Science.gov

Sample records for sulfated polysaccharide inhibits

  1. Inhibition of Japanese encephalitis virus infection by the sulfated polysaccharide extracts from Ulva lactuca.

    PubMed

    Chiu, Ya-Huang; Chan, Yi-Lin; Li, Tsung-Lin; Wu, Chang-Jer

    2012-08-01

    Japanese encephalitis virus (JEV), a neurotropic flavivirus, is one of the major causes of acute encephalitis in humans. After infection, inflammatory reactions and neurological diseases often develop. Still there are no effective drugs available against virus infection. Recently, extracts of algae have been shown to possess a broad range of biological activities including antivirus activity. In this study, we identified that the sulfated polysaccharide extracts from Ulva lactuca can inhibit JEV infection in Vero cells. Mechanistic studies further revealed that the Ulva sulfated polysaccharide extracts can block virus adsorption and thus make the virus unable to enter cells. The Ulva sulfated polysaccharide extracts also effectively decrease the production of pro-inflammatory cytokines in the JEV-infected primary mixed glia cells. In an animal study, the JEV-infected C3H/HeN mice appeared to have neurobehavioral abnormalities on the fifth day and died on the seventh day post infection. However, the JEV-infected mice pretreated with the Ulva sulfated polysaccharide extracts can delay the onset of hind limb paralysis and thereby prevent mice from death. PMID:22193590

  2. Plant-derived polysaccharide supplements inhibit dextran sulfate sodium-induced colitis in the rat.

    PubMed

    Koetzner, Lee; Grover, Gary; Boulet, Jamie; Jacoby, Henry I

    2010-05-01

    Several plant-derived polysaccharides have been shown to have anti-inflammatory activity in animal models. Ambrotose complex and Advanced Ambrotose are dietary supplements that include aloe vera gel, arabinogalactan, fucoidan, and rice starch, all of which have shown such activity. This study was designed to evaluate these formulations against dextran sulfate sodium (DSS)-induced colitis in rats and to confirm their short-term safety after 14 days of daily dosing. Rats were dosed daily orally with vehicle, Ambrotose or Advanced Ambrotose. On day six groups of rats received tap water or 5% Dextran Sulfate sodium. Ambrotose and Advanced Ambrotose significantly lowered the disease scores and partially prevented the shortening of colon length. An increase in monocyte count was induced by dextran sulfate sodium and inhibited by Ambrotose and Advanced Ambrotose. There were no observable adverse effects after 14-day daily doses. The mechanism of action of the formulations against DSS-induced colitis may be related to its effect on monocyte count. PMID:19513840

  3. Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium.

    PubMed

    Marques, Joana; Vilanova, Eduardo; Mourão, Paulo A S; Fernàndez-Busquets, Xavier

    2016-01-01

    The antimalarial activity of heparin, against which there are no resistances known, has not been therapeutically exploited due to its potent anticoagulating activity. Here, we have explored the antiplasmodial capacity of heparin-like sulfated polysaccharides from the sea cucumbers Ludwigothurea grisea and Isostichopus badionotus, from the red alga Botryocladia occidentalis, and from the marine sponge Desmapsamma anchorata. In vitro experiments demonstrated for most compounds significant inhibition of Plasmodium falciparum growth at low-anticoagulant concentrations. This activity was found to operate through inhibition of erythrocyte invasion by Plasmodium, likely mediated by a coating of the parasite similar to that observed for heparin. In vivo four-day suppressive tests showed that several of the sulfated polysaccharides improved the survival of Plasmodium yoelii-infected mice. In one animal treated with I. badionotus fucan parasitemia was reduced from 10.4% to undetectable levels, and Western blot analysis revealed the presence of antibodies against P. yoelii antigens in its plasma. The retarded invasion mediated by sulfated polysaccharides, and the ensuing prolonged exposure of Plasmodium to the immune system, can be explored for the design of new therapeutic approaches against malaria where heparin-related polysaccharides of low anticoagulating activity could play a dual role as drugs and as potentiators of immune responses. PMID:27071342

  4. Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium

    PubMed Central

    Marques, Joana; Vilanova, Eduardo; Mourão, Paulo A. S.; Fernàndez-Busquets, Xavier

    2016-01-01

    The antimalarial activity of heparin, against which there are no resistances known, has not been therapeutically exploited due to its potent anticoagulating activity. Here, we have explored the antiplasmodial capacity of heparin-like sulfated polysaccharides from the sea cucumbers Ludwigothurea grisea and Isostichopus badionotus, from the red alga Botryocladia occidentalis, and from the marine sponge Desmapsamma anchorata. In vitro experiments demonstrated for most compounds significant inhibition of Plasmodium falciparum growth at low-anticoagulant concentrations. This activity was found to operate through inhibition of erythrocyte invasion by Plasmodium, likely mediated by a coating of the parasite similar to that observed for heparin. In vivo four-day suppressive tests showed that several of the sulfated polysaccharides improved the survival of Plasmodium yoelii-infected mice. In one animal treated with I. badionotus fucan parasitemia was reduced from 10.4% to undetectable levels, and Western blot analysis revealed the presence of antibodies against P. yoelii antigens in its plasma. The retarded invasion mediated by sulfated polysaccharides, and the ensuing prolonged exposure of Plasmodium to the immune system, can be explored for the design of new therapeutic approaches against malaria where heparin-related polysaccharides of low anticoagulating activity could play a dual role as drugs and as potentiators of immune responses. PMID:27071342

  5. Sulfated polysaccharide from the marine algae Hypnea musciformis inhibits TNBS-induced intestinal damage in rats.

    PubMed

    V Brito, Tarcisio; Barros, Francisco C N; Silva, Renan O; Dias Júnior, Genilson J; C Júnior, José Simião; Franco, Álvaro X; Soares, Pedro M G; Chaves, Luciano S; Abreu, Clara M W S; de Paula, Regina C M; Souza, Marcellus H L P; Freitas, Ana Lúcia P; R Barbosa, André Luiz

    2016-10-20

    Sulfated polysaccharides extracted from seaweed have important pharmacological properties. Thus, the aim of this study was to characterize the sulfated polysaccharide (PLS) from the algae Hypnea musciformis and evaluate its protective effect in colitis induced by trinitrobenzene sulfonic acid in rats. The sulfated polysaccharide possess a high molecular mass (1.24×10(5)gmol(-1)) and is composed of a κ-carrageenan, as depicted by FT-IR and NMR spectroscopic data. PLS was administered orally (10, 30, and 60mg/kg, p.o.) for three days, starting before TNBS (trinitrobenzene sulfonic acid) instillation (day 1). The rats were killed on day three, the portion of distal colon (5cm) was excised and evaluated macroscopic scores and wet weight. Then, samples of the intestinal were used for histological evaluation and quantification of glutathione, malonyldialdehyde acid, myeloperoxidase, nitrate/nitrite and cytokines. Our results demonstrate that PLS reduced the colitis and all analyzed biochemical parameters. Thus, we concluded that the PLS extracted from the marine algae H. musciformis reduced the colitis in animal model and may have an important promising application in the inflammatory bowel diseases. PMID:27474644

  6. A sulfated polysaccharide of Ecklonia cava inhibits the growth of colon cancer cells by inducing apoptosis.

    PubMed

    Ahn, Ginnae; Lee, WonWon; Kim, Kil-Nam; Lee, Ji-Hyeok; Heo, Soo-Jin; Kang, Nalae; Lee, Seung-Hong; Ahn, Chang-Bum; Jeon, You-Jin

    2015-01-01

    We investigated anticancer effects of the crude polysaccharides (CPs) isolated from Ecklonia cava enzymatic extracts using AMG, Viscozyme, Protamex, and Alcalase enzyme against a colon cancer cell line, CT26 cells. Among them, the CP of Protamex extract (PCP) contained the highest fucose and sulfated group contents and showed the highest growth inhibitory effect against CT-26 cells. In addition, PCP dose-dependently increased the formation of apoptotic body and the percentage of Sub-G1 DNA contents. Also, PCP activated caspase 9 and PARP as regulating the expressions of Bax and Bcl-2. Moreover, PPP2, a fraction purified from PCP showed the highest growth inhibitory effect against CT 26 cells with the increased fucose and sulfated group contents. The results demonstrate that the isolated SP containing plentiful fucose and sulfated group contents has the anticancer effect on colon cancer cells via regulation of Bcl-2/Bax signal pathway. PMID:26417363

  7. WSS25, a sulfated polysaccharide, inhibits RANKL-induced mouse osteoclast formation by blocking SMAD/ID1 signaling

    PubMed Central

    Chen, Cheng; Qin, Yi; Fang, Jian-ping; Ni, Xin-yan; Yao, Jian; Wang, Hai-ying; Ding, Kan

    2015-01-01

    Aim: WSS25 is a sulfated polysaccharide extracted from the rhizome of Gastrodia elata BI, which has been found to bind to bone morphogenetic protein 2 (BMP-2) in hepatocellular cancer cells. Since BMP-2 may regulate both osteoclasts and osteoblasts, here we investigated the effects of WSS25 on osteoclastogenesis in vitro and bone loss in ovariectomized mice. Methods: RAW264.7 cells or mouse bone marrow macrophages (BMMs) were treated with RANKL to induce osteoclastogenesis, which was assessed using TRAP staining, actin ring formation and pit formation assays, as well as bone resorption assay. Cell viability was detected with MTT assay. The mRNA levels of osteoclastogenesis-related genetic markers (TRAP, NFATc1, MMP-9 and cathepsin K) were detected using RT-PCR, while the protein levels of p-Smad1/5/8 and Id1 were measure with Western blotting. WSS25 was administered to ovariectomized mice (100 mg·kg−1·d−1, po) for 3 months. After the mice were euthanized, total bone mineral density and cortical bone density were measured. Results: In RAW264.7 cells and BMMs, WSS25 (2.5, 5, 10 μg/mL) did not affect the cell viability, but dose-dependently inhibited RANKL-induced osteoclastogenesis. Furthermore, WSS25 potently suppressed RANKL-induced expression of TRAP, NFATc1, MMP-9 and cathepsin K in RAW264.7 cells. Treatment of RAW264.7 cells with RANKL increased BMP-2 expression, Smad1/5/8 phosphorylation and Id1 expression, which triggered osteoclast differentiation, whereas co-treatment with WSS25 or the endogenous BMP-2 antagonist noggin suppressed the BMP-2/Smad/Id1 signaling pathway. In RAW264.7 cells, knockdown of Id1 attenuated RANKL-induced osteoclast differentiation, which was partially rescued by Id1 overexpression. In conformity to the in vitro experiments, chronic administration of WSS25 significantly reduced the bone loss in ovariectomized mice. Conclusion: WSS25 inhibits RANKL-induced osteoclast formation in RAW264.7 cells and BMMs by blocking the BMP-2/Smad

  8. Highly Sulfated K5 Escherichia coli Polysaccharide Derivatives Inhibit Respiratory Syncytial Virus Infectivity in Cell Lines and Human Tracheal-Bronchial Histocultures

    PubMed Central

    Cagno, Valeria; Donalisio, Manuela; Civra, Andrea; Volante, Marco; Veccelli, Elena; Oreste, Pasqua; Rusnati, Marco

    2014-01-01

    Respiratory syncytial virus (RSV) exploits cell surface heparan sulfate proteoglycans (HSPGs) as attachment receptors. The interaction between RSV and HSPGs thus presents an attractive target for the development of novel inhibitors of RSV infection. In this study, selective chemical modification of the Escherichia coli K5 capsular polysaccharide was used to generate a collection of sulfated K5 derivatives with a backbone structure that mimics the heparin/heparan sulfate biosynthetic precursor. The screening of a series of N-sulfated (K5-NS), O-sulfated (K5-OS), and N,O-sulfated (K5-N,OS) derivatives with different degrees of sulfation revealed the highly sulfated K5 derivatives K5-N,OS(H) and K5-OS(H) to be inhibitors of RSV. Their 50% inhibitory concentrations were between 1.07 nM and 3.81 nM in two different cell lines, and no evidence of cytotoxicity was observed. Inhibition of RSV infection was maintained in binding and attachment assays but not in preattachment assays. Moreover, antiviral activity was also evident when the K5 derivatives were added postinfection, both in cell-to-cell spread and viral yield reduction assays. Finally, both K5-N,OS(H) and K5-OS(H) prevented RSV infection in human-derived tracheal/bronchial epithelial cells cultured to form a pseudostratified, highly differentiated model of the epithelial tissue of the human respiratory tract. Together, these features put K5-N,OS(H) and K5-OS(H) forward as attractive candidates for further development as RSV inhibitors. PMID:24914125

  9. Fucoidans — sulfated polysaccharides of brown algae

    NASA Astrophysics Data System (ADS)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  10. Anti-Food Allergic Activity of Sulfated Polysaccharide from Gracilaria lemaneiformis is Dependent on Immunosuppression and Inhibition of p38 MAPK.

    PubMed

    Liu, Qing-Mei; Yang, Yang; Maleki, Soheila J; Alcocer, Marcos; Xu, Sha-Sha; Shi, Chao-Lan; Cao, Min-Jie; Liu, Guang-Ming

    2016-06-01

    Polysaccharides from Gracilaria lemaneiformis in particular possess various bioactive functions, but their antiallergic activity remains incompletely defined. Sulfated polysaccharide from Gracilaria lemaneiformis (GLSP) was obtained by water extraction and ethanol precipitation followed by column chromatography. BALB/c mice, RBL-2H3, and KU812 cells were used for verifying the anti food allergic activity of GLSP. According to the results of mice experiment, GLSP was able to alleviate allergy symptoms, to reduce TM-specific IgE and IgG1, to suppress Th2 cell polarization, and to promote the function of regulatory T (Treg) cells. In addition, GLSP had the ability to inhibit the function of RBL-2H3 cells. Furthermore, GLSP inhibited the activation of KU812 via suppression of p38 mitogen-activated protein kinase (MAPK). In conclusion, immunosuppression as well as the reduction in the level of p38 MAPK may contribute to GLSP's putative activity against food allergy. GLSP may be used as a functional food component for allergic patients. PMID:27186807

  11. Antiherpetic activities of sulfated polysaccharides from green algae.

    PubMed

    Lee, Jung-Bum; Hayashi, Kyoko; Maeda, Masaakira; Hayashi, Toshimitsu

    2004-09-01

    In order to evaluate the potency of novel antiviral drugs, 11 natural sulfated polysaccharides (SPs) from 10 green algae ( Enteromorpha compressa, Monostroma nitidum, Caulerpa brachypus, C. okamurai, C. scapelliformis, Chaetomorpha crassa, C. spiralis, Codium adhaerens, C. fragille, and C. latum) and 4 synthetic sulfated xylans (SXs) prepared from the beta-(1,3)-xylan of C. brachypus, were assayed for anti-Herpes simplex virus type 1 (HSV-1) activity. Except for one from E. compressa, all SPs showed potent anti-HSV-1 activities with 50 % inhibitory concentrations (IC (50)) of 0.38 - 8.5 microg/mL, while having low cytotoxicities with 50 % inhibitory concentrations of >2900 microg/mL. Anti-HSV-1 activities of SXs were dependent on their degrees of sulfation. To delineate the drug-sensitive phase, 4 polysaccharides, which showed potent anti-HSV-1 activities, were applied to time-of-addition experiments. Among the polysaccharides tested, 3 polysaccharides (SX4, SP4 from C. brachypus, and SP11 from C. latum) showed strong anti-HSV-1 activities with IC (50) of 6.0, 7.5, and 6.9 microg/mL, respectively, even when added to the medium 8 h post-infection. These experiments demonstrated that some sulfated polysaccharides not only inhibited the early stages of HSV-1 replication, such as virus binding to and penetration into host cells, but also interfered with late steps of virus replication. These results revealed that some sulfated polysaccharides from green algae should be promising candidates of antiviral agents which might act on different stages in the virus replication cycle. PMID:15386190

  12. Sulfated Polysaccharide Isolated from the Sea Cucumber Stichopus japonicus Against PC12 Hypoxia/Reoxygenation Injury by Inhibition of the MAPK Signaling Pathway.

    PubMed

    Cui, Chao; Cui, Ningshan; Wang, Peng; Song, Shuliang; Liang, Hao; Ji, Aiguo

    2015-11-01

    In this report, the sulfated polysaccharide (SJP) isolated from the sea cucumber Stichopus japonicus can protect PC12 from Na2S2O4-induced hypoxia/reoxygenation (H/R) injury. SJP effectively improves cell viability and reduces extracellular LDH release in PC12 cells after H/R. Moreover, SJP significantly increases SOD activity but decreases MDA levels. Our experiments showed that SJP could significantly reduce cell apoptosis caused by H/R. Our current results demonstrate that SJP suppressed the activation of MAPKs, resulting in a significant decrease in Bax/Bcl-2 ratio, cleaved caspase-3/caspase-3, p53 phosphorylation, and cytochrome c release in a concentration-dependent manner. MAPK is closely related to H/R injury. SJP inhibited JNK1/2 and p38 MAPK activation but did not affect the increased ERK1/2 expression. These results suggested that JNK1/2 and p38 MAPK pathways could be involved in SJP-mediated attenuation of PC12 H/R injury. SJP prevented PC12 H/R injury in a dose-dependent manner, indicating that SJP may be developed as a candidate drug to prevent or treat cerebral ischemia-reperfusion injury. PMID:25952102

  13. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    PubMed Central

    Jiao, Guangling; Yu, Guangli; Zhang, Junzeng; Ewart, H. Stephen

    2011-01-01

    Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans), ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application. PMID:21566795

  14. Fucose-containing sulfated polysaccharides from brown seaweeds inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro.

    PubMed

    Ale, Marcel Tutor; Maruyama, Hiroko; Tamauchi, Hidekazu; Mikkelsen, Jørn D; Meyer, Anne S

    2011-12-01

    Fucose-containing sulfated polysaccharides (FCSPs) extracted from seaweeds, especially brown macro-algae, are known to possess essential bioactive properties, notably growth inhibitory effects on tumor cells. In this work, we conducted a series of in vitro studies to examine the influence of FCSPs products from Sargassumhenslowianum C. Agardh (FSAR) and Fucus vesiculosus (FVES), respectively, on proliferation of melanoma B16 cells and to investigate the underlying apoptosis promoting mechanisms. Cell viability analysis showed that both FCSPs products, i.e., FSAR and FVES, decreased the proliferation of the melanoma cells in a dose-response fashion, with FSAR being more potent at lower dosages, and FVES being relatively more anti-proliferative than FSAR at higher dosages. Flow cytometric analysis by Annexin V staining of the melanoma cells exposed to the FCSPs products confirmed that both FSAR and FVES induced apoptosis. The FCSPs-induced apoptosis was evidenced by loss of plasma membrane asymmetry and translocation of the cell membrane phospholipids and was accompanied by the activation of caspase-3. The FCSPs bioactivity is proposed to be attributable to distinct structural features of the FCSPs, particularly the presence of sulfated galactofucans (notably in S.henslowianum) and sulfated fucans (notably in F. vesiculosus). This study thus indicates that unfractionated FCSPs may exert bioactive effects on skin cancer cells via induction of apoptosis through cascades of reactions that involve activation of caspase-3. PMID:22363242

  15. Evaluation of Macroalgae Sulfated Polysaccharides on the Leishmania (L.) amazonensis Promastigote

    PubMed Central

    Pires, Camila Lehnhardt; Rodrigues, Selma Dzimidas; Bristot, Daniel; Gaeta, Henrique Hessel; de Oliveira Toyama, Daniela; Farias, Wladimir Ronald Lobo; Toyama, Marcos Hikari

    2013-01-01

    The sulfated polysaccharides from Solieria filiformis (Sf), Botryocladia occidentalis (Bo), Caulerpa racemosa (Cr) and Gracilaria caudata (Gc) were extracted and extensively purified. These compounds were then subjected to in vitro assays to evaluate the inhibition of these polysaccharides on the growth of Leishmania (L.) amazonensis promastigotes. Under the same assay conditions, only three of the four sulfated polysaccharides were active against L. amazonensis, and the polysaccharide purified from Cr was the most potent (EC50 value: 34.5 μg/mL). The polysaccharides derived from Bo and Sf demonstrated moderate anti-leishmanial activity (EC50 values of 63.7 μg/mL and 137.4 μg/mL). In addition, we also performed in vitro cytotoxic assays toward peritoneal macrophages and J774 macrophages. For the in vitro cytotoxicity assay employing J774 cells, all of the sulfated polysaccharides decreased cell survival, with CC50 values of 27.3 μg/mL, 49.3 μg/mL, 73.2 μg/mL, and 99.8 μg/mL for Bo, Cr, Gc, and Sf, respectively. However, none of the sulfated polysaccharides reduced the cell growth rate of the peritoneal macrophages. These results suggest that macroalgae contain compounds with various chemical properties that can control specific pathogens. According to our results, the assayed sulfated polysaccharides were able to modulate the growth rate and cell survival of Leishmania (L.) amazonensis promastigotes in in vitro assays, and these effects involved the interaction of the sulfated polysaccharides on the cell membrane of the parasites. PMID:23519148

  16. Catalytic synthesis of sulfated polysaccharides I: Characterization of chemical structure.

    PubMed

    Wang, Junlong; Yang, Wen; Yang, Ting; Zhang, Xiaonuo; Zuo, Yuan; Tian, Jia; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2015-03-01

    In the present study, sulfated derivatives of Artemisia sphaerocephala polysaccharide (SASP) with high degree of substitution (DS) were synthesized by using 4-dimethylaminopyridine (DMAP)/dimethylcyclohexylcarbodiimide (DCC) as catalyst in homogeneous conditions. It was found that DMAP/DCC showed marked improvement in DS of sulfated samples. Compared to sulfated derivatives without catalyst, the DS of SASP increased from 0.91 to 1.28 with an increment in dosage of DMAP from 0 to 10 mg. The influence of DMAP/DCC on the DS of sulfated derivatives was depended on the content of DMAP. The effect of DMAP might be due to its strong coordination to the hydroxy group. The results of FT-IR and X-ray photoelectron spectroscopy (XPS) indicated that SO3- group (S6+, binding energy of 172.3 eV) was widely present in sulfated polysaccharide molecules. 13C NMR results indicated that C-6 substitution was predominant for sulfated polysaccharide when compared with other positions. In the sulfation reaction, a sharp decrease in MW was observed. DMAP/DCC was an effective catalyst system in sulfated modification of polysaccharide. PMID:25499892

  17. Sulfated Escherichia coli K5 Polysaccharide Derivatives Inhibit Dengue Virus Infection of Human Microvascular Endothelial Cells by Interacting with the Viral Envelope Protein E Domain III

    PubMed Central

    Vervaeke, Peter; Alen, Marijke; Noppen, Sam; Schols, Dominique; Oreste, Pasqua; Liekens, Sandra

    2013-01-01

    Dengue virus (DENV) is an emerging mosquito-borne pathogen that causes cytokine-mediated alterations in the barrier function of the microvascular endothelium, leading to dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). We observed that DENV (serotype 2) productively infects primary (HMVEC-d) and immortalized (HMEC-1) human dermal microvascular endothelial cells, despite the absence of well-described DENV receptors, such as dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) or the mannose receptor on the cell surface. However, heparan sulfate proteoglycans (HSPGs) were highly expressed on these cells and pre-treatment of HMEC-1 cells with heparinase II or with glycosaminoglycans reduced DENV infectivity up to 90%, suggesting that DENV uses HSPGs as attachment receptor on microvascular endothelial cells. Sulfated Escherichia coli K5 derivatives, which are structurally similar to heparin/heparan sulfate but lack anticoagulant activity, were able to block DENV infection of HMEC-1 and HMVEC-d cells in the nanomolar range. The highly sulfated K5-OS(H) and K5-N,OS(H) inhibited virus attachment and subsequent entry into microvascular endothelial cells by interacting with the viral envelope (E) protein, as shown by surface plasmon resonance (SPR) analysis using the receptor-binding domain III of the E protein. PMID:24015314

  18. [Neuroprotective effects of sulfated polysaccharides from seaweed].

    PubMed

    Besednova, N N; Somova, L M; Guliaev, S A; Zaporozhets, T S

    2013-01-01

    Currently, neurodegenerative diseases (NDD) occupy a significant place in the structure of disease of the elderly, which dictates the need to find new and effective treatment and prevention of this pathology. At the heart of NDD development is a violation of the metabolism and the conformational change of cellular proteins with subsequent accumulation and aggregation of their in certain groups of neurons. The immediate cause of the death of the affected neurons in NDD is initiated by intracellular proteins apoptosis, during which a large number ofneurotransmitter glutamate is released. The consequence of an imbalance in the synthesis and release of neurotransmitters are related the memory impairment, motor coordination and cognitive abilities of human. Based on the analysis of the extensive literature domestic and predominantly foreign authors of the last decade the modern data on the effect of sulfated polysaccharides (SPS) of algae in vivo and in vitro in degenerative processes of the nervous system. Found that due to its multi-point impact, SPS have on the body antioxidant, anti-inflammatory, antiapoptotic, antihyperlipidemic, anti-toxic effects. Consequently, SPS can arrest a number of secondary pathological effects observed in neurodegenerative diseases (oxidative stress, inflammation, the phenomenon of increased neuronal apoptosis, toxic effects etc.). Varieties of pathogenic mechanisms underlying NDD makes possible the combined use of neuroprotective compounds acting sequentially in different stages of a pathological process. Accumulated a lot of experimental evidence to assume that the SPS may be the basis for the creation of next-generation drugs for the treatment of neurodegenerative diseases. PMID:24000668

  19. Extraction, characterization and antimicrobial activity of sulfated polysaccharides from fish skins.

    PubMed

    Krichen, Fatma; Karoud, Wafa; Sila, Assaâd; Abdelmalek, Baha Eddine; Ghorbel, Raoudha; Ellouz-Chaabouni, Semia; Bougatef, Ali

    2015-04-01

    Sulfated polysaccharides were extracted from gray triggerfish (GTSP) and smooth hound (SHSP) skins. Their chemical and physical characteristics were determined using X-ray diffraction and Infrared spectroscopic analysis. The antibacterial activities of GTSP and SHSP against Listeria monocytogenes (ATCC 43251), Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 25922), Salmonella enterica (ATCC 43972) and Enterobacter sp were evaluated by determining clear growth inhibition zone diameters and the minimum inhibitory concentration (MIC) values and by essays in liquid media. GTSP and SHSP were fractionated by a Diethylaminoethyl-cellulose chromatography. Fraction FGII, from GTSP, and fraction FSII, from SHSP, showed the most important inhibitory effects against the tested bacterial species. The sulfated polysaccharides from fish skins did not show hemolytic activity towards bovine erythrocytes. Overall, the results suggested that those polysaccharides could offer promising sources of polysaccharides for future application as dietary ingredients in the nutraceutical industry. PMID:25647621

  20. Pharmacodynamic parameters of anticoagulants based on sulfated polysaccharides from marine algae.

    PubMed

    Drozd, N N; Tolstenkov, A S; Makarov, V A; Kuznetsova, T A; Besednova, N N; Shevchenko, N M; Zvyagintseva, T N

    2006-11-01

    Fucoidans isolated from Fucus evanescens and Laminaria cichorioides kelp can inhibit thrombin and factor Xa of the blood coagulation system. In rats, intravenous injection of fucoidans dose-dependently increased anticoagulant activity of the plasma. Fucoidans can form complexes with protamine sulfate. The observed quantitative differences in the action of fucoidans can result from different sulfation degree and the presence of various types of glycoside bonds in polysaccharide molecules. PMID:17415470

  1. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds

    PubMed Central

    Rocha de Souza, Micheline Cristiane; Marques, Cybelle Teixeira; Guerra Dore, Celina Maria; Ferreira da Silva, Fernando Roberto; Oliveira Rocha, Hugo Alexandre

    2006-01-01

    The in vitro antioxidant activities of the following six sulfated polysaccharides were investigated: iota, kappa and lambda carrageenans, which are widely used in the food industry, fucoidan (homofucan) from the edible seaweed Fucus vesiculosus and fucans (heterofucans) F0.5 and F1.1 from the seaweed Padina gymnospora. With respect to the inhibition of superoxide radical formation, fucoidan had an IC50 (the half maximal inhibitory concentration) of 0.058 mg·mL−1, while the IC50 for the kappa, iota and lambda carrageenans were 0.112, 0.332 and 0.046 mg·mL−1, respectively. All of the samples had an inhibitory effect on the formation of hydroxyl radicals. The results of peroxidation tests showed that fucoidan had an IC50 of 1.250 mg·mL−1 and that the kappa, iota and lambda carrageenans had an IC50 of 2.753 and 2.338 and 0.323 mg·mL−1, respectively. Fucan fractions showed low antioxidant activity relative to fucoidan. These results clearly indicate the beneficial effect of algal polysaccharides as antioxidants. PMID:19396353

  2. Sulfated polysaccharides from Loligo vulgaris skin: potential biological activities and partial purification.

    PubMed

    Abdelmalek, Baha Eddine; Sila, Assaâd; Krichen, Fatma; Karoud, Wafa; Martinez-Alvarez, Oscar; Ellouz-Chaabouni, Semia; Ayadi, Mohamed Ali; Bougatef, Ali

    2015-01-01

    The characteristics, biological properties, and purification of sulfated polysaccharides extracted from squid (Loligo vulgaris) skin were investigated. Their chemical and physical characteristics were determined using X-ray diffraction and infrared spectroscopic analysis. Sulfated polysaccharides from squid skin (SPSS) contained 85.06% sugar, 2.54% protein, 1.87% ash, 8.07% sulfate, and 1.72% uronic acid. The antioxidant properties of SPSS were investigated based on DPPH radical-scavenging capacity (IC50 = 19.42 mg mL(-1)), hydrogen peroxide-scavenging activity (IC50 = 0.91 mg mL(-1)), and β-carotene bleaching inhibition (IC50 = 2.79 mg mL(-1)) assays. ACE-inhibitory activity of SPSS was also investigated (IC50 = 0.14 mg mL(-1)). Further antimicrobial activity assays indicated that SPSS exhibited marked inhibitory activity against the bacterial and fungal strains tested. Those polysaccharides did not display hemolytic activity towards bovine erythrocytes. Fractionation by DEAE-cellulose column chromatography showed three major absorbance peaks. Results of this study suggest that sulfated polysaccharides from squid skin are attractive sources of polysaccharides and promising candidates for future application as dietary ingredients. PMID:25301697

  3. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications

    PubMed Central

    Cunha, Ludmylla; Grenha, Ana

    2016-01-01

    In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting. PMID:26927134

  4. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications.

    PubMed

    Cunha, Ludmylla; Grenha, Ana

    2016-03-01

    In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting. PMID:26927134

  5. In Vitro Antioxidant Activities of Sulfated Derivatives of Polysaccharides Extracted from Auricularia auricular

    PubMed Central

    Zhang, Hua; Wang, Zhen-Yu; Yang, Lin; Yang, Xin; Wang, Xue; Zhang, Zhi

    2011-01-01

    In this research, two types of sulfated polysaccharide derivatives were successfully synthesized. Their antioxidant activities were investigated by employing various established in vitro systems. In addition, the degree of sulfation was evaluated using ion-chromatography and IR spectra. The results verify that, when employing scavenging superoxide radical tests, both the sulfation of acid Auricularia auricular polysaccharides (SAAAP) and the sulfation of neutral Auricularia auricular polysaccharides (SNAAP) derivatives possessed considerable antioxidant activity and had a more powerful antioxidant competence than that of the native non-sulfated polysaccharides (AAAP and NAAP). On the other hand, AAAP and NAAP exhibited stronger activity on scavenging both the hydroxyl radical and lipid peroxidation. Available data obtained with in vitro measurements indicates that the sulfated groups of AAAP and NAAP played an important role on antioxidant activity. In sum, the research demonstrates that the antioxidant activity of sulfated polysaccharide derivatives in vitro has a potential significance for seeking new natural antioxidant protective agents. PMID:21686185

  6. Structure and anticancer activity of sulfated O-polysaccharide from marine bacterium Cobetia litoralis KMM 3880(T).

    PubMed

    Kokoulin, Maxim S; Kuzmich, Alexandra S; Kalinovsky, Anatoly I; Tomshich, Svetlana V; Romanenko, Lyudmila A; Mikhailov, Valery V; Komandrova, Nadezhda A

    2016-12-10

    We presented the structure of the polysaccharide moiety and anticancer activity in vitro of the sulfated lipopolysaccharide isolated from the marine bacterium Cobetia litoralis KMM 3880(T). The structure of O-polysaccharide was investigated by chemical methods along with (1)H and (13)C NMR spectroscopy. The O-polysaccharide was built up of branched trisaccharide repeating units consist of D-glucose (D-Glcр), D-mannose (D-Manр) and sulfated 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo5S): →7-β-Kdoр4Ac5S-(2→4)-[β-d-Glcp-(1→2)-]-β-d-Manр6Ac-1→. We demonstrated that the lipopolysaccharide and О-deacetylated O-polysaccharide from Cobetia litoralis KMM 3880(T) inhibited a colony formation of human melanoma SK-MEL-28 and colorectal carcinoma HTC-116 cells. PMID:27577896

  7. Antitumor activities and immunomodulatory of rice bran polysaccharides and its sulfates in vitro.

    PubMed

    Wang, Li; Li, Yulin; Zhu, Lidan; Yin, Ran; Wang, Ren; Luo, Xiaohu; Li, Yongfu; Li, Yanan; Chen, Zhengxing

    2016-07-01

    Polysaccharides purified from rice bran show antitumor activity against tumor cells, yet the mechanism of this action remains poorly understood. To address this issue, our study evaluated the effect of rice bran polysaccharides on mouse melanoma cell line B16, and Raw264.7 macrophages. Rice bran polysaccharides (RBP) failed to inhibit B16 cell growth in vitro. However, Raw264.7 macrophages treated by RBP enhancement of cytotoxic effects. The cytotoxicity was confirmed by the stimulation of nitric oxide (NO) production and tumor necrosis factor-α (TNF-α) secretion on Raw264.7 macrophages in a dose-dependent manner. RBP2, a fraction of RBP, notably enhanced the inhibition of B16 cells and boosted the immunepotentiation effect compared with RBP. To further enhance the inhibition of B16 cell growth, sulfated polysaccharides (SRBP) was derived using the chlorosulfonic acid-pyridine method. SRBP2 was found to suppress B16 cell growth, reduce B16 cell survival and stimulate NO and TNF-α production. However, SRBP2 displayed a cytotoxic effect on Raw264.7 macrophages. These results suggest that the antitumor activity of RBP and RBP2 is mediated mainly through the activation of macrophages. SRBP2 exerts its antitumor activity by inducing apoptosis in tumor cells and the secretion of NO and TNF-α. PMID:27064087

  8. A wide diversity of sulfated polysaccharides are synthesized by different species of marine sponges.

    PubMed

    Zierer, M S; Mourão, P A

    2000-09-01

    Sulfated polysaccharides were extracted from four species of marine sponges by exhaustive papain digestion. These compounds were purified by anion-exchange and gel-filtration chromatography. Analysis of the purified polysaccharides revealed a species-specific variation in their chemical composition and also in their molecular masses. In the species Aplysina fulva we found a sulfated glucan with a glycogen-like structure. The other three species contained sulfated polysaccharides with variable proportions of galactose, fucose, arabinose and hexuronic acid and also with different degrees of sulfation. Although the complex nature of these polysaccharides did not allow complete structure determination, we detected the occurrence of 4-sulfated residues of fucose and arabinose in the species Dysidea fragilis. The biological role of these sulfated polysaccharides requires further investigation. They may be involved in the species-specific aggregation of sponge cells and/or in the structural integrity of sponge, resembling the proteoglycans of mammalian connective tissues. PMID:11028788

  9. Sulfated Polysaccharides Purified from Two Species of Padina Improve Collagen and Epidermis Formation in the Rat

    PubMed Central

    Kordjazi, Moazameh; Shabanpour, Bahareh; Zabihi, Ebrahim; Faramarzi, Mohammad Ali; Feizi, Farideh; Ahmadi Gavlighi, Hassan; Feghhi, Mohammad Amin; Hosseini, Seyed Abbas

    2013-01-01

    Sulfated polysaccharides have shown promising effects on wound healing processes along with many other biological activities. The sulfated polysaccharides extracted from two algae species habitats in Persian Gulf were studied in vivo for their effects on collagen formation and epidermal regeneration. The polysaccharides were purified from aqueous extracts of P. tetrastromatica and P. boergesenii using CaCl2 and ethanol precipitation. The sulfate content of each polysaccharide was determined. Two identical wounds (either burn or excision) were made on the back of 4 groups of male Wistar rats (10 rats per group) under anesthesia. The algal polysaccharide ointments (2%) were applied twice daily on one side and the other wound was treated with Eucerin (as control). The rats were sacrificed on day 7 or 14, and then the wound samples were examined for epidermal thickness by light microscope. Furthermore, hydroxyproline content (as a marker of collagen formation) was spectro-photometrically measured. The polysaccharides purified from P. boergesenii had higher sulfate content (32.6±1%) compared to P. tetrastromatica (19±1%). Both algal polysaccharides showed some improvements in collagen formation (hydroxyproline content) and epidermal thickness in both wound models compared to the vehicle. The sulfated polysaccharides purified from P. tetrastromatica and P. boergesenii seaweeds are able to induce collagen formation and epidermal regeneration in the two wound models. The superior healing properties of P. boergesenii polysaccharides might be correlated to its higher sulfate content. Both algal polysaccharides are good candidates for wound healing clinical trials. PMID:24551807

  10. Structural characterization and biomedical properties of sulfated polysaccharide from the gladius of Sepioteuthis lessoniana (Lesson, 1831).

    PubMed

    Seedevi, Palaniappan; Moovendhan, Meivelu; Vairamani, Shanmugam; Shanmugam, Annian

    2016-04-01

    Sulfated polysaccharide was extracted from the internal shell (gladius) of Sepioteuthis lessoniana. The sulfated polysaccharide contained 61.3% of carbohydrate, 0.8% of protein, 28.2% of ash and 1.33% of moisture respectively. The elemental composition was analyzed using CHNS/O analyzer. The molecular weight of sulfated polysaccharide determined through PAGE was found to be as 66 kDa. Monosaccharides analysis revealed that sulfated polysaccharide was composed of rhamnose, galactose, xylose and glucose. The structural features of sulfated polysaccharide were analyzed by FT-IR and NMR spectroscopy. Further the sulfated polysaccharide was evaluated for its antibacterial activity against selected human clinical pathogens, namely Staphylococcus aureus, Klebsiella pneumoniae, Salmonella typhi, Vibrio cholerae, Klebsiella oxytoca, Escherichia coli, Salmonella paratyphi, Proteus mirabilis, Vibrio parahaemolyticus and Streptococcus pyogenes using agar well diffusion method. The polysaccharide has showed good antibacterial activity and MIC and MBC have also been evaluated. The anticancer activity was tested against HeLa cell line by MTT assay. The Cytotoxic Concentration (CC50) was observed as 700 μg/ml and the maximum anticancer activity of 62.89% was recorded at 200 μg/ml; whereas, the lowest of 9.87% was observed at 25 μg/ml. In conclusion, the sulfated polysaccharide is an alternate, non-toxic and cheap source of substance that showed good antibacterial and anticancer acitivity. PMID:26724686

  11. Synergistic Effects of Sulfated Polysaccharides from Mexican Seaweeds against Measles Virus

    PubMed Central

    Morán-Santibañez, Karla; Cruz-Suárez, Lucia Elizabeth; Ricque-Marie, Denis; Robledo, Daniel; Freile-Pelegrín, Yolanda; Peña-Hernández, Mario A.; Rodríguez-Padilla, Cristina

    2016-01-01

    Sulfated polysaccharides (SPs) extracted from five seaweed samples collected or cultivated in Mexico (Macrocystis pyrifera, Eisenia arborea, Pelvetia compressa, Ulva intestinalis, and Solieria filiformis) were tested in this study in order to evaluate their effect on measles virus in vitro. All polysaccharides showed antiviral activity (as measured by the reduction of syncytia formation) and low cytotoxicity (MTT assay) at inhibitory concentrations. SPs from Eisenia arborea and Solieria filiformis showed the highest antiviral activities (confirmed by qPCR) and were selected to determine their combined effect. Their synergistic effect was observed at low concentrations (0.0274 μg/mL and 0.011 μg/mL of E. arborea and S. filiformis SPs, resp.), which exhibited by far a higher inhibitory effect (96% syncytia reduction) in comparison to the individual SP effects (50% inhibition with 0.275 μg/mL and 0.985 μg/mL of E. arborea and S. filiformis, resp.). Time of addition experiments and viral penetration assays suggest that best activities of these SPs occur at different stages of infection. The synergistic effect would allow reducing the treatment dose and toxicity and minimizing or delaying the induction of antiviral resistance; sulfated polysaccharides of the tested seaweed species thus appear as promising candidates for the development of natural antiviral agents. PMID:27419139

  12. Synergistic Effects of Sulfated Polysaccharides from Mexican Seaweeds against Measles Virus.

    PubMed

    Morán-Santibañez, Karla; Cruz-Suárez, Lucia Elizabeth; Ricque-Marie, Denis; Robledo, Daniel; Freile-Pelegrín, Yolanda; Peña-Hernández, Mario A; Rodríguez-Padilla, Cristina; Trejo-Avila, Laura M

    2016-01-01

    Sulfated polysaccharides (SPs) extracted from five seaweed samples collected or cultivated in Mexico (Macrocystis pyrifera, Eisenia arborea, Pelvetia compressa, Ulva intestinalis, and Solieria filiformis) were tested in this study in order to evaluate their effect on measles virus in vitro. All polysaccharides showed antiviral activity (as measured by the reduction of syncytia formation) and low cytotoxicity (MTT assay) at inhibitory concentrations. SPs from Eisenia arborea and Solieria filiformis showed the highest antiviral activities (confirmed by qPCR) and were selected to determine their combined effect. Their synergistic effect was observed at low concentrations (0.0274 μg/mL and 0.011 μg/mL of E. arborea and S. filiformis SPs, resp.), which exhibited by far a higher inhibitory effect (96% syncytia reduction) in comparison to the individual SP effects (50% inhibition with 0.275 μg/mL and 0.985 μg/mL of E. arborea and S. filiformis, resp.). Time of addition experiments and viral penetration assays suggest that best activities of these SPs occur at different stages of infection. The synergistic effect would allow reducing the treatment dose and toxicity and minimizing or delaying the induction of antiviral resistance; sulfated polysaccharides of the tested seaweed species thus appear as promising candidates for the development of natural antiviral agents. PMID:27419139

  13. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    SciTech Connect

    Sherly, K. B.; Rakesh, K.

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  14. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Sherly, K. B.; Rakesh, K.

    2014-01-01

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl2ṡ8H2O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  15. Study on quality control of sulfated polysaccharide drug, propylene glycol alginate sodium sulfate (PSS).

    PubMed

    Xue, Yi-Ting; Ren, Li; Li, Shuang; Wang, Lin-Lin; He, Xiao-Xi; Zhao, Xia; Yu, Guang-Li; Guan, Hua-Shi; Li, Chun-Xia

    2016-06-25

    The combination of biological and chemical analysis methods was developed to improve quality control of propylene glycol alginate sodium sulfate (PSS), a sulfated polysaccharide drug. The allergic and anticoagulant assays revealed that PSS fractions with higher Mw and lower M/G ratio may have allergic response and bleeding risks. HPLC with pre-column derivatization, HPGPC and IC methods were combined to analyze 10 batches of PSS samples from different manufacturers. The results showed that the quality of these PSSs varied greatly which in turn led to the unstable anticoagulant activity and side effects. The study indicated that PSS with high purity, M/G ratio above 1.5, Mw of ∼9kD and DS of 9.0-13.0% can ensure clinical efficacy and low incidence of adverse drug reactions. In conclusion, the combined methods would be in favor of guiding manufacture and quality control of PSS to guarantee its effectiveness and safety. PMID:27083824

  16. Gellan sulfate inhibits Plasmodium falciparum growth and invasion of red blood cells in vitro.

    PubMed

    Recuenco, Frances Cagayat; Kobayashi, Kyousuke; Ishiwa, Akiko; Enomoto-Rogers, Yukiko; Fundador, Noreen Grace V; Sugi, Tatsuki; Takemae, Hitoshi; Iwanaga, Tatsuya; Murakoshi, Fumi; Gong, Haiyan; Inomata, Atsuko; Horimoto, Taisuke; Iwata, Tadahisa; Kato, Kentaro

    2014-01-01

    Here, we assessed the sulfated derivative of the microbial polysaccharide gellan gum and derivatives of λ and κ-carrageenans for their ability to inhibit Plasmodium falciparum 3D7 and Dd2 growth and invasion of red blood cells in vitro. Growth inhibition was assessed by means of flow cytometry after a 96-h exposure to the inhibitors and invasion inhibition was assessed by counting ring parasites after a 20-h exposure to them. Gellan sulfate strongly inhibited invasion and modestly inhibited growth for both P. falciparum 3D7 and Dd2; both inhibitory effects exceeded those achieved with native gellan gum. The hydrolyzed λ-carrageenan and oversulfated κ-carrageenan were less inhibitory than their native forms. In vitro cytotoxicity and anticoagulation assays performed to determine the suitability of the modified polysaccharides for in vivo studies showed that our synthesized gellan sulfate had low cytotoxicity and anticoagulant activity. PMID:24740150

  17. Gellan sulfate inhibits Plasmodium falciparum growth and invasion of red blood cells in vitro

    PubMed Central

    Recuenco, Frances Cagayat; Kobayashi, Kyousuke; Ishiwa, Akiko; Enomoto-Rogers, Yukiko; Fundador, Noreen Grace V.; Sugi, Tatsuki; Takemae, Hitoshi; Iwanaga, Tatsuya; Murakoshi, Fumi; Gong, Haiyan; Inomata, Atsuko; Horimoto, Taisuke; Iwata, Tadahisa; Kato, Kentaro

    2014-01-01

    Here, we assessed the sulfated derivative of the microbial polysaccharide gellan gum and derivatives of λ and κ-carrageenans for their ability to inhibit Plasmodium falciparum 3D7 and Dd2 growth and invasion of red blood cells in vitro. Growth inhibition was assessed by means of flow cytometry after a 96-h exposure to the inhibitors and invasion inhibition was assessed by counting ring parasites after a 20-h exposure to them. Gellan sulfate strongly inhibited invasion and modestly inhibited growth for both P. falciparum 3D7 and Dd2; both inhibitory effects exceeded those achieved with native gellan gum. The hydrolyzed λ-carrageenan and oversulfated κ-carrageenan were less inhibitory than their native forms. In vitro cytotoxicity and anticoagulation assays performed to determine the suitability of the modified polysaccharides for in vivo studies showed that our synthesized gellan sulfate had low cytotoxicity and anticoagulant activity. PMID:24740150

  18. Inhibition of PMN-elastase activity by semisynthetic glucan sulfates.

    PubMed

    Becker, Markus; Franz, Gerhard; Alban, Susanne

    2003-05-01

    Proteolysis of connective tissue by enzymes such as PMN-elastase (PMNE) is a crucial step during inflammation and metastasis. Semisynthetic sulfated carbohydrates (SC) were shown to exhibit potent antiinflammatory and antimetastatic activity in vivo. The aim of the present study was to examine whether interferences with PMN-elastase may contribute to these effects. Therefore, the interactions of these compounds with PMNE were evaluated in various test systems. Besides semisynthetic alpha-1,4/1,6- and beta-1,3-glucan sulfates, UFH, a LMWH and pentosan polysulfate (PPS) were included in the study. The inhibitory activity of SC improves not only with increasing molecular weight (MW 10 - 250 kDa: 37 - 54% inhibition at 0.25 micro g/ml) and degree of sulfation (DS 0.25 - 2.0: 16 - 50% inhibition at 0.25 micro g/ml), but depends also on their genuine polysaccharide structure (IC50 beta-1,3-glucan sulfate 0.18 / alpha-1,4/1,6-glucan sulfate 0.25 / UFH 0.5 micro g/ml). Using physiological substrate assays (collagen, elastin), beta-1,3- and alpha-1,4/1,6-glucan sulfates are more active than UFH (inhibition at 1.5 micro g/ml: 41 / 32 / 12%). According to enzyme-inhibitor binding studies, SC exhibit structure dependent affinity to the enzyme (K(d) for PMNE: beta-1,3 < alpha-1,4/1,6 < UFH). Finally, SC were shown to inhibit cancer cell-mediated elastinolysis. PMID:12719790

  19. Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum.

    PubMed

    Tsubaki, Shuntaro; Oono, Kiriyo; Hiraoka, Masanori; Onda, Ayumu; Mitani, Tomohiko

    2016-11-01

    Microwave-assisted hydrothermal extraction was applied for production of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. The maximum ulvan yields attained 40.4±3.2% (Ulva meridionalis) and 36.5±3.1% (Ulva ohnoi) within 4min of come-up time and 10min of extraction time at 160°C, respectively. The rhamnan sulfate yield from M. latissimum further attained 53.1±7.2% at 140°C. The sulfated polysaccharides were easily recovered from the extract by simple ethanol precipitation. In addition, molecular weights and viscosity of the extracted polysaccharides could be controlled by varying the extraction temperature. Dielectric measurement revealed that ionic conduction was the important parameter that affect the microwave susceptibility of algae-water mixture. The sulfated polysaccharides extracts are expected as potential feedstock for medical and food applications. PMID:27211652

  20. Antioxidant and anticoagulant activity of sulfated polysaccharide from Gracilaria debilis (Forsskal).

    PubMed

    Sudharsan, Sadhasivam; Subhapradha, Namasivayam; Seedevi, Palaniappan; Shanmugam, Vairamani; Madeswaran, Perumal; Shanmugam, Annaian; Srinivasan, Alagiri

    2015-11-01

    Sulfated polysaccharide was isolated from Gracilaria debilis and purified through gel chromatography and their molecular weight was determined through AGE and PAGE. The total sugars in the crude, fractionated and purified polysaccharide were estimated as 52.65%, 59.70% and 67.60%, respectively. The ash and moisture content of crude and purified polysaccharide was found to be 14.2% and 23.5% and the polysaccharide was free from protein contamination. The sulfate and uronic acid contents in the crude, fractionated and purified were estimated as 14.08%, 15.33% and 16.01% and 10.12%, 13.56%, 16.70%. The elemental composition including carbon (crude - 23.12%, purified - 21.05%), hydrogen (crude - 3.4%, purified - 4.13%) and nitrogen (crude - 1.22%, purified - 0.56%) were also analyzed. The anticoagulant activity of the sulfated polysaccharide through APTT and PT was estimated at 14.11 and 8.23IU/mg. The purified polysaccharide with the molecular mass of 20kDa showed highest antioxidant activity (38.57%, 43.48% and 38.88%) in all the assays tested such as DPPH hydroxyl radical, superoxide radical, hydroxyl radical scavenging activities and the structural property was analyzed through FT-IR and (1)H NMR spectrum. The results together suggest that the isolated low molecular weight sulfated polysaccharide will demonstrate as a enormously available alternative natural source of antioxidant for industrial uses. PMID:26424206

  1. Navicula sp. Sulfated Polysaccharide Gels Induced by Fe(III): Rheology and Microstructure.

    PubMed

    Fimbres-Olivarría, Diana; López-Elías, José Antonio; Carvajal-Millán, Elizabeth; Márquez-Escalante, Jorge Alberto; Martínez-Córdova, Luis Rafael; Miranda-Baeza, Anselmo; Enríquez-Ocaña, Fernando; Valdéz-Holguín, José Eduardo; Brown-Bojórquez, Francisco

    2016-01-01

    A sulfated polysaccharide extracted from Navicula sp. presented a yield of 4.4 (% w/w dry biomass basis). Analysis of the polysaccharide using gas chromatography showed that this polysaccharide contained glucose (29%), galactose (21%), rhamnose (10%), xylose (5%) and mannose (4%). This polysaccharide presented an average molecular weight of 107 kDa. Scanning electron microscopy (SEM) micrographs showed that the lyophilized Navicula sp. polysaccharide is an amorphous solid with particles of irregular shapes and sharp angles. The polysaccharide at 1% (w/v) solution in water formed gels in the presence of 0.4% (w/v) FeCl₃, showing elastic and viscous moduli of 1 and 0.7 Pa, respectively. SEM analysis performed on the lyophilized gel showed a compact pore structure, with a pore size of approximately 150 nm. Very few studies on the gelation of sulfated polysaccharides using trivalent ions exist in the literature, and, to the best of our knowledge, this study is the first to describe the gelation of sulfated polysaccharides extracted from Navicula sp. PMID:27483255

  2. Navicula sp. Sulfated Polysaccharide Gels Induced by Fe(III): Rheology and Microstructure

    PubMed Central

    Fimbres-Olivarría, Diana; López-Elías, José Antonio; Carvajal-Millán, Elizabeth; Márquez-Escalante, Jorge Alberto; Martínez-Córdova, Luis Rafael; Miranda-Baeza, Anselmo; Enríquez-Ocaña, Fernando; Valdéz-Holguín, José Eduardo; Brown-Bojórquez, Francisco

    2016-01-01

    A sulfated polysaccharide extracted from Navicula sp. presented a yield of 4.4 (% w/w dry biomass basis). Analysis of the polysaccharide using gas chromatography showed that this polysaccharide contained glucose (29%), galactose (21%), rhamnose (10%), xylose (5%) and mannose (4%). This polysaccharide presented an average molecular weight of 107 kDa. Scanning electron microscopy (SEM) micrographs showed that the lyophilized Navicula sp. polysaccharide is an amorphous solid with particles of irregular shapes and sharp angles. The polysaccharide at 1% (w/v) solution in water formed gels in the presence of 0.4% (w/v) FeCl3, showing elastic and viscous moduli of 1 and 0.7 Pa, respectively. SEM analysis performed on the lyophilized gel showed a compact pore structure, with a pore size of approximately 150 nm. Very few studies on the gelation of sulfated polysaccharides using trivalent ions exist in the literature, and, to the best of our knowledge, this study is the first to describe the gelation of sulfated polysaccharides extracted from Navicula sp. PMID:27483255

  3. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula.

    PubMed

    Burg, Ariela; Oshrat, Levy-Ontman

    2015-10-01

    Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides' antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains' interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca(2+) had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides' stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites. PMID:26492255

  4. Sulfated Polysaccharides Isolated from Cloned Grateloupia filicina and Their Anticoagulant Activity

    PubMed Central

    Chen, Xiaolin; Yang, Shengfeng; Wang, Jinxia; Song, Lin; Xing, Ronge; Liu, Song; Yu, Huahua; Li, Pengcheng

    2015-01-01

    Sulfated polysaccharides (GSP) were isolated from the cloned Grateloupia filicina which was cultured in Jiaozhou Bay, Qingdao, China. The yield of GSP was 15.75%. The total sugar and sulfate were 40.90 and 19.89%, respectively. And the average molecular weight was 11.7 KDa. The results of neutral sugar analysis showed that GSP was mainly sulfated polysaccharides of galactose. The experiments for activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) anticoagulant assays in vitro indicated that GSP was a good potential anticoagulant. Therefore, this study supplied new thought for the cloned Grateloupia filicina exploitation of high-value products. PMID:25945340

  5. Sulfation effect on levan polysaccharide chains structure with molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Coskunkan, Binnaz; Turgut, Deniz; Rende, Deniz; Malta, Seyda; Baysal, Nihat; Ozisik, Rahmi; Toksoy-Oner, Ebru

    Diversity in conformations and structural heterogeneity make polysaccharides the most challenging biopolymer type for experimental and theoretical characterization studies. Levan is a biopolymer chain that consists of fructose rings with β(2-6) linkages. It is a glycan that has great potential as a functional biopolymer in foods, feeds, cosmetics, pharmaceutical and chemical industries. Sulfated polysaccharides are group of macromolecules with sulfated groups in their hydroxyl parts with a range of important biological properties. Sulfate groups and their positions have a major effect on anticoagulant activity. It is reported that sulfate modified levan has anticoagulant activity such as heparin. In the current study, the effect of sulfation on the structure and dynamics of unmodified and sulfate modified levan are investigated via fully atomistic Molecular Dynamics simulations in aqueous media and varying salt concentrations at 310 K. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.

  6. Antiviral Activity of Sulfated Polysaccharide of Adenanthera pavonina against Poliovirus in HEp-2 Cells

    PubMed Central

    de Godoi, Ananda Marques; Faccin-Galhardi, Lígia Carla; Lopes, Nayara; de Almeida, Raimundo Rafael; Ricardo, Nágila Maria Pontes Silva; Nozawa, Carlos; Linhares, Rosa Elisa Carvalho

    2014-01-01

    Adenanthera pavonina, popularly known as red-bead tree, carolina, pigeon's eye, and dragon's eye, is a plant traditionally used in Brazil for the treatment of several diseases. The present study aimed at evaluating the activity of sulfated polysaccharide from the Adenanthera pavonina (SPLSAp) seeds against poliovirus type 1 (PV-1) in HEp-2 cell cultures. The SPLSAp presented a cytotoxic concentration (CC50) of 500 μg/mL in HEp-2 cell cultures, evaluated by the dimethylthiazolyl-diphenyltetrazolium bromide method (MTT). The SPLSAp exhibited a significant antiviral activity, with a 50% inhibitory concentration (IC50) of 1.18 µg/mL, determined by plaque reduction assay and a high selectivity index (SI) of 423. The maximum inhibition (100%) of PV replication was found when the SPLSAp treatment was concomitant with viral infection (time 0 h), at all tested concentrations. The maximal inhibition was also found when the SPLSAp was used 1 h and 2 h postinfection, albeit at 50 μg/mL and 100 μg/mL. Therefore, we demonstrated that the SPLSAp inhibited PV growth. We also suggested that SPLSAp inhibited PV in more than one step of the replication, as the mechanism of antiviral action. We, therefore, selected the compound as a potential candidate for further development towards the control of the infection. PMID:25221609

  7. In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota.

    PubMed

    Kong, Qing; Dong, Shiyuan; Gao, Jian; Jiang, Chaoyu

    2016-10-01

    In vitro fermentation of the sulfated polysaccharides from seaweeds Enteromorpha prolifera and Laminaria japonica and their prebiotic effects on human fecal microbiota were investigated in this study. The sulfated polysaccharides were fermented in vitro for 48h by human fecal cultures. When 0.8g MWCOL (polysaccharides MWCO<30kD) from L. japonica was fermented, the pH in fecal cultures decreased from 6.5 to 5.1 and the levels of short chain fatty acids, such as acetic, butyric and lactic acids all significantly increased. After 48h fermentation, 0.8g MWCOL showed good effect on modulating the gut microflora balance, because the beneficial strains (Lactobacillus and Bifidobacterium) were both significantly higher than those in control group (p<0.05). As far as we know, this is the first report that consumption of sulfated polysaccharides from E. prolifera and L. japonica is beneficial to the ecosystem of the intestinal tract by increasing the populations of probiotics and short chain fatty acids. Furthermore, our reports indicated that molecular weight of sulfated polysaccharide from marine algae is related to its prebiotic effects. PMID:27316763

  8. [Antiviral action and pathogenetic targets for seaweed sulfated polysaccharides in herpesvirus infections].

    PubMed

    Besednova, N N; Makarenkova, I D; Zvyagintseva, T N; Imbs, T I; Somova, L M; Zaporozhets, T S

    2016-03-01

    The review summarizes results of studies of effects of sulfated polysaccharides from seaweed on herpesviruses and the course of herpesvirus infections. Importance of this problem is determined by the prevalence of herpesviruses that can persist in the human body and demonstrate a high degree of immune mimicry and resistance to antiviral agents. A wide range of physiological action of sulfated polysaccharides, receptor agonists of innate and adaptive immune cells, which possess potent antiviral, antioxidant and anti-inflammatory activities, open the possibility of their use for creation of new generation pharmacological substances and agents with associated activity for the treatment of herpesvirus infections. PMID:27420612

  9. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula

    PubMed Central

    Burg, Ariela; Oshrat, Levy-Ontman

    2015-01-01

    Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides’ antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains’ interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca2+ had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides’ stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites. PMID:26492255

  10. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    PubMed

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. PMID:27211299

  11. High molecular weight polysaccharide that binds and inhibits virus

    DOEpatents

    Konowalchuk, Thomas W

    2014-01-14

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  12. Sulfated polysaccharides from common smooth hound: Extraction and assessment of anti-ACE, antioxidant and antibacterial activities.

    PubMed

    Abdelhedi, Ola; Nasri, Rim; Souissi, Nabil; Nasri, Moncef; Jridi, Mourad

    2016-11-01

    The present study investigates biological activities of sulfated polysaccharides (SPs) isolated from smooth hound by precipitation with cetylpyridinium chloride (SP1) or ethanol (SP2). SP1 showed the highest amounts of sulfated groups (10.2%) and proteins (7.84%) and high molecular weight sugars. Infrared spectroscopic analysis showed typical peaks of sulfated polysaccharides, particularly for the SP1 that was characterized by the presence of O=S=O groups and acetyl groups. Interestingly, SPs displayed important angiotensin I converting enzyme (ACE) inhibitory (IC50=1.04 and 0.75mg/ml for SP1 and SP2, respectively), antibacterial (Gram+ and Gram-) and antioxidant activities (reducing power, metal chelating activity, β-carotene bleaching inhibition and DNA nicking assay). Moreover, SPs fractionation by DEAE-cellulose column chromatography showed one peak during the buffer elution phase and three major fractions during the linear gradient of NaCl. The overall data suggested that SPs could be used as natural antioxidant, antimicrobial and anti-ACE ingredient to formulate functional foods. PMID:27516310

  13. Sulfated modification, characterization and property of a water-insoluble polysaccharide from Ganoderma atrum.

    PubMed

    Zhang, Hui; Wang, Jun-Qiao; Nie, Shao-Ping; Wang, Yuan-Xing; Cui, Steve W; Xie, Ming-Yong

    2015-08-01

    Sulfated modification was carried out to modify a water-insoluble polysaccharide from Ganoderma atrum (AGAP). The effects of sulfation on structure, physicochemical and functional properties of AGAP were investigated. Three sulfated derivatives were prepared, designated as S-1, S-2 and S-3 with degree of substitution (DS) of 0.35, 0.74 and 1.14, respectively. AGAP was elucidated as an α-(1→3)-glucan with few branches terminated by single mannose or xylose residues. The molecular weight (Mw) and radius of gyration (Rg) were estimated to be 1665 kDa and 65.49 nm, respectively. After sulfated modification, non-selective sulfation occurred preferably at O-6, partially at O-2 and O-4 positions of the glucosyl residues. The water-solubility of the derivatives was significantly improved in a DS-dependent manner. Mw of the derivatives showed a sharp decrease, and the chain conformation was estimated to be expanded stiff in phosphate buffer. In vitro tests showed that sulfated modification improved its antioxidant activities and anti-proliferative ability against S-180 tumor cells. This study suggested that sulfated modification was an effective approach to improve the water-solubility and functional properties of insoluble polysaccharides. PMID:25957721

  14. Effects of sulfate group in red seaweed polysaccharides on anticoagulant activity and cytotoxicity.

    PubMed

    Liang, Wanai; Mao, Xuan; Peng, Xiaohui; Tang, Shunqing

    2014-01-30

    In this paper, the structural effects of two main red seaweed polysaccharides (agarose and carrageenan) and their sulfated derivatives on the anticoagulant activity and cytotoxicity were investigated. The substitution position rather than the substitution degree of sulfate groups shows the biggest impact on both the anticoagulant activity and the cell proliferation. Among them, C-2 of 3,6-anhydro-α-d-Galp is the most favorable position for substitution, whereas C-6 of β-d-Galp is the most disadvantageous. Moreover, the secondary structures of glycans also play a key role in biological activities. These demonstrations warrant that the red seaweed polysaccharides should be seriously considered in biomedical applications after carefully tailoring the sulfate groups. PMID:24299838

  15. Neuroprotective effect of sulfated polysaccharide isolated from sea cucumber Stichopus japonicus on 6-OHDA-induced death in SH-SY5Y through inhibition of MAPK and NF-κB and activation of PI3K/Akt signaling pathways.

    PubMed

    Cui, Chao; Cui, Ningshan; Wang, Peng; Song, Shuliang; Liang, Hao; Ji, Aiguo

    2016-02-01

    The purpose of this study is to investigate the protective effect and molecular mechanism of the sulfated polysaccharide (SJP) isolated from the sea cucumber Stichopus japonicus against 6-OHDA-induced toxicity in SH-SY5Y cells. The results showed that SJP could protect SH-SY5Y cells against 6-OHDA-induced cell injury. We found that SJP effectively improves cell viability, decreases LDH leakage, and reverses morphological damage. Moreover, SJP significantly increases SOD activity but decreases MDA levels and ROS generation. Effect of SJP on 6-OHDA-induced cell death in SH-SY5Y cells is associated with an arrest in the G1/S phase of the cell cycle and inhibits the expression of Cyclin D3. 6-OHDA-induced intracellular generation of ROS and mitochondrial dysfunctions, release of cytochrome c, imbalance of Bax/Bcl-2, cleaved caspase-9/caspase-9 and cleaved caspase-3/caspase-3 ratio, and p-p53 activation were strikingly attenuated by SJP pretreatment. Meanwhile, SJP counteracted NF-κB activation, thereby preventing up-regulation of iNOS and intracellular NO release. The data provide the first evidence that SJP protects SH-SY5Y cells against 6-OHDA toxicity possibly by inhibiting MAPK and NF-κB and activating PI3K/Akt signaling pathways. Thus, SJP is a candidate for further evaluation of its protective effects against neurodegeneration in PD. PMID:26773499

  16. Immunomodulatory effects of sulfated polysaccharides of pine pollen on mouse macrophages.

    PubMed

    Geng, Yue; Xing, Li; Sun, Mengmeng; Su, Fangchen

    2016-10-01

    This study was undertaken to explore the effects of sulfated polysaccharide (SPPM60-D) from masson pine pollen on [Ca(2+)]i and immune function of RAW264.7 macrophages. SPPM60-D was obtained by subjecting Masson pine pollen to boiling water and alcohol precipitation, 60% ethanol grading precipitation, Sephacryl S-400HR purification, and chlorosulfonic acid-pyridine method sulfation. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure the effect of SPPM60-D on relative activity and proliferation of RAW264.7 cells, and a fluorescence spectrophotometer was used to determine [Ca(2+)]i. Phagocytosis of neutral red was used to determine phagocytosis capacity. Adherence, scratch healing, and transwell assays were used to assess migration and adhesion abilities of macrophages. An enzyme-linked immuno sorbent assay (ELISA) assay was used to assess the secretion of cytokines and inflammatory mediators. A dexamethasone (DEX) inhibition method was used to measure the recovery of RAW264.7 immune activity by SPPM60-D. SPPM60-D significantly increased relative activity, proliferation, and [Ca(2+)]i levels of mouse RAW264.7 cells. It also significantly enhanced the immune function of macrophages from normal and immune-suppressed mouse. The results showed that SPPM60-D mainly bound to TLR4 on macrophages. This activated the TLR4-PI3K-PLC-IP3R signaling pathway, leading to the opening of calcium release-activated calcium channels (CRAC), increasing [Ca(2+)]i and activating the macrophages, and thus improving immunity. PMID:27288698

  17. Sulfated modification of the polysaccharide from Sphallerocarpus gracilis and its antioxidant activities.

    PubMed

    Xu, Yunfei; Song, Shen; Wei, Yanxia; Wang, Fengxia; Zhao, Min; Guo, Jie; Zhang, Ji

    2016-06-01

    Sphallerocarpus gracilis (S. gracilis) is a little-investigated edible plant and used as traditional Chinese medicine. In this study, polysaccharide extracted from S. gracilis,deproteined and purified. The polysaccharide (SGP) was chemically modified to obtain its sulfated derivatives (S-SGP) using the method of chlorosulfonic acid/pyridine (CSA/Pyr). In order to acquire the derivative with the highest degree of substitution (DS), the optimum conditions of the sulfation were obtained based on response surface design (RSD), and the structural characterizations and antioxidant properties of the S-SGP were comparatively investigated by Fourier transform infrared spectrometry (FT-IR), GC-MS analysis, size exclusion chromatography (SEC), and DPPH radical assay, hydroxyl radical assay, superoxide radical assay, and reducing power assay, respectively. Results showed that the modification was successful, and obtained the optimum combination of conditions. Compared with SGP, the sulfated polysaccharide with relatively the decreased degree of molecular weight (Mw) but the same composition of monosaccharides exhibited better antioxidant activities in DPPH, hydroxyl, superoxide radical and reducing power assay. These results indicated that the antioxidant activities in vitro of the S-SGP from S. gracilis may be related to combined effects of Mw, monosaccharide composition, and sulfate content. PMID:26893048

  18. Chemical characteristics and anticoagulant activities of two sulfated polysaccharides from Enteromorpha linza (Chlorophyta)

    NASA Astrophysics Data System (ADS)

    Qi, Xiaohui; Mao, Wenjun; Chen, Yin; Chen, Yanli; Zhao, Chunqi; Li, Na; Wang, Chunyan

    2013-03-01

    Two sulfated polysaccharides, designated MP and SP, were extracted from the marine green alga Enteromorpha linza using hot water and then purified using ion-exchange and size-exclusion chromatography. The anticoagulant activities of MP and SP were examined by determination of their activated partial thromboplastin time (APTT), thrombin time (TT) and prothrombin time (PT) using human plasma. Results showed that MP and SP were composed of abundant rhamnose with small amounts of xylose and glucuronic acid, whereas SP also contained a small amount of galactose. Approximate molecular weights of MP and SP were 535 and 502 kDa, respectively. As compared with SP, MP had higher contents of sulfate ester (19.0%) and uronic acid (14.9%). The MP mainly consisted of (1→4)-linked rhamnose residues with partially sulfated groups at the C-3 position, and small amounts of (1→3, 4)-linked rhamnose, (1→2, 4)-linked rhamnose, (1→4)-linked glucuronic acid and (1→4)-linked xylose residues. The SP contained abundant (1→4)-linked rhamnose with minor amounts of (1→3)-linked rhamnose, (1→3, 4)-linked rhamnose, (1→2, 4)-linked rhamnose, (1→4)-linked glucuronic acid, (1→4)-linked xylose, and (1→3)-linked galactose residues. The sulfate groups were mainly located at C-3 of (1→4)-linked rhamnose residues. Both MP and SP, in particular the former, effectively prolonged APTT and TT. This work demonstrates that MP and SP have unique structural characteristics distinct from those of other sulfated polysaccharides from Enteromorpha. The MP is a potential source of anticoagulant, and the difference in anticoagulant activities of the two sulfated polysaccharides is directly linked to the discrepancy of their chemical features.

  19. A chemically sulfated polysaccharide from Grifola frondos induces HepG2 cell apoptosis by notch1-NF-κB pathway.

    PubMed

    Wang, Chun-ling; Meng, Meng; Liu, Sheng-bin; Wang, Li-rui; Hou, Li-hua; Cao, Xiao-hong

    2013-06-01

    Sulfated polysaccharides have been known to inhibit proliferation in tumor cells. However, the molecular mechanisms involved in sulfated polysaccharides-induced apoptosis are still uncharacterized. In this study, the effect of a chemically sulfated polysaccharide obtained from Grifola frondosa (S-GFB) on HepG2 cell proliferation and apoptosis-related mechanism were investigated. It was found that S-GFB inhibited proliferation of HepG2 cells in a dose-dependent manner with IC50 at 48 h of 61 μg ml(-1). The results of scanning electron micrographs indicated that S-GFB induced typical apoptotic morphological feature in HepG2 cells. Flow cytometric analysis demonstrated that S-GFB caused apoptosis of HepG2 cells through cells arrested at S phase. Western-blotting results showed that S-GFB inhibited notch1 expression, IκB-α degradation and NF-κB/p65 translocation from cytoplasm into nucleus. Simultaneously, the apoptotic mechanism of HepG2 cells induced by S-GFB was associated with down regulation of FLIP, and activation of caspase-3 and caspase-8. Taken together, these findings suggest that the S-GFB induces apoptosis through a notch1/NF-κB/p65-mediated caspase pathway. PMID:23618270

  20. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches

    PubMed Central

    Silva, Tiago H.; Alves, Anabela; Popa, Elena G.; Reys, Lara L.; Gomes, Manuela E.; Sousa, Rui A.; Silva, Simone S.; Mano, João F.; Reis, Rui L.

    2012-01-01

    Biomedical field is constantly requesting for new biomaterials, with innovative properties. Natural polymers appear as materials of election for this goal due to their biocompatibility and biodegradability. In particular, materials found in marine environment are of great interest since the chemical and biological diversity found in this environment is almost uncountable and continuously growing with the research in deeper waters. Moreover, there is also a slower risk of these materials to pose illnesses to humans. In particular, sulfated polysaccharides can be found in marine environment, in different algae species. These polysaccharides don’t have equivalent in the terrestrial plants and resembles the chemical and biological properties of mammalian glycosaminoglycans. In this perspective, are receiving growing interest for application on health-related fields. On this review, we will focus on the biomedical applications of marine algae sulfated polymers, in particular on the development of innovative systems for tissue engineering and drug delivery approaches. PMID:23507892

  1. Freshwater Plants Synthesize Sulfated Polysaccharides: Heterogalactans from Water Hyacinth (Eicchornia crassipes)

    PubMed Central

    Dantas-Santos, Nednaldo; Gomes, Dayanne Lopes; Costa, Leandro Silva; Cordeiro, Sara Lima; Costa, Mariana Santos Santana Pereira; Trindade, Edvaldo Silva; Franco, Célia Regina Chavichiolo; Scortecci, Kátia Castanho; Leite, Edda Lisboa; Rocha, Hugo Alexandre Oliveira

    2012-01-01

    Sulfated polysaccharides (SP) are found mainly in seaweeds and animals. To date, they have only been found in six plants and all inhabit saline environments. Furthermore, there are no reports of SP in freshwater or terrestrial plants. As such, this study investigated the presence of SP in freshwaters Eichhornia crassipes, Egeria densa, Egeria naja, Cabomba caroliniana, Hydrocotyle bonariensis and Nymphaea ampla. Chemical analysis identified sulfate in N. ampla, H. bonariensis and, more specifically, E. crassipes. In addition, chemical analysis, FT-IR spectroscopy, histological analysis, scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDXA), as well as agarose gel electrophoresis detected SP in all parts of E. crassipes, primarily in the root (epidermis and vascular bundle). Galactose, glucose and arabinose are the main monosaccharides found in the sulfated polysaccharides from E. crassipes. In activated partial thromboplastin time (APTT) test, to evaluate the intrinsic coagulation pathway, SP from the root and rhizome prolonged the coagulation time to double the baseline value, with 0.1 mg/mL and 0.15 mg/mL, respectively. However, SP from the leaf and petiole showed no anticoagulant activity. Eichornia SP demonstrated promising anticoagulant potential and have been selected for further studies on bioguided fractionation; isolation and characterization of pure polysaccharides from this species. Additionally in vivo experiments are needed and are already underway. PMID:22312297

  2. A Direct Sulfation Process of a Marine Polysaccharide in Ionic Liquid

    PubMed Central

    Sinquin, Corinne; Ratiskol, Jacqueline; Weiss, Pierre; Cérantola, Stéphane; Le Bideau, Jean

    2015-01-01

    GY785 is an exopolysaccharide produced by a mesophilic bacterial strain Alteromonas infernus discovered in the deep-sea hydrothermal vents. GY785 highly sulfated derivative (GY785 DRS) was previously demonstrated to be a promising molecule driving the efficient mesenchymal stem cell chondrogenesis for cartilage repair. This glycosaminoglycan- (GAG-) like compound was modified in a classical solvent (N,N′-dimethylformamide). However, the use of classical solvents limits the polysaccharide solubility and causes the backbone degradation. In the present study, a one-step efficient sulfation process devoid of side effects (e.g., polysaccharide depolymerization and/or degradation) was developed to produce GAG-like derivatives. The sulfation of GY785 derivative (GY785 DR) was carried out using ionic liquid as a reaction medium. The successful sulfation of this anionic and highly branched heteropolysaccharide performed in ionic liquid would facilitate the production of new molecules of high specificity for biological targets such as tissue engineering or regenerative medicine. PMID:26090416

  3. Optimization, characterization, sulfation and antitumor activity of neutral polysaccharides from the fruit of Borojoa sorbilis cuter.

