Science.gov

Sample records for sulfated polysaccharide inhibits

  1. Fucoidan, a Sulfated Polysaccharide, Inhibits Osteoclast Differentiation and Function by Modulating RANKL Signaling

    PubMed Central

    Kim, Young Woo; Baek, Seung-Hoon; Lee, Sang-Han; Kim, Tae-Ho; Kim, Shin-Yoon

    2014-01-01

    Multinucleated osteoclasts differentiate from hematopoietic progenitors of the monocyte/macrophage lineage. Because of its pivotal role in bone resorption, regulation of osteoclast differentiation is a potential therapeutic approach to the treatment of erosive bone disease. In this study, we have found that fucoidan, a sulfated polysaccharide extracted from brown seaweed, inhibited osteoclast differentiation. In particular, addition of fucoidan into the early stage osteoclast cultures significantly inhibited receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL)-induced osteoclast formation, thus suggesting that fucoidan affects osteoclast progenitors. Furthermore, fucoidan significantly inhibited the activation of RANKL-dependent mitogen-activated protein kinases (MAPKs) such as JNK, ERK, and p38, and also c-Fos and NFATc1, which are crucial transcription factors for osteoclastogenesis. In addition, the activation of NF-κB, which is an upstream transcription factor modulating NFATc1 expression, was alleviated in the fucoidan-treated cells. These results collectively suggest that fucoidan inhibits osteoclastogenesis from bone marrow macrophages by inhibiting RANKL-induced p38, JNK, ERK and NF-κB activation, and by downregulating the expression of genes that partake in both osteoclast differentiation and resorption. PMID:25334060

  2. Fucoidan, a sulfated polysaccharide, inhibits osteoclast differentiation and function by modulating RANKL signaling.

    PubMed

    Kim, Young Woo; Baek, Seung-Hoon; Lee, Sang-Han; Kim, Tae-Ho; Kim, Shin-Yoon

    2014-01-01

    Multinucleated osteoclasts differentiate from hematopoietic progenitors of the monocyte/macrophage lineage. Because of its pivotal role in bone resorption, regulation of osteoclast differentiation is a potential therapeutic approach to the treatment of erosive bone disease. In this study, we have found that fucoidan, a sulfated polysaccharide extracted from brown seaweed, inhibited osteoclast differentiation. In particular, addition of fucoidan into the early stage osteoclast cultures significantly inhibited receptor activator of nuclear factor kappa B (NF-?B) ligand (RANKL)-induced osteoclast formation, thus suggesting that fucoidan affects osteoclast progenitors. Furthermore, fucoidan significantly inhibited the activation of RANKL-dependent mitogen-activated protein kinases (MAPKs) such as JNK, ERK, and p38, and also c-Fos and NFATc1, which are crucial transcription factors for osteoclastogenesis. In addition, the activation of NF-?B, which is an upstream transcription factor modulating NFATc1 expression, was alleviated in the fucoidan-treated cells. These results collectively suggest that fucoidan inhibits osteoclastogenesis from bone marrow macrophages by inhibiting RANKL-induced p38, JNK, ERK and NF-?B activation, and by downregulating the expression of genes that partake in both osteoclast differentiation and resorption. PMID:25334060

  3. Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium

    PubMed Central

    Marques, Joana; Vilanova, Eduardo; Mourão, Paulo A. S.; Fernàndez-Busquets, Xavier

    2016-01-01

    The antimalarial activity of heparin, against which there are no resistances known, has not been therapeutically exploited due to its potent anticoagulating activity. Here, we have explored the antiplasmodial capacity of heparin-like sulfated polysaccharides from the sea cucumbers Ludwigothurea grisea and Isostichopus badionotus, from the red alga Botryocladia occidentalis, and from the marine sponge Desmapsamma anchorata. In vitro experiments demonstrated for most compounds significant inhibition of Plasmodium falciparum growth at low-anticoagulant concentrations. This activity was found to operate through inhibition of erythrocyte invasion by Plasmodium, likely mediated by a coating of the parasite similar to that observed for heparin. In vivo four-day suppressive tests showed that several of the sulfated polysaccharides improved the survival of Plasmodium yoelii-infected mice. In one animal treated with I. badionotus fucan parasitemia was reduced from 10.4% to undetectable levels, and Western blot analysis revealed the presence of antibodies against P. yoelii antigens in its plasma. The retarded invasion mediated by sulfated polysaccharides, and the ensuing prolonged exposure of Plasmodium to the immune system, can be explored for the design of new therapeutic approaches against malaria where heparin-related polysaccharides of low anticoagulating activity could play a dual role as drugs and as potentiators of immune responses. PMID:27071342

  4. Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium.

    PubMed

    Marques, Joana; Vilanova, Eduardo; Mourão, Paulo A S; Fernàndez-Busquets, Xavier

    2016-01-01

    The antimalarial activity of heparin, against which there are no resistances known, has not been therapeutically exploited due to its potent anticoagulating activity. Here, we have explored the antiplasmodial capacity of heparin-like sulfated polysaccharides from the sea cucumbers Ludwigothurea grisea and Isostichopus badionotus, from the red alga Botryocladia occidentalis, and from the marine sponge Desmapsamma anchorata. In vitro experiments demonstrated for most compounds significant inhibition of Plasmodium falciparum growth at low-anticoagulant concentrations. This activity was found to operate through inhibition of erythrocyte invasion by Plasmodium, likely mediated by a coating of the parasite similar to that observed for heparin. In vivo four-day suppressive tests showed that several of the sulfated polysaccharides improved the survival of Plasmodium yoelii-infected mice. In one animal treated with I. badionotus fucan parasitemia was reduced from 10.4% to undetectable levels, and Western blot analysis revealed the presence of antibodies against P. yoelii antigens in its plasma. The retarded invasion mediated by sulfated polysaccharides, and the ensuing prolonged exposure of Plasmodium to the immune system, can be explored for the design of new therapeutic approaches against malaria where heparin-related polysaccharides of low anticoagulating activity could play a dual role as drugs and as potentiators of immune responses. PMID:27071342

  5. Novel Sulfated Polysaccharides Disrupt Cathelicidins, Inhibit RAGE and Reduce Cutaneous Inflammation in a Mouse Model of Rosacea

    PubMed Central

    Zhang, Jianxing; Xu, Xiaoyu; Rao, Narayanam V.; Argyle, Brian; McCoard, Lindsi; Rusho, William J.; Kennedy, Thomas P.; Prestwich, Glenn D.; Krueger, Gerald

