla, Emmanuel; Lenoble, Patricia; Garel, Marc; Tamburini, Christian; Fourquet, Patrick; Lebrun, Regine; Bertin, Philippe; Denis, Yann; Pophillat, Matthieu; Barbe, Valerie; Ollivier, Bernard; Dolla, Alain

2013-01-01

299

Temperature and nutrient induced responses of Lake Fryxell sulfate-reducing prokaryotes and description of Desulfovibrio lacusfryxellense , sp. nov., a pervasive, cold-active, sulfate-reducing bacterium from Lake Fryxell, Antarctica  

Microsoft Academic Search

The effects of temperature and carbon substrate availability on the stimulation of sulfate reduction by indigenous populations\\u000a of sulfate-reducing prokaryotes (SRP) in permanently ice-covered Lake Fryxell, Antarctica were investigated. Psychrophilic\\u000a and halotolerant, lactate-degrading SRP showed significant metabolic activity throughout all sampled depths of the water column,\\u000a suggesting that such organisms, possibly of marine origin, may be key contributors to carbon

W. Matthew SattleyMichael; Michael T. Madigan

2010-01-01

300

Microbial diversity in Los Azufres geothermal field (Michoacán, Mexico) and isolation of representative sulfate and sulfur reducers.  

PubMed

Los Azufres spa consists of a hydrothermal spring system in the Mexican Volcanic Axis. Five samples (two microbial mats, two mud pools and one cenote water), characterized by high acidity (pH between 1 and 3) and temperatures varying from 27 to 87 °C, were investigated for their microbial diversity by Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and 16S rRNA gene library analyses. These data are the first to describe microbial diversity from Los Azufres geothermal belt. The data obtained from both approaches suggested a low bacterial diversity in all five samples. Despite their proximity, the sampling points differed by their physico-chemical conditions (mainly temperature and matrix type) and thus exhibited different dominant bacterial populations: anoxygenic phototrophs related to the genus Rhodobacter in the biomats, colorless sulfur oxidizers Acidithiobacillus sp. in the warm mud and water samples, and Lyzobacter sp.-related populations in the hot mud sample (87 °C). Molecular data also allowed the detection of sulfate and sulfur reducers related to Thermodesulfobium and Desulfurella genera. Several strains affiliated to both genera were enriched or isolated from the mesophilic mud sample. A feature common to all samples was the dominance of bacteria involved in sulfur and iron biogeochemical cycles (Rhodobacter, Acidithiobacillus, Thiomonas, Desulfurella and Thermodesulfobium genera). PMID:24446065

Brito, Elcia M S; Villegas-Negrete, Norberto; Sotelo-González, Irene A; Caretta, César A; Goñi-Urriza, Marisol; Gassie, Claire; Hakil, Florence; Colin, Yannick; Duran, Robert; Gutiérrez-Corona, Felix; Piñón-Castillo, Hilda A; Cuevas-Rodríguez, Germán; Malm, Olaf; Torres, João P M; Fahy, Anne; Reyna-López, Georgina E; Guyoneaud, Rémy

2014-03-01

301

Effect of sulfide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans.  

PubMed

Cultures of the sulfate reducing bacteria Desulfovibrio desulfuricans were grown under anoxic conditions to study the effect of added sulfide, selenite and mercuric ions. A chemical trap consisting in a CuSO4 solution was used to control the poisoning effect induced by the bacterial production of hydrogen sulfide via the precipitation of CuS. Following the addition of Hg(2+), the formation of methylmercury (MeHg) was correlated to bacterial proliferation with most of MeHg found in the culture medium. A large fraction (50-80%) of added Hg(2+) to a culture ended up in a solid phase (Hg(0) and likely HgS) limiting its bioavailability to cells with elemental Hg representing ~40% of the solid. Following the addition of selenite, a small fraction was converted into Se(0) inside the cells and, even though the conversion to this selenium species increased with the increase of added selenite, it never reached more than 49% of the added amount. The formation of volatile dimethylselenide is suggested as another detoxification mechanism. In cultures containing both added selenite and mercuric ions, elemental forms of the two compounds were still produced and the increase of selenium in the residual fraction of the culture suggests the formation of mercuric selenite limiting the bioavailability of both elements to cells. PMID:23454698

Truong, Hoang-Yen T; Chen, Yu-Wei; Belzile, Nelson

2013-04-01

302

Desulfovibrio brasiliensis sp. nov., a moderate halophilic sulfate-reducing bacterium from Lagoa Vermelha (Brazil) mediating dolomite formation.  

PubMed

A novel halotolerant sulfate-reducing bacterium, Desulfovibrio brasiliensis strain LVform1, was isolated from sediments of a dolomite-forming hypersaline coastal lagoon, Lagoa Vermelha, in the state of Rio de Janeiro, Brazil. The cells are vibrio-shaped and 0.30 to 0.45 microm by 1.0 to 3.5 microm in size. These bacteria mediate the precipitation of dolomite [CaMg(CO3)2] in culture experiments. The strain was identified as a member of the genus Desulfovibrio in the delta-subclass of the Proteobacteria on the basis of its 16S rRNA gene sequence, its physiological and morphological properties. Strain LVform1 is obligate sodium-dependent and grows at NaCl concentrations of up to 15%. The 16S rRNA sequence revealed that this strain is closely related to Desulfovibrio halophilus (96.2% similarity) and to Desulfovibrio oxyclinae (96.8% similarity), which were both isolated from Solar Lake, a hypersaline coastal lake in the Sinai, Egypt. Strain LVform1 is barotolerant, growing under pressures of up to 370 bar (37 MPa). We propose strain LVform1 to be the type strain of a novel species of the genus Desulfovibrio, Desulfovibrio brasiliensis (type strain LVform1 = DSMZ No. 15816 and JCM No. 12178). The GenBank/EMBL accession number for the 16S rDNA sequence of strain LVform1 is AJ544687. PMID:15856133

Warthmann, Rolf; Vasconcelos, Crisogono; Sass, Henrik; McKenzie, Judith A

2005-06-01

303

Clinical efficiency of 2% chlorhexidine gel in reducing intracanal bacteria.  

PubMed

This study evaluated the clinical efficacy of 2% chlorhexidine (CHX) gel on intracanal bacteria reduction during root canal instrumentation. The additional antibacterial effect of an intracanal dressing (Ca[OH](2) mixed with 2% CHX gel) was also assessed. Forty-three patients with apical periodontitis were recruited. Four patients with irreversible pulpitis were included as negative controls. Teeth were instrumented using rotary instruments and 2% CHX gel as the disinfectant. Bacterial samples were taken upon access (S1), after instrumentation (S2), and after 2 weeks of intracanal dressing (S3). Anaerobic culture was performed. Four samples showed no bacteria growth at S1, which were excluded from further analysis. Of the samples cultured positively at S1, 10.3% (4/39) and 8.3% (4/36) sampled bacteria at S2 and S3, respectively. A significant difference in the percentage of positive culture between S1 and S2 (p < 0.001) but not between S2 and S3 (p = 0.692) was found. These results suggest that 2% CHX gel is an effective root canal disinfectant and additional intracanal dressing did not significantly improve the bacteria reduction on the sampled root canals. PMID:17963947

Wang, Ching S; Arnold, Roland R; Trope, Martin; Teixeira, Fabricio B

2007-11-01

304

Desulfotomaculum intricatum sp. nov., a sulfate reducer isolated from freshwater lake sediment.  

PubMed

A novel spore-forming, sulfate-reducing bacterium, strain SR45(T), was isolated from sediment of a freshwater lake, Lake Mizugaki, in Japan. Cells of strain SR45 were rod-shaped (1.0-1.5×2.0-5.0 µm) and weakly motile; Gram staining and the KOH lysis test were negative. For growth, the optimum pH was 6.4-6.8 and the optimum temperature was 42-45 °C. Strain SR45(T) used sulfate, thiosulfate, sulfite and elemental sulfur as electron acceptors but not Fe(III). The G+C content of the genomic DNA was 41.1 mol%. Phylogenetic analyses based on genes for the 16S rRNA and DNA gyrase (gyrB) revealed that the isolated strain belonged to the family Peptococcaceae in the class Clostridia. The closest relative is Desulfotomaculum acetoxidans 5575(T), with 16S rRNA gene sequence similarity of 92-94?%. It is suggested that the strain is the second isolated member of Desulfotomaculum subcluster Ie. The isolate had multiple 16S rRNA gene copies, with 13 different sequences. On the basis of phylogenetic and phenotypic characterization, the name Desulfotomaculum intricatum sp. nov. is proposed, with the type strain SR45(T) (?=?NBRC 109411(T)?=?DSM 26801(T)). PMID:23584284

Watanabe, Miho; Kojima, Hisaya; Fukui, Manabu

2013-10-01

305

Biodegradation of munitions compounds by a sulfate reducing bacterial enrichment culture  

SciTech Connect

The degradation of several munitions compounds was studied. The compounds included 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine, 2,4,6-trinitrobenzene (TNB), and 2,4-dinitrotoluene. All of the compounds studied were degraded by the sulfate reducing bacterial (SRB) enrichment culture. The SRB culture did not use the munitions compounds as their sole source of carbon. However, all the munitions compounds tested served as the sole source of nitrogen for the SRB culture. Degradation of munitions compounds was achieved by a co-metabolic process. The SRB culture used a variety of carbon sources including pyruvate, ethanol, formate, lactate, and H{sub 2}-CO{sub 2}. The SRB culture was an incomplete oxidizer, unable to carry out the terminal oxidation of organic substrates to CO{sub 2} as the sole product, and it did not use acetate or methanol as a carbon source. In addition to serving as nitrogen sources, the munitions compounds also served as electron acceptors in the absence of sulfate. A soil slurry experiment with 5% and 10% munitions compounds-contaminated soil showed that the contaminant TNT was metabolized by the SRB culture in the presence of pyruvate as electron donor. This culture may be useful in decontaminating munitions compounds-contaminated soil and water under anaerobic conditions.

Boopathy, R.; Manning, J. [Argonne National Lab., IL (United States). Environmental Research Div.

1997-08-01

306

Transformation of 3- and 4-Picoline under Sulfate-Reducing Conditions.  

PubMed

A microbial population which transformed 3- and 4-picoline under sulfate-reducing conditions was isolated from a subsurface soil which had been previously exposed to different N-substituted aromatic compounds for several years. In the presence of sulfate, the microbial culture transformed 3- and 4-picoline (0.4 mM) within 30 days. From the amounts of ammonia released and of sulfide that were determined during the transformation of 3-picoline, it can be concluded that the parent compound was mineralized to carbon dioxide and ammonia. During the transformation of 4-picoline, a UV-absorbing intermediate accumulated in the culture medium. This metabolite was identified as 2-hydroxy-4-picoline by gas chromatography-mass spectrometry and nuclear magnetic resonance analysis, and its further transformation was detected only after an additional month of incubation. The small amount of sulfide produced during the oxidation of 4-picoline and the generation of the hydroxylated metabolite indicated that the initial step in the metabolic pathway of 4-picoline was a monohydroxylation at position 2 of the heterocyclic aromatic ring. The 3- and 4-picoline-degrading cultures could also transform benzoic acid; however, the other methylated pyridine derivatives, 2-picoline, dimethyl-pyridines, and trimethylpyridines, were not degraded. PMID:16348885

Kaiser, J P; Minard, R D; Bollag, J M

1993-03-01

307

Transformation of 3- and 4-Picoline under Sulfate-Reducing Conditions  

PubMed Central

A microbial population which transformed 3- and 4-picoline under sulfate-reducing conditions was isolated from a subsurface soil which had been previously exposed to different N-substituted aromatic compounds for several years. In the presence of sulfate, the microbial culture transformed 3- and 4-picoline (0.4 mM) within 30 days. From the amounts of ammonia released and of sulfide that were determined during the transformation of 3-picoline, it can be concluded that the parent compound was mineralized to carbon dioxide and ammonia. During the transformation of 4-picoline, a UV-absorbing intermediate accumulated in the culture medium. This metabolite was identified as 2-hydroxy-4-picoline by gas chromatography-mass spectrometry and nuclear magnetic resonance analysis, and its further transformation was detected only after an additional month of incubation. The small amount of sulfide produced during the oxidation of 4-picoline and the generation of the hydroxylated metabolite indicated that the initial step in the metabolic pathway of 4-picoline was a monohydroxylation at position 2 of the heterocyclic aromatic ring. The 3- and 4-picoline-degrading cultures could also transform benzoic acid; however, the other methylated pyridine derivatives, 2-picoline, dimethyl-pyridines, and trimethylpyridines, were not degraded.

Kaiser, J.-P.; Minard, R. D.; Bollag, J.-M.

1993-01-01

308

Anaerobic degradation of m-cresol in anoxic aquifer slurries: carboxylation reactions in a sulfate-reducing bacterial enrichment.  

PubMed Central

The anaerobic biodegradation of m-cresol was observed in anoxic aquifer slurries kept under both sulfate-reducing and nitrate-reducing but not methanogenic conditions. More than 85% of the parent substrate (300 microM) was consumed in less than 6 days in slurries kept under the former two conditions. No appreciable loss of the compound from the corresponding autoclaved controls was measurable. A bacterial consortium was enriched from the slurries for its ability to metabolize m-cresol under sulfate-reducing conditions. Metabolism in this enrichment culture was inhibited in the presence of oxygen or molybdate (500 microM) and in the absence of sulfate but was unaffected by bromoethanesulfonic acid. The consortium consumed 3.63 mol of sulfate per mol of m-cresol degraded. This stoichiometry is about 87% of that theoretically expected and suggests that m-cresol was largely mineralized. Resting-cell experiments demonstrated that the degradation of m-cresol proceeded only in the presence of bicarbonate. 4-Hydroxy-2-methylbenzoic acid and acetate were detected as transient intermediates. Thus, the parent substrate was initially carboxylated as the primary degradative event. The sulfate-reducing consortium could also decarboxylate p- but not m-hydroxybenzoate to near stoichiometric amounts of phenol, but this reaction was not sulfate dependent. The presence of p-hydroxybenzoate in the medium temporarily inhibited m-cresol metabolism such that the former compound was metabolized prior to the latter and phenol was degraded in a sequential manner. These findings help clarify the fate of a common groundwater contaminant under sulfate-reducing conditions.