    PubMed

    Xu, Fangfang; Liao, Kangsheng; Wu, Yunshan; Pan, Qi; Wu, Lilan; Jiao, Hong; Guo, Dean; Li, Ben; Liu, Bo

    2016-10-20

    Extraction optimization, purification, characterization, sulfation and antitumor activity of polysaccharides from the fruit body of Borojoa sorbilis cuter were investigated in present study. The optimal Ultrahigh Pressure extraction condition was determined as: extraction once with the solid-liquid ratio of 1:10 in 30°C and 1500Mpa for crude polysaccharide (BP) and experimental yield was 8.28%. Four water-soluble polysaccharides named as BP1-1, BP1-2, BP1-3 and BP1-4, with molecular weight of 35.8, 32.4, 30.1 and 27.7kDa, were purified by DEAE Sepharose and Superdex 200 chromatography. On the basis of chemical and spectroscopic analyses, BP1-1-BP1-4 were found to be neutral β-d-galactan containing a (1→4)-linked backbone. S-BP1s with the DSS of 1.18, was sulfated by chloro-sulfonic acid-pyridine method. Furthermore, S-BP1s exhibited significant in vitro antitumor activity against liver cancer HepG2 and lung cancer A549 cells in a dose-dependent manner. The results indicated that S-BP1s could be potentially developed as functional antitumor drug. PMID:27474578

  4. Structural characterization and functional properties of antihypertensive Cymodocea nodosa sulfated polysaccharide.

    PubMed

    Kolsi, Rihab Ben Abdallah; Fakhfakh, Jawhar; Krichen, Fatma; Jribi, Imed; Chiarore, Antonia; Patti, Francesco Paolo; Blecker, Christophe; Allouche, Noureddine; Belghith, Hafedh; Belghith, Karima

    2016-10-20

    A sulfated polysaccharide was successfully isolated from Cymodocea nodosa (CNSP). This is the first report that indicates the chemical composition, structural characterization, functional and antihypertensive properties of this polysaccharide. The CNSP consisted mainly of sulfate (23.17%), total sugars (54.90%), galactose (44.89%), mannose (17.30%), arabinose (12.05%), xylose (9.18%), maltose (1.07%) and uronic acid (11.03%) with low water activity (0.49). CNSP had an XRD pattern that was typical for a semi-crystalline polymer with homogeneous structure. It also displayed an important anti-hypertensive activity (IC50=0.43mgml) with a dose-dependent manner using a synthetic substrate, N-hippuryl-His-Leu hydrate salt (HHL). Overall, the results indicate that CNSP have attractive chemical, functional and biological properties, with a preliminary structural may have a backbone of branched 6-O-sulfated (1→4) galactosidic linkages, which can be considered in the future as alternative additive in various foods, cosmetic and pharmaceutical preparations. PMID:27474595

  5. Chemoprevention of Diethylnitrosamine-Initiated and Phenobarbital-Promoted Hepatocarcinogenesis in Rats by Sulfated Polysaccharides and Aqueous Extract of Ulva lactuca.

    PubMed

    Hussein, Usama K; Mahmoud, Hamada M; Farrag, Asmaa G; Bishayee, Anupam

    2015-11-01

    -initiated hepatocarcinogenesis through inhibition of abnormal cell proliferation and induction of apoptosis. A modest inhibition rat liver carcinogenesis was observed with the aqueous extract. The sulfated polysaccharides altered serum parameters of hepatic damage and modulated various components of the hepatic enzymatic and nonenzymatic antioxidant defense systems. The sulfated polysaccharides from U. lactuca may have unique properties of providing protection against DENA-induced oxidative stress which could contribute to chemoprevention of experimental hepatocarcinogenesis. U. lactuca sulfated polysaccharides could be developed as chemopreventive and therapeutic drug against human HCC. PMID:26130745

  6. Separation, characterization and anticancer activities of a sulfated polysaccharide from Undaria pinnatifida.

    PubMed

    Han, Yun; Wu, Jun; Liu, Tingting; Hu, Youdong; Zheng, Qiusheng; Wang, Binsheng; Lin, Haiyan; Li, Xia

    2016-02-01

    The purpose of this paper was to investigate separation, characterization and anticancer activities of a sulfated polysaccharide (SPUP) from Undaria pinnatifida. Firstly, polysaccharide from U. pinnatifida was separated by DEAE-52 cellulose and Sephacryl S-400 column chromatography. As results, SPUP was obtained with the yield of 19.42%. Then, SPUP was characterized using chemical analysis, gas chromatography, size-exclusion HPLC chromatography, UV-vis spectra and FT-IR spectrum. The content of total sugar, uronic acid, protein and sulfate radical were 80.48%, 3.21%, 7.12% and 29.14%, respectively. SPUP was a heteropolysaccharide composed of fucose, glucose and galactose in a molar percentage of 27.15:19.34:53.51 with molecular weight of 97.9 kDa. Finally, the strongly against breast cancer activity of SPUP was confirmed by DMBA-induced breast cancer rats model. AS results, SPUP can significantly restrain breast abnormal enlargement, prolong tumor latency and reduced tumor incidence. Immunomodulatory activity and regulating abnormal sex hormones level might contribute to its anticancer activities. PMID:26616455

  7. METHOD OF INHIBITING CORROSION IN URANYL SULFATE SOLUTIONS

    DOEpatents

    Bohlmann, E.G.; Griess, J.C. Jr.

    1960-08-23

    A method is given for treating a uranyl sulfate solution to inhibit the corrosiveness of the solution and elevate the phase separation temperature of the solution. Lithium sulfate is added to the solution in an amount ranging from 0.25 to 1.3 times the uranyl sulfate concentration. The corrosiveness of the solution with respect to stainless steel is substantially decreased by this means. This treatment also serves to raise the phase separation temperature of the solution (above 250 deg C), at which time the uranyl sulfate solution separates into two liquid phases of unequal uranium concentration and thus becomes unsuitable as nuclear reactor fuel.

  8. Occurrence of sulfated fucose branches in fucosylated chondroitin sulfate are essential for the polysaccharide effect preventing muscle damage induced by toxins and crude venom from Bothrops jararacussu snake.

    PubMed

    Monteiro-Machado, Marcos; Tomaz, Marcelo A; Fonseca, Roberto J C; Strauch, Marcelo A; Cons, Bruno L; Borges, Paula A; Patrão-Neto, Fernando C; Tavares-Henriques, Matheus S; Teixeira-Cruz, Jhonatha M; Calil-Elias, Sabrina; Cintra, Adélia C O; Martinez, Ana Maria B; Mourão, Paulo A S; Melo, Paulo A

    2015-05-01

    Snake envenoming is an important public health problem around the world, particularly in tropics. Beyond deaths, morbidity induced by snake venoms, such as myotoxicity, is of pivotal consequence to population. Bothrops jararacussu is the main venomous snake in southeast region of Brazil, and particularly presents strong myotoxic effect. The only available therapy, antibothropic antivenom, poorly affects venom-induced myotoxicity. The aim of this study is to assess the ability of fucosylated chondroitin sulfate (fucCS), a glycosaminoglycan with anticoagulant and antithrombotic properties, and its derivatives to inhibit toxic activities of B. jararacussu crude venom and its isolated toxins, named bothropstoxins (BthTX-I and BthTX-II). The in vitro myotoxic activities induced by crude venom, by BthTX-I alone and by toxins together were abolished by fucCS. Carboxyl reduction (fucCS-CR) kept this ability whereas defucosilation (defucCS) abrogates myoprotection. We observed the same pattern in the response of these polysaccharides in antagonizing the increase in plasma creatine kinase (CK) levels, the reduction of skeletal muscle CK content and the rise of myeloperoxidase (MPO) activity induced by crude venom and isolated toxins. FucCS inhibited edematogenic activity and partially prevented the reduction of total leukocytes in blood when pre-incubated with crude venom. Furthermore, the venom procoagulant effect was completely antagonized by increasing concentrations of fucCS, although this polyanion could stop neither the tail bleeding nor the skin hemorrhage induced by Bothrops jararaca venom. The B. jararacussu phospholipase, hyaluronidase, proteolytic and collagenase activities were inhibited in vitro. The results suggest that fucCS could be able to interact with both toxins, and it is able to inhibit BthTX-II phospholipase activity. Light microscopy of extensor digitorum longus muscle (EDL) muscle showed myoprotection by fucCS, once necrotic areas, edema and

  9. Oral zinc sulfate solutions inhibit sweet taste perception.

    PubMed

    Keast, Russell S J; Canty, Thomas M; Breslin, Paul A S

    2004-07-01

    We investigated the ability of zinc sulfate (5, 25, 50 mM) to inhibit the sweetness of 12 chemically diverse sweeteners, which were all intensity matched to 300 mM sucrose [800 mM glucose, 475 mM fructose, 3.25 mM aspartame, 3.5 mM saccharin, 12 mM sodium cyclamate, 14 mM acesulfame-K, 1.04 M sorbitol, 0.629 mM sucralose, 0.375 mM neohesperidin dihydrochalcone (NHDC), 1.5 mM stevioside and 0.0163 mM thaumatin]. Zinc sulfate inhibited the sweetness of most compounds in a concentration dependent manner, peaking with 80% inhibition by 50 mM. Curiously, zinc sulfate never inhibited the sweetness of Na-cyclamate. This suggests that Na-cyclamate may access a sweet taste mechanism that is different from the other sweeteners, which were inhibited uniformly (except thaumatin) at every concentration of zinc sulfate. We hypothesize that this set of compounds either accesses a single receptor or multiple receptors that are inhibited equally by zinc sulfate at each concentration. PMID:15269123

  10. Pharmacological profiles of animal- and nonanimal-derived sulfated polysaccharides – comparison of unfractionated heparin, the semisynthetic glucan sulfate PS3, and the sulfated polysaccharide fraction isolated from Delesseria sanguinea

    PubMed Central

    Groth, Inken; Grünewald, Niels; Alban, Susanne

    2009-01-01

    Sulfated polysaccharides (SP) such as heparin are known to exhibit a wide range of biological activities, e.g., anticoagulant, anti-inflammatory, and antimetastastic effects. However, since the anticoagulant activity of heparin is dominating, its therapeutic use for other medical indications is limited due to an associated risk of bleeding. Further disadvantages of heparin are its animal origin, the shortage of resources, and its complex and variable composition. However, SP without these limitations may represent a substance class with good prospects for applications other than anticoagulation. In this study, the in vitro pharmacological profiles of two nonanimal-derived SP were investigated in comparison with unfractionated heparin. One is the natural SP fraction from the red algae Delesseria sanguinea (D.s.-SP). The other one is the chemically defined PS3, a semisynthetic β-1,3-glucan sulfate with proven in vivo anti-inflammatory and antimetastatic activities. All three polysaccharides were examined in vitro for their inhibitory effects on the coagulation and complement system, polymorphonuclear neutrophil elastase, hyaluronidase, matrix metalloproteinase-1, heparanase, and p-selectin-mediated cell adhesion. Compared with heparin, the nonanimal-derived polysaccharides have a four times weaker anticoagulant activity, but mostly exhibit stronger (1.4–224 times) effects on test systems investigating targets of inflammation or metastasis. According to their different structures, PS3 and D.s.-SP differ in their pharmacological profile with PS3 being the strongest inhibitor of heparanase and cell adhesion and D.s.-SP being the strongest inhibitor of hyaluronidase and complement activation. Considering both pharmacological profile and pharmaceutical quality parameters, PS3 represents a candidate for further development as an anti-inflammatory or antimetastatic drug whereas D.s.-SP might have perspectives for cosmetic applications. PMID:19106233

  11. Ulvan, a sulfated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway.

    PubMed

    Jaulneau, Valérie; Lafitte, Claude; Jacquet, Christophe; Fournier, Sylvie; Salamagne, Sylvie; Briand, Xavier; Esquerré-Tugayé, Marie-Thérèse; Dumas, Bernard

    2010-01-01

    The industrial use of elicitors as alternative tools for disease control needs the identification of abundant sources of them. We report on an elicitor obtained from the green algae Ulva spp. A fraction containing most exclusively the sulfated polysaccharide known as ulvan-induced expression of a GUS gene placed under the control of a lipoxygenase gene promoter. Gene expression profiling was performed upon ulvan treatments on Medicago truncatula and compared to phytohormone effects. Ulvan induced a gene expression signature similar to that observed upon methyl jasmonate treatment (MeJA). Involvement of jasmonic acid (JA) in ulvan response was confirmed by detecting induction of protease inhibitory activity and by hormonal profiling of JA, salicylic acid (SA) and abscisic acid (ABA). Ulvan activity on the hormonal pathway was further consolidated by using Arabidopsis hormonal mutants. Altogether, our results demonstrate that green algae are a potential reservoir of ulvan elicitor which acts through the JA pathway. PMID:20445752

  12. Ulvan, a Sulfated Polysaccharide from Green Algae, Activates Plant Immunity through the Jasmonic Acid Signaling Pathway

    PubMed Central

    Jaulneau, Valérie; Lafitte, Claude; Jacquet, Christophe; Fournier, Sylvie; Salamagne, Sylvie; Briand, Xavier; Esquerré-Tugayé, Marie-Thérèse; Dumas, Bernard

    2010-01-01

    The industrial use of elicitors as alternative tools for disease control needs the identification of abundant sources of them. We report on an elicitor obtained from the green algae Ulva spp. A fraction containing most exclusively the sulfated polysaccharide known as ulvan-induced expression of a GUS gene placed under the control of a lipoxygenase gene promoter. Gene expression profiling was performed upon ulvan treatments on Medicago truncatula and compared to phytohormone effects. Ulvan induced a gene expression signature similar to that observed upon methyl jasmonate treatment (MeJA). Involvement of jasmonic acid (JA) in ulvan response was confirmed by detecting induction of protease inhibitory activity and by hormonal profiling of JA, salicylic acid (SA) and abscisic acid (ABA). Ulvan activity on the hormonal pathway was further consolidated by using Arabidopsis hormonal mutants. Altogether, our results demonstrate that green algae are a potential reservoir of ulvan elicitor which acts through the JA pathway. PMID:20445752

  13. Microanalysis and preliminary pharmacokinetic studies of a sulfated polysaccharide from Laminaria japonica

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Sun, Delin; Zhao, Xia; Jin, Weihua; Wang, Jing; Zhang, Quanbin

    2016-01-01

    A rapid, sensitive and reproducible high performance liquid chromatography (HPLC) method with post-column fluorescence derivatization has been developed to determine the amount of low-molecular-weight sulfated polysaccharide (GFS) in vivo. The metabolism of GFS has been shown to fit a two component model following its administration by intravenous injection, and its pharmacokinetic parameters were determined to be as follows: half-time of distribution phase ( t 1/2α)=11.24±2.93 min, half-time of elimination phase ( t 1/2β)=98.20±25.78 min, maximum concentration ( C max)=110.53 μg/mL and peak time ( T max)=5 min. The pharmacokinetic behavior of GFS was also investigated following intragastric administration. However, the concentration of GFS found in serum was too low for detection, and GFS could only be detected for up to 2 h after intragastric administration (200 mg/kg body weight). Thus, the bioavailability of GFS was low following intragastric administration because of the metabolism of GFS. In conclusion, HPLC with postcolumn derivatization could be used for quantitative microanalysis and pharmacokinetic studies to determine the presence of polysaccharides in the serum following intravenous injection.

  14. Isolation, characterization and bioactivities of a new polysaccharide from Annona squamosa and its sulfated derivative.

    PubMed

    Tu, Wensong; Zhu, Jianhua; Bi, Sixue; Chen, Dehong; Song, Liyan; Wang, Lishan; Zi, Jiachen; Yu, Rongmin

    2016-11-01

    A new water-soluble polysaccharide, designated as ASPW80-1, was first isolated from the fruit pulp of Annona squamosa. The structure of ASPW80-1 was elucidated based on the physicochemical and instrumental analyses. The results indicated that ASPW80-1 was a homogeneous heteropolysaccharide with an average molecular weight of 2.29×10(5)Da. Another novel modified polysaccharide, the sulfated derivative of ASPW80-1 namely as ASPW80-M1, was also synthesized. The ultra-structures of both ASPW80-1 and ASPW80-M1 were further characterized by scanning electron microscopy and atomic force microscopy. The antioxidant assays showed that ASPW80-1 and ASPW80-M1 exhibited DPPH and hydroxyl radicals scavenging activities. The results of immunomodulatory assays in vitro showed that ASPW80-1 and ASPW80-M1 could markedly promote the proliferation of mouse splenocytes. These results proposed that ASPW80-M1 might be proposed to be developed as a potential value-added product with the activities of immunomodulator and free-radical inhibitors. PMID:27516275

  15. Amorphous nanodrugs prepared by complexation with polysaccharides: carrageenan versus dextran sulfate.

    PubMed

    Cheow, Wean Sin; Kiew, Tie Yi; Hadinoto, Kunn

    2015-03-01

    Amorphous nanodrugs prepared by electrostatic complexation of drug molecules with oppositely charged polysaccharides represent a promising bioavailability enhancement strategy for poorly-soluble drugs owed to their high supersaturation generation capability and simple preparation. Using ciprofloxacin (CIP) as the model drug, we investigated the effects of using dextran sulfate (DXT) or carrageenan (CGN) on the (1) preparation efficiency, (2) physical characteristics, (3) supersaturation generation, (4) antimicrobial activity, and (5) cytotoxicity of the amorphous drug-polysaccharide nanoparticle complex (nanoplex) produced. Owing to the higher charge density and chain flexibility of DXT, coupled with the greater hydrophobicity of CGN, the CIP-DXT nanoplex exhibited superior preparation efficiency and larger size than the CIP-CGN nanoplex. Whereas the low solubility and high gelation tendency of CGN resulted in superior supersaturation generation capability for the CIP-DXT nanoplex. The non-cytotoxicity, antimicrobial activity, colloidal, and amorphous state stability were established for both nanoplexes, making them an ideal supersaturated drug delivery system. PMID:25498670

  16. Sulfated polysaccharide fraction from marine algae Solieria filiformis: Structural characterization, gastroprotective and antioxidant effects.

    PubMed

    Sousa, Willer M; Silva, Renan O; Bezerra, Francisco F; Bingana, Rudy D; Barros, Francisco Clark N; Costa, Luís E C; Sombra, Venicios G; Soares, Pedro M G; Feitosa, Judith P A; de Paula, Regina C M; Souza, Marcellus H L P; Barbosa, André Luiz R; Freitas, Ana Lúcia P

    2016-11-01

    A sulfated polysaccharide (SFP) fraction from the marine alga Solieria filiformis was extracted and submitted to microanalysis, molar mass estimation and spectroscopic analysis. We evaluated its gastroprotective potential in vivo in an ethanol-induced gastric damage model and its in vitro antioxidant properties (DPPH, chelating ferrous ability and total antioxidant capacity). Its chemical composition revealed to be essentially an iota-carrageenan with a molar mass of 210.9kDa and high degree of substitution for sulfate groups (1.08). In vivo, SFP significantly (P<0.05) reduced, in a dose dependent manner, the ethanol-induced gastric damage. SFP prevents glutathione consume and increase of malondialdehyde and hemoglobin levels. SFP presented an IC50 of 1.77mg/mL in scavenging DPPH. The chelating ferrous ability was 38.98%, and the total antioxidant capacity was 2.01mg/mL. Thus, SFP prevents the development of ethanol-induced gastric damage by reducing oxidative stress in vivo and possesses relevant antioxidant activity in vitro. PMID:27516258

  17. The sulfated polysaccharide from a marine red microalga as a platform for the incorporation of zinc ions.

    PubMed

    Netanel Liberman, Gal; Ochbaum, Guy; Malis Arad, Shoshana; Bitton, Ronit

    2016-11-01

    The cell-wall sulfated polysaccharide of the marine red microalga Porphyridium sp. is a high molecular weight biopolymer that has potential for use as a platform for metal complexation for various applications. This paper describes the structural and rheological characterization and antibacterial activity of the polysaccharide in combination with Zn(2+) (Zn-PS). SAXS and rheology studies indicate that with the addition of ZnCl2 to the sulfated polysaccharide the only change was the increase in viscosity in the entangled regime. The antibacterial activity of Zn-PS solutions was more potent than that of the native polysaccharide against Gram-negative and Gram-positive bacteria. The synergy between the bioactivities of Zn(2+) (which is a key player in wound healing and is active against variety of pathogens) and the unique bioactivities of the polysaccharide (e.g., anti-inflammatory) indicates promising potential for the development of novel products for the pharmaceutical and cosmetics industries. PMID:27516316

  18. Immunomodulatory of selenium nano-particles decorated by sulfated Ganoderma lucidum polysaccharides.

    PubMed

    Wang, Jianguo; Zhang, Yifeng; Yuan, Yahong; Yue, Tianli

    2014-06-01

    In this study, we employed a one-step method to prepare selenium nanoparticles (SeNPs) decorated by the water-soluble derivative of Ganoderma lucidum polysaccharides (SPS). The SeNPs-SPS complexes were stable, and the diameter of the SeNPs was homogeneous at around 25 nm. We investigated the anti-inflammatory activity of SeNPs-SPS against murine Raw 264.7 macrophage cells induced by LPS. SeNPs-SPS were found to significantly inhibit LPS-stimulated nitric oxide (NO) production against Raw 264.7 macrophages. RT-PCR results reveal the down-regulation of mRNA gene expressions for pro-inflammatory cytokines, including inducible NO synthase (iNOS), interleukin (IL)-1 and TNF-α in a dose-dependent manner. However, the anti-inflammation cytokine IL-10 was markedly increased. In the NF-κB signal pathway, SeNPs-SPS significantly inhibited the phosphorylation of Iκ-Bα. Similar results were observed for inhibition of the phosphorylation of JNK1/2 and p38 mitogen-activated protein kinase(MAPKs), whereas ERK1/2 MAPK was not apparently affected by SeNPs-SPS. All of these results suggest that SeNPs-SPS complexes have anti-inflammatory potential modulating pro-/anti-inflammation cytokine secretion profiles, and that the mechanism is partially due to inhibition of activations of NF-κB, JNK1/2 and p38 MAPKs. PMID:24626144

  19. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides

    PubMed Central

    Song, Lin; Chen, Xiaolin; Liu, Xiaodong; Zhang, Fubo; Hu, Linfeng; Yue, Yang; Li, Kecheng; Li, Pengcheng

    2015-01-01

    Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV. PMID:26729137

  20. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides.

    PubMed

    Song, Lin; Chen, Xiaolin; Liu, Xiaodong; Zhang, Fubo; Hu, Linfeng; Yue, Yang; Li, Kecheng; Li, Pengcheng

    2016-01-01

    Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV. PMID:26729137

  1. Molecular Basis of the Receptor Interactions of Polysialic Acid (polySia), polySia Mimetics, and Sulfated Polysaccharides.

    PubMed

    Zhang, Ruiyan; Loers, Gabriele; Schachner, Melitta; Boelens, Rolf; Wienk, Hans; Siebert, Simone; Eckert, Thomas; Kraan, Stefan; Rojas-Macias, Miguel A; Lütteke, Thomas; Galuska, Sebastian P; Scheidig, Axel; Petridis, Athanasios K; Liang, Songping; Billeter, Martin; Schauer, Roland; Steinmeyer, Jürgen; Schröder, Jens-Michael; Siebert, Hans-Christian

    2016-05-01

    Polysialic acid (polySia) and polySia glycomimetic molecules support nerve cell regeneration, differentiation, and neuronal plasticity. With a combination of biophysical and biochemical methods, as well as data mining and molecular modeling techniques, it is possible to correlate specific ligand-receptor interactions with biochemical processes and in vivo studies that focus on the potential therapeutic impact of polySia, polySia glycomimetics, and sulfated polysaccharides in neuronal diseases. With this strategy, the receptor interactions of polySia and polySia mimetics can be understood on a submolecular level. As the HNK-1 glycan also enhances neuronal functions, we tested whether similar sulfated oligo- and polysaccharides from seaweed could be suitable, in addition to polySia, for finding potential new routes into patient care focusing on an improved cure for various neuronal diseases. The knowledge obtained here on the structural interplay between polySia or sulfated polysaccharides and their receptors can be exploited to develop new drugs and application routes for the treatment of neurological diseases and dysfunctions. PMID:27136597

  2. A sulfated polysaccharide, fucoidan, enhances the immunomodulatory effects of lactic acid bacteria.

    PubMed

    Kawashima, Tadaomi; Murakami, Katsura; Nishimura, Ikuko; Nakano, Takahisa; Obata, Akio

    2012-03-01

    Fucoidan, a sulfated polysaccharide contained in brown algae, has a variety of immunomodulatory effects, including antitumor and antiviral effects. On the other hand, lactic acid bacteria (LAB) also have immunomodulatory effects such as anti-allergic effects. In this study, we demonstrated that fucoidan enhances the probiotic effects of LAB on immune functions. By using Peyer's patch cells and spleen cells in vitro, fucoidan amplified interferon (IFN)-γ production in response to a strain of LAB, Tetragenococcus halophilus KK221, and this activity was abolished by desulfation of fucoidan. Moreover, this IFN-γ response was abolished by interleukin (IL)-12 neutralization. These results indicate that fucoidan enhanced IL-12 production in response to KK221, resulting in promoting IFN-γ production. In an in vivo study, Th1/Th2 immunobalance was most improved by oral administration of both fucoidan and KK221 to ovalbumin-immunized mice. These findings suggest that fucoidan can enhance a variety of beneficial effects of LAB on immune functions. PMID:22160132

  3. Inhibition of spontaneous canine benign prostatic hyperplasia by an Urtica fissa polysaccharide fraction.

    PubMed

    Xiaocheng, Chen; Shan, He; Yuxing, Lu; Lizhen, Yuan; Linmao, Ding; Shoujun, Yuan; Qinglin, Zhang

    2015-01-01

    In this study, we investigated the inhibition of spontaneous canine benign prostatic hyperplasia by a crude polysaccharide fraction extracted from Urtica fissa roots and stems. After oral administration of U. fissa polysaccharide fraction for 3 months, the dog prostatic volume reduced significantly when compared to that before treatment using CT examination. The high-dosage U. fissa polysaccharide fraction (120 mg/kg body weight/day) and finasteride (0.5 mg/kg body weight/day) treatments showed both almost 30 % reduction of the initial prostatic volume. At the end of the administration of U. fissa polysaccharide fraction, the prostates were excised, and the volumes were measured by water displacement. The prostatic volume showed significant decrease by 11 %, 15 %, and 21 % for the 30, 60, and 120 mg/kg/day U. fissa polysaccharide fraction treatment groups, respectively, compared to the control group. Histological observation found that U. fissa polysaccharide fraction inhibited the dog prostatic epithelial cells proliferation and enlarged glandular lumen diameter. The crude polysaccharide fraction of U. fissa is a possible new candidate for the treatment of benign prostatic hyperplasia. PMID:25473922

  4. Structural analysis and cytokine-induced activity of gelling sulfated polysaccharide from the cystocarpic plants of Ahnfeltiopsis flabelliformis.

    PubMed

    Kravchenko, Anna O; Anastyuk, Stanislav D; Sokolova, Ekaterina V; Isakov, Vladimir V; Glazunov, Valery P; Helbert, William; Yermak, Irina M

    2016-10-20

    Gelling sulfated polysaccharide from the cystocarpic plants of Ahnfeltiopsis flabelliformis was studied. According to FT-IR and NMR spectroscopy data, the polysaccharide was found to be iota/kappa-carrageenan with iota- and kappa-type units in a 2:1 ratio containing beta-carrageenan units and minor amounts of nu- and mu-carrageenans. The HPLC and ESI MS/MS data of enzymatic hydrolysis products revealed that the main components of the polymer chain are iota-carrabiose, iota-carratetraose and hybrid tetra- and hexasaccharides consisting of kappa- and iota-units. Xylose was a substituent of a hydroxyl group at C-6 of 1,3-linked β-d-galactose in the total polysaccharides. It was shown that the ability of carrageenans to increase the synthesis of cytokines depended on their molecular weight. The polysaccharide induced the synthesis of the anti-inflammatory cytokine IL-10, whereas oligosaccharides increased the synthesis of both pro- and anti-inflammatory cytokines at high concentrations. PMID:27474596

  5. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years

    PubMed Central

    Wang, Lingchong; Wang, Xiangyu; Wu, Hao; Liu, Rui

    2014-01-01

    Among the three main divisions of marine macroalgae (Chlorophyta, Phaeophyta and Rhodophyta), marine green algae are valuable sources of structurally diverse bioactive compounds and remain largely unexploited in nutraceutical and pharmaceutical areas. Recently, a great deal of interest has been developed to isolate novel sulfated polysaccharides (SPs) from marine green algae because of their numerous health beneficial effects. Green seaweeds are known to synthesize large quantities of SPs and are well established sources of these particularly interesting molecules such as ulvans from Ulva and Enteromorpha, sulfated rhamnans from Monostroma, sulfated arabinogalactans from Codium, sulfated galacotans from Caulerpa, and some special sulfated mannans from different species. These SPs exhibit many beneficial biological activities such as anticoagulant, antiviral, antioxidative, antitumor, immunomodulating, antihyperlipidemic and antihepatotoxic activities. Therefore, marine algae derived SPs have great potential for further development as healthy food and medical products. The present review focuses on SPs derived from marine green algae and presents an overview of the recent progress of determinations of their structural types and biological activities, especially their potential health benefits. PMID:25257786

  6. Algal sulfated carrageenan inhibits proliferation of MDA-MB-231 cells via apoptosis regulatory genes.

    PubMed

    Murad, Hossam; Ghannam, Ahmed; Al-Ktaifani, Mahmoud; Abbas, Assef; Hawat, Mohammad

    2015-03-01

    Marine algae are prolific sources of sulfated polysaccharides, which may explain the low incidence of certain cancers in countries that traditionally consume marine food. Breast cancer is one of the most common types of non‑skin cancer in females. In this study, extracted sulfated carrageenan (ESC), predominantly consisting of ι‑carrageenan extracted from the red alga Laurencia papillosa, was characterized using Fourier transform infrared spectrometry. The biological effects of the identified extract were investigated and its potential cytotoxic activity was tested against the MDA‑MB‑231 cancer cell line. The biological biometer of the inhibitory concentration of the polysaccharide‑treated MDA‑MB‑231 cells was determined as 50 µM. Treatment with 50 µM ESC inhibited cell proliferation and promptly induced cell death through nuclear condensation and DNA fragmentation. Characterization of polysaccharide‑treated MDA‑MB‑231 cell death revealed that induction of apoptosis occurred via the activation of the extrinsic apoptotic caspase‑8 gene. The apoptotic signaling pathway was regulated through caspase‑3, caspase‑9, p53, Bax and Bcl‑2 genes. These findings suggest that ESC may serve as a potential therapeutic agent to target breast cancer via prompting apoptosis. PMID:25384757

  7. Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin

    PubMed Central

    Verespy III, Stephen; Mehta, Akul Y.; Afosah, Daniel; Al-Horani, Rami A.; Desai, Umesh R.

    2016-01-01

    Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (<500 nM) and high selectivity for thrombin (>150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding. PMID:27053426

  8. Fucosylated Chondroitin Sulfate Inhibits Plasmodium falciparum Cytoadhesion and Merozoite Invasion

    PubMed Central

    Bastos, Marcele F.; Albrecht, Letusa; Kozlowski, Eliene O.; Lopes, Stefanie C. P.; Blanco, Yara C.; Carlos, Bianca C.; Castiñeiras, Catarina; Vicente, Cristina P.; Werneck, Claudio C.; Wunderlich, Gerhard; Ferreira, Marcelo U.; Marinho, Claudio R. F.; Mourão, Paulo A. S.; Pavão, Mauro S. G.

    2014-01-01

    Sequestration of Plasmodium falciparum-infected erythrocytes (Pf-iEs) in the microvasculature of vital organs plays a key role in the pathogenesis of life-threatening malaria complications, such as cerebral malaria and malaria in pregnancy. This phenomenon is marked by the cytoadhesion of Pf-iEs to host receptors on the surfaces of endothelial cells, on noninfected erythrocytes, and in the placental trophoblast; therefore, these sites are potential targets for antiadhesion therapies. In this context, glycosaminoglycans (GAGs), including heparin, have shown the ability to inhibit Pf-iE cytoadherence and growth. Nevertheless, the use of heparin was discontinued due to serious side effects, such as bleeding. Other GAG-based therapies were hampered due to the potential risk of contamination with prions and viruses, as some GAGs are isolated from mammals. In this context, we investigated the effects and mechanism of action of fucosylated chondroitin sulfate (FucCS), a unique and highly sulfated GAG isolated from the sea cucumber, with respect to P. falciparum cytoadhesion and development. FucCS was effective in inhibiting the cytoadherence of Pf-iEs to human lung endothelial cells and placenta cryosections under static and flow conditions. Removal of the sulfated fucose branches of the FucCS structure virtually abolished the inhibitory effects of FucCS. Importantly, FucCS rapidly disrupted rosettes at high levels, and it was also able to block parasite development by interfering with merozoite invasion. Collectively, these findings highlight the potential of FucCS as a candidate for adjunct therapy against severe malaria. PMID:24395239

  9. Polysaccharides from Korean Citrus hallabong peels inhibit angiogenesis and breast cancer cell migration.

    PubMed

    Park, J Y; Shin, M S; Kim, S N; Kim, H Y; Kim, K H; Shin, K S; Kang, K S

    2016-04-01

    Although the peel of the hallabong (Citrus sphaerocarpa) fruit is rich in polysaccharides, which are valuable dietary ingredients for human health, it is normally wasted. The present study aimed to utilize the peel waste and identify properties it may have against breast cancer metastasis. Hallabong peel extract containing crude polysaccharides was fractionated by gel permeation chromatography to produce four different polysaccharide fractions (HBE-I, -II, -III, and -IV). The HBE polysaccharides significantly blocked tube formation of human umbilical vein vascular endothelial cells (HUVECs), at a concentration of 12.5 or 25 μg/mL. Tube formation appeared to be more sensitive to HBE-II than to other HBE polysaccharides. HBE-II also inhibited breast cancer cell migration, through downregulation of matrix metalloproteinase-9 (MMP-9) in MDA-MB-231 triple-negative breast cancer cells. Therefore, inhibition of tube formation and MMP-9-mediated migration observed in HUVEC and MDA-MB-231 cells, respectively, are likely to be important therapeutic targets in triple-negative breast cancer metastasis. PMID:26778161

  10. Inhibition of synthesis of heparan sulfate by selenate: Possible dependence on sulfation for chain polymerization

    SciTech Connect

    Dietrich, C.P.; Nader, H.B. ); Buonassisi, V.; Colburn, P. )

    1988-01-01

    Selenate, a sulfation inhibitor, blocks the synthesis of heparan sulfate and chondroitin sulfate by cultured endothelial cells. In contrast, selenate does not affect the production of hyaluronic acid, a nonsulfated glycosaminoglycan. No differences in molecular weight, ({sup 3}H)glucosamine/({sup 35}S)sulfuric acid ratios, or disaccharide composition were observed when the heparan sulfate synthesized by selenate-treated cells was compared with that of control cells. The absence of undersulfated chains in preparations from cultures exposed to selenate supports the concept that, in the intact cell, the polymerization of heparan sulfate might be dependent on the sulfation of the saccharide units added to the growing glycosaminoglycan chain.

  11. Structural characterization and biological activities of a novel polysaccharide from cultured Cordyceps militaris and its sulfated derivative.

    PubMed

    Jing, Yongshuai; Zhu, Jianhua; Liu, Ting; Bi, Sixue; Hu, Xianjing; Chen, Zhiyan; Song, Liyan; Lv, Wenjie; Yu, Rongmin

    2015-04-01

    A novel polysaccharide (CMPA90-1; compound 1) was isolated from the cultured fruiting bodies of Cordyceps militaris. The chemical structure of compound 1 was elucidated by acid hydrolysis, periodate oxidation, Smith degradation, and methylation analysis, along with Fourier transform infrared spectroscopy, high-performance anion-exchange chromatography coupled with pulsed amperometric detection, gas chromatography-mass spectrometry, and one-dimensional [(1)H and (13)C nuclear magnetic resonance (NMR)] and two-dimensional NMR (heteronuclear single-quantum coherence and heteronuclear multiple-bond correlation). Sulfation of compound 1 by the chlorosulfonic acid-pyridine (CSA-Pyr) method led to synthesis of its sulfated analogue (CMPA90-M1; compound 2). The ultrastructures of both compounds 1 and 2 were further characterized by scanning electron microscopy and atomic force microscopy. The results of antioxidant assays showed that compounds 1 and 2 exhibited free-radical-scavenging effects, ferrous-ion-chelating ability, and reducing power. Also, in the cytotoxicity assay, compounds 1 and 2 showed inhibitory activity against A549 cells, with IC50 values of 39.08 and 17.33 μg/mL, respectively. PMID:25785351

  12. The effect of sulfated polysaccharides on the crystallization of calcite superstructures

    NASA Astrophysics Data System (ADS)

    Fried, Ruth; Mastai, Yitzhak

    2012-01-01

    Calcite with unique morphology and uniform size has been successfully synthesized in the presence of classes of polysaccharides based on carrageenans. In the crystallization of calcite, the choice of different carrageenans, (iota, lambda and kappa), as additives concedes systematic study of the influence of different chemical structures and particularly molecular charge on the formation of CaCO 3 crystals. The uniform calcite superstructures are formed by assemblies and aggregation of calcite crystals. The mechanism for the formation of calcite superstructures was studied by a variety of techniques, SEM, TEM, XRD, time-resolved conductivity and light scattering measurements, focusing on the early stages of crystals' nucleation and aggregation.

  13. Sulfate inhibits ( sup 14 C)phosphonoformic acid binding to renal brush-border membranes

    SciTech Connect

    Tenenhouse, H.S.; Lee, J. )

    1990-08-01

    To examine the specificity of the phosphonoformic acid (PFA) interaction with the Na(+)-dependent phosphate transporter of mouse renal brush-border membrane vesicles, we compared the effects of anions on Na(+)-dependent (14C)PFA binding and Na(+)-dependent phosphate transport. Inhibition of PFA binding was achieved by PFA (% control = 0 +/- 1), sulfate (15 +/- 2), arsenate (35 +/- 1), phosphate (59 +/- 2), and nitrate (68 +/- 4), whereas inhibition of phosphate transport was only apparent with phosphate (0 +/- 1), PFA (22 +/- 4), and arsenate (37 +/- 5). Succinate and gluconate had no effect on either Na(+)-dependent process. Under conditions where Na(+)-dependent PFA binding was maximally inhibited by phosphate (% control = 65 +/- 4), further inhibition could be achieved by sulfate (26 +/- 5%). Na(+)-dependent PFA binding was competitively inhibited by phosphate (apparent Ki = 8.9 +/- 1.2 mM) and noncompetitively inhibited by sulfate (apparent Ki = 2.6 +/- 0.5 mM). We found that PFA inhibited Na(+)-dependent sulfate transport (50% inhibition at 9 mM PFA) as well as Na(+)-dependent phosphate transport (50% inhibition at 0.5 mM PFA). We also examined the pH dependence of Na(+)-dependent PFA binding and Na(+)-dependent phosphate and sulfate transport. PFA binding was optimal at pH = 7.4, whereas phosphate transport increased with increasing pH, and sulfate transport increased with decreasing pH.

  14. Formation and inhibition of ethyl glucuronide and ethyl sulfate.

    PubMed

    Stachel, Nicole; Skopp, Gisela

    2016-08-01

    Ethyl glucuronide (EtG) und ethyl sulfate (EtS) are widely accepted biomarkers in forensic and clinical settings. Even though, levels of EtG and EtS in blood and urine increase with increasing doses of alcohol, a high inter-individual variability in their production has been noticed. Therefore, we investigated the influence of dietary plant phenols on the formation of EtG and EtS and tentatively estimated the magnitude of in vivo inhibitory interactions from our in vitro results. To address these issues, formation of EtS and EtG was investigated using recombinant glucuronosyl- and sulfotransferases as well as human liver microsomes and liver cytosol. After respective kinetics had been established, inhibition experiments using quercetin, kaempferol and resveratrol were performed. These polyphenols are subject to extensive glucuronidation and/or sulfonation. EtG and EtS were determined by LC-MS/MS following solid phase extraction for EtG due to severe matrix effects and by direct injection for EtS. All enzymes investigated were involved in the conjugation of ethanol. Maximal EtG and EtS formation rates were observed with HLM and SULT1A1, respectively. All kinetics could best be described by Michaelis-Menten kinetics. Resveratrol was a competitive inhibitor of UGT1A1, UGT1A9 and HLM; quercetin and kaempferol were inhibitors of all transferases under investigation except UGT2B15. Findings for quercetin with regard to UGT2B7 and SULT2A1 and for kaempferol with regard to SULT1E1 and SULT2A1 suggested a mechanism based inhibition. Competitive inhibition of the glucuronidation and sulfonation of ethanol was estimated as weak to negligible and as moderate to weak, respectively. Beside the known polymorphisms of the transferases involved in EtG and EtS formation, prediction of the inhibitory potential indicates that polyphenols may contribute to the variable formation rate of EtG and EtS. PMID:26829336

  15. Sulfated polysaccharide, curdlan sulfate, efficiently prevents entry/fusion and restricts antibody-dependent enhancement of dengue virus infection in vitro: a possible candidate for clinical application.

    PubMed

    Ichiyama, Koji; Gopala Reddy, Sindhoora Bhargavi; Zhang, Li Feng; Chin, Wei Xin; Muschin, Tegshi; Heinig, Lars; Suzuki, Youichi; Nanjundappa, Haraprasad; Yoshinaka, Yoshiyuki; Ryo, Akihide; Nomura, Nobuo; Ooi, Eng Eong; Vasudevan, Subhash G; Yoshida, Takashi; Yamamoto, Naoki

    2013-01-01

    Curdlan sulfate (CRDS), a sulfated 1→3-β-D glucan, previously shown to be a potent HIV entry inhibitor, is characterized in this study as a potent inhibitor of the Dengue virus (DENV). CRDS was identified by in silico blind docking studies to exhibit binding potential to the envelope (E) protein of the DENV. CRDS was shown to inhibit the DENV replication very efficiently in different cells in vitro. Minimal effective concentration of CRDS was as low as 0.1 µg/mL in LLC-MK2 cells, and toxicity was observed only at concentrations over 10 mg/mL. CRDS can also inhibit DENV-1, 3, and 4 efficiently. CRDS did not inhibit the replication of DENV subgenomic replicon. Time of addition experiments demonstrated that the compound not only inhibited viral infection at the host cell binding step, but also at an early post-attachment step of entry (membrane fusion). The direct binding of CRDS to DENV was suggested by an evident reduction in the viral titers after interaction of the virus with CRDS following an ultrafiltration device separation, as well as after virus adsorption to an alkyl CRDS-coated membrane filter. The electron microscopic features also showed that CRDS interacted directly with the viral envelope, and caused changes to the viral surface. CRDS also potently inhibited DENV infection in DC-SIGN expressing cells as well as the antibody-dependent enhancement of DENV-2 infection. Based on these data, a probable binding model of CRDS to DENV E protein was constructed by a flexible receptor and ligand docking study. The binding site of CRDS was predicted to be at the interface between domains II and III of E protein dimer, which is unique to this compound, and is apparently different from the β-OG binding site. Since CRDS has already been tested in humans without serious side effects, its clinical application can be considered. PMID:23658845

  16. Sulfated Polysaccharide, Curdlan Sulfate, Efficiently Prevents Entry/Fusion and Restricts Antibody-Dependent Enhancement of Dengue Virus Infection In Vitro: A Possible Candidate for Clinical Application

    PubMed Central

    Zhang, Li Feng; Chin, Wei Xin; Muschin, Tegshi; Heinig, Lars; Suzuki, Youichi; Nanjundappa, Haraprasad; Yoshinaka, Yoshiyuki; Ryo, Akihide; Nomura, Nobuo; Ooi, Eng Eong; Vasudevan, Subhash G.; Yoshida, Takashi; Yamamoto, Naoki

    2013-01-01

    Curdlan sulfate (CRDS), a sulfated 1→3-β-D glucan, previously shown to be a potent HIV entry inhibitor, is characterized in this study as a potent inhibitor of the Dengue virus (DENV). CRDS was identified by in silico blind docking studies to exhibit binding potential to the envelope (E) protein of the DENV. CRDS was shown to inhibit the DENV replication very efficiently in different cells in vitro. Minimal effective concentration of CRDS was as low as 0.1 µg/mL in LLC-MK2 cells, and toxicity was observed only at concentrations over 10 mg/mL. CRDS can also inhibit DENV-1, 3, and 4 efficiently. CRDS did not inhibit the replication of DENV subgenomic replicon. Time of addition experiments demonstrated that the compound not only inhibited viral infection at the host cell binding step, but also at an early post-attachment step of entry (membrane fusion). The direct binding of CRDS to DENV was suggested by an evident reduction in the viral titers after interaction of the virus with CRDS following an ultrafiltration device separation, as well as after virus adsorption to an alkyl CRDS-coated membrane filter. The electron microscopic features also showed that CRDS interacted directly with the viral envelope, and caused changes to the viral surface. CRDS also potently inhibited DENV infection in DC-SIGN expressing cells as well as the antibody-dependent enhancement of DENV-2 infection. Based on these data, a probable binding model of CRDS to DENV E protein was constructed by a flexible receptor and ligand docking study. The binding site of CRDS was predicted to be at the interface between domains II and III of E protein dimer, which is unique to this compound, and is apparently different from the β-OG binding site. Since CRDS has already been tested in humans without serious side effects, its clinical application can be considered. PMID:23658845

  17. Inhibition of Streptococcus mutans polysaccharide synthesis by molecules targeting glycosyltransferase activity

    PubMed Central

    Ren, Zhi; Chen, Lulu; Li, Jiyao; Li, Yuqing

    2016-01-01

    Glycosyltransferase (Gtf) is one of the crucial virulence factors of Streptococcus mutans, a major etiological pathogen of dental caries. All the available evidence indicates that extracellular polysaccharide, particularly glucans produced by S. mutans Gtfs, contribute to the cariogenicity of dental biofilms. Therefore, inhibition of Gtf activity and the consequential polysaccharide synthesis may impair the virulence of cariogenic biofilms, which could be an alternative strategy to prevent the biofilm-related disease. Up to now, many Gtf inhibitors have been recognized in natural products, which remain the major and largely unexplored source of Gtf inhibitors. These include catechin-based polyphenols, flavonoids, proanthocyanidin oligomers, polymeric polyphenols, and some other plant-derived compounds. Metal ions, oxidizing agents, and some other synthetic compounds represent another source of Gtf inhibitors, with some novel molecules either discovered by structure-based virtual screening or synthesized based on key structures of known inhibitors as templates. Antibodies that inhibit one or more Gtfs have also been developed as topical agents. Although many agents have been shown to possess potent inhibitory activity against glucan synthesis by Gtfs, bacterial cell adherence, and caries development in animal models, much research remains to be performed to find out their mechanism of action, biological safety, cariostatic efficacies, and overall influence on the entire oral community. As a strategy to inhibit the virulence of cariogenic microbes rather than eradicate them from the microbial community, Gtf inhibition represents an approach of great potential to prevent dental caries. PMID:27105419

  18. Asparagus polysaccharide and gum with hepatic artery embolization induces tumor growth and inhibits angiogenesis in an orthotopic hepatocellular carcinoma model.

    PubMed

    Weng, Ling-Ling; Xiang, Jian-Feng; Lin, Jin-Bo; Yi, Shang-Hui; Yang, Li-Tao; Li, Yi-Sheng; Zeng, Hao-Tao; Lin, Sheng-Ming; Xin, Dong-Wei; Zhao, Hai-Liang; Qiu, Shu-Qi; Chen, Tao; Zhang, Min-Guang

    2014-01-01

    Liver cancer is one of leading digestive malignancies with high morbidity and mortality. There is an urgent need for the development of novel therapies for this deadly disease. It has been proven that asparagus polysaccharide, one of the most active derivates from the traditional medicine asparagus, possesses notable antitumor properties. However, little is known about the efficacy of asparagus polysaccharide as an adjuvant for liver cancer chemotherapy. Herein, we reported that asparagus polysaccharide and its embolic agent form, asparagus gum, significantly inhibited liver tumor growth with transcatheter arterial chemoembolization (TACE) therapy in an orthotopic hepatocellular carcinoma (HCC) tumor model, while significantly inhibiting angiogenesis and promoting tumor cell apoptosis. Moreover, asparagine gelatinous possessed immunomodulatory functions and showed little toxicity to the host. These results highlight the chemotherapeutic potential of asparagus polysaccharide and warrant a future focus on development as novel chemotherapeutic agent for liver cancer TACE therapy. PMID:25605207

  19. Group A streptococcal peptidoglycan-polysaccharide inhibits phagocytic activity of human polymorphonuclear leukocytes.

    PubMed Central

    Leong, P A; Cohen, M S

    1984-01-01

    Injection of sterile aqueous preparations of the peptidoglycan-polysaccharide of group A streptococci (PG-APS) produces chronic inflammation in several animal models. Chronic bacterial infection may be involved in some aspects of the pathogenesis of inflammation associated with the accumulation of PG-APS. Accordingly, the effect of PG-APS on human neutrophil (polymorphonuclear leukocyte [PMN]) bactericidal activity was studied with the supposition that this interaction may contribute to the inflammation observed. Concentrations of PG-APS greater than 10 micrograms/ml inhibited the ability of PMNs to kill Staphylococcus aureus. This inhibition was not due to a cytotoxic effect of PG-APS on PMNs, nor did PG-APS inhibit PMN metabolism required for the formation of microbicidal oxygen reduction products. PG-APS concentrations of 10 micrograms/ml or greater in the presence of 10% normal serum inhibited the attachment of bacteria to PMNs by 49% as compared with control cell populations. The concentrations of PG-APS required to inhibit uptake of Staphylococcus aureus were identical to those required for inhibition of PMN bactericidal activity. This inhibition did not occur in the presence of serum-free medium or medium with sera that had been heated to inactivate complement. These results show that PG-APS interacts with serum to inhibit PMN-mediated killing of S. aureus, most probably by interfering with bacterial uptake. PMID:6378796

  20. Interactions between sulfated polysaccharides from sea brown algae and Toll-like receptors on HEK293 eukaryotic cells in vitro.

    PubMed

    Makarenkova, I D; Logunov, D Yu; Tukhvatulin, A I; Semenova, I B; Besednova, N N; Zvyagintseva, T N

    2012-12-01

    We studied the interactions between sulfated polysaccharides, fucoidans from sea brown algae Laminaria japonica, Laminaria cichorioides, and Fucus evanescens, with human Toll-like receptors (TLR) expressed on membranes of cultured human embryonic kidney cells (HEK293-null, HEK293-TLR2/CD14, HEK293-hTLR4/CD14-MD2, and HEK293-hTLR5). Fucoidans interacted with TLR-2 and TLR-4, but not with TLR-5, and were nontoxic for the cell cultures. L. japonica fucoidan (1 mg/ml), L. cichorioides fucoidan (100 μg/ml and 1 mg/ml), and F. evanescens fucoidan (10 μg/ml-1 mg/ml) activated transcription nuclear factor NF-ϰB by binding specifically to TLR-2. L. japonica fucoidan (100 μg/ml and 1 mg/ml), L. cichorioides fucoidan (10 μg/ml-1 mg/ml), and F. evanescens fucoidan (1 μg/ml-1 mg/ml) activated NF-ϰB via binding to TLR-4. These results indicated that fucoidans could induce in vivo defense from pathogenic microorganisms of various classes. PMID:23330135

  1. Preventive Effects of Spirogyra neglecta and a Polysaccharide Extract against Dextran Sodium Sulfate Induced Colitis in Mice.

    PubMed

    Taya, Sirinya; Kakehashi, Anna; Wongpoomchai, Rawiwan; Gi, Min; Ishii, Naomi; Wanibuchi, Hideki

    2016-01-01

    Ulcerative colitis (UC) results from colonic epithelial barrier defects and impaired mucosal immune responses. In this study, we aimed to investigate the modifying effects of a Spirogyra neglecta extract (SNE), a polysaccharide extract (PE) and a chloroform fraction (CF) on dextran sodium sulfate (DSS)-induced colitis in mice and to determine the mechanisms. To induce colitis, ICR mice received 3% DSS in their drinking water for 7 days. Seven days preceding the DSS treatment, oral administration of SNE, PE and CF at doses of 50, 25 and 0.25 mg/kg body weight (low dose), 200, 100 and 1 mg/kg body weight (high dose) and vehicle was started and continued for 14 days. Histologic findings showed that DSS-induced damage of colonic epithelial structure and inflammation was attenuated in mice pre-treated with SNE, PE and CF. Furthermore, SNE and PE significantly protected colonic epithelial cells from DSS-induced cell cycle arrest, while SNE, PE and CF significantly diminished apoptosis. Proteome analysis demonstrated that SNE and PE might ameliorate DSS-induced colitis by inducing antioxidant enzymes, restoring impaired mitochondria function, and regulating inflammatory cytokines, proliferation and apoptosis. These results suggest that SNE and PE could prevent DSS-induced colitis in ICR mice by protection against and/or aiding recovery from damage to the colonic epithelium, reducing ROS and maintaining normal mitochondrial function and apoptosis. PMID:27221924

  2. A pure polysaccharide from Ephedra sinica treating on arthritis and inhibiting cytokines expression.

    PubMed

    Wang, Qiuhong; Shu, Zunpeng; Xing, Na; Xu, Bingqing; Wang, Changfu; Sun, Guibo; Sun, Xiaobo; Kuang, Haixue

    2016-05-01

    In our previous study, we found that the acidic polysaccharides of Ephedra sinica had immunosuppressive effect to treat rheumatoid arthritis and the pure polysaccharide ESP-B4 was the main composition of the acidic polysaccharides. At present, the exact molecular mechanism of ESP-B4 on treating arthritis is unclear. We are thus evaluating the properties of ESP-B4 on LPS-induced THP-1 pro-monocytic cells and adjuvant-induced arthritis in Wistar rats via TLR4. In vitro, ESP-B4 decreased the production of cytokines induced by LPS. In addition, ESP-B4 reduced the LPS-stimulated nuclear translocation of p65 subunit of NF-κB. Pretreatment with ESP-B4 significantly down-regulated the phosphorylation of MAPKs induced by LPS. Furthermore, in vivo, after 12 days of disease induced by adjuvant, rats were treated with ESP-B4 for 16 days. ESP-B4 significantly improved all parameters of inflammation. ESP-B4 reduced the release of inflammatory factors and cytokines by inhibiting the TLR4 signaling pathway to treat rheumatoid arthritis. PMID:26835987

  3. Vitamin C-sulfate inhibits mineralization in chondrocyte cultures: a caveat

    NASA Technical Reports Server (NTRS)

    Boskey, A. L.; Blank, R. D.; Doty, S. B.

    2001-01-01

    Differentiating chick limb-bud mesenchymal cell micro-mass cultures routinely mineralize in the presence of 10% fetal calf serum, antibiotics, 4 mM inorganic phosphate (or 2.5 mM beta-glycerophosphate), 0.3 mg/ml glutamine and either 25 microg/ml vitamin C or 5-12 microg/ml vitamin C-sulfate. The failure of these cultures to produce a mineralized matrix (assessed by electron microscopy, 45Ca uptake and Fourier transform infrared microscopy) led to the evaluation of each of these additives. We report here that the "stable" vitamin C-sulfate (ascorbic acid-2-sulfate) causes increased sulfate incorporation into the cartilage matrix. Furthermore, the release of sulfate from the vitamin C derivative appears to be responsible for the inhibition of mineral deposition, as demonstrated in cultures with equimolar amounts of vitamin C and sodium sulfate.

  4. Drug delivery and cell interaction of adhesive poly(ethyleneimine)/sulfated polysaccharide complex particle films.

    PubMed

    Müller, Martin; Torger, Bernhard; Wehrum, Diana; Vehlow, David; Urban, Birgit; Woltmann, Beatrice; Hempel, Ute

    2015-01-01

    Herein, the authors report and review polyelectrolyte complex (PEC) nanoparticles (NPs) loaded with zoledronate (ZOL) and simvastatin and their effects on bone cells. PEC NPs are intended for modification of bone substitute materials. For characterization, they can be solution casted on germanium (Ge) substrates serving as analytically accessible model substrate. PEC NPs were generated by mixing poly(ethyleneimine) (PEI) either with linear cellulose sulfate (CS) or with branched dextransulfate (DS). Four important requirements for drug loaded PEC NPs and their films are addressed herein, which are the colloidal stability of PEC dispersions (1), interfacial stability (2), cytocompatibility (3), and retarded drug release (4). Dynamic light scattering measurements (DLS) showed that both PEI/CS and PEI/DS PEC NP were obtained with hydrodynamic radii in the range of 35-170 nm and were colloidally stable up to several months. Transmission FTIR spectroscopy evidenced that films of both systems were stable in contact to the release medium up to several days. ZOL-loaded PEI/CS nanoparticles, which were immobilized on an osteoblast-derived extracellular matrix, reduced significantly the resorption and the metabolic activity of human monocyte-derived osteoclasts. FTIR spectroscopy at cast PEC/drug films at Ge substrates revealed retarded drug releases in comparison to the pure drug films. PMID:25708630

  5. Glufosinate and Ammonium Sulfate Inhibits Atrazine Degradation in Adapted Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The co-application of glufosinate with nitrogen fertilizers may alter atrazine co-metabolism, thereby extending the herbicide’s residual weed control in adapted soils. The objective of this study was to assess the effects of glufosinate, ammonium sulfate, and the combination of glufosinate and ammo...

  6. Effect of Astragalus polysaccharide and its sulfated derivative on growth performance and immune condition of lipopolysaccharide-treated broilers.

    PubMed

    Wang, Xiaofei; Li, Yulong; Shen, Jing; Wang, Siyu; Yao, Junhu; Yang, Xiaojun

    2015-05-01

    This study evaluates the immunomodulating activities of Astragalus polysaccharide (APS) and sulfated APS (SAPS) in LPS-infected broiler chicks. SAPS was derived using the classic chlorosulfonic acid-pyridine method. On day 16, the birds were injected intramuscularly with 0.5 mL of either saline, APS (4 or 8 mg/kg of body weight (BW), shorten as APS-4 or APS-8) or SAPS (4 or 8 mg/kg of BW, shorten as SAPS-4 or SAPS-8) once a day for three successive days. On days 19 and 20, the birds were intraperitoneally injected with 0.5 mL of LPS (1mg/kg of BW). Saline was used as blank control. Compared with the blank control, LPS-treated birds showed lower daily body weight gain (BWG), average daily feed intake (ADFI), villus height and intraepithelial lymphocytes (IEL) number in jejunum, and higher feed conversion ratio (FCR, feed:gain), spleen index, plasma NO concentration, blood heterophil:lymphocyte (H:L) ratio, and the production of NO in the blood T lymphocytes. Compared with the LPS group, birds in APS-4, SAPS-4 and SAPS-8 groups showed decreased FCR (P<0.05). Moreover, SAPS increased BWG and jejunal villus height (P<0.05) at 8 mg/kg BW. Plasma NO concentration was lower in APS-8 group than that in LPS group (P<0.05). Both APS-8 and SAPS-8 treatments elevated the number of jejunal IEL (P<0.05), and decreased blood H:L ratio (P<0.05), respectively. Administration of APS or SAPS did not affect the ADFI, immune organ index, crypt depth and mucosal thickness of the jejunum, and the number of goblet cell. Our findings suggested that APS and SAPS possessed dose-dependent growth-promoting and immunomodulating effect, and was a potential development direction for immunomodulator under early LPS stimulation condition. PMID:25748840

  7. Astragalus polysaccharides inhibits PCV2 replication by inhibiting oxidative stress and blocking NF-κB pathway.

    PubMed

    Xue, Hongxia; Gan, Fang; Zhang, Zheqian; Hu, Junfa; Chen, Xingxiang; Huang, Kehe

    2015-11-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease (PCVAD). Astragalus polysaccharide (APS), as one kind of biological macromolecule extracted from Astragalus, has antiviral activities. This study was undertaken to explore the effect of APS on PCV2 replication in vitro and the underlying mechanisms. Our results showed that adding APS before PCV2 infection decreased significantly PCV2 DNA copies, the number of infected cells, MDA level, ROS level and NF-κB activation in PK15 cells and increased significantly GSH contents and SOD activity compared to control without APS. Oxidative stress induced by BSO could eliminate the effect of PCV2 replication inhibition by APS. LPS, as a NF-κB activator, could attenuate the effect of PCV2 replication inhibition by APS. BAY 11-7082, as a NF-κB inhibitor, could increase the effect of PCV2 replication inhibition by APS. In conclusion, APS inhibits PCV2 replication by decreasing oxidative stress and the activation of NF-κB signaling pathway, which suggests that APS might be employed for the prevention of PCV2 infection. PMID:26226456

  8. Inhibition of the classical pathway of complement by meningococcal capsular polysaccharides

    PubMed Central

    Agarwal, Sarika; Vasudhev, Shreekant; DeOliveira, Rosane; Ram, Sanjay

    2014-01-01

    Almost all invasive Neisseria meningitidis isolates express capsular polysaccharide. Antibody (Ab) is required for complement-dependent killing of meningococci. While alternative pathway evasion has received considerable attention, little is known about classical pathway (CP) inhibition by meningococci and forms the basis of this study. We engineered capsulated and unencapsulated isogenic mutant strains of groups A, B, C, W and Y meningococci to express similar amounts of the same factor H-binding protein (fHbp; a key component of group B meningococcal vaccines) molecule. Despite similar anti-fHbp mAb binding, significantly less C4b was deposited on all five encapsulated mutants compared to their unencapsulated counterparts (P<0.01), when purified C1 and C4 were used to deposit C4b. Reduced C4b deposition was the result of capsule-mediated inhibition of C1q engagement by Ab. C4b deposition correlated linearly with C1q engagement by anti-fHbp. While B, C, W and Y capsules limited CP-mediated killing by anti-fHbp, the unencapsulated group A mutant paradoxically was more resistant than its encapsulated counterpart. Strains varied considerably in their susceptibility to anti-fHbp and complement despite similar Ab binding, which may have implications for the activity of fHbp-based vaccines. Capsule also limited C4b deposition by anti-porin A mAbs. Capsule expression decreased binding of an anti-LOS IgM mAb (~1.2 to 2-fold reduction in fluorescence). Akin to observations with IgG, capsule also decreased IgM-mediated C4b deposition when IgM binding to the mutant strain pairs was normalized. In conclusion, we show that capsular polysaccharide, a critical meningococcal virulence factor, inhibits the CP of complement. PMID:25015832

  9. Inhibition of the classical pathway of complement by meningococcal capsular polysaccharides.

    PubMed

    Agarwal, Sarika; Vasudhev, Shreekant; DeOliveira, Rosane B; Ram, Sanjay

    2014-08-15

    Almost all invasive Neisseria meningitidis isolates express capsular polysaccharide. Ab is required for complement-dependent killing of meningococci. Although alternative pathway evasion has received considerable attention, little is known about classical pathway (CP) inhibition by meningococci, which forms the basis of this study. We engineered capsulated and unencapsulated isogenic mutant strains of groups A, B, C, W, and Y meningococci to express similar amounts of the same factor H-binding protein (fHbp; a key component of group B meningococcal vaccines) molecule. Despite similar anti-fHbp mAb binding, significantly less C4b was deposited on all five encapsulated mutants compared with their unencapsulated counterparts (p < 0.01) when purified C1 and C4 were used to deposit C4b. Reduced C4b deposition was the result of capsule-mediated inhibition of C1q engagement by Ab. C4b deposition correlated linearly with C1q engagement by anti-fHbp. Whereas B, C, W, and Y capsules limited CP-mediated killing by anti-fHbp, the unencapsulated group A mutant paradoxically was more resistant than its encapsulated counterpart. Strains varied considerably in their susceptibility to anti-fHbp and complement despite similar Ab binding, which may have implications for the activity of fHbp-based vaccines. Capsule also limited C4b deposition by anti-porin A mAbs. Capsule expression decreased binding of an anti-lipooligosaccharide IgM mAb (∼ 1.2- to 2-fold reduction in fluorescence). Akin to observations with IgG, capsule also decreased IgM-mediated C4b deposition when IgM binding to the mutant strain pairs was normalized. In conclusion, we show that capsular polysaccharide, a critical meningococcal virulence factor, inhibits the CP of complement. PMID:25015832

  10. Effect of sulfate ions on corrosion inhibition of AA 7075 aluminum alloy in sodium chloride solutions

    SciTech Connect

    Wu, T.I.; Wu, J.K.

    1995-03-01

    The effect of the addition of sulfate ions on corrosion inhibition of Aluminum Association (AA) 7075 aluminum (Al) alloy (UNS A97075) in aqueous solution was studied. Corrosion behavior was affected significantly by the addition of SO{sub 4}{sup 2{minus}}. The corrosion morphology and corrosion rate changed with various thermomechanical treatment sand with the relative amount of sodium sulfate and sodium chloride in the immersion test solutions. However, the inhibitive effect of SO{sub 4}{sup 2{minus}} was evident with the increasing relative amount of Na{sub 2}SO{sub 4}. Corrosion data and morphologies obtained were illustrated by a competitive anion adsorption mechanism.

  11. Human Immunodeficiency Virus and Heparan Sulfate: From Attachment to Entry Inhibition

    PubMed Central

    Connell, Bridgette J.; Lortat-Jacob, Hugues

    2013-01-01

    By targeting cells that provide protection against infection, HIV-1 causes acquired immunodeficiency syndrome. Infection starts when gp120, the viral envelope glycoprotein, binds to CD4 and to a chemokine receptor usually CCR5 or CXCR4. As many microorganisms, HIV-1 also interacts with heparan sulfate (HS), a complex group of cell surface associated anionic polysaccharides. It has been thought that this binding, occurring at a step prior to CD4 recognition, increases infectivity by pre-concentrating the virion particles at the cell surface. Early work, dating from before the identification of CCR5 and CXCR4, showed that a variety of HS mimetics bind to the gp120 V3 loop through electrostatic interactions, compete with cell surface associated HS to bind the virus and consequently, neutralize the infectivity of a number of T-cell line-adapted HIV-1 strains. However, progress made to better understand HIV-1 attachment and entry, coupled with the recent identification of additional gp120 regions mediating HS recognition, have considerably modified this view. Firstly, the V3 loop from CXCR4-using viruses is much more positively charged compared to those using CCR5. HS inhibition of cell attachment is thus restricted to CXCR4-using viruses (such as T-cell line-adapted HIV-1). Secondly, studies aiming at characterizing the gp120/HS complex revealed that HS binding was far more complex than previously thought: in addition to the V3 loop of CXCR4 tropic gp120, HS interacts with several other cryptic areas of the protein, which can be induced upon CD4 binding, and are conserved amongst CCR5 and CXCR4 viruses. In view of these data, this review will detail the present knowledge on HS binding to HIV-1, with regards to attachment and entry processes. It will discuss the perspective of targeting the gp120 co-receptor binding site with HS mimetic compounds, a strategy that recently gave rise to entry inhibitors that work in the low nanomolar range, independently of co

  12. Safflower polysaccharide inhibits the proliferation and metastasis of MCF-7 breast cancer cell.

    PubMed

    Luo, Zhongbing; Zeng, Hongxie; Ye, Yongqiang; Liu, Lianbin; Li, Shaojin; Zhang, Junyi; Luo, Rongcheng

    2015-06-01

    Breast cancer accounts for 22.9% of all types of cancer in females worldwide. Safflower polysaccharide (SPS) is an active fraction purified from safflower petals (Carthamus tinctorius L). The present study investigated the effects of safflower polysaccharide on the proliferation and metastasis of breast cancer cells. Cell viability was analyzed using an MTT assay following treatment of the MCF‑7 cells with increasing concentrations of SPS. The results demonstrated that the SPS compound significantly inhibited the proliferation of the MCF‑7 human breast cancer cell line and these inhibitory effects increased in a dose‑ and time‑dependent manner. The half maximal inhibitory concentration (IC50) value of SPS on breast cancer cells, following treatment for 72 h, was detected using an MTT assay and was calculated as 0.12 mg/ml. The apoptotic rate was detected using flow cytometry in the MCF‑7 human breast cancer cell line and the results revealed that SPS induced cell apoptosis. The apoptotic rate of the MCF‑7 cells treated with SPS was significantly higher compared with that of the untreated cells and increased in a dose‑dependent manner. The expression of B‑cell lymphoma 2 (Bcl‑2) was downregulated and the expression of Bcl‑2‑associated X protein was upregulated in the MCF‑7 cells treated with SPS in a time‑dependent manner. Additionally, the expression of matrix metalloproteinase‑9 was significantly reduced and the expression of tissue inhibitor of metalloproteinase‑1 was increased in the MCF‑7 human breast cancer cell treated with SPS. These results demonstrated that SPS inhibited the metastasis of MCF‑7 breast cancer cells and understanding the underlying mechanisms may provide novel strategies in breast cancer therapy. PMID:25673029

  13. Tyrosine-sulfated V2 peptides inhibit HIV-1 infection via coreceptor mimicry.

    PubMed

    Cimbro, Raffaello; Peterson, Francis C; Liu, Qingbo; Guzzo, Christina; Zhang, Peng; Miao, Huiyi; Van Ryk, Donald; Ambroggio, Xavier; Hurt, Darrell E; De Gioia, Luca; Volkman, Brian F; Dolan, Michael A; Lusso, Paolo

    2016-08-01

    Tyrosine sulfation is a post-translational modification that facilitates protein-protein interaction. Two sulfated tyrosines (Tys173 and Tys177) were recently identified within the second variable (V2) loop of the major HIV-1 envelope glycoprotein, gp120, and shown to contribute to stabilizing the intramolecular interaction between V2 and the third variable (V3) loop. Here, we report that tyrosine-sulfated peptides derived from V2 act as structural and functional mimics of the CCR5 N-terminus and potently block HIV-1 infection. Nuclear magnetic and surface plasmon resonance analyses indicate that a tyrosine-sulfated V2 peptide (pV2α-Tys) adopts a CCR5-like helical conformation and directly interacts with gp120 in a CD4-dependent fashion, competing with a CCR5 N-terminal peptide. Sulfated V2 mimics, but not their non-sulfated counterparts, inhibit HIV-1 entry and fusion by preventing coreceptor utilization, with the highly conserved C-terminal sulfotyrosine, Tys177, playing a dominant role. Unlike CCR5 N-terminal peptides, V2 mimics inhibit a broad range of HIV-1 strains irrespective of their coreceptor tropism, highlighting the overall structural conservation of the coreceptor-binding site in gp120. These results document the use of receptor mimicry by a retrovirus to occlude a key neutralization target site and provide leads for the design of therapeutic strategies against HIV-1. PMID:27389109

  14. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    PubMed

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems. PMID:26901075

  15. VANADL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF ENOS

    EPA Science Inventory

    VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF eNOS. Zhuowei Li, Jacqueline D. Carter, Lisa A. Dailey, Joleen Soukup, Yuh-Chin T. Huang. CEMALB, University of North Carolina and ORD, US EPA, Chapel Hill, North Carolina
    V...

  16. VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF ENOS

    EPA Science Inventory

    VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF eNOS.

    Zhuowei Li, Jacqueline D. Carter, Lisa A. Dailey, Joleen Soukup, Yuh-Chin T. Huang. CEMALB, University of North Carolina and NHEERL, US EPA, Chapel Hill, North Ca...

  17. Polysaccharide from Lentinus edodes Inhibits the Immunosuppressive Function of Myeloid-Derived Suppressor Cells

    PubMed Central

    Liu, Xiaoman; Li, Xiao; Tang, Jian; Ma, Chungwah; Xu, Xiaofei; Shao, Haitao; Hou, Baidong; Wang, Hui; Qin, Zhihai

    2012-01-01

    Reversing the function of immune suppressor cells may improve the efficacy of cancer therapy. Here, we have isolated a novel polysaccharide MPSSS (577.2 Kd) from Lentinus edodes and examined its effects on differentiation and function of myeloid-derived suppressor cells (MDSCs). MPSSS is composed of glucose (75.0%), galactose (11.7%), mannose (7.8%), and xylose (0.4%). In vivo, it inhibits the growth of McgR32 tumor cells, which is correlated with a reduced percentage of MDSCs in peripheral blood. In vitro, it induces both morphological and biophysical changes in MDSCs. Importantly, MPSSS up-regulates MHC II and F4/80 expression on MDSCs, and reverses their inhibition effect on CD4+ T cells in a dose-dependent manner. The mechanism study shows that MPSSS may stimulate MDSCs through a MyD88 dependent NF-κB signaling pathway. Together, we demonstrated for the first time that MPSSS stimulates the differentiation of MDSCs and reverses its immunosuppressive functions, shedding new light on developing novel anti-cancer strategies by targeting MDSCs. PMID:23272159

  18. Magnesium sulfate inhibits sufentanil-induced cough during anesthetic induction

    PubMed Central

    An, Li-Jun; Gui, Bo; Su, Zhen; Zhang, Yang; Liu, Hai-Lin

    2015-01-01

    Sufentanil-induced cough is a common phenomenon during the induction of anesthesia. This double-blind, randomized, and placebo-controlled study was designed to investigate the effects of prophylactic magnesium sulfate (MgSO4) on the incidence and severity of sufentanil-induced cough. A total of 165 patients who were scheduled for elective surgery under general anesthesia were allocated into three groups (I, II, and III; n = 55 each) that were injected with either 50 ml of normal saline, 30 or 50 mg/kg of MgSO4 (diluted with normal saline into 50 ml). One minute following the injection, all patients were injected with 1.0 μg/kg of sufentanil within 5 s. The incidence and severity of cough were recorded 30 s after the sufentanil injection. The hemodynamic parameters and plasma magnesium concentration of the patients were also noted. Three patients dropped out the study due to an obvious burning sensation during the injection of 50 mg/kg of MgSO4. Although the injection of 50 mg/kg of MgSO4 increased the plasma magnesium level, the increase remained within the therapeutic range (2-4 mmol/L). The incidence of cough was much higher in group I than in groups II and III (47.1% vs. 16.4% and 7.6%, respectively, P < 0.05). Compared with group I, group III had the lowest incidence of mild cough and both groups II and III had lower incidence of moderate and severe cough (P < 0.05). There were no differences in the hemodynamic data at three timepoints among the three groups. In conclusion, sufentanil-induced cough may be suppressed effectively and safely by prophylactic use of 30 mg/kg of MgSO4 during anesthetic induction. PMID:26550339

  19. Oversulfated chondroitin sulfate inhibits the complement classical pathway by potentiating C1 inhibitor.

    PubMed

    Zhou, Zhao-Hua; Rajabi, Mohsen; Chen, Trina; Karnaukhova, Elena; Kozlowski, Steven

    2012-01-01

    Oversulfated chondroitin sulfate (OSCS) has become the subject of multidisciplinary investigation as a non-traditional contaminant in the heparin therapeutic preparations that were linked to severe adverse events. In this study, it was found that OSCS inhibited complement fixation on bacteria and bacterial lysis mediated by the complement classical pathway. The inhibition of complement by OSCS is not due to interference with antibody/antigen interaction or due to consumption of C3 associated with FXII-dependent contact system activation. However, OSCS complement inhibition is dependent on C1 inhibitor (C1inh) since the depletion of C1inh from either normal or FXII-deficient complement plasma prevents OSCS inhibition of complement activity. Surface plasmon resonance measurements revealed that immobilized C1inhibitor bound greater than 5-fold more C1s in the presence of OSCS than in presence of heparin. Although heparin can also inhibit complement, OSCS and OSCS contaminated heparin are more potent inhibitors of complement. Furthermore, polysulfated glycosaminoglycan (PSGAG), an anti-inflammatory veterinary medicine with a similar structure to OSCS, also inhibited complement in the plasma of dogs and farm animals. This study provides a new insight that in addition to the FXII-dependent activation of contact system, oversulfated and polysulfated chondroitin-sulfate can inhibit complement activity by potentiating the classical complement pathway regulator C1inh. This effect on C1inh may play a role in inhibiting inflammation as well as impacting bacterial clearance. PMID:23077587

  20. Antibiofilm polysaccharides

    PubMed Central

    Rendueles, Olaya; Kaplan, Jeffrey B.; Ghigo, Jean-Marc

    2012-01-01

    Summary Bacterial extracellular polysaccharides have been shown to mediate many of the cell-to cell and cell-to-surface interactions that are required for the formation, cohesion and stabilization of bacterial biofilms. However, recent studies have identified several bacterial polysaccharides that inhibit biofilm formation by a wide-spectrum of bacteria and fungi both in vitro and in vivo. This review discusses the composition, modes of action, and potential biological roles of antibiofilm polysaccharides recently identified in bacteria and eukaria. Some of these molecules may have technological applications as antibiofilm agents in industry and medicine. PMID:22730907

  1. Presence of sulfate does not inhibit low-temperature dolomite precipitation

    NASA Astrophysics Data System (ADS)

    Sánchez-Román, Mónica; McKenzie, Judith A.; de Luca Rebello Wagener, Angela; Rivadeneyra, Maria A.; Vasconcelos, Crisógono

    2009-07-01

    The hypothesis that sulfate inhibits dolomite formation evolved from geochemical studies of porewaters from deep-sea sedimentary sequences and has been tested with hydrothermal experiments. We examined the sulfate inhibition factor using aerobic culture experiments with Virgibacillus marismortui and Halomonas meridiana, two moderately halophilic aerobic bacteria, which metabolize independent of sulfate concentration. The culture experiments were conducted at 25 and 35 °C using variable SO 42- concentrations (0, 14, 28 and 56 mM) and demonstrate that halophilic aerobic bacteria mediate direct precipitation of dolomite with or without SO 42- in the culture media which simulate dolomite occurrences commonly found under the Earth's surface conditions. Hence, we report that the presence of sulfate does not inhibit dolomite precipitation. Further, we hypothesize that, if sedimentary dolomite is a direct precipitate, as in our low-temperature culture experiments, the kinetic factors involved are likely to be quite different from those governing a dolomite replacement reaction, such as in hydrothermal experiments. Consequently, the occurrence and, presumably, growth of dolomite in SO 42--rich aerobic cultures may shed new light on the long-standing Dolomite Problem.