    2011-01-01

    Background Rosacea is a common disfiguring skin disease of primarily Caucasians characterized by central erythema of the face, with telangiectatic blood vessels, papules and pustules, and can produce skin thickening, especially on the nose of men, creating rhinophyma. Rosacea can also produce dry, itchy eyes with irritation of the lids, keratitis and corneal scarring. The cause of rosacea has been proposed as over-production of the cationic cathelicidin peptide LL-37. Methodology/Principal Findings We tested a new class of non-anticoagulant sulfated anionic polysaccharides, semi-synthetic glycosaminoglycan ethers (SAGEs) on key elements of the pathogenic pathway leading to rosacea. SAGEs were anti-inflammatory at ng/ml, including inhibition of polymorphonuclear leukocyte (PMN) proteases, P-selectin, and interaction of the receptor for advanced glycation end-products (RAGE) with four representative ligands. SAGEs bound LL-37 and inhibited interleukin-8 production induced by LL-37 in cultured human keratinocytes. When mixed with LL-37 before injection, SAGEs prevented the erythema and PMN infiltration produced by direct intradermal injection of LL-37 into mouse skin. Topical application of a 1% (w/w) SAGE emollient to overlying injected skin also reduced erythema and PMN infiltration from intradermal LL-37. Conclusions Anionic polysaccharides, exemplified by SAGEs, offer potential as novel mechanism-based therapies for rosacea and by extension other LL-37-mediated and RAGE-ligand driven skin diseases. PMID:21347371

  6. WSS25, a sulfated polysaccharide, inhibits RANKL-induced mouse osteoclast formation by blocking SMAD/ID1 signaling

    PubMed Central

    Chen, Cheng; Qin, Yi; Fang, Jian-ping; Ni, Xin-yan; Yao, Jian; Wang, Hai-ying; Ding, Kan

    2015-01-01

    Aim: WSS25 is a sulfated polysaccharide extracted from the rhizome of Gastrodia elata BI, which has been found to bind to bone morphogenetic protein 2 (BMP-2) in hepatocellular cancer cells. Since BMP-2 may regulate both osteoclasts and osteoblasts, here we investigated the effects of WSS25 on osteoclastogenesis in vitro and bone loss in ovariectomized mice. Methods: RAW264.7 cells or mouse bone marrow macrophages (BMMs) were treated with RANKL to induce osteoclastogenesis, which was assessed using TRAP staining, actin ring formation and pit formation assays, as well as bone resorption assay. Cell viability was detected with MTT assay. The mRNA levels of osteoclastogenesis-related genetic markers (TRAP, NFATc1, MMP-9 and cathepsin K) were detected using RT-PCR, while the protein levels of p-Smad1/5/8 and Id1 were measure with Western blotting. WSS25 was administered to ovariectomized mice (100 mg·kg−1·d−1, po) for 3 months. After the mice were euthanized, total bone mineral density and cortical bone density were measured. Results: In RAW264.7 cells and BMMs, WSS25 (2.5, 5, 10 μg/mL) did not affect the cell viability, but dose-dependently inhibited RANKL-induced osteoclastogenesis. Furthermore, WSS25 potently suppressed RANKL-induced expression of TRAP, NFATc1, MMP-9 and cathepsin K in RAW264.7 cells. Treatment of RAW264.7 cells with RANKL increased BMP-2 expression, Smad1/5/8 phosphorylation and Id1 expression, which triggered osteoclast differentiation, whereas co-treatment with WSS25 or the endogenous BMP-2 antagonist noggin suppressed the BMP-2/Smad/Id1 signaling pathway. In RAW264.7 cells, knockdown of Id1 attenuated RANKL-induced osteoclast differentiation, which was partially rescued by Id1 overexpression. In conformity to the in vitro experiments, chronic administration of WSS25 significantly reduced the bone loss in ovariectomized mice. Conclusion: WSS25 inhibits RANKL-induced osteoclast formation in RAW264.7 cells and BMMs by blocking the BMP-2/Smad/Id1 signaling pathway. WSS25 administration reduces bone loss in ovariectomized mice, suggesting that it may be a promising therapeutic agent for osteoporosis. PMID:26299951

  7. Stimulation of transcription of mouse kidney chromatin by sulfated polysaccharides.

    PubMed Central

    Warnick, C T; Zazarus, H M

    1975-01-01

    The sulfated polysaccharides polydextran sulfate (PDS) and heparin stimulate in vitro transcription of mouse kidney chromatin by E. coli RNA polymerase by about 100 and 40 fold respectively. Heparin which has been N-desulfated and N-acetylated stimulates only 13 fold. Chondroitin sulfate B and heparitin sulfate do not stimulate transcription under similar conditions. PDS inhibits transcription of deproteinized chromatin. Therefore, the stimulation with chromatin is due to interaction with the chromatin and not the polymerase. Polydextran sulfate has no effect on the size of the RNA that is made either under conditions in which the enzyme can reinitiate or under conditions in which reinitiation is blocked. If reinitiation of the enzyme is blocked, the time required to complete the synthesis of the RNA is the same whether or not the enzyme is stimulated by PDS. These observations indicate that sulfated polysaccharides stimulate transcription by making available new RNA polymerase binding sites on the chromatin. PMID:1144063

  8. Highly Sulfated K5 Escherichia coli Polysaccharide Derivatives Inhibit Respiratory Syncytial Virus Infectivity in Cell Lines and Human Tracheal-Bronchial Histocultures

    PubMed Central

    Cagno, Valeria; Donalisio, Manuela; Civra, Andrea; Volante, Marco; Veccelli, Elena; Oreste, Pasqua; Rusnati, Marco

    2014-01-01

    Respiratory syncytial virus (RSV) exploits cell surface heparan sulfate proteoglycans (HSPGs) as attachment receptors. The interaction between RSV and HSPGs thus presents an attractive target for the development of novel inhibitors of RSV infection. In this study, selective chemical modification of the Escherichia coli K5 capsular polysaccharide was used to generate a collection of sulfated K5 derivatives with a backbone structure that mimics the heparin/heparan sulfate biosynthetic precursor. The screening of a series of N-sulfated (K5-NS), O-sulfated (K5-OS), and N,O-sulfated (K5-N,OS) derivatives with different degrees of sulfation revealed the highly sulfated K5 derivatives K5-N,OS(H) and K5-OS(H) to be inhibitors of RSV. Their 50% inhibitory concentrations were between 1.07 nM and 3.81 nM in two different cell lines, and no evidence of cytotoxicity was observed. Inhibition of RSV infection was maintained in binding and attachment assays but not in preattachment assays. Moreover, antiviral activity was also evident when the K5 derivatives were added postinfection, both in cell-to-cell spread and viral yield reduction assays. Finally, both K5-N,OS(H) and K5-OS(H) prevented RSV infection in human-derived tracheal/bronchial epithelial cells cultured to form a pseudostratified, highly differentiated model of the epithelial tissue of the human respiratory tract. Together, these features put K5-N,OS(H) and K5-OS(H) forward as attractive candidates for further development as RSV inhibitors. PMID:24914125

  9. Fucoidans — sulfated polysaccharides of brown algae

    NASA Astrophysics Data System (ADS)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  10. Antiherpetic activities of sulfated polysaccharides from green algae.