Ramanand, K; Suflita, J M

1991-01-01

309

Ambient iron concentration regulates the sulfate reducing activity in the mangrove swamps of Diwar, Goa, India  

NASA Astrophysics Data System (ADS)

In order to test the hypothesis that the ambient iron concentrations could regulate sulfate reducing activity (SRA) in mangrove areas, 10 cm cores were examined from test and reference sites. The test site at Diwar mangrove ecosystem is highly influenced by iron released by the movement of barges carrying iron ore during the non-monsoon seasons and the reference site at Tuvem is relatively pristine. The average iron concentrations were 17.9% (±8.06) at Diwar and 6.3% (±1.5) at Tuvem. Sulfate reducing rates (SRR) ranged from 50.21 to 698.66 nM cm -3 d -1 at Tuvem, and from 23.32 to 294.49 nM cm -3d -1 in Diwar. Pearson's correlation coefficients between SRR and environmental parameters showed that at Tuvem, the SRR was controlled by SO 4-2 ( r = 0.498, p < 0.001, n = 60) more than organic carbon ( r = 0.316 p < 0.05, n = 60). At Diwar, the SRR was governed by the iron concentrations at an r-value of -0.761 ( p < 0.001, n = 60), suggesting that ca.58% of the variation in SRR was influenced negatively by variations in ambient iron concentrations. This influence was more than the positive influence of TOC ( r = 0.615, p < 0.001, n = 60). Laboratory experiments to check the influence of iron on SRR also supported our field observations. At an experimental manipulation of 50 ppm Fe 3+ there was an increase in SRR but at 100 ppm an inhibitory effect was observed. At 1000 ppm Fe 3+ there was a decrease in the SRR up to 93% of the control. Thus, our study showed that ambient iron concentrations influence SRR negatively at Diwar and counters the positive influence of organic carbon. Consequently, the influence could cascade to other biogeochemical processes in these mangrove swamps, especially the mineralization of organic matter to carbon dioxide by sulfate respiration.

Attri, Kuldeep; Kerkar, Savita; LokaBharathi, P. A.

2011-11-01

310

Impact of sulphate-reducing bacteria on the performance of engineering materials  

Microsoft Academic Search

Microbiologically Influenced Corrosion (MIC) is an electrochemical corrosion influenced by the presence\\/action of biological\\u000a agents such as, but not limited to, bacteria. One of the key elements of MIC is sulphate-reducing bacteria (SRB). There are\\u000a still many misunderstandings about these bacteria, their role in the deterioration of engineering materials and their importance\\u000a over other types of corrosion-related micro-\\/macro-organisms. SRB do

Reza Javaherdashti

311

Exposure to common food additive carrageenan leads to reduced sulfatase activity and increase in sulfated glycosaminoglycans in human epithelial cells  

PubMed Central

The commonly used food additive carrageenan, including lambda (?), kappa (?) and iota (?) forms, is composed of galactose disaccharides linked in alpha-1,3 and beta-1,4 glycosidic bonds with up to three sulfate groups per disaccharide residue. Carrageenan closely resembles the endogenous galactose or N-acetylgalactosamine-containing glycosaminoglycans (GAGs), chondroitin sulfate (CS), dermatan sulfate (DS), and keratan sulfate. However, these GAGs have beta-1,3 and beta-1,4 glycosidic bonds, in contrast to the unusual alpha-1,3 glycosidic bond in carrageenan. Since sulfatase activity is inhibited by sulfate, and carrageenan is so highly sulfated, we tested the effect of carrageenan exposure on sulfatase activity in human intestinal and mammary epithelial cell lines and found that carrageenan exposure significantly reduced the activity of sulfatases, including N-acetylgalactosamine-4-sulfatase, galactose-6-sulfatase, iduronate sulfatase, steroid sulfatase, arylsulfatase A, SULF-1,2, and heparan sulfamidase. Consistent with the inhibition of sulfatase activity, following exposure to carrageenan, GAG content increased significantly and showed marked differences in disaccharide composition. Specific changes in CS disaccharides included increases in di-sulfated disaccharide components of CSD (2S6S) and CS-E (4S6S), with declines in CS-A (4S) and CS-C (6S). Specific changes in heparin-heparan sulfate disaccharides included increases in 6S disaccharides, as well as increases in NS and 2S6S disaccharides. Study results suggest that carrageenan inhibition of sulfatase activity leads to re-distribution of the cellular GAG composition with increase in di-sulfated CS and with potential consequences for cell structure and function.

Yang, Bo; Bhattacharyya, Sumit; Linhardt, Robert; Tobacman, Joanne

2012-01-01

312

Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil  

Microsoft Academic Search

Slurries of anoxic paddy soil were either freshly prepared or were partially depleted in endogenous electron donors by prolonged incubation under anaerobic conditions. Endogenous NO3-was reduced within 4 h, followed by reduction of Fe3+ and SO42-, and later by production of CH4. Addition of NO3-slightly inhibited the production of Fe2+ in the depleted but not in the fresh paddy soil.

Christof Achtnich; Friedhelm Bak; Ralf Conrad

1995-01-01

313

Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Mössbauer spectrometry  

NASA Astrophysics Data System (ADS)

Zero-field and in-field Mössbauer investigations and electron paramagnetic resonance (EPR) measurements to follow the kinetics of the iron mineral formation by thermophilic dissimilatory anaerobic Fe(III)-reducing bacteria (strain Z-0001) and anaerobic alkaliphilic bacteria (strain Z-0531) were carried out.

Chistyakova, N. I.; Rusakov, V. S.; Nazarova, K. A.; Koksharov, Yu. A.; Zavarzina, D. G.; Greneche, J.-M.

2008-02-01

314

Function of Periplasmic Hydrogenases in the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough? †  

PubMed Central

The sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough possesses four periplasmic hydrogenases to facilitate the oxidation of molecular hydrogen. These include an [Fe] hydrogenase, an [NiFeSe] hydrogenase, and two [NiFe] hydrogenases encoded by the hyd, hys, hyn1, and hyn2 genes, respectively. In order to understand their cellular functions, we have compared the growth rates of existing (hyd and hyn1) and newly constructed (hys and hyn-1 hyd) mutants to those of the wild type in defined media in which lactate or hydrogen at either 5 or 50% (vol/vol) was used as the sole electron donor for sulfate reduction. Only strains missing the [Fe] hydrogenase were significantly affected during growth with lactate or with 50% (vol/vol) hydrogen as the sole electron donor. When the cells were grown at low (5% [vol/vol]) hydrogen concentrations, those missing the [NiFeSe] hydrogenase suffered the greatest impairment. The growth rate data correlated strongly with gene expression results obtained from microarray hybridizations and real-time PCR using mRNA extracted from cells grown under the three conditions. Expression of the hys genes followed the order 5% hydrogen > 50% hydrogen > lactate, whereas expression of the hyd genes followed the reverse order. These results suggest that growth with lactate and 50% hydrogen is associated with high intracellular hydrogen concentrations, which are best captured by the higher activity, lower affinity [Fe] hydrogenase. In contrast, growth with 5% hydrogen is associated with a low intracellular hydrogen concentration, requiring the lower activity, higher affinity [NiFeSe] hydrogenase.

Caffrey, Sean M.; Park, Hyung-Soo; Voordouw, Johanna K.; He, Zhili; Zhou, Jizhong; Voordouw, Gerrit

2007-01-01

315

Isolation and characterization of novel sulfate-reducing bacterium capable of anaerobic degradation of p-xylene.  

PubMed

A novel strain of p-xylene-degrading sulfate reducer was isolated in pure culture. Strain PP31 was obtained from a p-xylene-degrading enrichment culture established from polluted marine sediment. Analyses of the 16S rRNA gene and two functional genes involved in sulfate respiration and anaerobic degradation of aromatic compounds revealed that the isolate was closely related to members of the genus Desulfosarcina. Strain PP31 was capable of growing on p-xylene under sulfate-reducing conditions, and the ratio of generated sulfide and consumed p-xylene suggested complete oxidation by the novel isolate. The strain could not grow on benzene, toluene, ethylbenzene, m-xylene o-xylene, or n-hexane as an electron donor. Strain PP31 is the first isolated bacterium that degrades p-xylene anaerobically, and will be useful to understanding the mechanism of anaerobic degradation of p-xylene. PMID:22446308

Higashioka, Yuriko; Kojima, Hisaya; Fukui, Manabu

2012-01-01

316

Effect of fumarate reducing bacteria on in vitro rumen fermentation, methane mitigation and microbial diversity.  

PubMed

The metabolic pathways involved in hydrogen (H(2)) production, utilization and the activity of methanogens are the important factors that should be considered in controlling methane (CH(4)) emissions by ruminants. H(2) as one of the major substrate for CH(4) production is therefore should be controlled. One of the strategies on reducing CH(4) is through the use of hydrogenotrophic microorganisms such as fumarate reducing bacteria. This study determined the effect of fumarate reducing bacteria, Mitsuokella jalaludinii, supplementation on in vitro rumen fermentation, CH(4) production, diversity and quantity. M. jalaludinii significantly reduced CH(4) at 48 and 72 h of incubation and significantly increased succinate at 24 h. Although not significantly different, propionate was found to be highest in treatment containing M. jalaludinii at 12 and 48 h of incubation. These results suggest that supplementation of fumarate reducing bacteria to ruminal fermentation reduces CH(4) production and quantity, increases succinate and changes the rumen microbial diversity. PMID:24500476

Mamuad, Lovelia; Kim, Seon Ho; Jeong, Chang Dae; Choi, Yeon Jae; Jeon, Che Ok; Lee, Sang-Suk

2014-02-01

317

Assimilatory reduction of sulfate and sulfite by methanogenic bacteria. [Methanococcus thermolithotrophicus; Methanobacterium thermoautotrophicum  

SciTech Connect

A variety of sulfur-containing compounds were investigated for use as medium reductants and sulfur sources for growth of four methanogenic bacteria. Sulfide (1 to 2 mM) served all methanogens investigated well. Methanococcus thermolithotrophicus and Methanobacterium thermoautotrophicum Marburg and ..delta..H grew well with S/sup 0/, SO/sub 3//sup 2 -/, or thiosulfate as the sole sulfur source. Only Methanococcus thermolithotrophicus was able to grow with SO/sub 4//sup 2 -/ as the sole sulfur source. 2-Mercaptoethanol at 20 mM was greatly inhibitory to growth of Methanococcus thermolithotrophicus on SO/sub 4//sup 2 -/ or SO/sub 3//sup 2 -/ and Methanobacterium thermoautotrophicum Marburg on SO/sub 3//sup 2 -/ but not to growth of strain ..delta..H on SO/sub 3//sup 2 -/. Sulfite was metabolized during growth by Methanococcus thermolithotrophicus. Sulfide was produced in cultures of Methanococcus thermolithotrophicus growing on SO/sub 4//sup 2 -/, SO/sub 3//sup 2 -/, thiosulfate, and S/sup 0/. Methanobacterium thermoautotrophicum Marburg was successfully grown in a 10-liter fermentor with S/sup 0/, SO/sub 3//sup 2 -/, or thiosulfate as the sole sulfur source.

Daniels, L.; Belay, N.; Rajagopal, B.S.

1986-04-01

318

Comparison of Mechanisms of Alkane Metabolism under Sulfate-Reducing Conditions among Two Bacterial Isolates and a Bacterial Consortium  

PubMed Central

Recent studies have demonstrated that fumarate addition and carboxylation are two possible mechanisms of anaerobic alkane degradation. In the present study, we surveyed metabolites formed during growth on hexadecane by the sulfate-reducing isolates AK-01 and Hxd3 and by a mixed sulfate-reducing consortium. The cultures were incubated with either protonated or fully deuterated hexadecane; the sulfate-reducing consortium was also incubated with [1,2-13C2]hexadecane. All cultures were extracted, silylated, and analyzed by gas chromatography-mass spectrometry. We detected a suite of metabolites that support a fumarate addition mechanism for hexadecane degradation by AK-01, including methylpentadecylsuccinic acid, 4-methyloctadecanoic acid, 4-methyloctadec-2,3-enoic acid, 2-methylhexadecanoic acid, and tetradecanoic acid. By using d34-hexadecane, mass spectral evidence strongly supporting a carbon skeleton rearrangement of the first intermediate, methylpentadecylsuccinic acid, was demonstrated for AK-01. Evidence indicating hexadecane carboxylation was not found in AK-01 extracts but was observed in Hxd3 extracts. In the mixed sulfate-reducing culture, however, metabolites consistent with both fumarate addition and carboxylation mechanisms of hexadecane degradation were detected, which demonstrates that multiple alkane degradation pathways can occur simultaneously within distinct anaerobic communities. Collectively, these findings underscore that fumarate addition and carboxylation are important alkane degradation mechanisms that may be widespread among phylogenetically and/or physiologically distinct microorganisms.

Callaghan, Amy V.; Gieg, Lisa M.; Kropp, Kevin G.; Suflita, Joseph M.; Young, Lily Y.

2006-01-01

319

Comparison of reduced volume versus four liters sulfate-free electrolyte lavage solutions for colonoscopy colon cleansing  

Microsoft Academic Search

ObjectiveIn an attempt to improve patient tolerance for colonoscopy cleansing, a reduced volume lavage regimen with 2 L sulfate-free electrolyte lavage solution (SF-ELS, NuLYTELY, Braintree Laboratories, Braintree, MA) plus 20 mg p.o. bisacodyl (Half Lytely, Braintree Laboratories) was compared with standard 4 L SF-ELS lavage for safety and efficacy.