  2. Synthesis of cellulose nanocrystals carrying tyrosine sulfate mimetic ligands and inhibition of alphavirus infection.

    PubMed

    Zoppe, Justin O; Ruottinen, Ville; Ruotsalainen, Janne; Rönkkö, Seppo; Johansson, Leena-Sisko; Hinkkanen, Ari; Järvinen, Kristiina; Seppälä, Jukka

    2014-04-14

    We present two facile approaches for introducing multivalent displays of tyrosine sulfate mimetic ligands on the surface of cellulose nanocrystals (CNCs) for application as viral inhibitors. We tested the efficacy of cellulose nanocrystals, prepared either from cotton fibers or Whatman filter paper, to inhibit alphavirus infectivity in Vero (B) cells. Cellulose nanocrystals were produced by sulfuric acid hydrolysis leading to nanocrystal surfaces decorated with anionic sulfate groups. When the fluorescent marker expressing Semliki Forest virus vector, VA7-EGFP, was incubated with CNCs, strong inhibition of virus infectivity was achieved, up to 100 and 88% for cotton and Whatman CNCs, respectively. When surface sulfate groups of CNCs were exchanged for tyrosine sulfate mimetic groups (i.e. phenyl sulfonates), improved viral inhibition was attained. Our observations suggest that the conjugation of target-specific functionalities to CNC surfaces provides a means to control their antiviral activity. Multivalent CNCs did not cause observable in vitro cytotoxicity to Vero (B) cells or human corneal epithelial (HCE-T) cells, even within the 100% virus-inhibitory concentrations. Based on the similar chemistry of known polyanionic inhibitors, our results suggest the potential application of CNCs as inhibitors of other viruses, such as human immunodeficiency virus (HIV) and herpes simplex viruses. PMID:24628489

  3. Protective effect of polysaccharides on simulated microgravity-induced functional inhibition of human NK cells.

    PubMed

    Huyan, Ting; Li, Qi; Yang, Hui; Jin, Ming-Liang; Zhang, Ming-Jie; Ye, Lin-Jie; Li, Ji; Huang, Qing-Sheng; Yin, Da-Chuan

    2014-01-30

    Polysaccharides are believed to be strong immunostimulants that can promote the proliferation and activity of T cells, B cells, macrophages and natural killer (NK) cells. This study aimed to investigate the effects of five polysaccharides (Grifola frondosa polysaccharide (GFP), lentinan (LNT), G. lucidum polysaccharide (GLP), Lycium barbarum polysaccharide (LBP) and yeast glucan (YG)) on primary human NK cells under normal or simulated microgravity (SMG) conditions. Our results demonstrated that polysaccharides markedly promoted the cytotoxicity of NK cells by enhancing IFN-γ and perforin secretion and increasing the expression of the activating receptor NKp30 under normal conditions. Meanwhile polysaccharides can enhance NK cell function under SMG conditions by restoring the expression of the activating receptor NKG2D and reducing the early apoptosis and late apoptosis/necrosis. Moreover, the antibody neutralization test showed that CR3 may be the critical receptor involved in polysaccharides induced NK cells activation. These findings indicated that polysaccharides may be used as immune regulators to promote the health of the public and astronauts during space missions. PMID:24299844

  4. Expanding the 3-O-Sulfate Proteome-Enhanced Binding of Neuropilin-1 to 3-O-Sulfated Heparan Sulfate Modulates Its Activity.

    PubMed

    Thacker, Bryan E; Seamen, Emylie; Lawrence, Roger; Parker, Matthew W; Xu, Yongmei; Liu, Jian; Vander Kooi, Craig W; Esko, Jeffrey D

    2016-04-15

    Binding of proteins to heparan sulfate is driven predominantly by electrostatic interactions between positively charged amino acid residues in the protein and negatively charged sulfate groups located at various positions along the polysaccharide chain. Although many heparin/heparan-sulfate-binding proteins have been described, few exhibit preferential binding for heparan sulfates containing relatively rare 3-O-sulfated glucosamine residues. To expand the "3-O-sulfate proteome," affinity matrices were created from Chinese hamster ovary (CHO) cell heparan sulfate engineered in vitro with and without 3-O-sulfate groups. Fractionation of different animal sera yielded several proteins that bound specifically to columns containing 3-O-sulfated heparan sulfate modified by two members of the heparan sulfate 3-O-sulfotransferase superfamily, Hs3st1 and Hs3st2. Neuropilin-1 was analyzed in detail because it has been implicated in angiogenesis and axon guidance. We show that 3-O-sulfation enhanced the binding of neuropilin-1 to heparan sulfate immobilized on plastic plates and to heparan sulfate present on cultured cells. Chemoenzymatically synthesized 3-O-sulfated heparan sulfate dodecamers protected neuropilin-1 from thermal denaturation and inhibited neuropilin-1-dependent, semaphorin-3a-induced growth cone collapse of neurons derived from murine dorsal root ganglia. The effect of 3-O-sulfation was cell autonomous and specific to Hs3st2 based on collapse assays of neurons derived from Hs3st1- and Hs3st2-deficient mice. Finally, 3-O-sulfated heparan sulfate enhanced the inhibition of endothelial cell sprouting by exogenous heparan sulfate. These findings demonstrate a reliable method to identify members of the 3-O-sulfate proteome and that 3-O-sulfation of heparan sulfate can modulate axonal growth cone collapse and endothelial cell sprouting. PMID:26731579

  5. Sulfated polyanions inhibit invasion of erythrocytes by plasmodial merozoites and cytoadherence of endothelial cells to parasitized erythrocytes.

    PubMed Central

    Xiao, L; Yang, C; Patterson, P S; Udhayakumar, V; Lal, A A

    1996-01-01

    Sulfated proteoglycans have been shown to be involved in the binding of sporozoites of malaria parasites to hepatocytes. In this study, we have evaluated the effect of sulfated glycosaminoglycans on the invasion of erythrocytes by Plasmodium falciparum merozoites and cytoadherence of parasitized erythrocytes (PRBC) to endothelial cells. Invasion of erythrocytes by HB3EC-6 (an HB3 line selected for high binding to endothelial cells) was inhibited by dextran sulfate 500K, dextran sulfate 5K, sulfatides, fucoidan, and heparin but not by chondroitin sulfate A. With the exception of sulfatides, the invasion-inhibitory effect was not mediated by killing of parasites. Cytoadherence of HB3EC-6 to human microvascular endothelial cells (HMEC-1) and inhibited by these sulfated glycoconjugates. The highly sulfated dextran sulfate 500K had the highest inhibitory effect on both invasion and cytoadherence, whereas the positively charged protamine sulfate promoted cytoadherence. Because preincubation of PRBC with sulfated glycosaminoglycans and treatment of target cells with heparinase had no significant inhibition on cytoadherence, it is unlikely that sulfated glycoconjugates are used directly by endothelial cells as cytoadhesion receptors. In an vivo experiment, we found that the administration of dextran sulfate 500K to CBA/Ca mice infected with Plasmodium berghei ANKA reduced parasitemia and delayed the death associated with anemia. These observations suggest that sulfated polyanions inhibit the invasion of erythrocytes by merozoites and cytoadherence of PRBC to endothelial cells by increasing negative repulsive charge and sterically interfering with the ligand-receptor interaction after binding to target cells. PMID:8606103

  6. Polysaccharide enhances Radix Saposhnikoviae efficacy through inhibiting chromones decomposition in intestinal tract.

    PubMed

    Yang, Jing-Ming; Jiang, Hua; Dai, Hong-Liang; Wang, Zi-Wei; Jia, Gui-Zhi; Meng, Xiang-Cai

    2016-01-01

    Vegetative but not reproductive stage of Saposhnikovia divaricate (Turxz.) schischk possesses pharmacological activities. However, our recent study showed that reproductive S. divaricate supplemented with polysaccharide showed evidently elevated pharmacological activities and increased cimifugin content in rat serum. The aims of present study were to assess the influence of polysaccharides on the chromones pharmacological activities in Radix Saposhnikoviae (RS), the dried root of vegetative stage of S. divaricate, and to explore the underlying mechanisms. Only cimifugin was detected in the plasma of chromone treated animals and RS polysaccharide significantly increased the plasma content of cimifugin. It was shown that neither cimifugin absorption nor glycoside components transformation in simulated digestive fluid was affected by RS polysaccharide. However, a significant promotion of transformation of cimifugin to more stable prime-O-glucosylcimifugin (PGCN) by RS polysaccharide, and a protective effect of polysaccharide on chromone components were observed in small intestine solutions. Meanwhile, RS polysaccharide produced a significant elevation of cimifugin and PGCN concentration in vivo. Based on these findings, we concluded that RS polysaccharide could greatly increase the content of cimifugin, which might be related to its degradation-proof effect on cimifugin, via transforming cimifugin to comparatively more stable PGCN and spatial structure protection. PMID:27595868

  7. Polysaccharide enhances Radix Saposhnikoviae efficacy through inhibiting chromones decomposition in intestinal tract

    PubMed Central

    Yang, Jing-Ming; Jiang, Hua; Dai, Hong-Liang; Wang, Zi-Wei; Jia, Gui-Zhi; Meng, Xiang-Cai

    2016-01-01

    Vegetative but not reproductive stage of Saposhnikovia divaricate (Turxz.) schischk possesses pharmacological activities. However, our recent study showed that reproductive S. divaricate supplemented with polysaccharide showed evidently elevated pharmacological activities and increased cimifugin content in rat serum. The aims of present study were to assess the influence of polysaccharides on the chromones pharmacological activities in Radix Saposhnikoviae (RS), the dried root of vegetative stage of S. divaricate, and to explore the underlying mechanisms. Only cimifugin was detected in the plasma of chromone treated animals and RS polysaccharide significantly increased the plasma content of cimifugin. It was shown that neither cimifugin absorption nor glycoside components transformation in simulated digestive fluid was affected by RS polysaccharide. However, a significant promotion of transformation of cimifugin to more stable prime-O-glucosylcimifugin (PGCN) by RS polysaccharide, and a protective effect of polysaccharide on chromone components were observed in small intestine solutions. Meanwhile, RS polysaccharide produced a significant elevation of cimifugin and PGCN concentration in vivo. Based on these findings, we concluded that RS polysaccharide could greatly increase the content of cimifugin, which might be related to its degradation-proof effect on cimifugin, via transforming cimifugin to comparatively more stable PGCN and spatial structure protection. PMID:27595868

  8. Safflower polysaccharide induces NSCLC cell apoptosis by inhibition of the Akt pathway.

    PubMed

    Li, Jian-Ying; Yu, Jun; Du, Xu-Sheng; Zhang, Hui-Min; Wang, Bo; Guo, Hua; Bai, Jie; Wang, Juan-Hong; Liu, An; Wang, Yi-Li

    2016-07-01

    Lung cancer is the leading cause of cancer death in the world. Safflower polysaccharide (SPS) has been used for the improvement of immunomodulatory activities and treatment of cancers. However, studies on the effect of SPS on the progression of lung cancer have rarely been reported. To study the antitumor effect of SPS on human lung cancer and its potential mechanism, non-small cell lung cancer cell lines (NSCLC), A549 and YTMLC-90 were treated with SPS at various concentrations ranging from 0.04 to 2.56 mg/ml and BALB/c nude tumor-bearing mice were injected intraperitoneally with SPS at concentrations ranging from 15 to 135 mg/kg. Results showed that SPS suppressed the proliferation of A549 and YTMLC-90 cells and induced apoptosis by increasing mRNA levels of bax and caspase-3, and inhibited tumor growth in vivo. SPS induced cell cycle arrest in the G2/M phase by decreasing the expression of cdc25B and cyclin B1. Moreover, SPS decreased the expression of Akt, p-Akt and PI3K. In mice, SPS injection enhanced immunomodulatory activities by increasing levels of TNF-α and IL-6 in tumor-bearing mice. Our findings suggest that SPS suppresses tumor growth by enhancing immunomodulatory activities and blocking the PI3K/Akt pathway. This study provides new insight into the anticancer mechanism of SPS. PMID:27177149

  9. Polygala tenuifolia polysaccharide (PTP) inhibits cell proliferation by repressing Bmi-1 expression and downregulating telomerase activity.

    PubMed

    Zhang, Fubin; Song, Xiaowei; Li, Li; Wang, Jingfang; Lin, Leyuan; Li, Cong; Li, Hongtao; Lv, Yanju; Jin, Yinghua; Liu, Ying; Hu, Yu; Xin, Tao

    2015-04-01

    In our previous study, we isolated a homogeneous polysaccharide (PTP) with antitumor activity from the roots of Polygala tenuifolia. In view of the close correlation between Bmi-1 expression and progression of ovarian cancer, we intend to elucidate the mechanism of its activity by determining the Bmi-1 expression and the telomerase activity in human ovarian carcinoma OVCAR-3 cells following treatment with PTP at three concentrations of 0.5, 1, and 2 mg/mL for 48 h. MTT and colony-forming assays revealed that PTP had a significant inhibitory effect on the cell growth and colony formation of OVCAR-3 cells. Furthermore, Western blot and real-time PCR analysis showed that PTP inhibited Bmi-1 both in protein and transcript levels. Besides, the telomerase activity in OVCAR-3 cells was also downregulated after PTP treatment for 48 h. Taken together, the inhibitory effect of PTP on the cell growth was at least in part mediated via the downregulation of Bmi-1 expression and the telomerase activity in OVCAR-3 cells, and PTP might be a new candidate for chemotherapeutic agent against human ovarian cancer. PMID:25501509

  10. Cordyceps sinensis polysaccharide inhibits PDGF-BB-induced inflammation and ROS production in human mesangial cells.

    PubMed

    Wang, Ying; Wang, Yan; Liu, Dan; Wang, Wang; Zhao, Huan; Wang, Min; Yin, Hongping

    2015-07-10

    CPS-F, a polysaccharide derived from Cordyceps sinensis, is a potential anti-inflammatory and anti-oxidative agent. We demonstrated that CPS-F not only inhibits platelet-derived growth factor BB (PDGF-BB)-induced intracellular reactive oxygen species (ROS) generation, and up-regulation of tumor necrosis factor-α (TNF-α), TNF-α receptor 1 (TNFR1), and monocyte chemotactic protein-1 (MCP-1), but also acts synergistically in combination with MAPK/ERK inhibitor U0126 and PI3K/Akt inhibitor LY294002. Additionally, up-regulation of pro-inflammatory factors was reversed by use of a combination of CPS-F and NADPH oxidase (NOX) inhibitor diphenyleneiodonium chloride (DPI) or silencing of NOX1. Furthermore, CPS-F prevents the PDGF receptor β (PDGFRβ) promoter activity induced by PDGF-BB in transfected cells and ameliorates increased levels of TNF-α, TNFR1, and MCP-1 when PDGFRβ is silenced, thereby suggesting that CPS-F possesses a bidirectional regulatory function. Our findings suggest CPS-F may exert its therapeutic effect for the treatment of glomerulonephritis related to human mesangial cells (HMCs) through the ERK1/2/Akt pathways. PMID:25857968

  11. Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles.

    PubMed

    Kumar, Naresh; Omoregie, Enoma O; Rose, Jerome; Masion, Armand; Lloyd, Jonathan R; Diels, Ludo; Bastiaens, Leen

    2014-03-15

    Batch microcosms were setup to determine the impact of different sized zero valent iron (Fe(0)) particles on microbial sulfate reduction during the in situ bio-precipitation of metals. The microcosms were constructed with aquifer sediment and groundwater from a low pH (3.1), heavy-metal contaminated aquifer. Nano (nFe(0)), micro (mFe(0)) and granular (gFe(0)) sized Fe(0) particles were added to separate microcosms. Additionally, selected microcosms were also amended with glycerol as a C-source for sulfate-reducing bacteria. In addition to metal removal, Fe(0) in microcosms also raised the pH from 3.1 to 6.5, and decreased the oxidation redox potential from initial values of 249 to -226 mV, providing more favorable conditions for microbial sulfate reduction. mFe(0) and gFe(0) in combination with glycerol were found to enhance microbial sulfate reduction. However, no sulfate reduction occurred in the controls without Fe(0) or in the microcosm amended with nFe(0). A separate dose test confirmed the inhibition for sulfate reduction in presence of nFe(0). Hydrogen produced by Fe(0) was not capable of supporting microbial sulfate reduction as a lone electron donor in this study. Microbial analysis revealed that the addition of Fe(0) and glycerol shifted the microbial community towards Desulfosporosinus sp. from a population initially dominated by low pH and metal-resisting Acidithiobacillus ferrooxidans. PMID:24388832

  12. Monitoring and Modeling Microbial Sulfate Reduction and Inhibition in a Mesoscale Tank Experiment

    NASA Astrophysics Data System (ADS)

    Hubbard, C. G.; Wu, Y.; Li, L.; Piceno, Y. M.; Cheng, Y.; Bill, M.; Coates, J. D.; Andersen, G. L.; Conrad, M. E.; Ajo Franklin, J. B.

    2014-12-01

    Subsurface biogeochemical cycling at the field-scale is controlled by a complex interplay between hydrological, geochemical and biological parameters. Mesoscale tank experiments can help to bridge the gap in complexity and understanding between well constrained batch and column experiments, and the interpretation of field data. In this contribution we present the results of a tank experiment investigating microbial sulfate reduction and inhibition in a porous media (20-30 mesh Ottawa sand). Microbial sulfate reduction is a process of wide biogeochemical significance, including in the context of oil reservoirs where the generation of sulfide can result in corrosion of steel infrastructure and additional downstream processing. Inhibition of sulfate reduction is therefore a high priority for this industry. Tracer experiments were conducted at the start and end of the experiment to constrain flow pathways and heterogeneities. The tank was inoculated with a San Francisco Bay mud/water enrichment utilizing acetate as the electron donor and continuous flow was initiated using bay-water with 10 mM acetate. Samples were taken from an array of 12 steel boreholes and showed spatiotemporal heterogeneities in the development of sulfidogenesis, reaching a peak of ~5 mM dissolved sulfide 71 days after inoculation. 10 mM perchlorate was then added to the influent to inhibit sulfidogenesis and dissolved sulfide decreased to ~0.03 mM by day 95. Stable isotope analysis of dissolved sulfate showed an increase in δ34S by ~10‰ compared with influent values but δ34S did not return to influent values by day 95, which may be indicative of the mixing between new and residual sulfate in the tank. Ongoing microbial community analyses are being used to help constrain microbial metabolisms. Finally, all the data is being integrated into a reactive transport model to better constrain the observed interplay between hydrology, geochemistry and biology.

  13. A role for a lithium-inhibited Golgi nucleotidase in skeletal development and sulfation

    PubMed Central

    Frederick, Joshua P.; Tafari, A. Tsahai; Wu, Sheue-Mei; Megosh, Louis C.; Chiou, Shean-Tai; Irving, Ryan P.; York, John D.

    2008-01-01

    Sulfation is an important biological process that modulates the function of numerous molecules. It is directly mediated by cytosolic and Golgi sulfotransferases, which use 3′-phosphoadenosine 5′-phosphosulfate to produce sulfated acceptors and 3′-phosphoadenosine 5′-phosphate (PAP). Here, we identify a Golgi-resident PAP 3′-phosphatase (gPAPP) and demonstrate that its activity is potently inhibited by lithium in vitro. The inactivation of gPAPP in mice led to neonatal lethality, lung abnormalities resembling atelectasis, and dwarfism characterized by aberrant cartilage morphology. The phenotypic similarities of gPAPP mutant mice to chondrodysplastic models harboring mutations within components of the sulfation pathway lead to the discovery of undersulfated chondroitin in the absence of functional enzyme. Additionally, we observed loss of gPAPP leads to perturbations in the levels of heparan sulfate species in lung tissue and whole embryos. Our data are consistent with a model that clearance of the nucleotide product of sulfotransferases within the Golgi plays an important role in glycosaminoglycan sulfation, provide a unique genetic basis for chondrodysplasia, and define a function for gPAPP in the formation of skeletal elements derived through endochondral ossification. PMID:18695242

  14. Heparan Sulfate Inhibits Hematopoietic Stem and Progenitor Cell Migration and Engraftment in Mucopolysaccharidosis I*

    PubMed Central

    Watson, H. Angharad; Holley, Rebecca J.; Langford-Smith, Kia J.; Wilkinson, Fiona L.; van Kuppevelt, Toin H.; Wynn, Robert F.; Wraith, J. Edmond; Merry, Catherine L. R.; Bigger, Brian W.

    2014-01-01

    Mucopolysaccharidosis I Hurler (MPSI-H) is a pediatric lysosomal storage disease caused by genetic deficiencies in IDUA, coding for α-l-iduronidase. Idua−/− mice share similar clinical pathology with patients, including the accumulation of the undegraded glycosaminoglycans (GAGs) heparan sulfate (HS), and dermatan sulfate (DS), progressive neurodegeneration, and dysostosis multiplex. Hematopoietic stem cell transplantation (HSCT) is the most effective treatment for Hurler patients, but reduced intensity conditioning is a risk factor in transplantation, suggesting an underlying defect in hematopoietic cell engraftment. HS is a co-receptor in the CXCL12/CXCR4 axis of hematopoietic stem and progenitor cell (HSPC) migration to the bone marrow (BM), but the effect of HS alterations on HSPC migration, or the functional role of HS in MPSI-H are unknown. We demonstrate defective WT HSPC engraftment and migration in Idua−/− recipient BM, particularly under reduced intensity conditioning. Both intra- but especially extracellular Idua−/− BM HS was significantly increased and abnormally sulfated. Soluble heparinase-sensitive GAGs from Idua−/− BM and specifically 2-O-sulfated HS, elevated in Idua−/− BM, both inhibited CXCL12-mediated WT HSPC transwell migration, while DS had no effect. Thus we have shown that excess overly sulfated extracellular HS binds, and sequesters CXCL12, limiting hematopoietic migration and providing a potential mechanism for the limited scope of HSCT in Hurler disease. PMID:25359774

  15. A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans

    PubMed Central

    Colpitts, Che C.

    2014-01-01

    ABSTRACT Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. IMPORTANCE This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others. PMID

  16. Divergent Synthesis of Chondroitin Sulfate Disaccharides and Identification of Sulfate Motifs that Inhibit Triple Negative Breast Cancer

    NASA Astrophysics Data System (ADS)

    Wei Poh, Zhong; Heng Gan, Chin; Lee, Eric J.; Guo, Suxian; Yip, George W.; Lam, Yulin

    2015-09-01

    Glycosaminoglycans (GAGs) regulate many important physiological processes. A pertinent issue to address is whether GAGs encode important functional information via introduction of position specific sulfate groups in the GAG structure. However, procurement of pure, homogenous GAG motifs to probe the “sulfation code” is a challenging task due to isolation difficulty and structural complexity. To this end, we devised a versatile synthetic strategy to obtain all the 16 theoretically possible sulfation patterns in the chondroitin sulfate (CS) repeating unit; these include rare but potentially important sulfated motifs which have not been isolated earlier. Biological evaluation indicated that CS sulfation patterns had differing effects for different breast cancer cell types, and the greatest inhibitory effect was observed for the most aggressive, triple negative breast cancer cell line MDA-MB-231.

  17. Sulfated polysaccharide isolated from Ulva lactuca attenuates d-galactosamine induced DNA fragmentation and necrosis during liver damage in rats.

    PubMed

    Sathivel, Arumugam; Balavinayagamani; Hanumantha Rao, Balaji Raghavendran; Devaki, Thiruvengadam

    2013-12-13

    Abstract Context: Ulva lactuca Linnaeus (Chlorophyceae), a commonly distributed seaweed, is rich in polysaccharide but has not been studied extensively. Objective: The present study investigated the effects of crude fraction of Ulva lactuca polysaccharide (ULP) on d-galactosamine (d-Gal)-induced DNA damage, hepatic oxidative stress, and necrosis in rats. Materials and methods: The rats were treated with ULP (100 mg/kg, orally) for 4 weeks before a single intraperitoneal injection of d-Gal (500 mg/kg). In addition to liver cell necrosis and DNA damage, antioxidant parameters, such as lipid peroxide (LPO), superoxide dismutase, and catalase, and histopathology of liver tissue were evaluated. Results: ULP pre-treatment significantly attenuated a d-Gal-induced decrease in DNA and RNA levels (3.67 ± 0.38) and (5.42 ± 0.46), respectively. Comet tail length and acridine staining confirmed the number of cells undergoing necrosis were relatively lower in ULP treated rats (30 µm and 8-10% of counted cells) compared to rats treated with d-Gal (60 µm and 16% of counted cells). Biochemical (LPO, SOD and CAT) and histological evaluation (p < 0.01) confirmed the anti-hepatotoxic and antioxidant property of crude polysaccharide against d-Gal-induced elevation of LPO and infiltration of inflammatory cells into liver tissue. Discussion and conclusion: Although our previous studies have reported on the protective role of ULP against liver toxicity, our present findings show that ULP improved the hepatic antioxidant defense system against d-Gal-induced DNA damage and necrosis in rats. PMID:24329421

  18. Vanadyl sulfate inhibits NO production via threonine phosphorylation of eNOS.

    PubMed Central

    Li, Zhuowei; Carter, Jacqueline D; Dailey, Lisa A; Huang, Yuh-Chin T

    2004-01-01

    Exposure to excessive vanadium occurs in some occupations and with consumption of some dietary regimens for weight reduction and body building. Because vanadium is vasoactive, individuals exposed to excessive vanadium may develop adverse vascular effects. We have previously shown that vanadyl sulfate causes acute pulmonary vasoconstriction, which could be attributed in part to inhibition of nitric oxide production. In the present study we investigated whether NO inhibition was related to phosphorylation of endothelial nitric oxide synthase (eNOS). VOSO4 produced dose-dependent constriction of pulmonary arteries in isolated perfused lungs and pulmonary arterial rings and a right shift of the acetylcholine-dependent vasorelaxation curve. VOSO4 inhibited constitutive as well as A23187-stimulated NO production. Constitutive NO inhibition was accompanied by increased Thr495 (threonine at codon 495) phosphorylation of eNOS, which would inhibit eNOS activity. Thr495 phosphorylation of eNOS and inhibition of NO were partially reversed by pretreatment with calphostin C, a protein kinase C (PKC) inhibitor. There were no changes in Ser1177 (serine at codon 1177) or tyrosine phosphorylation of eNOS. These results indicate that VOSO4 induced acute pulmonary vasoconstriction that was mediated in part by the inhibition of endothelial NO production via PKC-dependent phosphorylation of Thr495 of eNOS. Exposure to excessive vanadium may contribute to pulmonary vascular diseases. PMID:14754574

  19. Structural characterization and inhibition on α-d-glucosidase activity of non-starch polysaccharides from Fagopyrum tartaricum.

    PubMed

    Wang, Xiao-Ting; Zhu, Zhen-Yuan; Zhao, Liang; Sun, Hui-Qing; Meng, Meng; Zhang, Jin-Yu; Zhang, Yong-Min

    2016-11-20

    In the present study, the crude polysaccharide was extracted from Fagopyrum tartaricum and purified by Sephadex G-25 and G-75 column to produce a polysaccharide fraction termed TBP-II. Its average molecular weight was 26kDa. The structural characterization of TBP-II was investigated by gas chromatography, periodate oxidation-Smith degradation, Methylation and NMR. Congo red was applied to explore its advanced structures. The results revealed that chemical composition and structural characteristic of TBP-II was mainly consisted of galactose, arabinose, xylose and glucose with a molar ratio of 0.7:1:6.3:74.2. The backbone of TBP-II was composed of (1→4)-linked α-d-glucopyranosyl (Glcp), while the branches comprised of (1→3)-linked α-d-glucopyranosyl (Glcp), (1→6)-linked α-d-galactopyranosyl (Galp) and (1→2,4)-linked α-d-rhamnopyranosyl (Rhap). The structure of TBP-II was 1,3 and 1,6-branched-galactorhamnoglucan that had a linear backbone of (1→4)-linked α-d-glucopyranose (Glcp). Using Congo red assay showed that it was absent of triple helix structure. The α-d-glucosidase inhibitory activity of TBP-II was determined using acarbose as positive control. The result showed that the inhibition rate depended on the concentration of polysaccharides. PMID:27561539

  20. Structure of the linkage-region between polysaccharide chain and core protein in bovine corneal proteokeratan sulfate.

    PubMed

    Stein, T; Keller, R; Stuhlsatz, H W; Greiling, H; Ohst, E; Müller, E; Scharf, H D

    1982-08-01

    Peptidokeratan sulfate from bovine cornea was degraded by a combination of desulfation, exo-enzymic digestion and finally digestion with endo-beta-N-acetylglucosaminidase D. The same procedure was carried out both with [3H]fucose-labelled and [3H]mannose-labelled peptidokeratan sulfate. Data obtained by methylation analysis of peptidokeratan at the different degradation steps, as well as action of endo-beta-N-acetylglucosaminidase D, showed that the binding-region in proteokeratan sulfate from bovine cornea is identical with a structure found in various GlcNAc(beta 1-N)-Asn-linked mannosyl glycoproteins. The existence of a chitobiose unit between asparagine and mannose was proved by action of endo-beta-N-acetylglucosaminidase D. The existence and position of an (alpha 1 leads to 6)-linked fucosyl residue at the Asn-bound GlcNAc was demonstrated by action of alpha-fucosidase, endo-beta-N-acetylglucosaminidase D and by gel chromatography on Bio-Gel P-4. By gas chromatography/mass spectrometry studies, the existence of a 1,4,6-trisubstituted beside a 1,4-disubstituted GlcNAc in the binding-region oligosaccharide was shown. Other results reported here are according to analytical data previously published (Keller, R., Stein, T., Stuhlsatz, H.W., Greiling, H., Ohst, E., Müller, E. & Scharf, H.-D. (1981) Hoppe-Seyler's Z. Physiol. Chem. 362, 327-336). PMID:6214491

  1. Studies on the characterization of the linkage-region between polysaccharide chain and core protein in bovine corneal proteokeratan sulfate.

    PubMed

    Keller, R; Stein, T; Stuhlsatz, H W; Greiling, H; Ohst, E; Müller, E; Scharf, H D

    1981-03-01

    1) A new method of enrichment of the linkage-region in corneal proteokeratan sulfate is described, which consists of desulfation of peptidokeratan sulfate, followed by chromatography on Con A-Sepharose 4B and enzymatic degradation with beta-D galactosidase and beta-N-acetyl-D-glucosaminidase. 2) After permethylation, hydrolysis, reduction with sodium borohydrid and acetylation gas chromatography/mass spectrometry analyses were performed. The followings products could be detected as their peracetates: 2,3,4-tri-O-methylfucitol; 2,3,4,6-tetra-O-methylmannitol; 3,4,6-tri-O-methylmannitol; 2,4-di-O-methylmannitol; 2,3,4,6-tetra-O-methylgalactitol; 2,4,6-tri-O-methylgalactitol; 2,4-di-O-methylgalactitol. 3) The results point to the presence of a branched linkage region in the proteokeratan sulfate molecule with one mannose as the branching point and two mannose residues as the starting point of two disaccharide chains. PMID:6453074

  2. The Antitumor Effect of Gekko Sulfated Glycopeptide by Inhibiting bFGF-Induced Lymphangiogenesis

    PubMed Central

    Ding, Xiu-Li; Man, Ya-Nan; Hao, Jian; Zhu, Cui-Hong; Liu, Chang; Yang, Xue

    2016-01-01

    Objective. To study the antilymphangiogenesis effect of Gekko Sulfated Glycopeptide (GSPP) on human lymphatic endothelial cells (hLECs). Methods. MTS was conducted to confirm the antiproliferation effect of GSPP on hLECs; flow cytometry was employed to detect hLECs cycle distribution; the antimigration effect of GSPP on hLECs was investigated by wound healing experiment and transwell experiment; tube formation assay was used to examine its inhibitory effect on the lymphangiogenesis; western blotting was conducted to detect the expression of extracellular signal-regulated kinase1/2 (Erk1/2) and p-Erk1/2 after GSPP and basic fibroblast growth factor (bFGF) treatment. Nude mice models were established to investigate the antitumor effect of GSPP in vivo. Decreased lymphangiogenesis caused by GSPP in vivo was verified by immunohistochemical staining. Results. In vitro, GSPP (10 μg/mL, 100 μg/mL) significantly inhibited bFGF-induced hLECs proliferation, migration, and tube-like structure formation (P < 0.05) and antagonized the phosphorylation activation of Erk1/2 induced by bFGF. In vivo, GSPP treatment (200 mg/kg/d) not only inhibited the growth of colon carcinoma, but also inhibited the tumor lymphangiogenesis. Conclusion. GSPP possesses the antitumor ability by inhibiting bFGF-inducing lymphangiogenesis in vitro and in vivo, which may further inhibit tumor lymphatic metastasis. PMID:27190997

  3. The Antitumor Effect of Gekko Sulfated Glycopeptide by Inhibiting bFGF-Induced Lymphangiogenesis.

    PubMed

    Ding, Xiu-Li; Man, Ya-Nan; Hao, Jian; Zhu, Cui-Hong; Liu, Chang; Yang, Xue; Wu, Xiong-Zhi

    2016-01-01

    Objective. To study the antilymphangiogenesis effect of Gekko Sulfated Glycopeptide (GSPP) on human lymphatic endothelial cells (hLECs). Methods. MTS was conducted to confirm the antiproliferation effect of GSPP on hLECs; flow cytometry was employed to detect hLECs cycle distribution; the antimigration effect of GSPP on hLECs was investigated by wound healing experiment and transwell experiment; tube formation assay was used to examine its inhibitory effect on the lymphangiogenesis; western blotting was conducted to detect the expression of extracellular signal-regulated kinase1/2 (Erk1/2) and p-Erk1/2 after GSPP and basic fibroblast growth factor (bFGF) treatment. Nude mice models were established to investigate the antitumor effect of GSPP in vivo. Decreased lymphangiogenesis caused by GSPP in vivo was verified by immunohistochemical staining. Results. In vitro, GSPP (10 μg/mL, 100 μg/mL) significantly inhibited bFGF-induced hLECs proliferation, migration, and tube-like structure formation (P < 0.05) and antagonized the phosphorylation activation of Erk1/2 induced by bFGF. In vivo, GSPP treatment (200 mg/kg/d) not only inhibited the growth of colon carcinoma, but also inhibited the tumor lymphangiogenesis. Conclusion. GSPP possesses the antitumor ability by inhibiting bFGF-inducing lymphangiogenesis in vitro and in vivo, which may further inhibit tumor lymphatic metastasis. PMID:27190997

  4. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.; Kleinmann, R.L.P.; Erickson, P.M.

    1984-07-01

    Thiobacillus ferrooxidans promote indirect oxidation of pyrite through the catalysis of the oxidation of ferrous iron to ferric iron, which is an effective oxidant of pyrite. These bacteria also may catalyze direct oxidation of pyrite by oxygen. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous iron to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage microorganisms. In this study, benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.

  5. Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus.

    PubMed

    Zhu, Zhen-Yuan; Luo, You; Dong, Guo-Ling; Ren, Yuan-Yuan; Chen, Li-Jing; Guo, Ming-Zhu; Wang, Xiao-Ting; Yang, Xue-Ying; Zhang, Yongmin

    2016-06-01

    A novel homogeneous polysaccharide fraction (APS) was extracted from Astragalus by hot water and purified by Sephadex G-100 and G-75 column. Its molecular weight was 693kDa. APS and APS with ultra-high pressure treatment exhibited significant inhibitory abilities on a-glucosidase, inhibition rate from high to low in order was 400MPa-APS, 300MPa-APS, 500MPa-APS and APS. The inhibition ​percentage of 400MPa-APS (1.5mg/mL) was 49% (max.). This suggested that the inhibitory activity of APS on a-glucosidase was improved by ultra-high pressure treatment. FT-IR, SEM, CD spectra, atomic force microscope and Congo red test analysis of APS and 400MPa-APS showed ultra-high pressure treatment didn't change the preliminary structure but had an effect on its advanced structure. PMID:26993530

  6. Berberine sulfate inhibits tumor-promoting activity of teleocidin in two-stage carcinogenesis on mouse skin.

    PubMed

    Nishino, H; Kitagawa, K; Fujiki, H; Iwashima, A

    1986-01-01

    Berberine sulfate, an isoquinoline alkaloid isolated from Hydrastis canadensis L., inhibited the effects of the tumor promoters 12-O-tetradecanoylphorbol-13-acetate and teleocidin, such as increased 32Pi-incorporation into phospholipids of cell membrane and hexose transport. Berberine sulfate also markedly suppressed the promoting effect of teleocidin on skin tumor formation in mice initiated with 7,12-dimethylbenz[a]anthracene. PMID:3081844

  7. Chondroitin-4-sulfation negatively regulates axonal guidance and growth

    PubMed Central

    Wang, Hang; Katagiri, Yasuhiro; McCann, Thomas E.; Unsworth, Edward; Goldsmith, Paul; Yu, Zu-Xi; Tan, Fei; Santiago, Lizzie; Mills, Edward M.; Wang, Yu; Symes, Aviva J.; Geller, Herbert M.

    2008-01-01

    Summary Glycosaminoglycan (GAG) side chains endow extracellular matrix proteoglycans with diversity and complexity based upon the length, composition, and charge distribution of the polysaccharide chain. Using cultured primary neurons, we show that specific sulfation in the GAG chains of chondroitin sulfate (CS) mediates neuronal guidance cues and axonal growth inhibition. Chondroitin-4-sulfate (CS-A), but not chondroitin-6-sulfate (CS-C), exhibits a strong negative guidance cue to mouse cerebellar granule neurons. Enzymatic and gene-based manipulations of 4-sulfation in the GAG side chains alter their ability to direct growing axons. Furthermore, 4-sulfated CS GAG chains are rapidly and significantly increased in regions that do not support axonal regeneration proximal to spinal cord lesions in mice. Thus, our findings provide the evidence showing that specific sulfation along the carbohydrate backbone carries instructions to regulate neuronal function. PMID:18768934

  8. Cholesterol Sulfate and Cholesterol Sulfotransferase Inhibit Gluconeogenesis by Targeting Hepatocyte Nuclear Factor 4α

    PubMed Central

    Shi, Xiongjie; Cheng, Qiuqiong; Xu, Leyuan; Yan, Jiong; Jiang, Mengxi; He, Jinhan; Xu, Meishu; Stefanovic-Racic, Maja; Sipula, Ian; O'Doherty, Robert Martin; Ren, Shunlin

    2014-01-01

    Sulfotransferase (SULT)-mediated sulfation represents a critical mechanism in regulating the chemical and functional homeostasis of endogenous and exogenous molecules. The cholesterol sulfotransferase SULT2B1b catalyzes the sulfoconjugation of cholesterol to synthesize cholesterol sulfate (CS). In this study, we showed that the expression of SULT2B1b in the liver was induced in obese mice and during the transition from the fasted to the fed state, suggesting that the regulation of SULT2B1b is physiologically relevant. CS and SULT2B1b inhibited gluconeogenesis by targeting the gluconeogenic factor hepatocyte nuclear factor 4α (HNF4α) in both cell cultures and transgenic mice. Treatment of mice with CS or transgenic overexpression of the CS-generating enzyme SULT2B1b in the liver inhibited hepatic gluconeogenesis and alleviated metabolic abnormalities both in mice with diet-induced obesity (DIO) and in leptin-deficient (ob/ob) mice. Mechanistically, CS and SULT2B1b inhibited gluconeogenesis by suppressing the expression of acetyl coenzyme A (acetyl-CoA) synthetase (Acss), leading to decreased acetylation and nuclear exclusion of HNF4α. Our results also suggested that leptin is a potential effector of SULT2B1b in improving metabolic function. We conclude that SULT2B1b and its enzymatic by-product CS are important metabolic regulators that control glucose metabolism, suggesting CS as a potential therapeutic agent and SULT2B1b as a potential therapeutic target for metabolic disorders. PMID:24277929

  9. Sulfated Galactan from Palisada flagellifera Inhibits Toxic Effects of Lachesis muta Snake Venom.

    PubMed

    da Silva, Ana Cláudia Rodrigues; Ferreira, Luciana Garcia; Duarte, Maria Eugênia Rabello; Noseda, Miguel Daniel; Sanchez, Eladio Flores; Fuly, André Lopes

    2015-06-01

    In Brazil, snakebites are a public health problem and accidents caused by Lachesis muta have the highest mortality index. Envenomation by L. muta is characterized by systemic (hypotension, bleeding and renal failure) and local effects (necrosis, pain and edema). The treatment to reverse the evolution of all the toxic effects is performed by injection of antivenom. However, such therapy does not effectively neutralize tissue damage or any other local effect, since in most cases victims delay seeking appropriate medical care. In this way, alternative therapies are in demand, and molecules from natural sources have been exhaustively tested. In this paper, we analyzed the inhibitory effect of a sulfated galactan obtained from the red seaweed Palisada flagellifera against some toxic activities of L. muta venom. Incubation of sulfated galactan with venom resulted in inhibition of hemolysis, coagulation, proteolysis, edema and hemorrhage. Neutralization of hemorrhage was also observed when the galactan was administered after or before the venom injection; thus mimicking a real in vivo situation. Moreover, the galactan blocked the edema caused by a phospholipase A2 isolated from the same venom. Therefore, the galactan from P. flagellifera may represent a promising tool to treat envenomation by L. muta as a coadjuvant for the conventional antivenom. PMID:26110897

  10. Sulfated Galactan from Palisada flagellifera Inhibits Toxic Effects of Lachesis muta Snake Venom

    PubMed Central

    da Silva, Ana Cláudia Rodrigues; Ferreira, Luciana Garcia; Duarte, Maria Eugênia Rabello; Noseda, Miguel Daniel; Sanchez, Eladio Flores; Fuly, André Lopes

    2015-01-01

    In Brazil, snakebites are a public health problem and accidents caused by Lachesis muta have the highest mortality index. Envenomation by L. muta is characterized by systemic (hypotension, bleeding and renal failure) and local effects (necrosis, pain and edema). The treatment to reverse the evolution of all the toxic effects is performed by injection of antivenom. However, such therapy does not effectively neutralize tissue damage or any other local effect, since in most cases victims delay seeking appropriate medical care. In this way, alternative therapies are in demand, and molecules from natural sources have been exhaustively tested. In this paper, we analyzed the inhibitory effect of a sulfated galactan obtained from the red seaweed Palisada flagellifera against some toxic activities of L. muta venom. Incubation of sulfated galactan with venom resulted in inhibition of hemolysis, coagulation, proteolysis, edema and hemorrhage. Neutralization of hemorrhage was also observed when the galactan was administered after or before the venom injection; thus mimicking a real in vivo situation. Moreover, the galactan blocked the edema caused by a phospholipase A2 isolated from the same venom. Therefore, the galactan from P. flagellifera may represent a promising tool to treat envenomation by L. muta as a coadjuvant for the conventional antivenom. PMID:26110897

  11. Polygonatum sibiricum polysaccharide inhibits osteoporosis by promoting osteoblast formation and blocking osteoclastogenesis through Wnt/β-catenin signalling pathway

    PubMed Central

    Du, Li; Nong, Meng-Ni; Zhao, Jin-Min; Peng, Xiao-Ming; Zong, Shao-Hui; Zeng, Gao-Feng

    2016-01-01

    Bone homeostasis is maintained by a balance between bone formation by osteoblasts and bone resorption by osteoclasts. Osteoporosis occurs when osteoclast activity surpasses osteoblast activity. Our previous studies showed the plant-derived natural polysaccharide (Polygonatum sibiricum polysaccharide or PSP) had significant anti-ovariectomy (OVX)-induced osteoporosis effects in vivo, but the mechanisms of PSP’s anti-osteoporosis effect remains unclear. In this study, we assessed PSP’s effect on the generation of osteoblast and osteoclast in vitro. This study showed that PSP promoted the osteogenic differentiation of mouse bone marrow stromal cells (BMSCs) without affecting BMPs signaling pathway. This effect was due to the increased nuclear accumulation of β-catenin, resulting in a higher expression of osteoblast-related genes. Furthermore, the study showed PSP could inhibit the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and exert prophylatic protection against LPS-induced osteolysis in vivo. This effect was also related to the increased nuclear accumulation of β-catenin, resulting in the decreased expression of osteoclast-related genes. In conclusion, our results showed that PSP effectively promoted the osteogenic differentiation of mouse BMSCs and suppressed osteoclastogenesis; therefore, it could be used to treat osteoporosis. PMID:27554324

  12. Bismuth Dimercaptopropanol (BisBAL) Inhibits the Expression of Extracellular Polysaccharides and Proteins by Brevundimonas diminuta: Implications for Membrane Microfiltration

    SciTech Connect

    Badireddy, Appala R.; Chellam, Shankararaman; Yanina, Svetlana; Gassman, Paul L.; Rosso, Kevin M.

    2008-02-15

    A 2:1 molar ratio preparation of bismuth with a lipophilic dithiol (3-dimercapto-1-propanol, BAL)significantly reduced extracellular polymeric substances (EPS) expression by Brevundimonas diminuta in suspended cultures at levels just below the minimum inhibitory concentration (MIC). Total polysaccharides and proteins secreted by B. diminuta decreased by approximately 95% over a 5-day period when exposed to the bismuth-BAL chelate (BisBAL) at near MIC (12 μM). Fourier-transform infrared spectroscopy (FTIR) suggested that a possible mechanism of biofilm disruption by BisBAL is the inhibition of carbohydrate Oacetylation. FTIR also revealed extensive homology between EPS samples with and without BisBAL treatment, with proteins, polysaccharides, and peptides varying predominantly only in the amount expressed. EPS secretion decreased following BisBAL treatment as verified by atomic force microscopy and scanning electron microscopy. Without BisBAL treatment, a slime-like EPS matrix secreted by B. diminuta resulted in biofouling and inefficient hydrodynamic backwashing of microfiltration membranes.

  13. Polysaccharide Isolated from Zizyphus jujuba ( Hóng Zǎo) Inhibits Interleukin-2 Production in Jurkat T Cells.

    PubMed

    Hsu, Bo-Yang; Kuo, Yuh-Chi; Chen, Bing-Huei

    2014-04-01

    Zizyphus jujuba ( Hóng Zǎo), a traditional Chinese herb widely used in many Asian countries, has been shown to possess vital biological activities such as anti-cancer activity. The objective of this study was to evaluate the immunomodulatory effect of deproteinated polysaccharide (DP) isolated from Z. jujuba. The DP isolated from Z. jujuba consisted of two polysaccharide fractions and their molecular weights (MWs) were found to be 143,108 and 67,633 Da, respectively. The DP could significantly decrease interleukin (IL)-2 production in phytohemagglutinin (PHA)-activated Jurkat T cells in a dose-dependent manner after 48 h of incubation, with the inhibition being 47.5%, 61.2%, and 81.7% for DP concentrations of 0.75, 1.75, and 2.5 mg/ml, respectively. Thus, our study showed that DP isolated from Z. jujuba may possess anti-inflammatory activity as it could significantly reduce IL-2 production in activated Jurkat T cells. PMID:24860737

  14. Bismuth dimercaptopropanol (BisBAL) inhibits the expression of extracellular polysaccharides and proteins by Brevundimonas diminuta: implications for membrane microfiltration.

    PubMed

    Badireddy, Appala Raju; Chellam, Shankararaman; Yanina, Svetlana; Gassman, Paul; Rosso, Kevin M

    2008-02-15

    A 2:1 molar ratio preparation of bismuth with a lipophilic dithiol (3-dimercapto-1-propanol, BAL) significantly reduced extracellular polymeric substances (EPS) expression by Brevundimonas diminuta in suspended cultures at levels just below the minimum inhibitory concentration (MIC). Total polysaccharides and proteins secreted by B. diminuta decreased by approximately 95% over a 5-day period when exposed to the bismuth-BAL chelate (BisBAL) at near MIC (12 microM). Fourier-transform infrared spectroscopy (FTIR) suggested that a possible mechanism of biofilm disruption by BisBAL is the inhibition of carbohydrate O-acetylation. FTIR also revealed extensive homology between EPS samples with and without BisBAL treatment, with proteins, polysaccharides, and peptides varying predominantly only in the amount expressed. EPS secretion decreased following BisBAL treatment as verified by atomic force microscopy and scanning electron microscopy. Without BisBAL treatment, a slime-like EPS matrix secreted by B. diminuta resulted in biofouling and inefficient hydrodynamic backwashing of microfiltration membranes. PMID:17705249

  15. Inhibition of a U(VI)- and sulfate-reducing consortia by U(VI).

    PubMed

    Nyman, Jennifer L; Wu, Hsin-I; Gentile, Margaret E; Kitanidis, Peter K; Criddle, Craig S

    2007-09-15

    The stimulation of microbial U(VI) reduction is currently being investigated as a means to reduce uranium's mobility in groundwater, but little is known about the concentration at which U(VI) might inhibit microbial activity, or the effect of U(VI) on bacterial community structure. We investigated these questions with an ethanol-fed U(VI)- and sulfate-reducing enrichment developed from sediment from the site of an ongoing field biostimulation experiment at Area 3 of the Oak Ridge Field Research Center (FRC). Sets of triplicate enrichments were spiked with increasing concentrations of U(VI) (from 49 microm to 9.2 mM). As the U(VI) concentration increased to 224 microM, the culture's production of acetate from ethanol slowed, and at or above 1.6 mM U(VI) little acetate was produced over the time frame of the experiment. An uncoupling inhibition model was applied to the data, and the inhibition coefficient for U(VI), Ku, was found to be approximately 100 microM U(VI), or 24 mg/L, indicating the inhibitory effect is relevant at highly contaminated sites. Microbial community structure at the conclusion of the experiment was analyzed with terminal restriction fragment length polymorphism (T-RFLP) analysis. T-RFs associated with Desulfovibrio-like organisms decreased in relative abundance with increasing U(VI) concentration, whereas Clostridia-like T-RFs increased. PMID:17948804

  16. Allosteric inhibition of factor XIa. Sulfated non-saccharide glycosaminoglycan mimetics as promising anticoagulants.

    PubMed

    Al-Horani, Rami A; Gailani, David; Desai, Umesh R

    2015-08-01

    Recent development of sulfated non-saccharide glycosaminoglycan mimetics, especially sulfated pentagalloyl glucopyranoside (SPGG), as potent inhibitors of factor XIa (FXIa) (J. Med. Chem. 2013; 56:867-878 and J. Med. Chem. 2014; 57:4805-4818) has led to a strong possibility of developing a new line of factor XIa-based anticoagulants. In fact, SPGG represents the first synthetic, small molecule inhibitor that appears to bind in site remote from the active site. Considering that allosteric inhibition of FXIa is a new mechanism for developing a distinct line of anticoagulants, we have studied SPGG's interaction with FXIa with a goal of evaluating its pre-clinical relevance. Comparative inhibition studies with several glycosaminoglycans revealed the importance of SPGG's non-saccharide backbone. SPGG did not affect the activity of plasma kallikrein, activated protein C and factor XIIIa suggesting that SPGG-based anticoagulation is unlikely to affect other pathways connected with coagulation factors. SPGG's effect on APTT of citrated human plasma was also not dependent on antithrombin or heparin cofactor II. Interestingly, SPGG's anticoagulant potential was diminished by serum albumin as well as factor XI, while it could be reversed by protamine or polybrene, which implies possible avenues for developing antidote strategy. Studies with FXIa mutants indicated that SPGG engages Lys529, Arg530 and Arg532, but not Arg250, Lys252, Lys253 and Lys255. Finally, SPGG competes with unfractionated heparin, but not with polyphosphates and/or glycoprotein Ibα, for binding to FXIa. These studies enhance understanding on the first allosteric inhibitor of FXIa and highlight its value as a promising anticoagulant. PMID:25935648

  17. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems

    USGS Publications Warehouse

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A., III; Yang, Xiaofen; Tuovinen, Olli H.; Dong, Hailiang; Fu, Xiang

    2013-01-01

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO3)2 was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0–24.2 mM Pb(II) added as Pb(NO3)2. Anglesite (PbSO4) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe3(SO4)2(OH)6) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9–17.6 μM regardless of the concentrations of Pb(NO3)2 added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO3)2 addition even when anglesite was removed before inoculation. Experiments with 0–48 mM KNO3 demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO3)2 addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.

  18. Anti-tumor activity and the mechanism of SIP-S: A sulfated polysaccharide with anti-metastatic effect.

    PubMed

    Zong, Aizhen; Liu, Yuhong; Zhang, Yan; Song, Xinlei; Shi, Yikang; Cao, Hongzhi; Liu, Chunhui; Cheng, Yanna; Jiang, Wenjie; Du, Fangling; Wang, Fengshan

    2015-09-20

    Our previous studies demonstrated that SIP-S had anti-metastatic activity and inhibited the growth of metastatic foci. Here we report the anti-tumor and immunoregulatory potential of SIP-S. SIP-S could significantly inhibit tumor growth in S180-bearing mice, and the inhibition rates was 43.7% at 30 mg/kg d. Besides, SIP-S could improve the thymus and spleen indices of S180-bearing mice and the mice treated with CTX. The combination of SIP-S (15 mg/kg d) with CTX (12.5 mg/kg d) showed higher anti-tumor potency than CTX (25 mg/kg d) alone. These results indicated that SIP-S had immunoenhancing and anticancer activity, and the immunoenhancing activity might be one mechanism for its anti-tumor activity. Flow cytometry results showed that SIP-S could induce tumor cells apoptosis. Western blot analysis indicated that SIP-S could upregulate the expression of pro-apoptotic proteins, caspase-3, -8, -9 and Bax, and downregulate the expression of anti-apoptotic protein PARP-1 in tumor cells in a dose-dependent manner. In summary, SIP-S has anti-tumor activity, which may be associated with its immunostimulating and pro-apoptotic activity. PMID:26050887

  19. Fumigaclavine C ameliorates dextran sulfate sodium-induced murine experimental colitis via NLRP3 inflammasome inhibition.

    PubMed

    Guo, Wenjie; Hu, Shasha; Elgehama, Ahmed; Shao, Fenli; Ren, Ren; Liu, Wen; Zhang, Wenjing; Wang, Xinlei; Tan, Renxiang; Xu, Qiang; Sun, Yang; Jiao, Ruihua

    2015-10-01

    In the present study, the effect of Fumigaclavine C, a fungal metabolite, on murine experimental colitis induced by dextran sulfate sodium (DSS) and its possible mechanism were examined in vivo and vitro. Oral administration of Fumigaclavine C dose-dependently attenuated the loss of body weight and shortening of colon length induced by DSS. The disease activity index, histopathologic scores of musco was also significantly reduced by Fumigaclavine C treatment. Protein and mRNA levels of DSS-induced pro-inflammatory cytokines in colon, including TNF-α, IL-1β and IL-17A, were markedly suppressed by Fumigaclavine C. At the same time, decreased activation of caspase-1 in peritoneal macrophages was detected in Fumigaclavine C -treated mice which suggested that the NLRP3 inflammasome activation was suppressed. Furthermore, in the LPS plus ATP cell model, we found that Fumigaclavine C dose-dependent inhibited IL-1β release and caspase-1 activation. Taken together, our results demonstrate the ability of Fumigaclavine C to inhibit NLRP3 inflammasome activation and give some evidence for its potential use in the treatment of inflammatory bowel diseases. PMID:26320672

  20. Dietary supplementation with soluble plantain non-starch polysaccharides inhibits intestinal invasion of Salmonella Typhimurium in the chicken.

    PubMed

    Parsons, Bryony N; Wigley, Paul; Simpson, Hannah L; Williams, Jonathan M; Humphrey, Suzie; Salisbury, Anne-Marie; Watson, Alastair J M; Fry, Stephen C; O'Brien, David; Roberts, Carol L; O'Kennedy, Niamh; Keita, Asa V; Söderholm, Johan D; Rhodes, Jonathan M; Campbell, Barry J

    2014-01-01

    Soluble fibres (non-starch polysaccharides, NSP) from edible plants but particularly plantain banana (Musa spp.), have been shown in vitro and ex vivo to prevent various enteric pathogens from adhering to, or translocating across, the human intestinal epithelium, a property that we have termed contrabiotic. Here we report that dietary plantain fibre prevents invasion of the chicken intestinal mucosa by Salmonella. In vivo experiments were performed with chicks fed from hatch on a pellet diet containing soluble plantain NSP (0 to 200 mg/d) and orally infected with S.Typhimurium 4/74 at 8 d of age. Birds were sacrificed 3, 6 and 10 d post-infection. Bacteria were enumerated from liver, spleen and caecal contents. In vitro studies were performed using chicken caecal crypts and porcine intestinal epithelial cells infected with Salmonella enterica serovars following pre-treatment separately with soluble plantain NSP and acidic or neutral polysaccharide fractions of plantain NSP, each compared with saline vehicle. Bacterial adherence and invasion were assessed by gentamicin protection assay. In vivo dietary supplementation with plantain NSP 50 mg/d reduced invasion by S.Typhimurium, as reflected by viable bacterial counts from splenic tissue, by 98.9% (95% CI, 98.1-99.7; P<0.0001). In vitro studies confirmed that plantain NSP (5-10 mg/ml) inhibited adhesion of S.Typhimurium 4/74 to a porcine epithelial cell-line (73% mean inhibition (95% CI, 64-81); P<0.001) and to primary chick caecal crypts (82% mean inhibition (95% CI, 75-90); P<0.001). Adherence inhibition was shown to be mediated via an effect on the epithelial cells and Ussing chamber experiments with ex-vivo human ileal mucosa showed that this effect was associated with increased short circuit current but no change in electrical resistance. The inhibitory activity of plantain NSP lay mainly within the acidic/pectic (homogalacturonan-rich) component. Supplementation of chick feed with plantain NSP was well

  1. Inhibition of migration and induction of apoptosis in LoVo human colon cancer cells by polysaccharides from Ganoderma lucidum.

    PubMed

    Liang, Zeng-Enni; Yi, You-Jin; Guo, Yu-Tong; Wang, Ren-Cai; Hu, Qiu-Long; Xiong, Xing-Yao

    2015-11-01

    Ganoderma lucidum polysaccharides (GLPs), which were purified from the medicinal herb G. lucidum followed by ethanol precipitation, protein depletion using the Sevage assay, purification using DEAE‑cellulose (DE-52), dialysis and the use of ultrafiltration membranes, are used as an ingredient in traditional anticancer treatments in China. The aim of the current study was to evaluate the anticancer effects and investigate the underlying molecular mechanisms of GLPs on LoVo human colon cancer cells. The results demonstrated that the GLP‑mediated anticancer effect in LoVo cells was characterized by cytotoxicity, migration inhibition, enhanced DNA fragmentation, morphological alterations and increased lactate dehydrogenase release. Furthermore, the activation of caspases‑3, ‑8 and ‑9 was involved in GLP‑stimulated apoptosis. Additionally, treatment with GLPs promoted the expression of Fas and caspase‑3 proteins, whilst reducing the expression of cleaved poly(ADP‑ribose) polymerase. These data indicate that GLPs demonstrate potential antitumor activity in human colon cancer cells, predominantly through the inhibition of migration and induction of apoptosis. Furthermore, activation of the Fas/caspase-dependent apoptosis pathway is involved in the cytotoxicity of GLPs. PMID:26397202

  2. Pu-erh tea polysaccharides decrease blood sugar by inhibition of α-glucosidase activity in vitro and in mice.

    PubMed

    Deng, Yea-Tyz; Lin-Shiau, Shoei-Yn; Shyur, Lie-Fen; Lin, Jen-Kun

    2015-05-01

    Type 2 diabetes is mainly induced by environmental factors such as being overweight, decreased physical activity and inbalanced energy metabolism, such as pancreatic beta-cell dysfunction and peripheral insulin resistance. Acarbose, a microbial carbohydrate and an alpha-glucosidase inhibitor, is currently a useful agent for attenuating type 2 diabetes. However, it is usually accompanied by many side effects, such as abdominal distention, flatulence, diarrhea and meteorism. These side effects may be caused by its strong inhibition of alpha-amylase, leading to the accumulation of several undigested carbohydrates. The bacteria residing in the colon can further ferment the undigested carbohydrate to release gas. Finding a new alpha-glucosidase inhibitor with a low inhibitory effect on alpha-amylase is highly anticipated. In this report we describe a group of carbohydrates found in pu-erh tea polysaccharide (PTPS) that can inhibit alpha-glucosidase but have less of an inhibitory effect on alpha-amylase. The preliminary experiments on mice indicate that PTPS might be better than acarbose at suppressing blood glucose after oral administration of a carbohydrate diet; it is recommended that further clinical trials are required in type 2 diabetes in future studies. PMID:25820466

  3. Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host-cell interaction

    NASA Astrophysics Data System (ADS)

    Hu, Yu-Peng; Lin, Shu-Yi; Huang, Cheng-Yen; Zulueta, Medel Manuel L.; Liu, Jing-Yuan; Chang, Wen; Hung, Shang-Cheng

    2011-07-01

    Cell surface carbohydrates play significant roles in a number of biologically important processes. Heparan sulfate, for instance, is a ubiquitously distributed polysulfated polysaccharide that is involved, among other things, in the initial step of herpes simplex virus type 1 (HSV-1) infection. The virus interacts with cell-surface heparan sulfate to facilitate host-cell attachment and entry. 3-O-Sulfonated heparan sulfate has been found to function as an HSV-1 entry receptor. Achieving a complete understanding of these interactions requires the chemical synthesis of such oligosaccharides, but this remains challenging. Here, we present a convenient approach for the synthesis of two irregular 3-O-sulfonated heparan sulfate octasaccharides, making use of a key disaccharide intermediate to acquire different building blocks for the oligosaccharide chain assembly. Despite substantial structural differences, the prepared 3-O-sulfonated sugars blocked viral infection in a dosage-dependent manner with remarkable similarity to one another.

  4. Dendritic Polyglycerol Sulfate Inhibits Microglial Activation and Reduces Hippocampal CA1 Dendritic Spine Morphology Deficits.

    PubMed

    Maysinger, Dusica; Gröger, Dominic; Lake, Andrew; Licha, Kai; Weinhart, Marie; Chang, Philip K-Y; Mulvey, Rose; Haag, Rainer; McKinney, R Anne

    2015-09-14

    Hyperactivity of microglia and loss of functional circuitry is a common feature of many neurological disorders including those induced or exacerbated by inflammation. Herein, we investigate the response of microglia and changes in hippocampal dendritic postsynaptic spines by dendritic polyglycerol sulfate (dPGS) treatment. Mouse microglia and organotypic hippocampal slices were exposed to dPGS and an inflammogen (lipopolysaccharides). Measurements of intracellular fluorescence and confocal microscopic analyses revealed that dPGS is avidly internalized by microglia but not CA1 pyramidal neurons. Concentration and time-dependent response studies consistently showed no obvious toxicity of dPGS. The adverse effects induced by proinflammogen LPS exposure were reduced and dendritic spine morphology was normalized with the addition of dPGS. This was accompanied by a significant reduction in nitrite and proinflammatory cytokines (TNF-α and IL-6) from hyperactive microglia suggesting normalized circuitry function with dPGS treatment. Collectively, these results suggest that dPGS acts anti-inflammatory, inhibits inflammation-induced degenerative changes in microglia phenotype and rescues dendritic spine morphology. PMID:26218295

  5. Fenobam Sulfate Inhibits Cocaine-Taking and Cocaine-Seeking Behavior in Rats: Implications for Addiction Treatment in Humans

    PubMed Central

    Keck, Thomas M.; Yang, Hong-Ju; Bi, Guo-Hua; Huang, Yong; Zhang, Hai-Ying; Srivastava, Ratika; Gardner, Eliot L.; Newman, Amy Hauck; Xi, Zheng-Xiong

    2014-01-01

    Rationale The metabotropic glutamate receptor subtype 5 (mGluR5) has been reported to be critically involved in drug reward and addiction. Because the mGluR5 negative allosteric modulators (NAMs) MPEP and MTEP significantly inhibit addictive-like behaviors of cocaine and other drugs of abuse in experimental animals, it has been suggested that mGluR5 NAMs may have translational potential for treatment of addiction in humans. However, neither MPEP nor MTEP have been evaluated in humans due to their off-target actions and rapid metabolism. Objectives Herein, we evaluate a potential candidate for translational addiction research: a new sulfate salt formulation of fenobam, a selective mGluR5 NAM that has been investigated in humans. Results In rats, fenobam sulfate had superior pharmacokinetics compared to the free base, with improved Cmax (maximal plasma concentration) and longer half life. Oral (p.o.) administration of fenobam sulfate (30 or 60 mg/kg) inhibited intravenous cocaine self-administration, cocaine-induced reinstatement of drug-seeking behavior and cocaine-associated cue-induced cocaine-seeking behavior in rats. Fenobam sulfate also inhibited oral sucrose self-administration and sucrose-induced reinstatement of sucrose-seeking behavior, but had no effect on locomotion. Conclusions This study provides additional support for the role of mGluR5 signaling in cocaine addiction and suggests that fenobam sulfate may have translational potential in medication development for the treatment of cocaine addiction in humans. PMID:23615919

  6. The inhibiting effect of the Coptis chinensis polysaccharide on the type II diabetic mice.

    PubMed

    Cui, Lijuan; Liu, Min; Chang, XiangYun; Sun, Kan

    2016-07-01

    In this paper, we investigated the effects of Coptis chinensis polysaccharide (CCP) on hyperglycemia and glucose intolerance in high-fat diet (HFD)-induced diabetic C57BL/6J mice. CCP was prepared by extraction from Coptis chinensis and oral given to the mice. C57BL/6J mice in each of the 5 groups (eight mice per group) were given either the normal diet (ND) (D12450B, 10% kcal% fat; Research diet, New Brunswick, NJ, USA), HFD (D12451, 45% kcal% fat; Research diet, New Brunswick, NJ, USA), or HFD with CCP of differing hardness (500, 1000, and 2000ppm) for 20 weeks. Mice given an HFD with CCP showed lowered fasting plasma glucose levels compared to HFD-fed mice. Oral and intraperitoneal glucose tolerance tests showed that CCP improves impaired glucose tolerance in HFD-fed mice. Histopathological evaluation of the pancreas showed that CCP recovers the size of the pancreatic islets of Langerhans, and increases the secretion of insulin and glucagon in HFD-fed mice. Quantitative reverse transcription polymerase chain reaction results revealed that the expression of hepatic genes involved in glucogenesis, glycogenolysis and glucose oxidation were suppressed, while those in glucose uptake, β-oxidation, and glucose oxidation in muscle were increased in mice fed HFD with CCP. CCP increased AMP-dependent kinase (AMPK) phosphorylation in 3T3-L1 pre- and mature adipocytes and improved impaired AMPK phosphorylation in the muscles and livers of HFD-induced diabetic mice. CCP stimulated phosphoinositol-3-kinase and AMPK pathway-mediated glucose uptake in 3T3-L1 adipocytes. Taken together, these results suggest that CCP has potential as an anti-diabetic agent, given its ability to suppress hyperglycemia and improve glucose intolerance by increasing glucose uptake. PMID:27261584

  7. Bletilla striata polysaccharide inhibits angiotensin II-induced ROS and inflammation via NOX4 and TLR2 pathways.

    PubMed

    Yue, Long; Wang, Wang; Wang, Yan; Du, Ting; Shen, Weiping; Tang, Huiling; Wang, Ying; Yin, Hongping

    2016-08-01

    In the current study, we analyzed the functions and mechanisms of Bletilla striata polysaccharide b (BSPb) against Angiotensin II (Ang II)-induced oxidative stress and inflammation in human mesangial cells (HMCs). It was found that BSPb could inhibit generation of Ang II-induced reactive oxygen species (ROS) and activation of proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in a dose-dependent manner. Further studies revealed that BSPb effectively blocked upregulation of NADPH oxidase 4 (NOX4). Moreover, knockdown of NOX4 significantly impaired the anti-oxidative function of BSPb. In addition, BSPb decreased overexpression of Toll-like receptor 2 (TLR2) induced by Ang II. Blocking TLR2 expression impaired the anti-inflammatory effects of BSPb. In conclusion, BSPb was found to possess anti-oxidative stress and anti-inflammatory functions against Ang II-induced ROS generation and proinflammatory cytokines activation. The NOX4 and TLR2 pathways played important roles in the biological effects mediated by BSPb. PMID:27151672

  8. Hericium erinaceus polysaccharide-protein HEG-5 inhibits SGC-7901 cell growth via cell cycle arrest and apoptosis.

    PubMed

    Zan, Xinyi; Cui, Fengjie; Li, Yunhong; Yang, Yan; Wu, Di; Sun, Wenjing; Ping, Lifeng

    2015-05-01

    HEG-5 is a novel polysaccharide-protein purified from the fermented mycelia of Hericium erinaceus CZ-2. The present study aims to investigate the effects of HEG-5 on proliferation, cell cycle and apoptosis of human gastric cancer cells SGC-7901. Here, we first uncover that HEG-5 significantly inhibited the proliferation and colony formation of SGC-7901 cells by promoting apoptosis and cell cycle arrest at S phase. RT-PCR and Western blot analysis suggested that HEG-5 could decrease the expressions of Bcl2, PI3K and AKT1, while increase the expressions of Caspase-8, Caspase-3, p53, CDK4, Bax and Bad. These findings indicated that the Caspase-8/-3-dependent, p53-dependent mitochondrial-mediated and PI3k/Akt signaling pathways involved in the molecular events of HEG-5 induced apoptosis and cell cycle arrest. Thus, our study provides in vitro evidence that HEG-5 may be taken as a potential candidate for treating gastric cancer. PMID:25703932

  9. Streptococcus suis Capsular Polysaccharide Inhibits Phagocytosis through Destabilization of Lipid Microdomains and Prevents Lactosylceramide-Dependent Recognition

    PubMed Central

    Houde, Mathieu; Gottschalk, Marcelo; Gagnon, Fleur; Van Calsteren, Marie-Rose

    2012-01-01

    Streptococcus suis type 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans. S. suis infects the host through the respiratory route, reaches the bloodstream, and persists until breaching into the central nervous system. The capsular polysaccharide (CPS) of S. suis type 2 is considered a key virulence factor of the bacteria. Though CPS allows S. suis to adhere to the membrane of cells of the immune system, it provides protection against phagocytosis. In fact, nonencapsulated mutants are easily internalized and killed by macrophages and dendritic cells. The objective of this work was to study the molecular mechanisms by which the CPS of S. suis prevents phagocytosis. By using latex beads covalently linked with purified CPS, it was shown that CPS itself was sufficient to inhibit entry of both latex beads and bystander fluorescent beads into macrophages. Upon contact with macrophages, encapsulated S. suis was shown to destabilize lipid microdomains at the cell surface, to block nitric oxide (NO) production during infection, and to prevent lactosylceramide accumulation at the phagocytic cup during infection. In contrast, the nonencapsulated mutant was easily internalized via lipid rafts, in a filipin-sensitive manner, leading to lactosylceramide recruitment and strong NO production. This is the first report to identify a role for CPS in lipid microdomain stability and to recognize an interaction between S. suis and lactosylceramide in phagocytes. PMID:22124659

  10. Reducing phosphorus runoff and inhibiting ammonia loss from poultry manure with aluminum sulfate

    SciTech Connect

    Moore, P.A. Jr.; Daniel, T.C.; Edwards, D.R.

    2000-02-01

    Applications of aluminum sulfate (Al{sub 2}(SO{sub 4}){sub 3} {center_dot} 14H{sub 2}O), commonly referred to as alum, to poultry litter have been shown to decrease P runoff from lands fertilized with litter and to inhibit NH{sub 3} volatilization. The objectives of this study were to evaluate the effects of alum applications in commercial broiler houses on: (1) NH{sub 3} volatilization (in-house), (2) poultry production, (3) litter chemistry, and (4) P runoff following litter application. Two farms were used for this study: one had six poultry houses and the other had four. The litter in half of the houses at each farm was treated with alum; the other houses were controls. Alum was applied at a rate of 1,816 kg/house, which corresponded to 0.091 kg/bird. Each year the houses were cleaned in the spring and the litter was broadcast onto paired watersheds in tall fescue at each farm. Results from this study showed that alum applications lowered the litter pH, particularly during the first 3 to 4 wk of each growout. Reductions in litter pH resulted in less NH{sub 3} volatilization, which led to reductions in atmospheric NH{sub 3} in the alum-treated houses. Broilers grown on alum-treated litter were significantly heavier than controls (1.73 kg vs. 1.66 kg). Soluble reactive phosphorus (SRP) concentrations in runoff from pastures fertilized with alum-treated litter averaged 73% lower than that from normal litter throughout a 3-yr period. These results indicate that alum-treatment of poultry litter is a very effective best management practice that reduces nonpoint source pollution while it increases agricultural productivity.

  11. Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor.

    PubMed

    Zamze, Susanne; Martinez-Pomares, Luisa; Jones, Hannah; Taylor, Philip R; Stillion, Richard J; Gordon, Siamon; Wong, Simon Y C

    2002-11-01

    The in vitro binding of the macrophage mannose receptor to a range of different bacterial polysaccharides was investigated. The receptor was shown to bind to purified capsular polysaccharides from Streptococcus pneumoniae and to the lipopolysaccharides, but not capsular polysaccharides, from Klebsiella pneumoniae. Binding was Ca(2+)-dependent and inhibitable with d-mannose. A fusion protein of the mannose receptor containing carbohydrate recognition domains 4-7 and a full-length soluble form of the mannose receptor containing all domains external to the transmembrane region both displayed very similar binding specificities toward bacterial polysaccharides, suggesting that domains 4-7 are sufficient for recognition of these structures. Surprisingly, no direct correlation could be made between polysaccharide structure and binding to the mannose receptor, suggesting that polysaccharide conformation may play an important role in recognition. The full-length soluble form of the mannose receptor was able to bind simultaneously both polysaccharide via the carbohydrate recognition domains and sulfated oligosaccharide via the cysteine-rich domain. The possible involvement of the mannose receptor, either cell surface or soluble, in the innate and adaptive immune responses to bacterial polysaccharides is discussed. PMID:12196537

  12. Astragalus Polysaccharide Inhibits Autophagy and Apoptosis from Peroxide-Induced Injury in C2C12 Myoblasts.

    PubMed

    Yin, Yi; Lu, Lu; Wang, Dongtao; Shi, Ying; Wang, Ming; Huang, Yanfeng; Chen, Dexiu; Deng, Cong; Chen, Jiebin; Lv, Peijia; Wang, Yanjing; Li, Chengjie; Wei, Lian-Bo

    2015-11-01

    The aim is to study the effects and underlying mechanisms of astragalus polysaccharide (APS) on the peroxide-induced injury in C2C12 myoblasts in vitro. Cell viability in the presence or absence of APS was detected by the methyl thiazolyl tetrazolium colorimetric assay. The autophagosomes were observed by electron microscopy to examine the influence of APS on autophagy caused by H2O2 in C2C12 cells, and the percentage of apoptosis cells was measured by flow cytometry. To further confirm the effect of H2O2 on C2C12 cells, the protein expression of LC3 and RARP, which are the markers of autophagy and apoptosis, respectively, was analyzed by Western blot, as well as the expression levels of p-p70S6K, p70S6K, Bcl-2, Bax, cyto-C, and Caspase-3, to reveal the underlying mechanisms. We observed multiple effects of APS on C2C12 functionality. APS treatment of C2C12 cells at 1 mg/mL reduced cell viability to less than 70 %, and analysis by electron microscopy revealed that APS also reduced the number of H2O2-induced autophagosome formation. Similarly, APS abated the H2O2-mediated increase in cell apoptosis, which was accompanied by the inhibition of LC3 II and RARP that are normally upregulated by H2O2. The expression of p-p70S6K and p70S6K, however, remained unchanged in C2C12 cells in the Control, H2O2 and H2O2 + APS groups. In addition, APS promoted the expression of protein Bcl-2 in H2O2-treated C2C12 cells, but did not change Bax, thus reducing the Bax/Bcl-2 ratio that in turn prevented the release of cytochrome c and the activation of caspase-3. APS inhibits the autophagy and apoptosis induced by peroxide injury in C2C12 myoblasts through two independent signaling pathways: the mTOR-independent pathway for the inhibition of autophagy, and the caspase-3-dependent pathway for the suppression of apoptosis. PMID:27352334

  13. Pectic polysaccharide from corn (Zea mays L.) effectively inhibited multi-step mediated cancer cell growth and metastasis.