    PubMed

    Lee, Jung-Bum; Hayashi, Kyoko; Maeda, Masaakira; Hayashi, Toshimitsu

    2004-09-01

    In order to evaluate the potency of novel antiviral drugs, 11 natural sulfated polysaccharides (SPs) from 10 green algae ( Enteromorpha compressa, Monostroma nitidum, Caulerpa brachypus, C. okamurai, C. scapelliformis, Chaetomorpha crassa, C. spiralis, Codium adhaerens, C. fragille, and C. latum) and 4 synthetic sulfated xylans (SXs) prepared from the beta-(1,3)-xylan of C. brachypus, were assayed for anti-Herpes simplex virus type 1 (HSV-1) activity. Except for one from E. compressa, all SPs showed potent anti-HSV-1 activities with 50 % inhibitory concentrations (IC (50)) of 0.38 - 8.5 microg/mL, while having low cytotoxicities with 50 % inhibitory concentrations of >2900 microg/mL. Anti-HSV-1 activities of SXs were dependent on their degrees of sulfation. To delineate the drug-sensitive phase, 4 polysaccharides, which showed potent anti-HSV-1 activities, were applied to time-of-addition experiments. Among the polysaccharides tested, 3 polysaccharides (SX4, SP4 from C. brachypus, and SP11 from C. latum) showed strong anti-HSV-1 activities with IC (50) of 6.0, 7.5, and 6.9 microg/mL, respectively, even when added to the medium 8 h post-infection. These experiments demonstrated that some sulfated polysaccharides not only inhibited the early stages of HSV-1 replication, such as virus binding to and penetration into host cells, but also interfered with late steps of virus replication. These results revealed that some sulfated polysaccharides from green algae should be promising candidates of antiviral agents which might act on different stages in the virus replication cycle. PMID:15386190

  11. Rising from the Sea: Correlations between Sulfated Polysaccharides and Salinity in Plants

    PubMed Central

    Aquino, Rafael S.; Grativol, Clicia; Mourão, Paulo A. S.

    2011-01-01

    High salinity soils inhibit crop production worldwide and represent a serious agricultural problem. To meet our ever-increasing demand for food, it is essential to understand and engineer salt-resistant crops. In this study, we evaluated the occurrence and function of sulfated polysaccharides in plants. Although ubiquitously present in marine algae, the presence of sulfated polysaccharides among the species tested was restricted to halophytes, suggesting a possible correlation with salt stress or resistance. To test this hypothesis, sulfated polysaccharides from plants artificially and naturally exposed to different salinities were analyzed. Our results revealed that the sulfated polysaccharide concentration, as well as the degree to which these compounds were sulfated in halophytic species, were positively correlated with salinity. We found that sulfated polysaccharides produced by Ruppia maritima Loisel disappeared when the plant was cultivated in the absence of salt. However, subjecting the glycophyte Oryza sativa Linnaeus to salt stress did not induce the biosynthesis of sulfated polysaccharides but increased the concentration of the carboxylated polysaccharides; this finding suggests that negatively charged cell wall polysaccharides might play a role in coping with salt stress. These data suggest that the presence of sulfated polysaccharides in plants is an adaptation to high salt environments, which may have been conserved during plant evolution from marine green algae. Our results address a practical biological concept; additionally, we suggest future strategies that may be beneficial when engineering salt-resistant crops. PMID:21552557

  12. Sulfated Polysaccharide Isolated from the Sea Cucumber Stichopus japonicus Against PC12 Hypoxia/Reoxygenation Injury by Inhibition of the MAPK Signaling Pathway.

    PubMed

    Cui, Chao; Cui, Ningshan; Wang, Peng; Song, Shuliang; Liang, Hao; Ji, Aiguo

    2015-11-01

    In this report, the sulfated polysaccharide (SJP) isolated from the sea cucumber Stichopus japonicus can protect PC12 from Na2S2O4-induced hypoxia/reoxygenation (H/R) injury. SJP effectively improves cell viability and reduces extracellular LDH release in PC12 cells after H/R. Moreover, SJP significantly increases SOD activity but decreases MDA levels. Our experiments showed that SJP could significantly reduce cell apoptosis caused by H/R. Our current results demonstrate that SJP suppressed the activation of MAPKs, resulting in a significant decrease in Bax/Bcl-2 ratio, cleaved caspase-3/caspase-3, p53 phosphorylation, and cytochrome c release in a concentration-dependent manner. MAPK is closely related to H/R injury. SJP inhibited JNK1/2 and p38 MAPK activation but did not affect the increased ERK1/2 expression. These results suggested that JNK1/2 and p38 MAPK pathways could be involved in SJP-mediated attenuation of PC12 H/R injury. SJP prevented PC12 H/R injury in a dose-dependent manner, indicating that SJP may be developed as a candidate drug to prevent or treat cerebral ischemia-reperfusion injury. PMID:25952102

  13. Solomonseal Polysaccharide and Sulfated Codonopsis pilosula Polysaccharide Synergistically Resist Newcastle Disease Virus

    PubMed Central

    Liu, Cui; Chen, Jin; Li, Entao; Fan, Qiang; Wang, Deyun; Zhang, Cunshuai; Li, Peng; Li, Xiuping; Chen, Xingying; Qiu, Shulei; Gao, Zhenzhen; Li, Hongquan; Hu, Yuanliang

    2015-01-01

    Five combinations of three ratios (PS9-sPS1, PS7-sPS3 and PS6-sPS4) were prepared with polysaccharide (PS) and sulfated polysaccharide (sPS). The antiviral activities of these compounds were subsequently compared in vitro using the MTT assay, observation of the virus structure and immunofluorescence. The results demonstrated that SP9-sCP1, CP7-sCA3, EP7-sAP3, CA9-sEP1 and EP7-sCA3 presented higher activities, and SP9-sCP1 displayed the highest virus inhibition rate and clearly killed the virus and inhibited viral antigen expression. In an in vivo test, 28-day-old chickens were challenged with Newcastle disease virus (NDV) and were administered the five drug combinations. On day 14 after the challenge, the morbidity, mortality and cure rate in each group were calculated. The results indicated that SP9-sCP1 presented the lowest morbidity and mortality and the highest cure rate. These results indicate that Solomonseal polysaccharide and sulfated Codonopsis pilosula polysaccharide synergistically resist NDV. Moreover, SP9-sCP1 had the highest efficacy and may be used as a new antiviral drug. PMID:25692886

  14. Structural characterization and bioactivities of sulfated polysaccharide from Monostroma oxyspermum.

    PubMed

    Seedevi, Palaniappan; Moovendhan, Meivelu; Sudharsan, Sadhasivam; Vasanthkumar, Shanmugam; Srinivasan, Alagiri; Vairamani, Shanmugam; Shanmugam, Annaian

    2015-01-01

    Sulfated polysaccharide was isolated from Monostroma oxyspermum through hot water extraction, anion-exchange and gel permeation column chromatography. The sulfated polysaccharide contained 92% of carbohydrate, 0% of protein, 7.8% of uronic acid, 22% of ash and 33% of moisture respectively. The elemental composition was analyzed using CHNS/O analyzer. The molecular weight of sulfated polysaccharide determined through PAGE was found to be as 55 kDa. Monosaccharides analysis revealed that sulfated polysaccharide was composed of rhamnose, fructose, galactose, xylose, and glucose. The structural features of sulfated polysaccharide were analyzed by NMR spectroscopy. Further the sulfated polysaccharide showed total antioxidant and DPPH free radical scavenging activity were as 66.29% at 250 μg/ml and 66.83% at 160 μg/ml respectively. The sulfated polysaccharide also showed ABTS scavenging ability and reducing power were as 83.88% at 125 μg/ml and 15.81% at 400 μg/ml respectively. The anticoagulant activity was determined for human plasma with respect to Activated Partial Thromboplastin Time (APTT) and Prothrombin Time (PT) was 20.09 IU and 1.79 IU at 25 μg/ml respectively. These results indicated that the sulfated polysaccharide from M. oxyspermum had potent antioxidant and anticoagulant activities. PMID:25451755