Jack A. DiPalma; Bruce G. Wolff; Alan Meagher; Mark v B. Cleveland

2003-01-01

320

Towards a Rigorous Network of Protein-Protein Interactions of the Model Sulfate Reducer Desulfovibrio vulgaris Hildenborough  

Microsoft Academic Search

Protein–protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study Escherichia coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio vulgaris Hildenborough, a model obligate anaerobe and sulfate reducer and the subject

Swapnil R. Chhabra; Marcin P. Joachimiak; Christopher J. Petzold; Grant M. Zane; Morgan N. Price; Sonia A. Reveco; Veronica Fok; Alyssa R. Johanson; Tanveer S. Batth; Mary Singer; John-Marc Chandonia; Dominique Joyner; Terry C. Hazen; Adam P. Arkin; Judy D. Wall; Anup K. Singh; Jay D. Keasling; Yang Cai

2011-01-01

321

Linkage between community diversity of sulfate-reducing microorganisms and methylmercury concentration in paddy soil.  

PubMed

Sulfate-reducing microorganisms (SRM) have been thought to play a key role in mercury (Hg) methylation in anoxic environments. The current study examined the linkage between SRM abundance and diversity and contents of methylmercury (MeHg) in paddy soils collected from a historical Hg mining area in China. Soil profile samples were collected from four sites over a distance gradient downstream the Hg mining operation. Results showed that MeHg content in the soil of each site significantly decreased with the extending distance away from Hg mine. Soil MeHg content was correlated positively with abundance of SRM and the contents of organic matter (OM), NH4(+), SO4(2-), and Hg. The abundances of SRM based on dissimilatory (bi) sulfite reductase (dsrAB) gene at 0-40 cm depths were higher than those at 40-80 cm depth at all sites. The SRM community composition varied in the soils of different sampling sites following terminal restriction fragment length polymorphism (T-RFLP) and phylogenetic analyses, which appeared to be correlated with contents of MeHg, OM, NH4(+), and SO4(2-) through canonical correspondence analysis. The dominant groups of SRM in the soils examined belonged to Deltaproteobacteria and some unknown SRM clusters that could have potential for Hg methylation. These results advance our understanding of the relationship between SRM and methylmercury concentration in paddy soil. PMID:23900947

Liu, Yu-Rong; Zheng, Yuan-Ming; Zhang, Li-Mei; He, Ji-Zheng

2014-01-01

322

Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium.  

PubMed Central

A toluene-degrading sulfate-reducing bacterium, strain Tol2, was isolated from marine sediment under strictly anoxic conditions. Toluene was toxic if applied directly to the medium at concentrations higher than 0.5 mM. To provide toluene continuously at a nontoxic concentration, it was supplied in an inert hydrophobic carrier phase. The isolate had oval, sometimes motile cells (1.2 to 1.4 by 1.2 to 2.0 microns). The doubling time was 27 h. Toluene was completely oxidized to CO2, as demonstrated by measurement of the degradation balance. The presence of carbon monoxide dehydrogenase and formate dehydrogenase indicated a terminal oxidation of acetyl coenzyme A via the CO dehydrogenase pathway. The use of hypothetical intermediates of toluene degradation was tested in growth experiments and adaptation studies with dense cell suspensions. Results do not support a degradation of toluene via one of the cresols or methylbenzoates, benzyl alcohol, or phenylacetate as free intermediate. Benzyl alcohol did not serve as growth substrate; moreover, it was a strong, specific inhibitor of toluene degradation, whereas benzoate utilization was not affected by benzyl alcohol. Sequencing of 16S rRNA revealed a relationship to the metabolically dissimilar genus Desulfobacter and on a deeper level to the genus Desulfobacterium. The new genus and species Desulfobacula toluolica is proposed. Images

Rabus, R; Nordhaus, R; Ludwig, W; Widdel, F

1993-01-01

323

Paracetamol, Ondansetron, Granisetron, Magnesium Sulfate and Lidocaine and Reduced Propofol Injection Pain  

PubMed Central

Background: Propofol is a most widely used intravenous anesthetic drug. One of its most common complications is the pain upon injection; therefore, different methods, with various effects, have been proposed in order to alleviate the pain. Objectives: This study investigates the effects of paracetamol, ondansetron, granisetron, magnesium sulfate and lidocaine drugs on reducing the pain of propofol injection during anesthetic induction. Also, the hemodynamic changes will be analyzed. Patients and Methods: This is an interventional study containing 336 patients underwent elective orthopedic surgeries in Educational Hospitals of Mashhad University, using systematic sampling, the patients were divided into six groups. A 20-gauge needle was inserted into a venous vessel in the back of the hand and 100 cc of Ringer serum was injected into the vein, which was applied proximal to the injection site. Afterwards, paracetamol 2 mg/kg (group p), magnesium sulfate 2 mmol (group M), ondansetron 4 mg (group O), granisetron 2 mg (group G), lidocaine 40 mg (group L) and 5 cc saline (group S) were injected into the vessel, after 60 seconds, the tourniquet was opened. One quarter of the total dose of propofol (2.5 mg/kg) was injected with a flow rate of 4 mg/sec and then the injection pain was measured. Finally, the fentanyl (2 µg/kg), atracurium 0.5 mg/kg, and the remaining dose of propofol were injected and the vital signs were recorded before the administration of propofol and 1, 3, 5 and 10 minutes after the propofol injection. Results: The six groups did not significantly differ, regarding their gender, weight or age. Propofol injection pain was less in L and G groups, in comparison with the others (P ? 0.001). By analyzing the hemodynamic changes, it was observed that the least amount of change in mean arterial pressure was observed in the paracetamol group. Conclusions: The reduction of propofol injection pain was observed by using medications (in comparison with normal saline), but it was more significant in groups G and L. Moreover, Hypotension was higher in groups S and G and it was lessened in group P.

Alipour, Mohammad; Tabari, Masoomeh; Alipour, Masoomeh

2014-01-01

324

Betaine reduces the irritating effect of sodium lauryl sulfate on human oral mucosa in vivo.  

PubMed

Our aim was to evaluate whether betaine has a protective effect during exposure of the human oral mucosa in vivo to sodium lauryl sulfate (SLS) or cocoamidopropylbetaine (CAPB) as measured with a multifrequency electrical impedance spectrometer (EI). Both detergents were used at the concentration of 2.0% w/v with and without 4.0% w/v betaine in distilled water in 20 volunteers, and 0.5% and 1.0% w/v SLS combined with 4.0% w/v betaine in 5 volunteers. EI measurements were taken before application of the test solutions, after their removal, and every 15 min up to 45 min. Both 0.5% and 1% SLS solutions showed a significant reduction in 3 of the 4 indices, indicating mucosal irritation after the 15-min exposure (P < 0.05), whereas 2% SLS did so in all 4 indices (P < 0.001). Betaine had no effect on the detergent-induced decline with either the 2% or the 0.5% SLS solutions. However, when combined with the 1% SLS solution, betaine significantly (P < 0.05) reduced mucosal irritation by abolishing decreases in indices MIX (magnitude index) and IMIX (imaginary part index) and lowering it for PIX (phase index). The 2% CAPB solution showed a significant (P < 0.05) reduction in all 4 indices after the 15-min exposure, but the effect was significantly weaker than that of 2% SLS (P < 0.05). Betaine did not reduce the irritating effect of 2% CAPB. These findings can be used in the development of less irritating products for oral health care. PMID:12418722

Rantanen, Irma; Nicander, Ingrid; Jutila, Kirsti; Ollmar, Stig; Tenovuo, Jorma; Söderling, Eva

2002-10-01

325

Composition, Reactivity, and Regulations of Extracellular Metal-Reducing Structures (Bacterial Nanowires) Produced by Dissimilatory Metal Reducing Bacteria  

Microsoft Academic Search

This research proposal seeks to describe the composition and function of electrically conductive appendages known as bacterial nanowires. This project targets bacterial nanowires produced by dissimilatory metal reducing bacteria Shewanella and Geobacter. Specifically, this project will investigate the role of these structures in the reductive transformation of iron oxides as solid phase electron acceptors, as well as uranium as a

Scholten; Johannes

2006-01-01

326

COMPARISON OF HYDROGEN CONCENTRATIONS IN PCE-DEHALOGENATING AND SULFATE-REDUCING ESTUARINE SEDIMENTS  

EPA Science Inventory

The primary transformation pathway for PCE in anoxic environments is through sequential reductive dehalogenation, and information concerning dehalogenation processes that occur in environments containing alternative electron acceptors (sulfate) is limited. Hydrogen is postulated ...

327

Method for reducing sulfate formation during regeneration of hot-gas desulfurization sorbents  

DOEpatents

The regeneration of sulfur sorbents having sulfate forming tendencies and used for desulfurizing hot product gas streams such as provided by coal gasification is provided by employing a two-stage regeneration method. Air containing a sub-stoichiometric quantity of oxygen is used in the first stage for substantially fully regenerating the sorbent without sulfate formation and then regeneration of the resulting partially regenerated sorbent is completed in the second stage with air containing a quantity of oxygen slightly greater than the stoichiometric amount adequate to essentially fully regenerate the sorbent. Sulfate formation occurs in only the second stage with the extent of sulfate formation being limited only to the portion of the sulfur species contained by the sorbent after substantially all of the sulfur species have been removed therefrom in the first stage.

Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV); Rockey, John M. (Westover, WV)

1994-01-01

328

Anaerobic Degradation of Ethylbenzene by a New Type of Marine Sulfate-Reducing Bacterium  

Microsoft Academic Search

Anaerobic degradation of the aromatic hydrocarbon ethylbenzene was studied with sulfate as the electron acceptor. Enrichment cultures prepared with marine sediment samples from different locations showed eth- ylbenzene-dependent reduction of sulfate to sulfide and always contained a characteristic cell type that formed gas vesicles towards the end of growth. A pure culture of this cell type, strain EbS7, was isolated

Olaf Kniemeyer; Thomas Fischer; Heinz Wilkes; Frank Oliver Glockner; Friedrich Widdel

2003-01-01

329

Environmental application of nanomaterials and metal-reducing bacteria to remediate arsenic-contaminated groundwater.  

PubMed

The objective of this study was to remediate As-contaminated groundwater using both nanomaterials and metal-reducing bacteria. In the batch experiment, a set of Pd-akaganeite in combination with the bacteria removed 95% of the arsenic from the contaminated groundwater. This result suggested that nanotechnology and biotechnology has the potential to create novel and effective treatment technologies for arsenic-contaminated groundwater. PMID:21456243

Sun, Eun-Young; Kim, Yumi; Park, Byungno; Roh, Yul

2011-02-01

330

Indicators for Sulfate-Reducing Bacteria in Microbiologically Influenced Corrosion. (Reannouncement with New Availability Information).  

National Technical Information Service (NTIS)

Microbiologically influenced corrosion (MIC) is localized corrosion and results in pitting, crevice corrosion, selective dealloying, stress corrosion cracking, or under-deposit corrosion. Since MIC does not produce unique forms of corrosion, investigators...

B. Little P. Wagner

1994-01-01

331

Using Ultraviolet Radiation for Controlling Sulfate-Reducing Bacteria in Injection Water  

Microsoft Academic Search

Laboratory and field experiments have shown that ultraviolet light may be as effective a treatment for microbial control in injection waters as many biocides. In many cases, the use of ultraviolet light is less expensive. The ultraviolet unit must be properly designed and constructed, and the effectiveness of the unit must be determined by a bioassay rather than by physical

J. B. Clark; J. C. Luppens; P. T. Tucker

1984-01-01

332

Using ultraviolet radiation for controlling sulfate-reducing bacteria in injection water  

SciTech Connect

Laboratory and field experiments have shown that ultraviolet light may be as effective a treatment for microbial control in injection waters as many biocides. In many cases, the use of ultraviolet light is less expensive. The ultraviolet unit must be properly designed and constructed, and the effectiveness of the unit must be determined by a bioassay rather than by physical measurements. Experimental results are presented and recommendations for design and use of ultraviolet units are given.

Clark, J.B.; Luppens, J.C.; Tucker, P.T.

1984-09-01

333

EVALUATION OF SULFATE-REDUCING BACTERIA TO PRECIPITATE MERCURY FROM CONTAMINATED GROUNDWATER  

EPA Science Inventory

Several regions in the Republic of Kazakhstan are contaminated with mercury as a result of releases from industrial plants. Operations at an old chemical plant, "Khimprom", which produced chlorine and alkali in the 1970s - 1990s, resulted in significant pollution of groundwater ...

334

Enzymatic catalysis of mercury methylation by planktonic and biofilm cultures of sulfate- reducing bacteria  

Microsoft Academic Search

While biofilms are now known to be the predominant form of microbial growth in nature, little is known about their role in environmental mercury (Hg) methylation. Due to its long-range atmospheric transport, Hg contamination of food chains is a worldwide problem, impacting even pristine areas. Among different forms of mercury species, methylmercury (MeHg) is an extremely neurotoxic and biomagnification-prone compound

C. Lin; R. Kampalath; J. Jay

2007-01-01

335

Characterization of two dissimilatory sulfite reductases from sulfate-reducing bacteria  

NASA Astrophysics Data System (ADS)

Mössbauer, EPR, and biochemical techniques were used to characterize two dissimilatory sulfite reductases: desulforubidin from Desulfovibrio baculatus strain DSM 1743 and desulfoviridin from Desulfovibrio gigas. For each molecule of desulforubidin, there are two sirohemes and four [4Fe-4S] clusters. The [4Fe-4S] clusters are in the diamagnetic 2+ oxidation state. The sirohemes are high-spin ferric (S=5/2) and each siroheme is exchanged-coupled to a [4Fe-4S]2+ cluster. Such an exchange-coupled siroheme-[4Fe-4S] unit has also been found in the assimilatory sulfite reductase from Escherichia coli/1/ and in a low-molecular weight sulfite reductase from Desulfovibrio vulgaris/2/. For each molecule of defulfoviridin, there are two tetrahydroporphyrin groups and four [4Fe-4S]2+ clusters. To our surprise, we discovered that about 80% of the tetrahydroporphyrin groups, however, do not bind iron.