    PubMed

    Jayaram, Smitha; Kapoor, Sabeeta; Dharmesh, Shylaja M

    2015-06-25

    Corn pectic polysaccharide (COPP) inhibited galectin-3 mediated hemagglutination at Minimum Inhibitory Concentration (MIC) of 4.08 μg/mL as opposed to citrus pectin (25 μg/mL), a well known galectin-3 inhibitor and lactose (4.16 μg/mL)--sugar specific to galectin-3. COPP effectively (72%) inhibited invasion and metastasis in experimental animals. In vivo results were substantiated by modulation of cancer specific markers such as galectin-3, which is a key molecule for initiation of metastatic cascade, vascular endothelial growth factor (VEGF) that enhances angiogenesis, matrix metalloproteinases 2 and 9 that are required for invasion, NF-κB, a transcription factor for proliferative potency of tumor cells and a phosphoglucoisomerase (PGI), the activity of which favors cancer cell growth. Structural characterization studies indicate the active component (relatively less acidic, 0.05 M ammonium carbonate, 160 kDa fraction) which showed antimetastatic potency in vitro with MIC of 0.09 μg/mL, and ∼ 45 fold increase in the activity when compared to that of COPP. Gas liquid chromatographic analysis indicated the presence of rhamnose (1%), arabinose (20%), xylose (3%), mannose (4%), galactose (54%) and uronic acid (10%) in different proportions. However, correlative data attributed galectin-3 inhibitory activity to enhanced levels of arabinose and galactose. FTIR, HPLC and NMR spectroscopic analysis further highlights that COPP is an arabinogalactan with methyl/ethyl esters. It is therefore suggested that the blockade of galectin-3 mediated lung metastasis appears to be a result of an inhibition of mixed functions induced during metastasis. The data signifies the importance of dietary carbohydrate as cancer-preventive agent. Although pectin digestibility and absorption are issues of concern, promising in vivo data provides evidence for the cancer preventive property of corn. The present study reveals for the first time a new component of corn, i.e.,--corn pectin

  14. Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate

    PubMed Central

    Carlson, Hans K; Kuehl, Jennifer V; Hazra, Amrita B; Justice, Nicholas B; Stoeva, Magdalena K; Sczesnak, Andrew; Mullan, Mark R; Iavarone, Anthony T; Engelbrektson, Anna; Price, Morgan N; Deutschbauer, Adam M; Arkin, Adam P; Coates, John D

    2015-01-01

    We investigated perchlorate (ClO4−) and chlorate (ClO3−) (collectively (per)chlorate) in comparison with nitrate as potential inhibitors of sulfide (H2S) production by mesophilic sulfate-reducing microorganisms (SRMs). We demonstrate the specificity and potency of (per)chlorate as direct SRM inhibitors in both pure cultures and undefined sulfidogenic communities. We demonstrate that (per)chlorate and nitrate are antagonistic inhibitors and resistance is cross-inducible implying that these compounds share at least one common mechanism of resistance. Using tagged-transposon pools we identified genes responsible for sensitivity and resistance in Desulfovibrio alaskensis G20. We found that mutants in Dde_2702 (Rex), a repressor of the central sulfate-reduction pathway were resistant to both (per)chlorate and nitrate. In general, Rex derepresses its regulon in response to increasing intracellular NADH:NAD+ ratios. In cells in which respiratory sulfate reduction is inhibited, NADH:NAD+ ratios should increase leading to derepression of the sulfate-reduction pathway. In support of this, in (per)chlorate or nitrate-stressed wild-type G20 we observed higher NADH:NAD+ ratios, increased transcripts and increased peptide counts for genes in the core Rex regulon. We conclude that one mode of (per)chlorate and nitrate toxicity is as direct inhibitors of the central sulfate-reduction pathway. Our results demonstrate that (per)chlorate are more potent inhibitors than nitrate in both pure cultures and communities, implying that they represent an attractive alternative for controlling sulfidogenesis in industrial ecosystems. Of these, perchlorate offers better application logistics because of its inhibitory potency, solubility, relative chemical stability, low affinity for mineral cations and high mobility in environmental systems. PMID:25405978

  15. Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate.

    PubMed

    Carlson, Hans K; Kuehl, Jennifer V; Hazra, Amrita B; Justice, Nicholas B; Stoeva, Magdalena K; Sczesnak, Andrew; Mullan, Mark R; Iavarone, Anthony T; Engelbrektson, Anna; Price, Morgan N; Deutschbauer, Adam M; Arkin, Adam P; Coates, John D

    2015-06-01

    We investigated perchlorate (ClO(4)(-)) and chlorate (ClO(3)(-)) (collectively (per)chlorate) in comparison with nitrate as potential inhibitors of sulfide (H(2)S) production by mesophilic sulfate-reducing microorganisms (SRMs). We demonstrate the specificity and potency of (per)chlorate as direct SRM inhibitors in both pure cultures and undefined sulfidogenic communities. We demonstrate that (per)chlorate and nitrate are antagonistic inhibitors and resistance is cross-inducible implying that these compounds share at least one common mechanism of resistance. Using tagged-transposon pools we identified genes responsible for sensitivity and resistance in Desulfovibrio alaskensis G20. We found that mutants in Dde_2702 (Rex), a repressor of the central sulfate-reduction pathway were resistant to both (per)chlorate and nitrate. In general, Rex derepresses its regulon in response to increasing intracellular NADH:NAD(+) ratios. In cells in which respiratory sulfate reduction is inhibited, NADH:NAD(+) ratios should increase leading to derepression of the sulfate-reduction pathway. In support of this, in (per)chlorate or nitrate-stressed wild-type G20 we observed higher NADH:NAD(+) ratios, increased transcripts and increased peptide counts for genes in the core Rex regulon. We conclude that one mode of (per)chlorate and nitrate toxicity is as direct inhibitors of the central sulfate-reduction pathway. Our results demonstrate that (per)chlorate are more potent inhibitors than nitrate in both pure cultures and communities, implying that they represent an attractive alternative for controlling sulfidogenesis in industrial ecosystems. Of these, perchlorate offers better application logistics because of its inhibitory potency, solubility, relative chemical stability, low affinity for mineral cations and high mobility in environmental systems. PMID:25405978

  16. Raspberry pulp polysaccharides inhibit tumor growth via immunopotentiation and enhance docetaxel chemotherapy against malignant melanoma in vivo.

    PubMed

    Yang, Yong-Jing; Xu, Han-Mei; Suo, You-Rui

    2015-09-01

    It has been reported previously that the systemic efficacy of chemotherapeutic agents is substantially restricted for some cancer types, including malignant melanoma. Therefore, the development of more effective treatment modalities remains a critical, albeit elusive, goal in anticancer therapy. The study presented here evaluates the antitumor activity of raspberry pulp polysaccharides (RPPs) against malignant melanoma using a murine tumor-bearing model. Furthermore, the underlying mechanism of this antitumor activity has also been investigated. The results show that while RPP exhibits no direct cytotoxic effect on HT-29, MGC-803, HeLa, Bel-7402, L02 and B16F10 cells in vitro, it does demonstrate a dose-dependent growth inhibition of melanoma in vivo with an inhibition ratio of 59.95% at a dose of 400 mg kg(-1). Besides this, the body weight and spleen index in tumor-bearing mice have also been improved in RPP-treated groups. RPP is also found to induce splenocyte proliferation and is able to upregulate the activity of immune-related enzymes, including acid phosphatase (ACP), alkaline phosphatase (AKP), lactate dehydrogenase (LDH) and superoxide dismutase (SOD) in the spleen of tumor-bearing mice. The levels of tumor necrosis factor α (TNF-α), interferon γ (IFN-γ) and interleukin 2 (IL-2) in the serum of tumor-bearing mice show to be effectively increased upon RPP treatment. Histopathological analyses show that RPP induces tumor tissue necrosis by increasing inflammatory cell infiltration and causes no lesions to liver and kidney tissues. Remarkably, RPP further enhances the antitumor effect of the chemotherapeutic drug docetaxel and alleviates docetaxel-induced liver and kidney lesions in tumor-bearing mice. These findings indicate that RPP exhibits antitumor activity in vivo against malignant melanoma, partly by enhancing the cellular immune response of the host organism. In summary, RPP features critical properties to potentially find use as an

  17. Inhibition of barium sulfate deposition by polycarboxylates of various molecular structures

    SciTech Connect

    van der Leeden, M.C.; van Rosmalen, G.M. )

    1990-02-01

    To establish a relationship between the molecular structure of polycarboxylates and their growth-retarding influence on barium sulfate, seeded-suspension-growth experiments were performed at various inhibitor concentrations and pH values. Two types of polycarboxylates with a molecular structure based on their polyacrylic or maleic acid were studied. The molecular structure of these compounds were varied by particle substitution with monomers containing hydroxyl, amide, and sulfonic acid, as well as hydrophobic groups. Hydrophobic groups are detrimental to good inhibitor performance, whereas the introduction of OH, NH {sub 2}, or SO {sub 3} H groups presents opportunities to enhance the inhibitor effectiveness. The sequence in performance of the compounds on barium sulfate was compared with the sequence formerly obtained for calcium sulfate dihydrate.

  18. Polysaccharide-modified synthetic polymeric biomaterials.

    PubMed

    Baldwin, Aaron D; Kiick, Kristi L

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. PMID:20091875

  19. Polysaccharide-Modified Synthetic Polymeric Biomaterials

    PubMed Central

    Baldwin, Aaron D.; Kiick, Kristi L.

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. PMID:20091875

  20. [Inhibition of the activity of sulfate-reducing bacteria in produced water from oil reservoir by nitrate].

    PubMed

    Yang, De-Yu; Zhang, Ying; Shi, Rong-Jiu; Han, Si-Qin; Li, Guang-Zhe; Li, Guo-Qiao; Zhao, Jin-Yi

    2014-01-01

    Growth and metabolic activity of sulfate-reducing bacteria (SRB) can result in souring of oil reservoirs, leading to various problems in aspects of environmental pollution and corrosion. Nitrate addition and management of nitrate-reducing bacteria (NRB) offer potential solutions to controlling souring in oil reservoirs. In this paper, a facultive chemolithotrophic NRB, designated as DNB-8, was isolated from the produced fluid of a water-flooded oil reservoir at Daqing oilfield. Then the efficacies and mechanisms of various concentrations of nitrate in combination with DNB-8 in the inhibition of the activity of SRB enriched culture were compared. Results showed that 1.0 mmol x L(-1) of nitrate or 0.45 mmol x L(-1) of nitrite inhibited the sulfate-reducing activity of SRB enrichments; the competitive reduction of nitrate by DNB-8 and the nitrite produced were responsible for the suppression. Besides, the SRB enrichment cultures showed a metabolic pathway of dissimilatory nitrate reduction to ammonium (DNRA) via nitrite. The SRB cultures could possibly alleviate the nitrite inhibition by DNRA when they were subjected to high-strength nitrate. PMID:24720222

  1. INHIBITION OF REDUCTIVE DECHLORINATION BY SULFATE REDUCTION IN MICROCOSMS (ABSTRACT ONLY)

    EPA Science Inventory

    High sulfate (>1,000 mg/L) concentrations are potentially problematic for field implementation of in situ bioremediation of chlorinated ethenes because its reduction competes for electron donor with reductive dechlorination. As a result of this competition, reductive dechl...

  2. Simulation of the inhibition of microbial sulfate reduction in a two-compartment upflow bioreactor subjected to molybdate injection.

    PubMed

    de Jesus, E B; de Andrade Lima, L R P

    2016-08-01

    Souring of oil fields during secondary oil recovery by water injection occurs mainly due to the action of sulfate-reducing bacteria (SRB) adhered to the rock surface in the vicinity of injection wells. Upflow packed-bed bioreactors have been used in petroleum microbiology because of its similarity to the oil field near the injection wells or production. However, these reactors do not realistically describe the regions near the injection wells, which are characterized by the presence of a saturated zone and a void region close to the well. In this study, the hydrodynamics of the two-compartment packing-free/packed-bed pilot bioreactor that mimics an oil reservoir was studied. The packed-free compartment was modeled using a continuous stirred tank model with mass exchange between active and stagnant zones, whereas the packed-bed compartment was modeled using a piston-dispersion-exchange model. The proposed model adequately represents the hydrodynamic of the packed-free/packed-bed bioreactor while the simulations provide important information about the characteristics of the residence time distribution (RTD) curves for different sets of model parameters. Simulations were performed to represent the control of the sulfate-reducing bacteria activity in the bioreactor with the use of molybdate in different scenarios. The simulations show that increased amounts of molybdate cause an effective inhibition of the souring sulfate-reducing bacteria activity. PMID:27126499

  3. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.

    PubMed

    Zuo, Rongjun; Wood, Thomas K

    2004-11-01

    A gramicidin-S-producing Bacillus brevis 18-3 biofilm was shown to reduce corrosion rates of mild steel by inhibiting both the sulfate-reducing bacterium Desulfosporosinus orientis and the iron-oxidizing bacterium Leptothrix discophora SP-6. When L. discophora SP-6 was introduced along with D. orientis to a non-antimicrobial-producing biofilm control, Paenibacillus polymyxa ATCC 10401, a corrosive synergy was created and mild steel coupons underwent more severe corrosion than when only D. orientis was present, showing a 2.3-fold increase via electrochemical impedance spectroscopy (EIS) and a 1.8-fold difference via mass-loss measurements. However, when a gramicidin-S-producing, protective B. brevis 18-3 biofilm was established on mild steel, the metal coupons were protected against the simultaneous attack of D. orientis and L. discophora SP-6. EIS data showed that the protective B. brevis 18-3 biofilm decreased the corrosion rate about 20-fold compared with the non-gramicidin-producing P. polymyxa ATCC 10401 biofilm control. The mass loss for the protected mild steel coupons was also significantly lower than that for the unprotected ones (4-fold decrease). Scanning electron microscope images corroborated the corrosion inhibition by the gramicidin-S-producing B. brevis biofilm on mild steel by showing that the metal surface remained untarnished, i.e., the polishing grooves were still visible after exposure to the simultaneous attack of the sulfate-reducing bacterium and the iron-oxidizing bacterium. PMID:15278311

  4. 24-hydroxycholesterol sulfation by human cytosolic sulfotransferases: formation of monosulfates and disulfates, molecular modeling, sulfatase sensitivity, and inhibition of liver x receptor activation.

    PubMed

    Cook, Ian T; Duniec-Dmuchowski, Zofia; Kocarek, Thomas A; Runge-Morris, Melissa; Falany, Charles N

    2009-10-01

    24-Hydroxycholesterol (24-OHChol) is a major cholesterol metabolite and the form in which cholesterol is secreted from the brain. 24-OHChol is transported by apolipoprotein E to the liver and converted into bile acids or excreted. In both brain and liver, 24-OHChol is a liver X receptor (LXR) agonist and has an important role in cholesterol homeostasis. 24-OHChol sulfation was examined to understand its role in 24-OHChol metabolism and its effect on LXR activation. 24-OHChol was conjugated by three isoforms of human cytosolic sulfotransferase (SULT). SULT2A1 and SULT1E1 sulfated both the 3- and 24-hydroxyls to form the 24-OHChol-3, 24-disulfate. SULT2B1b formed only 24-OHChol-3-sulfate. The 3-sulfate as a monosulfate or as the disulfate was hydrolyzed by human placental steroid sulfatase, whereas the 24-sulfate was resistant. At physiological 24-OHChol concentrations, SULT2A1 formed the 3-monosulfate and the 3, 24-disulfate as a result of a high affinity for sulfation of the 3-OH in 24-OHChol-24-sulfate. Molecular docking simulations indicate that 24-OHChol-24-sulfate binds in an active configuration in the SULT2A1 substrate binding site with high affinity only when the SULT2A1 homodimer structure was used. 24-OHChol is an LXR activator. In contrast, the 24-OHChol monosulfates were not LXR agonists in a fluorescence resonance energy transfer coactivator recruitment assay. However, both the 24-OHChol-3-sulfate and 24-sulfate were antagonists of LXR activation by N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trif-luoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-benzenesulfonamide (T0901317) with an IC(50) of 0.15 and 0.31 muM, respectively. Inhibition of LXR activation by the 24-OHChol monosulfates at low nanomolar concentrations indicates that sulfation has a role in LXR regulation by oxysterols. PMID:19589875

  5. Hexavalent chromium reduction in Desulfovibrio vulgarisHildenborough causes transitory inhibition of sulfate reduction and cellgrowth

    SciTech Connect

    Klonowska, A.; Clark, M.E.; Thieman, S.B.; Giles, B.J.; Wall,J.D.; Fields, M.W.

    2008-01-07

    Desulfovibrio vulgaris Hildenborough is a well-studiedsulfate reducer that can reduce heavy metals and radionuclides [e.g.,Cr(VI) and U(VI)]. Cultures grown in a defined medium had a lag period ofapproximately 30 h when exposed to 0.05 mM Cr(VI). Substrate analysesrevealed that although Cr(VI) was reduced within the first 5 h, growthwas not observed for an additional 20 h. The growth lag could beexplained by a decline in cell viability; however, during this time smallamounts of lactate were still utilized without sulfate reduction oracetate formation. Approximately 40 h after Cr exposure (0.05 mM),sulfate reduction occurred concurrently with the accumulation of acetate.Similar amounts of hydrogen were produced by Cr-exposed cells compared tocontrol cells, and lactate was not converted to glycogen duringnon-growth conditions. D. vulgaris cells treated with a reducing agentand then exposed to Cr(VI) still experienced a growth lag, but theaddition of ascorbate at the time of Cr(VI) addition prevented the lagperiod. In addition, cells grown on pyruvate displayed more tolerance toCr(VI) compared to lactate-grown cells. These results indicated that D.vulgaris utilized lactate during Cr(VI) exposure without the reduction ofsulfate or production of acetate, and that ascorbate and pyruvate couldprotect D. vulgaris cells from Cr(VI)/Cr(III) toxicity.

  6. Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment

    PubMed Central

    Engelbrektson, Anna; Hubbard, Christopher G.; Tom, Lauren M.; Boussina, Aaron; Jin, Yong T.; Wong, Hayden; Piceno, Yvette M.; Carlson, Hans K.; Conrad, Mark E.; Anderson, Gary; Coates, John D.

    2014-01-01

    Microbial sulfate reduction is a primary cause of oil reservoir souring. Here we show that amendment with chlorate or perchlorate [collectively (per)chlorate] potentially resolves this issue. Triplicate packed columns inoculated with marine sediment were flushed with coastal water amended with yeast extract and one of nitrate, chlorate, or perchlorate. Results showed that although sulfide production was dramatically reduced by all treatments, effluent sulfide was observed in the nitrate (10 mM) treatment after an initial inhibition period. In contrast, no effluent sulfide was observed with (per)chlorate (10 mM). Microbial community analyses indicated temporal community shifts and phylogenetic clustering by treatment. Nitrate addition stimulated Xanthomonadaceae and Rhizobiaceae growth, supporting their role in nitrate metabolism. (Per)chlorate showed distinct effects on microbial community structure compared with nitrate and resulted in a general suppression of the community relative to the untreated control combined with a significant decrease in sulfate reducing species abundance indicating specific toxicity. Furthermore, chlorate stimulated Pseudomonadaceae and Pseudoalteromonadaceae, members of which are known chlorate respirers, suggesting that chlorate may also control sulfidogenesis by biocompetitive exclusion of sulfate-reduction. Perchlorate addition stimulated Desulfobulbaceae and Desulfomonadaceae, which contain sulfide oxidizing and elemental sulfur-reducing species respectively, suggesting that effluent sulfide concentrations may be controlled through sulfur redox cycling in addition to toxicity and biocompetitive exclusion. Sulfur isotope analyses further support sulfur cycling in the columns, even when sulfide is not detected. This study indicates that (per)chlorate show great promise as inhibitors of sulfidogenesis in natural communities and provides insight into which organisms and respiratory processes are involved. PMID:25071731

  7. Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment.

    PubMed

    Engelbrektson, Anna; Hubbard, Christopher G; Tom, Lauren M; Boussina, Aaron; Jin, Yong T; Wong, Hayden; Piceno, Yvette M; Carlson, Hans K; Conrad, Mark E; Anderson, Gary; Coates, John D

    2014-01-01

    Microbial sulfate reduction is a primary cause of oil reservoir souring. Here we show that amendment with chlorate or perchlorate [collectively (per)chlorate] potentially resolves this issue. Triplicate packed columns inoculated with marine sediment were flushed with coastal water amended with yeast extract and one of nitrate, chlorate, or perchlorate. Results showed that although sulfide production was dramatically reduced by all treatments, effluent sulfide was observed in the nitrate (10 mM) treatment after an initial inhibition period. In contrast, no effluent sulfide was observed with (per)chlorate (10 mM). Microbial community analyses indicated temporal community shifts and phylogenetic clustering by treatment. Nitrate addition stimulated Xanthomonadaceae and Rhizobiaceae growth, supporting their role in nitrate metabolism. (Per)chlorate showed distinct effects on microbial community structure compared with nitrate and resulted in a general suppression of the community relative to the untreated control combined with a significant decrease in sulfate reducing species abundance indicating specific toxicity. Furthermore, chlorate stimulated Pseudomonadaceae and Pseudoalteromonadaceae, members of which are known chlorate respirers, suggesting that chlorate may also control sulfidogenesis by biocompetitive exclusion of sulfate-reduction. Perchlorate addition stimulated Desulfobulbaceae and Desulfomonadaceae, which contain sulfide oxidizing and elemental sulfur-reducing species respectively, suggesting that effluent sulfide concentrations may be controlled through sulfur redox cycling in addition to toxicity and biocompetitive exclusion. Sulfur isotope analyses further support sulfur cycling in the columns, even when sulfide is not detected. This study indicates that (per)chlorate show great promise as inhibitors of sulfidogenesis in natural communities and provides insight into which organisms and respiratory processes are involved. PMID:25071731

  8. Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway.

    PubMed

    Gong, Juanjuan; Sun, Fumou; Li, Yihang; Zhou, Xiaoling; Duan, Zhenzhen; Duan, Fugang; Zhao, Lei; Chen, Hansen; Qi, Suhua; Shen, Jiangang

    2015-04-01

    Momordica charantia (MC) is a medicinal plant for stroke treatment in Traditional Chinese Medicine, but its active compounds and molecular targets are unknown yet. M. charantia polysaccharide (MCP) is one of the important bioactive components in MC. In the present study, we tested the hypothesis that MCP has neuroprotective effects against cerebral ischemia/reperfusion injury through scavenging superoxide (O2(-)), nitric oxide (NO) and peroxynitrite (ONOO(-)) and inhibiting c-Jun N-terminal protein kinase (JNK3) signaling cascades. We conducted experiments with in vivo global and focal cerebral ischemia/reperfusion rat models and in vitro oxygen glucose deprivation (OGD) neural cells. The effects of MCP on apoptotic cell death and infarction volume, the bioactivities of scavenging O2(-), NO and ONOO(-), inhibiting lipid peroxidation and modulating JNK3 signaling pathway were investigated. Major results are summarized as below: (1) MCP dose-dependently attenuated apoptotic cell death in neural cells under OGD condition in vitro and reduced infarction volume in ischemic brains in vivo; (2) MCP had directing scavenging effects on NO, O2(-) and ONOO(-) and inhibited lipid peroxidation; (3) MCP inhibited the activations of JNK3/c-Jun/Fas-L and JNK3/cytochrome C/caspases-3 signaling cascades in ischemic brains in vivo. Taken together, we conclude that MCP could be a promising neuroprotective ingredient of M. charantia and its mechanisms could be at least in part attributed to its antioxidant activities and inhibiting JNK3 signaling cascades during cerebral ischemia/reperfusion injury. PMID:25510970

  9. Dextran Sulfate Suppression of Viruses in the HIV Family: Inhibition of Virion Binding to CD4+ Cells

    NASA Astrophysics Data System (ADS)

    Mitsuya, Hiroaki; Looney, David J.; Kuno, Sachiko; Ueno, Ryuji; Wong-Staal, Flossie; Broder, Samuel

    1988-04-01

    The first step in the infection of human T lymphocytes by human immunodeficiency virus type 1 (HIV-1) is attachment to the target cell receptor, the CD4 antigen. This step may be vulnerable to attack by antibodies, chemicals, or small peptides. Dextran sulfate (molecular weight approximately 8000), which has been given to patients as an anticoagulant or antilipemic agent for more than two decades, was found to block the binding of virions to various target T lymphocytes, inhibit syncytia formation, and exert a potent inhibitory effect against HIV-1 in vitro at concentrations that may be clinically attainable in human beings. This drug also suppressed the replication of HIV-2 in vitro. These observations could have theoretical and clinical implications in the strategy to develop drugs against HIV types 1 and 2.

  10. Application of the cell growth and DNA-inhibition tests for characterizing sulfate pulp mill waste waters.

    PubMed

    Cernáková, M; Slamenová, D; Golis, E; Sutý, L

    1993-01-01

    The evaluation of cytotoxic and genotoxic effects of selected technological samples from sulfate pulp mill waste waters by using the growing activity method for pseudodiploid fibroblasts V79 from lungs of the Chinese hamster and from human heteroploid fibroblasts EUE has been described along with the DNA-inhibition test for studying the synthesis of DNA after it has been influenced by the above-mentioned samples. Both the waste solution produced during the preparation of bleaching agents and the liquor generated after using hypochlorite (1st stage) as a fourth filter (after the production of paper pulp) are cytotoxic waste waters. Black liquor generated during the production of viscose pulp may have mutagenic effects and black liquor obtained from the production of paper pulp is characterized by mutagenic as well as carcinogenic effects. PMID:8262452

  11. A RG-II Type Polysaccharide Purified from Aconitum coreanum Alleviates Lipopolysaccharide-Induced Inflammation by Inhibiting the NF-κB Signal Pathway

    PubMed Central

    Li, Xiaojun; Jiang, Jiaye; Shi, Songshan; Bligh, S. W. Annie; Li, Yuan; Jiang, Yongbo; Huang, Dan; Ke, Yan; Wang, Shunchun

    2014-01-01

    Korean mondshood root polysaccharides (KMPS) isolated from the root of Aconitum coreanum (Lévl.) Rapaics have shown anti-inflammatory activity, which is strongly influenced by their chemical structures and chain conformations. However, the mechanisms of the anti-inflammatory effect by these polysaccharides have yet to be elucidated. A RG-II polysaccharide (KMPS-2E, Mw 84.8 kDa) was isolated from KMPS and its chemical structure was characterized by FT-IR and NMR spectroscopy, gas chromatography–mass spectrometry and high-performance liquid chromatography. The backbone of KMPS-2E consisted of units of [→6) -β-D-Galp (1→3)-β-L-Rhap-(1→4)-β-D-GalpA-(1→3)-β-D-Galp-(1→] with the side chain →5)-β-D-Arap (1→3, 5)-β-D-Arap (1→ attached to the backbone through O-4 of (1→3,4)-L-Rhap. T-β-D-Galp is attached to the backbone through O-6 of (1→3,6)-β-D-Galp residues and T-β-D-Ara is connected to the end group of each chain. The anti-inflammatory effects of KMPS-2E and the underlying mechanisms using lipopolysaccharide (LPS) - stimulated RAW 264.7 macrophages and carrageenan-induced hind paw edema were investigated. KMPS-2E (50, 100 and 200 µg/mL) inhibits iNOS, TLR4, phospho-NF-κB–p65 expression, phosphor-IKK, phosphor-IκB-α expression as well as the degradation of IκB-α and the gene expression of inflammatory cytokines (TNF-α, IL-1β, iNOS and IL-6) mediated by the NF-κB signal pathways in macrophages. KMPS-2E also inhibited LPS-induced activation of NF-κB as assayed by electrophorectic mobility shift assay (EMSA) in a dose-dependent manner and it reduced NF-κB DNA binding affinity by 62.1% at 200µg/mL. In rats, KMPS-2E (200 mg/kg) can significantly inhibit carrageenan-induced paw edema as ibuprofen (200 mg/kg) within 3 h after a single oral dose. The results indicate that KMPS-2E is a promising herb-derived drug against acute inflammation. PMID:24927178

  12. Inonotus obliquus-derived polysaccharide inhibits the migration and invasion of human non-small cell lung carcinoma cells via suppression of MMP-2 and MMP-9.

    PubMed

    Lee, Ki Rim; Lee, Jong Seok; Song, Jeong Eun; Ha, Suk Jin; Hong, Eock Kee

    2014-12-01

    Polysaccharides isolated from the fruiting body of Inonotus obliquus (PFIO) are known to possess various pharmacological properties including antitumor activity. However, the anti-metastatic effect and its underlying mechanistic signaling pathway involved these polysaccharides in human non-small cell lung carcinoma remain unknown. The present study therefore aimed to determine the anti-metastatic potential and signaling pathways of PFIO in the highly metastatic A549 cells. We found that PFIO suppressed the migration and invasive ability of A549 cells while decreasing the expression levels and activity of matrix metalloproteinase (MMP)-2 and MMP-9. Furthermore, PFIO decreased the phosphorylation levels of mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) as well as the expression level of COX-2, and inhibited the nuclear translocation of nuclear factor κB (NF-κB) in A549 cells. These results suggested that PFIO could suppress the invasion and migration of human lung carcinoma by reducing the expression levels and activity of MMP-2 and MMP-9 via suppression of MAPKs, PI3K/AKT, and NF-κB signaling pathways. PMID:25270791

  13. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells.

    PubMed

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20-40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  14. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    NASA Astrophysics Data System (ADS)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-04-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.

  15. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    PubMed Central

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  16. A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition

    PubMed Central

    Kuo, Ping-Hsueh; Chang, Pei-Lin; Wang, Wen-Ching; Chuang, Yung-Jen; Chang, Margaret Dah-Tsyr

    2015-01-01

    As heparan sulfate proteoglycans (HSPGs) are known as co-receptors to interact with numerous growth factors and then modulate downstream biological activities, overexpression of HS/HSPG on cell surface acts as an increasingly reliable prognostic factor in tumor progression. Cell penetrating peptides (CPPs) are short-chain peptides developed as functionalized vectors for delivery approaches of impermeable agents. On cell surface negatively charged HS provides the initial attachment of basic CPPs by electrostatic interaction, leading to multiple cellular effects. Here a functional peptide (CPPecp) has been identified from critical HS binding region in hRNase3, a unique RNase family member with in vitro antitumor activity. In this study we analyze a set of HS-binding CPPs derived from natural proteins including CPPecp. In addition to cellular binding and internalization, CPPecp demonstrated multiple functions including strong binding activity to tumor cell surface with higher HS expression, significant inhibitory effects on cancer cell migration, and suppression of angiogenesis in vitro and in vivo. Moreover, different from conventional highly basic CPPs, CPPecp facilitated magnetic nanoparticle to selectively target tumor site in vivo. Therefore, CPPecp could engage its capacity to be developed as biomaterials for diagnostic imaging agent, therapeutic supplement, or functionalized vector for drug delivery. PMID:26064887

  17. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  18. An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells

    PubMed Central

    Marano, Grazia; Gronewold, Claas; Frank, Martin; Merling, Anette; Kliem, Christian; Sauer, Sandra; Wiessler, Manfred; Frei, Eva

    2012-01-01

    Summary Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethyl)furan as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis. The most active compound, (4-{[(β-D-galactopyranosyl)oxy]methyl}furan-3-yl)methyl hydrogen sulfate (GSF), inhibited the activation of matrix-metalloproteinase-2 (MMP-2) as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM) proteins, fibrinogen and fibronectin. In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyl)oxy]methyl}furan (BGF) nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethyl)furan, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site. These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis

  19. An HPLC Method for Microanalysis and Pharmacokinetics of Marine Sulfated Polysaccharide PSS-Loaded Poly Lactic-co-Glycolic Acid (PLGA) Nanoparticles in Rat Plasma

    PubMed Central

    Li, Peng-Li; Li, Chun-Xia; Xue, Yi-Ting; Li, Hai-Hua; Liu, Hong-Bing; He, Xiao-Xi; Yu, Guang-Li; Guan, Hua-Shi

    2013-01-01

    This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS) in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted from rat plasma with d-glucuronic acid as internal standard. Isocratic chromatographic separation was performed on a TSKgel G2500 PWxL column with the mobile phase of 0.1 M sodium sulfate at a flow rate of 0.5 mL/min. Analyte detection was achieved by fluorescence detection (FLD) at 250 nm (excitation) and 435 nm (emission) using guanidine hydrochloride as postcolumn derivatizing reagent in an alkaline medium at 120 °C. The calibration curve was linear over a concentration range of 1–500 μg/mL, and the lower limit of detection (LLOD) was found to be 250 ng/mL. This validated method was applied successfully to the pharmacokinetic study of PSS and PSS-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (PSS-NP) in rat plasma after a single intravenous (PSS only) and oral administration (PSS and PSS-NP). Significant differences in the main pharmacokinetic parameters of PSS and PSS-NP were observed. The relative bioavailability of PSS-NP was 190.10% compared with PSS which shows that PSS-NP can improve oral bioavailability. PMID:23549283

  20. An HPLC method for microanalysis and pharmacokinetics of marine sulfated polysaccharide PSS-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles in rat plasma.

    PubMed

    Li, Peng-Li; Li, Chun-Xia; Xue, Yi-Ting; Li, Hai-Hua; Liu, Hong-Bing; He, Xiao-Xi; Yu, Guang-Li; Guan, Hua-Shi

    2013-04-01

    This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS) in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted from rat plasma with D-glucuronic acid as internal standard. Isocratic chromatographic separation was performed on a TSKgel G2500 PWxL column with the mobile phase of 0.1 M sodium sulfate at a flow rate of 0.5 mL/min. Analyte detection was achieved by fluorescence detection (FLD) at 250 nm (excitation) and 435 nm (emission) using guanidine hydrochloride as postcolumn derivatizing reagent in an alkaline medium at 120 °C. The calibration curve was linear over a concentration range of 1-500 μg/mL, and the lower limit of detection (LLOD) was found to be 250 ng/mL. This validated method was applied successfully to the pharmacokinetic study of PSS and PSS-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (PSS-NP) in rat plasma after a single intravenous (PSS only) and oral administration (PSS and PSS-NP). Significant differences in the main pharmacokinetic parameters of PSS and PSS-NP were observed. The relative bioavailability of PSS-NP was 190.10% compared with PSS which shows that PSS-NP can improve oral bioavailability. PMID:23549283

  1. Zinc-Stabilized Chitosan-Chondroitin Sulfate Nanocomplexes for HIV-1 Infection Inhibition Application.

    PubMed

    Wu, Danjun; Ensinas, Agathe; Verrier, Bernard; Primard, Charlotte; Cuvillier, Armelle; Champier, Gaël; Paul, Stephane; Delair, Thierry

    2016-09-01

    Polyelectrolyte complexes (PECs) constituted of chitosan and chondroitin sulfate (ChonS) were formed by the one-shot addition of default amounts of polyanion to an excess of polycation. Key variables of the formulation process (e.g., degree of depolymerization, charge mixing ratio, the concentration, and pH of polyelectrolyte solutions) were optimized based on the PECs sizes and polydispersities. The PECs maintained their colloidal stability at physiological salt concentration and pH thanks to the complexation of polyelectrolytes with zinc(II) ion during the nanoPECs formation process. The PECs were capable of encapsulating an antiretroviral drug tenofovir (TF) with a minimal alteration on the colloidal stability of the dispersion. Moreover, the particle interfaces could efficiently be functionalized with anti-OVA or anti-α4β7 antibodies with conservation of the antibody biorecognition properties over 1 week of storage in PBS at 4 °C. In vitro cytotoxicity studies showed that zinc(II) stabilized chitosan-ChonS nanoPECs were noncytotoxic to human peripheral blood mononuclear cells (PBMCs), and in vitro antiviral activity test demonstrated that nanoparticles formulations led to a dose-dependent reduction of HIV-1 infection. Using nanoparticles as a drug carrier system decreases the IC50 (50% inhibitory concentration) from an aqueous TF of 4.35 μmol·L(-1) to 1.95 μmol·L(-1). Significantly, zinc ions in this system also exhibited a synergistic effect in the antiviral potency. These data suggest that chitosan-ChonS nanoPECs can be promising drug delivery system to improve the antiviral potency of drugs to the viral reservoirs for the treatment of HIV infection. PMID:27454202

  2. Epimedium polysaccharide and propolis flavone can synergistically inhibit the cellular infectivity of NDV and improve the curative effect of ND in chicken.

    PubMed

    Fan, Yunpeng; Liu, Jiaguo; Wang, Deyun; Hu, Yuanliang; Yang, Shujuan; Wang, Junmin; Guo, Liwei; Zhao, Xiaona; Wang, Huali; Jiang, Yu

    2011-04-01

    Four prescriptions, epimedium flavone plus propolis flavone (EF-PF), epimedium flavone plus propolis extracts (EF-PE), epimedium polysaccharide plus propolis flavone (EP-PF) and epimedium polysaccharide plus propolis extracts (EP-PE), were prepared and their antiviral effects were compared. In test in vitro, the four prescriptions within safety concentration scope and Newcastle disease virus (NDV) were added into cultured chick embryo fibroblast (CEF) in three modes, pre-, post-adding drug and simultaneous-adding drug and virus after being mixed, the cellular A(570) values were determined by MTT method and the highest virus inhibitory rates were calculated to compare the antiviral activity of four prescriptions. In test in vivo, three hundred 21-day-old chickens were randomly divided into 6 groups and challenged with NDV except for blank control group. After 24h the chickens in four prescription groups were injected with corresponding drugs respectively, in virus control and blank control groups, with physiological saline, once a day for three successive days. On days 3, 7 and 14 after challenge, the serum antibody titer was determined. On day 15 after challenge, the mortality, morbidity and cure rate in every group were counted. The results showed that the most of A(570) values in EP-PF group were numberly or significantly larger than those of the corresponding virus control group and the highest virus inhibitory rates of EP-PF at optimal concentration group were the highest among four prescription groups in three drug-adding modes, which confirmed that EP-PF could significantly inhibit the infectivity of NDV to CEF, its action was stronger than those of other three prescriptions; in EP-PF group, the antibody titers and cure rate were the highest and the mortality and morbidity were lowest presenting numberly or significantly differences in comparison with other three prescription groups. These results indicated that epimedium polysaccharide and propolis flavone

  3. Protein-bound Polysaccharide-K Inhibits Hedgehog Signaling Through Down-regulation of MAML3 and RBPJ Transcription Under Hypoxia, Suppressing the Malignant Phenotype in Pancreatic Cancer.

    PubMed

    Yamasaki, Akio; Onishi, Hideya; Imaizumi, Akira; Kawamoto, Makoto; Fujimura, Akiko; Oyama, Yasuhiro; Katano, Mitsuo

    2016-08-01

    Hedgehog signaling is activated in pancreatic cancer and could be a therapeutic target. We previously demonstrated that recombination signal binding protein for immunoglobulin-kappa-J region (RBPJ) and mastermind-like 3 (MAML3) contribute to the hypoxia-induced up-regulation of Smoothened (SMO) transcription. We have also shown that protein-bound polysaccharide-K (PSK) could be effective for refractory pancreatic cancer that down-regulates SMO transcription under hypoxia. In this study, we evaluated whether the anticancer mechanism of PSK involves inhibiting RBPJ and MAML3 expression under hypoxia. PSK reduced SMO, MAML3 and RBPJ expression in pancreatic cancer cells under hypoxia. PSK also blocked RBPJ-induced invasiveness under hypoxia by inhibiting matrix metalloproteinase expression. Lastly, we showed that PSK attenuated RBPJ-induced proliferation both in vitro and in vivo. These results suggest that PSK suppresses Hedgehog signaling through down-regulation of MAML3 and RBPJ transcription under hypoxia, inhibiting the induction of a malignant phenotype in pancreatic cancer. Our results may lead to development of new treatments for refractory pancreatic cancer using PSK as a Hedgehog inhibitor. PMID:27466498

  4. Soluble epoxide hydrolase deficiency inhibits dextran sulfate sodium-induced colitis and carcinogenesis in mice.

    PubMed

    Zhang, Wanying; Li, Haonan; Dong, Hua; Liao, Jie; Hammock, Bruce D; Yang, Guang-Yu

    2013-12-01

    Soluble epoxide hydrolase (sEH) hydrolyses/inactivates anti-inflammatory epoxyeicosatrienoic acids (EETs) to their corresponding diols, and targeting sEH leads to strong anti-inflammatory effects. In the present study, using a tissue microarray and immunohistochemical approach, a significant increase of sEH expression was identified in ulcerative colitis (UC)-associated dysplasia and adenocarcinoma. The effects of deficiency in the sEH gene were determined on dextran sulfate sodium (DSS) colitis-induced carcinogenesis. The effects of EETs on lipopolysaccharide (LPS)-activated macrophages were analyzed in vitro. With extensive histopathological and immunohistochemical analyses, compared to wild-type mice, sEH(-/-) mice exhibited a significant decrease in tumor incidence (13/20 vs. 6/19, p<0.05) and a markedly reduced average tumor size (59.62±20.91 mm(3) vs. 22.42±11.22 mm(3)), and a significant number of pre-cancerous dysplasia (3±1.18 vs. 2±0.83, p<0.01). The inflammatory activity, as measured by the extent/proportion of erosion/ulceration/dense lymphoplasmacytosis (called active colitis index) in the colon, was significantly lower in sEH(-/-) mice (44.7%±24.9% vs. 20.2%±16.2%, p<0.01). The quantitative polymerase chain reaction (qPCR) assays demonstrated significantly low levels of cytokines/chemokines including monocyte chemoattractant protein (MCP-1), inducible nitric oxide synthase (iNOS), vasopressin-activated calcium-mobilizing (VCAM-1), interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). In vitro, LPS-activated macrophages treated with 14,15-EET showed a significant reduction of LPS-triggered IL-1β and TNF-α expression. Eicosanoic acid metabolic profiling revealed a significant increase of the ratios of EETs/ dihydroeicosatrienoic acids (DHETs) and epoxyoctadecennoic acid/dihydroxyoctadecenoic acid (EpOMEs/DiHOMEs). These results indicate that sEH plays an important role in the development of colitis and in inducing carcinogenesis

  5. Functional polysaccharides from Grifola frondosa aqueous extract inhibit atopic dermatitis-like skin lesions in NC/Nga mice.

    PubMed

    Park, Hyeon Soo; Hwang, Yong Hyeon; Kim, Mun Ki; Hong, Gyeong Eun; Lee, Ho Jeong; Nagappan, Arulkumar; Yumnam, Silvia; Kim, Eun Hee; Heo, Jeong Doo; Lee, Sang Joon; Won, Chung Kil; Kim, Gon Sup

    2015-01-01

    Grifola frondosa (GF), distributed widely in far east Asia including Korea, is popularly used as traditional medicines and health supplementary foods, especially for enhancing the immune functions of the body. To extend the application of GF polysaccharides (GFP) for atopic dermatitis (AD), we investigated the effects of GFP on the 2,4-dinitrochlorobenzene-induced AD-like skin lesion in NC/Nga mice. GFP treatment significantly reduced the dorsa skin dermatitis score and combination treatment with GFP, and dexamethasone has a synergistic effect in AD-like skin lesion by reduced Serum IgE, mast cells infiltration, and cytokines expression. These results indicate that GFP suppressed the AD-like skin lesions by controlling the Th-1/Th-2-type cytokines in NC/Nga mice. These findings strongly suggest that GFP can be useful for AD patients as a novel therapeutic agent and might be used for corticosteroids replacement or supplement agent. PMID:25248662

  6. Ganoderma Lucidum polysaccharides protect against MPP+ and rotenone-induced apoptosis in primary dopaminergic cell cultures through inhibiting oxidative stress

    PubMed Central

    Guo, Shan-Shan; Cui, Xiao-Lan; Rausch, Wolf-Dieter

    2016-01-01

    Oxidative stress plays a pivotal role in the progressive neurodegeneration in Parkinson’s disease (PD) which is responsible for disabling motor abnormalities in more than 6.5 million people worldwide. Polysaccharides are the main active constituents from Ganoderma lucidum which is characterized with anti-oxidant, antitumor and immunostimulant properties. In the present study, primary dopaminergic cell cultures prepared from embryonic mouse mesencephala were used to investigate the neuroprotective effects and the potential mechanisms of Ganoderma lucidum polysaccharides (GLP) on the degeneration of dopaminergic neurons induced by the neurotoxins methyl-4-phenylpyridine (MPP+) and rotenone. Results revealed that GLP can protect dopamine neurons against MPP+ and rotenone at the concentrations of 100, 50 and 25 μg/ml in primary mesencephalic cultures in a dose-dependent manner. Interestingly, either with or without neurotoxin treatment, GLP treatment elevated the survival of THir neurons, and increased the length of neurites of dopaminergic neurons. The Trolox equivalent anti-oxidant capacity (TEAC) of GLP was determined to be 199.53 μmol Trolox/g extract, and the decrease of mitochondrial complex I activity induced by MPP+ and rotenone was elevated by GLP treatment (100, 50, 25 and 12.5 μg/ml) in a dose dependent manner. Furthermore, GLP dramatically decreased the relative number of apoptotic cells and increased the declining mitochondrial membrane potential (ΔΨm) induced by MPP+ and rotenone in a dose-dependent manner. In addition, GLP treatment reduced the ROS formation induced by MPP+ and rotenone at the concentrations of 100, 50 and 25 μg/ml in a dose-dependent manner. Our study indicates that GLP possesses neuroprotective properties against MPP+ and rotenone neurotoxicity through suppressing oxidative stress in primary mesencephalic dopaminergic cell culture owning to its antioxidant activities. PMID:27335703

  7. Ganoderma Lucidum polysaccharides protect against MPP(+) and rotenone-induced apoptosis in primary dopaminergic cell cultures through inhibiting oxidative stress.

    PubMed

    Guo, Shan-Shan; Cui, Xiao-Lan; Rausch, Wolf-Dieter

    2016-01-01

    Oxidative stress plays a pivotal role in the progressive neurodegeneration in Parkinson's disease (PD) which is responsible for disabling motor abnormalities in more than 6.5 million people worldwide. Polysaccharides are the main active constituents from Ganoderma lucidum which is characterized with anti-oxidant, antitumor and immunostimulant properties. In the present study, primary dopaminergic cell cultures prepared from embryonic mouse mesencephala were used to investigate the neuroprotective effects and the potential mechanisms of Ganoderma lucidum polysaccharides (GLP) on the degeneration of dopaminergic neurons induced by the neurotoxins methyl-4-phenylpyridine (MPP(+)) and rotenone. Results revealed that GLP can protect dopamine neurons against MPP(+) and rotenone at the concentrations of 100, 50 and 25 μg/ml in primary mesencephalic cultures in a dose-dependent manner. Interestingly, either with or without neurotoxin treatment, GLP treatment elevated the survival of THir neurons, and increased the length of neurites of dopaminergic neurons. The Trolox equivalent anti-oxidant capacity (TEAC) of GLP was determined to be 199.53 μmol Trolox/g extract, and the decrease of mitochondrial complex I activity induced by MPP(+) and rotenone was elevated by GLP treatment (100, 50, 25 and 12.5 μg/ml) in a dose dependent manner. Furthermore, GLP dramatically decreased the relative number of apoptotic cells and increased the declining mitochondrial membrane potential (ΔΨm) induced by MPP(+) and rotenone in a dose-dependent manner. In addition, GLP treatment reduced the ROS formation induced by MPP(+) and rotenone at the concentrations of 100, 50 and 25 μg/ml in a dose-dependent manner. Our study indicates that GLP possesses neuroprotective properties against MPP(+) and rotenone neurotoxicity through suppressing oxidative stress in primary mesencephalic dopaminergic cell culture owning to its antioxidant activities. PMID:27335703

  8. Characterization of Brucella polysaccharide B.

    PubMed Central

    Bundle, D R; Cherwonogrodzky, J W; Perry, M B

    1988-01-01

    Polysaccharide B was extracted from Brucella melitensis 16M and from a rough strain of Brucella abortus 45/20 by autoclaving or trichloroacetic acid extraction of whole cells and by a new method involving mild leaching of cells. The material obtained by either of the established procedures was contaminated by O polysaccharide. The new leaching protocol eliminated this impurity and provided a pure glucan, which was regarded as polysaccharide B. This polysaccharide was found by high-performance liquid chromatography separations, chemical composition, methylation, and two-dimensional homo- and heteronuclear magnetic resonance experiments to be a family of nonreducing cyclic 1,2-linked polymers of beta-D-glucopyranosyl residues. The degree of polymerization varied between 17 and 24. Polysaccharide B was essentially identical to cyclic D-glucans produced by Rhizobia, Agrobacteria, and other bacterial species. Pure polysaccharide B did not precipitate with Brucella anti-A or anti-M serum and did not inhibit the serological reaction of Brucella A or M antigen with either bovine or murine monoclonal Brucella anti-A or anti-M serum. Previously described serological reactions of polysaccharide B preparations with Brucella anti-A and anti-M sera are related in this study to the presence in crude extracts of contaminants with the antigenic properties of Brucella lipopolysaccharide O polysaccharides. PMID:3356461

  9. Inhibition of α2A-Adrenoceptors Ameliorates Dextran Sulfate Sodium-Induced Acute Intestinal Inflammation in Mice.

    PubMed

    Zádori, Zoltán S; Tóth, Viktória E; Fehér, Ágnes; Al-Khrasani, Mahmoud; Puskár, Zita; Kozsurek, Márk; Timár, Júlia; Tábi, Tamás; Helyes, Zsuzsanna; Hein, Lutz; Holzer, Peter; Gyires, Klára

    2016-09-01

    It has been hypothesized that α2-adrenoceptors (α2-ARs) may be involved in the pathomechanism of colitis; however, the results are conflicting because both aggravation and amelioration of colonic inflammation have been described in response to α2-AR agonists. Therefore, we aimed to analyze the role of α2-ARs in acute murine colitis. The experiments were carried out in wild-type, α2A-, α2B-, and α2C-AR knockout (KO) C57BL/6 mice. Colitis was induced by dextran sulfate sodium (DSS, 2%); alpha2-AR ligands were injected i.p. The severity of colitis was determined both macroscopically and histologically. Colonic myeloperoxidase (MPO) and cytokine levels were measured by enzyme-linked immunosorbent assay and proteome profiler array, respectively. The nonselective α2-AR agonist clonidine induced a modest aggravation of DSS-induced colitis. It accelerated the disease development and markedly enhanced the weight loss of animals, but did not influence the colon shortening, tissue MPO levels, or histologic score. Clonidine induced similar changes in α2B- and α2C-AR KO mice, whereas it failed to affect the disease activity index scores and caused only minor weight loss in α2A-AR KO animals. In contrast, selective inhibition of α2A-ARs by BRL 44408 significantly delayed the development of colitis; reduced the colonic levels of MPO and chemokine (C-C motif) ligand 3, chemokine (C-X-C motif) ligand 2 (CXCL2), CXCL13, and granulocyte-colony stimulating factor; and elevated that of tissue inhibitor of metalloproteinases-1. In this work, we report that activation of α2-ARs aggravates murine colitis, an effect mediated by the α2A-AR subtype, and selective inhibition of these receptors reduces the severity of gut inflammation. PMID:27418171

  10. Vitamin A Inhibits Development of Dextran Sulfate Sodium-Induced Colitis and Colon Cancer in a Mouse Model

    PubMed Central

    Okayasu, Isao; Hana, Kiyomi; Nemoto, Noriko; Yoshida, Tsutomu; Saegusa, Makoto; Yokota-Nakatsuma, Aya; Song, Si-Young; Iwata, Makoto

    2016-01-01

    Vitamin A is essential to mucosal immunity and cell differentiation. The fact that lack of it might involve chronic inflammation and increased risk of cancer has been reported. Little is known about the mechanism of vitamin A deficiency in the development of colitis and its influence on development of colorectal cancer. To determine the influence of vitamin A deficiency on colitis and colorectal cancer development, an experimental study using a colitis mouse model was performed. Dextran sulfate sodium (DSS) colitis was induced in vitamin A-deficient and vitamin A-supplemented mice. Further, colorectal carcinoma was induced by a combination of azoxymethane preinjection and DSS colitis. Results were compared between the two groups mainly by immunohistochemical analysis. Colitis was more severe and recovery from colitis was slower in vitamin A-deficient mice than in vitamin A-supplemented mice. Compared with vitamin A-supplemented mice, vitamin A-deficient mice had decreases in colonic subepithelial myofibroblasts and the ratio of mucosal IgA+/IgG+ cells, increases in CD11c+ dendritic cells, and a higher rate of development of colorectal carcinoma with colitis following azoxymethane. Vitamin A lipid droplets in subepithelial myofibroblasts were decreased in vitamin A-deficient mice, suggesting alterations in colonic crypt niche function. Thus, vitamin A inhibited colitis and the development of colorectal cancer. PMID:27298823

  11. Peptide 19-2.5 inhibits heparan sulfate-triggered inflammation in murine cardiomyocytes stimulated with human sepsis serum.

    PubMed

    Martin, Lukas; Schmitz, Susanne; De Santis, Rebecca; Doemming, Sabine; Haase, Hajo; Hoeger, Janine; Heinbockel, Lena; Brandenburg, Klaus; Marx, Gernot; Schuerholz, Tobias

    2015-01-01

    Myocardial dysfunction in sepsis has been linked to inflammation caused by pathogen-associated molecular patterns (PAMPs) as well as by host danger-associated molecular patterns (DAMPs). These include soluble heparan sulfate (HS), which triggers the devastating consequences of the pro-inflammatory cascades in severe sepsis and septic shock. Thus, there is increasing interest in the development of anti-infective agents, with effectiveness against both PAMPs and DAMPs. We hypothesized that a synthetic antimicrobial peptide (peptide 19-2.5) inhibits inflammatory response in murine cardiomyocytes (HL-1 cells) stimulated with PAMPs, DAMPs or serum from patients with septic shock by reduction and/or neutralization of soluble HS. In the current study, our data indicate that the treatment with peptide 19-2.5 decreases the inflammatory response in HL-1 cells stimulated with either PAMPs or DAMPs. Furthermore, our work shows that soluble HS in serum from patients with Gram-negative or Gram-positive septic shock induces a strong pro-inflammatory response in HL-1 cells, which can be effectively blocked by peptide 19-2.5. Based on these findings, peptide 19-2.5 is a novel anti-inflammatory agent interacting with both PAMPs and DAMPs, suggesting peptide 19-2.5 may have the potential for further development as a broad-spectrum anti-inflammatory agent in sepsis-induced myocardial inflammation and dysfunction. PMID:26024383

  12. Strawberry phytochemicals inhibit azoxymethane/dextran sodium sulfate-induced colorectal carcinogenesis in Crj: CD-1 mice.

    PubMed

    Shi, Ni; Clinton, Steven K; Liu, Zhihua; Wang, Yongquan; Riedl, Kenneth M; Schwartz, Steven J; Zhang, Xiaoli; Pan, Zui; Chen, Tong

    2015-03-01

    Human and experimental colon carcinogenesis are enhanced by a pro-inflammatory microenvironment. Pharmacologically driven chemopreventive agents and dietary variables are hypothesized to have future roles in the prevention of colon cancer by targeting these processes. The current study was designed to determine the ability of dietary lyophilized strawberries to inhibit inflammation-promoted colon carcinogenesis in a preclinical animal model. Mice were given a single i.p. injection of azoxymethane (10 mg kg-1 body weight). One week after injection, mice were administered 2% (w/v) dextran sodium sulfate in drinking water for seven days and then an experimental diet containing chemically characterized lyophilized strawberries for the duration of the bioassay. Mice fed control diet, or experimental diet containing 2.5%, 5.0% or 10.0% strawberries displayed tumor incidence of 100%, 64%, 75% and 44%, respectively (p < 0.05). The mechanistic studies demonstrate that strawberries reduced expression of proinflammatory mediators, suppressed nitrosative stress and decreased phosphorylation of phosphatidylinositol 3-kinase, Akt, extracellular signal-regulated kinase and nuclear factor kappa B. In conclusion, strawberries target proinflammatory mediators and oncogenic signaling for the preventive efficacies against colon carcinogenesis in mice. This works supports future development of fully characterized and precisely controlled functional foods for testing in human clinical trials for this disease. PMID:25763529

  13. Strawberry Phytochemicals Inhibit Azoxymethane/Dextran Sodium Sulfate-Induced Colorectal Carcinogenesis in Crj: CD-1 Mice

    PubMed Central

    Shi, Ni; Clinton, Steven K.; Liu, Zhihua; Wang, Yongquan; Riedl, Kenneth M.; Schwartz, Steven J.; Zhang, Xiaoli; Pan, Zui; Chen, Tong

    2015-01-01

    Human and experimental colon carcinogenesis are enhanced by a pro-inflammatory microenvironment. Pharmacologically driven chemopreventive agents and dietary variables are hypothesized to have future roles in the prevention of colon cancer by targeting these processes. The current study was designed to determine the ability of dietary lyophilized strawberries to inhibit inflammation-promoted colon carcinogenesis in a preclinical animal model. Mice were given a single i.p. injection of azoxymethane (10 mg kg−1 body weight). One week after injection, mice were administered 2% (w/v) dextran sodium sulfate in drinking water for seven days and then an experimental diet containing chemically characterized lyophilized strawberries for the duration of the bioassay. Mice fed control diet, or experimental diet containing 2.5%, 5.0% or 10.0% strawberries displayed tumor incidence of 100%, 64%, 75% and 44%, respectively (p < 0.05). The mechanistic studies demonstrate that strawberries reduced expression of proinflammatory mediators, suppressed nitrosative stress and decreased phosphorylation of phosphatidylinositol 3-kinase, Akt, extracellular signal-regulated kinase and nuclear factor kappa B. In conclusion, strawberries target proinflammatory mediators and oncogenic signaling for the preventive efficacies against colon carcinogenesis in mice. This works supports future development of fully characterized and precisely controlled functional foods for testing in human clinical trials for this disease. PMID:25763529

  14. Vitamin A Inhibits Development of Dextran Sulfate Sodium-Induced Colitis and Colon Cancer in a Mouse Model.

    PubMed

    Okayasu, Isao; Hana, Kiyomi; Nemoto, Noriko; Yoshida, Tsutomu; Saegusa, Makoto; Yokota-Nakatsuma, Aya; Song, Si-Young; Iwata, Makoto

    2016-01-01

    Vitamin A is essential to mucosal immunity and cell differentiation. The fact that lack of it might involve chronic inflammation and increased risk of cancer has been reported. Little is known about the mechanism of vitamin A deficiency in the development of colitis and its influence on development of colorectal cancer. To determine the influence of vitamin A deficiency on colitis and colorectal cancer development, an experimental study using a colitis mouse model was performed. Dextran sulfate sodium (DSS) colitis was induced in vitamin A-deficient and vitamin A-supplemented mice. Further, colorectal carcinoma was induced by a combination of azoxymethane preinjection and DSS colitis. Results were compared between the two groups mainly by immunohistochemical analysis. Colitis was more severe and recovery from colitis was slower in vitamin A-deficient mice than in vitamin A-supplemented mice. Compared with vitamin A-supplemented mice, vitamin A-deficient mice had decreases in colonic subepithelial myofibroblasts and the ratio of mucosal IgA(+)/IgG(+) cells, increases in CD11c(+) dendritic cells, and a higher rate of development of colorectal carcinoma with colitis following azoxymethane. Vitamin A lipid droplets in subepithelial myofibroblasts were decreased in vitamin A-deficient mice, suggesting alterations in colonic crypt niche function. Thus, vitamin A inhibited colitis and the development of colorectal cancer. PMID:27298823

  15. Composition and anti-inflammatory effect of polysaccharides from Sargassum horneri in RAW264.7 macrophages.

    PubMed

    Wen, Zheng-Shun; Xiang, Xing-Wei; Jin, Huo-Xi; Guo, Xiang-Yang; Liu, Li-Jia; Huang, Yan-Na; OuYang, Xiao-Kun; Qu, You-Le

    2016-07-01

    Sulfated polysaccharides extracted from brown marine algae have been shown to possess a variety of biological activities. We assessed the potential activity of the sulfated polysaccharide from Sargassum horneri (SP) and its isolated two major components (fraction-1 (F1) and fraction-2 (F2)), on anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. In the present study, analysis of polysaccharide chemical composition found that the constituent ratios of sulfate ester and fucose in SP and F1 were 4.95% vs 7.6%, and 4.48% vs 55.9%, respectively, suggesting that F1 may be a major sulfated polysaccharide containing fucose. Meanwhile, our findings demonstrated that TNF-α secretion levels were significantly (P<0.05) decreased by SP and F1 treatments in LPS-stimulated RAW264.7 cells in a dose-dependent manner under the preventive and repair experimental models. Pro-/anti-inflammatory (TNF-α/IL-10) cytokines secretion ratios by LPS-stimulated RAW264.7 macrophages were significantly (P<0.05) inhibited by SP and F1 treatments, particularly by F1 (at high dose, 200μg/ml). Moreover, NO release and iNOS activity were significantly (P<0.05) inhibited by F1. Collectively, the present study suggested that purified component, F1 from SP, had strong anti-inflammatory effects on LPS-stimulated RAW264.7 macrophages in the preventive and repair manner through inhibiting TNF-α secretion levels and NO release. PMID:26879911

  16. Chemical structure and anticoagulant activity of highly pyruvylated sulfated galactans from tropical green seaweeds of the order Bryopsidales.

    PubMed

    Arata, Paula X; Quintana, Irene; Canelón, Dilsia J; Vera, Beatriz E; Compagnone, Reinaldo S; Ciancia, Marina

    2015-05-20

    Sulfated and pyruvylated galactans were isolated from three tropical species of the Bryopsidales, Penicillus capitatus, Udotea flabellum, and Halimeda opuntia. They represent the only important sulfated polysaccharides present in the cell walls of these highly calcified seaweeds of the suborder Halimedineae. Their structural features were studied by chemical analyses and NMR spectroscopy. Their backbone comprises 3-, 6-, and 3,6-linkages, constituted by major amounts of 3-linked 4,6-O-(1'-carboxy)ethylidene-d-galactopyranose units in part sulfated on C-2. Sulfation on C-2 was not found in galactans from other seaweeds of this order. In addition, a complex sulfation pattern, comprising also 4-, 6-, and 4,6-disulfated galactose units was found. A fraction from P. capitatus, F1, showed a moderate anticoagulant activity, evaluated by general coagulation tests and also kinetics of fibrin formation was assayed. Besides, preliminary results suggest that one of the possible mechanisms involved is direct thrombin inhibition. PMID:25817682

  17. The Predominant Molecular State of Bound Enzyme Determines the Strength and Type of Product Inhibition in the Hydrolysis of Recalcitrant Polysaccharides by Processive Enzymes*

    PubMed Central

    Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit

    2015-01-01

    Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the 14C-labeled crystalline polymeric substrates 14C chitin nanowhiskers and 14C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki(obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki(obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation. PMID:25767120

  18. Activity of Porphyridium sp. polysaccharide against herpes simplex viruses in vitro and in vivo.

    PubMed

    Huheihel, Mahmoud; Ishanu, Vladimir; Tal, Jacov; Arad, Shoshana Malis

    2002-01-01

    The cell wall sulfated polysaccharide of the red microalga Porphyridium sp. exhibited impressive antiviral activity against herpes simplex virus types 1 and 2 (HSV-1 and -2) both in vitro (cell culture) and in vivo (rats and rabbits). Depending on the concentration, this polysaccharide completely inhibited or slowed down the development of the cytopathic effect in HSV-infected cells, but did not show any cytotoxic effects on vero cells even when a concentration as high as 250 microg/ml was used. There was indirect evidence for a strong interaction between the polysaccharide and HSV and a weak interaction with the cell surface. When tested in vivo, Porphyridium sp. polysaccharide conferred significant and efficient protection against HSV-1 infection: at a concentration as low as 100 microg/ml, it prevented the appearance and development of symptoms of HSV-1 infection in rats and rabbits. The polysaccharide did not exhibit any cytotoxic effects at a concentration of 2 mg/ml in vivo. PMID:11741707

  19. Chondroitin Sulfate Is Indispensable for Pluripotency and Differentiation of Mouse Embryonic Stem Cells

    NASA Astrophysics Data System (ADS)

    Izumikawa, Tomomi; Sato, Ban; Kitagawa, Hiroshi

    2014-01-01

    Chondroitin sulfate (CS) proteoglycans are present on the surfaces of virtually all cells and in the extracellular matrix and are required for cytokinesis at early developmental stages. Studies have shown that heparan sulfate (HS) is essential for maintaining mouse embryonic stem cells (ESCs) that are primed for differentiation, whereas the function of CS has not yet been elucidated. To clarify the role of CS, we generated glucuronyltransferase-I-knockout ESCs lacking CS. We found that CS was required to maintain the pluripotency of ESCs and promoted initial ESC commitment to differentiation compared with HS. In addition, CS-A and CS-E polysaccharides, but not CS-C polysaccharides, bound to E-cadherin and enhanced ESC differentiation. Multiple-lineage differentiation was inhibited in chondroitinase ABC-digested wild-type ESCs. Collectively, these results suggest that CS is a novel determinant in controlling the functional integrity of ESCs via binding to E-cadherin.

  20. Chondroitin Sulfate Is Indispensable for Pluripotency and Differentiation of Mouse Embryonic Stem Cells

    PubMed Central

    Izumikawa, Tomomi; Sato, Ban; Kitagawa, Hiroshi

    2014-01-01

    Chondroitin sulfate (CS) proteoglycans are present on the surfaces of virtually all cells and in the extracellular matrix and are required for cytokinesis at early developmental stages. Studies have shown that heparan sulfate (HS) is essential for maintaining mouse embryonic stem cells (ESCs) that are primed for differentiation, whereas the function of CS has not yet been elucidated. To clarify the role of CS, we generated glucuronyltransferase-I-knockout ESCs lacking CS. We found that CS was required to maintain the pluripotency of ESCs and promoted initial ESC commitment to differentiation compared with HS. In addition, CS-A and CS-E polysaccharides, but not CS-C polysaccharides, bound to E-cadherin and enhanced ESC differentiation. Multiple-lineage differentiation was inhibited in chondroitinase ABC-digested wild-type ESCs. Collectively, these results suggest that CS is a novel determinant in controlling the functional integrity of ESCs via binding to E-cadherin. PMID:24424429

  1. Sulphated polysaccharides from Ulva clathrata and Cladosiphon okamuranus seaweeds both inhibit viral attachment/entry and cell-cell fusion, in NDV infection.

    PubMed

    Aguilar-Briseño, José Alberto; Cruz-Suarez, Lucia Elizabeth; Sassi, Jean-François; Ricque-Marie, Denis; Zapata-Benavides, Pablo; Mendoza-Gamboa, Edgar; Rodríguez-Padilla, Cristina; Trejo-Avila, Laura María

    2015-02-01

    Sulphated polysaccharides (SP) extracted from seaweeds have antiviral properties and are much less cytotoxic than conventional drugs, but little is known about their mode of action. Combination antiviral chemotherapy may offer advantages over single agent therapy, increasing efficiency, potency and delaying the emergence of resistant virus. The paramyxoviridae family includes pathogens causing morbidity and mortality worldwide in humans and animals, such as the Newcastle Disease Virus (NDV) in poultry. This study aims at determining the antiviral activity and mechanism of action in vitro of an ulvan (SP from the green seaweed Ulva clathrata), and of its mixture with a fucoidan (SP from Cladosiphon okamuranus), against La Sota NDV strain. The ulvan antiviral activity was tested using syncytia formation, exhibiting an IC50 of 0.1 μg/mL; ulvan had a better anti cell-cell spread effect than that previously shown for fucoidan, and inhibited cell-cell fusion via a direct effect on the F0 protein, but did not show any virucidal effect. The mixture of ulvan and fucoidan showed a greater anti-spread effect than SPs alone, but ulvan antagonizes the effect of fucoidan on the viral attachment/entry. Both SPs may be promising antivirals against paramyxovirus infection but their mixture has no clear synergistic advantage. PMID:25629385

  2. In vivo immunomodulatory effects of Antrodia camphorata polysaccharides in a T1/T2 doubly transgenic mouse model for inhibiting infection of Schistosoma mansoni

    SciTech Connect

    Cheng, P.-C.; Hsu, C.-Y.; Chen, C.-C.; Lee, K.-M.

    2008-03-01

    Antrodia camphorata (A. camphorata) is a fungus commonly used for treatment of viral hepatitis and cancer in Chinese folk medicine. Extract of A. camphorate is reported to possess anti-inflammatory, antihepatitis B virus and anticancer activities. In this study, we tested the in vivo effects of polysaccharides derived from A. camphorata (AC-PS) on immune function by detection of cytokine expression and evaluation of the immune phenotype in a T1/T2 doubly transgenic mouse model. The protective effect of AC-PS in mice was tested by infection with Schistosoma mansoni. The induction of large amounts of IFN-{gamma}, IL-2 and TNF-a mRNA were detected after 2 and 4 weeks of oral AC-PS administration in BALB/c and C57BL/6 mice. In transgenic mice, 3 to 6 weeks of oral AC-PS administration increased the proportion of CD4{sup +} T cells and B cells within the spleen. More specifically, there was an increase of Th1 CD4{sup +} T cells and Be1 cells among spleen cells as observed by detection the of Type1/Type2 marker molecules. By using a disease model of parasitic infection, we found that AC-PS treatment inhibited infection with S. mansoni in BALB/C and C57BL/6 mice. AC-PS appears to influence the immune system of mice into developing Th1 responses and have potential for preventing infection with S. mansoni.

  3. Avidity of the Immunoglobulin G Response to a Neisseria meningitidis Group C Polysaccharide Conjugate Vaccine as Measured by Inhibition and Chaotropic Enzyme-Linked Immunosorbent Assays▿

    PubMed Central

    Harris, Shannon L.; Tsao, How; Ashton, Lindsey; Goldblatt, David; Fernsten, Philip

    2007-01-01

    Antibody avidity, the strength of the multivalent interaction between antibodies and their antigens, is an important characteristic of protective immune responses. We have developed an inhibition enzyme-linked immunosorbent assay (ELISA) to measure antibody avidity for the capsular polysaccharide (PS) of Neisseria meningitidis group C (MnC) and determined the avidity constants (KDs) for 100 sera from children immunized with an MnC PS conjugate vaccine. The avidity constants were compared to the avidity indices (AI) obtained for the same sera using a chaotropic ELISA protocol. After the primary immunization series, the geometric mean (GM) KD was 674 nM and did not change in the months following immunization. However, the GM avidity did increase after the booster dose (GM KD, 414 nM 1 month after booster immunization). In contrast, the GM AI increased from an initial value of 118 after the primary immunization series to 147 6 months after the completion of the primary immunization series and then further increased to 178 after booster immunization. At the individual subject level, the avidity constant and AI correlated after the primary immunization series and after booster immunization but not prior to boosting. This work suggests that the AI, as measured by the chaotropic ELISA, in contrast to the KD, reflects changes that render antibody populations less susceptible to disruption by chaotropic agents without directly affecting the strength of the binding interactions. PMID:17287312

  4. Sulphated Polysaccharides from Ulva clathrata and Cladosiphon okamuranus Seaweeds both Inhibit Viral Attachment/Entry and Cell-Cell Fusion, in NDV Infection

    PubMed Central

    Aguilar-Briseño, José Alberto; Cruz-Suarez, Lucia Elizabeth; Sassi, Jean-François; Ricque-Marie, Denis; Zapata-Benavides, Pablo; Mendoza-Gamboa, Edgar; Rodríguez-Padilla, Cristina; Trejo-Avila, Laura María

    2015-01-01

    Sulphated polysaccharides (SP) extracted from seaweeds have antiviral properties and are much less cytotoxic than conventional drugs, but little is known about their mode of action. Combination antiviral chemotherapy may offer advantages over single agent therapy, increasing efficiency, potency and delaying the emergence of resistant virus. The paramyxoviridae family includes pathogens causing morbidity and mortality worldwide in humans and animals, such as the Newcastle Disease Virus (NDV) in poultry. This study aims at determining the antiviral activity and mechanism of action in vitro of an ulvan (SP from the green seaweed Ulva clathrata), and of its mixture with a fucoidan (SP from Cladosiphon okamuranus), against La Sota NDV strain. The ulvan antiviral activity was tested using syncytia formation, exhibiting an IC50 of 0.1 μg/mL; ulvan had a better anti cell-cell spread effect than that previously shown for fucoidan, and inhibited cell-cell fusion via a direct effect on the F0 protein, but did not show any virucidal effect. The mixture of ulvan and fucoidan showed a greater anti-spread effect than SPs alone, but ulvan antagonizes the effect of fucoidan on the viral attachment/entry. Both SPs may be promising antivirals against paramyxovirus infection but their mixture has no clear synergistic advantage. PMID:25629385

  5. Polysaccharide Krestin is a novel TLR2 agonist that mediates inhibition of tumor growth via stimulation of CD8 T cells and NK cells

    PubMed Central

    Lu, Hailing; Yang, Yi; Gad, Ekram; Wenner, Cynthia A.; Chang, Amy; Larson, Emily R.; Dang, Yushe; Martzen, Mark; Standish, Leanna J.; Disis, Mary L.

    2010-01-01

    Purpose Polysaccharide Krestin (PSK) is a mushroom extract that has been long used in Asia and recently in Western countries as a treatment for cancer due to its presumed immune potentiating effects. Although there have been reports of clinical responses after patients have ingested PSK, the mechanism of action of the agent remains undefined. The current study was undertaken to investigate the mechanism of the anti-tumor actions of PSK. Experimental Design The immunostimulatory effect of PSK was first evaluated in vitro using splenocytes from neu transgenic mice and TLR2 knockout (TLR2−/−) mice. Then the immunostimualtory and anti-tumor effect of PSK was determined using tumor-bearing neu transgenic mice, TLR2−/− and wild type C57BL/6 mice. Results We demonstrate that PSK is a selective TLR2 agonist, and the activation of dendritic cells (DC) and T cells by PSK is dependent on TLR2. Oral administration of PSK in neu transgenic mice significantly inhibits breast cancer growth. Selective depletion of specific cell populations suggests that the anti-tumor effect of PSK is dependent on both CD8+ T cell and NK cells, but not CD4+ T cells. PSK does not inhibit tumor growth in TLR2−/− mice suggesting the anti-tumor effect is mediated by TLR2. Conclusion These results demonstrate that PSK, a natural product commonly used for the treatment of cancer, is a specific TLR2 agonist and has potent anti-tumor effects via stimulation of both innate and adaptive immune pathways. PMID:21068144

  6. The Microbial Capsular Polysaccharide Galactoxylomannan Inhibits IL-17A Production in Circulating T Cells from Rheumatoid Arthritis Patients

    PubMed Central

    Pericolini, Eva; Alunno, Alessia; Gabrielli, Elena; Bartoloni, Elena; Cenci, Elio; Chow, Siu-Kei; Bistoni, Giovanni; Casadevall, Arturo; Gerli, Roberto; Vecchiarelli, Anna

    2013-01-01

    The persistence of activated T cells in rheumatoid arthritis (RA) synovium may be attributable to increased homing, increased retention or a possible imbalance between cell proliferation and programmed cell death. Induction of apoptosis may represent a potential therapeutic approach. Galactoxylomannan (GalXM) from the opportunistic fungus Cryptococcus neoformans can interact with T cells and induce T-cell apoptosis through the inhibition of CD45 phosphatase activity. The aim of this study was to determine the effect of GalXM on circulating T cells from patients with RA and the underlying mechanisms. GalXM immunomodulating effect on apoptosis and signal transduction pathway involved in IL-17A production was evaluated on T cells. RA T-cell apoptosis, higher than that of control T cells, was further increased by GalXM through induction of caspase-3 activation. Activated T cells expressing the CD45RO molecule and producing IL-17A were the main target of GalXM-induced apoptosis. GalXM induced consistent impairment of IL-17A production and inhibition of STAT3, which was hyperactivated in RA. In conclusion, GalXM triggered apoptosis of activated memory T cells and interfered with IL-17A production in RA. These data suggest therapeutic targeting of deleterious Th17 cells in RA and other autoimmune diseases. PMID:23308194

  7. Structure and biological activity of a fucosylated chondroitin sulfate from the sea cucumber Cucumaria japonica.

    PubMed

    Ustyuzhanina, Nadezhda E; Bilan, Maria I; Dmitrenok, Andrey S; Shashkov, Alexander S; Kusaykin, Mikhail I; Stonik, Valentin A; Nifantiev, Nikolay E; Usov, Anatolii I

    2016-05-01

    A fucosylated chondroitin sulfate (FCS) was isolated from the body wall of Pacific sea cucumber Cucumaria japonicaby extraction in the presence of papain followed by Cetavlon precipitation and anion-exchange chromatography. FCS was shown to contain D-GalNAc, D-GlcA, L-Fuc and sulfate in molar proportions of about 1:1:1:4.5. Structure of FCS was elucidated using NMR spectroscopy and methylation analysis of the native polysaccharide and products of its desulfation and carboxyl reduction. The polysaccharide was shown to contain a typical chondroitin core → 3)-β-D-GalNAc-(1 → 4)-β-D-GlcA-(1 →. Sulfate groups in this core occupy O-4 and the majority of O-6 of GalNAc. Fucosyl branches are represented by 3,4- and 2,4-disulfated units in a ratio of 4:1 and are linked to O-3 of GlcA. In addition, ∼ 33% of GlcA are 3-O-sulfated, and hence, the presence of short fucooligosaccharide chains side by side with monofucosyl branches cannot be excluded. FCS was shown to inhibit platelets aggregation in vitro mediated by collagen and ristocetin, but not adenosine diphosphate, and demonstrated significant anticoagulant activity, which is connected with its ability to enhance inhibition of thrombin and factor Xa by antithrombin III, as well as to influence von Willebrand factor activity. The latest property significantly distinguished FCS from low-molecular-weight heparin. PMID:26681734

  8. Receptor for Advanced Glycation End Products (RAGE) Functions as Receptor for Specific Sulfated Glycosaminoglycans, and Anti-RAGE Antibody or Sulfated Glycosaminoglycans Delivered in Vivo Inhibit Pulmonary Metastasis of Tumor Cells*

    PubMed Central

    Mizumoto, Shuji; Takahashi, Jun; Sugahara, Kazuyuki

    2012-01-01

    Altered expression of chondroitin sulfate (CS) and heparan sulfate (HS) at the surfaces of tumor cells plays a key role in malignant transformation and tumor metastasis. Previously we demonstrated that a Lewis lung carcinoma (LLC)-derived tumor cell line with high metastatic potential had a higher proportion of E-disaccharide units, GlcUA-GalNAc(4,6-O-disulfate), in CS chains than low metastatic LLC cells and that such CS chains are involved in the metastatic process. The metastasis was markedly inhibited by the pre-administration of CS-E from squid cartilage rich in E units or by preincubation with a phage display antibody specific for CS-E. However, the molecular mechanism of the inhibition remains to be investigated. In this study the receptor molecule for CS chains containing E-disaccharides expressed on LLC cells was revealed to be receptor for advanced glycation end products (RAGE), which is a member of the immunoglobulin superfamily predominantly expressed in the lung. Interestingly, RAGE bound strongly to not only E-disaccharide, but also HS-expressing LLC cells. Furthermore, the colonization of the lungs by LLC cells was effectively inhibited by the blocking of CS or HS chains at the tumor cell surface with an anti-RAGE antibody through intravenous injections in a dose-dependent manner. These results provide the clear evidence that RAGE is at least one of the critical receptors for CS and HS chains expressed at the tumor cell surface and involved in experimental lung metastasis and that CS/HS and RAGE are potential molecular targets in the treatment of pulmonary metastasis. PMID:22493510

  9. Structure-antioxidant relationships of sulfated galactomannan from guar gum.

    PubMed

    Wang, Xiaofang; Wang, Junlong; Zhang, Ji; Zhao, Baotang; Yao, Jian; Wang, Yunpu

    2010-01-01

    Sulfated polysaccharides exerted potential biological property which was relative to degree of sulfation (DS), M(w), substitution position and chain conformation. In the present study, commercial guar gum was purified and its sulfated derivates with different DS and M(w) were synthesized. FT-IR and 13C NMR analysis indicated that C-6 substitution was predominant in sulfated samples compared with other positions. In the sulfation reaction, a sharp decrease in M(w) was observed. The d(f) values from 1.92 to 2.85 indicated that the -SO3H groups led to the relatively expanded conformation of sulfated polysaccharides. Antioxidant assays showed that sulfated polysaccharides had better antioxidant activities. The data obtained in in vitro models indicated that high DS and low M(w) showed the best antioxidant capacities. PMID:19836415

  10. Polysaccharide Degradation

    NASA Astrophysics Data System (ADS)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  11. Epitope mapping by a Wnt-blocking antibody: evidence of the Wnt binding domain in heparan sulfate.