  15. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    PubMed Central

    Jiao, Guangling; Yu, Guangli; Zhang, Junzeng; Ewart, H. Stephen

    2011-01-01

    Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans), ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application. PMID:21566795

  16. Regioselective sulfation of Artemisia sphaerocephala polysaccharide: Characterization of chemical structure.

    PubMed

    Wang, Junlong; Yang, Wen; Wang, Jiancheng; Wang, Xia; Wu, Fang; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2015-11-20

    The biological activities of sulfated polysaccharides are related to the substitution positions of functional groups. In this study, regioselective sulfation of Artemisia sphaerocephala polysaccharides (SRSASP) was prepared by using triphenylchloromethane (TrCl) as protecting precursor. FT-IR spectra and X-ray photoelectron spectroscopy (XPS) showed that SO(3-) group (S(6+), high binding energy of 168.7eV) was widely present in sulfated polysaccharides. (13)C NMR spectroscopy showed that C-2 and C-3 substitution was occurred but not fully sulfation. Meanwhile, C-6 substituted signals near 65ppm were not observed. The degree of substitution varied from 0.44 to 0.63 in SRSASP which could be attributed to the low reactivity at secondary hydroxyl. Monosaccharide composition result showed a decrease in the ratio of mannose/glucose, indicating the change of chemical composition in sulfated polysaccharides. In size-exclusion chromatograph analysis, a decrease in molecular weight and broadening of molecular weight distribution of sulfated polysaccharides was also observed. It could be attributed to the hydrolysis of polysaccharide in the sulfated reaction. PMID:26344287

  17. Evaluation of Macroalgae Sulfated Polysaccharides on the Leishmania (L.) amazonensis Promastigote

    PubMed Central

    Pires, Camila Lehnhardt; Rodrigues, Selma Dzimidas; Bristot, Daniel; Gaeta, Henrique Hessel; de Oliveira Toyama, Daniela; Farias, Wladimir Ronald Lobo; Toyama, Marcos Hikari

    2013-01-01

    The sulfated polysaccharides from Solieria filiformis (Sf), Botryocladia occidentalis (Bo), Caulerpa racemosa (Cr) and Gracilaria caudata (Gc) were extracted and extensively purified. These compounds were then subjected to in vitro assays to evaluate the inhibition of these polysaccharides on the growth of Leishmania (L.) amazonensis promastigotes. Under the same assay conditions, only three of the four sulfated polysaccharides were active against L. amazonensis, and the polysaccharide purified from Cr was the most potent (EC50 value: 34.5 μg/mL). The polysaccharides derived from Bo and Sf demonstrated moderate anti-leishmanial activity (EC50 values of 63.7 μg/mL and 137.4 μg/mL). In addition, we also performed in vitro cytotoxic assays toward peritoneal macrophages and J774 macrophages. For the in vitro cytotoxicity assay employing J774 cells, all of the sulfated polysaccharides decreased cell survival, with CC50 values of 27.3 μg/mL, 49.3 μg/mL, 73.2 μg/mL, and 99.8 μg/mL for Bo, Cr, Gc, and Sf, respectively. However, none of the sulfated polysaccharides reduced the cell growth rate of the peritoneal macrophages. These results suggest that macroalgae contain compounds with various chemical properties that can control specific pathogens. According to our results, the assayed sulfated polysaccharides were able to modulate the growth rate and cell survival of Leishmania (L.) amazonensis promastigotes in in vitro assays, and these effects involved the interaction of the sulfated polysaccharides on the cell membrane of the parasites. PMID:23519148

  18. [Neuroprotective effects of sulfated polysaccharides from seaweed].

    PubMed

    Besednova, N N; Somova, L M; Guliaev, S A; Zaporozhets, T S

    2013-01-01

    Currently, neurodegenerative diseases (NDD) occupy a significant place in the structure of disease of the elderly, which dictates the need to find new and effective treatment and prevention of this pathology. At the heart of NDD development is a violation of the metabolism and the conformational change of cellular proteins with subsequent accumulation and aggregation of their in certain groups of neurons. The immediate cause of the death of the affected neurons in NDD is initiated by intracellular proteins apoptosis, during which a large number ofneurotransmitter glutamate is released. The consequence of an imbalance in the synthesis and release of neurotransmitters are related the memory impairment, motor coordination and cognitive abilities of human. Based on the analysis of the extensive literature domestic and predominantly foreign authors of the last decade the modern data on the effect of sulfated polysaccharides (SPS) of algae in vivo and in vitro in degenerative processes of the nervous system. Found that due to its multi-point impact, SPS have on the body antioxidant, anti-inflammatory, antiapoptotic, antihyperlipidemic, anti-toxic effects. Consequently, SPS can arrest a number of secondary pathological effects observed in neurodegenerative diseases (oxidative stress, inflammation, the phenomenon of increased neuronal apoptosis, toxic effects etc.). Varieties of pathogenic mechanisms underlying NDD makes possible the combined use of neuroprotective compounds acting sequentially in different stages of a pathological process. Accumulated a lot of experimental evidence to assume that the SPS may be the basis for the creation of next-generation drugs for the treatment of neurodegenerative diseases. PMID:24000668

  19. Extraction, characterization and antimicrobial activity of sulfated polysaccharides from fish skins.

    PubMed

    Krichen, Fatma; Karoud, Wafa; Sila, Assaâd; Abdelmalek, Baha Eddine; Ghorbel, Raoudha; Ellouz-Chaabouni, Semia; Bougatef, Ali

    2015-04-01

    Sulfated polysaccharides were extracted from gray triggerfish (GTSP) and smooth hound (SHSP) skins. Their chemical and physical characteristics were determined using X-ray diffraction and Infrared spectroscopic analysis. The antibacterial activities of GTSP and SHSP against Listeria monocytogenes (ATCC 43251), Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 25922), Salmonella enterica (ATCC 43972) and Enterobacter sp were evaluated by determining clear growth inhibition zone diameters and the minimum inhibitory concentration (MIC) values and by essays in liquid media. GTSP and SHSP were fractionated by a Diethylaminoethyl-cellulose chromatography. Fraction FGII, from GTSP, and fraction FSII, from SHSP, showed the most important inhibitory effects against the tested bacterial species. The sulfated polysaccharides from fish skins did not show hemolytic activity towards bovine erythrocytes. Overall, the results suggested that those polysaccharides could offer promising sources of polysaccharides for future application as dietary ingredients in the nutraceutical industry. PMID:25647621

  20. Pharmacodynamic parameters of anticoagulants based on sulfated polysaccharides from marine algae.

    PubMed

    Drozd, N N; Tolstenkov, A S; Makarov, V A; Kuznetsova, T A; Besednova, N N; Shevchenko, N M; Zvyagintseva, T N