Huynh, B. H.; Moura, I.; Lino, A. R.; Moura, J. J. G.; Legall, J.

1988-02-01

336

Mathematical modellling as a tool to study population dynamics between sulfate reducing and methanogenic bacteria  

Microsoft Academic Search

The existing mathematical models of sulphate fed anaerobic reactors are reviewed. Special attention was put on pecularities of the description of sulphide inhibition and competition between sulphate reduction and methanogen- esis in such systems. The paper also presents an integrated mathematical model of the functioning of a sulphate fed granular sludge reactor taking into account concentration gradients on substrates, intermediates,

Sergey Kalyuzhnyi; Vyacheslav Fedorovich; P. Lens; L. Hulshoff Pol; G. Lettinga

1998-01-01

337

Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria.  

PubMed

Competitive adsorption of heavy metals by extracellular polymeric substances (EPS) extracted from Desulfovibrio desulfuricans was investigated. Chemical analysis showed that different EPS compositions had different capacities for the adsorption of heavy metals which was investigated using Cu(2+) and Zn(2+). Batch adsorption tests indicated that EPS had a higher combined ability with Zn(2+) than Cu(2+). This was confirmed and explained by Fourier transform infrared (FTIR) and excitation-emission matrix (EEM) spectroscopy analysis. FTIR analysis showed that both polysaccharides and protein combined with Zn(2+) while only protein combined with Cu(2+). EEM spectra further revealed that tryptophan-like substances were the main compositions reacted with the heavy metals. Moreover, Zn(2+) had a higher fluorescence quenching ability than Cu(2+). PMID:24841491

Wang, Jin; Li, Qing; Li, Ming-Ming; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo

2014-07-01

338

Changing microspatial patterns of sulfate-reducing microorganisms (SRM) during cycling of marine stromatolite mats.  

PubMed

Microspatial arrangements of sulfate-reducing microorganisms (SRM) in surface microbial mats (~1.5 mm) forming open marine stromatolites were investigated. Previous research revealed three different mat types associated with these stromatolites, each with a unique petrographic signature. Here we focused on comparing "non-lithifying" (Type-1) and "lithifying" (Type-2) mats. Our results revealed three major trends: (1) Molecular typing using the dsrA probe revealed a shift in the SRM community composition between Type-1 and Type-2 mats. Fluorescence in-situ hybridization (FISH) coupled to confocal scanning-laser microscopy (CSLM)-based image analyses, and 35SO4(2-)-silver foil patterns showed that SRM were present in surfaces of both mat types, but in significantly (p < 0.05) higher abundances in Type-2 mats. Over 85% of SRM cells in the top 0.5 mm of Type-2 mats were contained in a dense 130 µm thick horizontal layer comprised of clusters of varying sizes; (2) Microspatial mapping revealed that locations of SRM and CaCO3 precipitation were significantly correlated (p < 0.05); (3) Extracts from Type-2 mats contained acylhomoserine-lactones (C4- ,C6- ,oxo-C6,C7- ,C8- ,C10- ,C12- , C14-AHLs) involved in cell-cell communication. Similar AHLs were produced by SRM mat-isolates. These trends suggest that development of a microspatially-organized SRM community is closely-associated with the hallmark transition of stromatolite surface mats from a non-lithifying to a lithifying state. PMID:24413754

Petrisor, Alexandru I; Szyjka, Sandra; Kawaguchi, Tomohiro; Visscher, Pieter T; Norman, Robert Sean; Decho, Alan W

2014-01-01

339

Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation  

SciTech Connect

The biogeochemical cycling of mercury has received considerable attention because of the toxicity of methylmercury, its bioaccumulation in biota, and its biomagnification in aquatic food chains. The formation of methylmercury is mediated primarily by microorganisms. Demethylation of monomethylmercury in freshwater and estuarine sediments and in bacterial cultures was investigated with {sup 14}CH{sub 3}HgI. Under anaerobiosis, results with inhibitors indicated partial involvement of both sulfate reducers and methanogens, the former dominated estuarine sediments, while both were active in freshwaters. Aerobes were the most significant demethylators in estuarine sediments, but were unimportant in freshwater sediments. Products of anaerobic demthylation were mainly {sup 14}CO{sub 2} as well as lesser amounts of {sup 14}CH{sub 4}. Acetogenic activity resulted in fixation of some {sup 14}CO{sub 2} produced from {sup 14}CH{sub 3}HgI into acetate. Aerobic demethylation in estuarine sediments produced only {sup 14}CH{sub 4}, while aerobic demethylation in freshwater sediments produced small amounts of both {sup 14}CH{sub 4} and {sup 14}CO{sub 2}. Two species of Desulfovibrio produced only traces of {sup 14}CH{sub 4} from {sup 14}CH{sub 3}HgI, while a culture of a methylotrophic methanogen formed traces of {sup 14}CO{sub 2} and {sup 14}CH{sub 4} when grown on trimethylamine in the presence of the {sup 14}CH{sub 3}HgI. These results indicate that both aerobes and anaerobes demethylate mercury in sediments, but that either group may dominate in a particular sediment type. Aerobic demethylation in the estuarine sediments appeared to proceed by the previously characterized organomercurial-lyase pathway, because methane was the sole product. This indicates the presence of an oxidative pathway, possibly one in which methylmercury serves as an analog of one-carbon substrates.

Oremland, R.S.; Culbertson, C.W. (U.S. Geological Survey, Menlo Park, CA (USA)); Winfrey, M.R. (Univ. of Wisconsin, La Crosse (USA))

1991-01-01

340

Reducing phosphorus runoff and inhibiting ammonia loss from poultry manure with aluminum sulfate  

SciTech Connect

Applications of aluminum sulfate (Al{sub 2}(SO{sub 4}){sub 3} {center_dot} 14H{sub 2}O), commonly referred to as alum, to poultry litter have been shown to decrease P runoff from lands fertilized with litter and to inhibit NH{sub 3} volatilization. The objectives of this study were to evaluate the effects of alum applications in commercial broiler houses on: (1) NH{sub 3} volatilization (in-house), (2) poultry production, (3) litter chemistry, and (4) P runoff following litter application. Two farms were used for this study: one had six poultry houses and the other had four. The litter in half of the houses at each farm was treated with alum; the other houses were controls. Alum was applied at a rate of 1,816 kg/house, which corresponded to 0.091 kg/bird. Each year the houses were cleaned in the spring and the litter was broadcast onto paired watersheds in tall fescue at each farm. Results from this study showed that alum applications lowered the litter pH, particularly during the first 3 to 4 wk of each growout. Reductions in litter pH resulted in less NH{sub 3} volatilization, which led to reductions in atmospheric NH{sub 3} in the alum-treated houses. Broilers grown on alum-treated litter were significantly heavier than controls (1.73 kg vs. 1.66 kg). Soluble reactive phosphorus (SRP) concentrations in runoff from pastures fertilized with alum-treated litter averaged 73% lower than that from normal litter throughout a 3-yr period. These results indicate that alum-treatment of poultry litter is a very effective best management practice that reduces nonpoint source pollution while it increases agricultural productivity.

Moore, P.A. Jr.; Daniel, T.C.; Edwards, D.R.

2000-02-01

341

Intervention to Reduce Transmission of Resistant Bacteria in Intensive Care  

PubMed Central

BACKGROUND Intensive care units (ICUs) are high-risk settings for the transmission of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE). METHODS In a cluster-randomized trial, we evaluated the effect of surveillance for MRSA and VRE colonization and of the expanded use of barrier precautions (intervention) as compared with existing practice (control) on the incidence of MRSA or VRE colonization or infection in adult ICUs. Surveillance cultures were obtained from patients in all participating ICUs; the results were reported only to ICUs assigned to the intervention. In intervention ICUs, patients who were colonized or infected with MRSA or VRE were assigned to care with contact precautions; all the other patients were assigned to care with universal gloving until their discharge or until surveillance cultures obtained at admission were reported to be negative. RESULTS During a 6-month intervention period, there were 5434 admissions to 10 intervention ICUs, and 3705 admissions to 8 control ICUs. Patients who were colonized or infected with MRSA or VRE were assigned to barrier precautions more frequently in intervention ICUs than in control ICUs (a median of 92% of ICU days with either contact precautions or universal gloving [51% with contact precautions and 43% with universal gloving] in intervention ICUs vs. a median of 38% of ICU days with contact precautions in control ICUs, P<0.001). In intervention ICUs, health care providers used clean gloves, gowns, and hand hygiene less frequently than required for contacts with patients assigned to barrier precautions; when contact precautions were specified, gloves were used for a median of 82% of contacts, gowns for 77% of contacts, and hand hygiene after 69% of contacts, and when universal gloving was specified, gloves were used for a median of 72% of contacts and hand hygiene after 62% of contacts. The mean (±SE) ICU-level incidence of events of colonization or infection with MRSA or VRE per 1000 patient-days at risk, adjusted for baseline incidence, did not differ significantly between the intervention and control ICUs (40.4±3.3 and 35.6±3.7 in the two groups, respectively; P = 0.35). CONCLUSIONS The intervention was not effective in reducing the transmission of MRSA or VRE, although the use of barrier precautions by providers was less than what was required. (Funded by the National Institute of Allergy and Infectious Diseases and others; STAR*ICU ClinicalTrials.gov number, NCT00100386.)

Huskins, W. Charles; Huckabee, Charmaine M.; O'Grady, Naomi P.; Murray, Patrick; Kopetskie, Heather; Zimmer, Louise; Walker, Mary Ellen; Sinkowitz-Cochran, Ronda L.; Jernigan, John A.; Samore, Matthew; Wallace, Dennis; Goldmann, Donald A.

2012-01-01

342

Studies of Sulfate Utilization by Algae. 4. Properties of a Cell-Free Sulfate-Reducing System From Chlorella 1  

PubMed Central

A cell-free system from Chlorella pyrenoidosa Chick (Emerson strain 3) which produces acid-volatile radioactivity from 35SO42? is described. A high speed supernatant from cells broken in the French Press at pH 7.0 shows maximal activity when fortified with ATP, an ATP-generating system (creatine phosphate and creatine phosphokinase), TPN, a TPN-reducing system (glucose-6-phosphate and glucose-6-phosphate dehydrogenase) and MgCl2. This system is quite labile and is not stable to dialysis. Addition of low concentrations of 2,3,-dimercaptopropan-1-ol (BAL) to the buffers used for enzyme preparation stabilize the extracts and permit them to be dialyzed for 4 hours without loss of activity. If additional BAL is also added to the incubation mixtures it can replace TPNH as a reductant. DPNH also shows appreciable acticity. The system prepared with BAL-containing buffers shows maximal activity at pH 9.0. At this pH, the system requires only ATP, Mg2+ and additional BAL and has high activity and stability compared with the other conditions tried. The optimum concentrations of these reactants has been determined and the kinetics of production of acid-volatile radioactivity are described. Nucleoside triphosphates other than ATP are not appreciably active in this system. In all cases, anaerobic conditions are required for maximal activity, the enzyme extracts are labile to heat, and no unequivocal requirement for thioctic acid can be demonstrated.

Schiff, Jerome A.; Levinthal, Mark

1968-01-01

343

Thermophilic Fe(III)-reducing bacteria from the deep subsurface: The evolutionary implications  

SciTech Connect

Thermophilic (45{degrees} to 75{degrees}C) bacteria that reduce amorphous Fe(III)-oxyhydroxide magnetic iron oxides have been discovered in two geologically and hydrologically isolated Cretaceous- and Triassic-age sedimentary basins in the deep (>860 meters below land surface) terrestrial subsurface. Molecular analyses based on 16S ribosomal RNA (rRNA) gene sequences revealed that some of these bacteria represent unrecognized phylogenetic group of dissimilatory Fe(III)-reducing bacteria. This covery adds another dimension to the study of microbial Fe(III)-reduction and biogenic magnetism. It also provides examples for understanding the history of Fe(III)-reducing microorganisms and for assessing possible roles of such microorganisms on hot primitive planets.

Liu, Shi V.; Zhou, Jizhong; Phelps, T.J. [Oak Ridge National Lab., TN (United States)] [and others] [Oak Ridge National Lab., TN (United States); and others

1997-08-22

344

Thermophilic nitrate-reducing microorganisms prevent sulfate reduction in cold marine sediments incubated at high temperature  

NASA Astrophysics Data System (ADS)

Hydrogen sulphide produced during metabolism of sulphate-reducing microorganisms (SRM) is toxic, corrosive and causes detrimental oil reservoir souring. During secondary oil recovery, injecting oil reservoirs with seawater that is rich in sulphate and that also cools high temperature formations provides favourable growth conditions for SRM. Nitrate addition can prevent metabolism of SRM by stimulating nitrate-reducing microorganisms (NRM). The investigations of thermophilic NRM are needed to develop mechanisms to control the metabolism of SRM in high temperature oil field ecosystems. We therefore established a model system consisting of enrichment cultures of cold surface marine sediments from the Baltic Sea (Aarhus Bay) that were incubated at 60°C. Enrichments contained 25 mM nitrate and 40 mM sulphate as potential electron acceptors, and a mixture of the organic substrates acetate, lactate, propionate, butyrate (5 mM each) and yeast extract (0.01%) as potential carbon sources and electron donors. Slurries were incubated at 60°C both with and without initial pasteurization at 80°C for 2 hours. In the enrichments containing both nitrate and sulphate, the concentration of nitrate decreased indicating metabolic activity of NRM. After a four-hour lag phase the rate of nitrate reduction increased and the concentration of nitrate dropped to zero after 10 hours of incubation. The concentration of nitrite increased as the reduction of nitrate progressed and reached 16.3 mM after 12 hours, before being consumed and falling to 4.4 mM after 19-day of incubation. No evidence for sulphate reduction was observed in these cultures during the 19-day incubation period. In contrast, the concentration of sulphate decreased up to 50% after one week incubation in controls containing only sulphate but no nitrate. Similar sulfate reduction rates were seen in the pasteurized controls suggesting the presence of heat resistant SRM, whereas nitrate reduction rates were lower in the pasteurized experiment, suggesting either different populations of NRM or a population of NRM that was not resistant to the 80°C pre-treatment. These results demonstrate that thermophilic NRM exist in cold marine sediments from Aarhus Bay and can be enriched under appropriate conditions. Effective microbial control of SRM activity at high temperature in our Aarhus Bay sediment model system depends on the addition of nitrate to stimulate this group of microorganisms.