    PubMed

    Gao, Wei; Xu, Yongmei; Liu, Jian; Ho, Mitchell

    2016-01-01

    Heparan sulfate (HS) is a polysaccharide known to modulate many important biological processes, including Wnt signaling. However, the biochemical interaction between HS and Wnt molecules is not well characterized largely due to the lack of suitable methods. To determine the Wnt binding domain in HS, we used a Wnt signaling-inhibitory antibody (HS20) and a panel of synthetic HS oligosaccharides with distinct lengths and sulfation modifications. We found that the binding of HS20 to heparan sulfate required sulfation at both the C2 position (2-O-sulfation) and C6 position (6-O-sulfation). The oligosaccharides with the greatest competitive effect for HS20 binding were between six and eight saccharide residues in length. Additionally, a four residue-long oligosaccharide could also be recognized by HS20 if an additional 3-O-sulfation modification was present. Furthermore, similar oligosaccharides with 2-O, 6-O and 3-O-sulfations showed inhibition for Wnt activation. These results have revealed that HS20 and Wnt recognize a HS structure containing IdoA2S and GlcNS6S, and that the 3-O-sulfation in GlcNS6S3S significantly enhances the binding of both HS20 and Wnt. This study provides the evidence for identifying the Wnt binding domain in HS and suggests a therapeutic approach to target the interaction of Wnt and HS in cancer and other diseases. PMID:27185050

  12. Epitope mapping by a Wnt-blocking antibody: evidence of the Wnt binding domain in heparan sulfate

    PubMed Central

    Gao, Wei; Xu, Yongmei; Liu, Jian; Ho, Mitchell

    2016-01-01

    Heparan sulfate (HS) is a polysaccharide known to modulate many important biological processes, including Wnt signaling. However, the biochemical interaction between HS and Wnt molecules is not well characterized largely due to the lack of suitable methods. To determine the Wnt binding domain in HS, we used a Wnt signaling-inhibitory antibody (HS20) and a panel of synthetic HS oligosaccharides with distinct lengths and sulfation modifications. We found that the binding of HS20 to heparan sulfate required sulfation at both the C2 position (2-O-sulfation) and C6 position (6-O-sulfation). The oligosaccharides with the greatest competitive effect for HS20 binding were between six and eight saccharide residues in length. Additionally, a four residue-long oligosaccharide could also be recognized by HS20 if an additional 3-O-sulfation modification was present. Furthermore, similar oligosaccharides with 2-O, 6-O and 3-O-sulfations showed inhibition for Wnt activation. These results have revealed that HS20 and Wnt recognize a HS structure containing IdoA2S and GlcNS6S, and that the 3-O-sulfation in GlcNS6S3S significantly enhances the binding of both HS20 and Wnt. This study provides the evidence for identifying the Wnt binding domain in HS and suggests a therapeutic approach to target the interaction of Wnt and HS in cancer and other diseases. PMID:27185050

  13. Polysaccharides from Acanthopanax senticosus enhances intestinal integrity through inhibiting TLR4/NF-κB signaling pathways in lipopolysaccharide-challenged mice.

    PubMed

    Han, Jie; Liu, Lixia; Yu, Ning; Chen, Jing; Liu, Baoshan; Yang, Di; Shen, Guoshun

    2016-08-01

    To investigate the role of polysaccharide from Acanthopanax senticosus (ASPS) on lipopolysaccharide (LPS)-induced intestinal injury, mice in three treatments were administrated orally with or without ASPS (300 mg/kg body weight) for 14 days, followed by challenge with LPS or saline. At 4 h post-injection, blood and intestinal samples of six mice / treatment were collected. The results showed ASPS ameliorated LPS-induced intestinal morphological deterioration, proven by improved villus height (P < 0.05) and villus height : crypt depth ratio (P < 0.05). ASPS also elevated the mucosal barrier of LPS-challenged mice, supported by reduced plasma diamine oxidase (DAO) activity (P < 0.05) and L-lactate (P < 0.05), increased mucosal DAO activity (P < 0.05) as well as enhanced intestinal tight junction proteins expression involving occludin-1 (P < 0.05) and zonula occludens-1 (P < 0.05). In addition, ASPS decreased LPS-induced secretion of inflammatory mediators, including tumor necrosis factor (TNF)-α (P < 0.05) and prostaglandin E2 (P < 0.05). Also, ASPS down-regulated messenger RNA expression of toll-like receptor 4 (TLR4) and its downstream signals, including myeloid differentiation factor 88 (P < 0.05), TNF-α receptor-associated factor 6 (P < 0.05), as well as nuclear factor (NF)-κB p65 (P < 0.05) and its protein expression. These findings suggest that ASPS improves intestinal integrity under inflammation conditions connected with inhibiting TLR4/NF-κB signaling pathways. PMID:26435041

  14. A procoagulant chemically sulfated mannan.

    PubMed

    Gracher, Ana Helena P; Santana, Aline G; Cipriani, Thales R; Iacomini, Marcello

    2016-01-20

    Disorders of hemostasis can produce innumerous problems. Polysaccharides have been studied both as anticoagulant and as procoagulant agents. A mannan with a main chain of α-(1 → 6)-linked-Manp units, branched at O-2 mainly by side-chains of 2-O-linked-α-Manp units was chemically sulfated, structurally characterized by NMR and GC-MS (methylation, desulfation and methylation with trideuterated iodomethane), and tested in vitro and in vivo on blood coagulation models. Chemical analyses indicate a high degree of substitution on the sulfated polysaccharide. This polymer acted as a procoagulant agent, increasing blood coagulation in normal and hemophilic plasma, activated platelet aggregation and also decreased ex vivo aPTT. Polymers such as the sulfated mannan could be a helpful source of hemostatic agents to prevent hemorrhagic states. PMID:26572344

  15. Comparison of Physicochemical Characteristics and Anticoagulant Activities of Polysaccharides from Three Sea Cucumbers

    PubMed Central

    Luo, Lan; Wu, Mingyi; Xu, Li; Lian, Wu; Xiang, Jingying; Lu, Feng; Gao, Na; Xiao, Chuang; Wang, Shengmin; Zhao, Jinhua

    2013-01-01

    In order to search for sulfated polysaccharides in different invertebrate connective tissues and to examine their biological activities, we have isolated three types of polysaccharides from the body wall of the three sea cucumbers Holothuria edulis, Apostichopus japonicas and Holothuria nobilis. The physicochemical properties and anticoagulant activities of these polysaccharides were examined and compared. The chemical composition analysis and nuclear magnetic resonance (NMR) analysis indicate that two types of polysaccharides, sulfated fucan and fucosylated chondroitin sulfate (FuCS), were found in all of the three species and in addition a neutral glycan was observed in H. edulis. The neutral α-glucan was firstly obtained from sea cucumber. The same type of polysaccharides from different species of sea cucumbers have similar physicochemical properties and anticoagulant activities, but those of different types of glycans are significantly different, possibly due to their different monosaccharide compositions, electric charges and average molecular weights. The FuCSs have stronger anticoagulant activities than the sulfated fucans, although the molecular sizes of the FuCSs are lower than those of the sulfated fucans, whereas the neutral glucan has no activity, as expected from the absence of sulfate. Thus, anticoagulant activities of the different type of polysaccharides are likely to relate to monosaccharide composition and sulfate content. Preliminary analysis suggests that the sulfation patterns of the FuCSs may result in the difference in anticoagulant activities. Our data could help elucidate the structure-activity relationship of the sea cucumber polysaccharides. PMID:23385300

  16. Hydrogen sulfide from a NaHS source attenuates dextran sulfate sodium (DSS)-induced inflammation via inhibiting nuclear factor-κB

    PubMed Central

    Chen, Xi; Liu, Xi-shuang

    2016-01-01

    This study investigated the alleviating effects of hydrogen sulfide (H2S), derived from sodium hydrosulfide (NaHS), on inflammation induced by dextran sulfate sodium (DSS) in both in vivo and in vitro models. We found that NaHS injection markedly decreased rectal bleeding, diarrhea, and histological injury in DSS-challenged mice. NaHS (20 μmol/L) reversed DSS-induced inhibition in cell viability in Caco-2 cells and alleviated pro-inflammation cytokine expression in vivo and in vitro, indicating an anti-inflammatory function for H2S. It was also found that H2S may regulate cytokine expression by inhibiting the nuclear factor-κB (NF-κB) signaling pathway. In conclusion, our results demonstrated that H2S alleviated DSS-induced inflammation in vivo and in vitro and that the signal mechanism might be associated with the NF-κB signaling pathway. PMID:26984841

  17. Production of immunoregulatory polysaccharides from Crassostrea hongkongensis and their positive effects as a nutrition factor in modulating the effectiveness and toxicity of 5-FU chemotherapy in mice.

    PubMed

    Cai, Bingna; Chen, Hua; Sun, Han; Wan, Peng; Sun, Huili; Pan, Jianyu

    2016-01-01

    Chemotherapy is generally accompanied by undesirable side effects, such as immunosuppression and malnutrition, which reduce tolerance to cancer therapies. Prior studies have shown that immunonutrition improves the clinical outcomes of cancer patients. In this study, immunoregulatory polysaccharides from Crassostrea hongkongensis were included in a nutrition formula that was administered to S180 tumor-bearing mice in combination with 5-fluorouracil (5-FU) treatment. The C30-60% fraction of the polysaccharides was characterized as a branched polysaccharide, with a high amount of d-glucose (96.76% of the total) and the highest uronic acid and sulfate groups' content among all of the polysaccharide fractions. The C30-60% polysaccharide fraction showed a maximal proliferative effect on RAW264.7 cells and T lymphocytes at a concentration of 0.0391 mg mL(-1) and 0.0781 mg mL(-1), respectively. Moreover, the combination treatment of the C30-60% polysaccharide-based nutrition formula (OPNF) with the administration of 5-FU effectively inhibited the growth of tumors and notably increased the leucocyte and lymphocyte counts in S180 tumor-bearing mice. In addition, a slight increase in the erythrocyte and hemoglobin values was observed in the mice treated with the combination of OPNF and 5-FU. These results suggest that supplementation with a C30-60%-based enteral formula would be beneficial for patients undergoing chemotherapy with 5-FU. PMID:26507007

  18. Designing Allosteric Regulators of Thrombin. Exosite 2 Features Multiple Sub-Sites That Can Be Targeted By Sulfated Small Molecules for Inducing Inhibition

    PubMed Central

    Sidhu, Preetpal Singh; Abdel Aziz, May H.; Sarkar, Aurijit; Mehta, Akul Y.; Zhou, Qibing; Desai, Umesh R.

    2013-01-01

    We recently designed a group of novel exosite 2-directed, sulfated, small, allosteric inhibitors of thrombin. To develop more potent inhibitors, monosulfated benzofuran tri- and tetrameric homologs of the parent designed dimers were synthesized in 7–8 steps and found to exhibit a wide range of potencies. Among these, trimer 9a was found to be nearly 10-fold more potent than the first generation molecules. Michaelis-Menten studies indicated an allosteric mechanism of inhibition. Competitive studies using a hirudin peptide (exosite 1 ligand) and, unfractionated heparin, heparin octasaccharide and γ′-fibrinogen peptide (exosite 2 ligands), demonstrated exosite 2 recognition in a manner different from the parent dimers. Alanine scanning mutagenesis of 12 Arg/Lys residues of exosite 2 revealed a defect in 9a potency for Arg233Ala thrombin only confirming the major difference in site of recognition between the two structurally related sulfated benzofurans. The results suggest that multiple avenues are available within exosite 2 for inducing thrombin inhibition. PMID:23718540

  19. Heparan Sulfate Proteoglycans May Promote or Inhibit Cancer Progression by Interacting with Integrins and Affecting Cell Migration

    PubMed Central

    Soares, Mariana A.; Teixeira, Felipe C. O. B.; Fontes, Miguel; Arêas, Ana Lúcia; Leal, Marcelo G.; Pavão, Mauro S. G.; Stelling, Mariana P.

    2015-01-01

    The metastatic disease is one of the main consequences of tumor progression, being responsible for most cancer-related deaths worldwide. This review intends to present and discuss data on the relationship between integrins and heparan sulfate proteoglycans in health and cancer progression. Integrins are a family of cell surface transmembrane receptors, responsible for cell-matrix and cell-cell adhesion. Integrins' main functions include cell adhesion, migration, and survival. Heparan sulfate proteoglycans (HSPGs) are cell surface molecules that play important roles as cell receptors, cofactors, and overall direct or indirect contributors to cell organization. Both molecules can act in conjunction to modulate cell behavior and affect malignancy. In this review, we will discuss the different contexts in which various integrins, such as α5, αV, β1, and β3, interact with HSPGs species, such as syndecans and perlecans, affecting tissue homeostasis. PMID:26558271

  20. Glycyrrhiza polysaccharide induces apoptosis and inhibits proliferation of human hepatocellular carcinoma cells by blocking PI3K/AKT signal pathway.

    PubMed

    Chen, Jiayu; Jin, Xiaoyan; Chen, Jie; Liu, Chibo

    2013-06-01

    To study the antitumor effect of glycyrrhiza polysaccharide (GPS) on human hepatocellular carcinoma cells and its mechanism, GPS was extracted and identified with phenol-sulfuric acid assay, Limulus amebocytes lysate assay, gel permeation chromatography, and infrared spectroscopy analysis. To study its antitumor function, 4-5-week-old imprinting control region mice were subcutaneously implanted with H22 cells and intragastrically subjected to 1 ml GPS (25, 50, and 75 mg/kg/day), 150 mg/kg cyclophosphamide in a dose of 150 mg/kg, or equal volume of phosphate buffered saline as control. Tumor weights were detected 10 days later. Apoptosis of intraperitoneally cultured and GPS-treated H22 cells was identified by flow cytometry and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide. In vitro, the function of GPS on cell proliferation was applied on BEL7402 cells and confirmed by 4,6-diamidino-z-phenylindole staining. Assessment of the effect of GPS on P53 gene was analyzed by real-time PCR and Western blot, and the effects of GPS on phosphatidylinositol-3 kinase (PI3K), AKT, p-PI3K, and p-AKT were analyzed by Western blot. We extracted the GPS, and it dose-dependently inhibited the tumorigenicity of hepatocellular carcinoma cells in nude mice. GPS treatment resulted in a significant (P<0.05) dose-dependent increase in the number of apoptotic cells in vivo and a significant (P<0.05) dose-dependent decrease in hepatocellular carcinoma cell proliferation in vitro. GPS modified multiple key enzymes (p-PI3K, p-AKT, and P53) in P53/PI3K/AKT signaling pathways on DNA or protein levels. Taken together, we extracted the GPS successfully and our findings suggest that GPS functions as a tumor suppressor through influencing the P53/PI3K/AKT pathway in the carcinogenesis of hepatocellular carcinoma and may have therapeutic implications for the clinical management of hepatocellular carcinoma patients. PMID:23580179

  1. Bovine milk-derived α-lactalbumin inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sodium sulfate-treated mice.

    PubMed

    Yamaguchi, Makoto; Takai, Shoko; Hosono, Akira; Seki, Taiichiro

    2014-01-01

    Cyclooxygenase-2 is expressed early in colon carcinogenesis and plays crucial role in the progress of the disease. Recently, we found that α-lactalbumin had anti-inflammatory activity by inhibiting cyclooxygenase-2. In experiment 1, we investigated the effects of α-lactalbumin on the colon carcinogenesis initiated with azoxymethane (AOM) followed by promotion with dextran sodium sulfate (DSS) in mice. Dietary treatment with α-lactalbumin decreased fecal occult blood score at 3 days after DSS intake. α-Lactalbumin also decreased the colon tumor at week 9. In experiment 2, AOM-treated mice were sacrificed at 7 days after DSS intake. The plasma and colon prostaglandin E2 (PGE2) levels in AOM/DSS-treated mice were higher than those in the DSS-treated mice without initiation by AOM. α-Lactalbumin decreased PGE2 in both plasma and colon. These results suggest that α-lactalbumin effectively inhibited colon carcinogenesis, and the inhibition may be due to the decreased PGE2 by inhibiting cyclooxygenase-2 at cancer promotion stages. PMID:25036966

  2. Influence of molecular weight of chemically sulfated citrus pectin fractions on their antithrombotic and bleeding effects.

    PubMed

    Cipriani, Thales R; Gracher, Ana Helena P; de Souza, Lauro M; Fonseca, Roberto J C; Belmiro, Celso L R; Gorin, Philip A J; Sassaki, Guilherme L; Iacomini, Marcello

    2009-05-01

    Evaluated were the anticoagulant and antithrombotic activities, and bleeding effect of two chemically sulfated polysaccharides, obtained from citric pectin, with different average molar masses. Both low-molecular-weight (Pec-LWS, 3,600 g/mol) and high-molecular-weight sulfated pectins (Pec-HWS, 12,000 g/mol) had essentially the same structure, consisting of a (1-->4)-linked alpha-D-GalpA chain with almost all its HO-2 and HO-3 groups substituted by sulfate. Both polysaccharides had anticoagulant activity in vitro, although Pec-HWS was a more potent antithrombotic agent in vivo, giving rise to total inhibition of venous thrombosis at a dose of 3.5 mg/kg body weight. Surprisingly, in contrast with heparin, Pec-HWS and Pec-LWS are able to directly inhibit alpha-thrombin and factor Xa by a mechanism independent of antithrombin (AT) and/or heparin co-factor II (HCII). Moreover, Pec-HWS provided a lower risk of bleeding than heparin at a dose of 100% effectiveness against venous thrombosis, indicating it to be a promising antithrombotic agent. PMID:19404539

  3. The efficacy of a sulphated polysaccharide fraction from Hypnea musciformis against diarrhea in rodents.

    PubMed

    Sousa, Nayara A; Barros, Francisco Clark N; Araújo, Thiago S L; Costa, Douglas S; Souza, Luan Kelves M; Sousa, Francisca Beatriz M; Leódido, Ana Carolina M; Pacífico, Dvison M; de Araújo, Simone; Bezerra, Francisco F; Freitas, Ana Lúcia P; Medeiros, Jand Venes R

    2016-05-01

    Seaweeds are sources of diverse bioactive compounds, such as sulphated polysaccharides. This study was designed to evaluate the chemical composition and anti-diarrheal activity of a fraction of sulphated polysaccharide (PLS) obtained from the red seaweed Hypnea musciformis in different animal models, and to elucidate the underlying mechanisms. PLS was obtained by aqueous extraction, with a yield of 31.8% of the seaweed dry weight. The total carbohydrate content accounted for 99% of the sample. The sulfate content of the polysaccharide was 5.08% and the percentage of carbon was 25.98%. Pretreatment with all doses of PLS inhibited castor oil-induced diarrhea, with reduction of the total amount of stool, diarrheal stools, and the severity of diarrhea. PLS (90 mg/Kg) decreased castor oil- and PGE2-induced enteropooling. In addition, PLS (90 mg/Kg) increased the Na(+)/K(+)-ATPase activity in the small intestine and reduced gastrointestinal transit, possibly via activation of cholinergic receptors. Interestingly, the cholera toxin-induced fluid secretion and Cl(-) ion levels decreased in the intestinal contents of the animals pretreated with PLS (90 mg/kg), probably via reduction of toxin-GM1 receptor binding. In conclusion, PLS exerts anti-diarrheal activity by increasing Na(+)/K(+)-ATPase activity, inhibiting gastrointestinal motility, and blocking the toxin-GM1 receptor binding. PMID:26879913

  4. Anticoagulant Activity of a Unique Sulfated Pyranosic (1→3)-β-l-Arabinan through Direct Interaction with Thrombin*

    PubMed Central

    Fernández, Paula V.; Quintana, Irene; Cerezo, Alberto S.; Caramelo, Julio J.; Pol-Fachin, Laercio; Verli, Hugo; Estevez, José M.; Ciancia, Marina

    2013-01-01

    A highly sulfated 3-linked β-arabinan (Ab1) with arabinose in the pyranose form was obtained from green seaweed Codium vermilara (Bryopsidales). It comprised major amounts of units sulfated on C-2 and C-4 and constitutes the first polysaccharide of this type isolated in the pure form and fully characterized. Ab1 showed anticoagulant activity by global coagulation tests. Less sulfated arabinans obtained from the same seaweed have less or no activity. Ab1 exerts its activity through direct and indirect (antithrombin- and heparin cofactor II-mediated) inhibition of thrombin. Direct thrombin inhibition was studied in detail. By native PAGE, it was possible to detect formation of a complex between Ab1 and human thrombin (HT). Ab1 binding to HT was measured by fluorescence spectroscopy. CD spectra of the Ab1 complex suggested that ligand binding induced a small conformational change on HT. Ab1-thrombin interactions were studied by molecular dynamic simulations using the persulfated octasaccharide as model compound. Most carbohydrate-protein contacts would occur by interaction of sulfate groups with basic amino acid residues on the surface of the enzyme, more than 60% of them being performed by the exosite 2-composing residues. In these interactions, the sulfate groups on C-2 were shown to interact more intensely with the thrombin structure. In contrast, the disulfated oligosaccharide does not promote major conformational modifications at the catalytic site when complexed to exosite 1. These results show that this novel pyranosic sulfated arabinan Ab1 exerts its anticoagulant activity by a mechanism different from those found previously for other sulfated polysaccharides and glycosaminoglycans. PMID:23161548

  5. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.

    PubMed

    Zuo, R; Ornek, D; Syrett, B C; Green, R M; Hsu, C-H; Mansfeld, F B; Wood, T K

    2004-04-01

    Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50-90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel. PMID:12898064

  6. Prevention of acid drainage from stored coal. [Inhibition of bacterial action by treatment with a solution of sodium lauryl sulfate

    SciTech Connect

    Olem, H.; Bell, T.L.; Longaker, J.J.

    1983-06-01

    A method has been identified for controlling acid production and subsequent dissolution of toxic pollutants in drainage from coal storage piles. Results of laboratory and field experiments indicate that it may be possible to prevent, rather than treat, acid drainage by periodically applying an environmentally safe detergent formulation to the coal. These experiments showed that a mild solution of sodium lauryl sulfate (SLS) effectively blocks the activity of the bacteria that promote acid formation and chemical leaching. Drainage from coal treated once with 50 mg/L of SLS remained neutral for 60 days, about three times longer than the untreated control sample. An extrapolation of results to an industrial-scale application revealed that the cost of the SLS needed for a single application would likely be no more than $200 per acre of coal storage area ($500 per hectare ) or, expressed per unit weight of coal, $4,000 per million metric tons.

  7. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling

    NASA Astrophysics Data System (ADS)

    Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan

    2015-02-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  8. Bioengineered heparins and heparan sulfates.

    PubMed

    Fu, Li; Suflita, Matthew; Linhardt, Robert J

    2016-02-01

    Heparin and heparan sulfates are closely related linear anionic polysaccharides, called glycosaminoglycans, which exhibit a number of important biological and pharmacological activities. These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of animal cells. While heparan sulfate is a widely distributed membrane and extracellular glycosaminoglycan, heparin is found primarily intracellularly in the granules of mast cells. While heparin has historically received most of the scientific attention for its anticoagulant activity, interest has steadily grown in the multi-faceted role heparan sulfate plays in normal and pathophysiology. The chemical synthesis of these glycosaminoglycans is largely precluded by their structural complexity. Today, we depend on livestock animal tissues for the isolation and the annual commercial production of hundred ton quantities of heparin used in the manufacture of anticoagulant drugs and medical device coatings. The variability of animal-sourced heparin and heparan sulfates, their inherent impurities, the limited availability of source tissues, the poor control of these source materials and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans, driven by both therapeutic applications and as probes to study their natural functions. This review focuses on the complex biology of these glycosaminoglycans in human health and disease, and the use of recombinant technology in the chemoenzymatic synthesis and metabolic engineering of heparin and heparan sulfates. PMID:26555370

  9. Chondroitin sulfate

    MedlinePlus

    ... If you have asthma, use chondroitin sulfate cautiously. Blood clotting disorders: In theory, administering chondroitin sulfate might increase the risk of bleeding in people with blood clotting disorders. Prostate cancer: Early research suggests that chondroitin ...

  10. Glucosamine sulfate

    MedlinePlus

    ... to control arthritis pain. These creams usually contain camphor and other ingredients in addition to glucosamine. Glucosamine ... in combination with chondroitin sulfate, shark cartilage, and camphor for up to 8 weeks. Glucosamine sulfate can ...

  11. Barium Sulfate

    MedlinePlus

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), ... dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called ...

  12. Polysaccharides from Smilax glabra inhibit the pro-inflammatory mediators via ERK1/2 and JNK pathways in LPS-induced RAW264.7 cells.

    PubMed

    Lu, Chuan-li; Wei, Zhu; Min, Wang; Hu, Meng-mei; Chen, Wen-long; Xu, Xiao-jie; Lu, Chuan-jian

    2015-05-20

    The rhizomes of Smilax glabra have been used as both food and folk medicine in many countries for a long time. However, little research has been reported on polysaccharides of S. glabra. In the present study, two polysaccharide fractions, SGP-1 and SGP-2, were isolated from the rhizomes of S. glabra with the number average molecular weights of 1.72 × 10(2)kDa and 1.31 × 10(2)kDa, and the weight average molecular weights of 1.31 × 10(5)kDa and 1.18 × 10(5)kDa, respectively, and their mainly monosaccharide compositions were both galactose and rhamnose (2.5:1). Both SGP-1 and SGP-2 significantly suppressed the release of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from LPS-induced RAW 264.7 cells, as well as the mRNA expression of inducible nitric oxide synthase (iNOS), TNF-α and IL-6. Additionally, SGP-1 and SGP-2 repressed the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK). These findings strongly suggested polysaccharides were also the anti-inflammatory active ingredient for S. glabra, and the potential of SGP-1 and SGP-2 as the anti-inflammatory agents. PMID:25817687

  13. Oroxyloside prevents dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB pathway through PPARγ activation.

    PubMed

    Wang, Xiaoping; Sun, Yang; Zhao, Yue; Ding, Youxiang; Zhang, Xiaobo; Kong, Lingyi; Li, Zhiyu; Guo, Qinglong; Zhao, Li

    2016-04-15

    Oroxyloside, as a metabolite of oroxylin A, may harbor various beneficial bioactivities which have rarely been reported in the previous studies. Here we established the dextran sulfate sodium (DSS)-induced experimental colitis and evaluated the anti-inflammatory effect of oroxyloside in vivo. As a result, oroxyloside attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. Furthermore, oroxyloside inhibited inflammatory cell infiltration and decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities as well. The production of pro-inflammatory cytokines in serum and colon was also significantly reduced by oroxyloside. We unraveled the underlying mechanisms that oroxyloside inhibited NF-κB pathway by activating Peroxisome Proliferator-Activated Receptor γ (PPARγ) to attenuate DSS-induced colitis. Moreover, we investigated the anti-inflammatory effect and mechanisms of oroxyloside in the mouse macrophage cell line RAW264.7 and bone marrow derived macrophages (BMDM). Oroxyloside decreased several LPS-induced inflammatory cytokines, including IL-1β, IL-6 and TNF-α in RAW264.7 and BMDM. We also found that oroxyloside inhibited LPS-induced activation of NF-κB signaling pathway via activating PPARγ in RAW 264.7 and BMDM. Docking study showed that oroxyloside could bind with PPARγ. GW9662, the inhibitor of PPARγ, and PPARγ siRNA transfection blocked the effect of oroxyloside on PPARγ activation. Our study suggested that oroxyloside prevented DSS-induced colitis by inhibiting NF-κB pathway through PPARγ activation. Therefore, oroxyloside may be a promising and effective agent for inflammatory bowel disease (IBD). PMID:26947454

  14. Optimization of chemical sulfation, structural characterization and anticoagulant activity of Agaricus bisporus fucogalactan.

    PubMed

    Román, Yony; Iacomini, Marcello; Sassaki, Guilherme L; Cipriani, Thales R

    2016-08-01

    A fucogalactan (E) was isolated from aqueous extract of Agaricus bisporus. The monosaccharide composition, methylation, and NMR analyses showed it is constituted by a (1→6)-linked α-d-Galp main-chain, partially methylated at O-3, and partially substituted at O-2 by non-reducing end-units of α-l-Fucp or α-d-Galp. HPSEC analysis showed it had Mw of 1.28×10(4)gmol(-1). The polysaccharide was sulfated modifying reaction time, molar ratio of sulfation agent to hydroxyl group on the polysaccharide (ηClSO3H/OH ratio), and ratio of total reaction volume to weight of sample (VT/w ratio; μLmg(-1)). The degree of substitution (DS) was evaluated for all sulfated derivatives. The sulfated fucogalactan with the highest DS value (2.83) had the best anticoagulant activity on Activated Partial Thromboplastin Time (APTT) and Protrombin Time (PT) assays. This sulfated fucogalactan, named E100, was obtained with the optimal conditions of ηClSO3H/OH ratio of 18, VT/w ratio of 100, in 6h of reaction. The results showed that E100 produces a linear increment of APTT for concentrations of 15-45μgmL(-1), whereas PT was almost constant between 20 and 400μgmL(-1), suggesting an anticoagulant activity via inhibition of the intrinsic pathway of blood coagulation. NMR and methylation analyses showed that α-d-Galp units of the main chain were greatly sulfated on 2-O-, 3-O-, and 4-O-positions. PMID:27112883

  15. Pneumococcal Polysaccharide Vaccine

    MedlinePlus

    Pneumococcal polysaccharide vaccine (PPSV)Treatment of pneumococcal infections with penicillin and other drugs used to be more effective. But ... the disease, through vaccination, even more important. Pneumococcal polysaccharide vaccine (PPSV) protects against 23 types of pneumococcal ...

  16. Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: Applications for microbial enhanced oil recovery.

    PubMed

    Zhao, Feng; Zhou, Ji-Dong; Ma, Fang; Shi, Rong-Jiu; Han, Si-Qin; Zhang, Jie; Zhang, Ying

    2016-05-01

    Sulfate-reducing bacteria (SRB) are widely existed in oil production system, and its H2S product inhibits rhamnolipid producing bacteria. In-situ production of rhamnolipid is promising for microbial enhanced oil recovery. Inhibition of SRB, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl were investigated. Strain Rhl can simultaneously remove S(2-) (>92%) and produce rhamnolipid (>136mg/l) under S(2-) stress below 33.3mg/l. Rhl reduced the SRB numbers from 10(9) to 10(5)cells/ml, and the production of H2S was delayed and decreased to below 2mg/l. Rhl also produced rhamnolipid and removed S(2-) under laboratory simulated oil reservoir conditions. High-throughput sequencing data demonstrated that addition of strain Rhl significantly changed the original microbial communities of oilfield production water and decreased the species and abundance of SRB. Bioaugmentation of strain Rhl in oilfield is promising for simultaneous control of SRB, removal of S(2-) and enhance oil recovery. PMID:26868152

  17. Enzymatic Modifications of Polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polysaccharides are often modified chemically in order to improve its properties or to impart specific characteristics. Indeed quite a few commercial products are based on modified polysaccharides. In this talk, I shall describe a new set of modified polysaccharides based on enzymatic reactions. ...

  18. The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview

    PubMed Central

    Wang, Wei; Wang, Shi-Xin; Guan, Hua-Shi

    2012-01-01

    Recently, the studies on the antiviral activities of marine natural products, especially marine polysaccharides, are attracting more and more attention all over the world. Marine-derived polysaccharides and their lower molecular weight oligosaccharide derivatives have been shown to possess a variety of antiviral activities. This paper will review the recent progress in research on the antiviral activities and the mechanisms of these polysaccharides obtained from marine organisms. In particular, it will provide an update on the antiviral actions of the sulfated polysaccharides derived from marine algae including carrageenans, alginates, and fucans, relating to their structure features and the structure–activity relationships. In addition, the recent findings on the different mechanisms of antiviral actions of marine polysaccharides and their potential for therapeutic application will also be summarized in detail. PMID:23235364

  19. The Sasa quelpaertensis Leaf Extract Inhibits the Dextran Sulfate Sodium-induced Mouse Colitis Through Modulation of Antioxidant Enzyme Expression

    PubMed Central

    Yeom, Yiseul; Kim, Yuri

    2015-01-01

    Background: Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease. The objective of this study is to investigate the protective effect of Sasa quelpaertensis leaf extract (SQE) against oxidative stress in mice with dextran sulfate sodium (DSS)-induced colitis. Methods: Mice were treated with SQE (100 mg/kg or 300 mg/kg body weight) by gavage in advance two weeks before inflammation was induced. Then, the mice were administered with 2.5% DSS in drinking water for 7 days and normal drinking water for 7 days between two DSS treatment. Disease activity index values, gut motility, and severity of the resulting oxidative DNA damage were analyzed. The antioxidant effect of SQE was evaluated by measuring malondialdehyde (MDA) and superoxide dismutase (SOD) activity in plasma samples. Catalase activity and expressions levels of glutathione peroxidase 1 (Gpx1), SOD1, and SOD2 were also detected in colon tissues. Results: Administration of SQE significantly reduced the severity of DSS-induced colitis compared to the control (Ctrl) group. Levels of 8-oxo-dG, an oxidative DNA damage marker, were significantly lower in the SQE group compared to the untreated DSS Ctrl group. In the SQE (300 mg/kg) group, MDA levels were significantly lower, while SOD and catalase activity levels in the plasma samples were significantly higher compared with the DSS Ctrl group. The expression levels of the antioxidant enzymes, SOD2 and Gpx1, were significantly higher, while the levels of SOD 1 expression were lower, in the colon tissues of the DSS Ctrl group compared with those of the Ctrl group. In contrast, administration of SQE significantly down-regulated SOD2 and Gpx1 expressions and up-regulated SOD1 expression. Conclusions: These results indicate that SQE efficiently suppresses oxidative stress in DSS-induced colitis in mice, and its action is associated with the regulation of antioxidant enzymes. PMID:26151047

  20. Ulvans induce resistance against plant pathogenic fungi independently of their sulfation degree.

    PubMed

    de Freitas, Mateus B; Ferreira, Luciana G; Hawerroth, Caroline; Duarte, Maria Eugênia R; Noseda, Miguel D; Stadnik, Marciel J

    2015-11-20

    The present work aimed to evaluate the defense responses induced by chemically sulfated ulvans in Arabidopsis thaliana plants against the phytopathogenic fungi Alternaria brassicicola and Colletotrichum higginsianum. Derivatives with growing sulfate content (from 20.9 to 36.6%) were prepared with SO3-pyridine complex in formamide. NMR and FTIR spectroscopic analyses confirmed the increase of sulfate groups after the chemical sulfation process. The native sulfated polysaccharide (18.9% of sulfate) and its chemically sulfated derivatives similarly reduced the severity of both pathogenic fungi infections. Collectively, our results suggest that ulvans induce resistance against both fungal pathogens independently of its sulfation degree. PMID:26344294

  1. Review on biomedical and bioengineering applications of cellulose sulfate.

    PubMed

    Zhang, Qilei; Lin, Dongqiang; Yao, Shanjing

    2015-11-01

    Polysaccharide sulfates are naturally existing chemicals that show important biological activities in living organisms. Cellulose sulfate is a semi-synthesized polysaccharide sulfate with a relatively simple chain structure and unique biological properties and its biological applications have been explored in research and clinical trials. With the advance of cellulose derivatization and characterization, cellulose sulfate molecules with tailored structures have been developed to fulfill individual requirements. This review aims to provide a summary of recent development of cellulose sulfate in biomedical applications. Its synthesis pathways were discussed with structure-property relationship elucidated. The application of cellulose sulfate in drug delivery and microbe/cell immobilization were summarized with emphasis given on its polyelectrolyte complex formation processes. PMID:26256354

  2. Glucosamine sulfate

    MedlinePlus

    ... 8 weeks. Glucosamine sulfate can cause some mild side effects including nausea, heartburn, diarrhea, and constipation. Uncommon side effects are drowsiness, skin reactions, and headache. These are ...

  3. Selenium-Containing Phycocyanin from Se-Enriched Spirulina platensis Reduces Inflammation in Dextran Sulfate Sodium-Induced Colitis by Inhibiting NF-κB Activation.

    PubMed

    Zhu, Chenghui; Ling, Qinjie; Cai, Zhihui; Wang, Yun; Zhang, Yibo; Hoffmann, Peter R; Zheng, Wenjie; Zhou, Tianhong; Huang, Zhi

    2016-06-22

    Selenium (Se) plays an important role in fine-tuning immune responses. Inflammatory bowel disease (IBD) involves hyperresponsive immunity of the digestive tract, and a low Se level might aggravate IBD progression; however, the beneficial effects of natural Se-enriched diets on IBD remain unknown. Previously, we developed high-yield Se-enriched Spirulina platensis (Se-SP) as an excellent organic nutritional Se source. Here we prepared Se-containing phycocyanin (Se-PC) from Se-SP and observed that Se-PC administration effectively reduced the extent of colitis in mouse induced by dextran sulfate sodium. Supplementation with Se-PC resulted in significant protective effects, including mitigation of body weight loss, bloody diarrhea, and colonic inflammatory damage. The anti-inflammatory effects of Se-PC supplementation were found to involve modulation of cytokines, including IL-6, TNF-α, MCP-1, and IL-10. Mechanistically, Se-PC inhibited the activation of macrophages by suppressing the nuclear translocation of NF-κB, which is involved in the transcription of these pro-inflammatory cytokines. These results together suggest potential benefits of Se-PC as a functional Se supplement to reduce the symptoms of IBD. PMID:27223481

  4. Method for producing capsular polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor); Richards, Gil F. (Inventor)

    1994-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  5. Fucosylated Chondroitin Sulfates from the Body Wall of the Sea Cucumber Holothuria forskali

    PubMed Central

    Panagos, Charalampos G.; Thomson, Derek S.; Moss, Claire; Hughes, Adam D.; Kelly, Maeve S.; Liu, Yan; Chai, Wengang; Venkatasamy, Radhakrishnan; Spina, Domenico; Page, Clive P.; Hogwood, John; Woods, Robert J.; Mulloy, Barbara; Bavington, Charlie D.; Uhrín, Dušan

    2014-01-01

    Fucosylated chondroitin sulfate (fCS) extracted from the sea cucumber Holothuria forskali is composed of the following repeating trisaccharide unit: →3)GalNAcβ4,6S(1→4) [FucαX(1→3)]GlcAβ(1→, where X stands for different sulfation patterns of fucose (X = 3,4S (46%), 2,4S (39%), and 4S (15%)). As revealed by NMR and molecular dynamics simulations, the fCS repeating unit adopts a conformation similar to that of the Lex blood group determinant, bringing several sulfate groups into close proximity and creating large negative patches distributed along the helical skeleton of the CS backbone. This may explain the high affinity of fCS oligosaccharides for L- and P-selectins as determined by microarray binding of fCS oligosaccharides prepared by Cu2+-catalyzed Fenton-type and photochemical depolymerization. No binding to E-selectin was observed. fCS poly- and oligosaccharides display low cytotoxicity in vitro, inhibit human neutrophil elastase activity, and inhibit the migration of neutrophils through an endothelial cell layer in vitro. Although the polysaccharide showed some anti-coagulant activity, small oligosaccharide fCS fragments had much reduced anticoagulant properties, with activity mainly via heparin cofactor II. The fCS polysaccharides showed prekallikrein activation comparable with dextran sulfate, whereas the fCS oligosaccharides caused almost no effect. The H. forskali fCS oligosaccharides were also tested in a mouse peritoneal inflammation model, where they caused a reduction in neutrophil infiltration. Overall, the data presented support the action of fCS as an inhibitor of selectin interactions, which play vital roles in inflammation and metastasis progression. Future studies of fCS-selectin interaction using fCS fragments or their mimetics may open new avenues for therapeutic intervention. PMID:25147180

  6. Chemical Modification of Polysaccharides

    PubMed Central

    Cumpstey, Ian

    2013-01-01

    This review covers methods for modifying the structures of polysaccharides. The introduction of hydrophobic, acidic, basic, or other functionality into polysaccharide structures can alter the properties of materials based on these substances. The development of chemical methods to achieve this aim is an ongoing area of research that is expected to become more important as the emphasis on using renewable starting materials and sustainable processes increases in the future. The methods covered in this review include ester and ether formation using saccharide oxygen nucleophiles, including enzymatic reactions and aspects of regioselectivity; the introduction of heteroatomic nucleophiles into polysaccharide chains; the oxidation of polysaccharides, including oxidative glycol cleavage, chemical oxidation of primary alcohols to carboxylic acids, and enzymatic oxidation of primary alcohols to aldehydes; reactions of uronic-acid-based polysaccharides; nucleophilic reactions of the amines of chitosan; and the formation of unsaturated polysaccharide derivatives. PMID:24151557

  7. Extracellular polysaccharide from Bacillus sp. strain LBP32 prevents LPS-induced inflammation in RAW 264.7 macrophages by inhibiting NF-κB and MAPKs activation and ROS production.

    PubMed

    Diao, Ying; Xin, Yinqiang; Zhou, Yi; Li, Na; Pan, Xiaolong; Qi, Shimei; Qi, Zhilin; Xu, Yimiao; Luo, Lan; Wan, Honggui; Lan, Lei; Yin, Zhimin

    2014-01-01

    Extracellular polysaccharides (EPSs) are high-molecular weight sugar-based polymers that are synthesized and secreted by many microorganisms. Recently, EPSs have attracted particular attention due to their multiple biological functions including anti-inflammation. However, studies rarely reported the molecular mechanisms underlying their functions. We previously purified an EPS from an oligotrophic bacteria (Bacillus sp. LBP32) found in Lop Nur Desert, which possesses a potent antioxidant activity, while the anti-inflammatory effects of EPS and signaling mechanisms underlying its action have not been clarified. In this study, we demonstrated that EPS significantly inhibited the LPS-induced release of pro-inflammatory mediators, such as nitric oxide (NO), IL-6 and TNF-α, without any significant cytotoxicity. EPS also downregulated the expression of nitric oxide synthase (iNOS) induced by LPS. Furthermore, activation of nuclear factor κB (NF-κB) was abrogated by EPS through inhibited the phosphorylation of IκB kinase (IKK). Activations of Mitogen-activated protein kinases (MAPKs), including p38 MAPK and c-Jun N-terminal kinase (JNK), were also found to be inhibited by EPS. In addition, the level of intracellular reactive oxygen species (ROS) was also significantly decreased with the treatment of EPS. In vivo experiments were conducted and showed that EPS could greatly improve the outcome of mice with LPS-induced endotoxic shock. Taken together, our data indicate that EPS prevents LPS-induced inflammatory response by inhibiting NF-κB and MAPKs activation and ROS production. PMID:24201081

  8. TOP 1 and 2, polysaccharides from Taraxacum officinale, inhibit NFκB-mediated inflammation and accelerate Nrf2-induced antioxidative potential through the modulation of PI3K-Akt signaling pathway in RAW 264.7 cells.

    PubMed

    Park, Chung Mu; Cho, Chung Won; Song, Young Sun

    2014-04-01

    Anti-inflammatory and anti-oxidative activities of polysaccharides from Taraxacum officinale (TOP 1 and 2) were analyzed in RAW 264.7 cells. First, lipopolysaccharide (LPS) was applied to identify anti-inflammatory activity of TOPs, which reduced expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α. TOPs treatment inhibited phosphorylation of inflammatory transcription factor, nuclear factor (NF)κB, and its upstream signaling molecule, PI3K/Akt. Second, cytoprotective potential of TOPs against oxidative stress was investigated via heme oxygenase (HO)-1 induction. HO-1, one of phase II enzymes shows antioxidative activity, was potently induced by TOPs treatment, which was in accordance with the nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). In addition, TOPs treatment phosphorylated PI3K/Akt with slight activation of c-Jun NH2-terminal kinase (JNK). TOPs-mediated HO-1 induction protected macrophage cells from oxidative stress-induced cell death, which was confirmed by SnPP and CoPP (HO-1 inhibitor and inducer, respectively). Consequently, TOPs potently inhibited NFκB-mediated inflammation and accelerated Nrf2-mediated antioxidative potential through the modulation of PI3K/Akt pathway, which would contribute to their promising strategy for novel anti-inflammatory and anti-oxidative agents. PMID:24447978

  9. Properties of polysaccharides in several seaweeds from Atlantic Canada and their potential anti-influenza viral activities

    NASA Astrophysics Data System (ADS)

    Jiao, Guangling; Yu, Guangli; Wang, Wei; Zhao, Xiaoliang; Zhang, Junzeng; Ewart, Stephen H.

    2012-06-01

    To explore the polysaccharides from selected seaweeds of Atlantic Canada and to evaluate their potential anti-influenza virus activities, polysaccharides were isolated from several Atlantic Canadian seaweeds, including three red algae ( Polysiphonia lanosa, Furcellaria lumbricalis, and Palmaria palmata), two brown algae ( Ascophyllum nodosum and Fucus vesiculosus), and one green alga ( Ulva lactuca) by sequential extraction with cold water, hot water, and alkali solutions. These polysaccharides were analyzed for monosaccharide composition and other general chemical properties, and they were evaluated for anti-influenza virus activities. Total sugar contents in these polysaccharides ranged from 15.4% (in U. lactuca) to 91.4% (in F. lumbricalis); sulfation level was as high as 17.6% in a polysaccharide from U. lactuca, whereas it could not be detected in an alikali-extract from P. palmaria. For polysaccharides from red seaweeds, the main sugar units were sulfated galactans (agar or carrageenan) for P. lanosa, F. lumbricalis, and xylans for P. palmata. In brown seaweeds, the polysaccharides largely contained sulfated fucans, whereas the polysaccharides in green seaweed were mainly composed of heteroglycuronans. Screening for antiviral activity against influenza A/PR/8/34 (H1N1) virus revealed that brown algal polysaccharides were particularly effective. Seaweeds from Atlantic Canada are a good source of marine polysaccharides with potential antiviral properties.

  10. Structural Analysis and Anti-Complement Activity of Polysaccharides from Kjellmaniella crsaaifolia

    PubMed Central

    Zhang, Wenjing; Jin, Weihua; Sun, Delin; Zhao, Luyu; Wang, Jing; Duan, Delin; Zhang, Quanbin

    2015-01-01

    Two polysaccharides, named KCA and KCW, were extracted from Kjellmaniella crassifolia using dilute hydrochloric acid and water, respectively. Composition analysis showed that these polysaccharides predominantly consisted of fucose, with galactose, mannose and glucuronic acid as minor components. After degradation and partial desulfation, electrospray ionization mass spectrometry (ESI-MS) was performed, which showed that the polysaccharides consisted of sulfated fucooligosaccharides, sulfated galactofucooligosaccharides and methyl glycosides of mono-sulfated/multi-sulfated fucooligosaccharides. The structures of the oligomeric fragments were further characterized by electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS2 and ESI-CID-MS3). Moreover, the activity of KCA and KCW against the hemolytic activity of both the classical and alternative complement pathways was determined. The activity of KCA was found to be similar to KCW, suggesting that the method of extraction did not influence the activity. In addition, the degraded polysaccharides (DKCA and DKCW) displayed lower activity levels than the crude polysaccharides (KCA and KCW), indicating that molecular weight had an effect on activity. Moreover, the desulfated fractions (ds-DKCA and ds-DKCW) showed less or no activity, which confirmed that sulfate was important for activity. In conclusion, polysaccharides from K. crassifolia may be good candidates for the treatment of diseases involving the complement pathway. PMID:25786064

  11. Sodium Dodecyl Sulfate-Modified Doxorubicin-Loaded Chitosan-Lipid Nanocarrier with Multi Polysaccharide-Lecithin Nanoarchitecture for Augmented Bioavailability and Stability of Oral Administration In Vitro and In Vivo.

    PubMed

    Su, Chia-Wei; Chiang, Min-Yu; Lin, Yu-Ling; Tsai, Nu-Man; Chen, Yen-Po; Li, Wei-Ming; Hsu, Chin-Hao; Chen, San-Yuan

    2016-05-01

    For oral anti-cancer drug delivery, a new chitosan-lipid nanoparticle with sodium dodecyl sulfate modification was designed and synthesized using a double emulsification. TEM examination showed that the DOX-loaded nanoparticles, termed D-PL/TG NPs, exhibited a unique core-shell configuration composed of multiple amphiphilic chitosan-lecithin reverse micelles as the core and a triglyceride shell as a physical barrier to improve the encapsulation efficiency and reduce the drug leakage. In addition, the D-PL/TG NPs with sodium dodecyl sulfate modification on the surface have enhanced stability in the GI tract and increased oral bioavailability of doxorubicin. In vitro transport studies performed on Caco-2 monolayers indicated that the D-PL/TG NPs enhanced the permeability of DOX in the Caco-2 monolayers by altering the transport pathway from passive diffusion to transcytosis. The in vivo intestinal absorption assay suggested that the D-PL/TG NPs were preferentially absorbed through the specialized membranous epithelial cells (M cells) of the Peyer's patches, resulting in a significant improvement (8-fold) in oral bioavailability compared to that of free DOX. The experimental outcomes in this work demonstrate that the D-PL/TG NPs provide an exciting opportunity for advances in the oral administration of drugs with poor bioavailability that are usually used in treating tough and chronic diseases. PMID:27305818

  12. Polysaccharide-Based Vaccines

    NASA Astrophysics Data System (ADS)

    Santana, Violeta Fernández; Balbin, Yury Valdés; Calderón, Janoi Chang; Icart, Luis Peña; Verez-Bencomo, Vicente

    Capsular polysaccharides (CPS) and lipopolysaccharides from bacteria are employed for the production of vaccines against human diseases. Initial development of CPS as a vaccine was followed by the development and introduction of conjugate polysaccharide-protein vaccines. The principles leading to both developments are reviewed.

  13. The DHEA-sulfate depot following P450c17 inhibition supports the case for AKR1C3 inhibition in high risk localized and advanced castration resistant prostate cancer.

    PubMed

    Tamae, Daniel; Mostaghel, Elahe; Montgomery, Bruce; Nelson, Peter S; Balk, Steven P; Kantoff, Philip W; Taplin, Mary-Ellen; Penning, Trevor M

    2015-06-01

    Prostate cancer is the second leading cause of cancer death in the United States. Treatment of localized high-risk disease and de novo metastatic disease frequently leads to relapse. These metastatic castration resistant prostate cancers (mCRPC) claim a high mortality rate, despite the extended survival afforded by the growing armamentarium of androgen deprivation, radiation and immunotherapies. Here, we review two studies of neoadjuvant treatment of high-risk localized prostate cancer prior to prostatectomy, the total androgen pathway suppression (TAPS) trial and the neoadjuvant abiraterone acetate (AA) trial. These two trials assessed the efficacy of the non-specific P450c17 inhibitor, ketoconazole and the specific P450c17 inhibitor, AA, to inhibit tissue and serum androgen levels. Furthermore, a novel and validated stable isotope dilution liquid chromatography electrospray ionization selected reaction monitoring mass spectrometry assay was used to accurately quantify adrenal and gonadal androgens in circulation during the course of these trials. The adrenal androgens, Δ(4)-androstene-3,17-dione, dehydroepiandrosterone and dehydroepiandrosterone sulfate were significantly reduced in the patients receiving ketoconazole or AA compared to those who did not. However, in both trials, a significant amount of DHEA-S (∼20 μg/dL) persists and thus may serve as a depot for intratumoral conversion to the potent androgen receptor ligands, testosterone (T) and 5α-dihydrotestosterone (DHT). The final step in conversion of Δ(4)-androstene-3,17-dione and 5α-androstanedione to T and DHT, respectively, is catalyzed by AKR1C3. We therefore present the case that in the context of the DHEA-S depot, P450c17 and AKR1C3 inhibition may be an effective combinatorial treatment strategy. PMID:25514466

  14. Polysaccharides from the green seaweed Codium decorticatum. Structure and cell wall distribution.

    PubMed

    Fernández, Paula Virginia; Raffo, María Paula; Alberghina, Josefina; Ciancia, Marina

    2015-03-01

    The cell wall polysaccharides from Codium decorticatum and their assembly were studied and these results were compared with those obtained previously for this genus. The water soluble polysaccharides are: (i) Pyruvylated and sulfated 3- and 6-linked β-D-galactans with sulfate mainly on C-4 and also on C-6. Pyruvate ketals are linked to O-3 and O-4 of terminal β-D-galactose or O-4 and O-6 of 3-linked β-D-galactose. (ii) Sulfated 3-linked β-L-arabinans substituted on C-2 or C-2 and C-4 predominantly with sulfate, but also with single stubs of arabinose, and (iii) 4-linked β-D-mannans with a low degree of sulfation on C-2. The whole polysaccharide system comprises 6.9% of sulfated polysaccharides and 32.9% of fibrillar polysaccharides, mostly insoluble mannans. By in situ localization it was possible to detect two similar fibrillar layers separated by a zone rich in charged polymers. Besides, arabinogalactan proteins co-localized with the fibrillar components. PMID:25498707

  15. G1-4A, a Polysaccharide from Tinospora cordifolia Inhibits the Survival of Mycobacterium tuberculosis by Modulating Host Immune Responses in TLR4 Dependent Manner.

    PubMed

    Gupta, Pramod Kumar; Chakraborty, Pampi; Kumar, Santosh; Singh, Prafull Kumar; Rajan, M G R; Sainis, Krishna B; Kulkarni, Savita

    2016-01-01

    Rapid emergence of drug resistance in Mycobacterium tuberculosis (MTB) is a major health concern and demands the development of novel adjunct immunotherapeutic agents capable of modulating the host immune responses in order to control the pathogen. In the present study, we sought to investigate the immunomodulatory effects of G1-4A, a polysaccharide derived from the Indian medicinal plant Tinospora cordifolia, in in-vitro and aerosol mouse models of MTB infection. G1-4A treatment of MTB infected RAW264.7 macrophages significantly induced the surface expression of MHC-II and CD-86 molecules, secretion of proinflammatory cytokines (TNF-α, IL-β, IL-6, IL-12, IFN-γ) and nitric oxide leading to reduced intracellular survival of both drug sensitive (H37Rv) as well as multi drug resistant strains (Beijing and LAM) of MTB, which was partially attributed to G1-4A induced NO production in TLR4-MyD88 dependent manner. Similarly, bacillary burden was significantly reduced in the lungs of MTB infected BALB/c mice treated with G1-4A, with simultaneous up-regulation of the expression of TNF-α, INF-γ and NOS2 in the mouse lung along with increased levels of Th1 cytokines like IFN-γ, IL-12 and decreased levels of Th2 cytokine like IL-4 in the serum. Furthermore, combination of G1-4A with Isoniazid (INH) exhibited better protection against MTB compared to that due to INH or G1-4A alone, suggesting its potential as adjunct therapy. Our results demonstrate that modulation of host immune responses by G1-4A might improve the therapeutic efficacy of existing anti-tubercular drugs and provide an attractive strategy for the development of alternative therapies to control tuberculosis. PMID:27148868

  16. G1-4A, a Polysaccharide from Tinospora cordifolia Inhibits the Survival of Mycobacterium tuberculosis by Modulating Host Immune Responses in TLR4 Dependent Manner

    PubMed Central

    Gupta, Pramod Kumar; Chakraborty, Pampi; Kumar, Santosh; Singh, Prafull Kumar; Rajan, M. G. R.; Sainis, Krishna B.; Kulkarni, Savita

    2016-01-01

    Rapid emergence of drug resistance in Mycobacterium tuberculosis (MTB) is a major health concern and demands the development of novel adjunct immunotherapeutic agents capable of modulating the host immune responses in order to control the pathogen. In the present study, we sought to investigate the immunomodulatory effects of G1-4A, a polysaccharide derived from the Indian medicinal plant Tinospora cordifolia, in in-vitro and aerosol mouse models of MTB infection. G1-4A treatment of MTB infected RAW264.7 macrophages significantly induced the surface expression of MHC-II and CD-86 molecules, secretion of proinflammatory cytokines (TNF-α, IL-β, IL-6, IL-12, IFN-γ) and nitric oxide leading to reduced intracellular survival of both drug sensitive (H37Rv) as well as multi drug resistant strains (Beijing and LAM) of MTB, which was partially attributed to G1-4A induced NO production in TLR4-MyD88 dependent manner. Similarly, bacillary burden was significantly reduced in the lungs of MTB infected BALB/c mice treated with G1-4A, with simultaneous up-regulation of the expression of TNF-α, INF-γ and NOS2 in the mouse lung along with increased levels of Th1 cytokines like IFN-γ, IL-12 and decreased levels of Th2 cytokine like IL-4 in the serum. Furthermore, combination of G1-4A with Isoniazid (INH) exhibited better protection against MTB compared to that due to INH or G1-4A alone, suggesting its potential as adjunct therapy. Our results demonstrate that modulation of host immune responses by G1-4A might improve the therapeutic efficacy of existing anti-tubercular drugs and provide an attractive strategy for the development of alternative therapies to control tuberculosis. PMID:27148868

  17. Comparison of antioxidant and antiproliferation activities of polysaccharides from eight species of medicinal mushrooms.

    PubMed

    Chen, Peiying; Yong, Yangyang; Gu, Yifan; Wang, Zeliang; Zhang, Shizhu; Lu, Ling

    2015-01-01

    Polysaccharides from mushrooms including Pleurotus eryngii, P. ostreatus, P. nebrodensis, Lentinus edodes, Hypsizygus marmoreus, Flammulina velutipes, Ganoderma lucidum, and Hericium erinaceus were isolated by water extraction and alcohol precipitation. Our results suggest that all tested polysaccharides have the significant antioxidant capacities of scavenging free radicals (1,1-diphenyl-2-picrylhydrazyl and hydroxyl radicals). Among them, the H. erinaceus polysaccharide exhibits the highest 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity, whereas the L. edodes polysaccharide shows the strongest scavenging ability for hydroxyl radicals. Furthermore, using the MCF-7 breast cancer cell line and HeLa cells, all 8 selected polysaccharides are able to inhibit the proliferation of tumor cells, but the strength of inhibition varied depending on the mushroom species and the concentration used. Notably, G. lucidum polysaccharide shows the highest inhibition activity on MCF-7 cells. By comparison, H. erinaceus polysaccharide has the strongest inhibitory effect on HeLa cells. Moreover, high-performance liquid chromatography with a carbohydrate analysis column showed significant differences in polysaccharide components among these mushrooms. Thus our data suggest that the different species of mushrooms have the variable functions because of their own specific polysaccharide components. The 8 mushroom polysaccharides have the potential to be used as valuable functional food additives or sources of therapeutic agents for antioxidant and cancer treatments, especially polysaccharides from H. erinaceus, L. edodes, and G. lucidum. PMID:25954912

  18. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems.

    PubMed

    Sugumaran, G; Silbert, J E

    1988-04-01

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo[14C]chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo[14C]chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo[14C] chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo[14C]chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo[14C]chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo[14C]chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo[14C]chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent. These results indicate that the intact microsomal system was not accessible to the larger

  19. Facile synthesis of multilayered polysaccharidic vesicles.

    PubMed

    Kwag, Dong Sup; Oh, Kyung Taek; Lee, Eun Seong

    2014-08-10

    In this study, we developed facile synthesis method of multilayered polysaccharidic vesicles (hereafter termed 'mPSVs') using polysaccharides such as starch, hyaluronate (HA), and glycol chitosan (GC) via simple chemistry and using enzymatic reactions among polysaccharides. The enzymatic degradation of the HA shell by hyaluronidase (HYAL) enzyme contributed to accelerate the release of protein/peptide from the mPSVs. The mPSVs containing folate ligand and apoptotic cell death-inducing D-(KLAKLAK)2 peptide were effectively accumulated in in vivo KB tumor cells, primarily owing to passive tumor penetration via the enhanced permeability and retention (EPR) effect and active targeting via specific binding to folate receptors expressed on KB tumor cells. These mPSVs resulted in a significant increase in the in vivo tumor inhibition. This vesicle system is expected to exhibit great potential as an advanced platform technology for biomedical applications involving small molecular drugs with protein/gene targets. PMID:24878178

  20. Anti-HSV1 activity of brown algal polysaccharides and possible relevance to the treatment of Alzheimer's disease.

    PubMed

    Wozniak, Matthew; Bell, Tracey; Dénes, Ádám; Falshaw, Ruth; Itzhaki, Ruth

    2015-03-01

    Herpes simplex virus type 1 (HSV1) induces the formation of the characteristic abnormal molecules of Alzheimer's disease (AD) brains, beta-amyloid, and abnormally phosphorylated, AD-like tau (P-tau). Formation of these molecules is inhibited by treatment with the antiviral agent acyclovir (ACV), which prevents viral DNA replication. A totally different mechanism of antiviral action against herpes simplex viruses is shown by sulfated fucans. The antiviral activity of sulfated fucans from five brown algae (Scytothamnus australis, Marginariella boryana, Papenfussiella lutea, Splachnidium rugosum and Undaria pinnatifida) was investigated in relation to the HSV1-induced formation of beta-amyloid, and AD-like tau. Antiviral activity was also related to specific structural features of these polysaccharides. Four sulfated fucan extracts each prevented the accumulation of HSV1-induced beta-amyloid and AD-like tau in HSV1-infected Vero cells. The structures of these extracts had some similarities but also key differences, indicating that a number of structural features can cause antiviral activity. The most active sulfated fucan combined with acyclovir was particularly effective, so may be particularly suitable for further experimental testing in order to develop treatment protocols for AD patients, with the aim of slowing or stopping disease progression. PMID:25583021

  1. [Regulation of sulfates, hydrogen sulfide and heavy metals in technogenic reservoirs by sulfate-reducing bacteria].

    PubMed

    Hudz', S P; Peretiatko, T B; Moroz, O M; Hnatush, S O; Klym, I R

    2011-01-01

    Sulfate-reducing bacteria Desulfovibrio desulfuricans Ya-11 in the presence of sulfates and organic compounds in the medium reduce sulfates to hydrogen sulfide (dissimilatory sulfate reduction). Heavy metals in concentration over 2 mM inhibit this process. Pb2+, Zn2+, Ni2+, Co2+, Fe2+ and Cd2+ ions in concentration 1-1.5 mM display insignificant inhibiting effect on sulfate reduction process, and metals precipitate in the form of sulfides. At concentrations of heavy metals 2-3 mM one can observe a decrease of sulfates reduction intensity, and a percent of metals binding does not exceed 72%. Obtained results give reason to confirm, that sulfate-reducing bacteria play an important role in regulation of the level of sulfates, hydrogen sulfide and heavy metals in reservoirs and they may be used for purification of water environment from these compounds. PMID:21598657

  2. Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom.

    PubMed

    Xing, Peng; Hahnke, Richard L; Unfried, Frank; Markert, Stephanie; Huang, Sixing; Barbeyron, Tristan; Harder, Jens; Becher, Dörte; Schweder, Thomas; Glöckner, Frank Oliver; Amann, Rudolf I; Teeling, Hanno

    2015-06-01

    Members of the flavobacterial genus Polaribacter thrive in response to North Sea spring phytoplankton blooms. We analyzed two respective Polaribacter species by whole genome sequencing, comparative genomics, substrate tests and proteomics. Both can degrade algal polysaccharides but occupy distinct niches. The liquid culture isolate Polaribacter sp. strain Hel1_33_49 has a 3.0-Mbp genome with an overall peptidase:CAZyme ratio of 1.37, four putative polysaccharide utilization loci (PULs) and features proteorhodopsin, whereas the agar plate isolate Polaribacter sp. strain Hel1_85 has a 3.9-Mbp genome with an even peptidase:CAZyme ratio, eight PULs, a mannitol dehydrogenase for decomposing algal mannitol-capped polysaccharides but no proteorhodopsin. Unlike other sequenced Polaribacter species, both isolates have larger sulfatase-rich PULs, supporting earlier assumptions that Polaribacter take part in the decomposition of sulfated polysaccharides. Both strains grow on algal laminarin and the sulfated polysaccharide chondroitin sulfate. For strain Hel1_33_49, we identified by proteomics (i) a laminarin-induced PUL, (ii) chondroitin sulfate-induced CAZymes and (iii) a chondroitin-induced operon that likely enables chondroitin sulfate recognition. These and other data suggest that strain Hel1_33_49 is a planktonic flavobacterium feeding on proteins and a small subset of algal polysaccharides, while the more versatile strain Hel1_85 can decompose a broader spectrum of polysaccharides and likely associates with algae. PMID:25478683

  3. Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom

    PubMed Central

    Xing, Peng; Hahnke, Richard L; Unfried, Frank; Markert, Stephanie; Huang, Sixing; Barbeyron, Tristan; Harder, Jens; Becher, Dörte; Schweder, Thomas; Glöckner, Frank Oliver; Amann, Rudolf I; Teeling, Hanno

    2015-01-01

    Members of the flavobacterial genus Polaribacter thrive in response to North Sea spring phytoplankton blooms. We analyzed two respective Polaribacter species by whole genome sequencing, comparative genomics, substrate tests and proteomics. Both can degrade algal polysaccharides but occupy distinct niches. The liquid culture isolate Polaribacter sp. strain Hel1_33_49 has a 3.0-Mbp genome with an overall peptidase:CAZyme ratio of 1.37, four putative polysaccharide utilization loci (PULs) and features proteorhodopsin, whereas the agar plate isolate Polaribacter sp. strain Hel1_85 has a 3.9-Mbp genome with an even peptidase:CAZyme ratio, eight PULs, a mannitol dehydrogenase for decomposing algal mannitol-capped polysaccharides but no proteorhodopsin. Unlike other sequenced Polaribacter species, both isolates have larger sulfatase-rich PULs, supporting earlier assumptions that Polaribacter take part in the decomposition of sulfated polysaccharides. Both strains grow on algal laminarin and the sulfated polysaccharide chondroitin sulfate. For strain Hel1_33_49, we identified by proteomics (i) a laminarin-induced PUL, (ii) chondroitin sulfate-induced CAZymes and (iii) a chondroitin-induced operon that likely enables chondroitin sulfate recognition. These and other data suggest that strain Hel1_33_49 is a planktonic flavobacterium feeding on proteins and a small subset of algal polysaccharides, while the more versatile strain Hel1_85 can decompose a broader spectrum of polysaccharides and likely associates with algae. PMID:25478683

  4. Polysaccharide from Inonotus obliquus inhibits migration and invasion in B16-F10 cells by suppressing MMP-2 and MMP-9 via downregulation of NF-κB signaling pathway.

    PubMed

    Lee, Ki Rim; Lee, Jong Seok; Kim, Young Rae; Song, In Gyu; Hong, Eock Kee

    2014-05-01

    Polysaccharides derived from Inonotus obliquus (PIO) are known to possess multiple pharmacological activities including antitumor activity. However, the possible molecular mechanisms of these activities are unknown. In the present study, we determined the anti-metastatic potential and signaling pathways of PIO in the highly metastatic B16-F10 mouse melanoma cell line in vitro. We found that PIO suppressed the migration and invasive ability of B16-F10 cells and decreased the expression levels and activities of matrix metalloproteinase (MMP)-2 and MMP-9. In addition, PIO decreased the phosphorylation levels of extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK); PIO also decreased the expression level of cyclooxygenase (COX)‑2 and inhibited the nuclear translocation of nuclear factor κB (NF-κB) in B16-F10 melanoma cells. These results suggest that PIO could suppress the invasion and migration of B16-F10 melanoma cells by reducing the expression levels and activities of MMP-2 and MMP-9 through suppressing MAPK, COX-2 and NF-κB signaling pathways. PMID:24677090

  5. Polysaccharide Agaricus blazei Murill stimulates myeloid derived suppressor cell differentiation from M2 to M1 type, which mediates inhibition of tumour immune-evasion via the Toll-like receptor 2 pathway.

    PubMed

    Liu, Yi; Zhang, Lingyun; Zhu, Xiangxiang; Wang, Yuehua; Liu, WenWei; Gong, Wei

    2015-11-01

    Gr-1(+) CD11b(+) myeloid-derived suppressor cells (MDSCs) accumulate in tumor-bearing animals and play a critical negative role during tumor immunotherapy. Strategies for inhibition of MDSCs are expected to improve cancer immunotherapy. Polysaccharide Agaricus blazei Murill (pAbM) has been found to have anti-cancer activity, but the underlying mechanism of this is poorly understood. Here, pAbM directly activated the purified MDSCs through inducing the expression of interleukin-6 (IL-6), IL-12, tumour necrosis factor and inducible nitric oxide synthase (iNOS), CD86, MHC II, and pSTAT1 of it, and only affected natural killer and T cells in the presence of Gr-1(+) CD11b(+) monocytic MDSCs. On further analysis, we demonstrated that pAbM could selectively block the Toll-like receptor 2 (TLR2) signal of Gr-1(+) CD11b(+) MDSCs and increased their M1-type macrophage characteristics, such as producing IL-12, lowering expression of Arginase 1 and increasing expression of iNOS. Extensive study showed that Gr-1(+) CD11b(+) MDSCs by pAbM treatment had less ability to convert the CD4(+) CD25(-) cells into CD4(+) CD25(+) phenotype. Moreover, result from selective depletion of specific cell populations in xenograft mice model suggested that the anti-tumour effect of pAbM was dependent on Gr-1(+ ) CD11b(+) monocytes, nether CD8(+) T cells nor CD4(+) T cells. In addition to, pAbM did not inhibit tumour growth in TLR2(-/-) mice. All together, these results suggested that pAbM, a natural product commonly used for cancer treatment, was a specific TLR2 agonist and had potent anti-tumour effects through the opposite of the suppressive function of Gr-1(+) CD11b(+) MDSCs. PMID:26194418

  6. Dimethyl sulfate

    Integrated Risk Information System (IRIS)

    Dimethyl sulfate ; CASRN 77 - 78 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  7. Diethyl sulfate

    Integrated Risk Information System (IRIS)

    Diethyl sulfate ; CASRN 64 - 67 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  8. Chondroitin sulfate

    MedlinePlus

    Natural Medicines Comprehensive Database rates effectiveness based on scientific evidence according to the following scale: Effective, Likely ... The following doses have been studied in scientific research: BY MOUTH: ... dose of chondroitin sulfate is 800-2000 mg taken as a single dose or in two ...

  9. Antioxidant and radioprotective properties of an Ocimum sanctum polysaccharide.

    PubMed

    Subramanian, Mahesh; Chintalwar, Gajanan J; Chattopadhyay, Subrata

    2005-01-01

    The antioxidant activity of two polysaccharides isolated from the Indian medicinal plants, Ocimum sanctum and Tinospora malabarica, was studied. Only the O. sanctum polysaccharide (OSP) showed significant activity. OSP could prevent oxidative damage to liposomal lipids and plasmid DNA induced by various oxidants such as iron, AAPH and gamma-radiation, besides scavenging important ROS such as the superoxide radical and hydrogen peroxide and inhibiting xanthine oxidase. In addition, OSP could prevent gamma-radiation-mediated cell deaths in mouse splenocytes. PMID:16354414

  10. Inhibition of Amyloid A Amyloidogenesis in Vivo and in Tissue Culture by 4-Deoxy Analogues of Peracetylated 2-Acetamido-2-Deoxy-α- and β-d-Glucose

    PubMed Central

    Kisilevsky, Robert; Szarek, Walter A.; Ancsin, John B.; Elimova, Elena; Marone, Sandra; Bhat, Shridhar; Berkin, Ali

    2004-01-01

    Two novel sugars, 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-α- and β-d-xylo-hexopyranoses, have been synthesized and their effects on heparan sulfate biosynthesis using primary mouse hepatocytes in tissue culture have been assessed. At concentrations of 0.1 and 1.0 mmol/L a mixture of both anomers significantly inhibited the biosynthesis of heparan sulfate by 60% and 99%, respectively. At 1.0 mmol/L the average molecular weight of the heparan sulfate synthesized is reduced from 77 kd to 40 kd. The biosynthetic inhibition is apparent within 1 hour (the earliest time point examined) of exposure of the hepatocytes to the analogues and appears virtually complete throughout a 24-hour incubation period. Using a radiolabeled version of the β-anomer we demonstrate that the analogue is incorporated into growing heparan sulfate chains. The nature of the analogue, the quantity of analogue isotope incorporated, and the reduction in the size of the heparan sulfate polysaccharide are consistent with UDP activation and incorporation of the analogue and truncation of the growing heparan sulfate chain. At 0.1 mmol/L, and in the presence of a constant concentration of serum amyloid A (the precursor to AA amyloid), each analogue inhibited amyloid deposition (by 95 to 99%) in a tissue culture model of AA amyloidogenesis. At 6 mg/dose twice daily each analogue inhibited in vivo splenic AA amyloid deposition by 65 to 70% when using a rapid induction model of mouse AA amyloidogenesis. These data indicate that polysaccharides, such as heparan sulfate, play an integral part in the pathogenesis of AA amyloid deposition, and potentially other forms of amyloid. These data support our previous work that demonstrated that agents that mimic aspects of heparan sulfate structure and that interfere with heparan sulfate:amyloid protein binding inhibit AA amyloid deposition. They emphasize that heparan sulfate likely plays a critical role in amyloidogenesis, and compounds that interfere with

  11. Lymphatic Specific Disruption in the Fine Structure of Heparan Sulfate Inhibits Dendritic Cell Traffic and Functional T Cell Responses in the Lymph Node

    PubMed Central

    Yin, Xin; Johns, Scott C.; Kim, Daniel; Mikulski, Zbigniew; Salanga, Catherina L.; Handel, Tracy M.; Macal, Mónica; Zúñiga, Elina I.; Fuster, Mark M.