    2006-11-01

    Fucoidans isolated from Fucus evanescens and Laminaria cichorioides kelp can inhibit thrombin and factor Xa of the blood coagulation system. In rats, intravenous injection of fucoidans dose-dependently increased anticoagulant activity of the plasma. Fucoidans can form complexes with protamine sulfate. The observed quantitative differences in the action of fucoidans can result from different sulfation degree and the presence of various types of glycoside bonds in polysaccharide molecules. PMID:17415470

  1. Sulfated polysaccharides from Loligo vulgaris skin: potential biological activities and partial purification.

    PubMed

    Abdelmalek, Baha Eddine; Sila, Assaâd; Krichen, Fatma; Karoud, Wafa; Martinez-Alvarez, Oscar; Ellouz-Chaabouni, Semia; Ayadi, Mohamed Ali; Bougatef, Ali

    2015-01-01

    The characteristics, biological properties, and purification of sulfated polysaccharides extracted from squid (Loligo vulgaris) skin were investigated. Their chemical and physical characteristics were determined using X-ray diffraction and infrared spectroscopic analysis. Sulfated polysaccharides from squid skin (SPSS) contained 85.06% sugar, 2.54% protein, 1.87% ash, 8.07% sulfate, and 1.72% uronic acid. The antioxidant properties of SPSS were investigated based on DPPH radical-scavenging capacity (IC50 = 19.42 mg mL(-1)), hydrogen peroxide-scavenging activity (IC50 = 0.91 mg mL(-1)), and β-carotene bleaching inhibition (IC50 = 2.79 mg mL(-1)) assays. ACE-inhibitory activity of SPSS was also investigated (IC50 = 0.14 mg mL(-1)). Further antimicrobial activity assays indicated that SPSS exhibited marked inhibitory activity against the bacterial and fungal strains tested. Those polysaccharides did not display hemolytic activity towards bovine erythrocytes. Fractionation by DEAE-cellulose column chromatography showed three major absorbance peaks. Results of this study suggest that sulfated polysaccharides from squid skin are attractive sources of polysaccharides and promising candidates for future application as dietary ingredients. PMID:25301697

  2. Sulfated polysaccharides from Cyclocarya paliurus reduce H2O2-induced oxidative stress in RAW264.7 cells.

    PubMed

    Wang, Zhi-Jun; Xie, Jian-Hua; Kan, Li-Jiao; Wang, Jun-Qiao; Shen, Ming-Yue; Li, Wen-Juan; Nie, Shao-Ping; Xie, Ming-Yong

    2015-09-01

    In this study, two sulfated polysaccharides (S-CP1-4 and S-CP1-8) from Cyclocarya paliurus were produced by chlorosulfonic acid-pyridine method. Hydrogen peroxide (H2O2) was used to develop an oxidative stress model in the mouse macrophage cell line RAW264.7. Effects of the two sulfated polysaccharides on H2O2-induced oxidative stress were investigated. The results showed that S-CP(1-8) improved the viability of the H2O2-induced stressed RAW264.7 cells, as well as inhibited the lipid oxidation as determined by the level of malondialdehyde (MDA). Meanwhile, treatment with S-CP(1-4) increased superoxide dismutase (SOD) activity in these cells. The sulfated polysaccharides were found to have a better protective effect against H2O2-induced oxidative stress as compared to the native polysaccharide. Scanning electron microscopy also showed a significant change in the surface morphology of sulfated polysaccharides, but the degradation of main chain of polysaccharides was unconspicuous according to the results of monosaccharide composition. In addition, the sulfated polysaccharides had noticeable DPPH radical scavenging activity. In summary, our results demonstrated that H2O2 was able to induce oxidative stress in RAW264.7 cells, and sulfated group might play an important role in resistance to H2O2-induced oxidative damage. PMID:26111910

  3. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications

    PubMed Central

    Cunha, Ludmylla; Grenha, Ana

    2016-01-01

    In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting. PMID:26927134

  4. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications.

    PubMed

    Cunha, Ludmylla; Grenha, Ana

    2016-01-01

    In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting. PMID:26927134

  5. Antiviral Activities of Sulfated Polysaccharides Isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophyta, Ceramiales)

    PubMed Central

    Bouhlal, Rhimou; Haslin, Camille; Chermann, Jean-Claude; Colliec-Jouault, Sylvia; Sinquin, Corinne; Simon, Gaelle; Cerantola, Stephane; Riadi, Hassane; Bourgougnon, Nathalie

    2011-01-01

    Water-soluble sulfated polysaccharides isolated from two red algae Sphaerococcus coronopifolius (Gigartinales, Sphaerococcaceae) and Boergeseniella thuyoides (Ceramiales, Rhodomelaceae) collected on the coast of Morocco inhibited in vitro replication of the Human Immunodeficiency Virus (HIV) at 12.5 μg/mL. In addition, polysaccharides were capable of inhibiting the in vitro replication of Herpes simplex virus type 1 (HSV-1) on Vero cells values of EC50 of 4.1 and 17.2 μg/mL, respectively. The adsorption step of HSV-1 to the host cell seems to be the specific target for polysaccharide action. While for HIV-1, these results suggest a direct inhibitory effect on HIV-1 replication by controlling the appearance of the new generations of virus and potential virucidal effect. The polysaccharides from S. coronopifolius (PSC) and B. thuyoides (PBT) were composed of galactose, 3,6-anhydrogalactose, uronics acids, sulfate in ratios of 33.1, 11.0, 7.7 and 24.0% (w/w) and 25.4, 16.0, 3.2, 7.6% (w/w), respectively. PMID:21822410

  6. In Vitro Antioxidant Activities of Sulfated Derivatives of Polysaccharides Extracted from Auricularia auricular

    PubMed Central

    Zhang, Hua; Wang, Zhen-Yu; Yang, Lin; Yang, Xin; Wang, Xue; Zhang, Zhi

    2011-01-01

    In this research, two types of sulfated polysaccharide derivatives were successfully synthesized. Their antioxidant activities were investigated by employing various established in vitro systems. In addition, the degree of sulfation was evaluated using ion-chromatography and IR spectra. The results verify that, when employing scavenging superoxide radical tests, both the sulfation of acid Auricularia auricular polysaccharides (SAAAP) and the sulfation of neutral Auricularia auricular polysaccharides (SNAAP) derivatives possessed considerable antioxidant activity and had a more powerful antioxidant competence than that of the native non-sulfated polysaccharides (AAAP and NAAP). On the other hand, AAAP and NAAP exhibited stronger activity on scavenging both the hydroxyl radical and lipid peroxidation. Available data obtained with in vitro measurements indicates that the sulfated groups of AAAP and NAAP played an important role on antioxidant activity. In sum, the research demonstrates that the antioxidant activity of sulfated polysaccharide derivatives in vitro has a potential significance for seeking new natural antioxidant protective agents. PMID:21686185