Nepomnyashchaya, Yana; Rezende, Julia; Hubert, Casey

2014-05-01

345

Reductive Precipitation of Gold by Dissimilatory Fe(III)-Reducing Bacteria and Archaea  

PubMed Central

Studies with a diversity of hyperthermophilic and mesophilic dissimilatory Fe(III)-reducing Bacteria and Archaea demonstrated that some of these organisms are capable of precipitating gold by reducing Au(III) to Au(0) with hydrogen as the electron donor. These studies suggest that models for the formation of gold deposits in both hydrothermal and cooler environments should consider the possibility that dissimilatory metal-reducing microorganisms can reductively precipitate gold from solution.

Kashefi, Kazem; Tor, Jason M.; Nevin, Kelly P.; Lovley, Derek R.

2001-01-01

346

Fe(III)-reducing bacteria in deeply buried sediments of the Atlantic Coastal Plain  

Microsoft Academic Search

The possibility that microorganisms are catalyzing the ongoing reduction of Fe(III) in the sediments of deep (20-250 m) aquifers was investigated. Acetate-oxidizing, Fe(III)-reducing bacteria were recovered from deep subsurface sediments, but only from sediments in which it appeared that Fe(III) reduction was the terminal electron-accepting process for oxidation of organic matter. The Fe(III)-reducing microorganisms were capable of reducing ferric oxides

Derek R. Lovley; E. J. P. Phillips; F. H. Chapelle

1990-01-01

347

Biodegradation of high molecular weight lignin under sulfate reducing conditions: lignin degradability and degradation by-products.  

PubMed

This study is designed to investigate the biodegradation of high molecular weight (HMW) lignin under sulfate reducing conditions. With a continuously mesophilic operated reactor in the presence of co-substrates of cellulose, the changes in HMW lignin concentration and chemical structure were analyzed. The acid precipitable polymeric lignin (APPL) and lignin monomers, which are known as degradation by-products, were isolated and detected. The results showed that HMW lignin decreased and showed a maximum degradation capacity of 3.49 mg/l/day. APPL was confirmed as a polymeric degradation by-product and was accumulated in accordance with HMW lignin reduction. We also observed non-linear accumulation of aromatic lignin monomers such as hydrocinnamic acid. Through our experimental results, it was determined that HMW lignin, when provided with a co-substrate of cellulose, is biodegraded through production of APPL and aromatic monomers under anaerobic sulfate reducing conditions with a co-substrate of cellulose. PMID:18977138

Ko, Jae-Jung; Shimizu, Yoshihisa; Ikeda, Kazuhiro; Kim, Seog-Ku; Park, Chul-Hwi; Matsui, Saburo

2009-02-01

348

Gene Expression by the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough Grown on an Iron Electrode under Cathodic Protection Conditions  

Microsoft Academic Search

The genome sequence of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough was reanalyzed to design unique 70-mer oligonucleotide probes against 2,824 probable protein-coding regions. These included three genes not previously annotated, including one that encodes a c-type cytochrome. Using microarrays printed with these 70-mer probes, we analyzed the gene expression profile of wild-type D. vulgaris grown on cathodic hydrogen, generated at

Sean M. Caffrey; Hyung Soo Park; Jenny Been; Paul Gordon; Christoph W. Sensen; Gerrit Voordouw

2008-01-01

349

Note: Desulfovibrio aespoeensis sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at aspo hard rock laboratory, Sweden  

Microsoft Academic Search

BOX 462,s-405 30 A sulfate-reducing bacterium, strain Aspo-2, was isolated from granitic groundwater sampled at a depth of 600 m. This and other strains of SRB frequently occur in the deep granitic rock aquifers studied. On the basis of its morphological, physiological and genotypical properties, and its unique habitat, we propose strain Aspo-2 as a new species of the genus

Mehrdad Motamedi; Karsten Pedersen

1998-01-01

350

Anaerobic n-Alkane Metabolism by a Sulfate-Reducing Bacterium, Desulfatibacillum aliphaticivorans Strain CV2803T  

Microsoft Academic Search

The alkane-degrading, sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, recently isolated from marine sediments, was investigated for n-alkane metabolism. The total cellular fatty acids of this strain had predominantly odd numbers of carbon atoms (C odd) when the strain was grown on a C-odd alkane (pentadecane) and even numbers of carbon atoms (C even) when it was grown on a C-even

Cristiana Cravo-Laureau; Vincent Grossi; Danielle Raphel; Robert Matheron; Agnes Hirschler-Rea

2005-01-01

351

A New Type of Metal-Binding Site in Cobalt- And Zinc-Containing Adenylate Kinases Isolated From Sulfate-Reducers D. Gigas And D. Desulfuricans ATCC 27774  

SciTech Connect

Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterized in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the 'LID' domain. The sequence {sup 129}Cys-X{sub 5}-His-X{sub 15}-Cys-X{sub 2}-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain.

Gavel, O.Y.; Bursakov, S.A.; Rocco, G.Di; Trincao, J.; Pickering, I.J.; George, G.N.; Calvete, J.J.; Brondino, C.; Pereira, A.S.; Lampreia, J.; Tavares, P.; Moura, J.J.G.; Moura, I.

2009-05-18

352

A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense , gen. nov., sp. nov., a new thermophilic isolate from a hot spring  

Microsoft Academic Search

A novel type of a sulfate-reducing microorganism, represented by strain Na82 T, was isolated from a hot spring in Narugo, Japan. The isolate was a moderate thermophilic autotroph that was able to grow on H 2\\/CO 2 by sulfate respiration. The isolate could grow with nitrate in place of sulfate, and possessed menaquinone-7 and menaquinone-7(H 2) as respiratory quinones. Phylogenetic

Koji Mori; Hongik Kim; Takeshi Kakegawa; Satoshi Hanada

2003-01-01

353

Biodegradation of an Alicyclic Hydrocarbon by a Sulfate-Reducing Enrichment from a Gas Condensate-Contaminated Aquifer  

PubMed Central

We used ethylcyclopentane (ECP) as a model alicyclic hydrocarbon and investigated its metabolism by a sulfate-reducing bacterial enrichment obtained from a gas condensate-contaminated aquifer. The enrichment coupled the consumption of ECP with the stoichiometrically expected amount of sulfate reduced. During ECP biodegradation, we observed the transient accumulation of metabolite peaks by gas chromatography-mass spectrometry, three of which had identical mass spectrometry profiles. Mass-spectral similarities to analogous authentic standards allowed us to identify these metabolites as ethylcyclopentylsuccinic acids, ethylcyclopentylpropionic acid, ethylcyclopentylcarboxylic acid, and ethylsuccinic acid. Based on these findings, we propose a pathway for the degradation of this alicyclic hydrocarbon. Furthermore, a putative metabolite similar to ethylcyclopentylsuccinic acid was also found in samples of contaminated groundwater from the aquifer. However, no such finding was evident for samples collected from wells located upgradient of the gas condensate spill. Microbial community analysis of the ECP-degrading enrichment by denaturing gradient gel electrophoresis revealed the presence of at least three different organisms using universal eubacterial primers targeting 550 bp of the 16S rRNA gene. Based on sequence analysis, these organisms are phylogenetically related to the genera Syntrophobacter and Desulfotomaculum as well as a member of the Cytophaga-Flexibacter-Bacteroides group. The evidence suggests that alicyclic hydrocarbons such as ECP can be anaerobically activated by the addition to the double bond of fumarate to form alkylsuccinate derivatives under sulfate-reducing conditions and that the reaction occurs in the laboratory and in hydrocarbon-impacted environments.

Rios-Hernandez, Luis A.; Gieg, Lisa M.; Suflita, Joseph M.

2003-01-01

354

Isolation of Extremely Thermophilic Sulfate Reducers: Evidence for a Novel Branch of Archaebacteria  

Microsoft Academic Search

Extremely thermophilic archaebacteria are known to be metabolizers of elemental sulfur and the methanogens. A novel group of extremely thermophilic archaebacteria is described, which consists of sulfate-respiring organisms that contain pure factor 420 and that have been isolated from marine hydrothermal systems in Italy. They possess a third type of archaebacterial RNA polymerase structure previously unknown, indicating an exceptional phylogenetic

Karl O. Stetter; Gerta Lauerer; Michael Thomm; Annemarie Neuner

1987-01-01

355

Sulfur Isotope Enrichment during Maintenance Metabolism in the Thermophilic Sulfate-Reducing Bacterium Desulfotomaculum putei  

Microsoft Academic Search

34 SSO4 indicate the differences in the isotopic composi- tions of the HS and SO4 2 in the eluent, respectively) for many modern marine sediments are in the range of 55 to 75‰, much greater than the 2t o46‰ 34 S (kinetic isotope enrichment) values commonly observed for microbial sulfate reduction in laboratory batch culture and chemostat experiments. It has

Mark M. Davidson; M. E. Bisher; Lisa M. Pratt; Jon Fong; Gordon Southam; Susan M. Pfiffner; Z. Reches; Tullis C. Onstott

2009-01-01

356

Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas.  

PubMed Central

Various dehydrogenases, reductases, and electron transfer proteins involved in respiratory sulfate reduction by Desulfovibrio gigas have been localized with respect to the periplasmic space, membrane, and cytoplasm. This species was grown on a lactate-sulfate medium, and the distribution of enzyme activities and concentrations of electron transfer components were determined in intact cells, cell fractions prepared with a French press, and lysozyme spheroplasts. A significant fraction of formate dehydrogenase was demonstrated to be localized in the periplasmic space in addition to hydrogenase and some c-type cytochrome. Cytochrome b, menaquinone, fumarate reductase, and nitrite reductase were largely localized on the cytoplasmic membrane. Fumarate reductase was situated on the inner aspect on the membrane, and the nitrite reductase appeared to be transmembraneous. Adenylylsulfate reductase, bisulfite reductase (desulfoviridin), pyruvate dehydrogenase, and succinate dehydrogenase activities were localized in the cytoplasm. Significant amounts of hydrogenase and c-type cytochromes were also detected in the cytoplasm. Growth of D. gigas on a formate-sulfate medium containing acetate resulted in a 10-fold increase in membrane-bound formate dehydrogenase and a doubling of c-type cytochromes. Growth on fumarate with formate resulted in an additional increase in b-type cytochrome compared with lactate-sulfate-grown cells.

Odom, J M; Peck, H D

1981-01-01

357

Biological reduction of Np(V) and Np(V) citrate by metal-reducing bacteria.  

PubMed

Oxidized actinide species are often more mobile than reduced forms. Bioremediation strategies have been developed to exploit this chemistry and stabilize actinides in subsurface environments. We investigated the ability of metal-reducing bacteria Geobacter metallireducens and Shewanella oneidensis to enzymatically reduce Np(V) and Np(V) citrate, as well as the toxicity of Np(V) to these organisms. A toxic effect was observed for both bacteria at concentrations of > or = 4.0 mM Np(V) citrate. Below 2.0 mM Np(V) citrate, no toxic effect was observed and both Fe(III) and Np(V) were reduced. Cell suspensions of S. oneidensis were able to enzymatically reduce unchelated Np(V) to insoluble Np(IV)(s), but cell suspensions of G. metallireducens were unable to reduce Np(V). The addition of citrate enhanced the Np(V) reduction rate by S. oneidensisand enabled Np(V) reduction by G. metallireducens. The reduced form of neptunium remained soluble, presumably as a polycitrate complex. Growth was not observed for either organism when Np(V) or Np(V) citrate was provided as the sole terminal electron acceptor. Our results show that bacteria can enzymatically reduce Np(V) and Np(V) citrate, but that the immobilization of Np(IV) may be dependent on the abundance of complexing ligands. PMID:17533836

Icopini, Gary A; Boukhalfa, Hakim; Neu, Mary P

2007-04-15

358

Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3.  