    2014-01-01

    Dendritic cells (DC) are potent antigen-presenting cells essential for initiating adaptive immunity. Following pathogen exposure, trafficking of DC to lymph nodes (LN) through afferent lymphatic vessels constitutes a crucial step in the execution of their functions. The mechanisms regulating this process, however, are poorly understood, although the involvement of certain chemokines in this process has recently been reported. Herein, we demonstrate that genetically altering the fine structure (N-sulfation) of heparan sulfate specifically in mouse lymphatic endothelium significantly reduces DC trafficking to regional lymph nodes in vivo. Moreover, this alteration had the unique functional consequence of reducing CD8+ T cell proliferative responses in draining lymph nodes in an ovalbumin immunization model. Mechanistic studies suggested that lymphatic endothelial heparan sulfate regulates multiple steps during DC trafficking, including optimal presentation of chemokines on the surface of DC, thus acting as a co-receptor that may function “in trans” to mediate chemokine-receptor binding. This study not only identifies novel glycan-mediated mechanisms that regulate lymphatic DC trafficking, but also validates the fine structure of lymphatic-vascular specific heparan sulfate as a novel molecular target for strategies aiming to modulate DC behavior and/or alter pathologic T cell responses in lymph nodes. PMID:24493818

  12. Isolation and antiviral activity of water-soluble Cynomorium songaricum Rupr. polysaccharides.

    PubMed

    Tuvaanjav, Suvdmaa; Shuqin, Han; Komata, Masashi; Ma, Chunjie; Kanamoto, Taisei; Nakashima, Hideki; Yoshida, Takashi

    2016-01-01

    The plant, Cynomorium songaricum Rupr., is used as a traditional medicine in China and Mongolia. In the present study, two new water-soluble polysaccharides isolated from C. songaricum Rupr. were purified by successive Sephadex G-75 and G-50 column chromatographies and then characterized by high resolution NMR and IR spectroscopies. The molecular weights of two polysaccharides were determined by an aqueous GPC to be [Formula: see text] = 3.7 × 10(4) and 1.0 × 10(4), respectively. In addition, it was found that the polysaccharide with the larger molecular weight was an acidic polysaccharide. It was found that the iodine-starch reaction of both isolated polysaccharides was negative and the methylation analysis gave 2, 4, 6-tri-O-methyl alditol acetate as a main product. NMR and IR measurements and sugar analysis revealed that both polysaccharides had a (1 → 3)-α-d-glucopyranosidic main chain with a small number of branches. After sulfation, the sulfated C. songaricum Rupr. polysaccharides were found to have a potent inhibitory effect on HIV infection of MT-4 cells at a 50% effective concentration of 0.3-0.4 μg/ml, a concentration that has almost the same high activity as standard dextran and curdlan sulfates, EC50 = 0.35 and 0.14 μg/ml, respectively. The 50% cytotoxic concentration was low, CC50>1000 μg/ml. In addition, the interaction between the sulfated polysaccharides and poly-l-lysine as a model protein compound was investigated by a surface plasmon resonance to reveal the anti-HIV mechanism. PMID:26838028

  13. Glucose cryoprotectant affects glutathione-responsive antitumor drug release from polysaccharide nanoparticles.

    PubMed

    Curcio, Manuela; Blanco-Fernández, Bárbara; Costoya, Alejandro; Concheiro, Angel; Puoci, Francesco; Alvarez-Lorenzo, Carmen

    2015-06-01

    The aim of this work was to prepare polysaccharide-based nanoparticles (NPs) sensitive to glutathione (GSH), and to elucidate the effect of the concentration of glucose used as cryoprotectant during freeze-drying on the GSH-responsiveness. NPs were obtained via ionic interaction between negatively charged polysaccharides, chondroitin sulfate and dermatan sulfate, and the positively charged thiolated chitosan (CSSH), and crosslinking of CSSH before or after the nanoparticles formation with a disulfide-bond containing crosslinker, N,N'-bis(acryloyl)cystamine (BAC). NPs were freeze-dried with glucose at two different concentrations (0.5 and 5.0%w/w) and then characterized as methotrexate delivery systems, studying the effect of GSH concentration on drug release, efficacy against tumor cells and cellular internalization. Non-loaded NPs were highly compatible with murine fibroblasts and showed a suitable size for being used in anticancer therapy. When methotrexate-loaded NPs were freeze-dried with the highest glucose concentration, they lost their responsiveness to GSH concentration in vitro. Drug-loaded NPs were shown to inhibit the growth of tumor cells (HeLa and CHO-K1) with greater efficiency than free methotrexate, disregarding the concentration of glucose used for freeze-drying. Nevertheless, confocal microscopy studies revealed that cellular internalization of NPs freeze-dried with 5.0% glucose is more difficult than for NPs freeze-dried with lower glucose concentration. Thus, concentration of glucose cryoprotectant should be taken into account during development of NPs intended to release the drug as a function of GSH levels, due to the specific interactions of glucose with GSH. PMID:25917641

  14. Fractionation and Biological Activities of Water-Soluble Polysaccharides from Sclerotium of Tiger Milk Medicinal Mushroom, Lignosus rhinocerotis (Agaricomycetes).

    PubMed

    Keong, Choong Yew; B, Vimala; Daker, Maelinda; Hamzah, Mohd Yusof; Mohamad, Shaiful Azuar; Lan, Jin; Chen, Xiangdong; Yang, Yu-Ping

    2016-01-01

    This study investigated antioxidant and anti-inflammatory properties, and the direct cytotoxic effect of Lignosus rhinocerotis fractions, especially the polysaccharide fraction, on nasopharyngeal carcinoma cells. L. rhinocerotis crude extract was obtained through hot water extraction. The precipitate saturated with 30% ammonium sulfate was purified with ion-exchanged chromatography. Gel permeation chromatography multiangle laser light scattering analysis equipped with light scattering and UV signals revealed two district groups of polymers. A total of four peaks were observed in the total carbohydrate test. Fraction C, which was the second region of the second peak eluted with 0.3 M NaOH, showed the highest integrated molecular weight, whereas fraction E had the lowest integrated molecular weight of 19,790 Da. Fraction A contained the highest β-D-glucan content. Enzymatic analysis showed that most of the polysaccharide fractions contained β-1-3 and β-1-6 skeletal backbones. The peak eluted with 0.6 M NaOH was separated in fraction D (flask 89-92) and fraction E (93-96). The results showed that fraction E expressed higher antioxidant activities than fraction D whereas fraction D expressed higher chelating activity than fraction E. The extract saturated with 30% ammonium sulfate exhibited higher reducing power than the extract saturated with 100% ammonium sulfate. Fractions D and E significantly inhibited the secretion of tumor necrosis factor-α in lipopolysaccharide-stimulated RAW 264.7 macrophages in a dose-dependent manner. There was no apparent difference in the viability of cells exposed or unexposed to L. rhinocerotis fractions. PMID:27279536

  15. Immunogenicity of meningococcal B polysaccharide conjugated to tetanus toxoid or CRM197 via adipic acid dihydrazide.

    PubMed

    Bartoloni, A; Norelli, F; Ceccarini, C; Rappuoli, R; Costantino, P

    1995-04-01

    Vaccine development against Group B Neisseria meningitidis is complicated by the nature of the capsular polysaccharide, which is alpha 2-8-linked poly-sialic acid, identical in structure to the poly-sialic acid found in many mammalian tissues during development. To test the feasibility of a vaccine based on this polysaccharide, we synthesized several conjugates of meningococcal B polysaccharide linked to a carrier protein (tetanus toxoid or diphtheria CRM197), via an adipic acid dihydrazide (ADH) spacer. All conjugates induced a strong immune response. However, most of the antibodies were not directed against the Meningococcus B polysaccharide and could not be inhibited by the purified polysaccharide alone. Further investigations showed that the antibodies recognized an epitope composed by the junction between the spacer and the polysaccharide and protein, that is not present in the native polysaccharide and is generated during the coupling reaction. This epitope becomes immunodominant with respect to the poorly immunogenic polysaccharide. While the majority of the immune response is directed against the above epitope, the conjugates induced also an immune response against the Meningococcus B polysaccharide. The anti-Meningococcus B antibodies elicited are of the IgM and IgG class and are inhibitable by the polysaccharide. Moreover, they are bactericidal, thus suggesting that they would induce protection against disease. PMID:7543714

  16. Pleurotus tuber-regium Polysaccharides Attenuate Hyperglycemia and Oxidative Stress in Experimental Diabetic Rats

    PubMed Central

    Huang, Hui-Yu; Korivi, Mallikarjuna; Chaing, Ying-Ying; Chien, Ting-Yi; Tsai, Ying-Chieh

    2012-01-01

    Pleurotus tuber-regium contains polysaccharides that are responsible for pharmacological actions, and medicinal effects of these polysaccharides have not yet been studied in diabetic rats. We examined the antidiabetic, antihyperlipidemic, and antioxidant properties of P. tuber-regium polysaccharides in experimental diabetic rats. Forty rats were equally assigned as diabetic high-fat (DHF) diet and polysaccharides treated DHF groups (DHF+1P, DHF+2P, and DHF+3P, 20 mg/kg bodyweight/8-week). Diabetes was induced by chronic low-dose streptozotocin injections and a high-fat diet to mimic type 2 diabetes. Polysaccharides (1P, 2P, and 3P) were extracted from three different strains of P. tuber-regium. Fasting blood glucose and glycosylated hemoglobin (HbA1c) levels substantially decreased, while serum insulin levels were restored by polysaccharides treatment compared to DHF. Furthermore, plasma total cholesterol, triglycerides, and low-density lipoprotein levels were significantly (P < 0.01) lower in polysaccharide groups. High-density lipoprotein levels were attenuated with polysaccharides against diabetes condition. Polysaccharides inhibited (P < 0.01) the lipid peroxidation index (malondialdehyde), and restored superoxide dismutase and glutathione peroxidase activities in the liver of diabetic rats. The antihyperglycemic property of polysaccharides perhaps boosts the antioxidant system that attenuates oxidative stress. We emphasize that P. tuber-regium polysaccharides can be considered as an alternative medicine to treat hyperglycemia and oxidative stress in diabetic rats. PMID:22973406

  17. Purification and characterization of a glucan from Bacillus Calmette Guerin and the antitumor activity of its sulfated derivative.

    PubMed

    Xu, Xiongbo; Gu, Zixin; Liu, Shao; Gao, Na; He, Xiaozhen; Xin, Xiu

    2015-09-01

    A water-soluble glucan, BCG-PASW, with a molecular weight of 2.10×10(4)Da, was separated from polysaccharide nucleic acid fraction of Bacillus Calmette Guerin (BCG-PSN) using DEAE-52 cellulose and Sephadex G-200 chromatography. Based on gas chromatography-mass spectrometry (GC-MS), fourier transform infrared (FT-IR) spectra, 1D and 2D nuclear magnetic resonance (NMR) spectroscopy techniques (COSY, HSQC and HMBC), BCG-PASW was found to be an α-d-glucan composed of α-d-(1→4)-linked glucopyranosyl residues, with branches at O-6 consisting of non-reducing terminal α-d-Glcp approximately every eight residues. In vitro antitumor activity by MTS method, its sulfated derivative with a substitution degree of 0.59, could inhibite C666-1 nasopharyngeal carcinoma cells growth significantly. The results indicated that the sulfate content play a decisive role in the bioactivities of the polysaccharides. PMID:26005149

  18. Effects of sulfated and non-sulfated β-glucan extracted from Agaricus brasiliensis in breast adenocarcinoma cells - MCF-7.

    PubMed

    Baranoski, Adrivanio; Tempesta Oliveira, Marcelo; Semprebon, Simone Cristine; Niwa, Andressa Megumi; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2015-11-01

    The β-glucans (β-G) are polysaccharides produced by various organisms, and sulfation of β-G renders them more soluble. With the objective to assess the effects of sulfated and non-sulfated β-G extracted from Agaricus brasiliensis in MCF-7 cells, assays were used to evaluate cytotoxicity, genotoxicity, cell proliferation and mRNA expression. The sulfated and non-sulfated β-G showed dose-dependent cytotoxicity at concentrations of 5 and 10 μg/mL, by the MTT assay. However, only cytotoxicity was observed after 24 h by the Red Neutral test for sulfated β-G, with no genotoxicity for either β-G in comet assay. Proliferation was decreased only at 72 h at a concentration of 100 μg/mL of sulfated β-G. Treatment with 5 μg/mL of sulfated β-G for 6 h reduced the expression of pro-apoptotic genes and stress signaling genes, cell cycle arrest, damage and cell migration. The 5 μg/mL of non-sulfated β-G for 6 h reduced the expression of the stress response gene and signaling damage. These results indicate that the cytotoxicity in the MTT is not cell death, and that, in general, sulfated β-G have greater cytotoxicity compared to non-sulfated β-G. PMID:25970150

  19. Influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of acidic, neutral and basic polysaccharides.

    PubMed

    Wang, Qing-Chi; Zhao, Xia; Pu, Jiang-Hua; Luan, Xiao-Hong

    2016-06-01

    Monosaccharide composition analysis is important for structural characterization of polysaccharides. To investigate the influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of polysaccharides, we chose alginate, starch, chitosan and chondroitin sulfate as representative of acidic, neutral, basic and complex polysaccharides to compare the release degree of monosaccharides under different hydrolytic conditions. The hydrolysis stability of 10 monosaccharide standards was also explored. Results showed that the basic sugars were hard to release but stable, the acidic sugars (uronic acids) were easy to release but unstable, and the release and stability of neutral sugars were in between acidic and basic sugars. In addition, the hydrolysis process was applied to monosaccharide composition analysis of Hippocampus trimaculatus polysaccharide and the appropriate hydrolytic condition was accorded with that of the above four polysaccharides. Thus, different hydrolytic conditions should be used for the monosaccharide composition analysis of polysaccharides based on their structural characteristics. PMID:27083372

  20. Hesperetin and its sulfate and glucuronide metabolites inhibit TNF-α induced human aortic endothelial cell migration and decrease plasminogen activator inhibitor-1 (PAI-1) levels.

    PubMed

    Giménez-Bastida, Juan Antonio; González-Sarrías, Antonio; Vallejo, Fernando; Espín, Juan Carlos; Tomás-Barberán, Francisco A

    2016-01-01

    Epidemiological, clinical and preclinical studies have reported the protection offered by citrus consumption, mainly orange, against cardiovascular diseases, which is primarily mediated by the antiatherogenic and vasculoprotective effects of the flavanone hesperetin-7-O-rutinoside (hesperidin). However, flavanone aglycones or glycosides are not present in the bloodstream but their derived phase-II metabolites could be the actual bioactive molecules. To date, only a few studies have explored the effects of circulating hesperetin-derived metabolites (glucuronides and sulfates) on endothelial cells. Herein, we describe for the first time the effects of hesperetin 3'-O-glucuronide, hesperetin 7-O-glucuronide, hesperetin 3'-O-sulfate, hesperetin 7-O-sulfate and hesperetin on human aortic endothelial cell (HAEC) migration upon pro-inflammatory stimuli as an essential step to angiogenesis. Hesperetin and its derived metabolites, at physiologically relevant concentrations (1-10 μM), significantly attenuated cell migration in the presence of the pro-inflammatory cytokine TNF-α (50 ng mL(-1)), which was accompanied and perhaps mediated by a significant decrease in the levels of the thrombogenic plasminogen activator inhibitor-1 (PAI-1). However, hesperetin metabolites did not counteract the TNF-α-induced production of pro-inflammatory interleukin-6 (IL-6) and IL-8. We also study here for the first time, the metabolism of hesperetin and its derived metabolites by HAEC with and without a pro-inflammatory stimulus. All these results reinforce the concept according to which circulating phase-II hesperetin metabolites are critical molecules contributing to the cardioprotective effects upon consumption of citrus fruits such as orange. PMID:26456097

  1. Sulfate and thiosulfate inhibit oxalate transport via a dPrestin (Slc26a6)-dependent mechanism in an insect model of calcium oxalate nephrolithiasis.

    PubMed

    Landry, Greg M; Hirata, Taku; Anderson, Jacob B; Cabrero, Pablo; Gallo, Christopher J R; Dow, Julian A T; Romero, Michael F

    2016-01-15

    Nephrolithiasis is one of the most common urinary tract disorders, with the majority of kidney stones composed of calcium oxalate (CaOx). Given its prevalence (US occurrence 10%), it is still poorly understood, lacking progress in identifying new therapies because of its complex etiology. Drosophila melanogaster (fruitfly) is a recently developed model of CaOx nephrolithiasis. Effects of sulfate and thiosulfate on crystal formation were investigated using the Drosophila model, as well as electrophysiological effects on both Drosophila (Slc26a5/6; dPrestin) and mouse (mSlc26a6) oxalate transporters utilizing the Xenopus laevis oocyte heterologous expression system. Results indicate that both transport thiosulfate with a much higher affinity than sulfate Additionally, both compounds were effective at decreasing CaOx crystallization when added to the diet. However, these results were not observed when compounds were applied to Malpighian tubules ex vivo. Neither compound affected CaOx crystallization in dPrestin knockdown animals, indicating a role for principal cell-specific dPrestin in luminal oxalate transport. Furthermore, thiosulfate has a higher affinity for dPrestin and mSlc26a6 compared with oxalate These data indicate that thiosulfate's ability to act as a competitive inhibitor of oxalate via dPrestin, can explain the decrease in CaOx crystallization seen in the presence of thiosulfate, but not sulfate. Overall, our findings predict that thiosulfate or oxalate-mimics may be effective as therapeutic competitive inhibitors of CaOx crystallization. PMID:26538444

  2. Fermentation optimization and antioxidant activities of mycelial polysaccharides from Morchella esculenta using soybean residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mycelial polysaccharides from Morchella esculenta are active ingredients in a number of medicines that play important roles in immunity improvement and tumor growth inhibition. So far, the production of polysaccharides from M. esculenta mycelia has not been commercialized. The aims of this wor...

  3. Structural Analysis and Anticoagulant Activities of the Novel Sulfated Fucan Possessing a Regular Well-Defined Repeating Unit from Sea Cucumber

    PubMed Central

    Wu, Mingyi; Xu, Li; Zhao, Longyan; Xiao, Chuang; Gao, Na; Luo, Lan; Yang, Lian; Li, Zi; Chen, Lingyun; Zhao, Jinhua

    2015-01-01

    Sulfated fucans, the complex polysaccharides, exhibit various biological activities. Herein, we purified two fucans from the sea cucumbers Holothuria edulis and Ludwigothurea grisea. Their structures were verified by means of HPGPC, FT-IR, GC–MS and NMR. As a result, a novel structural motif for this type of polymers is reported. The fucans have a unique structure composed of a central core of regular (1→2) and (1→3)-linked tetrasaccharide repeating units. Approximately 50% of the units from L. grisea (100% for H. edulis fucan) contain sides of oligosaccharides formed by nonsulfated fucose units linked to the O-4 position of the central core. Anticoagulant activity assays indicate that the sea cucumber fucans strongly inhibit human blood clotting through the intrinsic pathways of the coagulation cascade. Moreover, the mechanism of anticoagulant action of the fucans is selective inhibition of thrombin activity by heparin cofactor II. The distinctive tetrasaccharide repeating units contribute to the anticoagulant action. Additionally, unlike the fucans from marine alga, although the sea cucumber fucans have great molecular weights and affluent sulfates, they do not induce platelet aggregation. Overall, our results may be helpful in understanding the structure-function relationships of the well-defined polysaccharides from invertebrate as new types of safer anticoagulants. PMID:25871288

  4. Microbial extracellular polysaccharides and plagioclase dissolution

    SciTech Connect

    Welch, S.A.; Barker, W.W.; Banfield, J.F.

    1999-05-01

    Bytownite feldspar was dissolved in batch reactors in solutions of starch (glucose polymer), gum xanthan (glucose, mannose, glucuronic acid), pectin (poly-galacturonic acid), and four alginates (mannuronic and guluronic acid) with a range of molecular weights (low, medium, high and uncharacterized) to evaluate the effect of extracellular microbial polymers on mineral dissolution rates. Solutions were analyzed for dissolved Si and Al as an indicator of feldspar dissolution. At neutral pH, feldspar dissolution was inhibited by five of the acid polysaccharides, gum xanthan, pectin, alginate low, alginate medium, alginate high, compared to an organic-free control. An uncharacterized alginate substantially enhanced both Si and Al release from the feldspar. Starch, a neutral polysaccharide, had no apparent effect. Under mildly acidic conditions, initial pH {approx} 4, all of the polymers enhanced feldspar dissolution compared to the inorganic controls. Si release from feldspar in starch solution exceeded the control by a factor of three. Pectin and gum xanthan increased feldspar dissolution by a factor of 10, and the alginates enhanced feldspar dissolution by a factor of 50 to 100. Si and Al concentrations increased with time, even though solutions were supersaturated with respect to several possible secondary phases. Under acidic conditions, initial pH {approx} 3, below the pK{sub a} of the carboxylic acid groups, dissolution rates increased, but the relative increase due to the polysaccharides is lower, approximately a factor of two to ten. Microbial extracellular polymers play a complex role in mineral weathering. Polymers appear to inhibit dissolution under some conditions, possibly by irreversibly binding to the mineral surfaces. The extracellular polysaccharides can also enhance dissolution by providing protons and complexing with ions in solution.

  5. Sulfated polysaccharide heparin used as carrier to load hydrophobic lappaconitine.

    PubMed

    Sun, Wenxiu; Saldaña, Marleny D A; Fan, Liyan; Zhao, Yujia; Dong, Tungalag; Jin, Ye; Zhang, Ji

    2016-03-01

    One-step self-assembly was used to prepare pH-sensitive lappaconitine-loaded low-molecular-weight heparin (LMWH-LA) and to demonstrate that the sulfur group promotes dissolution and has synergistic effect on the analgesic property of lappaconitine (LA). The LMWH-LA was characterized in terms of releasing behavior, pH-sensitivity, analgesic activity and anticoagulation property. The drug loading level of LA in low-molecular-weight heparin (LMWH) reached 24.3% (w/w). The LA, self-assembled in LMWH, released faster in an acidic environment than that in neutral or alkaline environments. Analgesic experiments showed that the LMWH-LA had earlier onset time and longer duration than the LA. Compared with LMWH, the LMWH-LA can reduce clotting time more effectively. These results suggest that the LMWH is a good template and has great potential to achieve synergistic effect of LA. In addition, similar macromolecular structure can be used as a new natural polymeric carrier for loading hydrophobic alkaloids. PMID:26706841

  6. Fluorescent derivatization of polysaccharides and carbohydrate-containing biopolymers for measurement of enzyme activities in complex media.

    PubMed

    Arnosti, C

    2003-08-01

    Fluorescence derivatization provides a means of tracing the dynamics of polysaccharides even in the presence of high concentrations of other organic compounds or salts. A method of labeling polysaccharides with fluoresceinamine was extended to polysaccharides of a wide range of chemical composition, and alternative means of preparation were established for polysaccharides not initially amenable to column chromatography. The polysaccharides were activated with cyanogen bromide, coupled to fluoresceinamine, and separated from unreacted fluorophore via gel filtration chromatography or dialysis. Since the resulting derivatized polysaccharides proved to be stable to further physical and chemical manipulation, methods were also developed for re-activation and labeling with a second fluorophore, as well as for tethering the labeled polysaccharides to agarose beads. As an example of the application of this approach, five distinct fluorescently-labeled polysaccharides (pullulan, laminarin, xylan, chondroitin sulfate, and alginic acid) were used to investigate the activities and structural specificities of extracellular enzymes produced in situ by marine microbial communities, providing a means of measuring specifically the activities of endo-acting extracellular enzymes and avoiding use of low molecular mass substrate proxies. These labeled polysaccharides could be used to explore the dynamics of polysaccharides in other types of complex media, as well as to investigate the activities and specificities of endo-acting enzymes in other systems. PMID:12880865

  7. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class.

    PubMed

    Lemieszek, Marta; Rzeski, Wojciech

    2012-01-01

    Basidiomycete mushrooms represent a valuable source of biologically active compounds with anticancer properties. This feature is primarily attributed to polysaccharides and their derivatives. The anticancer potential of polysaccharides is linked to their origin, composition and chemical structure, solubility and method of isolation. Moreover, their activity can be significantly increased by chemical modifications. Anticancer effects of polysaccharides can be expressed indirectly (immunostimulation) or directly (cell proliferation inhibition and/or apoptosis induction). Among the wide range of polysaccharides with documented anticancer properties, lentinan, polysaccharide-K (PSK) and schizophyllan deserve special attention. These polysaccharides for many years have been successfully applied in cancer treatment and their mechanism of action is the best known. PMID:23788896

  8. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class

    PubMed Central

    Rzeski, Wojciech

    2012-01-01

    Basidiomycete mushrooms represent a valuable source of biologically active compounds with anticancer properties. This feature is primarily attributed to polysaccharides and their derivatives. The anticancer potential of polysaccharides is linked to their origin, composition and chemical structure, solubility and method of isolation. Moreover, their activity can be significantly increased by chemical modifications. Anticancer effects of polysaccharides can be expressed indirectly (immunostimulation) or directly (cell proliferation inhibition and/or apoptosis induction). Among the wide range of polysaccharides with documented anticancer properties, lentinan, polysaccharide-K (PSK) and schizophyllan deserve special attention. These polysaccharides for many years have been successfully applied in cancer treatment and their mechanism of action is the best known. PMID:23788896

  9. Sequence determination of synthesized chondroitin sulfate dodecasaccharides.

    PubMed

    Shioiri, Tatsumasa; Tsuchimoto, Jun; Watanabe, Hideto; Sugiura, Nobuo

    2016-06-01

    Chondroitin sulfate (CS) is a linear acidic polysaccharide composed of repeating disaccharide units of glucuronic acid and N-acetyl-d-galactosamine. The polysaccharide is modified with sulfate groups at different positions by a variety of sulfotransferases. CS chains exhibit various biological and pathological functions by interacting with cytokines and growth factors and regulating their signal transduction. The fine structure of the CS chain defines its specific biological roles. However, structural analysis of CS has been restricted to disaccharide analysis, hampering the understanding of the structure-function relationship of CS chains. Here, we chemo-enzymatically synthesized CS dodecasaccharides having various sulfate modifications using a bioreactor system of bacterial chondroitin polymerase mutants and various CS sulfotransferases. We developed a sequencing method for CS chains using the CS dodecasaccharides. The method consists of (i) labeling a reducing end with 2-aminopyridine (PA), (ii) partial digestion of CS with testicular hyaluronidase, followed by separation of PA-conjugated oligosaccharides with different chain lengths, (iii) limited digestion of these oligosaccharides with chondroitin lyase AC II into disaccharides, followed by labeling with 2-aminobenzamide, (iv) CS disaccharide analysis using a dual-fluorescence HPLC system (reversed-phase ion-pair and ion-exchange chromatography), and (v) estimation of the composition by calculating individual disaccharide ratios. This CS chain sequencing allows characterization of CS-modifying enzymes and provides a useful tool toward understanding the structure-function relationship of CS chains. PMID:26791444

  10. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling.

    PubMed

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2014-02-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates. PMID:24253764

  11. Chemical modification and antioxidant activities of polysaccharide from mushroom Inonotus obliquus.

    PubMed

    Ma, Lishuai; Chen, Haixia; Zhang, Yu; Zhang, Ning; Fu, Lingling

    2012-06-20

    Chemical modification polysaccharides exerted potent biological property which was related to the physicochemical properties. In the present study, polysaccharides from Inonotus obliquus were modified by suflation, acetylation and carboxymethylation. The physicochemical and antioxidant properties of I. obliquus polysaccharide (IOPS) and its derivatives were comparatively investigated by chemical methods, gas chromatography, size exclusion chromatography, scanning electron micrograph, infrared spectra and circular dichroism spectra, and ferric reducing power assay and lipid peroxidation inhibition assay, respectively. Results showed that physicochemical and antioxidant properties of IOPS were differed each other after the chemical modification of suflation, acetylation and carboxymethylation. Among the three derivatives, acetylationed polysaccharide (Ac-IOPS) resulted in lower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, higher antioxidant abilities on ferric-reducing power and lipid peroxidation inhibition activity compared with the native polysaccharide IOPS. Ac-IOPS might be explored as a novel potential antioxidant for human consumption. PMID:24750732

  12. Physical modifications of polysaccharide from Inonotus obliquus and the antioxidant properties.

    PubMed

    Zhang, Ning; Chen, Haixia; Ma, Lishuai; Zhang, Yu

    2013-03-01

    Physical modification of polysaccharides exerted better biological properties because of the change of physicochemical properties. Polysaccharides from Inonotus obliquus (IOPS) were modified by acid, alkali hydrolysis, thermal and ultrasonic treatment in this study. The physicochemical and antioxidant properties of IOPS and its physical modified products were comparatively investigated by chemical methods, gas chromatography, size exclusion chromatography, scanning electron micrograph, circular dichroism spectra, and ferric reducing power assay and lipid peroxidation inhibition assay, respectively. Results showed that physicochemical and antioxidant properties of IOPS were changed after the physical modification of acid, alkali hydrolysis, thermal and ultrasonic treatment. Thermal treated polysaccharide (Th-IOPS) and ultrasonic treated polysaccharide (Ul-IOPS) showed the properties of lower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, and higher antioxidant abilities on ferric-reducing power and lipid peroxidation inhibition activity compared with the native polysaccharide IOPS. Th-IOPS and Ul-IOPS might be explored as a novel potential antioxidant for food industry. PMID:23270834

  13. Heparin and LPS-induced COX-2 expression in airway cells: a link between its anti-inflammatory effects and GAG sulfation

    PubMed Central

    Yi, Na Young; Newman, Donna R.; Zhang, Huiying; Johansson, Helena Morales; Sannes, Philip L.

    2016-01-01

    Purpose/Aim Previous studies have indicated that the sulfated polysaccharide heparin has anti-inflammatory effects. However, the mechanistic basis for these effects has not been fully elucidated. Materials and Methods NCI-H292 (mucoepidermoid) and HBE-1 (normal) human bronchial epithelial cells were treated with LPS alone or in the presence of high-molecular-weight (HMW) fully-sulfated heparin or desulfated HMW heparin. Cells were harvested to examine the phosphorylation levels of ERK1/2, p38, and NF-κB p65 and COX-2 protein expression by Western blot and gene expression of both COX-2 and CXCL-8 by TaqMan qRT-PCR. Results Heparin is known to exert an influence on receptor-mediated signaling through its ability to both potentiate and inhibit the receptor-ligand interaction, depending upon its concentration. In H292 cells, fully-sulfated HMW heparin significantly reduced LPS-induced gene expression of both COX-2 and CXCL-8 for up to 48 hours, while desulfated heparin had little to no significant suppressive effect on signaling or on COX-2 gene or protein expression. Desulfated heparin, initially effective at preventing LPS-induced CXCL8 up-regulation, reduced CXCL8 transcription at 24 hours. In contrast, in normal HBE-1 cells, fully-sulfated heparin significantly suppressed only ERK signaling, COX-2 gene expression at 12 hours, and CXCL-8 gene expression at 6 and 12 hours, while desulfated heparin had no significant effects on LPS-stimulated signaling or on gene or protein expression. Sulfation determines heparin’s influence and may reflect the moderating role of GAG sulfation in lung injury and health. Conclusions Heparin’s anti-inflammatory effects result from its non-specific suppression of signaling and gene expression and are determined by its sulfation. PMID:26495958

  14. Amine treatment of polysaccharide solution

    SciTech Connect

    Shay, L. K.; Reiter, S. E.

    1984-11-27

    A thermostable, viscous xanthan polysaccharide solution prepared by the process of heating a xanthan polysaccharide solution in the presence of at least one C/sub 1/ to C/sub 10/ alkyl or C/sub 3/ to C/sub 10/ cycloalkyl substituted primary or secondary mono- or diamine having an upper limit of a total of 15 carbon atoms under conditions sufficient to form a thermostable, viscous xanthan polysaccharide solution. The thermostable, viscous xanthan polysaccharide solution may be used as a mobility buffer in a process for the enhanced recovery of oil.

  15. Quinone cross-linked polysaccharide hybrid fiber.

    PubMed

    Kuboe, Yoshiko; Tonegawa, Hitomi; Ohkawa, Kousaku; Yamamoto, Hiroyuki

    2004-01-01

    The present article describes the synthesis of the N-(Lys-Gly-Tyr-Gly)-chitosan using the water-soluble active ester method, the preparation of the N-(Lys-Gly-Tyr-Gly)-chitosan-gellan hybrid fibers, and the reinforcement of the hybrid fibers by enzymatic cross-linking between the N-grafted peptides chains of chitosan. The cationic polysaccharide chitosan was treated with Boc-Lys(Z)-Gly-Tyr(Bzl)-Gly (4-hydroxyphenyl)dimethylsulfonium methyl sulfate ester in DMF-0.15 M acetic acid to incorporate the peptides into the side chain amino groups of chitosan followed by the acidic removals of the Z and Bzl groups. The degrees of N substitution were estimated to be 2.0 and 10 molar % by changing the molar ratios of the amino groups of the parent chitosan and the active ester. The resulting cationic N-(Lys-Gly-Tyr-Gly)-chitosan was spun into the hybrid fibers with the anionic polysaccharide gellan in water. The tensile strengths of the N-(Lys-Gly-Tyr-Gly)-chitosan hybrid fibers were superior to those of the original chitosan-gellan fibers. The mechanical strengths of the hybrid fibers further increased upon enzymatic oxidation using tyrosinase. Based on these results, we concluded that the covalent cross-linking due to the enzyme oxidation between the grafted peptides significantly contributed to reinforcement of the polysaccharide hybrid fibers. The present results afford a new methodology for the reinforcement achieved by the polymer modification inspired by a biological process. PMID:15002994

  16. Xylanase inhibitors bind to nonstarch polysaccharides.

    PubMed

    Fierens, Ellen; Gebruers, Kurt; Courtin, Christophe M; Delcour, Jan A

    2008-01-23

    This study is an in-depth investigation of the interaction between polysaccharides and the proteinaceous xylanase inhibitors, Triticum aestivum xylanase inhibitor (TAXI), xylanase inhibitor protein (XIP), and thaumatin-like xylanase inhibitor (TLXI). The binding affinities of all three known types of xylanase inhibitors from wheat are studied by measuring the residual xylanase inhibition activity after incubation of the inhibitors in the presence of different polysaccharides, such as beta-glucans and (arabino)xylans. The binding affinities of all three xylanase inhibitors for (arabino)xylans increased with a decreasing arabinose/xylose ratio (A/X ratio). This phenomenon was observed both with water-extractable and water-unextractable (arabino)xylans. The inhibitors also interacted with different soluble and insoluble beta-glucans. None of the inhibitors tested had the ability to hydrolyze the polysaccharides investigated. The present findings contribute to the unraveling of the function of xylanase inhibitors in nature and to the prediction of the effect of added xylanases in cereal-based biotechnological processes, such as bread making and gluten-starch separation. PMID:18092758

  17. Sulfated Galactofucan from the Brown Alga Saccharina latissima—Variability of Yield, Structural Composition and Bioactivity

    PubMed Central

    Ehrig, Karina; Alban, Susanne

    2014-01-01

    The fucose-containing sulfated polysaccharides (SP) from brown algae exhibit a wide range of bioactivities and are, therefore, considered promising candidates for health-supporting and medicinal applications. A critical issue is their availability in high, reproducible quality. The aim of the present study was to fractionate and characterize the SP extracted from Saccharina latissima (S.l.-SP) harvested from two marine habitats, the Baltic Sea and North Atlantic Ocean, in May, June and September. The fractionation of crude S.l.-SP by anion exchange chromatography including analytical investigations revealed that S.l.-SP is composed of a homogeneous fraction of sulfated galactofucan (SGF) and a mixture of low-sulfated, uronic acid and protein containing heteropolysaccharides. Furthermore, the results indicated that S.l. growing at an intertidal zone with high salinity harvested at the end of the growing period delivered the highest yield of S.l.-SP with SGF as the main fraction (67%). Its SGF had the highest degree of sulfation (0.81), fucose content (86.1%) and fucose/galactose ratio (7.8) and was most active (e.g., elastase inhibition: IC50 0.21 μg/mL). Thus, S.l. from the North Atlantic harvested in autumn proved to be more appropriate for the isolation of S.l.-SP than S.l. from the Baltic Sea and S.l. harvested in spring, respectively. In conclusion, this study demonstrated that habitat and harvest time of brown algae should be considered as factors influencing the yield as well as the composition and thus also the bioactivity of their SP. PMID:25548975

  18. Dead Nano-Sized Lactobacillus plantarum Inhibits Azoxymethane/Dextran Sulfate Sodium-Induced Colon Cancer in Balb/c Mice.

    PubMed

    Lee, Hyun Ah; Kim, Hyunung; Lee, Kwang-Won; Park, Kun-Young

    2015-12-01

    The chemopreventive effects of dead nano-sized Lactobacillus plantarum (nLp) on colon carcinogenesis, induced by dextran sulfate sodium and azoxymethane, were evaluated using Balb/c mice and compared with the effects of pure live L. plantarum (pLp). nLp is a dead shrunken form of L. plantarum derived from kimchi and has a particle size of 0.5-1.0 μm. Animals fed nLp showed less weight loss, longer colons, lower colon weight/length ratios, and fewer colonic tumors compared with pLp. In addition, the administration of nLp significantly reduced the expression of inflammatory markers, mediated the expression of cell cycle and apoptotic markers in colon tissues, and elevated fecal IgA levels more than pLp. Accordingly, the present study shows that the anticolorectal cancer activities of nLp are greater than those of pLp and suggests this is due to the suppression of inflammation, the induction of cell cycle arrest and apoptosis, and enhanced IgA secretion. PMID:26595186

  19. Iodine-Catalyzed Polysaccharide Esterification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review is provided of the recent reports to use iodine-catalyzed esterification reaction to produce esters from polysaccharides. The process entails reaction of the polysaccharide with an acid anhydride in the presence of a catalytic level of iodine, and in the absence of additional solvents. T...

  20. Polysaccharides of Type 6 Klebsiella

    PubMed Central

    Gormus, B. J.; Wheat, R. W.

    1971-01-01

    Water-extractable type 6 Klebsiella antigens were separated into a type 6-specific acidic polysaccharide and a neutral polysaccharide. The neutral polymer was devoid of type 6 activity although it was serologically active. The type 6-specific polymer contained fucose, glucose, and mannose, and pyruvic, galacturonic, and possibly glucuronic acids. The neutral polymer contained glucose, galactose, and mannose. PMID:5003178

  1. mTOR Inhibition Attenuates Dextran Sulfate Sodium-Induced Colitis by Suppressing T Cell Proliferation and Balancing TH1/TH17/Treg Profile

    PubMed Central

    Wang, Yilin; Wang, Zhengting; Pei, Yaofei; Fan, Rong; Liu, Xiqiang; Wang, Lei; Zhou, Jie; Zheng, Sichang; Zhang, Tianyu; Lin, Yun; Zhang, Maochen; Tao, Ran; Zhong, Jie

    2016-01-01

    It has been established that mammalian target of Rapamycin (mTOR) inhibitors have anti-inflammatory effects in models of experimental colitis. However, the underlying mechanism is largely unknown. In this research, we investigate the anti-inflammatory effects of AZD8055, a potent mTOR inhibitor, on T cell response in dextran sulfate sodium (DSS)-induced colitis in mice, a commonly used animal model of inflammatory bowel diseases (IBD). Severity of colitis is evaluated by changing of body weight, bloody stool, fecal consistency, histology evaluation and cytokine expression. We find that AZD8055 treatment attenuates DSS-induced body weight loss, colon length shortening and pathological damage of the colon. And AZD8055 treatment decreases colonic expression of genes encoding the pro-inflammatory cytokines interferon-γ, interleukin (IL)-17A, IL-1β,IL-6 and tumor necrosis factor(TNF)-a and increases colonic expression of anti-inflammatory cytokines IL-10. We show that AZD8055 treatment decreases the percentages of CD4+ T cells and CD8+ T cells in spleen, lymph nodes and peripheral blood of mice. We also find that AZD8055 treatment significantly reduces the number of T helper 1(TH1) cells and TH17 cells and increases regulatory T (Treg) cells in the lamina propria and mesenteric lymph nodes. Furthermore, we demonstrates that AZD8055 suppresses the proliferation of CD4+ and CD8+ T cells and the differentiation of TH1/TH17 cells and expands Treg cells in vitro. The results suggest that, in experimental colitis, AZD8055 exerts anti-inflammatory effect by regulating T helper cell polarization and proliferation. PMID:27128484

  2. Inhibition of hydrogen sulfide, methane, and total gas production and sulfate-reducing bacteria in in vitro swine manure by tannins, with focus on condensed quebracho tannins.

    PubMed

    Whitehead, Terence R; Spence, Cheryl; Cotta, Michael A

    2013-09-01

    Management practices from large-scale swine production facilities have resulted in the increased collection and storage of manure for off-season fertilization use. Odor and emissions produced during storage have increased the tension among rural neighbors and among urban and rural residents. Production of these compounds from stored manure is the result of microbial activity of the anaerobic bacteria populations during storage. In the current study, the inhibitory effects of condensed quebracho tannins on in vitro swine manure for reduction of microbial activity and reduced production of gaseous emissions, including the toxic odorant hydrogen sulfide produced by sulfate-reducing bacteria (SRB), was examined. Swine manure was collected from a local swine facility, diluted in anaerobic buffer, and mixed with 1 % w/v fresh feces. This slurry was combined with quebracho tannins, and total gas and hydrogen sulfide production was monitored over time. Aliquots were removed periodically for isolation of DNA to measure the SRB populations using quantitative PCR. Addition of tannins reduced overall gas, hydrogen sulfide, and methane production by greater than 90 % after 7 days of treatment and continued to at least 28 days. SRB population was also significantly decreased by tannin addition. qRT-PCR of 16S rDNA bacteria genes showed that the total bacterial population was also decreased in these incubations. These results indicate that the tannins elicited a collective effect on the bacterial population and also suggest a reduction in the population of methanogenic microorganisms as demonstrated by reduced methane production in these experiments. Such a generalized effect could be extrapolated to a reduction in other odor-associated emissions during manure storage. PMID:23149758

  3. Functional Exploration of the Polysaccharide Lyase Family PL6

    PubMed Central

    Mathieu, Sophie; Henrissat, Bernard; Labre, Flavien; Skjåk-Bræk, Gudmund; Helbert, William

    2016-01-01

    Alginate, the main cell-wall polysaccharide of brown algae, is composed of two residues: mannuronic acid (M-residues) and, its C5-epimer, guluronic acid (G-residues). Alginate lyases define a class of enzymes that cleave the glycosidic bond of alginate by β-elimination. They are classified according to their ability to recognize the distribution of M- and G-residues and are named M-, G- or MG-lyases. In the CAZy database, alginate lyases have been grouped by sequence similarity into seven distinct polysaccharide lyase families. The polysaccharide lyase family PL6 is subdivided into three subfamilies. Subfamily PL6_1 includes three biochemically characterized enzymes (two alginate lyases and one dermatan sulfatase lyase). No characterized enzymes have been described in the two other subfamilies (PL6_2 and PL6_3). To improve the prediction of polysaccharide-lyase activity in the PL6 family, we re-examined the classification of the PL6 family and biochemically characterized a set of enzymes reflecting the diversity of the protein sequences. Our results show that subfamily PL6_1 includes two dermatan sulfates lyases and several alginate lyases that have various substrate specificities and modes of action. In contrast, subfamilies PL6_2 and PL6_3 were found to contain only endo-poly-MG-lyases. PMID:27438604

  4. Comparative evaluation of polysaccharides isolated from Astragalus, oyster mushroom, and yacon as inhibitors of α-glucosidase.

    PubMed

    Zhu, Zhen-Yuan; Zhang, Jing-Yi; Chen, Li-Jing; Liu, Xiao-Cui; Liu, Yang; Wang, Wan-Xiao; Zhang, Yong-Min

    2014-04-01

    The incidence of diabetes has increased considerably, and become the third serious chronic disease following cancer and cardiovascular diseases. Though acarbose, metformin, and 1-deoxynojirimycin have good efficacy for clinical application as hypoglycemic drugs, their expensive costs and some degree of side effects have limited their clinical application. Recently, increasing attention has concentrated on the polysaccharides from natural plant and animal sources for diabetes. In order to illustrate the pharmaceutical activity of polysaccharides as natural hypoglycemic agents, polysaccharides isolated from Astragalus, oyster mushroom, and Yacon were evaluated for their inhibitory effects on α-glucosidase. Polysaccharides were extracted and purified from Astragalus, Oyster mushroom, and Yacon with hot water at 90 °C for 3 h, respectively. The total sugar content of the polysaccharide was determined by the phenol-sulfuric acid method. The α-glucosidase inhibitory activity was measured by the glucose oxidase method. The results exhibited that the inhibitory effects on α-glucosidase were in decreasing order, Astragalus > oyster mushroom > Yacon. The α-glucosidase inhibition percentage of Astragalus polysaccharide and oyster mushroom polysaccharide were over 40% at the polysaccharide concentration of 0.4 mg·mL(-1). The IC50 of Astragalus polysaccharide and oyster mushroom polysaccharide were 0.28 and 0.424 mg·mL(-1), respectively. The information obtained from this work is beneficial for the use polysaccharides as a dietary supplement for health foods and therapeutics for diabetes. PMID:24863354

  5. Matrix polyelectrolyte capsules based on polysaccharide/MnCO₃ hybrid microparticle templates.

    PubMed

    Wei, Qingrong; Ai, Hua; Gu, Zhongwei

    2011-06-15

    An efficient strategy for biomacromolecule encapsulation based on spontaneous deposition into polysaccharide matrix-containing capsules is introduced in this study. First, hybrid microparticles composed of manganese carbonate and ionic polysaccharides including sodium hyaluronate (HA), sodium alginate (SA) and dextran sulfate sodium (DS) with narrow size distribution were synthesized to provide monodisperse templates. Incorporation of polysaccharide into the hybrid templates was successful as verified by thermogravimetric analysis (TGA) and confocal laser scanning microscopy (CLSM). Matrix polyelectrolyte microcapsules were fabricated through layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes (PEs) onto the hybrid particles, followed by removal of the inorganic part of the cores, leaving polysaccharide matrix inside the capsules. The loading and release properties of the matrix microcapsules were investigated using myoglobin as a model biomacromolecule. Compared to matrix-free capsules, the matrix capsules had a much higher loading capacity up to four times; the driving force is mostly due to electrostatic interactions between myoglobin and the polysaccharide matrix. From our observations, for the same kind of polysaccharide, a higher amount of polysaccharide inside the capsules usually led to better loading capacity. The release behavior of the loaded myoglobin could be readily controlled by altering the environmental pH. These matrix microcapsules may be used as efficient delivery systems for various charged water-soluble macromolecules with applications in biomedical fields. PMID:21130616

  6. Keratan Sulfate Biosynthesis

    PubMed Central

    Funderburgh, James L.

    2010-01-01

    Summary Keratan sulfate was originally identified as the major glycosaminoglycan of cornea but is now known to modify at least a dozen different proteins in a wide variety of tissues. Despite a large body of research documenting keratan sulfate structure, and an increasing interest in the biological functions of keratan sulfate, until recently little was known of the specific enzymes involved in keratan sulfate biosynthesis or of the molecular mechanisms that control keratan sulfate expression. In the last 2 years, however, marked progress has been achieved in identification of genes involved in keratan sulfate biosynthesis and in development of experimental conditions to study keratan sulfate secretion and control in vitro. This review summarizes current understanding of keratan sulfate structure and recent developments in understanding keratan sulfate biosynthesis. PMID:12512857

  7. Why Were Polysaccharides Necessary?

    NASA Astrophysics Data System (ADS)

    Tolstoguzov, Vladimir

    2004-12-01

    The main idea of this paper is that the primordial soup may be modelled by food systems whose structure-property relationship is based on non-specific interactions between denatured biopolymers. According to the proposed hypothesis, polysaccharides were the first biopolymers that decreased concentration of salts in the primordial soup, `compatibilised' and drove the joint evolution of proto-biopolymers. Synthesis of macromolecules within the polysaccharide-rich medium could have resulted in phase separation of the primordial soup and concentration of the polypeptides and nucleic acids in the dispersed phase particles. The concentration of proto-biopolymer mixtures favoured their cross-linking in hybrid supermacromolecules of conjugates. The cross-linking of proto-biopolymers could occur by hydrophobic, electrostatic interactions, H-bonds due to freezing aqueous mixed biopolymer dispersions and/or by covalent bonds due to the Maillard reaction. Cross-linking could have increased the local concentration of chemically different proto-biopolymers, fixed their relative positions and made their interactions reproducible. Attractive-repulsive interactions between cross-linked proto-biopolymer chains could develop pairing of the monomer units, improved chemical stability (against hydrolysis) and led to their mutual catalytic activity and coding. Conjugates could probably evolve to the first self-reproduced entities and then to specialized cellular organelles. Phase separation of the primordial soup with concentration of conjugates in the dispersed particles has probably resulted in proto-cells.

  8. Polysaccharides and bacterial plugging

    SciTech Connect

    Fogler, H.S.

    1991-11-01

    Before any successful application of Microbial Enhanced Oil Recovery process can be realized, an understanding of the cells' transport and retentive mechanisms in porous media is needed. Cell transport differs from particle transport in their ability to produce polysaccharides, which are used by cells to adhere to surfaces. Cell injection experiments have been conducted using Leuconostoc cells to illustrate the importance of cellular polysaccharide production as a transport mechanism that hinders cell movement and plugs porous media. Kinetic studies of the Leuconostoc cells, carried out to further understand the plugging rates of porous media, have shown that the cells' growth rates are approximately equal when provided with monosaccharide (glucose and fructose) or sucrose. The only difference in cell metabolism is the production of dextran when sucrose is supplied as a carbon source. Experimentally it has also been shown that the cells' growth rate is weakly dependent upon the sucrose concentration in the media, and strongly dependent upon the concentration of yeast extract. The synthesis of cellular dextran has been found to lag behind cell generation, thus indicating that the cells need to reach maturity before they are capable of expressing the detransucrase enzyme and synthesizing insoluble dextran. Dextran yields were found to be dependent upon the sucrose concentration in the media. 10 refs., 9 figs., 9 tabs.

  9. Modulating inhibitors of transthyretin fibrillogenesis via sulfation: polychlorinated biphenyl sulfates as models.

    PubMed

    Grimm, Fabian A; Lehmler, Hans-Joachim; He, Xianran; Robertson, Larry W; Duffel, Michael W

    2015-02-25

    Small molecules that bind with high affinity to thyroxine (T4) binding sites on transthyretin (TTR) kinetically stabilize the protein's tetrameric structure, thereby efficiently decreasing the rate of tetramer dissociation in TTR related amyloidoses. Current research efforts aim to optimize the amyloid inhibiting properties of known inhibitors, such as derivatives of biphenyls, dibenzofurans and benzooxazoles, by chemical modification. In order to test the hypothesis that sulfate group substituents can improve the efficiencies of such inhibitors, we evaluated the potential of six polychlorinated biphenyl sulfates to inhibit TTR amyloid fibril formation in vitro. In addition, we determined their binding orientations and molecular interactions within the T4 binding site by molecular docking simulations. Utilizing this combined experimental and computational approach, we demonstrated that sulfation significantly improves the amyloid inhibiting properties as compared to both parent and hydroxylated PCBs. Importantly, several PCB sulfates were of equal or higher potency than some of the most effective previously described inhibitors. PMID:25595224

  10. Modulating Inhibitors of Transthyretin Fibrillogenesis via Sulfation: Polychlorinated Biphenyl Sulfates as Models1

    PubMed Central

    Grimm, Fabian A.; Lehmler, Hans-Joachim; He, Xianran; Robertson, Larry W.; Duffel, Michael W.

    2015-01-01

    Small molecules that bind with high affinity to thyroxine (T4) binding sites on transthyretin (TTR) kinetically stabilize the protein’s tetrameric structure, thereby efficiently decreasing the rate of tetramer dissociation in TTR related amyloidoses. Current research efforts aim to optimize the amyloid inhibiting properties of known inhibitors, such as derivatives of biphenyls, dibenzofurans and benzooxazoles, by chemical modification. In order to test the hypothesis that sulfate group substituents can improve the efficiencies of such inhibitors, we evaluated the potential of six polychlorinated biphenyl sulfates to inhibit TTR amyloid fibril formation in vitro. In addition, we determined their binding orientations and molecular interactions within the T4 binding site by molecular docking simulations. Utilizing this combined experimental and computational approach, we demonstrated that sulfation significantly improves the amyloid inhibiting properties as compared to both parent and hydroxylated PCBs. Importantly, several PCB sulfates were of equal or higher potency than some of the most effective previously described inhibitors. PMID:25595224

  11. Engineering of routes to heparin and related polysaccharides

    PubMed Central

    Bhaskar, Ujjwal; Sterner, Eric; Hickey, Anne Marie; Onishi, Akihiro; Zhang, Fuming; Dordick, Jonathan S.; Linhardt, Robert J.

    2011-01-01

    Anticoagulant heparin has been shown to possess important biological functions that vary according to its fine structure. Variability within heparin's structure occurs owing to its biosynthesis and animal tissue-based recovery, and adds another dimension to its complex polymeric structure. The structural variations in chain length and sulfation patterns mediate its interaction with many heparin-binding proteins, thereby, eliciting complex biological responses. The advent of novel chemical and enzymatic approaches for polysaccharide synthesis coupled with high throughput combinatorial approaches for drug discovery have facilitated an increased effort to understand heparin's structure-activity relationships. An improved understanding would offer potential for new therapeutic development through the engineering of polysaccharides. Such a bioengineering approach requires the amalgamation of several different disciplines including carbohydrate synthesis, applied enzymology, metabolic engineering, and process biochemistry. PMID:22048616

  12. Cations modulate polysaccharide structure to determine FGF-FGFR signaling: a comparison of signaling and inhibitory polysaccharide interactions with FGF-1 in solution.

    PubMed

    Guimond, Scott E; Rudd, Timothy R; Skidmore, Mark A; Ori, Alessandro; Gaudesi, Davide; Cosentino, Cesare; Guerrini, Marco; Edge, Ruth; Collison, David; McInnes, Eric; Torri, Giangiacomo; Turnbull, Jeremy E; Fernig, David G; Yates, Edwin A

    2009-06-01

    For heparan sulfate (HS) to bind and regulate the activity of proteins, the polysaccharide must present an appropriate sequence and adopt a suitable conformation. The conformations of heparin derivatives, as models of HS, are altered via a change in the associated cations, and this can drastically modify their FGF signaling activities. Here, we report that changing the cations associated with an N-acetyl-enriched heparin polysaccharide, from sodium to copper(II), converted it from supporting signaling through the fibroblast growth factor receptor (FGF-1-FGFR1c) tyrosine kinase signaling system to being inhibitory in a cell-based BaF3 assay. Nuclear magnetic resonance and synchrotron radiation circular dichroism (SRCD) spectroscopy demonstrated that the polysaccharide conformation differed in the presence of sodium or copper(II) cations. Electron paramagnetic resonance confirmed the environment of the copper(II) ion on the N-acetyl-enriched polysaccharide was distinct from that previously observed with intact heparin, which supported signaling. Secondary structures in solution complexes of polysaccharides with FGF-1 (which either supported signaling through FGFR1c or were inhibitory) were determined by SRCD. This allowed direct comparison of the two FGF-1-polysaccharide complexes in solution, containing identical molecular components and differing only in their cation content. Subtle structural differences were revealed, including a reduction in the level of disordered structure in the inhibitory complex. PMID:19400583

  13. Anticoagulant and antithrombotic activities of low-molecular-weight propylene glycol alginate sodium sulfate (PSS).

    PubMed

    Xin, Meng; Ren, Li; Sun, Yang; Li, Hai-hua; Guan, Hua-Shi; He, Xiao-Xi; Li, Chun-Xia

    2016-05-23

    Propylene glycol alginate sodium sulfate (PSS), a sulfated polysaccharide derivative, has been used as a heparinoid drug to prevent and treat hyperlipidemia and ischemic cardio-cerebrovascular diseases in China for nearly 30 years. To extend the applications of PSS, a series of low-molecular-weight PSSs (named FPs) were prepared by oxidative-reductive depolymerization, and the antithrombotic activities were investigated thoroughly in vitro and in vivo. The bioactivity evaluation demonstrated a positive correlation between the molecular weight and the anticoagulant and antithrombotic activities of FPs. FPs could prolong the APTT and clotting time and reduce platelet aggregation significantly. FPs could also effectively inhibit factor IIa in the presence of AT-III and HC-II. FPs decreased the wet weights and lengths of the thrombus and increased occlusion times in vivo. FP-6k, a PSS fragment with a molecular weight of 6 kDa, is an optimal antithrombotic candidate for further study and showed little chance for hemorrhagic action. PMID:26974373

  14. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases.

    PubMed

    Frandsen, Kristian E H; Simmons, Thomas J; Dupree, Paul; Poulsen, Jens-Christian N; Hemsworth, Glyn R; Ciano, Luisa; Johnston, Esther M; Tovborg, Morten; Johansen, Katja S; von Freiesleben, Pernille; Marmuse, Laurence; Fort, Sébastien; Cottaz, Sylvain; Driguez, Hugues; Henrissat, Bernard; Lenfant, Nicolas; Tuna, Floriana; Baldansuren, Amgalanbaatar; Davies, Gideon J; Lo Leggio, Leila; Walton, Paul H

    2016-04-01

    Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery, LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here a structural determination of an LPMO-oligosaccharide complex, yielding detailed insights into the mechanism of action of these enzymes. Using a combination of structure and electron paramagnetic resonance spectroscopy, we reveal the means by which LPMOs interact with saccharide substrates. We further uncover electronic and structural features of the enzyme active site, showing how LPMOs orchestrate the reaction of oxygen with polysaccharide chains. PMID:26928935

  15. Investigation of chondroitin sulfate D and chondroitin sulfate E as novel chiral selectors in capillary electrophoresis.

    PubMed

    Zhang, Qi; Du, Yingxiang; Chen, Jiaquan; Xu, Guangfu; Yu, Tao; Hua, Xiaoyi; Zhang, Jinjing

    2014-02-01

    Various chiral selectors have been utilized successfully in capillary electrophoresis (CE); however, the number of polysaccharides used as chiral selectors is still small and the mechanism of enantiorecognition has not been fully elucidated. Chondroitin sulfate D (CSD) and chondroitin sulfate E (CSE), belonging to the group of glycosaminoglycans, are linear, sulfated polysaccharides with large mass. In this paper, they were investigated for the first time for their potential as chiral selectors by CE. The effect of buffer composition and pH, chiral selector concentration, and applied voltage were systematically examined and optimized. A variety of drug enantiomers were resolved in the buffer pH range of 2.8-3.4 using 20 mM Tris/H3PO4 buffer with 5.0 % CSD or CSE and 20 kV applied voltage. A central composite design was used to validate the optimized separation parameters and satisfactory uniformity was obtained. As observed, CSE allowed satisfactory separation of the enantiomers of amlodipine, laudanosine, nefopam, sulconazole, and tryptophan methyl ester, as well as partial resolution of citalopram, duloxetine, and propranolol under the optimized conditions. CSD allowed partial or nearly baseline separation of amlodipine, laudanosine, nefopam, and sulconazole. The results indicated that CSE has a better enantiorecognition capability than CSD toward the tested drugs. PMID:24363112

  16. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    PubMed Central

    Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations. PMID:26484353

  17. Production of chondroitin sulfate and chondroitin.

    PubMed

    Schiraldi, Chiara; Cimini, Donatella; De Rosa, Mario

    2010-07-01

    The production of microbial polysaccharides has recently gained much interest because of their potential biotechnological applications. Several pathogenic bacteria are known to produce capsular polysaccharides, which provide a protection barrier towards harsh environmental conditions, and towards host defences in case of invasive infections. These capsules are often composed of glycosaminoglycan-like polymers. Glycosaminoglycans are essential structural components of the mammalian extracellular matrix and they have several applications in the medical, veterinary, pharmaceutical and cosmetic field because of their peculiar properties. Most of the commercially available glycosaminoglycans have so far been extracted from animal sources, and therefore the structural similarity of microbial capsular polysaccharides to these biomolecules makes these bacteria ideal candidates as non-animal sources of glycosaminoglycan-derived products. One example is hyaluronic acid which was formerly extracted from hen crests, but is nowadays produced via Streptococci fermentations. On the other hand, no large scale biotechnological production processes for heparin and chondrotin sulfate have been developed. The larger demand of these biopolymers compared to hyaluronic acid (tons vs kilograms), due to the higher titre in the final product (grams vs milligrams/dose), and the scarce scientific effort have hampered the successful development of fermentative processes. In this paper we present an overview of the diverse applications and production methods of chondroitin reported so far in literature with a specific focus on novel microbial biotechnological approaches. PMID:20521042

  18. Acetate Production from Oil under Sulfate-Reducing Conditions in Bioreactors Injected with Sulfate and Nitrate

    PubMed Central

    Callbeck, Cameron M.; Agrawal, Akhil

    2013-01-01

    Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266–269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio, which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields. PMID:23770914

  19. Heparan sulfate and heparin interactions with proteins

    PubMed Central

    Meneghetti, Maria C. Z.; Hughes, Ashley J.; Rudd, Timothy R.; Nader, Helena B.; Powell, Andrew K.; Yates, Edwin A.; Lima, Marcelo A.

    2015-01-01

    Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissue-specific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro, ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them. The properties that have been thought to bestow protein binding and biological activity upon HS and heparin vary from high levels of sequence specificity to a dependence on charge. In contrast to these opposing opinions, we will argue that the evidence supports both a level of redundancy and a degree of selectivity in the structure–activity relationship. The relationship between this apparent redundancy, the multi-dentate nature of heparin and HS polysaccharide chains, their involvement in protein networks and the multiple binding sites on proteins, each possessing different properties, will also be considered. Finally, the role of cations in modulating HS/heparin activity will be reviewed and some of the implications for structure–activity relationships and regulation will be discussed. PMID:26289657

  20. Surface properties of polyurethanes modified by bioactive polysaccharide-based polyelectrolyte multilayers.

    PubMed

    Wang, Yifeng; Hong, Qunfeng; Chen, Yanjun; Lian, Xinxin; Xiong, Yanfei

    2012-12-01

    Lentinan, a mushroom polysaccharide, isolated from Lentinus edodes (Shiitake mushroom) was sulfated in dimethylsulfoxide to obtain a water-soluble derivative coded as LS. Then, two polysaccharide-based polyelectrolytes, polyanionic lentinan sulfate (LS) and polycationic chitosan (CS), were alternatively deposited onto the surfaces of polyurethane (PU) via layer-by-layer (LbL) assembly technique. The surfaces modified by polysaccharide-based multilayers were investigated by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurements. The fibrinogen adsorption and platelet adhesion to the surfaces, cytocompatibility to L-929 cells, and antibacterial activity against Pseudomonas aeruginosa of unmodified PU and LbL-modified PU were tested in vitro, respectively. The results showed that the water contact angle decreased gradually during the successive buildup of the polysaccharide-based multilayers, and decreased slowly after four bilayers were assembled. The surface roughness of PU modified by five bilayers (LS as topmost layer) increased compared with that of unmodified PU. The fibrinogen adsorption on the surface decreased 81% after assembly of five bilayers (LS as topmost layer). The number of adherent platelets on the surface modified by five bilayers (LS as topmost layer) is reduced, in comparison with that of the unmodified PU. The tests of L-929 cells indicated that LbL-modified PU surfaces had better cytocompatibility than unmodified PU. In addition, PU modified by polysaccharide-based multilayers showed antibacterial activity against P. aeruginosa. PMID:22771524

  1. Chemically sulfated natural galactomannans with specific antiviral and anticoagulant activities.

    PubMed

    Muschin, Tegshi; Budragchaa, Davaanyam; Kanamoto, Taisei; Nakashima, Hideki; Ichiyama, Koji; Yamamoto, Naoki; Shuqin, Han; Yoshida, Takashi

    2016-08-01

    Naturally occurring galactomannans were sulfated to give sulfated galactomannans with degrees of substitution of 0.7-1.4 per sugar unit and molecular weights of M¯n=0.6×10(4)-2.4×10(4). Sulfated galactomannans were found to have specific biological activities in vitro such as anticoagulant, anti-HIV and anti-Dengue virus activities. The biological activities were compared with those of standard dextran and curdlan sulfates, which are polysaccharides with potent antiviral activity and low cytotoxicity. It was found that sulfated galactomannans had moderate to high anticoagulant activity, 13.4-36.6unit/mg, compared to that of dextran and curdlan sulfates, 22.7 and 10.0unit/mg, and high anti-HIV and anti-Dengue virus activities, 0.04-0.8μg/mL and 0.2-1.1μg/mL, compared to those curdlan sulfates, 0.1μg/mL, respectively. The cytotoxicity on MT-4 and LCC-MK2 cells was low. Surface plasmon resonance (SPR) of sulfated galactomannans revealed strong interaction with poly-l-lysine as a model compound of virus proteins, and suggested that the specific biological activities might originate in the electrostatic interaction of negatively charged sulfate groups of sulfated galactomannans and positively charged amino groups of surface proteins of viruses. These results suggest that sulfated galactomannans effectively prevented the infection of cells by viruses and the degree of substitution and molecular weights played important roles in the biological activities. PMID:27154517

  2. Development of affinity-based delivery of NGF from a chondroitin sulfate biomaterial.

    PubMed

    Butterfield, Karen Chao; Conovaloff, Aaron W; Panitch, Alyssa

    2011-01-01

    Chondroitin sulfate is a major component of the extracellular matrix in both the central and peripheral nervous systems. Chondroitin sulfate is upregulated at injury, thus methods to promote neurite extension through chondroitin sulfate-rich matrices and synthetic scaffolds are needed. We describe the use of both chondroitin sulfate and a novel chondroitin sulfate-binding peptide to control the release of nerve growth factor. Interestingly, the novel chondroitin sulfate-binding peptide enhances the controlled release properties of the chondroitin sulfate gels. While introduction of chondroitin sulfate into a scaffold inhibits primary cortical outgrowth, the combination of chondroitin sulfate, chondroitin sulfate-binding peptide and nerve growth factor promotes primary cortical neurite outgrowth in chondroitin sulfate gels. PMID:23507746

  3. A threading receptor for polysaccharides.

    PubMed

    Mooibroek, Tiddo J; Casas-Solvas, Juan M; Harniman, Robert L; Renney, Charles M; Carter, Tom S; Crump, Matthew P; Davis, Anthony P

    2016-01-01

    Cellulose, chitin and related polysaccharides are key renewable sources of organic molecules and materials. However, poor solubility tends to hamper their exploitation. Synthetic receptors could aid dissolution provided they are capable of cooperative action, for example by multiple threading on a single polysaccharide molecule. Here we report a synthetic receptor designed to form threaded complexes (polypseudorotaxanes) with these natural polymers. The receptor binds fragments of the polysaccharides in aqueous solution with high affinities (K(a) up to 19,000 M(-1)), and is shown--by nuclear Overhauser effect spectroscopy--to adopt the threading geometry. Evidence from induced circular dichroism and atomic force microscopy implies that the receptor also forms polypseudorotaxanes with cellulose and its polycationic analogue chitosan. The results hold promise for polysaccharide solubilization under mild conditions, as well as for new approaches to the design of biologically active molecules. PMID:26673266

  4. A threading receptor for polysaccharides

    NASA Astrophysics Data System (ADS)

    Mooibroek, Tiddo J.; Casas-Solvas, Juan M.; Harniman, Robert L.; Renney, Charles M.; Carter, Tom S.; Crump, Matthew P.; Davis, Anthony P.

    2016-01-01

    Cellulose, chitin and related polysaccharides are key renewable sources of organic molecules and materials. However, poor solubility tends to hamper their exploitation. Synthetic receptors could aid dissolution provided they are capable of cooperative action, for example by multiple threading on a single polysaccharide molecule. Here we report a synthetic receptor designed to form threaded complexes (polypseudorotaxanes) with these natural polymers. The receptor binds fragments of the polysaccharides in aqueous solution with high affinities (Ka up to 19,000 M-1), and is shown—by nuclear Overhauser effect spectroscopy—to adopt the threading geometry. Evidence from induced circular dichroism and atomic force microscopy implies that the receptor also forms polypseudorotaxanes with cellulose and its polycationic analogue chitosan. The results hold promise for polysaccharide solubilization under mild conditions, as well as for new approaches to the design of biologically active molecules.

  5. Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii.

    PubMed Central

    Holmes, A R; Gopal, P K; Jenkinson, H F

    1995-01-01

    Candida albicans ATCC 10261 and CA2 bound to cells of the oral bacteria Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguis when these bacteria were immobilized onto microtiter plate wells, but they did not bind to cells of Streptococcus mutans or Streptococcus salivarius. Cell wall polysaccharide was extracted with alkali from S. gordonii NCTC 7869, the streptococcal species to which C. albicans bound with highest affinity, and was effective in blocking the coaggregation of C. albicans and S. gordonii cells in the fluid phase. When fixed to microtiter plate wells, the S. gordonii polysaccharide was bound by all strains of C. albicans tested. The polysaccharide contained Rha, Glc, GalNAc, GlcNAc, and Gal and was related compositionally to previously characterized cell wall polysaccharides from strains of S. oralis and S. sanguis. The adherence of yeast cells to the immobilized polysaccharide was not inhibitable by a number of saccharides. Antiserum raised to the S. gordonii NCTC 7869 polysaccharide blocked adherence of C. albicans ATCC 10261 to the polysaccharide. The results identify a complex cell wall polysaccharide of S. gordonii as the coaggregation receptor for C. albicans. Adherent interactions of yeast cells with streptococci and other bacteria may be important for colonization of both hard and soft oral surfaces by C. albicans. PMID:7729891

  6. Computer simulation and experimental study of the polysaccharide-polysaccharide interaction in the bacteria Azospirillum brasilense Sp245

    NASA Astrophysics Data System (ADS)

    Arefeva, Oksana A.; Kuznetsov, Pavel E.; Tolmachev, Sergey A.; Kupadze, Machammad S.; Khlebtsov, Boris N.; Rogacheva, Svetlana M.

    2003-09-01

    We have studied the conformational properties and molecular dynamics of polysaccharides by using molecular modeling methods. Theoretical and experimental results of polysaccharide-polysaccharide interactions are described.

  7. Finely dispersed single-walled carbon nanotubes for polysaccharide hydrogels.

    PubMed

    Yan, Liang Yu; Chen, Hailan; Li, Peng; Kim, Dong-Hwan; Chan-Park, Mary B

    2012-09-26

    Here we demonstrate a polysaccharide hydrogel reinforced with finely dispersed single-walled carbon nanotubes (SWNTs) using biocompatible dispersants O-carboxymethylchitosan (OC) and chondroitin sulfate A (CS-A) as a structural support. Both of the dispersants can disperse SWNTs in aqueous solutions and hydrogel matrix as individual tubes or small bundles. Additionally, we have found that compressive modulus and strain of the hydrogels reinforced with SWNTs were enhanced as much as two times by the addition of a few weight percent of SWNTs. Moreover, the SWNT-incorporated hydrogels exhibited lower impedance and higher charge capacity than the alginate/dispersant hydrogel without SWNTs. The OC and the CS-A demonstrated much higher reinforcing enhancement than a commercially available dispersant, sodium dodecyl sulfate. Combined with the experimental data on the mechanical and electrical properties, the biocompatibility of OC and CS-A can provide the possibility of biomedical application of the SWNT-reinforced hydrogels. PMID:22909447

  8. Translocation of Sulfate in Soybean (Glycine max L. Merr) 1

    PubMed Central

    Smith, Ivan K.; Lang, A. Lee

    1988-01-01

    Sulfate translocation in soybean (Glycine max L. Merr) was investigated. More than 90% of the sulfate entering the shoot system was recoverable in one or two developing trifoliate leaves. In young plants, the first trifoliate leaf contained between 10 to 20 times as much sulfate as the primary leaves, even though both types of leaf had similar rates of transpiration and photosynthesis. We conclude that most of the sulfate entering mature leaves is rapidly loaded into the phloem and translocated to sinks elsewhere in the plant. This loading was inhibited by carbonylcyanide m-chlorophenylhydrazone and selenate. At sulfate concentrations below 0.1 millimolar, more than 95% of the sulfate entering primary leaves was exported. At higher concentrations the rate of export increased but so did the amount of sulfate remaining in the leaves. Removal of the first trifoliate leaf increased two-fold the transport of sulfate to the apex, indicating that these are competing sinks for sulfate translocated from the primary leaves. The small amount of sulfate transported into the mesophyll cells of primary leaves is a result of feedback regulation by the intracellular sulfate pool, not a consequence of their metabolic inactivity. For example, treatment of plants with 2 millimolar aminotriazole caused a 700 nanomoles per gram fresh weight increase in the glutathione content of primary leaves, but had no effect on sulfate aquisition. PMID:16665991

  9. Antimicrosporidian activity of sulphated polysaccharides from algae and their potential to control honeybee nosemosis.

    PubMed

    Roussel, M; Villay, A; Delbac, F; Michaud, P; Laroche, C; Roriz, D; El Alaoui, H; Diogon, M

    2015-11-20

    Nosemosis is one of the most common and widespread diseases of adult honeybees. The causative agents, Nosema apis and Nosema ceranae, belong to microsporidia some obligate intracellular eukaryotic parasites. In this study, 10 sulphated polysaccharides from algae were evaluated for their antimicrosporidian activity. They were first shown to inhibit the in vitro growth of the mammal microsporidian model, Encephalitozoon cuniculi. The most efficient polysaccharides were then tested for their ability to inhibit the growth of Nosema ceranae in experimentally-infected adult honeybees. Two polysaccharides extracted from Porphyridium spp. did not show any toxicity in honeybees and one of them allowed a decrease of both parasite load and mortality rate due to N. ceranae infection. A decrease in parasite abundance but not in mortality rate was also observed with an iota carrageenan. Our results are promising and suggest that algal sulphated polysaccharides could be used to prevent and/or control bee nosemosis. PMID:26344274

  10. Heparin and related polysaccharides: Synthesis using recombinant enzymes and metabolic engineering

    PubMed Central

    Suflita, Matthew; Fu, Li; He, Wenqin; Koffas, Mattheos; Linhardt, Robert J.

    2015-01-01

    Glycosaminoglycans are linear anionic polysaccharides that exhibit a number of important biological and pharmacological activities. The two most prominent members of this class of polysaccharides are heparin/heparan sulfate and the chondroitin sulfates (including dermatan sulfate). These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of most animal cells. The chemical synthesis of these glycosaminoglycans is precluded by their structural complexity. Today, we depend on food animal tissues for their isolation and commercial production. Ton quantities of these glycosaminoglycans are used annually as pharmaceuticals and nutraceuticals. The variability of animal-sourced glycosaminoglycans, their inherent impurities, the limited availability of source tissues, the poor control of these source materials, and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans. This mini-review focuses on the use of recombinant enzymes and metabolic engineering for the production of heparin and chondroitin sulfates. PMID:26219501

  11. Benzene oxidation coupled to sulfate reduction

    USGS Publications Warehouse

    Lovley, D.R.; Coates, J.D.; Woodward, J.C.; Phillips, E.J.P.

    1995-01-01

    Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to I ??M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [14C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as 14CO2. Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of 14CO2 from [14C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [14C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O2, with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation.

  12. Sulfated heterorhamnans from the green seaweed Gayralia oxysperma: partial depolymerization, chemical structure and antitumor activity.

    PubMed

    Ropellato, Juliana; Carvalho, Mariana M; Ferreira, Luciana G; Noseda, Miguel D; Zuconelli, Cristiane R; Gonçalves, Alan G; Ducatti, Diogo R B; Kenski, Juliana C N; Nasato, Pauline L; Winnischofer, Sheila M B; Duarte, Maria E R

    2015-03-01

    Sulfated heterorhamnans produced by Gayralia oxysperma were utilized for the preparation of two homogeneous and highly sulfated Smith-degraded products (M(w) of 109 and 251 kDa), which were constituted principally by 3-linked α-L-rhamnosyl units 2- or 4-sulfate and 2-linked α-L-rhamnosyl units 4- or 3,4-sulfate, in different percentages. The homogeneous products and the crude extracts containing the sulfated heterorhamnans showed cytotoxic effect against U87MG cells. These sulfated polysaccharides induced an increase in the number of cells in G1 phase with concomitant increase of the mRNA levels of p53 and p21. The presence of 2-linked disulfated rhamnose residues together with the molecular weight could be important factors to be correlated with the inhibitory effect on human glioblastoma cells. PMID:25498661

  13. Biochemical And Genetic Modification Of Polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.

    1993-01-01

    Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.

  14. Sulfate in fetal development.

    PubMed

    Dawson, Paul A

    2011-08-01

    Sulfate (SO(4)(2-)) is an important nutrient for human growth and development, and is obtained from the diet and the intra-cellular metabolism of sulfur-containing amino acids, including methionine and cysteine. During pregnancy, fetal tissues have a limited capacity to produce sulfate, and rely on sulfate obtained from the maternal circulation. Sulfate enters and exits placental and fetal cells via transporters on the plasma membrane, which maintain a sufficient intracellular supply of sulfate and its universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) for sulfate conjugation (sulfonation) reactions to function effectively. Sulfotransferases mediate sulfonation of numerous endogenous compounds, including proteins and steroids, which biotransforms their biological activities. In addition, sulfonation of proteoglycans is important for maintaining normal structure and development of tissues, as shown for reduced sulfonation of cartilage proteoglycans that leads to developmental dwarfism disorders and four different osteochondrodysplasias (diastrophic dysplasia, atelosteogenesis type II, achondrogenesis type IB and multiple epiphyseal dysplasia). The removal of sulfate via sulfatases is an important step in proteoglycan degradation, and defects in several sulfatases are linked to perturbed fetal bone development, including mesomelia-synostoses syndrome and chondrodysplasia punctata 1. In recent years, interest in sulfate and its role in developmental biology has expanded following the characterisation of sulfate transporters, sulfotransferases and sulfatases and their involvement in fetal growth. This review will focus on the physiological roles of sulfate in fetal development, with links to human and animal pathophysiologies. PMID:21419855

  15. Characterization, Anti-Inflammatory and Antiproliferative Activities of Natural and Sulfonated Exo-Polysaccharides from Streptococcus thermophilus ASCC 1275.