  7. Antitumor activities and immunomodulatory of rice bran polysaccharides and its sulfates in vitro.

    PubMed

    Wang, Li; Li, Yulin; Zhu, Lidan; Yin, Ran; Wang, Ren; Luo, Xiaohu; Li, Yongfu; Li, Yanan; Chen, Zhengxing

    2016-07-01

    Polysaccharides purified from rice bran show antitumor activity against tumor cells, yet the mechanism of this action remains poorly understood. To address this issue, our study evaluated the effect of rice bran polysaccharides on mouse melanoma cell line B16, and Raw264.7 macrophages. Rice bran polysaccharides (RBP) failed to inhibit B16 cell growth in vitro. However, Raw264.7 macrophages treated by RBP enhancement of cytotoxic effects. The cytotoxicity was confirmed by the stimulation of nitric oxide (NO) production and tumor necrosis factor-α (TNF-α) secretion on Raw264.7 macrophages in a dose-dependent manner. RBP2, a fraction of RBP, notably enhanced the inhibition of B16 cells and boosted the immunepotentiation effect compared with RBP. To further enhance the inhibition of B16 cell growth, sulfated polysaccharides (SRBP) was derived using the chlorosulfonic acid-pyridine method. SRBP2 was found to suppress B16 cell growth, reduce B16 cell survival and stimulate NO and TNF-α production. However, SRBP2 displayed a cytotoxic effect on Raw264.7 macrophages. These results suggest that the antitumor activity of RBP and RBP2 is mediated mainly through the activation of macrophages. SRBP2 exerts its antitumor activity by inducing apoptosis in tumor cells and the secretion of NO and TNF-α. PMID:27064087

  8. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    SciTech Connect

    Sherly, K. B.; Rakesh, K.

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  9. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Sherly, K. B.; Rakesh, K.

    2014-01-01

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl2ṡ8H2O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  10. Structural characterization and biomedical properties of sulfated polysaccharide from the gladius of Sepioteuthis lessoniana (Lesson, 1831).

    PubMed

    Seedevi, Palaniappan; Moovendhan, Meivelu; Vairamani, Shanmugam; Shanmugam, Annian

    2016-04-01

    Sulfated polysaccharide was extracted from the internal shell (gladius) of Sepioteuthis lessoniana. The sulfated polysaccharide contained 61.3% of carbohydrate, 0.8% of protein, 28.2% of ash and 1.33% of moisture respectively. The elemental composition was analyzed using CHNS/O analyzer. The molecular weight of sulfated polysaccharide determined through PAGE was found to be as 66kDa. Monosaccharides analysis revealed that sulfated polysaccharide was composed of rhamnose, galactose, xylose and glucose. The structural features of sulfated polysaccharide were analyzed by FT-IR and NMR spectroscopy. Further the sulfated polysaccharide was evaluated for its antibacterial activity against selected human clinical pathogens, namely Staphylococcus aureus, Klebsiella pneumoniae, Salmonella typhi, Vibrio cholerae, Klebsiella oxytoca, Escherichia coli, Salmonella paratyphi, Proteus mirabilis, Vibrio parahaemolyticus and Streptococcus pyogenes using agar well diffusion method. The polysaccharide has showed good antibacterial activity and MIC and MBC have also been evaluated. The anticancer activity was tested against HeLa cell line by MTT assay. The Cytotoxic Concentration (CC50) was observed as 700μg/ml and the maximum anticancer activity of 62.89% was recorded at 200μg/ml; whereas, the lowest of 9.87% was observed at 25μg/ml. In conclusion, the sulfated polysaccharide is an alternate, non-toxic and cheap source of substance that showed good antibacterial and anticancer acitivity. PMID:26724686

  11. Antiangiogenic activity and direct antitumor effect from a sulfated polysaccharide isolated from seaweed.

    PubMed

    Guerra Dore, Celina Maria P; Faustino Alves, Monique Gabriela C; Santos, Nednaldo D; Cruz, Ana Katarina M; Câmara, Rafael Barros G; Castro, Allisson Jonathan G; Guimarães Alves, Luciana; Nader, Helena B; Leite, Edda Lisboa

    2013-07-01

    Angiogenesis is a dynamic proliferation and differentiation process. It requires endothelial proliferation, migration and tube formation. In this context, endothelial cells are a preferred target for several studies and therapies. Anionic polysaccharides (SV1 and PSV1) from brown seaweed Sargassum vulgare were fractionated (SV1), purified (PSV1) and displayed with high total sugars, sulfate content and very low level of protein. The antiangiogenic efficacy of polysaccharides was examined in vivo in the chick chorioallantoic membrane (CAM) model by using fertilized eggs. Decreases in the density of the capillaries were assessed and scored. The results showed that SV1 and PSV1 have an inhibitory effect on angiogenesis. These results were also confirmed by the inhibition of tubulogenesis in rabbit aorta endothelial cell (RAEC) in matrigel. These compounds were assessed in an apoptosis assay (Annexin V-FITC/PI) and cell viability by MTT assay of RAEC. These polysaccharides did not affect the viability and did not have apoptotic or necrotic action. RAEC cell when incubated with SV1and PSV1 showed inhibition of VEGF secretion, observed when compounds were incubated at 25, 50 and 100 μg/μL. The VEGF secretion with the RAEC cell line for 24 h was more effective for PSV1 at 50 μg/μL (71.4%) than for SV1 at 100 μg/μL (75.9%). SV1 and PSV1 had an antiproliferative action (47%) against tumor cell line HeLa. Our results indicate that these sulfated polysaccharides have antiangiogenic and antitumor actions. PMID:23507505

  12. Study on quality control of sulfated polysaccharide drug, propylene glycol alginate sodium sulfate (PSS).

    PubMed

    Xue, Yi-Ting; Ren, Li; Li, Shuang; Wang, Lin-Lin; He, Xiao-Xi; Zhao, Xia; Yu, Guang-Li; Guan, Hua-Shi; Li, Chun-Xia

    2016-06-25

    The combination of biological and chemical analysis methods was developed to improve quality control of propylene glycol alginate sodium sulfate (PSS), a sulfated polysaccharide drug. The allergic and anticoagulant assays revealed that PSS fractions with higher Mw and lower M/G ratio may have allergic response and bleeding risks. HPLC with pre-column derivatization, HPGPC and IC methods were combined to analyze 10 batches of PSS samples from different manufacturers. The results showed that the quality of these PSSs varied greatly which in turn led to the unstable anticoagulant activity and side effects. The study indicated that PSS with high purity, M/G ratio above 1.5, Mw of ∼9kD and DS of 9.0-13.0% can ensure clinical efficacy and low incidence of adverse drug reactions. In conclusion, the combined methods would be in favor of guiding manufacture and quality control of PSS to guarantee its effectiveness and safety. PMID:27083824

  13. Overview of anticoagulant activity of sulfated polysaccharides from seaweeds in relation to their structures, focusing on those of green seaweeds.