PubMed

Strain Hxd3, an alkane-degrading sulfate reducer previously isolated and described by Aeckersberg et al. (F. Aeckersberg, F. Bak, and F. Widdel, Arch. Microbiol. 156:5-14, 1991), was studied for its alkane degradation mechanism by using deuterium and (13)C-labeled compounds. Deuterated fatty acids with even numbers of C atoms (C-even) and (13)C-labeled fatty acids with odd numbers of C atoms (C-odd) were recovered from cultures of Hxd3 grown on perdeuterated pentadecane and [1,2-(13)C(2)]hexadecane, respectively, underscoring evidence that C-odd alkanes are transformed to C-even fatty acids and vice versa. When Hxd3 was grown on unlabeled hexadecane in the presence of [(13)C]bicarbonate, the resulting 15:0 fatty acid, which was one carbon shorter than the alkane, incorporated a (13)C label to form its carboxyl group. The same results were observed when tetradecane, pentadecane, and perdeuterated pentadecane were used as the substrates. These observations indicate that the initial attack of alkanes includes both carboxylation with inorganic bicarbonate and the removal of two carbon atoms from the alkane chain terminus, resulting in a fatty acid one carbon shorter than the original alkane. The removal of two terminal carbon atoms is further evidenced by the observation that the [1,2-(13)C(2)]hexadecane-derived fatty acids contained either two (13)C labels located exclusively at their acyl chain termini or none at all. Furthermore, when perdeuterated pentadecane was used as the substrate, the 14:0 and 16:0 fatty acids formed both carried the same numbers of deuterium labels, while the latter was not deuterated at its carboxyl end. These observations provide further evidence that the 14:0 fatty acid was initially formed from perdeuterated pentadecane, while the 16:0 fatty acid was produced after chain elongation of the former fatty acid with nondeuterated carbon atoms. We propose that strain Hxd3 anaerobically transforms an alkane to a fatty acid through a mechanism which includes subterminal carboxylation at the C-3 position of the alkane and elimination of the two adjacent terminal carbon atoms. PMID:12839758

So, Chi Ming; Phelps, Craig D; Young, L Y

2003-07-01

359

Anaerobic Transformation of Alkanes to Fatty Acids by a Sulfate-Reducing Bacterium, Strain Hxd3  

PubMed Central

Strain Hxd3, an alkane-degrading sulfate reducer previously isolated and described by Aeckersberg et al. (F. Aeckersberg, F. Bak, and F. Widdel, Arch. Microbiol. 156:5-14, 1991), was studied for its alkane degradation mechanism by using deuterium and 13C-labeled compounds. Deuterated fatty acids with even numbers of C atoms (C-even) and 13C-labeled fatty acids with odd numbers of C atoms (C-odd) were recovered from cultures of Hxd3 grown on perdeuterated pentadecane and [1,2-13C2]hexadecane, respectively, underscoring evidence that C-odd alkanes are transformed to C-even fatty acids and vice versa. When Hxd3 was grown on unlabeled hexadecane in the presence of [13C]bicarbonate, the resulting 15:0 fatty acid, which was one carbon shorter than the alkane, incorporated a 13C label to form its carboxyl group. The same results were observed when tetradecane, pentadecane, and perdeuterated pentadecane were used as the substrates. These observations indicate that the initial attack of alkanes includes both carboxylation with inorganic bicarbonate and the removal of two carbon atoms from the alkane chain terminus, resulting in a fatty acid one carbon shorter than the original alkane. The removal of two terminal carbon atoms is further evidenced by the observation that the [1,2-13C2]hexadecane-derived fatty acids contained either two 13C labels located exclusively at their acyl chain termini or none at all. Furthermore, when perdeuterated pentadecane was used as the substrate, the 14:0 and 16:0 fatty acids formed both carried the same numbers of deuterium labels, while the latter was not deuterated at its carboxyl end. These observations provide further evidence that the 14:0 fatty acid was initially formed from perdeuterated pentadecane, while the 16:0 fatty acid was produced after chain elongation of the former fatty acid with nondeuterated carbon atoms. We propose that strain Hxd3 anaerobically transforms an alkane to a fatty acid through a mechanism which includes subterminal carboxylation at the C-3 position of the alkane and elimination of the two adjacent terminal carbon atoms.

So, Chi Ming; Phelps, Craig D.; Young, L. Y.

2003-01-01

360

Initial Reactions in Anaerobic Alkane Degradation by a Sulfate Reducer, Strain AK-01  

PubMed Central

An alkane-degrading, sulfate-reducing bacterial strain, AK-01, isolated from a petroleum-contaminated sediment was studied to elucidate its mechanism of alkane metabolism. Total cellular fatty acids of AK-01 were predominantly C even when it was grown on C-even alkanes and were predominantly C odd when grown on C-odd alkanes, suggesting that the bacterium anaerobically oxidizes alkanes to fatty acids. Among these fatty acids, some 2-, 4-, and 6-methylated fatty acids were specifically found only when AK-01 was grown on alkanes, and their chain lengths always correlated with those of the alkanes. When [1,2-13C2]hexadecane or perdeuterated pentadecane was used as the growth substrate, 13C-labeled 2-Me-16:0, 4-Me-18:0, and 6-Me-20:0 fatty acids or deuterated 2-Me-15:0, 4-Me-17:0, and 6-Me-19:0 fatty acids were recovered, respectively, confirming that these monomethylated fatty acids were alkane derived. Examination of the 13C-labeled 2-, 4-, and 6-methylated fatty acids by mass spectrometry showed that each of them contained two 13C atoms, located at the methyl group and the adjacent carbon, thus indicating that the methyl group was the original terminal carbon of the [1,2-13C2]hexadecane. For perdeuterated pentadecane, the presence of three deuterium atoms, on the methyl group and its adjacent carbon, in each of the deuterated 2-, 4-, and 6-methylated fatty acids further supported the hypothesis that the methyl group was the terminal carbon of the alkane. Thus, exogenous carbon appears to be initially added to an alkane subterminally at the C-2 position such that the original terminal carbon of the alkane becomes a methyl group on the subsequently formed fatty acid. The carbon addition reaction, however, does not appear to be a direct carboxylation of inorganic bicarbonate. A pathway for anaerobic metabolism of alkanes by strain AK-01 is proposed.

So, Chi Ming; Young, L. Y.

1999-01-01

361

Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria  

PubMed Central

Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 106 acetate-utilizing manganese-reducing cells cm?3 in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.

Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

2012-01-01

362

Metagenomic Analysis of Nitrate-Reducing Bacteria in the Oral Cavity: Implications for Nitric Oxide Homeostasis  

PubMed Central

The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

Hyde, Embriette R.; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K.; Torregrossa, Ashley C.; Tribble, Gena; Kaplan, Heidi B.; Petrosino, Joseph F.; Bryan, Nathan S.

2014-01-01

363

Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.  

PubMed

The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria. PMID:24670812

Hyde, Embriette R; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K; Torregrossa, Ashley C; Tribble, Gena; Kaplan, Heidi B; Petrosino, Joseph F; Bryan, Nathan S

2014-01-01

364

Detection and Enumeration of Sulphate-Reducing Bacteria in Estuarine Sediments by Competitive PCR  

Microsoft Academic Search

The distribution of sulphate-reducing bacteria (SRB) in the sediments of the Colne River estuary, Essex, UK covering different saline concentrations of sediment porewater was investigated by the use of quantitative competitive PCR. Here, we show that a new PCR primer set and a new quantitative method using PCR are useful tools for the detection and the enumeration of SRB in

Ryuji Kondo; David B. Nedwell; Kevin J. Purdy; Silvana Queiroz Silva

2004-01-01

365

Reactive Iron and Iron-Reducing Bacteria in Louisiana Continental Shelf Sediments  

EPA Science Inventory

The Mississippi and Atchafalaya Rivers release sediments containing 15 x 106 t of iron onto the Louisiana continental shelf (LCS) each year. Iron oxides reaching the seafloor may be utilized as electron acceptors by iron-reducing bacteria for organic matter oxidation or become r...

366

The Geomicrobiological Role of Sulphate-Reducing Bacteria in Environments Contaminated by Petroleum Products  

Microsoft Academic Search

This paper reviews the geomicrobiological role of sulphate-reducing bacteria (SRB) in environments contaminated with petroleum products and describes the habitats of SRB and their capacity for bioremediation in anaerobic conditions. Moreover, the participation of SRB in biocorrosion and formation of different minerals and sediments is discussed.

Dorota Wolicka; Andrzej Borkowski

2007-01-01

367

Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment  

Microsoft Academic Search

Acid mine drainage (AMD), which contains high concentrations of sulphate and dissolved metals, is a serious environmental problem. It can be treated in situ by sulphate reducing bacteria (SRB), but effectiveness of the treatment process depends on the organic substrate chosen to supply the bacteria’s carbon source. Six natural organic materials were characterized in order to investigate how well these

Gerald J. Zagury; Viktors I. Kulnieks; Carmen M. Neculita

2006-01-01

368

Advances In Biotreatment of Acid Mine Drainage and Biorecovery of Metals: 2. Membrane Bioreactor System for Sulfate Reduction  

Microsoft Academic Search

Several biotreatmemt techniques for sulfate conversion by the sulfate reducing bacteria (SRB) have been proposed in the past, however few of them have been practically applied to treat sulfate containing acid mine drainage (AMD). This research deals with development of an innovative polypropylene hollow fiber membrane bioreactor system for the treatment of acid mine water from the Berkeley Pit, Butte,

Henry H. Tabak; Rakesh Govind

2003-01-01

369

Transmission of ice-nucleating active bacteria from a prey reduces cold hardiness of a predator (Araneae: Theridiidae).  

PubMed

The influence of ice-nucleating active (INA) bacteria on cold hardiness of the house spider, Achaearanea tepidariorum, was determined by measuring the supercooling point (SCP) of hatchlings given either INA-bacteria-fed or bacteria-free prey (Drosophila melanogaster). Spiders that had eaten INA-bacteria-fed flies showed higher SCPs than those fed on bacteria-free flies. Through feeding, INA bacteria in the prey reduce the cold hardiness of spiders. This fact should be taken into account before using INA agents as a means of pest management. PMID:14564402

Tanaka, Kazuhiro; Watanabe, Masahiko

2003-10-01

370

Toward a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough  

SciTech Connect

Protein–protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study E. coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio 5 vulgaris Hildenborough, a model anaerobe and sulfate reducer. In this paper we present the first attempt to identify protein-protein interactions in an obligate anaerobic bacterium. We used suicide vector-assisted chromosomal modification of 12 open reading frames encoded by this sulfate reducer to append an eight amino acid affinity tag to the carboxy-terminus of the chosen proteins. Three biological replicates of the 10 ‘pulled-down’ proteins were separated and analyzed using liquid chromatography-mass spectrometry. Replicate agreement ranged between 35% and 69%. An interaction network among 12 bait and 90 prey proteins was reconstructed based on 134 bait-prey interactions computationally identified to be of high confidence. We discuss the biological significance of several unique metabolic features of D. vulgaris revealed by this protein-protein interaction data 15 and protein modifications that were observed. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.

Chhabra, S.R.; Joachimiak, M.P.; Petzold, C.J.; Zane, G.M.; Price, M.N.; Gaucher, S.; Reveco, S.A.; Fok, V.; Johanson, A.R.; Batth, T.S.; Singer, M.; Chandonia, J.M.; Joyner, D.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Singh, A.K.; Keasling, J.D.

2011-05-01

371

Subcellular localization of proteins in the anaerobic sulfate reducer Desulfovibrio vulgaris via SNAP-tag labeling and photoconversion  

SciTech Connect

Systems Biology studies the temporal and spatial 3D distribution of macromolecular complexes with the aim that such knowledge will allow more accurate modeling of biological function and will allow mathematical prediction of cellular behavior. However, in order to accomplish accurate modeling precise knowledge of spatial 3D organization and distribution inside cells is necessary. And while a number of macromolecular complexes may be identified by its 3D structure and molecular characteristics alone, the overwhelming number of proteins will need to be localized using a reporter tag. GFP and its derivatives (XFPs) have been traditionally employed for subcelllar localization using photoconversion approaches, but this approach cannot be taken for obligate anaerobic bacteria, where the intolerance towards oxygen prevents XFP approaches. As part of the GTL-funded PCAP project (now ENIGMA) genetic tools have been developed for the anaerobe sulfate reducer Desulfovibrio vulgaris that allow the high-throughput generation of tagged-protein mutant strains, with a focus on the commercially available SNAP-tag cell system (New England Biolabs, Ipswich, MA), which is based on a modified O6-alkylguanine-DNA alkyltransferase (AGT) tag, that has a dead-end reaction with a modified O6-benzylguanine (BG) derivative and has been shown to function under anaerobic conditions. After initial challenges with respect to variability, robustness and specificity of the labeling signal we have optimized the labeling. Over the last year, as a result of the optimized labeling protocol, we now obtain robust labeling of 20 out of 31 SNAP strains. Labeling for 13 strains were confirmed at least five times. We have also successfully performed photoconversion on 5 of these 13 strains, with distinct labeling patterns for different strains. For example, DsrC robustly localizes to the periplasmic portion of the inner membrane, where as a DNA-binding protein localizes to the center of the cell, where the chromosome is located. Two other proteins - Thiosulfate reductase and ATP binding protein were found to be cytoplasmically distributed, whereas a molybdenum transporter was found to locate to the cell periphery. We judge labeling outcome by (1) SDS gel electrophoresis, followed by direct fluorescence imaging of the gel to address specificity of labeling/confirm expected molecular weight, and subsequent Coomassie analysis to ensure comparable protein levels (2) fluorescence intensity of culture by plate reader for statistical sampling (after adjustment for respective cell numbers) and (3) fluorescence microscopy for addressing cell-to-cell signal variation and potential localization patterns. All three assays were usually found to be consistent with one another. While we have been able to improve the efficacy of photoconversion by drastically reducing (eliminating) non-specific binding with our altered labeling protocol, we are currently working on reducing non-specific photoconversion reaction arising occasionally in non-labeled cells. In addition, we have confirmed the presence of SNAP tagged constructs in three recently cloned E.coli strains under promotor control, and are in the process of utilizing them for evaluating the sensitivity of the photoconversion protocol. Fluorescent Activated Cell Sorting was successfully applied to labeled E.coli cells containing SNAP tagged AtpA protein. Different batches of sorted cells, representing low and high labeling intensity, were re-grown and re-labeled and displayed a labeling efficiency similar to the starter culture, supporting the notion that cell-to-cell differences in labeling reflect difference in protein expression, rather then genetic differences.

Gorur, A.; Leung, C. M.; Jorgens, D.; Tauscher, A.; Remis, J. P.; Ball, D. A.; Chhabra, S.; Fok, V.; Geller, J. T.; Singer, M.; Hazen, T. C.; Juba, T.; Elias, D.; Wall, J.; Biggin, M.; Downing, K. H.; Auer, M.