    PubMed

    Li, Siqian; Shah, Nagendra P

    2016-05-01

    Exo-polysaccharides (EPS) isolated from Streptococcus thermophilus ASCC 1275 were sulfated (31%). High-performance liquid chromatography identified that EPS was composed of mannose (30.19%), galactose (20.10%), glucose (18.05%), glucosamine (16.04%), galactosamine (9.06%), glucuronic acid (3.55%), and ribose (3.01%). Pro-/anti-inflammatory cytokine secretion ratios (IL-1β/IL-10, IL-6/IL-10, and TNF-α/IL-10) of lipopolysaccharide stimulated RAW 264.7 macrophages were significantly decreased by EPS and S.EPS treatments in a dose dependent manner. Furthermore, anti-inflammatory activities of S.EPS improved 49.3% and 24.0% than those of EPS before or after LPS treatment. The reactive oxygen species were inhibited by EPS and S.EPS by 49.6% and 55.1% at 50 μg/mL, respectively. Inhibition activities of S.EPS on nitric oxide production were 12.9% and 55.4% higher than those of EPS at 10 and 50 μg/mL. Additionally, S.EPS exhibited stronger antiproliferative activity on Caco-2 and HepG2 cells. Our results indicated that anti-inflammatory and antiproliferative activities of EPS were significantly (P < 0.01) improved by sulfonation. PMID:27010963

  16. Heparan sulfate in skeletal muscle development

    SciTech Connect

    Noonan, D.M.

    1985-01-01

    In this study, chick breast skeletal muscle cells developing in vitro from myoblasts to myotubes were found to synthesize heparan sulfate (HS), chrondroitin-6-sulfate, chrondroitin-4-sulfate, dermatan sulfate, unsulfated chrondroitin and hyaluronic acid in both the substratum attached material (SAM) and the cellular fraction. SAM was found to contain predominantly chrondroitin-6-sulfate and relatively little HS whereas the cellular fraction contained relatively higher levels of HS and lower levels of chrondroitin-6-sulfate. Hyaluronic acid was also a major component in both fractions with the other glycosaminoglycan isomers present as minor components. Muscle derived fibroblast cultures had higher levels of dermatan sulfate in the cell layer and higher levels of HS in the SAM fraction than did muscle cultures. The structure of the proteoglycans were partially characterized in /sup 35/SO/sub 4//sup 2 -/ radio-labeled cultures which indicated an apparent increase in the hydrodynamic size of the cell fraction heparan sulfate proteoglycan (HS PG). Myotubes incorporated /sup 35/SO/sub 4//sup 2 -/ into HS PG at a rate 3 times higher than myoblasts. The turnover rate of HS in the cellular fraction was the same for myoblasts and myotubes, with a t/sub 1/2/ of approximately 5 hours. Fibroblasts in culture synthesized the smallest HS PG, and incorporated /sup 35/SO/sub 4//sup 2 -/ into HS PG at a rate lower than that of myotubes. Studies in which fusion was reversibly inhibited with decreased medium (Ca/sup + +/) closely linked the increased synthesis of cell fraction, but not SAM fraction, HS with myotube formation. However, decreasing medium calcium appeared to cause significant alterations in the metabolism of inorganic sulfate.

  17. Attenuation of Magnesium Sulfate on CoCl₂-Induced Cell Death by Activating ERK1/2/MAPK and Inhibiting HIF-1α via Mitochondrial Apoptotic Signaling Suppression in a Neuronal Cell Line.

    PubMed

    Huang, Chih-Yang; Hsieh, You-Liang; Ju, Da-Tong; Lin, Chien-Chung; Kuo, Chia-Hua; Liou, Yi-Fan; Ho, Tsung-Jung; Tsai, Chang-Hai; Tsai, Fuu-Jen; Lin, Jing-Ying

    2015-08-31

    Magnesium sulfate (MgSO₄) ameliorates hypoxia/ischemia-induced neuronal apoptosis in a rat model. This study aimed to investigate the mechanisms governing the anti-apoptotic effect of MgSO₄ on cobalt chloride (CoCl₂)-exposed NB41A3 mouse neuroblastoma cells. MgSO₄ increased the viability of NB41A3 cells treated with CoCl₂ in a dose-dependent manner. MgSO₄ treatment was shown to lead to an increase in the anti-apoptotic Bcl-2 family proteins, with a concomitant decrease in the pro-apoptotic proteins. MgSO₄ also attenuated the CoCl₂-induced disruption of mitochondrial membrane potential (ΔΨ(m)) and reduced the release of cytochrome c form the mitochondria to the cytosol. Furthermore, exposure to CoCl₂ caused activation of the hypoxia-inducible factor 1α (HIF-1α). On the other hand, MgSO₄ markedly reduced CoCl₂-induced HIF-1α activation and suppressed HIF-1α downstream protein BNIP3. MgSO₄ treatment induced ERK1/2 activation and attenuated CoCl₂-induced activation of p38 and JNK. Addition of the ERK1/2 inhibitor U0126 significantly reduced the ability of MgSO₄ to protect neurons from CoCl₂-induced mitochondrial apoptotic events. However, incubation of cultures with the p38 and JNK inhibitors did not significantly affect MgSO₄-mediated neuroprotection. MgSO₄ appears to suppress CoCl₂-induced NB41A3 cell death by activating ERK1/2/ MAPK pathways, which further modulates the role of Bcl-2 family proteins and mitochondria in NB41A3 cells. Our data suggest that MgSO₄ may act as a survival factor that preserves mitochondrial integrity and inhibits apoptotic pathways. PMID:26211648

  18. Structural characterization of a homogalacturonan from Capparis spinosa L. fruits and anti-complement activity of its sulfated derivative.

    PubMed

    Wang, Huijun; Wang, Hongwei; Shi, Songshan; Duan, Jinyou; Wang, Shunchun

    2012-08-01

    A water-soluble polysaccharide CSPS-2B-2 with a molecular mass of 8.8 kDa, was obtained from the fruits of Capparis spinosa L. Chemical and NMR spectral analysis verified CSPS-2B-2 was a linear poly-(1-4)-α-D-galactopyranosyluronic acid in which 12.9±0.4% of carboxyl groups existed as methyl ester and 2.6±0.1% of D-GalpA residues were acetylated. A sulfated derivative Sul-2B-2 with a sulfation degree of 0.88±0.02 was prepared via the substitution of C-2 and/or C-3 of GalpA residues in CSPS-2B-2. Bioassay on the complement and coagulation system demonstrated that Sul-2B-2 (CH(50): 3.5±0.2 μg/mL) had a stronger inhibitory effect on the activation of complement system through the classic pathway than that of heparin (CH(50): 8.9±0.3 μg/mL). Interestingly, Sul-2B-2 at low dose even middle dose (for example 52 μg/mL) had no effect on coagulation system, which was totally different from heparin. Thus, our observation indicated that Sul-2B-2 was more efficient than heparin in inhibiting the activation of the complement system through classical pathway and exhibiting a relatively less anti-coagulant activity. These results suggested that the sulfated derivative Sul-2B-2 prepared from the homogalacturonan in the fruits of Capparis spinosa L, might be a promising drug candidate in case of necessary therapeutic complement inhibition. PMID:22752400

  19. Heparan Sulfate Proteoglycans

    PubMed Central

    Sarrazin, Stephane; Lamanna, William C.; Esko, Jeffrey D.

    2011-01-01

    Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein–heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level. PMID:21690215

  20. Salinity-Induced Anti-Angiogenesis Activities and Structural Changes of the Polysaccharides from Cultured Cordyceps Militaris

    PubMed Central

    Zeng, Yangyang; Han, Zhangrun; Qiu, Peiju; Zhou, Zijing; Tang, Yang; Zhao, Yue; Zheng, Sha; Xu, Chenchen; Zhang, Xiuli; Yin, Pinghe; Jiang, Xiaolu; Lu, Hong; Yu, Guangli; Zhang, Lijuan

    2014-01-01

    Cordyceps is a rare and exotic mushroom that grows out of the head of a mummified caterpillar. Many companies are cultivating Cordyceps to meet the increased demand for its medicinal applications. However, the structures and functions of polysaccharides, one of the pharmaceutical active ingredients in Cordyceps, are difficult to reproduce in vitro. We hypothesized that mimicking the salty environment inside caterpillar bodies might make the cultured fungus synthesize polysaccharides with similar structures and functions to that of wild Cordyceps. By adding either sodium sulfate or sodium chloride into growth media, we observed the salinity-induced anti-angiogenesis activities of the polysaccharides purified from the cultured C. Militaris. To correlate the activities with the polysaccharide structures, we performed the 13C-NMR analysis and observed profound structural changes including different proportions of α and β glycosidic bonds and appearances of uronic acid signals in the polysaccharides purified from the culture after the salts were added. By coupling the techniques of stable 34S-sulfate isotope labeling, aniline- and D5-aniline tagging, and stable isotope facilitated uronic acid-reduction with LC-MS analysis, our data revealed for the first time the existence of covalently linked sulfate and the presence of polygalacuronic acids in the polysaccharides purified from the salt added C. Militaris culture. Our data showed that culturing C. Militaris with added salts changed the biosynthetic scheme and resulted in novel polysaccharide structures and functions. These findings might be insightful in terms of how to make C. Militaris cultures to reach or to exceed the potency of wild Cordyceps in future. PMID:25203294

  1. Sulfated biopolymers for use in recovering petroleum from a subterranean formation

    SciTech Connect

    Tyler, T.N.

    1982-03-09

    Disclosed is a novel sulfated biopolymer, a method for synthesizing the sulfated biopolymer and an oil recovery method employing an aqueous fluid containing the material. The sulfated biopolymer is made by reacting polysaccharides with sulfuric acid in the presence of an aliphatic alcohol at a temperature of from 350 to 750 F, in order to avoid degradation of the polymer by the sulfuric acid. The polymer produces a viscous solution which is less prone to increasing viscosities as shear rate is decreased, which makes it especially suitable for use as a viscosifying polymer in a polymer flooding enhanced oil recovery process.

  2. Bacterial cadherin domains as carbohydrate binding modules: determination of affinity constants to insoluble complex polysaccharides.

    PubMed

    Fraiberg, Milana; Borovok, Ilya; Weiner, Ronald M; Lamed, Raphael; Bayer, Edward A

    2012-01-01

    Cadherin (CA) and cadherin-like (CADG) doublet domains from the complex polysaccharide-degrading marine bacterium, Saccharophagus degradans 2-40, demonstrated reversible calcium-dependent binding to different complex polysaccharides, which serve as growth substrates for the bacterium. Here we describe a procedure based on adsorption of CA and CADG doublet domains to different insoluble complex polysaccharides, followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for visualizing and quantifying the distribution of cadherins between the bound and unbound fractions. Scatchard plots were employed to determine the kinetics of interactions of CA and CADG with several complex carbohydrates. On the basis of these binding studies, the CA and CADG doublet domains are proposed to form a new family of carbohydrate-binding module (CBM). PMID:22843394

  3. Rheologically interesting polysaccharides from yeasts

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Nelson, G. A.; Cathey, C. A.; Fuller, G. G.

    1989-01-01

    We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  4. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity.

    PubMed

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2016-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  5. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity

    PubMed Central

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  6. Extracellular polysaccharide production by thraustochytrid protists.

    PubMed

    Jain, Ruchi; Raghukumar, Seshagiri; Tharanathan, R; Bhosle, N B

    2005-01-01

    Four strains of marine stramenopilan protists, the thraustochytrids, were studied for their ability to produce extracellular polysaccharides (EPSs). Observations by light and scanning electron microscopy revealed the production of a matrix of EPS around groups of cells in stationary cultures. EPS in shake culture filtrates ranged from 0.3 to 1.1 g/L. EPS production, which was studied in greater detail in 2 isolates, SC-1 and CW1, increased with age of cultures, reaching a peak in the stationary phase. Anion exchange chromatography yielded a single fraction of the EPS of both species. The EPS contained 39% to 53% sugars, besides proteins, lipids, uronic acids, and sulfates. Molecular weight of the EPS produced by SC-1 was approximately 94 kDa, and that of CW1, 320 kDa. Glucose formed the major component in the EPS of both isolates-galactose, mannose, and arabinose being the other components. Cultures of both isolates survived air-drying up to a period of 96 hours, suggesting a role for EPS in preventing desiccation of cells. PMID:15909227

  7. Chlorophenol degradation coupled to sulfate reduction

    SciTech Connect

    Haeggblom, M.M.; Young, L.Y. )

    1990-11-01

    We studied chlorophenol degradation under sulfate-reducing conditions with an estuarine sediment inoculum. These cultures degraded 0.1 mM 2-, 3-, and 4-chlorophenol and 2,4-dichlorophenol within 120 to 220 days, but after refeeding with chlorophenols degradation took place in 40 days or less. Further refeeding greatly enhanced the rate of degradation. Sulfate consumption by the cultures corresponded to the stoichiometric values expected for complete oxidation of the chlorophenol to CO{sub 2}. Formation of sulfide from sulfate was confirmed with a radiotracer technique. No methane was formed, verifying that sulfate reduction was the electron sink. Addition of molybdate, a specific inhibitor of sulfate reduction, inhibited chlorophenol degradation completely. These results indicate that the chlorophenols were mineralized under sulfidogenic conditions and that substrate oxidation was coupled to sulfate reduction. In acclimated cultures the three monochlorophenol isomers and 2,4-dichlorophenol were degraded at rates of 8 to 37 {mu}mol liter{sup {minus}1} day{sup {minus}1}. The relative rates of degradation were 4-chlorophenol > 3-chlorophenol > 2-chlorophenol, 2,4-dichlorophenol. Sulfidogenic cultures initiated with biomass from an anaerobic bioreactor used in treatment of pulp-bleaching effluents dechlorinated 2,4-dichlorophenol to 4-chlorophenol, which persisted, whereas 2,6-dichlorophenol was sequentially dechlorinated first to 2-chlorophenol and then to phenol.

  8. Automotive sulfate emission data.

    PubMed Central

    Somers, J H

    1975-01-01

    This paper discusses automotive sulfate emission results obtained by the Office of Mobile Source Air Pollution Control of EPA, General Motors, Ford, Chrysler, and Esso. This work has been directed towards obtaining sulfate emission factors for cars with and without catalyst. While the EPA and Chrysler investigations have found significant sulfate formation in noncatalyst cars, GM, Ford, and Esso have found only trace levels from noncatalyst cars. All of these investigators agree that much higher quantities of sulfate are emitted from catalyst cars. The work done to date shows pelleted catalysts to have much lower sulfate emissions over the low speed-EPA Federal Test Procedures than monolith catalysts. This is probably due to temporary storage of sulfates on the catalyst due to chemical interaction with the alumina pellets. The sulfate compounds are, to a large degree, emitted later under higher speed conditions which result in higher catalyst temperatures which decompose the alumina salt. Future work will be directed towards further elucidation of this storage mechanism as well as determining in detail how factors such as air injection rate and catalyst location affect sulfate emissions. PMID:50932

  9. Sulfate metabolism in mycobacteria.

    PubMed

    Schelle, Michael W; Bertozzi, Carolyn R

    2006-10-01

    Pathogenic bacteria have developed numerous mechanisms to survive inside a hostile host environment. The human pathogen Mycobacterium tuberculosis (M. tb) is thought to control the human immune response with diverse biomolecules, including a variety of exotic lipids. One prevalent M. tb-specific sulfated metabolite, termed sulfolipid-1 (SL-1), has been correlated with virulence though its specific biological function is not known. Recent advances in our understanding of SL-1 biosynthesis will help elucidate the role of this curious metabolite in M. tb infection. Furthermore, the study of SL-1 has led to questions regarding the significance of sulfation in mycobacteria. Examples of sulfated metabolites as mediators of interactions between bacteria and plants suggest that sulfation is a key modulator of extracellular signaling between prokaryotes and eukaryotes. The discovery of novel sulfated metabolites in M. tb and related mycobacteria strengthens this hypothesis. Finally, mechanistic and structural data from sulfate-assimilation enzymes have revealed how M. tb controls the flux of sulfate in the cell. Mutants with defects in sulfate assimilation indicate that the fate of sulfur in M. tb is a critical survival determinant for the bacteria during infection and suggest novel targets for tuberculosis drug therapy. PMID:16933356

  10. Adeno-associated virus type 2 binding study on model heparan sulfate surface

    NASA Astrophysics Data System (ADS)

    Negishi, Atsuko; Liu, Jian; McCarty, Douglas; Samulski, Jude; Superfine, Richard

    2003-11-01

    Understanding the mechanisms involved in virus infections is useful in its application in areas such as gene therapy, drug development and delivery, and biosensors. In collaboration with UNC Gene Therapy Center and School of Pharmacy, we are specifically looking at the interaction between human parvovirus adeno-associated virus type 2 (AAV2), a potential viral vector, and heparan sulfate proteoglycan (HSPG), a known cell surface receptor for AAV2. Recent development in glycobiology has shown that some protein-polysaccharide binding is sugar sequence dependent. Heparan sulfate (HS) is a polysaccharide chain of sulfated iduronic/glucuronic and sulfate glucosamine residues and can be differentiated into sequence specific structures by enzymes. These enzymatic modifications, known as heparan sulfate sulfotransferase modified modifications, have been shown to change the biological nature of heparan sulfate such as specific binding to proteins and viruses. For understanding HS-assisted viral infection mechanisms, we are interested in investigating the binding affinity and stability of AAV to different HS structures. We have developed a model heparan sulfate surface in which AAV adsorption studies are done and analyzed using the atomic force microscope (AFM). In addition, a miniArray assay has been created to facilitate to this study. Adsorption studies are done in 4 white LED wells with approximately 3 mm2 reaction areas which minimize sample use and waste.

  11. Chemoenzymatic synthesis and structural characterization of 2-O-sulfated glucuronic acid-containing heparan sulfate hexasaccharides

    PubMed Central

    Hsieh, Po-Hung; Xu, Yongmei; Keire, David A; Liu, Jian

    2014-01-01

    Heparan sulfate and heparin are highly sulfated polysaccharides that consist of a repeating disaccharide unit of glucosamine and glucuronic or iduronic acid. The 2-O-sulfated iduronic acid (IdoA2S) residue is commonly found in heparan sulfate and heparin; however, 2-O-sulfated glucuronic acid (GlcA2S) is a less abundant monosaccharide (∼<5% of total saccharides). Here, we report the synthesis of three GlcA2S-containing hexasaccharides using a chemoenzymatic approach. For comparison purposes, additional IdoA2S-containing hexasaccharides were synthesized. Nuclear magnetic resonance analyses were performed to obtain full chemical shift assignments for the GlcA2S- and IdoA2S-hexasaccharides. These data show that GlcA2S is a more structurally rigid saccharide residue than IdoA2S. The antithrombin (AT) binding affinities of a GlcA2S- and an IdoA2S-hexasaccharide were determined by affinity co-electrophoresis. In contrast to IdoA2S-hexasaccharides, the GlcA2S-hexasaccharide does not bind to AT, confirming that the presence of IdoA2S is critically important for the anticoagulant activity. The availability of pure synthetic GlcA2S-containing oligosaccharides will allow the investigation of the structure and activity relationships of individual sites in heparin or heparan sulfate. PMID:24770491

  12. Anticoagulant Activity and Structural Characterization of Polysaccharide from Abalone (Haliotis discus hannai Ino) Gonad.

    PubMed

    Zhao, Jun; Yang, Jingfeng; Song, Shuang; Zhou, Dayong; Qiao, Weizhou; Zhu, Ce; Liu, Shuyin; Zhu, Beiwei

    2016-01-01

    In this study, we aimed at characterizing the structure and the anticoagulant activity of a polysaccharide fraction (AGP33) isolated from the gonads of Haliotis discus hannai Ino. AGP33 was extracted by enzymatic hydrolysis and purified by ion-exchange and gel-filtration chromatography. The backbone fraction of AGP33 (BAGP33), which appeared to contain of mannose, glucose and galactose, was prepared by partial acid hydrolysis. According to methylation and nuclear magnetic resonance (NMR) spectroscopy, the backbone of AGP33 was identified as mainly consisting of 1→3-linked, 1→4-linked, and 1→6-linked monosaccharides. AGP33 is a sulfated polysaccharide with sulfates occur at 3-O- and 4-O-positions. It prolonged thromboplastin time (APTT), thrombin time (TT) and prothrombin time (PT) compared to a saline control solution in a dosage-dependent manner. AGP33 exhibited an extension (p < 0.01) of APTT compared to the saline group at concentrations higher than 5 μg/mL. AGP33 exhibited higher anticoagulant activity than its desulfated product (AGP33-des) and BAGP33. The results showed that polysaccharide with higher molecular weight and sulfate content demonstrated greater anticoagulant activity. PMID:27338320

  13. A zinc complex of heparan sulfate destabilises lysozyme and alters its conformation

    SciTech Connect

    Hughes, Ashley J.; Hussain, Rohanah; Cosentino, Cesare; Guerrini, Marco; Siligardi, Giuliano; Yates, Edwin A.; Rudd, Timothy R.

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Zinc-heparan sulfate complex destabilises lysozyme, a model amyloid protein. Black-Right-Pointing-Pointer Addition of zinc, without heparan sulfate, stabilises lysozyme. Black-Right-Pointing-Pointer Heparan sulfate cation complexes provide alternative protein folding routes. -- Abstract: The naturally occurring anionic cell surface polysaccharide heparan sulfate is involved in key biological activities and is implicated in amyloid formation. Following addition of Zn-heparan sulfate, hen lysozyme, a model amyloid forming protein, resembled {beta}-rich amyloid by far UV circular dichroism (increased {beta}-sheet: +25%), with a significantly reduced melting temperature (from 68 to 58 Degree-Sign C) by fluorescence shift assay. Secondary structure stability of the Zn-heparan sulfate complex with lysozyme was also distinct from that with heparan sulfate, under stronger denaturation conditions using synchrotron radiation circular dichroism. Changing the cation associated with heparan sulfate is sufficient to alter the conformation and stability of complexes formed between heparan sulfate and lysozyme, substantially reducing the stability of the protein. Complexes of heparan sulfate and cations, such as Zn, which are abundant in the brain, may provide alternative folding routes for proteins.

  14. Methanogenesis and sulfate reduction: Competitive and noncompetitive substrates in estuarine sediments

    USGS Publications Warehouse

    Oremland, Ronald S.; Polcin, Sandra

    1982-01-01

    Sulfate ions did not inhibit methanogenesis in estuarine sediments supplemented with methanol, trimethylamine, or methionine. However, sulfate greatly retarded methanogenesis when hydrogen or acetate was the substrate. Sulfate reduction was stimulated by acetate, hydrogen, and acetate plus hydrogen, but not by methanol or trimethylamine. These results indicate that sulfate-reducing bacteria will outcompete methanogens for hydrogen, acetate, or both, but will not compete with methanogens for compounds like methanol, trimethylamine, or methionine, thereby allowing methanogenesis and sulfate reduction to operate simultaneously within anoxic, sulfate-containing sediments.

  15. Polysaccharides templates for assembly of nanosilver.

    PubMed

    Emam, Hossam E; Ahmed, Hanan B

    2016-01-01

    Polysaccharides are particularly attractive in biomedical applications due to its biodegradability and biocompatibility. In addition to its ecofriendly effects and easy processing into different hydrogel shapes, made polysaccharides used on a large scale as suitable media for preparation of silver nanoparticles (AgNPs). In spite of, most of polysaccharides are water insoluble, but it has shown to be quite efficient capping agents and/or nanoreactor matrices for production of AgNPs. Several methods have been developed to get the benefit of multi-functionality for polysaccharides' macromolecules in preparation of AgNPs. Therefore, recently, preparation of nanosilver using different polysaccharides have been the focus of an exponentially increasing number of works devoted to develop nanocomposites by blending AgNPs with different polysaccharides matrices. The current review represents a wide survey for the published studies which interested in using of polysaccharides in nanosilver preparations. PMID:26453881

  16. Isolation and chemical characterization of dissolved and particulate polysaccharides in Mikawa Bay

    NASA Astrophysics Data System (ADS)

    Sakugawa, Hiroshi; Handa, Nobuhiko

    1985-05-01

    Isolation and chemical elucidation of dissolved and particulate polysaccharides in seawater were conducted. The water samples were collected in Mikawa Bay, Japan during a red tide bloom of the dinoflagellate, Prorocentrum minimum. Dissolved polysaccharides were concentrated from 5-101 of seawater with dialysis followed by separation by gel flitration, and isolation by ethanol precipitation. A heteropolysaccharide consisting of glucose, galactose, mannose, xylose, arabinose, fucose and rhamnose and a glucan were isolated from the polysaccharide component having a molecular weight more than 4,000 Dalton and were characterized by several chemical analyses. The heteropolysaccharide is a mucilaginous polysaccharide having a highly branched structure and a molecular weight of 10 4-5 × 10 6 Daltons and probably contains a sulfate half ester: the glucan is a polysaccharide with β-1,3- and 1,6-linkages (chrysolaminaran type). Concentrations of these were respectively ca. 20 and 67 μg l -1 at 1 m, and 2 and 26 μg l -1 at 6 m. A similar heteropolysaccharide was found in the boiling water extract of the particulate matter, while β-glucan was isolated in a much less purified form than the seawater β-glucan. In addition, a large amount of β-1,4 glucan was found in the strong alkali extract of the particulate matter, indicating that this glucan must be a cell wall polysaccharide derived from phytoplankton. These results strongly suggest that the heteropolysaccharide and chrysolaminaran type polysaccharide dissolved in seawater were derived from water soluble carbohydrates of phytoplankton through extracellular release or cell lysis.

  17. Isolation, purification and antioxidant activities of polysaccharides from Grifola frondosa.

    PubMed

    Chen, Gui-tang; Ma, Xue-mei; Liu, Sheng-to; Liao, Yan-li; Zhao, Guo-qang

    2012-06-01

    The crude polysaccharides (GFP) were isolated from the fruiting bodies of Grifola frondosa and purified by DEAE cellulose-52 chromatography and Sephadex G-100 size-exclusion chromatography in that order. Three main fractions, GFP-1, GFP-2 and GFP-3, were obtained through the isolation and purification steps. Then the antioxidant activities of these three fractions were investigated in vitro. The results showed that GFP-1, GFP-2 and GFP-3 possessed significant inhibitory effects on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydroxyl radical and superoxide radical; their reducing power, ferrous ions chelating effect and the inhibition ability of the rat liver lipid oxidation where also strong. These results suggest that G. frondosa polysaccharides could be a suitable natural antioxidant and may be the functional foods for humans. PMID:24750604

  18. Inhibitory effects of Enteromorpha linza polysaccharide on micronucleus of Allium sativum root cells.

    PubMed

    Zhang, Zhongshan; Wang, Xiaomei; Li, Jingfen; Liu, Chongbin; Zhang, Quanbin

    2016-06-01

    In this study, the antimutagenic function of the polysaccharide from Enteromorpha linza with the micronucleus test of Allium sativum root cells induced by sulfur dioxide and ultraviolet was studied. The concentration-effect relation of the two inducers was firstly evaluated. The results showed that an increase of genotoxicity damage was demonstrated and micronuclei frequency induced by sulfur dioxide and ultraviolet displayed dose dependent increases. All the doses of polysaccharide did affect the micronuclei frequency formation compared with the negative control. And also, the significant increase in inhibition rate of micronuclei frequency was observed with the increase of the dose of polysaccharide. It was showed maximum inhibition of micronuclei frequency cells (71.74% and 66.70%) at a concentration of 200g/mL in three experiments. The low molecular weight polysaccharide showed higher inhibition rate than raw polysaccharide at the higher concentration (50g/mL) in the absence of sulfur dioxide and ultraviolet. It was confirmed to be a good mutant inhibitor. PMID:26927934

  19. Review: prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori.

    PubMed

    Besednova, Natalya N; Zaporozhets, Tatyana S; Somova, Larisa M; Kuznetsova, Tatyana A

    2015-04-01

    Helicobacter pylori possesses a broad spectrum of pathogenic factors that allow it to survive and colonize the gastric mucosa, and thus, the pathogenetic targets, which have the same diversity, require search for and the development of alternative, effective, and innocuous means for the eradication of H. pylori. In recent years, fucoidans have been extensively studied due to the numerous interesting biological activities, including the anti-adhesive, anti-oxidative, antitoxic, immunomodulatory, anticoagulant, and anti-infection effects. This review summarizes the data on the effects of extracts and sulfated polysaccharides of marine algae, mainly fucoidans, on pathogenic targets in Helicobacter infection. The pathogenetic targets for therapeutic agents after H. pylori infection, such as flagellas, urease, and other enzymes, including adhesins, cytotoxin A (VacA), phospholipase, and L-8, are characterized here. The main target for the sulfated polysaccharides of seaweed is cell receptors of the gastric mucosa. This review presents the published data about the pleiotropic anti-inflammatory effects of polysaccharides on the gastric mucosa. It is known that fucoidan and other sulfated polysaccharides from algae have anti-ulcer effects, prevent the adhesion of H. pylori to, and reduce the formation of biofilm. The authors speculate that the effect of sulfated polysaccharides on the infectious process caused by H. pylori is related to their action on innate and adaptive immunity cells, and also anti-oxidant and antitoxic potential. Presented in the review are materials indicated for the study of extracts and sulfated polysaccharides from seaweed during H. pylori infection, as these compounds are characterized by multimodality actions. Based on the analysis of literary materials in recent years, the authors concluded that fucoidan can be attributed to the generation of new candidates to create drugs intended for the inclusion in the scheme of eradication therapy of

  20. Phellinus linteus polysaccharide extracts increase the mitochondrial membrane potential and cause apoptotic death of THP-1 monocytes

    PubMed Central

    2013-01-01

    Background The differentiation resp. death of human monocytic THP-1 cells induced by polysaccharide extracts of the medicinal mushrooms Phellinus linteus, Agaricus bisporus and Agaricus brasiliensis have been studied. This study aims to identify leads for the causal effects of these mushroom components on cell differentiation and death. Methods THP-1 cells were treated with different polysaccharide extracts of mushrooms and controls. Morphological effects were observed by light microscopy. Flow cytometry was applied to follow the cell differentiation by cell cycle shifts after staining with propidium iodide, changes of mitochondrial membrane potential after incubation with JC-1, and occurrence of intracellular reactive oxygen species after incubation with hydroethidine. Principal component analysis of the data was performed to evaluate the cellular effects of the different treatments. Results P. linteus polysaccharide extracts induced dose-dependent apoptosis of THP-1 cells within 24 h, while A. bisporus and A. brasiliensis polysaccharide extracts caused differentiation into macrophages. A pure P. linteus polysaccharide had no effect. Apoptosis was inhibited by preincubating THP-1 cells with human serum. The principal component analysis revealed that P. linteus, A. bisporus and A. brasiliensis polysaccharide extracts increased reactive oxygen species production. Both A. bisporus and A. brasiliensis polysaccharide extracts decreased the mitochondrial membrane potential, while this was increased by P. linteus polysaccharide extracts. Conclusions P. linteus polysaccharide extracts caused apoptosis of THP-1 monocytes while A. bisporus and A. brasiliensis polysaccharide extracts caused these cells to differentiate into macrophages. The protective effects of human serum suggested that P. linteus polysaccharide extract induced apoptosis by extrinsic pathway, i.e. by binding to the TRAIL receptor. The mitochondrial membrane potential together with reactive oxygen species

  1. Hydrazine Sulfate (PDQ)

    MedlinePlus

    ... cells need to grow (see Question 3 ). In randomized clinical trials (a type of research study ), hydrazine ... make tumors shrink or go away. In some randomized trials, however, hydrazine sulfate was reported to be ...

  2. Xylitol and erythritol decrease adherence of polysaccharide-producing oral streptococci.

    PubMed

    Söderling, Eva M; Hietala-Lenkkeri, Aija-Maaria

    2010-01-01

    Xylitol consumption decreases counts of mutans streptococci. However, the mechanism behind this decrease is not well understood. We studied not only type strains and clinical isolates of mutans streptococci, but also other polysaccharide-forming oral streptococci. Growth inhibition and adherence of cells to a smooth glass surface-reflecting synthesis of water-insoluble polysaccharides were studied in the presence of 2% (0.13 mol/l) and 4% (0.26 mol/l) xylitol. The effect of xylitol was compared to a novel polyol sweetener, erythritol. Except for Streptococcus mutans 10449 and S. sobrinus OMZ 176, the glass surface adhesion of most polysaccharide-forming streptococci was reduced by the presence of both 4% xylitol and erythritol. For the S. mutans and S. sobrinus type strains, the growth inhibition with 4% xylitol and erythritol was 36-77% and for the clinical S. mutans isolates 13-73%. Of the other oral streptococci, only S. sanguinis was inhibited with 4% xylitol (45-55%). For both polyols, the magnitude of the growth inhibition observed was not associated with the magnitude of the decrease in adherence (xylitol: r = -0.18; erythritol: r = 0.49). In conclusion, both xylitol and erythritol can decrease polysaccharide-mediated cell adherence contributing to plaque accumulation through a mechanism not dependent on growth inhibition. PMID:19777305

  3. De Novo Sequencing of Complex Mixtures of Heparan Sulfate Oligosaccharides.

    PubMed

    Huang, Rongrong; Zong, Chengli; Venot, Andre; Chiu, Yulun; Zhou, Dandan; Boons, Geert-Jan; Sharp, Joshua S

    2016-05-17

    Here, we describe the first sequencing method of a complex mixture of heparan sulfate tetrasaccharides by LC-MS/MS. Heparin and heparan sulfate (HS) are linear polysaccharides that are modified in a complex manner by N- and O-sulfation, N-acetylation, and epimerization of the uronic acid. Heparin and HS are involved in various essential cellular communication processes. The structural analysis of these glycosaminoglycans is challenging due to the lability of their sulfate groups, the high heterogeneity of modifications, and the epimerization of the uronic acids. While advances in liquid chromatography (LC) and mass spectrometry (MS) have enabled compositional profiling of HS oligosaccharide mixtures, online separation and detailed structural analysis of isomeric and epimeric HS mixtures has not been achieved. Here, we report the development and evaluation of a chemical derivatization and tandem mass spectrometry method that can separate and identify isomeric and epimeric structures from complex mixtures. A series of well-defined synthetic HS tetrasaccharides varying in sulfation patterns and uronic acid epimerization were analyzed by chemical derivatization and LC-MS/MS. These synthetic compounds made it possible to establish relationships between HS structure, chromatographic behavior and MS/MS fragmentation characteristics. Using the analytical characteristics determined through the analysis of the synthetic HS tetrasaccharide standards, an HS tetrasacharide mixture derived from natural sources was successfully sequenced. This method represents the first sequencing of complex mixtures of HS oligosaccharides, an essential milestone in the analysis of structure-function relationships of these carbohydrates. PMID:27087275

  4. Analytical Methods for Assessing Chondroitin Sulfate in Human Plasma.

    PubMed

    Mantovani, Veronica; Galeotti, Fabio; Maccari, Francesca; Volpi, Nicola

    2016-03-01

    Chondroitin sulfate (CS) is a linear heteropolysaccharide of repeating disaccharide units bearing sulfate groups in various positions, commonly at C4 and/or C6 of galactosamine. CS plays important roles in various (patho)physiological processes also performing intriguing biological and therapeutical activities. Plasmatic CS is mainly composed of nonsulfated and 4-sulfated disaccharides. To obtain samples for the determination of CS amount and composition in blood/plasma, dried blood spot (DBS) could be used. DBSs have many advantages over other laboratory methods, allowing for large-scale population screening. Many analytical techniques may be used for the determination of CS. In particular, CE has proved to be a very attractive alternative separation technique for complex polysaccharide characterization. In this work, we compared CS levels between plasma and DBS samples, using CE equipped with the highly sensitive laser-induced fluorescence detector. CS from DBS differs from plasma CS owing to the high content of disaccharides sulfated in C4 and C6. This is due to the presence of the more sulfated CS derived from blood cellular fraction, in particular leukocytes. The identification and quantification of CS in blood plasma could be a useful prognostic and diagnostic tool in pathological conditions and for pharmacological applications. PMID:26961813

  5. Structurally altered capsular polysaccharides produced by mutant bacteria

    NASA Technical Reports Server (NTRS)

    Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor); Richards, Gil F. (Inventor)

    1995-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  6. Manipulation of cellulose nanocrystal surface sulfate groups toward biomimetic nanostructures in aqueous media.

    PubMed

    Zoppe, Justin O; Johansson, Leena-Sisko; Seppälä, Jukka

    2015-08-01

    We report a facile aqueous procedure to create multivalent displays of sulfonated ligands on CNCs for future applications as viral inhibitors. CNCs were decorated with model compounds containing sulfonate groups via reactions of epoxides and isothiocyanates with amines under alkaline conditions. At first, surface sulfate groups of CNCs were hydrolytically cleaved by alkaline hydrolysis to increase the number of available surface hydroxyls. Success of desulfation was confirmed via dynamic light scattering (DLS), zeta potential measurements and thermogravimetric analysis (TGA). CNC surface hydroxyl groups were then activated with epichlorohydrin before subsequent reactions. As proof of concept toward aqueous pathways for functionalizing nanoparticles with sulfonated ligands, 3-chloro-2-hydroxy-1-propanesulfonic acid sodium salt hydrate (CPSA) and 4-sulfophenyl isothiocyanate sodium salt monohydrate (4-SPITC) were chosen as model compounds to react with homobifunctional 2,2'-(ethylenedioxy)bis(ethylamine) (EBEA) molecular spacer. The approaches presented are not only applicable to polysaccharide nanocrystals, but also other classes of polymeric and inorganic substrates presenting surface hydroxyl groups, as in the case of poly(2-hydroxyethyl methacrylate) (PHEMA), silica or glass. CNCs carrying sulfonated ligands were characterized by ATR-FTIR and UV-vis spectroscopy. Surface chemical compositions of desired elements were determined via X-ray photoelectron spectroscopy (XPS). We anticipate that with these facile aqueous procedures as the proof of concept, a diverse library of target-specific functionalities can be conjugated to CNCs for applications in nanomedicine, especially related to viral inhibition. PMID:25933518

  7. Anti-herpetic activity of a sulfated xylomannan from Scinaia hatei.

    PubMed

    Mandal, Pinaki; Pujol, Carlos A; Carlucci, María J; Chattopadhyay, Kausik; Damonte, Elsa B; Ray, Bimalendu

    2008-08-01

    Many viruses display affinity for cell surface heparan sulfate proteoglycans with biological relevance in virus entry. This raises the possibility of the application of sulfated polysaccharides in antiviral therapy. In this study we have analyzed polysaccharide fractions isolated from Scinaia hatei. The crude water extract (ShWE) as well as one fraction (F1) obtained by size exclusion chromatography had potent anti-HSV activity. Their inhibitory concentration 50% (IC50) values ranging from 0.5 to 4.6 microg/ml were much lower than the cytotoxic concentration 50% (CC50) values (1000 microg/ml). These fractions had very low anticoagulant activity. Furthermore, they had a weak inactivating effect on virions in a virucidal assay at concentrations in the range of 60-100 microg/ml. Chemical, chromatographic and spectroscopic methods showed that the major polysaccharide, which had 0.4 sulfate group per monomer unit and an apparent molecular mass of 160 kDa, contained a backbone of alpha-(1-->3)-linked D-mannopyranosyl residues substituted at C-6, C-4 and C-2 with single stub of beta-d-xylopyranosyl residues. Sulfate groups, when present, are located at C-4 of alpha-(1-->3)-linked D-mannopyranosyl units, and appeared to be very important for the anti-herpetic activity of this polymer. PMID:18572208

  8. Sucrose release from polysaccharide gels.

    PubMed

    Nishinari, Katsuyoshi; Fang, Yapeng

    2016-05-18

    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed. PMID:26952168

  9. Cellulose degradation by polysaccharide monooxygenases.

    PubMed

    Beeson, William T; Vu, Van V; Span, Elise A; Phillips, Christopher M; Marletta, Michael A

    2015-01-01

    Polysaccharide monooxygenases (PMOs), also known as lytic PMOs (LPMOs), enhance the depolymerization of recalcitrant polysaccharides by hydrolytic enzymes and are found in the majority of cellulolytic fungi and actinomycete bacteria. For more than a decade, PMOs were incorrectly annotated as family 61 glycoside hydrolases (GH61s) or family 33 carbohydrate-binding modules (CBM33s). PMOs have an unusual surface-exposed active site with a tightly bound Cu(II) ion that catalyzes the regioselective hydroxylation of crystalline cellulose, leading to glycosidic bond cleavage. The genomes of some cellulolytic fungi contain more than 20 genes encoding cellulose-active PMOs, suggesting a diversity of biological activities. PMOs show great promise in reducing the cost of conversion of lignocellulosic biomass to fermentable sugars; however, many questions remain about their reaction mechanism and biological function. This review addresses, in depth, the structural and mechanistic aspects of oxidative depolymerization of cellulose by PMOs and considers their biological function and phylogenetic diversity. PMID:25784051

  10. Polysaccharide-Based Micelles for Drug Delivery

    PubMed Central

    Zhang, Nan; Wardwell, Patricia R.; Bader, Rebecca A.

    2013-01-01

    Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date. PMID:24300453

  11. Marine Polysaccharides in Pharmaceutical Applications: An Overview

    PubMed Central

    Laurienzo, Paola

    2010-01-01

    The enormous variety of polysaccharides that can be extracted from marine plants and animal organisms or produced by marine bacteria means that the field of marine polysaccharides is constantly evolving. Recent advances in biological techniques allow high levels of polysaccharides of interest to be produced in vitro. Biotechnology is a powerful tool to obtain polysaccharides from a variety of micro-organisms, by controlling the growth conditions in a bioreactor while tailoring the production of biologically active compounds. Following an overview of the current knowledge on marine polysaccharides, with special attention to potential pharmaceutical applications and to more recent progress on the discovering of new polysaccharides with biological appealing characteristics, this review will focus on possible strategies for chemical or physical modification aimed to tailor the final properties of interest. PMID:20948899

  12. A sulfated alpha-L-fucan from sea cucumber.

    PubMed

    Ribeiro, A C; Vieira, R P; Mourão, P A; Mulloy, B

    1994-03-01

    A purified sulfated alpha-L-fucan from the sea cucumber body wall was studied, before and after almost complete desulfation, using methylation analysis and NMR spectroscopy. NMR analysis indicates that 2,4-di-O-sulfo-L-fucopyranose and unsubstituted fucopyranose are present in equal proportions, and that 2-O-sulfo-L-fucopyranose is present in twice that proportion. There is some NMR evidence that a regular repeating sequence of four residues comprises most or all of the polysaccharide chain. PMID:8181009

  13. Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment.

    PubMed

    Ballesteros, Lina F; Cerqueira, Miguel A; Teixeira, José A; Mussatto, Solange I

    2015-01-01

    Spent coffee grounds (SCG), obtained during the processing of coffee powder with hot water to make soluble coffee, are the main coffee industry residues and retain approximately seventy percent of the polysaccharides present in the roasted coffee beans. The purpose of this study was to extract polysaccharides from SCG by using an alkali pretreatment with sodium hydroxide at 25°C, and determine the chemical composition, as well as the antioxidant and antimicrobial properties of the extracted polysaccharides. Galactose (60.27%mol) was the dominant sugar in the recovered polysaccharides, followed by arabinose (19.93%mol), glucose (15.37%mol) and mannose (4.43%mol). SCG polysaccharides were thermostable, and presented a typical carbohydrate pattern. Additionally, they showed good antioxidant activity through different methods and presented high antimicrobial percent inhibition against Phoma violacea and Cladosporium cladosporioides (41.27% and 54.60%, respectively). These findings allow identifying possible applications for these polysaccharides in the food industry. PMID:25965493

  14. Comparative studies on the immunoregulatory effects of three polysaccharides using high content imaging system.

    PubMed

    Lv, Xiaocheng; Chen, Dandan; Yang, Liecheng; Zhu, Ning; Li, Jingling; Zhao, Jian; Hu, Zhibi; Wang, Fu-Jun; Zhang, Leshuai W

    2016-05-01

    In this study, polysaccharides were isolated from Astragalus membranaceus, Ganoderma lucidum and Radix ophiopogonis and named APSII, GLPII and OGPII for comparison of their immunoactivities. MTT assay indicated that these polysaccharides increased the metabolic activity of Raw264.7 macrophages and induced cell differentiation to dendritic like cells. High content screening and mathematical modeling were used to quantify the cell irregularity, a hallmark of cell differentiation by polysaccharides. The results showed that GLPII increased cell irregularity, but APSII and OGPII had slightly less effects. Imaging analysis also revealed that polysaccharides inhibited cell proliferation while inducing the cell differentiation. In addition, APSII and GLPII but not OGPII induced NO production and enhanced cell phagocytic ability. Interestingly, inducible nitric oxide synthase inhibitor blocked polysaccharide-enhanced phagocytosis, indicating NO production is crucial for macrophages to acquire phagocytic ability, which was further confirmed by correlation studies. APSII and GLPII significantly promoted the maturation of macrophages by the increase in the expression of MHCII, CD40, CD80 and CD86, while OGPII had less effects. In summary, we have suggested a practical and economical method to quantify macrophage differentiation (irregularity) induced by polysaccharides for quality assurance and have found the role of NO production on macrophage phagocytic ability. PMID:26783639

  15. Retinal structure and function preservation by polysaccharides of wolfberry in a mouse model of retinal degeneration

    PubMed Central

    Wang, Ke; Xiao, Jia; Peng, Bo; Xing, Feiyue; So, Kwok-Fai; Tipoe, George L.; Lin, Bin

    2014-01-01

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited disorders caused by mutations in a variety of genes that are mostly expressed by rod cells, which results in initial death of rod photoreceptors followed by gradual death of cone photoreceptors. RP is currently untreatable and usually leads to partial or complete blindness. Here, we explored the potential neuroprotective effects of polysaccharides of wolfberry, which are long known to possess primary beneficial properties in the eyes, on photoreceptor apoptosis in the rd10 mouse model of RP. We found that these polysaccharides provided long-term morphological and functional preservation of photoreceptors and improved visual behaviors in rd10 mice. Moreover, we demonstrated that polysaccharides exerted neuroprotective effects through antioxidant, anti-inflammatory and anti-apoptotic mechanisms. Furthermore, we identified that polysaccharides modulated inflammation and apoptosis partly through inhibition of NF-κB and HIF-1α expressions, respectively. Overall, we demonstrated the synergistic protective effects of polysaccharides in preserving photoreceptors against degeneration in rd10 mice. Our study provides rationale and scientific support on using polysaccharides of wolfberry as one supplementary treatment of RP patients in the future. PMID:25535040

  16. Polysaccharide-based nanocomposites and their applications

    PubMed Central

    Zheng, Yingying; Monty, Jonathan; Linhardt, Robert J.

    2014-01-01

    Polysaccharide nanocomposites have become increasingly important materials over the past decade. Polysaccharides offer a green alternative to synthetic polymers in the preparation of soft nanomaterials. They have also been used in composites with hard nanomaterials, such as metal nanoparticles and carbon-based nanomaterials. This mini review describes methods for polysaccharide nanocomposite preparation and reviews the various types and diverse applications for these novel materials. PMID:25498200

  17. Adhesion of marine fouling organisms on hydrophilic and amphiphilic polysaccharides.

    PubMed

    Bauer, Stella; Arpa-Sancet, Maria Pilar; Finlay, John A; Callow, Maureen E; Callow, James A; Rosenhahn, Axel

    2013-03-26

    Polysaccharides are a promising material for nonfouling surfaces because their chemical composition makes them highly hydrophilic and able to form water-storing hydrogels. Here we investigated the nonfouling properties of hyaluronic acid (HA) and chondroitin sulfate (CS) against marine fouling organisms. Additionally, the free carboxyl groups of HA and CS were postmodified with the hydrophobic trifluoroethylamine (TFEA) to block free carboxyl groups and render the surfaces amphiphilic. All coatings were tested with respect to their protein resistance and against settlement and adhesion of different marine fouling species. Both the settlement and adhesion strength of a marine bacterium (Cobetia marina), zoospores of the seaweed Ulva linza, and cells of a diatom (Navicula incerta) were reduced compared to glass control surfaces. In most cases, TFEA capping increased or maintained the performance of the HA coatings, whereas for the very well performing CS coatings the antifouling performance was reduced after capping. PMID:23425225

  18. Tandem Mass Spectrometry of Heparan Sulfate Negative Ions: Sulfate Loss Patterns and Chemical Modification Methods for Improvement of Product Ion Profiles

    NASA Astrophysics Data System (ADS)

    Shi, Xiaofeng; Huang, Yu; Mao, Yang; Naimy, Hicham; Zaia, Joseph

    2012-09-01

    Heparan sulfate (HS) is a polysaccharide modified with sulfation, acetylation, and epimerization that enable its binding with protein ligands and regulation of important biological processes. Tandem mass spectrometry has been employed to sequence linear biomolecules e.g., proteins and peptides. However, its application in structural characterization of HS is limited due to the neutral loss of sulfate (SO3) during collisional induced dissociation (CID). In this report, we studied the dissociation patterns of HS disaccharides and demonstrate that the N-sulfate (N-S) bond is especially facile during CID. We identified factors that influence the propensities of such losses from precursor ions and proposed a Free Proton Index (FPI) to help select ions that are able to produce meaningful backbone dissociations. We then investigated the thermodynamics and kinetics of SO3 loss from sulfates that are protonated, deprotonated, and metal-adducted using density functional theory computations. The calculations showed that sulfate loss from a protonated site was much more facile than that from a deprotonated or metal-adducted site. Further, the loss of SO3 from N-sulfate was energetically favored by 3-8 kcal/mol in transition states relative to O-sulfates, making it more prone to this process by a substantial factor. In order to reduce the FPI, representing the number of labile sulfates in HS native chains and oligosaccharides, we developed a series of chemical modifications to selectively replace the N-sulfates of the glucosamine with deuterated acetyl group. These modifications effectively reduced the sulfate density on the HS oligosaccharides and generated considerably more backbone dissociation using on-line LC/tandem MS.

  19. Advances on Bioactive Polysaccharides from Medicinal Plants.

    PubMed

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents. PMID:26463231

  20. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.

    PubMed

    Chen, Lei; Gin, Karina Y H; He, Yiliang

    2016-02-01

    Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa. PMID:26490939

  1. Ultrastructure of ulvan: a polysaccharide from green seaweeds.

    PubMed

    Robic, Audrey; Gaillard, Cédric; Sassi, Jean-François; Lerat, Yannick; Lahaye, Marc

    2009-08-01

    Ultrastructural analysis of the gel forming green seaweed sulfated polysaccharide ulvan revealed a spherical-based morphology (10-18 nm diameter) more or less aggregated in aqueous solution. At pH 13 in TBAOH (tetrabutyl ammonium hydroxyde) or NaOH, ulvan formed an open gel-like structure or a continuous film by fusion or coalescence of bead-like structures, while in acidic pH conditions, ulvan appeared as dispersed beads. Low concentrations of sodium chloride, copper or boric acid induced the formation of aggregates. These results highlight the hydrophobic and aggregative behavior of ulvan that are discussed in regard to the peculiar gel formation and the low intrinsic viscosity of the polysaccharide in aqueous solution. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 652-664, 2009.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com. PMID:19353644

  2. Utilization of lignocellulosic polysaccharides

    NASA Astrophysics Data System (ADS)

    Fenske, John James

    and poplar prehydrolysates, respectively. The woody and herbaceous feedstocks differed in both amount and type of aromatic monomers. The cellulases of Trichoderma reesei are the most widely studied for use in the depolymerization of lignocellulosics. The Trichoderma cellobiohydrolases CBH1 and CBH2 are traditionally categorized as exo-acting cellulases. A simple individual-based model was created to explore the potential effects of native endo activity on substrate-velocity profiles. The model results indicate that an enzyme with a small amount of endo activity will show an apparent substrate inhibition as substrate levels are increased. Actual hydrolysis studies using affinity chromatography-purified CBH2 preparations from three laboratories indicate that CBH2 has native endo activity, while CBH1 does not.

  3. Capsular polysaccharides from Cryptococcus neoformans modulate production of neutrophil extracellular traps (NETs) by human neutrophils.

    PubMed

    Rocha, Juliana D B; Nascimento, Michelle T C; Decote-Ricardo, Debora; Côrte-Real, Suzana; Morrot, Alexandre; Heise, Norton; Nunes, Marise P; Previato, José Osvaldo; Mendonça-Previato, Lucia; DosReis, George A; Saraiva, Elvira M; Freire-de-Lima, Célio G

    2015-01-01

    In the present study, we characterized the in vitro modulation of NETs (neutrophil extracellular traps) induced in human neutrophils by the opportunistic fungus Cryptococcus neoformans, evaluating the participation of capsular polysaccharides glucuronoxylomanan (GXM) and glucuronoxylomannogalactan (GXMGal) in this phenomenon. The mutant acapsular strain CAP67 and the capsular polysaccharide GXMGal induced NET production. In contrast, the wild-type strain and the major polysaccharide GXM did not induce NET release. In addition, C. neoformans and the capsular polysaccharide GXM inhibited PMA-induced NET release. Additionally, we observed that the NET-enriched supernatants induced through CAP67 yeasts showed fungicidal activity on the capsular strain, and neutrophil elastase, myeloperoxidase, collagenase and histones were the key components for the induction of NET fungicidal activity. The signaling pathways associated with NET induction through the CAP67 strain were dependent on reactive oxygen species (ROS) and peptidylarginine deiminase-4 (PAD-4). Neither polysaccharide induced ROS production however both molecules blocked the production of ROS through PMA-activated neutrophils. Taken together, the results demonstrate that C. neoformans and the capsular component GXM inhibit the production of NETs in human neutrophils. This mechanism indicates a potentially new and important modulation factor for this fungal pathogen. PMID:25620354

  4. Polysaccharide production by microalgae. Final report on phase 1

    SciTech Connect

    Benemann, J.R.; Weissman, J.C.

    1980-04-01

    The feasibility of producing commercially valuable polysaccharides from microalgal biomass was demonstrated. Algal biomass with a high polysaccharide content was produced by subjecting cultures to short periods of nitrogen limitation without decreasing overall biomass production rates. Three different algae were studied--unicellular blue-green alga Synechococcus leopoliensis, filamentous blue-green alga Spirulina platensis, and a green colonial alga, Scenedesmus sp. Batch cultures were grown with varying amounts of nitrate to limit nitrogen uptake at various stages in the batch growth curve. In the presence of high nitrate concentrations, the Synechococcus culture became stationary within four days, whereas both Spirulina and Scenedesmus maintained an appreciable growth rate and high daily productivities, for at least a week. With limiting nitrate concentrations, the cellular content of polysaccharide (measured as total carbohydrates) increased markedly, from 20-25 percent to 70-80 percent in Synechococcus and Spirulina. Depending on the level of nitrate used, onset of nitrogen limitation could be set at various culture densities. In all cases, little or no inhibition of total biomass production was noted.

  5. Sulfate attack expansion mechanisms

    SciTech Connect

    Müllauer, Wolfram Beddoe, Robin E.; Heinz, Detlef

    2013-10-15

    A specially constructed stress cell was used to measure the stress generated in thin-walled Portland cement mortar cylinders caused by external sulfate attack. The effects of sulfate concentration of the storage solution and C{sub 3}A content of the cement were studied. Changes in mineralogical composition and pore size distribution were investigated by X-ray diffraction and mercury intrusion porosimetry, respectively. Damage is due to the formation of ettringite in small pores (10–50 nm) which generates stresses up to 8 MPa exceeding the tensile strength of the binder matrix. Higher sulfate concentrations and C{sub 3}A contents result in higher stresses. The results can be understood in terms of the effect of crystal surface energy and size on supersaturation and crystal growth pressure.

  6. Endosulfan I and endosulfan sulfate disrupts zebrafish embryonic development

    PubMed Central

    Stanley, Kerri A.; Curtis, Lawrence R.; Massey Simonich, Staci L.; Tanguay, Robert L.

    2009-01-01

    Fish in agricultural and remote areas may be exposed to endosulfan and its degradation products as a result of direct runoff, atmospheric transport and deposition. The following study used the zebrafish developmental model to investigate the responses to endosulfan I and endosulfan sulfate, the major degradation product of endosulfan I and II. Embryos were dechorionated and waterborne exposed to the endosulfan I or endosulfan sulfate from 6 to 120 hours post fertilization (hpf). Endosulfan I exposure concentrations ranged from 0.01 to 10 μg/L and endosulfan sulfate from 1 to 100 μg/L. Water solutions were renewed every 24 hours and fish were scored for overt developmental and behavioral abnormalities. Chemical analysis was performed on water, whole embryo, and larvae samples to determine waterborne exposure concentrations and tissue concentrations throughout the 5-day period. The most sensitive toxicity endpoint for both endosulfan I and endosulfan sulfate was an abnormal response of the embryo/larvae to touch, suggesting that endosulfan I and sulfate are developmentally neurotoxic. The waterborne exposure EC50s for inhibition of touch response for endosulfan I and endosulfan sulfate were 2.2 μg/L and 23 μg/L, respectively. The endosulfans were highly concentrated by the organisms, and the inhibition of touch response tissue EC50, determined from the measured tissue concentrations, was 367 ng/g for endosulfan I and 4552 ng/g for endosulfan sulfate. PMID:19883949

  7. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ -ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation

    PubMed Central

    Jobe, Timothy O.; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A.; Mendoza-Cózatl, David G.; Schroeder, Julian I.

    2015-01-01

    Summary Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M2 seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione

  8. Isolation of low-molecular-weight heparin/heparan sulfate from marine sources.

    PubMed

    Saravanan, Ramachandran

    2014-01-01

    The glycosaminoglycan (heparin and heparan sulfate) are polyanionic sulfated polysaccharides mostly recognized for its anticoagulant activity. In many countries, low-molecular-weight heparins have replaced the unfractionated heparin, owing to its high bioavailability, half-life, and less adverse effect. The low-molecular-weight heparins differ in mode of preparation (chemical or enzymatic synthesis and chromatography fractionations) and as a consequence in molecular weight distribution, chemical structure, and pharmacological activities. Bovine and porcine body parts are at present used for manufacturing of commercial heparins, and the appearance of mad cow disease and Creutzfeldt-Jakob disease in humans has limited the use of bovine heparin. Consequently, marine organisms come across the new resource for the production of low-molecular-weight heparin and heparan sulfate. The importance of this chapter suggests that the low-molecular-weight heparin and heparan sulfate from marine species could be alternative sources for commercial heparin. PMID:25081076

  9. 2-Fluoro-L-Fucose Is a Metabolically Incorporated Inhibitor of Plant Cell Wall Polysaccharide Fucosylation.

    PubMed

    Villalobos, Jose A; Yi, Bo R; Wallace, Ian S

    2015-01-01

    The monosaccharide L-fucose (L-Fuc) is a common component of plant cell wall polysaccharides and other plant glycans, including the hemicellulose xyloglucan, pectic rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II), arabinogalactan proteins, and N-linked glycans. Mutations compromising the biosynthesis of many plant cell wall polysaccharides are lethal, and as a result, small molecule inhibitors of plant cell wall polysaccharide biosynthesis have been developed because these molecules can be applied at defined concentrations and developmental stages. In this study, we characterize novel small molecule inhibitors of plant fucosylation. 2-fluoro-L-fucose (2F-Fuc) analogs caused severe growth phenotypes when applied to Arabidopsis seedlings, including reduced root growth and altered root morphology. These phenotypic defects were dependent upon the L-Fuc salvage pathway enzyme L-Fucose Kinase/ GDP-L-Fucose Pyrophosphorylase (FKGP), suggesting that 2F-Fuc is metabolically converted to the sugar nucleotide GDP-2F-Fuc, which serves as the active inhibitory molecule. The L-Fuc content of cell wall matrix polysaccharides was reduced in plants treated with 2F-Fuc, suggesting that this molecule inhibits the incorporation of L-Fuc into these polysaccharides. Additionally, phenotypic defects induced by 2F-Fuc treatment could be partially relieved by the exogenous application of boric acid, suggesting that 2F-Fuc inhibits RG-II biosynthesis. Overall, the results presented here suggest that 2F-Fuc is a metabolically incorporated inhibitor of plant cellular fucosylation events, and potentially suggest that other 2-fluorinated monosaccharides could serve as useful chemical probes for the inhibition of cell wall polysaccharide biosynthesis. PMID:26414071

  10. 2-Fluoro-L-Fucose Is a Metabolically Incorporated Inhibitor of Plant Cell Wall Polysaccharide Fucosylation

    PubMed Central

    Wallace, Ian S.

    2015-01-01

    The monosaccharide L-fucose (L-Fuc) is a common component of plant cell wall polysaccharides and other plant glycans, including the hemicellulose xyloglucan, pectic rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II), arabinogalactan proteins, and N-linked glycans. Mutations compromising the biosynthesis of many plant cell wall polysaccharides are lethal, and as a result, small molecule inhibitors of plant cell wall polysaccharide biosynthesis have been developed because these molecules can be applied at defined concentrations and developmental stages. In this study, we characterize novel small molecule inhibitors of plant fucosylation. 2-fluoro-L-fucose (2F-Fuc) analogs caused severe growth phenotypes when applied to Arabidopsis seedlings, including reduced root growth and altered root morphology. These phenotypic defects were dependent upon the L-Fuc salvage pathway enzyme L-Fucose Kinase/ GDP-L-Fucose Pyrophosphorylase (FKGP), suggesting that 2F-Fuc is metabolically converted to the sugar nucleotide GDP-2F-Fuc, which serves as the active inhibitory molecule. The L-Fuc content of cell wall matrix polysaccharides was reduced in plants treated with 2F-Fuc, suggesting that this molecule inhibits the incorporation of L-Fuc into these polysaccharides. Additionally, phenotypic defects induced by 2F-Fuc treatment could be partially relieved by the exogenous application of boric acid, suggesting that 2F-Fuc inhibits RG-II biosynthesis. Overall, the results presented here suggest that 2F-Fuc is a metabolically incorporated inhibitor of plant cellular fucosylation events, and potentially suggest that other 2-fluorinated monosaccharides could serve as useful chemical probes for the inhibition of cell wall polysaccharide biosynthesis. PMID:26414071

  11. Starch-degrading polysaccharide monooxygenases.

    PubMed

    Vu, Van V; Marletta, Michael A

    2016-07-01

    Polysaccharide degradation by hydrolytic enzymes glycoside hydrolases (GHs) is well known. More recently, polysaccharide monooxygenases (PMOs, also known as lytic PMOs or LPMOs) were found to oxidatively degrade various polysaccharides via a copper-dependent hydroxylation. PMOs were previously thought to be either GHs or carbohydrate binding modules (CBMs), and have been re-classified in carbohydrate active enzymes (CAZY) database as auxiliary activity (AA) families. These enzymes include cellulose-active fungal PMOs (AA9, formerly GH61), chitin- and cellulose-active bacterial PMOs (AA10, formerly CBM33), and chitin-active fungal PMOs (AA11). These PMOs significantly boost the activity of GHs under industrially relevant conditions, and thus have great potential in the biomass-based biofuel industry. PMOs that act on starch are the latest PMOs discovered (AA13), which has expanded our perspectives in PMOs studies and starch degradation. Starch-active PMOs have many common structural features and biochemical properties of the PMO superfamily, yet differ from other PMO families in several important aspects. These differences likely correlate, at least in part, to the differences in primary and higher order structures of starch and cellulose, and chitin. In this review we will discuss the discovery, structural features, biochemical and biophysical properties, and possible biological functions of starch-active PMOs, as well as their potential application in the biofuel, food, and other starch-based industries. Important questions regarding various aspects of starch-active PMOs and possible economical driving force for their future studies will also be highlighted. PMID:27170366

  12. Polysaccharide Based Hydrogels for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Leone, Gemma; Barbucci, Rolando

    Polysaccharide based hydrogels for their physico-chemical and biological properties can be used as scaffolds for soft tissue regneration and as vehicles for drug controlled release. For both these applications, Hyaluronan shows optimal characteristics even though its quick enzymatic degradability makes this natural polysaccharide unsuitable for applications which require prolonged presence in the human organism.

  13. Solution NMR spectroscopy of food polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many polysaccharides are allowed for direct food use, where they serve a number of useful functions. In addition to possibly being a source of calories, a food polysaccharide may be a dietary fiber, bulking agent, crystallization inhibitor, thickener, encapsulant, gelling agent, foam and emulsion s...

  14. Bioactive polysaccharides and gut microbiome (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many polysaccharides have shown the ability to reduce plasma cholesterol or postprandial glycemia. Viscosity in the small intestine seems to be required to slow glucose uptake. Cereal mixed linkage beta-glucans, psyllium, glucomannans, and other polysaccharides also seem to require higher molecula...

  15. Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels.

    PubMed

    Hou, Ruixia; Nie, Lei; Du, Gaolai; Xiong, Xiaopeng; Fu, Jun

    2015-08-01

    This paper aims to investigate the synergistic effects of natural polysaccharides and inorganic nanoparticles on cell adhesion and growth on intrinsically cell non-adhesive polyvinyl alcohol (PVA) hydrogels. Previously, we have demonstrated that Fe2O3 and hydroxyapatite (nHAP) nanoparticles are effective in increasing osteoblast growth on PVA hydrogels. Herein, we blended hyaluronic acid (HA) and chondroitin sulfate (CS), two important components of cartilage extracellular matrix (ECM), with Fe2O3/nHAP/PVA hydrogels. The presence of these natural polyelectrolytes dramatically increased the pore size and the equilibrium swelling ratio (ESR) while maintaining excellent compressive strength of hydrogels. Chondrocytes were seeded and cultured on composite PVA hydrogels containing Fe2O3, nHAP and Fe2O3/nHAP hybrids and Fe2O3/nHAP with HA or CS. Confocal laser scanning microscopy (CLSM) and cell counting kit-8 (CCK-8) assay consistently confirmed that the addition of HA or CS promotes chondrocyte adhesion and growth on PVA and composite hydrogels. Particularly, the combination of HA and CS exhibited further promotion to cell adhesion and proliferation compared with any single polysaccharide. The results demonstrated that the magnetic composite nanoparticles and polysaccharides provided synergistic promotion to cell adhesion and growth. Such polysaccharide-augmented composite hydrogels may have potentials in biomedical applications. PMID:26037704

  16. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  17. Hydrazine/Hydrazine sulfate

    Integrated Risk Information System (IRIS)

    Hydrazine / Hydrazine sulfate ; CASRN 302 - 01 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Non

  18. Distribution of Heparan Sulfate Oligosaccharides in Murine Mucopolysaccharidosis Type IIIA

    PubMed Central

    Mason, Kerryn; Meikle, Peter; Hopwood, John; Fuller, Maria

    2014-01-01

    Heparan sulfate (HS) catabolism begins with endo-degradation of the polysaccharide to smaller HS oligosaccharides, followed by the sequential action of exo-enzymes to reduce these oligosaccharides to monosaccharides and inorganic sulfate. In mucopolysaccharidosis type IIIA (MPS IIIA) the exo-enzyme, N-sulfoglucosamine sulfohydrolase, is deficient resulting in an inability to hydrolyze non-reducing end glucosamine N-sulfate esters. Consequently, partially degraded HS oligosaccharides with non-reducing end glucosamine sulfate esters accumulate. We investigated the distribution of these HS oligosaccharides in tissues of a mouse model of MPS IIIA using high performance liquid chromatography electrospray ionization-tandem mass spectrometry. Oligosaccharide levels were compared to total uronic acid (UA), which was used as a measure of total glycosaminoglycan. Ten oligosaccharides, ranging in size from di- to hexasaccharides, were present in all the tissues examined including brain, spleen, lung, heart, liver, kidney and urine. However, the relative levels varied up to 10-fold, suggesting different levels of HS turnover and storage. The relationship between the di- and tetrasaccharides and total UA was tissue specific with spleen and kidney showing a different disaccharide:total UA ratio than the other tissues. The hexasaccharides showed a stronger correlation with total UA in all tissue types suggesting that hexasaccharides may more accurately reflect the storage burden in these tissues. PMID:25513953

  19. Polysaccharide-based nanoparticles for theranostic nanomedicine.

    PubMed

    Swierczewska, M; Han, H S; Kim, K; Park, J H; Lee, S

    2016-04-01

    Polysaccharides are natural biological molecules that have numerous advantages for theranostics, the integrated approach of therapeutics and diagnostics. Their derivable reactive groups can be leveraged for functionalization with a nanoparticle-enabling conjugate, therapeutics (small molecules, proteins, peptides, photosensitizers) and/or diagnostic agents (imaging agents, sensors). In addition, polysaccharides are diverse in size and charge, biodegradable and abundant and show low toxicity in vivo. Polysaccharide-based nanoparticles are increasingly being used as platforms for simultaneous drug delivery and imaging and are therefore becoming popular theranostic nanoparticles. The review focuses on the method of nanoparticle formation (self-assembled, physical or chemical cross-linked) when engineering polysaccharide-based nanoparticles for theranostic nanomedicine. We highlight recent examples of polysaccharide-based theranostic systems from literature and their potential for use in the clinic, particularly chitosan- and hyaluronic acid-based NPs. PMID:26639578

  20. Effects of chlorate on the sulfation process of Trypanosoma cruzi glycoconjugates. Implication of parasite sulfates in cellular invasion.

    PubMed

    Ferrero, Maximiliano R; Soprano, Luciana L; Acosta, Diana M; García, Gabriela A; Esteva, Mónica I; Couto, Alicia S; Duschak, Vilma G

    2014-09-01

    Sulfation, a post-translational modification which plays a key role in various biological processes, is inhibited by competition with chlorate. In Trypanosoma cruzi, the agent of Chagas' disease, sulfated structures have been described as part of glycolipids and we have reported sulfated high-mannose type oligosaccharides in the C-T domain of the cruzipain (Cz) glycoprotein. However, sulfation pathways have not been described yet in this parasite. Herein, we studied the effect of chlorate treatment on T. cruzi with the aim to gain some knowledge about sulfation metabolism and the role of sulfated molecules in this parasite. In chlorate-treated epimastigotes, immunoblotting with anti-sulfates enriched Cz IgGs (AS-enriched IgGs) showed Cz undersulfation. Accordingly, a Cz mobility shift toward higher isoelectric points was observed in 2D-PAGE probed with anti-Cz antibodies. Ultrastructural membrane abnormalities and a significant decrease of dark lipid reservosomes were shown by electron microscopy and a significant decrease in sulfatide levels was confirmed by TLC/UV-MALDI-TOF-MS analysis. Altogether, these results suggest T. cruzi sulfation occurs via PAPS. Sulfated epitopes in trypomastigote and amastigote forms were evidenced using AS-enriched IgGs by immunoblotting. Their presence on trypomastigotes surface was demonstrated by flow cytometry and IF with Cz/dCz specific antibodies. Interestingly, the percentage of infected cardiac HL-1 cells decreased 40% when using chlorate-treated trypomastigotes, suggesting sulfates are involved in the invasion process. The same effect was observed when cells were pre-incubated with dCz, dC-T or an anti-high mannose receptor (HMR) antibody, suggesting Cz sulfates and HMR are also involved in the infection process by T. cruzi. PMID:24879929

  1. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    SciTech Connect

    Dallam, R.D.

    1987-03-23

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H/sub 2//sup 35/SO/sub 4/) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables.

  2. Molecular weight distribution of polysaccharides from edible seaweeds by high-performance size-exclusion chromatography (HPSEC).

    PubMed

    Gómez-Ordóñez, Eva; Jiménez-Escrig, Antonio; Rupérez, Pilar

    2012-05-15

    Biological properties of polysaccharides from seaweeds are related to their composition and structure. Many factors such as the kind of sugar, type of linkage or sulfate content of algal biopolymers exert an influence in the relationship between structure and function. Besides, the molecular weight (MW) also plays an important role. Thus, a simple, reliable and fast HPSEC method with refractive index detection was developed and optimized for the MW estimation of soluble algal polysaccharides. Chromatogram shape and repeatability of retention time was considerably improved when sodium nitrate was used instead of ultrapure water as mobile phase. Pullulan and dextran standards of different MW were used for method calibration and validation. Also, main polysaccharide standards from brown (alginate, fucoidan, laminaran) and red seaweeds (kappa- and iota-carrageenan) were used for quantification and method precision and accuracy. Relative standard deviation (RSD) of repeatability for retention time, peak areas and inter-day precision was below 0.7%, 2.5% and 2.6%, respectively, which indicated good repeatability and precision. Recoveries (96.3-109.8%) also showed its fairly good accuracy. Regarding linearity, main polysaccharide standards from brown or red seaweeds showed a highly satisfactory correlation coefficient (r>0.999). Moreover, a good sensitivity was shown, with corresponding limits of detection and quantitation in mg/mL of 0.05-0.21 and 0.16-0.31, respectively. The method was applied to the MW estimation of standard algal polysaccharides, as well as to the soluble polysaccharide fractions from the brown seaweed Saccharina latissima and the red Mastocarpus stellatus, respectively. Although distribution of molecular weight was broad, the good repeatability for retention time provided a good precision in MW estimation of polysaccharides. Water- and alkali-soluble fractions from S. latissima ranged from very high (>2400 kDa) to low MW compounds (<6 kDa); this high

  3. Thin film of biocompatible polysaccharides

    NASA Astrophysics Data System (ADS)

    Richert, Ludovic; Lavalle, Philippe; Schaaf, Pierre; Voegel, Jean-Claude; Picart, Catherine

    2003-03-01

    The layer-by-layer deposition method proposed by Decher et al. (1991) is a very simple and versatile method used to build thin films. These films are of interest for bioengineering because of their unique properties and of the possible insertion of bioactive molecules. We present here the peculiar properties of a new kind of film formed with natural biopolymers, namely hyaluronan (HA)and chitosan (CHI). The films may be used as biomimetic substrates to control bacterial and cell adhesion. These polysaccharides are of particular interest because they are biodegradable, non toxic, and can be found in various tissues. Hyaluronan is also a natural ligand for a numerous type of cells through the CD44 receptor. Chitosan has already largely been used for its biological and anti-microbial properties. (CHI/HA) films were built in acidic pH at different ionic strength. The buildup was followed in situ by optical waveguide lightmode spectroscopy (OWLS), quartz crystal microbalance, streaming potential measurements and atomic force microscopy. The kinetics of adsorption and desorption of the polyelectrolytes depended on the ionic strength. Small islands were initially present on the surface which grew by mutual coalescence until becoming a flat film. The films were around 200 nm in thickness. These results suggest that different types of thin films constituted of polysaccharides can be built on any type of surface. These films are currently investigated toward their cell adhesion and bacterial adhesion properties.

  4. Isolation, preliminary characterization and hepatoprotective activity of polysaccharides from Tamarindus indica L.

    PubMed

    Samal, Predeep Kumar; Dangi, Jawahar Singh

    2014-02-15

    Polysaccharide was isolated from Tamarindus indica L. (TIP) and was characterized in terms of moisture and ash content, pH, water holding capacity, particle size, tapped density, bulk density, carr's index, Hausners ratio, angle of repose, content of glucose, uronic acid and sulfate. Morphological, spectral (UV-vis, FTIR) and DSC thermal analysis reveals polysaccharide nature of the isolated starch. DPPH radical scavenging activity of TIP shows RSA comparable to that of silymarin. Hepatoprotective potential of TIP in terms of biochemical parameters, SGOT, SGPT, ALP and BRN were significantly increased (P<0.05) and reduction of serum Total protein in the group of rats given thioacetamide (100mg/kg s.c.). Histopathology reveals that TIP under antagonize the effect of thioacetamide by acting, either as membrane stabilizer, thereby preventing the distortion of the cellular ionic environment associated with thioacetamide intoxication, or by preventing interaction of thioacetamide with the transcriptional machinery of the cells. PMID:24507248

  5. Ulvan Lyases Isolated from the Flavobacteria Persicivirga ulvanivorans Are the First Members of a New Polysaccharide Lyase Family*

    PubMed Central

    Nyvall Collén, Pi; Sassi, Jean-François; Rogniaux, Hélène; Marfaing, Hélène; Helbert, William

    2011-01-01

    Ulvans are complex sulfated polysaccharides found in the cell walls of green algae belonging to the genus Ulva. These polysaccharides are composed of disaccharide repetition moieties made up of sulfated rhamnose linked to either glucuronic acid, iduronic acid, or xylose. Two ulvan lyases of 30 and 46 kDa were purified from the culture supernatant of Persicivirga ulvanivorans. Based on peptide sequencing, the gene encoding the 46-kDa ulvan lyase was cloned. Sequence analysis revealed that the protein is modular and possesses a catalytic module similar to that of the 30-kDa ulvan lyase along with a module of unknown function. The ulvan-degrading function of the gene was confirmed by expression of the catalytic module in a heterologous system. The gene encoding the catalytic module has no sequence homolog in sequence databases and is likely to be the first member of a novel polysaccharide lyase family. Analysis of degradation products showed that both the 30- and 46-kDa ulvan lyases are endolytic and cleave the glycosidic bond between the sulfated rhamnose and a glucuronic or iduronic acid. PMID:22009751

  6. Structural characterization of fucosylated chondroitin sulfates from sea cucumbers Apostichopus japonicus and Actinopyga mauritiana.