    PubMed

    Ciancia, M; Quintana, I; Cerezo, A S

    2010-01-01

    The anticoagulant behavior of sulfated polysaccharides from seaweeds is reviewed based on their chemical structures. Analysis of the literature suggested that the driving force for the formation of the sulfated polysaccharide/protein complex is the non-specific polar interaction between the negatively and positively charged groups in the polysaccharide and protein, respectively and that the complex is further stabilized by short-range interactions. The polysaccharide binding site should be able to go through the following conformational steps in the formation of the complex: random coil-->ordered conformation--> low distortion of this conformation to form a complementary fitting structure with the protein backbone. The sulfated monosaccharide units with the highest potential for anticoagulant activity should have two sulfate groups and a glycosidic linkage on the pyranose ring with C-2, C-3 and C-4 in 2S, 3R, 4R or 2R, 3S, 4S configurations for galactose, fucose and arabinose and 2S, 3S, 4R, for rhamnose. Three distributions of these substituents appear: 3-linked 2,4-disulfated units, 4-linked 2,3-disulfated units and 2-linked 3,4-disulfated residues. These types of units have the possibility, through the equilibrium of the chair conformations, to place their sulfate groups in adequate special positions to interact with basic groups of the protein. The anticoagulant activity is mainly attributed to thrombin inhibition mediated by antithrombin and/or heparin cofactor II, with different effectivenesses depending of the compound. Other mechanisms are also proposed and these differences could be attributed to the diversity of structures of the polysaccharides evaluated and to the fact that one compound may have more than one target protease. PMID:20491645

  14. Gellan sulfate inhibits Plasmodium falciparum growth and invasion of red blood cells in vitro

    PubMed Central

    Recuenco, Frances Cagayat; Kobayashi, Kyousuke; Ishiwa, Akiko; Enomoto-Rogers, Yukiko; Fundador, Noreen Grace V.; Sugi, Tatsuki; Takemae, Hitoshi; Iwanaga, Tatsuya; Murakoshi, Fumi; Gong, Haiyan; Inomata, Atsuko; Horimoto, Taisuke; Iwata, Tadahisa; Kato, Kentaro

    2014-01-01

    Here, we assessed the sulfated derivative of the microbial polysaccharide gellan gum and derivatives of λ and κ-carrageenans for their ability to inhibit Plasmodium falciparum 3D7 and Dd2 growth and invasion of red blood cells in vitro. Growth inhibition was assessed by means of flow cytometry after a 96-h exposure to the inhibitors and invasion inhibition was assessed by counting ring parasites after a 20-h exposure to them. Gellan sulfate strongly inhibited invasion and modestly inhibited growth for both P. falciparum 3D7 and Dd2; both inhibitory effects exceeded those achieved with native gellan gum. The hydrolyzed λ-carrageenan and oversulfated κ-carrageenan were less inhibitory than their native forms. In vitro cytotoxicity and anticoagulation assays performed to determine the suitability of the modified polysaccharides for in vivo studies showed that our synthesized gellan sulfate had low cytotoxicity and anticoagulant activity. PMID:24740150

  15. Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum.

    PubMed

    Tsubaki, Shuntaro; Oono, Kiriyo; Hiraoka, Masanori; Onda, Ayumu; Mitani, Tomohiko

    2016-11-01

    Microwave-assisted hydrothermal extraction was applied for production of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. The maximum ulvan yields attained 40.4±3.2% (Ulva meridionalis) and 36.5±3.1% (Ulva ohnoi) within 4min of come-up time and 10min of extraction time at 160°C, respectively. The rhamnan sulfate yield from M. latissimum further attained 53.1±7.2% at 140°C. The sulfated polysaccharides were easily recovered from the extract by simple ethanol precipitation. In addition, molecular weights and viscosity of the extracted polysaccharides could be controlled by varying the extraction temperature. Dielectric measurement revealed that ionic conduction was the important parameter that affect the microwave susceptibility of algae-water mixture. The sulfated polysaccharides extracts are expected as potential feedstock for medical and food applications. PMID:27211652

  16. Optimization of sulfated modification conditions of tremella polysaccharide and effects of modifiers on cellular infectivity of NDV.

    PubMed

    Zhao, Xiaona; Hu, Yuanliang; Wang, Deyun; Guo, Liwei; Yang, Shujuan; Fan, Yunpeng; Zhao, Bingkai; Wang, Yuanlei; Abula, Saifuding

    2011-07-01

    Based on our previous research, sulfated modification conditions of Tremella polysaccharide (TPS), the chlorosulfonic acid to pyridine (CSA-Pry) ratio, reaction temperature and time, were optimized by L(9) (3(4)) orthogonal design taking the yield and degree of sulfation (DS) of modifiers as indexes. Two TPSs, TPS(tp) and TPS(70c), were modified under optimized conditions. The effects of two modifiers, sTPS(tp) and sTPS(70c), on cellular infectivity of NDV were determined by MTT method taking the non-modified TPS(tp), TPS(tc) and TPS(70c) as controls. The results showed that the optimized modification conditions were reaction temperature of 80°C, CSA-Pry ratio of 1:6 and reaction time of 1.5h. Five polysaccharides at proper concentrations could significantly inhibit the infectivity of NDV to CEF. The virus inhibitory rates of sTPS(tp) at 1.563 μg mL(-1) group were the highest and significantly higher than those of other three non-modified polysaccharide groups in three sample-adding modes. This indicated that sulfated modification could significantly improve the antiviral activity of TPS. sTPS(tp) possessed the best efficacy and would be as a component of antiviral polysaccharide drug. PMID:21439998

  17. Characterization and antiherpetic activity of native and chemically sulfated polysaccharide from Adenanthera pavonina.

    PubMed

    de Godoi, Ananda M; Faccin-Galhardi, Ligia C; Lopes, Nayara; Nozawa, Carlos; de Almeida, Raimundo R; Ricardo, Nagila M P S; Linhares, Rosa E C

    2015-01-01

    The herpes simplex virus (HSV) is a widespread human pathogen and for many reasons the development of anti-herpetic drugs from natural products has been encouraged. Adenanthera pavonina (Ap) is a medicinal plant widely used in Brazil, among other uses. Herein, a native Ap seed polysaccharide (PLSAp) and its chemically sulfated derivate (SPLSAp) were studied by Fourier transform IR spectra (FT-IR), gel permeation chromatography (GPC) for molar mass determination and their intrinsic viscosity [η]. Biologically, the compounds were evaluated for anti-HSV activity, in HEp2 cell cultures. The cytotoxic concentrations (CC50) and the inhibitory concentrations (IC(50)) of the polysaccharides were determined by the colorimetric assay (dimethyl-thiazolyl-diphenyltetrazolium bromide) and plaque reduction assay (PRA), respectively. The SPLSAp showed a better antiviral activity when compared to the PLSAp with a CC(50) of 500 μg/ml, the IC(50) equal to 15 μg/ml and the selectivity index (SI) of 33.3. The time-of-addition and the time-of-removal assays demonstrated the highest inhibitory activity between 8-16h after the infection. The inhibition of viral DNA and protein syntheses by SPLSAp monitored by PCR and immunofluorescence assay (IFA), respectively, has also demonstrated. These findings demonstrated that the SPLSAp inhibited HSV-1 infection in different steps of the replication and, therefore, represents a valuable compound for preclinical studies in anti-herpetic therapy. PMID:26238681

  18. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula.