2010-06-01

372

Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions.  

PubMed Central

Toluene and the three isomers of xylene were completely mineralized to CO2 and biomass by aquifer-derived microorganisms under strictly anaerobic conditions. The source of the inoculum was gasoline-contaminated sediment from Seal Beach, Calif. Evidence confirming that sulfate was the terminal electron acceptor is presented. Benzene and ethylbenzene were not degraded under the experimental conditions used. Successive transfers of the mixed cultures that were enriched from aquifer sediments retained the ability to degrade toluene and xylenes. Greater than 90% of 14C-labeled toluene or 14C-labeled o-xylene was mineralized to 14CO2. The doubling time for the culture grown on toluene or m-xylene was about 20 days, and the cell yield was about 0.1 to 0.14 g of cells (dry weight) per g of substrate. The accumulation of sulfide in the cultures as a result of sulfate reduction appeared to inhibit degradation of aromatic hydrocarbons.

Edwards, E A; Wills, L E; Reinhard, M; Grbic-Galic, D

1992-01-01

373

Reducing dissolved phosphorus loading to the Salton Sea with aluminum sulfate  

Microsoft Academic Search

The primary productivity of the Salton Sea, California is excessively high, leading to low-oxygen conditions, low clarity,\\u000a and odors associated with algal decomposition. Treating the inflow water with aluminum sulfate (alum) to remove soluble phosphorus\\u000a (P), the limiting nutrient, is being considered to improve water quality. The objective of this study was to evaluate the\\u000a use of alum to remove

I. R. Rodriguez; C. Amrhein; M. A. Anderson

2008-01-01

374

Reducing dissolved phosphorus loading to the Salton Sea with aluminum sulfate  

Microsoft Academic Search

The primary productivity of the Salton Sea. California is excessively high, leading to lowoxygen conditions, low clarity,\\u000a and odors associated with algal decomposition. Treating the inflow water with aluminum sulfate (alum) to remove soluble phosphorus\\u000a (P), the limiting nutrient, is being considered to improve water quality. The objective of this study was to evaluate the\\u000a use of alum to remove

I. R. Rodriguez; C. Amrhein; M. A. Anderson

375

The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria.  

PubMed

Ferric iron was produced anaerobically from ferrous iron through the metabolic activity of recently described ferrous iron-oxidizing, nitrate-reducing bacteria. It was identified as poorly crystallized 2-line ferrihydrite with a particle size of 1-2 nm. This biologically produced ferrihydrite was shown to be a suitable electron acceptor for dissimilatory ferric iron-reducing bacteria in freshwater enrichment cultures, and was completely reduced to the ferrous state; no magnetite formation occurred. Geobacter metallireducens was also able to completely reduce the biologically produced ferrihydrite. These results indicate the possibility of an anaerobic, microbial cycling of iron. Using the biologically produced ferric iron, two isolates of obligately anaerobic, dissimilatory ferric iron-reducing bacteria, strains Dfr1 and Dfr2, were obtained from freshwater enrichment cultures. Analysis of 16S rRNA gene sequences revealed an affiliation with the Geobacter cluster within the family Geobacteraceae. The sequence similarity between strains Dfr1 and Dfr2 is 92.5%. The closest relative of strain Dfr1 is Geobacter sulfurreducens with 92.9%, and of strain Dfr2 Geobacter chapelleii with 93.7% sequence similarity. In addition, strains Dfr1 and Dfr2 are both able to grow by dissimilatory reduction of Mn(IV), S degree, and fumarate. Furthermore, strain Dfr2 is able to reduce akaganeite (beta-FeOOH), a more crystallized type of ferric iron oxide. PMID:9779609

Straub, K L; Hanzlik, M; Buchholz-Cleven, B E

1998-08-01

376

Ecophysiological Evidence that Achromatium oxaliferum Is Responsible for the Oxidation of Reduced Sulfur Species to Sulfate in a Freshwater Sediment  

PubMed Central

Achromatium oxaliferum is a large, morphologically conspicuous, sediment-dwelling bacterium. The organism has yet to be cultured in the laboratory, and very little is known about its physiology. The presence of intracellular inclusions of calcite and sulfur have given rise to speculation that the bacterium is involved in the carbon and sulfur cycles in the sediments where it is found. Depth profiles of oxygen concentration and A. oxaliferum cell numbers in a freshwater sediment revealed that the A. oxaliferum population spanned the oxic-anoxic boundary in the top 3 to 4 cm of sediments. Some of the A. oxaliferum cells resided at depths where no oxygen was detectable, suggesting that these cells may be capable of anaerobic metabolism. The distributions of solid-phase and dissolved inorganic sulfur species in the sediment revealed that A. oxaliferum was most abundant where sulfur cycling was most intense. The sediment was characterized by low concentrations of free sulfide. However, a comparison of sulfate reduction rates in sediment cores incubated with either oxic or anoxic overlying water indicated that the oxidative and reductive components of the sulfur cycle were tightly coupled in the A. oxaliferum-bearing sediment. A positive correlation between pore water sulfate concentration and A. oxaliferum numbers was observed in field data collected over an 18-month period, suggesting a possible link between A. oxaliferum numbers and the oxidation of reduced sulfur species to sulfate. The field data were supported by laboratory incubation experiments in which sodium molybdate-treated sediment cores were augmented with highly purified suspensions of A. oxaliferum cells. Under oxic conditions, rates of sulfate production in the presence of sodium molybdate were found to correlate strongly with the number of cells added to sediment cores, providing further evidence for a role for A. oxaliferum in the oxidation of reduced sulfur.

Gray, N. D.; Pickup, R. W.; Jones, J. G.; Head, I. M.

1997-01-01

377

Desulfosporosinus burensis sp. nov., a spore-forming, mesophilic, sulfate-reducing bacterium isolated from a deep clay environment.  

PubMed

A novel anaerobic, gram-positive, spore-forming, curved rod-shaped, mesophilic and sulfate-reducing bacterium was isolated from pore water collected in a borehole at -490 m in Bure (France). This strain, designated BSREI1(T), grew at temperatures between 5 °C and 30 °C (optimum 25 °C) and at a pH between 6 and 8 (optimum 7). It did not require NaCl for growth, but tolerated it up to 1.5?% NaCl. Sulfate, thiosulfate and elemental sulfur were used as terminal electron acceptors. Strain BSREI1(T) used crotonate, formate, lactate, pyruvate, fructose, glycerol and yeast extract as electron donors in the presence of sulfate. The sole quinone was MK-7. The G+C content of the genomic DNA was 43.3 mol%. Strain BSREI1(T) had the type strains of Desulfosporosinus lacus (16S rRNA gene sequence similarity of 96.83?%), Desulfosporosinus meridiei (96.31?%) and Desulfosporosinus hippei (96.16?%) as its closest phylogenetic relatives. On the basis of phylogenetic and physiological properties, strain BSREI1(T) is proposed as a representative of a novel species of the genus Desulfosporosinus, Desulfosporosinus burensis sp. nov.; the type strain is BSREI1(T) (?=?DSM 24089(T)?=?JCM 17380(T)). PMID:22544786

Mayeux, Bruno; Fardeau, Marie-Laure; Bartoli-Joseph, Manon; Casalot, Laurie; Vinsot, Agnès; Labat, Marc

2013-02-01

378

Desulfovibrio zosterae sp. nov., a new sulfate reducer isolated from surface-sterilized roots of the seagrass Zostera marina.  

PubMed

A sulfate-reducing bacterium, designated strain lacT, was isolated from surface-sterilized roots of the benthic macrophyte Zostera marina. Cells were motile by means of a single polar flagellum. Strain lacT utilized lactate, pyruvate, malate, ethanol, L-alanine, fumarate, choline and fructose with sulfate as electron acceptor. In addition, fumarate, pyruvate and fructose were also degraded without an external electron acceptor. Sulfate could be substituted with thiosulfate, sulfite and elemental sulfur. Optimal growth was observed between 32.5 and 34.5 degrees C, at an NaCl concentration of 0.2 M and in a pH range between 6.8 and 7.3. The G + C content of the DNA was 42.7 +/- 0.2 mol%. Desulfoviridin and catalase were present. Strain lacT contained c-type cytochromes. Comparative 16S rRNA gene sequence analysis and the fatty acid pattern grouped this isolate into the genus Desulfovibrio. However, strain lacT differs from all other described Desulfovibrio species on the bases of its 16S rRNA gene sequence, the G + C content, its cellular lipid pattern and the utilization pattern of substrates. These characteristics establish strain lacT (= DSM 11974T) as a novel species of the genus Desulfovibrio, for which the name Desulfovibrio zosterae sp. nov. is proposed. PMID:10319511

Nielsen, J T; Liesack, W; Finster, K

1999-04-01

379

TEM investigation of U{sup 6+} and Re{sup 7+} reduction by Desulfovibrio desulfuricans, a sulfate-reducing bacterium  

SciTech Connect

Uranium and its fission product Tc in aerobic environment will be in the forms of UO{sub 2}{sup 2+} and TcO{sub 4}{sup {minus}}. Reduced forms of tetravalent U and Tc are sparingly soluble. As determined by transmission electron microscopy, the reduction of uranyl acetate by immobilized cells of Desulfovibrio desulfuricans results in the production of black uraninite nanocrystals precipitated outside the cell. Some nanocrystals are associated with outer membranes of the cell as revealed from cross sections of these metabolic active sulfate-reducing bacteria. The nanocrystals have an average diameter of 5 nm and have anhedral shape. The reduction of Re{sup 7+} by cells of Desulfovibrio desulfuricans is fast in media containing H{sub 2} an electron donor, and slow in media containing lactic acid. It is proposed that the cytochrome in these cells has an important role in the reduction of uranyl and Re{sup 7+} is (a chemical analogue for Tc{sup 7+}) through transferring an electron from molecular hydrogen or lactic acid to the oxyions of UO{sub 2}{sup 2+} and TcO{sub 4}{sup {minus}}.

XU,HUIFANG; BARTON,LARRY L.; CHOUDHURY,KEKA; ZHANG,PENGCHU; WANG,YIFENG

2000-03-14

380

Mineral transformations during the dissolution of uranium ore minerals by dissimilatory metal-reducing bacteria  

NASA Astrophysics Data System (ADS)

Carnotite minerals [X2(UO2)2(VO4)2]; X = K, Ca, Ba, Mn, Na, Cu or Pb] form the major ore of uranium in the Colorado Plateau. These deposits are highly oxidized and contain U(VI) and V(IV). The biotransformation of U(VI) bound in carnotite by bacteria during dissimilatory metal reduction presents a complex puzzle in mineral chemistry. Both U(VI) and V(V) can be respired by metal reducing bacteria, and the mineral structure can change depending on the associated counterion. We incubated anaerobic cultures of S. putrefaciens CN32 with natural carnotite minerals from southeastern Utah in a nutrient-limited defined medium. Strain CN32 is a gram negative bacterium and a terrestrial isolate from New Mexico. The mineral and metal transformations were compared to a system that contained similar concentrations of soluble U(VI) and V(V). Electron (SEM, TEM) microscopies and x-ray spectromicroscopy (STXM) were used in conjunction with XRD to track mineral changes, and bacterial survival was monitored throughout the incubations. Slow rates of metal reduction over 10 months for the treatment with carnotite minerals revealed distinct biotic and abiotic processes, providing insight on mineral transformation and bacteria-metal interactions. The bacteria existed as small flocs or individual cells attached to the mineral phase, but did not adsorb soluble U or V, and accumulated very little of the biominerals. Reduction of mineral V(V) necessarily led to a dismantling of the carnotite structure. Bioreduction of V(V) by CN32 contributed small but profound changes to the mineral system, resulting in new minerals. Abiotic cation exchange within the carnotite group minerals induced the rearrangement of the mineral structures, leading to further mineral transformation. In contrast, bacteria survival was poor for treatments with soluble U(VI) and V(V), although both metals were reduced completely and formed solid UO2 and VO2; we also detected V(III). For these treatments, the bacteria formed extensive biofilms or flocs that contained U and V in the exopolymer, but excluded these metals from the bacteria. This suggests a specific mechanism to inhibit metal sorption to cell wall components. The example illustrates the interplay between bacteria and minerals under conditions that model oligotrophic survival, and provides insight on U mobilization from common uranium ore minerals.

Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.

2011-12-01

381

Desulfovirgula thermocuniculi gen. nov., sp. nov., a thermophilic sulfate-reducer isolated from a geothermal underground mine in Japan.  

PubMed

A thermophilic, Gram-positive, endospore-forming, sulfate-reducing bacterial strain, designated RL80JIV(T), was isolated from a geothermally active underground mine in Japan. Cells were rod-shaped and motile. The temperature and pH ranges for growth were 61-80 degrees C (optimum at 69-72 degrees C) and pH 6.4-7.9 (optimum at pH 6.8-7.3), and the strain tolerated up to 0.5 % NaCl. Strain RL80JIV(T) utilized sulfate, sulfite, thiosulfate and elemental sulfur as electron acceptors. Electron donors utilized were H(2) in the presence of CO(2), and carboxylic acids. Fermentative growth occurred on lactate and pyruvate. The cell wall contained meso-diaminopimelic acid and the major respiratory isoprenoid quinone was menaquinone MK-7. Major whole-cell fatty acids were iso-C(15 : 0), iso-C(17 : 0) and C(16 : 0). Strain RL80JIV(T) was found to be affiliated with the thiosulfate-reducer Thermanaeromonas toyohensis DSM 14490(T) (90.9 % 16S rRNA gene sequence similarity) and with the sulfate-reducer Desulfotomaculum thermocisternum DSM 10259(T) (90.0 % similarity). Strain RL80JIV(T) is therefore considered to represent a novel species of a new genus, for which the name Desulfovirgula thermocuniculi gen. nov., sp. nov. is proposed. The type strain of Desulfovirgula thermocuniculi is RL80JIV(T) (=DSM 16036(T)=JCM 13928(T)). PMID:17220449

Kaksonen, Anna H; Spring, Stefan; Schumann, Peter; Kroppenstedt, Reiner M; Puhakka, Jaakko A

2007-01-01

382

Changes in Multidrug Resistance of Enteric Bacteria following an Intervention To Reduce Antimicrobial Resistance in Dairy Calves ?  