    PubMed

    Ustyuzhanina, Nadezhda E; Bilan, Maria I; Dmitrenok, Andrey S; Tsvetkova, Eugenia A; Shashkov, Alexander S; Stonik, Valentin A; Nifantiev, Nikolay E; Usov, Anatolii I

    2016-11-20

    Two samples of fucosylated chondroitin sulfate (FCS), AJ and AM, were isolated from holothurian species Apostichopus japonicus and Actinopyga mauritiana, respectively. Purification of FCS was performed by ion exchange chromatography followed by gel filtration. Structure of the biopolymers was elucidated using chemical and NMR spectroscopic methods. Both polysaccharides were shown to contain a typical chondroitin core built up of repeating disaccharide units →3)-β-d-GalNAc-(1→4)-β-d-GlcA-(1→ and decorated by sulfate groups and α-l-Fuc branches. Two polysaccharides were different in pattern of sulfation of GalNAc and fucosyl branches connected to O-3 of GlcA. The ratio of GalNAc4S6S:GalNAc4S for AJ was about 2:1, whereas for AM this value was approximately 1:1. AJ contained Fucp2S4S and Fucp3S4S residues linked to O-3 of GlcA in a ratio of 3:1, while for AM this ratio was 1:4. Small portions of Fucp4S units attached to O-3 of GlcA were also found in both polysaccharides. Moreover, in a structure of AM the presence of Fucp3S residues linked to O-6 of GalNAc were determined using the data of NMR spectra. PMID:27561511

  7. Biological and physicochemical properties of two polysaccharides from the mycelia of Grifola umbellate.

    PubMed

    Bi, Yunpeng; Miao, Ye; Han, Yan; Xu, Jian; Wang, Qing

    2013-06-20

    In the present study, we firstly reported the antioxidant, antitumor and immunomodulatory effects of two polysaccharides (GUMP-1-1 and GUMP-1-2) isolated from Grifola umbellata mycelia. Chemical analysis indicated that two polysaccharide fractions contained different content of neutral sugar, uronic acid and protein, as well as varying monosaccharide compositions and average molecular weight. We found that they could significantly inhibit the growth of H22 implanted tumor and enhance the spleen index and splenocyte proliferation of H22 tumor-bearing mice. In addition, GUMP-1-2 had the stronger free radicals scavenging and ferrous ion chelating abilities than GUMP-1-1 in vitro. These results indicated that antitumor activity of two purified polysaccharides might be achieved by improving immune response and the different chemical composition and average molecular weight could affect their antitumor, antioxidant and immunomodulatory activities. PMID:23648036

  8. Polysaccharides from Medicinal Herbs As Potential Therapeutics for Aging and Age-Related Neurodegeneration

    PubMed Central

    Li, Haifeng; Ma, Fangli; Hu, Minghua; Xiao, Lingyun; Zhang, Ju; Xiang, Yanxia

    2014-01-01

    Abstract Recent studies have uncovered important aging clues, including free radicals, inflammation, telomeres, and life span pathways. Strategies to regulate aging-associated signaling pathways are expected to be effective in the delay and prevention of age-related disorders. For example, herbal polysaccharides with considerable anti-oxidant and anti-inflammation capacities have been shown to be beneficial in aging and age-related neurodegenerative diseases. Polysaccharides capable of reducing cellular senescence and modulating life span via telomere and insulin pathways have also been found to have the potential to inhibit protein aggregation and aggregation-associated neurodegeneration. Here we present the current status of polysaccharides in anti-aging and anti-neurodegenerative studies. PMID:24125569

  9. Anti-tumor activity of a polysaccharide from blueberry.

    PubMed

    Sun, Xiyun; Liu, Ning; Wu, Zhaoxia; Feng, Ying; Meng, Xianjun

    2015-01-01

    Blueberries (Vaccinium spp.) are rich in bioactive compounds. However, the biological activity of polysaccharides from blueberry has not been reported so far. This study evaluated the anti-tumor and immunological activities of a polysaccharide (BBP3-1) from blueberry in S180-bearing mice. The experimental results indicated that BBP3-1 (100 mg·kg-1·d-1) inhibited the tumor growth rate by 73.4%. Moreover, this group, compared with the model control, had shown an effect of increasing both the spleen and thymus indices (p < 0.05), increasing phagocytosis by macrophages (p < 0.05), boosting the proliferation and transformation of lymphocytes (p < 0.01), promoting the secretion of TNF-α, IFN-γ, and IL-2 (p < 0.05) and improving NK cell activity (p < 0.01). From this study, we could easily conclude that BBP3-1 has the ability to inhibit tumor progression and could act as a good immunomodulator. PMID:25734419

  10. Enzymatic method for improving the injectability of polysaccharides

    DOEpatents

    Griffith, William L.; Compere, Alicia L.; Holleman, James W.

    1982-01-01

    A method for enhancing the ability of polysaccharides in aqueous solution to flow through a porous medium comprises contacting the polysaccharides with an endoenzyme capable of hydrolyzing at least one of the linkages of the sugar units of the polysaccharides and maintaining the polysaccharides in contact with the enzyme under hydrolysis conditions for a time sufficient to decrease the tendency of the polysaccharides to plug the porous medium yet insufficient to decrease the viscosity of the aqueous polysaccharides by more than 25%. The partially hydrolyzed polysaccharides are useful as thickening agents for flooding water used to recover oil from oil-containing subterranean formations.

  11. Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments

    USGS Publications Warehouse

    Zehr, J.P.; Oremland, R.S.

    1987-01-01

    Washed cell suspension of Desulfovibrio desulfuricans subsp. aestuarii were capable of reducing nanomolar levels of selenate to selenide as well as sulfate to sulfide. Reduction of these species was inhibited by 1 mM selenate or tungstate. The addition of 1 mM sulfate decreased the reduction of selenate and enhanced the reduction of sulfate. Increasing concentrations of sulfate inhibited rates of selenate reduction but enhanced sulfate reduction rates. Cell suspensions kept in 1 mM selenate were incapable of reducing either selenate or sulfate when the selenate/sulfate ratio was ???0.02, indicating that irreversible inhibition occurs at high selenate concentrations. Anoxic estuarine sediments having an active flora of sulfate-respiring bacteria were capable of a small amount of selenate reduction when ambient sulfate concentrations were low (<4 mM). These results indicate that sulfate is an inhibitor of the reduction of trace qunatitites of selenate. Therefore, direct reduction of traces of selenate to selenide by sulfate-respiring bacteria in natural environments is constrained by the ambient concentration of sulfate ions. The significance of this observation with regard to the role sediments play in sequestering selenium is discussed

  12. Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels.

    PubMed

    Jeddou, Khawla Ben; Chaari, Fatma; Maktouf, Sameh; Nouri-Ellouz, Oumèma; Helbert, Claire Boisset; Ghorbel, Raoudha Ellouz

    2016-08-15

    Water-soluble polysaccharides were extracted from potato peel waste (PPW). The structure of the polysaccharides from PPW (PPPW) was examined by means of Fourier transform-infrared spectroscopy (FT-IR) analysis, X-ray diffractometry (XRD) and gas chromatography-mass spectrometry (GC-MS). The results suggest that the extracted polysaccharides form a semi-crystalline polymer constituted essentially of the functional groups CO, CH and OH. Acid hydrolysis of this polymer yielded glucose (76.25%) as the dominant sugar functional properties (water holding capacity: WHC, oil holding capacity: OHC, foaming, and emulsion properties) of this polymer were studied. The PPPW showed interesting water-holding and fat-binding capacities which were 4.097 ± 0.537 g/g and 4.398 ± 0.04 g/g, respectively. In addition, it presented good foaming and emulsion properties. The antioxidant activity of this polymer was also studied and revealed that the polysaccharides showed interesting 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity (IC50 PPPW=11.578 mg/mL), reducing power and β-carotene bleaching inhibition activities, and also a strong ABTS radical scavenging activity (IC50 PPPW=2mg/mL). Overall, the results suggest that the polysaccharide is a promising source of natural antioxidants and can be used as additive in food, pharmaceutical and cosmetic preparations. PMID:27006219

  13. Anti-inflammatory activity of polysaccharide from Schizophyllum commune as affected by ultrasonication.

    PubMed

    Du, Bin; Zeng, Huansong; Yang, Yuedong; Bian, Zhaoxiang; Xu, Baojun

    2016-10-01

    Ultrasound treatment was applied to modify the physicochemical properties of an exopolysaccharide from mycelial culture of Schizophyllum commune. Molecular weight (MW) degradation, viscosity and anti-inflammatory property of ultrasonic treated polysaccharide were optimized with response surface methodology. The best ultrasonic parameters were obtained with a three-variable-three-level Box-Behnken design. The optimized conditions for efficient anti-inflammatory activity are initial concentration at 0.4%, ultrasonic power at 600W, and duration of ultrasonic irradiation for 9min. Under these conditions, the nitric oxide inhibition rate was 95±0.03% which agreed closely with the predicted value (96%). Average MW of polysaccharide decreased after ultrasonic treatments. The viscosity of degraded polysaccharide dropped compared with native polysaccharide. The anti-inflammatory activity was improved by ultrasound treatment. The results suggested that ultrasound treatment is an effective approach to decrease the MW of polysaccharide with high anti-inflammatory activity. Ultrasonic treatment is a viable modification technology for high MW polymer materials. PMID:27189700

  14. CHARACTERIZATION OF CELL WALL POLYSACCHARIDES OF THE COENCOCYTIC GREEN SEAWEED BRYOPSIS PLUMOSA (BRYOPSIDACEAE, CHLOROPHYTA) FROM THE ARGENTINE COAST(1).

    PubMed

    Ciancia, Marina; Alberghina, Josefina; Arata, Paula Ximena; Benavides, Hugo; Leliaert, Frederik; Verbruggen, Heroen; Estevez, Jose Manuel

    2012-04-01

    Bryopsis sp. from a restricted area of the rocky shore of Mar del Plata (Argentina) on the Atlantic coast was identified as Bryopsis plumosa (Hudson) C. Agardh (Bryopsidales, Chlorophyta) based on morphological characters and rbcL and tufA DNA barcodes. To analyze the cell wall polysaccharides of this seaweed, the major room temperature (B1) and 90°C (X1) water extracts were studied. By linkage analysis and NMR spectroscopy, the structure of a sulfated galactan was determined, and putative sulfated rhamnan structures and furanosidic nonsulfated arabinan structures were also found. By anion exchange chromatography of X1, a fraction (F4), comprising a sulfated galactan as major structure was isolated. Structural analysis showed a linear backbone constituted of 3-linked β-d-galactose units, partially sulfated on C-6 and partially substituted with pyruvic acid forming an acetal linked to O-4 and O-6. This galactan has common structural features with those of green seaweeds of the genus Codium (Bryopsidales, Chlorophyta), but some important differences were also found. This is the first report about the structure of the water-soluble polysaccharides biosynthesized by seaweeds of the genus Bryopsis. These sulfated galactans and rhamnans were in situ localized mostly in two layers, one close to the plasma membrane and the other close to the apoplast, leaving a middle amorphous, unstained cell wall zone. In addition, fibrillar polysaccharides, comprising (1→3)-β-d-xylans and cellulose, were obtained by treatment of the residue from the water extractions with an LiCl/DMSO solution at high temperature. These polymers were also localized in a bilayer arrangement. PMID:27009722

  15. Rheology of interfacial protein-polysaccharide composites

    NASA Astrophysics Data System (ADS)

    Fischer, P.

    2013-05-01

    The morphology and mechanical properties of protein adsorption layers can significantly be altered by the presence of surfactants, lipids, particles, other proteins, and polysaccharides. In food emulsions, polysaccharides are primarily considered as bulk thickener but can under appropriate environmental conditions stabilize or destabilize the protein adsorption layer and, thus, the entire emulsion system. Despite their ubiquitous usage as stabilization agent, relatively few investigations focus on the interfacial rheology of composite protein/polysaccharide adsorption layers. The manuscript provides a brief review on both main stabilization mechanisms, thermodynamic phase separation and electrostatic interaction and discusses the rheological response in light of the environmental conditions such as ionic strength and pH.

  16. Immunologically active polysaccharide from Cetraria islandica.

    PubMed

    Ingolfsdottir, K; Jurcic, K; Fischer, B; Wagner, H

    1994-12-01

    A new alkali-soluble polysaccharide has been isolated from Iceland moss, Cetraria islandica (L.) Ach., by ethanol fractionation, ion-exchange chromatography, and gel filtration. The mean M(r) was estimated to be 18,000. Sugar and methylation analysis, partial hydrolysis, and 13C-NMR spectroscopy showed the polysaccharide to be a branched galactomannan with a backbone composed of two structural elements; (1-->6)-linked alpha-D-mannopyranosyl and alpha-D-(1-->6)-galactopyranosyl units. The polysaccharide showed pronounced immunostimulating activity in an in vitro phagocytosis assay and in the in in vivo carbon clearance assay. PMID:7809205

  17. Regioselective synthesis of sulfated guar gum: comparative studies of structure and antioxidant activities.

    PubMed

    Wang, Junlong; Niu, Shengfan; Zhao, Baotang; Wang, Xiaofang; Yao, Jian; Zhang, Ji; Zhao, Weiwei; Zhao, Yuting

    2013-11-01

    We reported here a new synthesis of C-2 and C-3 sulfated guar gum (SRSGG) with low degree of substitution (DSS) of 0.58, employing triphenylchloromethane (TrCl) as a protected precursor. The yield and DSTr (calculated from the weight of triphenylmethanol) of triphenylmethylated GG (GGTr) was 165.6% and 0.71, respectively. In addition, low ratio (1:4) of chlorosulfuric acid to pyridine (1:4) was chosen in sulfation reaction since the protecting group was slightly sensitive to acid. Results of FT-IR and (13)C NMR spectroscopy indicated that C-2 and C-3 substitution was predominant but not fully sulfated in SRSGG. Size-exclusion chromatograph combined with multi-angle laser photometer (SEC-LLS) showed a decrease in molecular weight in the reaction. This might be due to the degradation in sulfation and deprotection process. Finally, we investigated the effect of structure features on the antioxidant activities in vitro. Vitro antioxidant experiments revealed that the regioselective sulfation at C-2 and C-3 and low molecular weight afforded strong antioxidant activities showing a much higher scavenging abilities of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical than that by the known C-6-sulfated derivative. The antioxidant activities of sulfated polysaccharides were not a function of a single factor but a combination of molecular weight, DSS and substitution positions. PMID:24120962

  18. Modeling the influence of decomposing organic solids on sulfate reduction rates for iron precipitation.

    PubMed

    Hemsi, Paulo S; Shackelford, Charles D; Figueroa, Linda A

    2005-05-01

    The influence of decomposing organic solids on sulfate (S04(2-)) reduction rates for metals precipitation in sulfate-reducing systems, such as in bioreactors and permeable reactive barriers for treatment of acid mine drainage, is modeled. The results are evaluated by comparing the model simulations with published experimental data for two single-substrate and two multiple-substrate batch equilibrium experiments. The comparisons are based on the temporal trends in SO4(2-), ferrous iron (Fe2+), and hydrogen sulfide (H2S) concentrations, as well as on rates of sulfate reduction. The temporal behaviors of organic solid materials, dissolved organic substrates, and different bacterial populations also are simulated. The simulated results using Contois kinetics for polysaccharide decomposition, Monod kinetics for lactate-based sulfate reduction, instantaneous or kinetically controlled precipitation of ferrous iron mono-sulfide (FeS), and partial volatilization of H2S to the gas phase compare favorably with the experimental data. When Contois kinetics of polysaccharide decomposition is replaced by first-order kinetics to simulate one of the single-substrate batch experiments, a comparatively poorer approximation of the rates of sulfate reduction is obtained. The effect of sewage sludge in boosting the short-term rate of sulfate reduction in one of the multiple-substrate experiments also is approximated reasonably well. The results illustrate the importance of the type of kinetics used to describe the decomposition of organic solids on metals precipitation in sulfate-reducing systems as well as the potential application of the model as a predictive tool for assisting in the design of similar biochemical systems. PMID:15926572

  19. Extraction and characterization of polysaccharides from Semen Cassiae by microwave-assisted aqueous two-phase extraction coupled with spectroscopy and HPLC.

    PubMed

    Chen, Zhi; Zhang, Wei; Tang, Xunyou; Fan, Huajun; Xie, Xiujuan; Wan, Qiang; Wu, Xuehao; Tang, James Z

    2016-06-25

    A novel and rapid method for simultaneous extraction and separation of the different polysaccharides from Semen Cassiae (SC) was developed by microwave-assisted aqueous two-phase extraction (MAATPE) in a one-step procedure. Using ethanol/ammonium sulfate system as a multiphase solvent, the effects of MAATPE on the extraction of polysaccharides from SC such as the composition of the ATPS, extraction time, temperature and solvent-to-material ratio were investigated by UV-vis analysis. Under the optimum conditions, the yields of polysaccharides were 4.49% for the top phase, 8.80% for the bottom phase and 13.29% for total polysaccharides, respectively. Compared with heating solvent extraction and ultrasonic assisted extraction, MAATPE exhibited the higher extraction yields in shorter time. Fourier-transform infrared spectra showed that two polysaccharides extracted from SC to the top and bottom phases by MAATPE were different from each other in their chemical structures. Through acid hydrolysis and PMP derivatization prior to HPLC, analytical results by indicated that a polysaccharide of the top phases was a relatively homogeneous homepolysaccharide composed of dominant gucose glucose while that of the bottom phase was a water-soluble heteropolysaccharide with multiple components of glucose, xylose, arabinose, galactose, mannose and glucuronic acid. Molar ratios of monosaccharides were 95.13:4.27:0.60 of glucose: arabinose: galactose for the polysaccharide from the top phase and 62.96:14.07:6.67: 6.67:5.19:4.44 of glucose: xylose: arabinose: galactose: mannose: glucuronic acid for that from the bottom phase, respectively. The mechanism for MAATPE process was also discussed in detail. MAATPE with the aid of microwave and the selectivity of the ATPS not only improved yields of the extraction, but also obtained a variety of polysaccharides. Hence, it was proved as a green, efficient and promising alternative to simultaneous extraction of polysaccharides from SC. PMID

  20. Antiviral property and mechanisms of a sulphated polysaccharide from the brown alga Sargassum patens against Herpes simplex virus type 1.

    PubMed

    Zhu, W; Chiu, L C M; Ooi, V E C; Chan, P K S; Ang, P O

    2006-11-01

    A sulphated polysaccharide (SP-2a) from the brown alga Sargassum patens (Kütz.) Agardh (Sargassaceae) was found to significantly inhibit the in vitro replication of both the acyclovir (ACV)-sensitive and -resistant strains of Herpes simplex virus type 1 (HSV-1), in dose-dependent manners, with 50% inhibitions occurring with 1.5-5.3 microg/ml of the polysaccharide. SP-2a exhibited extracellular virucidal activity only against the ACV-sensitive strains, but not the resistant strain, at the concentration of 100 microg/ml. The strongest antiviral activities against the different strains of HSV-1 were observed when this polysaccharide was present during and after adsorption of the virus to host cells. The inhibitory effect of SP-2a on virus adsorption occurred dose-dependently in all the HSV-1 strains tested, and the adsorption of the ACV-resistant DM2.1 strain was reduced by 81.9% (relative to control) with 4 microg/ml of the polysaccharide. This study clearly demonstrated that the antiviral mode of action of SP-2a is mediated mainly by inhibiting virus attachment to host cells, and this sulphated polysaccharide might have different modes of action against the ACV-sensitive and -resistant strains of HSV-1. PMID:16427262

  1. Variations of pH as an additional tool in the analysis of crowded NMR spectra of fucosylated chondroitin sulfates.

    PubMed

    Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Bilan, Maria I; Shashkov, Alexander S; Gerbst, Alexey G; Usov, Anatolii I; Nifantiev, Nikolay E

    2016-03-24

    The influence of pH variation on chemical shift values in NMR spectra of fucosylated chondroitin sulfates was studied using polysaccharides isolated from three sea cucumber species Apostichopus japonicus, Actinopyga mauritiana and Cucumaria japonica. The signals of glucuronic acid residues were found to be the most sensitive to pH changes in comparison to the chemical shifts of the sulfated galactosamine and fucosyl units, most of which were altered insignificantly. It was shown that in the presence of imidazole-HCl buffer (pH 7.2) NMR spectra of the polysaccharides from A. japonicus and A. mauritiana were sufficiently resolved, whereas under acidic conditions their (1)H NMR spectra were complicated by overlapping of H-1 signals of GlcA and GalNAc. In the case of polysaccharide from C. japonica bearing 3-O-fucosylated and 3-O-sulfated glucuronic acid residues in the backbone, acidification of the medium led to separation of H-1 signals of GlcA3S and GalNAc. Therefore, the combination of data obtained at different pH values may be useful for interpretation of overcrowded spectra of fucosylated chondroitin sulfates. PMID:26895544

  2. Drilling fluid containing crosslinked polysaccharide derivative

    SciTech Connect

    Demott, D.N.; Kucera, C.H.

    1981-03-24

    A drilling fluid having extremely desirable physical properties which comprises an aqueous solution of a hydroxyalkyl polysaccharide derivative and a water soluble ionic aluminum crosslinking agent, preferably sodium aluminate.

  3. Sulfated carbohydrate compounds prevent microbial adherence by sexually transmitted disease pathogens.

    PubMed Central

    Herold, B C; Siston, A; Bremer, J; Kirkpatrick, R; Wilbanks, G; Fugedi, P; Peto, C; Cooper, M

    1997-01-01

    Heparan sulfate (HS) serves as a receptor for adherence of herpes simplex viruses, Chlamydia trachomatis, Neisseria gonorrhoeae, and, indirectly, human immunodeficiency virus. Using primary human culture systems, we identified sulfated carbohydrate compounds that resemble HS and competitively inhibit infection by these pathogens. These compounds are candidates for intravaginal formulations for the prevention of sexually transmitted diseases. PMID:9420059

  4. Preliminary investigation of a highly sulfated galactofucan fraction isolated from the brown alga Sargassum polycystum.

    PubMed

    Bilan, Maria I; Grachev, Alexey A; Shashkov, Alexander S; Thuy, Thanh Thi Thu; Van, Tran Thi Thanh; Ly, Bui Minh; Nifantiev, Nikolay E; Usov, Anatolii I

    2013-08-01

    A fucoidan preparation was isolated from the brown alga Sargassum polycystum (Fucales, Sargassaceae). The preparation was fractionated by anion-exchange chromatography, and two highly sulfated fractions F3 and F4 were obtained. The fractions were quite similar in composition, but different in chemical structure. F4 was analyzed by chemical methods, including desulfation, methylation, Smith degradation, and partial acid hydrolysis with mass-spectrometric monitoring, as well as by NMR spectroscopy. Several 2D NMR procedures, including HMQC-TOCSY and HMQC-NOESY, were used to obtain reliable structural information from the complex spectra. Molecules of F4 were shown to contain a backbone built up mainly of 3-linked α-L-fucopyranose 4-sulfate residues, as in many other fucoidans, but rather short sequences of these residues are interspersed by single 2-linked α-D-galactopyranose residues also sulfated at position 4. This rather unusual structural feature should have a great influence on the conformation of the polymeric molecule and may be important for biological activity of the polysaccharide. Hence, F4 is an example of a new sulfated galactofucan isolated from the brown alga. According to the data obtained, the distribution of galactose residues along the polysaccharide backbone seems to be not strictly regular, but the definitive sequence of monomers in the polymeric molecules awaits additional investigation. PMID:23810980

  5. Acetylated Rhamnogalacturonans from Immature Fruits of Abelmoschus esculentus Inhibit the Adhesion of Helicobacter pylori to Human Gastric Cells by Interaction with Outer Membrane Proteins.

    PubMed

    Thöle, Christian; Brandt, Simone; Ahmed, Niyaz; Hensel, Andreas

    2015-01-01

    Polysaccharide containing extracts from immature fruits of okra (Abelmoschus esculentus) are known to exhibit antiadhesive effects against bacterial adhesion of Helicobacter pylori (H. pylori) to stomach tissue. The present study investigates structural and functional features of polymers responsible for this inhibition of bacterial attachment to host cells. Ammonium sulfate precipitation of an aqueous extract yielded two fractions at 60% and 90% saturation with significant antiadhesive effects against H. pylori, strain J99, (FE60% 68% ± 15%; FE90% 75% ± 11% inhibition rates) after preincubation of the bacteria at 1 mg/mL. Sequential extraction of okra fruits yielded hot buffer soluble solids (HBSS) with dose dependent antiadhesive effects against strain J99 and three clinical isolates. Preincubation of H. pylori with HBSS (1 mg/mL) led to reduced binding to 3'-sialyl lactose, sialylated Le(a) and Le(x). A reduction of bacterial binding to ligands complementary to BabA and SabA was observed when bacteria were pretreated with FE90%. Structural analysis of the antiadhesive polysaccharides (molecular weight, monomer composition, linkage analysis, stereochemistry, and acetylation) indicated the presence of acetylated rhamnogalacturonan-I polymers, decorated with short galactose side chains. Deacetylation of HBSS and FE90% resulted in loss of the antiadhesive activity, indicating esterification being a prerequisite for antiadhesive activity. PMID:26389872

  6. Chemical and physical stability of citral and limonene in sodium dodecyl sulfate-chitosan and gum arabic-stabilized oil-in-water emulsions.

    PubMed

    Djordjevic, Darinka; Cercaci, Luisito; Alamed, Jean; McClements, D Julian; Decker, Eric A

    2007-05-01

    Citral and limonene are the major flavor components of citrus oils. Both of these compounds can undergo chemical degradation leading to loss of flavor and the formation of undesirable off-flavors. Engineering the interface of emulsion droplets with emulsifiers that inhibit chemical reactions could provide a novel technique to stabilize citral and limonene. At present, emulsified flavor oils are usually stabilized by gum arabic (GA), which is a naturally occurring polysaccharide-protein complex. The objective of this study was to examine if citral and limonene were more stable in emulsions stabilized with a sodium dodecyl sulfate (SDS)-chitosan complex than GA. Citral degraded less in GA-stabilized than in SDS-chitosan-stabilized emulsions at pH 3.0. However, SDS-chitosan-stabilized emulsions were more effective at retarding the formation of the citral oxidation product, p-cymene, than GA-stabilized emulsions. Limonene degradation and the formation of limonene oxidation products, limonene oxide and carvone, were lower in the SDS-chitosan- than GA-stabilized emulsions at pH 3.0. The ability of an SDS-chitosan multilayer emulsifier system to inhibit the oxidative deterioration of citral and limonene could be due to the formation of a cationic and thick emulsion droplet interface that could repel prooxidative metals, thus decreasing prooxidant-lipid interactions. PMID:17419641

  7. Genomic Potential for Polysaccharide Deconstruction in Bacteria

    PubMed Central

    Martiny, Adam C.

    2014-01-01

    Glycoside hydrolases are important enzymes that support bacterial growth by enabling the degradation of polysaccharides (e.g., starch, cellulose, xylan, and chitin) in the environment. Presently, little is known about the overall phylogenetic distribution of the genomic potential to degrade these polysaccharides in bacteria. However, knowing the phylogenetic breadth of these traits may help us predict the overall polysaccharide processing in environmental microbial communities. In order to address this, we identified and analyzed the distribution of 392,166 enzyme genes derived from 53 glycoside hydrolase families in 8,133 sequenced bacterial genomes. Enzymes for oligosaccharides and starch/glycogen were observed in most taxonomic groups, whereas glycoside hydrolases for structural polymers (i.e., cellulose, xylan, and chitin) were observed in clusters of relatives at taxonomic levels ranging from species to genus as determined by consenTRAIT. The potential for starch and glycogen processing, as well as oligosaccharide processing, was observed in 85% of the strains, whereas 65% possessed enzymes to degrade some structural polysaccharides (i.e., cellulose, xylan, or chitin). Potential degraders targeting one, two, and three structural polysaccharides accounted for 22.6, 32.9, and 9.3% of genomes analyzed, respectively. Finally, potential degraders targeting multiple structural polysaccharides displayed increased potential for oligosaccharide deconstruction. This study provides a framework for linking the potential for polymer deconstruction with phylogeny in complex microbial assemblages. PMID:25527556

  8. Antitumor activity of mushroom polysaccharides: a review.

    PubMed

    Ren, Lu; Perera, Conrad; Hemar, Yacine

    2012-11-01

    Mushrooms were considered as a special delicacy by early civilizations and valued as a credible source of nutrients including considerable amounts of dietary fiber, minerals, and vitamins (in particularly, vitamin D). Mushrooms are also recognized as functional foods for their bioactive compounds offer huge beneficial impacts on human health. One of those potent bioactives is β-glucan, comprising a backbone of glucose residues linked by β-(1→3)-glycosidic bonds with attached β-(1→6) branch points, which exhibits antitumor and immunostimulating properties. The commercial pharmaceutical products from this polysaccharide source, such as schizophyllan, lentinan, grifolan, PSP (polysaccharide-peptide complex) and PSK (polysaccharide-protein complex), have shown evident clinical results. The immunomodulating action of mushroom polysaccharides is to stimulate natural killer cells, T-cells, B-cells, neutrophils, and macrophage dependent immune system responses via differing receptors involving dectin-1, the toll-like receptor-2 (a class of proteins that play a role in the immune system), scavengers and lactosylceramides. β-Glucans with various structures present distinct affinities toward these receptors to trigger different host responses. Basically, their antitumor abilities are influenced by the molecular mass, branching configuration, conformation, and chemical modification of the polysaccharides. This review aims to integrate the information regarding nutritional, chemical and biological aspects of polysaccharides in mushrooms, which will possibly be employed to elucidate the correlation between their structural features and biological functions. PMID:22865023

  9. Monoclonal antibodies against plant cell wall polysaccharides

    SciTech Connect

    Hahn, M.G.; Bucheli, E.; Darvill, A.; Albersheim, P. )

    1989-04-01

    Monoclonal antibodies (McAbs) are useful tools to probe the structure of plant cell wall polysaccharides and to localize these polysaccharides in plant cells and tissues. Murine McAbs were generated against the pectic polysaccharide, rhamnogalacturonan I (RG-I), isolated from suspension-cultured sycamore cells. The McAbs that were obtained were grouped into three classes based upon their reactivities with a variety of plant polysaccharides and membrane glycoproteins. Eleven McAbs (Class I) recognize epitope(s) that appear to be immunodominant and are found in RG-I from sycamore and maize, citrus pectin, polygalacturonic acid, and membrane glycoproteins from suspension-cultured cells of sycamore, maize, tobacco, parsley, and soybean. A second group of five McAbs (Class II) recognize epitope(s) present in sycamore RG-I, but do not bind to any of the other polysaccharides or glycoproteins recognized by Class I. Lastly, one McAb (Class III) reacts with sycamore RG-I, sycamore and tamarind xyloglucan, and sycamore and rice glucuronoarabinoxylan, but does not bind to maize RG-I, polygalacturonic acid or the plant membrane glycoproteins recognized by Class I. McAbs in Classes II and III are likely to be useful in studies of the structure, biosynthesis and localization of plant cell wall polysaccharides.

  10. Preliminary study on the potential of polysaccharide from indigenous Tiger's Milk mushroom (Lignosus rhinocerus) as anti-lung cancer agent

    NASA Astrophysics Data System (ADS)

    Lai, Wei Hong; Zainal, Zamri; Daud, Fauzi

    2014-09-01

    Tiger's Milk mushroom is a tropical polypore genus that can be found in the tropical part of the world in Australia, Papua New Guinea, Philippines, Indonesia, Malaysia, Sri Lanka and Vanuatu. In Malaysia, Lignosus rhinocerus is the most sought after medicinal mushroom by Semai aborigine upon request by local herbalist. This priced mushroom has been used traditionally to treat various diseases such as asthma, breast cancer, cough, fever and food poisoning. Current results indicated polysaccharide from sclerotia of indigenous L. rhinocerus extracted through hot water is able to inhibit up to 45% growth of human lung carcinoma. Inhibition is achieved when concentration of polysaccharide are in the range of 4-8 μg/ml. Present preliminary study suggests beta-glucan-rich polysaccharide from sclerotia of indigenous L. rhinocerus has anti-proliferation activity on human lung carcinoma (A549).

  11. Ferric sulfates on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1987-01-01

    Evidence is presented for the possible existence of ferric sulfato complexes and hydroxo ferric sulfate minerals in the permafrost of Mars. A sequential combination of ten unique conditions during the cooling history of Mars is suggested which is believed to have generated an environment within Martian permafrost that has stabilized Fe(3+)-SO4(2-)-bearing species. It is argued that minerals belonging to the jarosite and copiapite groups could be present in Martian regolith analyzed in the Viking XRF measurements at Chryse and Utopia, and that maghemite suspected to be coating the Viking magnet arrays is a hydrolysate of dissolved ferric sulfato complexes from exposed Martian permafrost.

  12. Sulfate scale dissolution

    SciTech Connect

    Morris, R.L.; Paul, J.M.

    1992-01-28

    This patent describes a method for removing barium sulfate scale. It comprises contacting the scale with an aqueous solution having a pH of about 8 to about 14 and consisting essentially of a chelating agent comprising a polyaminopolycarboxylic acid or salt of such an acid in a concentration of 0.1 to 1.0 M, and anions of a monocarboxylic acid selected form mercaptoacetic acid, hydroxyacetic acid, aminoacetic acid, or salicyclic acid in a concentration of 0.1 to 1.0 M and which is soluble in the solution under the selected pH conditions, to dissolve the scale.

  13. Structure of a fucose-branched chondroitin sulfate from sea cucumber. Evidence for the presence of 3-O-sulfo-beta-D-glucuronosyl residues.

    PubMed

    Vieira, R P; Mulloy, B; Mourão, P A

    1991-07-25

    The structure of a unique focose-branched chondroitin sulfate isolated from the body wall of a sea cucumber was examined in detail. This glycosaminoglycan contains side chain disaccharide units of sulfated fucopyranosyl units linked to approximately one-half of the glucuronic acid moieties through the O-3 position of the acid. The intact polysaccharide is totally resistant to chondroitinase degradation, whereas, after defucosylation, it is partially degraded by the enzyme. However, only after an additional step of desulfation, the chondroitin from sea cucumber is almost totally degraded by chondroitinase AC or ABC. This result, together with the methylation and NMR studies of the native and chemically modified polysaccharide, suggest that besides the fucose branches, the sea cucumber chondroitin sulfate contains sulfate esters at position O-3 of the beta-D-glucuronic acid units. Furthermore, the proteoglycan from the sea cucumber chondroitin sulfate is recognized by anti-Leu-7 monoclonal antibody, which specifically recognizes 3-sulfoglucuronic acid residues. In analogy with the fucose branched units, the 3-O-sulfo-beta-D-glucuronosyl residues are resistant to chondroitinase degradation. Regarding the position of the glycosidic linkage and site of sulfation in the fucose branches, our results suggest high heterogeneity. Tentatively, it is possible to suggest the preponderance of disaccharide units formed by 3,4-di-O-sulfo-alpha-L-fucopyranosyl units glycosidically linked through position 1----2 to 4-O-sulfo-alpha-L-fucopyranose. Finally, the presence of unusual 4/6-disulfated disaccharide units, together with the common 6-sulfated and non-sulfated units, was detected in the chondroitin sulfate core of this polysaccharide. PMID:1906878

  14. Heparan Sulfate Differences in Rheumatoid Arthritis versus Healthy Sera

    PubMed Central

    López-Hoyos, Marcos; Seo, Youjin; Andaya, Armann; Leary, Julie A.

    2015-01-01

    Heparan sulfate (HS) is a complex and highly variable polysaccharide, expressed ubiquitously on the cell surface as HS proteoglycans (HSPGs), and found in the extracellular matrix as free HS fragments. Its heterogeneity due to various acetylation and sulfation patterns endows a multitude of functions. In animal tissues, HS interacts with a wide range of proteins to mediate numerous biological activities; given its multiple roles in inflammation processes, characterization of HS in human serum has significant potential for elucidating disease mechanisms. Historically, investigation of HS was limited by its low concentration in human serum, together with the complexity of the serum matrix. In this study, we used a modified mass spectrometry method to examine HS disaccharide profiles in the serum of 50 women with rheumatoid arthritis (RA), and compared our results to 51 sera from healthy women. Using various purification methods and online LC-MS/MS, we discovered statistically significant differences in the sulfation and acetylation patterns between populations. Since early diagnosis of RA is considered important in decelerating the disease's progression, identification of specific biomolecule characterizations may provide crucial information towards developing new therapies for suppressing the disease in its early stages. This is the first report of potential glycosaminoglycan biomarkers for RA found in human sera, while acknowledging the obvious fact that a larger population set, and more stringent collection parameters, will need to be investigated in the future. PMID:25217862

  15. Ability of sat-1 to transport sulfate, bicarbonate, or oxalate under physiological conditions.

    PubMed

    Krick, Wolfgang; Schnedler, Nina; Burckhardt, Gerhard; Burckhardt, Birgitta C

    2009-07-01

    Tubular reabsorption of sulfate is achieved by the sodium-dependent sulfate transporter, NaSi-1, located at the apical membrane, and the sulfate-anion exchanger, sat-1, located at the basolateral membrane. To delineate the physiological role of rat sat-1, [(35)S]sulfate and [(14)C]oxalate uptake into sat-1-expressing oocytes was determined under various experimental conditions. Influx of [(35)S]sulfate was inhibited by bicarbonate, thiosulfate, sulfite, and oxalate, but not by sulfamate and sulfide, in a competitive manner with K(i) values of 2.7 +/- 1.3 mM, 101.7 +/- 9.7 microM, 53.8 +/- 10.9 microM, and 63.5 +/- 38.7 microM, respectively. Vice versa, [(14)C]oxalate uptake was inhibited by sulfate with a K(i) of 85.9 +/- 9.5 microM. The competitive type of inhibition indicates that these compounds are most likely substrates of sat-1. Physiological plasma bicarbonate concentrations (25 mM) reduced sulfate and oxalate uptake by more than 75%. Simultaneous application of sulfate, bicarbonate, and oxalate abolished sulfate as well as oxalate uptake. These data and electrophysiological studies using a two-electrode voltage-clamp device provide evidence that sat-1 preferentially works as an electroneutral sulfate-bicarbonate or oxalate-bicarbonate exchanger. In kidney proximal tubule cells, sat-1 likely completes sulfate reabsorption from the ultrafiltrate across the basolateral membrane in exchange for bicarbonate. In hepatocytes, oxalate extrusion is most probably mediated either by an exchange for sulfate or bicarbonate. PMID:19369292

  16. The effect of nitrate and sulfate on mediator-less microbial fuel cells with high internal resistance.

    PubMed

    Yi, Taewoo; Harper, Willie F

    2009-11-01

    Microbial fuel cells (MFCs) simultaneously provide waste treatment while capturing energy in the form of electricity. Although these devices are being used in engineered and natural environments where nitrate or sulfate may inhibit power production, the effects of these electron acceptors have not been fully explored. This research investigated the effect of nitrate and sulfate on MFC power production when these chemicals are present at the anode. Nitrate decreased the maximum current and power density by 15 and 17%, respectively, when present at 20 mg/L, and sulfate caused the maximum current and power density to decrease by 4 and 7%, respectively (also at 20 mg/L). Stronger inhibition was observed at higher nitrate and sulfate concentrations, but power production persisted. Coulombic efficiency decreased as nitrate and sulfate levels increased, although this was not primarily due to the biochemical reduction of nitrate or sulfate; rather, it was probably because of the inhibition of exoelectrogens. PMID:19957763

  17. Chondroitin Sulfate Promotes Activation of Cathepsin K*

    PubMed Central

    Lemaire, Peter A.; Huang, Lingyi; Zhuo, Ya; Lu, Jun; Bahnck, Carolyn; Stachel, Shawn J.; Carroll, Steve S.; Duong, Le T.

    2014-01-01

    Cathepsin K (CatK), a major lysosomal collagenase produced by osteoclasts, plays an important role in bone resorption. Evidence exists that the collagenase activity of CatK is promoted by chondroitin sulfate (CS), a sulfated glycosaminoglycan. This study examines the role of CS in facilitating CatK activation. We have demonstrated that chondroitin 4-sulfate (C4-S) promotes autoprocessing of the pro-domain of CatK at pH ≤ 5, leading to a fully matured enzyme with collagenase and peptidase activities. We present evidence to demonstrate this autoactivation process is a trans-activation event that is efficiently inhibited by both the covalent cysteine protease inhibitor E-64 and the reversible selective CatK inhibitor L-006,235. During bone resorption, CatK and C4-S are co-localized at the ruffled border between osteoclast bone interface, supporting the proposal that CatK activation is accomplished through the combined action of the acidic environment together with the presence of a high concentration of C4-S. Formation of a multimeric complex between C4-S and pro-CatK has been speculated to accelerate CatK autoactivation and promote efficient collagen degradation. Together, these results demonstrate that CS plays an important role in contributing to the enhanced efficiency of CatK collagenase activity in vivo. PMID:24958728

  18. The major fimbrial subunit of Bordetella pertussis binds to sulfated sugars.

    PubMed Central

    Geuijen, C A; Willems, R J; Mooi, F R

    1996-01-01

    Bordetella pertussis fimbriae are composed of major and minor subunits, and recently it was shown that the minor fimbrial subunit binds to Vla-5, a receptor located on monocytes (W. Hazenbos, C. Geuijen, B. van den Berg, F. Mooi, and R. van Furth, J. Infect. Dis. 171:924-929, 1995). Here we present evidence that the major subunits bind to sulfated sugars, which are ubiquitous in the respiratory tract. Binding was observed to chondroitin sulfate, heparan sulfate, and dextran sulfate but not to dextran. Removal of the minor subunit from fimbriae did not significantly affect binding to sulfated sugars, indicating that the major subunit alone is sufficient for this binding. Fimbriae were also able to bind HEp-2 cells, which are known to display glycoconjugates on their surface. This binding was not dependent on the presence of the minor subunit. However, binding was dependent on the sulfation state of the glycoconjugates, since inhibition of the sulfation resulted in a significant reduction of fimbria binding. The specificity of fimbria binding was further characterized by using heparan sulfate-derived disaccharides in inhibition assays. Two disaccharides were highly effective inhibitors, and it was observed that both the degree of sulfation and the arrangement of the sulfate groups on the disaccharides were important for binding to fimbriae. B. pertussis bacteria also bound to sulfated sugars and HEp-2 cells, and analysis of B. pertussis mutants indicated that both filamentous hemagglutinin and fimbriae were required for this binding. A host protein present in the extracellular matrix, fibronectin, has binding activities similar to those of B. pertussis fimbriae, binding to both Vla-5 and sulfated sugars. Two regions in the major fimbrial subunit were identified which showed similarity with fibronectin peptides which bind to sulfated sugars. Thus, B. pertussis fimbriae exemplify molecular mimicry and may co-opt host processes by mimicking natural ligand

  19. Role of Deacetylase Activity of N-Deacetylase/N-Sulfotransferase 1 in Forming N-Sulfated Domain in Heparan Sulfate*

    PubMed Central

    Dou, Wenfang; Xu, Yongmei; Pagadala, Vijayakanth; Pedersen, Lars C.; Liu, Jian

    2015-01-01

    Heparan sulfate (HS) is a highly sulfated polysaccharide that plays important physiological roles. The biosynthesis of HS involves a series of enzymes, including glycosyltransferases (or HS polymerase), epimerase, and sulfotransferases. N-Deacetylase/N-Sulfotransferase isoform 1 (NDST-1) is a critical enzyme in this pathway. NDST-1, a bifunctional enzyme, displays N-deacetylase and N-sulfotransferase activities to convert an N-acetylated glucosamine residue to an N-sulfo glucosamine residue. Here, we report the cooperative effects between N-deacetylase and N-sulfotransferase activities. Using baculovirus expression in insect cells, we obtained three recombinant proteins: full-length NDST-1 and the individual N-deacetylase and N-sulfotransferase domains. Structurally defined oligosaccharide substrates were synthesized to test the substrate specificities of the enzymes. We discovered that N-deacetylation is the limiting step and that interplay between the N-sulfotransferase and N-deacetylase accelerates the reaction. Furthermore, combining the individually expressed N-deacetylase and N-sulfotransferase domains produced different sulfation patterns when compared with that made by the NDST-1 enzyme. Our data demonstrate the essential role of domain cooperation within NDST-1 in producing HS with specific domain structures. PMID:26109066

  20. Two Variants of a High-Throughput Fluorescent Microplate Assay of Polysaccharide Endotransglycosylases.

    PubMed

    Kováčová, Kristína; Farkaš, Vladimír

    2016-04-01

    Polysaccharide endotransglycosylases (PETs) are the cell wall-modifying enzymes of fungi and plants. They catalyze random endo-splitting of the polysaccharide donor molecule and transfer of the newly formed reducing sugar residue to the nonreducing end of an acceptor molecule which can be a polysaccharide or an oligosaccharide. Owing to their important role in the cell wall formation, the inhibition of PETs represents an attractive strategy in the fight against fungal infections. We have elaborated two variants of a versatile high-throughput microplate fluorimetric assay that could be used for effective identification of PETs and screening of their inhibitors. Both assays use the respective polysaccharides as the donors and sulforhodamine-labeled oligosaccharides as the acceptors but differ from each other by mode of how the labeled polysaccharide products of transglycosylation are separated from the unreacted oligosaccharide acceptors. In the first variant, the reactions take place in a layer of agar gel laid on the bottoms of the wells of a microtitration plate. After the reaction, the high-Mr transglycosylation products are precipitated with 66 % ethanol and retained within the gel while the low-Mr products and the unreacted acceptors are washed out. In the second variant, the donor polysaccharides are adsorbed to the surface of a microplate well and remain adsorbed there also after becoming labeled in the course of the transglycosylation reaction whereas the unused low-Mr acceptors are washed out. As a proof of versatility, assays of heterologously expressed transglycosylases ScGas1, ScCrh1, and ScCrh2 from the yeast Saccharomyces cerevisiae, CaPhr1 and CaPhr2 from Candida albicans, and of a plant xyloglucan endotransglycosylase (XET) are demonstrated. PMID:26754421

  1. Viscoelastic properties of levan polysaccharides

    NASA Astrophysics Data System (ADS)

    Noll, Kenneth; Rende, Deniz; Ozisik, Rahmi; Toksoy-Oner, Ebru

    2014-03-01

    Levan is a naturally occurring polysaccharide that is composed of β-D-fructofuranose units with β(2-6) linkages between fructose rings. It is synthesized by the action of a secreted levansucrase (EC 2.4.1.10) that converts sucrose into the levan externally (exopolysaccharide). Levan is a homopolysaccharide that is non-toxic, water soluble,, and has anti-tumor activity and low immunological response. Therefore, levan presents great potential to be used as a novel functional biopolymer in foods, feeds, cosmetics, pharmaceutical and chemical industries. Despite these favorable properties, levan has a moderately low mechanical properties and poor film forming capability. In the current study, the agglomeration behavior of levan in water and in saline solutions was investigated at 298 and 310 K by dynamic light scattering and transmission electron microscopy (TEM). The viscoelastic properties of neat and oxidized levan films were studied via nanoindentation experiments in the quasi-static and dynamic modes The material is partially based upon work supported by NSF under Grant Nos. 1200270 and 1003574, and TUBITAK 111M232.

  2. GAG-ID: Heparan Sulfate (HS) and Heparin Glycosaminoglycan High-Throughput Identification Software*

    PubMed Central

    Chiu, Yulun; Huang, Rongrong; Orlando, Ron; Sharp, Joshua S.

    2015-01-01

    Heparin and heparan sulfate are very large linear polysaccharides that undergo a complex variety of modifications and are known to play important roles in human development, cell–cell communication and disease. Sequencing of highly sulfated glycosaminoglycan oligosaccharides like heparin and heparan sulfate by liquid chromatography-tandem mass spectrometry (LC-MS/MS) remains challenging because of the presence of multiple isomeric sequences in a complex mixture of oligosaccharides, the difficulties in separation of these isomers, and the facile loss of sulfates in MS/MS. We have previously introduced a method for structural sequencing of heparin/heparan sulfate oligosaccharides involving chemical derivatizations that replace labile sulfates with stable acetyl groups. This chemical derivatization scheme allows the use of reversed phase LC for high-resolution separation and MS/MS for sequencing of isomeric heparan sulfate oligosaccharides. However, because of the large number of analytes present in complex mixtures of heparin/HS oligosaccharides, the resulting LC-MS/MS data sets are large and cannot be annotated with existing glycomics software because of the specifically designed chemical derivatization strategy. We have developed a tool, called GAG-ID, to automate the interpretation of derivatized heparin/heparan sulfate LC-MS/MS data based on a modified multivariate hypergeometric distribution to weight the annotation of more intense peaks. The software is tested on a LC-MS/MS data set collected from a mixture of 21 synthesized heparan sulfate tetrasaccharides. By testing the discrimination of scoring with this system, we show that stratifying peaks into different intensity classes benefits the discrimination of scoring, and GAG-ID is able to properly assign all 21 synthetic tetrasaccharides in a defined mixture from a single LC-MS/MS run. PMID:25887393

  3. GAG-ID: Heparan Sulfate (HS) and Heparin Glycosaminoglycan High-Throughput Identification Software.

    PubMed

    Chiu, Yulun; Huang, Rongrong; Orlando, Ron; Sharp, Joshua S

    2015-06-01

    Heparin and heparan sulfate are very large linear polysaccharides that undergo a complex variety of modifications and are known to play important roles in human development, cell-cell communication and disease. Sequencing of highly sulfated glycosaminoglycan oligosaccharides like heparin and heparan sulfate by liquid chromatography-tandem mass spectrometry (LC-MS/MS) remains challenging because of the presence of multiple isomeric sequences in a complex mixture of oligosaccharides, the difficulties in separation of these isomers, and the facile loss of sulfates in MS/MS. We have previously introduced a method for structural sequencing of heparin/heparan sulfate oligosaccharides involving chemical derivatizations that replace labile sulfates with stable acetyl groups. This chemical derivatization scheme allows the use of reversed phase LC for high-resolution separation and MS/MS for sequencing of isomeric heparan sulfate oligosaccharides. However, because of the large number of analytes present in complex mixtures of heparin/HS oligosaccharides, the resulting LC-MS/MS data sets are large and cannot be annotated with existing glycomics software because of the specifically designed chemical derivatization strategy. We have developed a tool, called GAG-ID, to automate the interpretation of derivatized heparin/heparan sulfate LC-MS/MS data based on a modified multivariate hypergeometric distribution to weight the annotation of more intense peaks. The software is tested on a LC-MS/MS data set collected from a mixture of 21 synthesized heparan sulfate tetrasaccharides. By testing the discrimination of scoring with this system, we show that stratifying peaks into different intensity classes benefits the discrimination of scoring, and GAG-ID is able to properly assign all 21 synthetic tetrasaccharides in a defined mixture from a single LC-MS/MS run. PMID:25887393

  4. Antitumor and anti-inflammatory activities of polysaccharides isolated from Ganoderma lucidum.

    PubMed

    Joseph, Soniamol; Sabulal, Baby; George, Varughese; Antony, Kuttikkadan Rony; Janardhanan, Kainoor Krishnankutty

    2011-09-01

    In this study, polysaccharides were isolated from Ganoderma lucidum (Polyporaceae) and their antitumor and anti-inflammatory activities were investigated using in vivo models. Potential antitumor activity was shown by G. lucidum polysaccharides (GLP) against solid tumor induced by Ehrlich's ascites carcinoma cells. GLP at 100 mg kg(-1) body mass showed 80.8 and 77.6% reduction in tumour volume and tumour mass, respectively, when administered 24 h after tumour implantation. Again, GLP at the same dose but when administered prior to tumour inoculation, showed 79.5 and 81.2% inhibition of tumour volume and tumour mass, respectively. GLP showed significant dose-dependent activity in carrageenean-induced (acute) and formalin-induced (chronic) inflammation assays. At 100 mg kg(-1), GLP exhibited 57.6 and 58.2% inhibition in carrageenean-induced and formalin-induced assays, respectively. PMID:21945912

  5. Antioxidant and antimicrobial properties of water soluble polysaccharide from Arachis hypogaea seeds.

    PubMed

    Jiang, Shengjuan; Ma, Yuhan; Yan, Dazhuang

    2014-10-01

    The water soluble crude polysaccharide (AHP) was obtained from the aqueous extracts of the Arachis hypogaea seeds through hot water extraction followed by ethanol precipitation. Antioxidant activities and inhibitory activities against the bacteria of AHP were investigated. AHP at 2 mg/mL was found to inhibit the formation of superoxide anion (55.33 %) and hydroxyl radicals (30.85 %), to scavenge the DPPH radical (57.43 %) and to chelate iron ion (27.83 %) in in vitro systems. AHP also exhibited the antibacterial activities. AHP at 12.5 mg/mL could inhibit the growth of the Gram-positive bacteria, implying that the Gram-positive bacteria were more sensitive to AHP than the Gram-negative bacteria. Polysaccharide with antioxidant and antibacterial activities in the "Chang Sheng Guo" further increased the nutritive values of peanuts as well as the natural health product potential. PMID:25328235

  6. Preparation, characterization, and anti-Helicobacter pylori activity of Bi3+-Hericium erinaceus polysaccharide complex.

    PubMed

    Zhu, Yang; Chen, Yao; Li, Qian; Zhao, Ting; Zhang, Ming; Feng, Weiwei; Takase, Mohammed; Wu, Xueshan; Zhou, Zhaoxiang; Yang, Liuqing; Wu, Xiangyang

    2014-09-22

    Two new Bi3+-Hericium erinaceus polysaccharide (BiHEP) complexes were prepared using Bi3+ and two purified polysaccharides from H. erinaceus (HEPs), respectively. The complexes were characterized by elemental analysis, FT-IR, CD, SEM, AFM, XRD, and TG. The anti-Helicobacter pylori (Hp) activities in vitro by agar dilution assay of the complexes were evaluated. The molecular weights of HEPs were 197 and 20 kDa, respectively. All the analyses confirmed the formation of new BiHEP complexes with lower content of Bi3+ compared with colloidal bismuth subcitrate (CBS), the most utilized bismuth preparation clinically. Furthermore, HEPs themselves have definite inhibition effects on Hp, and BiHEP complexes have lower content of Bi exhibited strong inhibition effects on Hp (MIC=20 μg/mL), similar to that of CBS with higher content of Bi. The study provides a basis for further development of multiple treatments of Hp infection or new medicines. PMID:24906751

  7. Polysaccharides from Arctium lappa L.: Chemical structure and biological activity.

    PubMed

    Carlotto, Juliane; de Souza, Lauro M; Baggio, Cristiane H; Werner, Maria Fernanda de P; Maria-Ferreira, Daniele; Sassaki, Guilherme L; Iacomini, Marcello; Cipriani, Thales R

    2016-10-01

    The plant Arctium lappa L. is popularly used to relieve symptoms of inflammatory disorders. A crude polysaccharide fraction (SAA) resulting of aqueous extraction of A. lappa leaves showed a dose dependent anti-edematogenic activity on carrageenan-induced paw edema, which persisted for up to 48h. Sequential fractionation by ultrafiltration at 50kDa and 30kDa cut-off membranes yielded three fractions, namely RF50, RF30, and EF30. All these maintained the anti-edematogenic effect, but RF30 showed a more potent action, inhibiting 57% of the paw edema at a dose of 4.9mg/kg. The polysaccharide RF30 contained galacturonic acid, galactose, arabinose, rhamnose, glucose, and mannose in a 7:4:2:1:2:1 ratio and had a Mw of 91,000g/mol. Methylation analysis and NMR spectroscopy indicated that RF30 is mainly constituted by a type I rhamnogalacturonan branched by side chains of types I and II arabinogalactans, and arabinan. PMID:27311502

  8. Antitumor effect of seaweeds. II. Fractionation and partial characterization of the polysaccharide with antitumor activity from Sargassum fulvellum.

    PubMed

    Yamamoto, I; Nagumo, T; Fujihara, M; Takahashi, M; Ando, Y

    1977-06-01

    An almost purified antitumor polysaccharide fraction (SFPP) was obtained by fractional precipitation with ethanol from hot-water extract of Sargassum fulvellum. The fraction showed remarkable tumor-inhibiting effect against sarcoma-180 implanted subcutaneously in mice. The results of chemical and physical analyses suggested that the active substance may be either a sulphated peptidoglycuronoglycan or a sulphated glycuronoglycan. PMID:916293

  9. Carbohydrate-Carbohydrate Interactions Mediated by Sulfate Esters and Calcium Provide the Cell Adhesion Required for the Emergence of Early Metazoans.

    PubMed

    Vilanova, Eduardo; Santos, Gustavo R C; Aquino, Rafael S; Valle-Delgado, Juan J; Anselmetti, Dario; Fernàndez-Busquets, Xavier; Mourão, Paulo A S

    2016-04-29

    Early metazoans had to evolve the first cell adhesion mechanism addressed to maintain a distinctive multicellular morphology. As the oldest extant animals, sponges are good candidates for possessing remnants of the molecules responsible for this crucial evolutionary innovation. Cell adhesion in sponges is mediated by the calcium-dependent multivalent self-interactions of sulfated polysaccharides components of extracellular membrane-bound proteoglycans, namely aggregation factors. Here, we used atomic force microscopy to demonstrate that the aggregation factor of the sponge Desmapsamma anchorata has a circular supramolecular structure and that it thus belongs to the spongican family. Its sulfated polysaccharide units, which were characterized via nuclear magnetic resonance analysis, consist preponderantly of a central backbone composed of 3-α-Glc1 units partially sulfated at 2- and 4-positions and branches of Pyr(4,6)α-Gal1→3-α-Fuc2(SO3)1→3-α-Glc4(SO3)1→3-α-Glc→4-linked to the central α-Glc units. Single-molecule force measurements of self-binding forces of this sulfated polysaccharide and their chemically desulfated and carboxyl-reduced derivatives revealed that the sulfate epitopes and extracellular calcium are essential for providing the strength and stability necessary to sustain cell adhesion in sponges. We further discuss these findings within the framework of the role of molecular structures in the early evolution of metazoans. PMID:26917726

  10. Fractionation and Characterization of Biologically-active Polysaccharides from Artemisia tripartita

    PubMed Central

    Xie, Gang; Schepetkin, Igor A.; Siemsen, Daniel W.; Kirpotina, Liliya N.; Wiley, James A.; Quinn, Mark T.

    2008-01-01

    The leaves of Artemisia species have been traditionally used for prevention and treatment of a number of diseases. In this study, five polysaccharide fractions (designated A-I to A-V) were isolated from the leaves of Artemisia tripartita Rydb. by the sequential use of hot-water extraction, ethanol precipitation, ultra-filtration, and chromatography. The homogeneity and average molecular weight of each fraction were determined by high performance size-exclusion chromatography. Sugar composition analysis revealed that Artemisia polysaccharides consisted primarily of xylose, glucose, arabinose, galactose, and galactosamine. Moreover, all fractions contained at least 3.4% sulfate, and fractions A-II through A-V contained an arabinogalactan type II structure. All fractions exhibited macrophage-activating activity, enhancing production of intracellular reactive oxygen species and release of nitric oxide, interleukin 6, interleukin 10, tumor necrosis factor α, and monocyte chemotactic protein-1. In addition, all fractions exhibited scavenging activity for reactive oxygen species generated enzymatically or produced extracellularly by human neutrophils. Finally, fractions A-I and A-V exhibited complement-fixing activity. Taken together, our results provide a molecular basis to explain at least part of the beneficial therapeutic effects of Artemisia extracts, and suggest the possibility of using Artemisia polysaccharides as an immunotherapeutic adjuvant. PMID:18325553

  11. Sulfate Reduction Relative to Methane Production in High-Rate Anaerobic Digestion: Technical Aspects

    PubMed Central

    Isa, Zaid; Grusenmeyer, Stéphane; Verstraete, Willy

    1986-01-01

    The effect of different substrates and different levels of sulfate and sulfide on methane production relative to sulfate reduction in high-rate anaerobic digestion was evaluated. Reactors could be acclimated so that sulfate up to a concentration of 5 g of sulfate S per liter did not significantly affect methanogenesis. Higher levels gave inhibition because of salt toxicity. Sulfate reduction was optimal at a relatively low level of sulfate, i.e., 0.5 g of sulfate S per liter, but was also not significantly affected by higher levels. Both acetoclastic and hydrogenotrophic methane-producing bacteria adapted to much higher levels of free H2S than the values reported in the literature (50% inhibition occurred only at free H2S levels of more than 1,000 mg/liter). High levels of free H2S affected the sulfate-reducing bacteria only slightly. Formate and acetate supported the sulfate-reducing bacteria very poorly. In the high-rate reactors studied, intensive H2S formation occurred only when H2 gas or an H2 precursor such as ethanol was supplied. PMID:16347018

  12. Characterization of a novel purified polysaccharide from the flesh of Cipangopaludina chinensis.

    PubMed

    Shi, Yingying; Xiong, Qingping; Wang, Xiaoli; Li, Xia; Yu, Chunhao; Wu, Jie; Yi, Jing; Zhao, Xiaojuan; Xu, Ying; Cui, Hao

    2016-01-20

    The purpose of this paper was to investigate the characterization of a novel polysaccharide from the flesh of Cipangopaludina chinensis, named CCPSn. The results found CCPSn was a white powder, readily soluble in hot water and slightly soluble in water. CCPSn was a homopolysaccharide composed of D-glucose (D-Glc) with molecular weight of 91.1 kDa. Based on analysis of UV-visible, FT-IR, periodic acid oxidation, Smith degradation, methylation, GM-MS and NMR, the structure of CCPSn was elucidated as follows: the backbone was composed of (1 → 3) linked α-D-Glc. The branches, consisting of a single (1 → 3) linked α-D-Glc units and terminal α-D-Glc-4-O-SO3(-), were attached to the main chain at C-4 positions. The degree of branching was calculated to be about 16.73%. The C-1 of terminal α-D-Glc-4-O-SO3(-) was linked to O-3 of (1 → 3) linked α-D-Glc in the branches. In addition, the results indicated CCPSn was a sulfated polysaccharide with the sulfate radical content of 9.12%. PMID:26572424

  13. Surface interactions of gold nanorods and polysaccharides: From clusters to individual nanoparticles.

    PubMed

    de Barros, Heloise Ribeiro; Piovan, Leandro; Sassaki, Guilherme L; de Araujo Sabry, Diego; Mattoso, Ney; Nunes, Ábner Magalhães; Meneghetti, Mario R; Riegel-Vidotti, Izabel C

    2016-11-01

    Gold nanorods (AuNRs) are suitable for constructing self-assembled structures for the development of biosensing devices and are usually obtained in the presence of cetyltrimethylammonium bromide (CTAB). Here, a sulfated chitosan (ChiS) and gum arabic (GA) were employed to encapsulate CTAB/AuNRs with the purpose of studying the interactions of the polysaccharides with CTAB, which is cytotoxic and is responsible for the instability of nanoparticles in buffer solutions. The presence of a variety of functional groups such as the sulfate groups in ChiS and the carboxylic groups in GA, led to efficient interactions with CTAB/AuNRs as evidenced through UV-vis and FTIR spectroscopies. Electron microscopies (HR-SEM and TEM) revealed that nanoparticle clusters were formed in the GA-AuNRs sample, whereas individual AuNRs, surrounded by a dense layer of polysaccharides, were observed in the ChiS-AuNRs sample. Therefore, the presented work contributes to the understanding of the driving forces that control the surface interactions of the studied materials, providing useful information in the building-up of gold self-assembled nanostructures. PMID:27516295

  14. Analysis of Saprolegnia parasitica Transcriptome following Treatment with Copper Sulfate

    PubMed Central

    Ye, Xin; Sun, Qi; Yuan, Hai-Lan; Liang, Nan; Fang, Wen-Hong; Li, Hao-Ran; Yang, Xian-Le

    2016-01-01

    Background Massive infection caused by oomycete fungus Saprolegnia parasitica is detrimental to freshwater fish. Recently, we showed that copper sulfate demonstrated good efficacy for controlling S. parasitica infection in grass carp. In this study, we investigated the mechanism of inhibition of S. parasitica growth by copper sulfate by analyzing the transcriptome of copper sulfate—treated S. parasitica. To examine the mechanism of copper sulfate inhibiting S. parasitica, we utilized RNA-seq technology to compare differential gene expression in S. parasitica treated with or without copper sulfate. Results The total mapped rates of the reads with the reference genome were 90.50% in the control group and 73.50% in the experimental group. In the control group, annotated splice junctions, partial novel splice junctions and complete novel splice junctions were about 83%, 3% and 14%, respectively. In the treatment group, the corresponding values were about 75%, 6% and 19%. Following copper sulfate treatment, a total 310 genes were markedly upregulated and 556 genes were markedly downregulated in S. parasitica. Material metabolism related GO terms including cofactor binding (33 genes), 1,3-beta-D-glucan synthase complex (4 genes), carboxylic acid metabolic process (40 genes) were the most significantly enriched. KEGG pathway analysis also determined that the metabolism-related biological pathways were significantly enriched, including the metabolic pathways (98 genes), biosynthesis of secondary metabolites pathways (42 genes), fatty acid metabolism (13 genes), phenylalanine metabolism (7 genes), starch and sucrose metabolism pathway (12 genes). The qRT-PCR results were largely consistent with the RNA-Seq results. Conclusion Our results indicate that copper sulfate inhibits S. parasitica growth by affecting multiple biological functions, including protein synthesis, energy biogenesis, and metabolism. PMID:26895329

  15. Comparison of polysaccharides produced by Myxococcus strains.

    PubMed

    Sutherland, I W; Thomson, S

    1975-07-01

    Exopolysaccharides were prepared from cultures of four Myxococcus strains grown on solid and in liquid media, and also from the fruiting bodies. Lipopolysaccharides could be extracted with aqueous phenol from the vegetative bacteria, but were absent from microcysts. Mannose and D-glucose were present in all the exopolysaccharides and three of the lipopolysaccharides examined. Other monosaccharides identified in the exopolysaccharides were D-galactose, N-acetylglucosamine and N-acetylgalactosamine. The composition of the lipopolysaccharides was more complex than that of the exopolysaccharides and, in addition to the neutral hexoses and amino sugars, rhamnose was identified in two preparations and ribose in another. No lipopolysaccharide preparations contained O-methyl xylose or heptose. The polysaccharides secreted by the bacillary forms grown on solid or in liquid media closely resembled the polysaccharides isolated from the fruiting bodies, in which they provided a matrix surrounding the microcysts. Each pair of polysaccharides contained the same monosaccharides, although in slightly different proportions. Differences were found in preparations from different strains. These results suggest that in the development cycle of the genus Myxococcus, considerable use is made of pre-existing enzyme systems to synthesize the precursors necessary for polysaccharide synthesis. Any specific difference between the polysaccharide produced by the bacilli and that surrounding the microcysts may lie in the fine structure, rather than in the individual components. PMID:807682

  16. Observation of an Organic-Inorganic Lattice Match during Biomimetic Growth of (001)-Oriented Calcite Crystals under Floating Sulfate Monolayers

    SciTech Connect

    Kewalramani, S.; Kim, K; Stripe, B; Evmenenko, G; Dommett, G; Dutta, P

    2008-01-01

    Macromolecular layers rich in amino acids and with some sulfated polysaccharides appear to control oriented calcite growth in living organisms. Calcite crystals nucleating under floating acid monolayers have been found to be unoriented on average. We have now observed directly, using in situ grazing incidence X-ray diffraction, that there is a 1:1 match between the monolayer unit cell and the unit cell of the (001) plane of calcite. Thus, sulfate head groups appear to act as templates for the growth of (001)-oriented calcite crystals, which is the orientation commonly found in biominerals.

  17. Improvement of lipid profile and antioxidant of hypercholesterolemic albino rats by polysaccharides extracted from the green alga Ulva lactuca Linnaeus.

    PubMed

    Hassan, Sherif; El-Twab, Sanaa Abd; Hetta, Mona; Mahmoud, Basant

    2011-10-01

    Sulfated polysaccharides from Ulva lactuca were extracted in hot water and precipitated by ethanol then orally gavaged to rats fed on a hypercholesterolemic diet for 21 days to evaluate the antihypercholesterolemic and antioxidant actions. Atorvastatine Ca (Lipitor) was used as a reference drug. The intragastric administration of U. lactuca extract to hypercholesterolemic rats caused significant decrease of serum total lipids, triglycerides, total cholesterol, LDL-cholesterol and vLDL-cholesterol levels. Whereas, HDL-cholesterol concentration was markedly increased by 180%. Aqueous extract showed a significant ameliorative action on elevated atherogenic index, creatine kinase and lactate dehydrogenase activities of hypercholesterolemic group. Furthermore, serum activities of transaminases and alkaline phosphatase were also improved. High fat diet intake caused a highly significantly elevated serum urea, creatinine concentration. These effects were reversed by oral administration of U. lactuca extract. Sulfates polysaccharides extract of U. lactuca ameliorate hepatic enzymatic (catalase, glutathione peroxidase and superoxide dismutase), non-enzymatic (reduced glutathione & total thiol) antioxidant defenses and thiobarbituric acid reactive substances. In conclusion, the tested U. lactuca polysaccharides extract has potent hypocholesterolemic and antioxidant effects in experimentally-induced hypercholesterolemic animal model. PMID:23961145

  18. The Cholestanol-Conjugated Sulfated Oligosaccharide PG545 Disrupts the Lipid Envelope of Herpes Simplex Virus Particles

    PubMed Central

    Trybala, Edward; Görander, Staffan; Ekblad, Maria; Liljeqvist, Jan-Åke; Jennische, Eva; Lange, Stefan

    2015-01-01

    Herpes simplex virus (HSV) and many other viruses, including HIV, initiate infection of host cells by binding to glycosaminoglycan (GAG) chains of cell surface proteoglycans. Although GAG mimetics, such as sulfated oligo- and polysaccharides, exhibit potent antiviral activities in cultured cells, the prophylactic application of these inhibitors as vaginal microbicides failed to protect women upon their exposure to HIV. A possible explanation for this failure is that sulfated oligo- and polysaccharides exhibit no typical virucidal activity, as their interaction with viral particles is largely electrostatic and reversible and thereby vulnerable to competition with GAG-binding proteins of the genital tract. Here we report that the cholestanol-conjugated sulfated oligosaccharide PG545, but not several other sulfated oligosaccharides lacking this modification, exhibited virucidal activity manifested as disruption of the lipid envelope of HSV-2 particles. The significance of the virus particle-disrupting activity of PG545 was also demonstrated in experimental animals, as this compound, in contrast to unmodified sulfated oligosaccharide, protected mice against genital infection with HSV-2. Thus, PG545 offers a novel prophylaxis option against infections caused by GAG-binding viruses. PMID:26643323

  19. The Cholestanol-Conjugated Sulfated Oligosaccharide PG545 Disrupts the Lipid Envelope of Herpes Simplex Virus Particles.

    PubMed

    Said, Joanna S; Trybala, Edward; Görander, Staffan; Ekblad, Maria; Liljeqvist, Jan-Åke; Jennische, Eva; Lange, Stefan; Bergström, Tomas

    2016-02-01

    Herpes simplex virus (HSV) and many other viruses, including HIV, initiate infection of host cells by binding to glycosaminoglycan (GAG) chains of cell surface proteoglycans. Although GAG mimetics, such as sulfated oligo- and polysaccharides, exhibit potent antiviral activities in cultured cells, the prophylactic application of these inhibitors as vaginal microbicides failed to protect women upon their exposure to HIV. A possible explanation for this failure is that sulfated oligo- and polysaccharides exhibit no typical virucidal activity, as their interaction with viral particles is largely electrostatic and reversible and thereby vulnerable to competition with GAG-binding proteins of the genital tract. Here we report that the cholestanol-conjugated sulfated oligosaccharide PG545, but not several other sulfated oligosaccharides lacking this modification, exhibited virucidal activity manifested as disruption of the lipid envelope of HSV-2 particles. The significance of the virus particle-disrupting activity of PG545 was also demonstrated in experimental animals, as this compound, in contrast to unmodified sulfated oligosaccharide, protected mice against genital infection with HSV-2. Thus, PG545 offers a novel prophylaxis option against infections caused by GAG-binding viruses. PMID:26643323

  20. miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis.

    PubMed

    Matthewman, Colette A; Kawashima, Cintia G; Húska, Dalibor; Csorba, Tibor; Dalmay, Tamas; Kopriva, Stanislav

    2012-09-21

    In plants, microRNAs play an important role in many regulatory circuits, including responses to environmental cues such as nutrient limitations. One such microRNA is miR395, which is strongly up-regulated by sulfate deficiency and targets two components of the sulfate uptake and assimilation pathway. Here we show that miR395 levels are affected by treatments with metabolites regulating sulfate assimilation. The precursor of cysteine, O-acetylserine, which accumulates during sulfate deficiency, causes increase in miR395 accumulation. Feeding plants with cysteine, which inhibits sulfate uptake and assimilation, induces miR395 levels while buthionine sulfoximine, an inhibitor of glutathione synthesis, lowers miR395 expression. Thus, miR395 is an integral part of the regulatory network of sulfate assimilation. PMID:22771787

  1. Plagioclase dissolution during CO₂-SO₂ cosequestration: effects of sulfate.

    PubMed

    Min, Yujia; Kubicki, James D; Jun, Young-Shin

    2015-02-01

    Geologic CO2 sequestration (GCS) is one of the most promising methods to mitigate the adverse impacts of global climate change. The performance of GCS can be affected by mineral dissolution and precipitation induced by injected CO2. Cosequestration with acidic gas such as SO2 can reduce the high cost of GCS, but it will increase the sulfate's concentration in GCS sites, where sulfate can potentially affect plagioclase dissolution/precipitation. This work investigated the effects of 0.05 M sulfate on plagioclase (anorthite) dissolution and subsequent mineral precipitation at 90 °C, 100 atm CO2, and 1 M NaCl, conditions relevant to GCS sites. The adsorption of sulfate on anorthite, a Ca-rich plagioclase, was examined using attenuated total reflectance Fourier-transform infrared spectroscopy and then simulated using density functional theory calculations. We found that the dissolution rate of anorthite was enhanced by a factor of 1.36 by the formation of inner-sphere monodentate complexes between sulfate and the aluminum sites on anorthite surfaces. However, this effect was almost completely suppressed in the presence of 0.01 M oxalate, an organic ligand that can exist in GCS sites. Interestingly, sulfate also inhibited the formation of secondary mineral precipitation through the formation of aluminum-sulfate complexes in the aqueous phase. This work, for the first time, reports the surface complexation between sulfate and plagioclase that can occur in GCS sites. The results provide new insights for obtaining scientific guidelines for the proper amount of SO2 coinjection and finally for evaluating the economic efficiency and environmental safety of GCS operations. PMID:25549263

  2. Sulfate transport in apical membrane vesicles isolated from tracheal epithelium

    SciTech Connect

    Elgavish, A.; DiBona, D.R.; Norton, P.; Meezan, E.

    1987-09-01

    Sulfate uptake in apical membrane vesicles isolated from bovine tracheal epithelium is shown to occur into an osmotically sensitive intravesicular space, via a carrier-mediated system. This conclusion is based on three lines of evidence: 1) saturation kinetics: 2) substrate specificity; and 3) inhibition by the anion transport inhibitors SITS and DIDS. The affinity of the transport system is highest in low ionic strength media and decreases in the presence of gluconate. Chloride appears to cis-inhibit sulfate uptake and to trans-stimulate sulfate efflux. Cis-inhibition and trans-stimulation studies with a variety of anions indicate that this exchange system may be shared by HCO/sub 3//sup -/, S/sub 2/O/sub 3//sup 2 -/, SeO/sub 4//sup 2 -/, and MoO/sub 4//sup 2 -/ but not by H/sub 2/PO/sub 4//sup -/ or HAsO/sub 4//sup 2/. Studies indicate that protons may play two distinct roles in sulfate transport in this system. These studies show that the carrier-mediated system can function in the absence of chloride. The overshoot observed in the presence of a proton gradient indicates that under those conditions the mechanism of transport may be a SO/sub 4//sup 2 -/-OH/sup -/ exchange.

  3. Ice nucleation activity of polysaccharides

    NASA Astrophysics Data System (ADS)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  4. Pneumococcal polysaccharide vaccine - what you need to know

    MedlinePlus

    ... taken in its entirety from the CDC Pneumococcal Polysaccharide Vaccine Information Statement (VIS): www.cdc.gov/vaccines/ ... statements/ppv.html CDC review information for Pneumococcal Polysaccharide VIS: Page last reviewed: April 24, 2015 Page ...

  5. Immobilized phosphorylase for synthesis of polysaccharides from