PubMed Central

An intervention study was conducted to determine whether discontinuing the feeding of milk replacer medicated with oxytetracycline and neomycin to preweaned calves reduced antimicrobial resistance in Salmonella, Campylobacter, and Escherichia coli bacteria. Results demonstrated that the intervention did reduce multidrug resistance in these bacteria but that other factors also influenced multidrug resistance.

Kaneene, John B.; Warnick, Lorin D.; Bolin, Carole A.; Erskine, Ronald J.; May, Katherine; Miller, RoseAnn

2009-01-01

383

Rapid and efficient synthesis of soluble graphene nanosheets using N-methyl-p-aminophenol sulfate as a reducing agent.  

PubMed

Mass production of soluble graphene still remains a challenge, although several methodologies have been proposed. Here we report a rapid and efficient method for the synthesis of soluble graphene nanosheets (GNSs) with long-term dispersion stability in both aqueous and common organic solvents. Within only 12 min at 95 °C, exfoliated graphite oxide in ammonia solution (pH 10) was reduced to soluble GNSs using N-methyl-p-aminophenol sulfate (metol) as a reducing agent without external stabilizers. The prepared GNSs were characterized by different techniques and a comparison of metol and hydrazine hydrate as reducing agents was made. The results indicated that, with the advantages of being rapid, efficient, inexpensive and relatively environmentally friendly, the reduction of graphite oxide into soluble GNSs by metol is a promising substitute for hydrazine hydrate in the mass production of soluble GNSs. PMID:23128046

Wang, Xialie; Wen, Xiaohong; Liu, Zhanpeng; Tan, Yi; Yuan, Ye; Zhang, Ping

2012-12-01

384

Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion  

Microsoft Academic Search

Extracellular polymeric substances (EPS) were isolated by centrifugation of thermophilic sulphate-reducing bacteria (SRB) grown in API-RP38 culture medium. The protein and polysaccharide fractions were quantified and the highest concentrations were extracted from a 14-day old culture. The effect of EPS on carbon steel corrosion was investigated by electrochemical techniques. At 30°C, a small amount of EPS in 3% NaCl solution

Ze Hua Dong; Tao Liu; Hong Fang Liu

2011-01-01

385

Reducing Dust, Lead, Dust Mites, Bacteria, and Fungi in Carpets by Vacuuming  

Microsoft Academic Search

.   Old carpets may be reservoirs of dust, lead (Pb), and dust mite allergen. The purpose of this study was to determine if\\u000a the dust, Pb, dust mite allergen, bacteria, and fungi on the surface of carpets could be reduced by 90% in 1 week with the\\u000a use of a Hoover Self Propelled Vacuum with Embedded Dirt Finder (HSPF). A

J. W. Roberts; W. S. Clifford; G. Glass; P. G. Hummer

1999-01-01

386

Anaerobic degradation and carbon isotopic fractionation of alkylbenzenes in crude oil by sulphate-reducing bacteria  

Microsoft Academic Search

A mesophilic enrichment culture of sulphate-reducing bacteria isolated from the water phase of a North Sea oil tank using oil from the same tank as sole source of carbon and energy specifically depletes certain C1–C5 alkylbenzenes in crude oil during growth. The enrichment culture grows on oils of different origin and composition resulting in similar patterns of alkylbenzene depletion. Two

Heinz Wilkes; Chris Boreham; Gerda Harms; Karsten Zengler; Ralf Rabus

2000-01-01

387

Fractone-associated N-sulfated heparan sulfate shows reduced quantity in BTBR T+tf/J mice, a strong model of autism  

PubMed Central

BTBR T+tf/J (BTBR) mice show abnormal social, communicatory, and repetitive/stereotyped behaviors paralleling many of the symptoms of autism spectrum disorders. BTBR also show agenesis of the corpus callosum (CC) suggesting major perturbations of growth or guidance factors in the dorsal forebrain [1]. Heparan sulfate (HS) is a polysaccaride found in the brain and other animal tissues. It binds to a wide variety of ligands and through these ligands modulates a number of biological processes, including cell proliferation and differentiation, migration and guidance. It is aggregated on fractal-like structures (fractones) in the subventricular zone (SVZ), that may be visualized by laminin immunoreactivity (LAM-ir), as well as by HS immunoreactivity (HS-ir). We report that the lateral ventricles of BTBR mice were drastically reduced in area compared to C57BL/6J (B6) mice while the BTBR SVZ was significantly shorter than that of B6. In addition to much smaller fractones for BTBR, both HS and LAM-ir associated with fractones were significantly reduced in BTBR, and their anterior-posterior distributions were also altered. Finally, the ratio of HS to LAM in individual fractones was significantly higher in BTBR than in B6 mice. These data, in agreement with other findings linking HS to callosal development, suggest that variations in the quantity and distribution of HS in the SVZ of the lateral ventricles may be important modulators of the brain structural abnormalities of BTBR mice, and, potentially, contribute to the behavioral pathologies of these animals.

Meyza, Ksenia Z.; Blanchard, D. Caroline; Pearson, Brandon L.; Pobbe, Roger L.H.; Blanchard, Robert J.

2012-01-01

388

SO 2 adsorption and thermal stability and reducibility of sulfates formed on the magnesium-aluminate spinel sulfur-transfer catalyst  

NASA Astrophysics Data System (ADS)

Magnesium-aluminate spinel used as a sulfur-transfer catalyst in the fluid catalytic cracking units for SO x emission control was prepared by the precipitation method. The crystalline structure, textural property, and surface dehydroxylation of the sample were characterized by thermogravimetry-derivative thermogravimetry (TG-DTG), differential thermal analysis (DTA), X-ray diffraction (XRD), liquid N 2 adsorption-desorption and infrared spectroscopy (IR) measurements. The behavior of SO 2 adsorption and oxidation on the surface of catalyst was evaluated with IR from 50°C to 600°C. Particularly, the thermal stability and H 2-reducibility of the formed sulfite or sulfate during SO 2 adsorption or oxidation were tested under various conditions. In the absence of oxygen in the feed mixture, weak physically adsorbed SO 2 species and surface sulfite were identified. In the case of SO 2 oxidative adsorption, both surface sulfate and bulk-like sulfate were formed. When the sulfated sample was reduced with hydrogen, the surface sulfite and sulfates were completely removed below 550°C in vacuum. The bulk-like sulfate, however, showed a high ability to resist H 2-reduction, which indicates that the reducibility of bulk-like sulfate formed on magnesium-aluminate spinel must be enhanced when it is used as a sulfur-transfer catalyst.

Wang, Jin-an; Li, Cheng-lie

2000-07-01

389

Anaerobic degradation of p-Xylene by a sulfate-reducing enrichment culture.  

PubMed

A strictly anaerobic enrichment culture was obtained with p-xylene as organic substrate and sulfate as electron acceptor from an aquifer at a former gasworks plant contaminated with aromatic hydrocarbons. p-Xylene was completely oxidized to CO(2). The enrichment culture depended on Fe(II) in the medium as a scavenger of the produced sulfide. 4-Methylbenzylsuccinic acid and 4-methylphenylitaconic acid were identified in supernatants of cultures indicating that degradation of p-xylene was initiated by fumarate addition to one of the methyl groups. Therefore, p-xylene degradation probably proceeds analogously to toluene degradation by Thauera aromatica or anaerobic degradation pathways for o- and m-xylene. PMID:16049661

Morasch, Barbara; Meckenstock, Rainer U

2005-08-01

390

Isolation and Characterization of Strains CVO and FWKO B, Two Novel Nitrate-Reducing, Sulfide-Oxidizing Bacteria Isolated from Oil Field Brine  

PubMed Central

Bacterial strains CVO and FWKO B were isolated from produced brine at the Coleville oil field in Saskatchewan, Canada. Both strains are obligate chemolithotrophs, with hydrogen, formate, and sulfide serving as the only known energy sources for FWKO B, whereas sulfide and elemental sulfur are the only known electron donors for CVO. Neither strain uses thiosulfate as an energy source. Both strains are microaerophiles (1% O2). In addition, CVO grows by denitrification of nitrate or nitrite whereas FWKO B reduces nitrate only to nitrite. Elemental sulfur is the sole product of sulfide oxidation by FWKO B, while CVO produces either elemental sulfur or sulfate, depending on the initial concentration of sulfide. Both strains are capable of growth under strictly autotrophic conditions, but CVO uses acetate as well as CO2 as its sole carbon source. Neither strain reduces sulfate; however, FWKO B reduces sulfur and displays chemolithoautotrophic growth in the presence of elemental sulfur, hydrogen, and CO2. Both strains grow at temperatures between 5 and 40°C. CVO is capable of growth at NaCl concentrations as high as 7%. The present 16s rRNA analysis suggests that both strains are members of the epsilon subdivision of the division Proteobacteria, with CVO most closely related to Thiomicrospira denitrifcans and FWKO B most closely related to members of the genus Arcobacter. The isolation of these two novel chemolithotrophic sulfur bacteria from oil field brine suggests the presence of a subterranean sulfur cycle driven entirely by hydrogen, carbon dioxide, and nitrate.

Gevertz, Diane; Telang, Anita J.; Voordouw, Gerrit; Jenneman, Gary E.

2000-01-01

391

Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters.  

PubMed

Silage was used as source of carbon and electrons for enrichment of silage-degrading and sulfate reducing bacteria (SRB) from boreal, acidic, metals-containing peat-bog samples and to support their use in batch and semi-batch systems in treatment of synthetic waste water. Sulfidogenic silage utilization resulted in a rapid decrease in lactate concentrations; concentrations of acetate, butyrate and propionate increased concomitantly. Synthetic waste water consisting of Mn, Mg and Fe (II) ions inhibited sulfate reduction at concentrations of 6 g/l, 8 g/l and 1 g/l respectively. During treatment, Mn and Mg ions remained in solution while Fe ions partially precipitated. Up to 87 mg sulfate was reduced per gram of silage. Sulfate reduction rates of 34, 22 and 6 mg/l/day were obtained at temperatures of 30, 20 and 9 °C respectively. In semi-batch reactors operated at low pH, the iron precipitation capacity was controlled by sulfate reduction rates and by partial loss of hydrogen sulfide to the gas phase. Passive reactor systems should, therefore, be operated at neutral pH. Metals tolerant, silage-fermenting (predominantly species belonging to genus Clostridium) and sulfate reducing bacteria (including a species similar to the psychrotolerant Desulfovibrio arcticus) were obtained from the peat bog samples. This work demonstrates that silage supports sulfate reduction and can be used as a low cost carbon and electron source for SRB in treatment of metals-containing waste water. PMID:20708212

Wakeman, Kathryn D; Erving, Leena; Riekkola-Vanhanen, Marja L; Puhakka, Jaakko A

2010-09-01

392

Bioleaching of arsenic in contaminated soil using metal-reducing bacteria  

NASA Astrophysics Data System (ADS)

A study on the extraction of arsenic in the contaminated soil collected from an old smelting site in Korea was carried out using metal-reducing bacteria. Two types of batch-type experiments, biostimulation and bioaugmentation, were conducted for 28 days under anaerobic conditions. The biostimulation experiments were performed through activation of indigenous bacteria by supply with glucose or lactate as a carbon source. The contaminated, autoclaved soil was inoculated with metal-reducing bacteria, Shewanella oneidensis MR-1 and S. algae BrY, in the bioaugmentation experiments. The results indicated that the maximum concentration of the extracted As was 11.2 mg/L at 4 days from the onset of the experiment when 20 mM glucose was supplied and the extraction efficiency of As ranged 60~63% in the biostimulation experiments. In the case of bioaugmentation, the highest dissolved As concentration was 24.4 mg/L at 2 days, though it dramatically decreased over time through re-adsorption onto soil particles. After both treatments, mode of As occurrence in the soil appeared to be changed to readily extractable fractions. This novel technique of bioleaching may be practically applied for remediation of As-contaminated soil after determination of optimum operational conditions such as operation time and proper carbon source and its concentration.

Lee, So-Ra; Lee, Jong-Un; Chon, Hyo-Taek

2014-05-01

393

Cytochrome c3 from the sulfate-reducing anaerobe Desulfovibrio africanus Benghazi: purification and properties.  

PubMed Central

Cytochrome c3 was purified from Desulfovibrio africanus Benghazi by extraction with alkaline deoxyribonuclease, fractionation with ammonium sulfate, batch elution from carboxymethyl Sephadex followed by chromatography on the same resin, and gel filtration on Sephadex G-75. The preparation was judge homogeneous by a variety of criteria. The molecular weight was determined in an analytical ultracentrifuge, and values between 14,400 and 15,490 were obtained, depending upon the presumed value of partial specific volume. Gel filtration on a calibrated column of Sephadex G-75 gave a value of 14,900 daltons. The amino acid composition was very similar to that observed for the cytochrome from other species of Desulfovibrio, with the exception of increased levels of ThR and PhE. S-Carboxymethylation of the protein before and after heme removal by HgCl2 demonstrated eight Cys molecules involved in heme binding or four heme sites per molecule. Titration with sodium dithionite under N2 gave an electrochemical potential (E' 0) of -276 mV relative to the normal hydrogen electrode. Electrochemical titration of the cytochrome gave a Nernst plot with two linear regions with E' 0 values of -0.376 and -0.534 V. The spectra produced at various potentials exhibited shifts in isosbestic points upon reduction, suggesting changes in conformation during the reaction. Images

Singleton, R; Campbell, L L; Hawkridge, F M

1979-01-01