    PubMed

    Burg, Ariela; Oshrat, Levy-Ontman

    2015-10-01

    Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides' antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains' interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca(2+) had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides' stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites. PMID:26492255

  19. Sulfated Polysaccharides Isolated from Cloned Grateloupia filicina and Their Anticoagulant Activity

    PubMed Central

    Chen, Xiaolin; Yang, Shengfeng; Wang, Jinxia; Song, Lin; Xing, Ronge; Liu, Song; Yu, Huahua; Li, Pengcheng

    2015-01-01

    Sulfated polysaccharides (GSP) were isolated from the cloned Grateloupia filicina which was cultured in Jiaozhou Bay, Qingdao, China. The yield of GSP was 15.75%. The total sugar and sulfate were 40.90 and 19.89%, respectively. And the average molecular weight was 11.7 KDa. The results of neutral sugar analysis showed that GSP was mainly sulfated polysaccharides of galactose. The experiments for activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) anticoagulant assays in vitro indicated that GSP was a good potential anticoagulant. Therefore, this study supplied new thought for the cloned Grateloupia filicina exploitation of high-value products. PMID:25945340

  20. Characterization of fungal sulfated polysaccharides and their synergistic anticancer effects with doxorubicin.

    PubMed

    Cheng, Jing-Jy; Chang, Chia-Chuan; Chao, Chi-Hsein; Lu, Mei-Kuang

    2012-09-01

    Sulfated polysaccharides (SPSs) from two edible fungal species, including two strains of Antrodia cinnamomea and Poria cocos, were isolated. Fucose, glucosamine, galactose, glucose, and mannose were the major sugars in the SPSs, and these SPSs had a high sulfate content. The area percentage of low-molecular-weight SPSs (1-100 kDa) covered almost half of the SPS mixture of the A. cinnamomea strains. In contrast, high-molecular-weight SPSs (>1000 kDa) of P. cocos covered a large proportion of the area at 30.06%. SPSs from A. cinnamomea B86 showed stronger inhibition of endothelial cell (EC) tube formation in an in vitro assay of angiogenesis, than did A. cinnamomea 35396 or P. cocos. The degree of sulfation paralleled their antiangiogenic activity. When tumor cells were concurrently exposed to doxorubicin (DOX) and fungal SPSs, SPSs synergistically increased the cytotoxicity of DOX to different degree up to 50-fold. Fungal SPSs may offer new applications for combinational-therapy drugs. PMID:24751021

  1. Sulfation effect on levan polysaccharide chains structure with molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Coskunkan, Binnaz; Turgut, Deniz; Rende, Deniz; Malta, Seyda; Baysal, Nihat; Ozisik, Rahmi; Toksoy-Oner, Ebru

    Diversity in conformations and structural heterogeneity make polysaccharides the most challenging biopolymer type for experimental and theoretical characterization studies. Levan is a biopolymer chain that consists of fructose rings with β(2-6) linkages. It is a glycan that has great potential as a functional biopolymer in foods, feeds, cosmetics, pharmaceutical and chemical industries. Sulfated polysaccharides are group of macromolecules with sulfated groups in their hydroxyl parts with a range of important biological properties. Sulfate groups and their positions have a major effect on anticoagulant activity. It is reported that sulfate modified levan has anticoagulant activity such as heparin. In the current study, the effect of sulfation on the structure and dynamics of unmodified and sulfate modified levan are investigated via fully atomistic Molecular Dynamics simulations in aqueous media and varying salt concentrations at 310 K. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.

  2. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity.

    PubMed

    Yuan, Yuan; Macquarrie, Duncan

    2015-09-20

    Sulfated polysaccharides (fucoidan) from brown seaweed Ascophyllum nodosum were extracted by microwave assisted extraction (MAE) technology. Different conditions of temperature (90-150°C), extraction time (5-30 min) were evaluated and optimal fucoidan yield was 16.08%, obtained from 120°C for 15 min's extraction. Compositional analysis, GPC, HPAEC and IR analysis were employed for characterization of extracted sulfated polysaccharides. Fucose was the main monosaccharide of fucoidan extracted at 90°C while glucuronic acid was the main monosaccharide of fucoidan extracted at 150°C. Both the molecular weight and sulfate content of extracted fucoidan increased with decreasing extraction temperature. All fucoidans exhibited antioxidant activities as measured by DPPH scavenging and reducing power, among which fucoidan extracted at 90°C was highest. This study shows that MAE is an efficient technology to extract sulfated polysaccharides from seaweed and Ascophyllum nodosum could potentially be a resource for natural antioxidants. PMID:26050894

  3. Antiviral Activity of Sulfated Polysaccharide of Adenanthera pavonina against Poliovirus in HEp-2 Cells

    PubMed Central

    de Godoi, Ananda Marques; Faccin-Galhardi, Lígia Carla; Lopes, Nayara; de Almeida, Raimundo Rafael; Ricardo, Nágila Maria Pontes Silva; Nozawa, Carlos; Linhares, Rosa Elisa Carvalho

    2014-01-01

    Adenanthera pavonina, popularly known as red-bead tree, carolina, pigeon's eye, and dragon's eye, is a plant traditionally used in Brazil for the treatment of several diseases. The present study aimed at evaluating the activity of sulfated polysaccharide from the Adenanthera pavonina (SPLSAp) seeds against poliovirus type 1 (PV-1) in HEp-2 cell cultures. The SPLSAp presented a cytotoxic concentration (CC50) of 500 μg/mL in HEp-2 cell cultures, evaluated by the dimethylthiazolyl-diphenyltetrazolium bromide method (MTT). The SPLSAp exhibited a significant antiviral activity, with a 50% inhibitory concentration (IC50) of 1.18 µg/mL, determined by plaque reduction assay and a high selectivity index (SI) of 423. The maximum inhibition (100%) of PV replication was found when the SPLSAp treatment was concomitant with viral infection (time 0 h), at all tested concentrations. The maximal inhibition was also found when the SPLSAp was used 1 h and 2 h postinfection, albeit at 50 μg/mL and 100 μg/mL. Therefore, we demonstrated that the SPLSAp inhibited PV growth. We also suggested that SPLSAp inhibited PV in more than one step of the replication, as the mechanism of antiviral action. We, therefore, selected the compound as a potential candidate for further development towards the control of the infection. PMID:25221609

  4. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula

    PubMed Central

    Burg, Ariela; Oshrat, Levy-Ontman

    2015-01-01

    Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides’ antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains’ interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca2+ had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides’ stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites. PMID:26492255

  5. Evaluation of sulfated polysaccharides from the brown seaweed Dictyopteris justii as antioxidant agents and as inhibitors of the formation of calcium oxalate crystals.

    PubMed

    Melo, Karoline Rachel Teodosio; Camara, Rafael Barros Gomes; Queiroz, Moacir Fernandes; Vidal, Arthur Anthunes Jacome; Lima, Camila Renata Machado; Melo-Silveira, Raniere Fagundes; Almeida-Lima, Jailma; Rocha, Hugo Alexandre Oliveira

    2013-01-01

    Oxalate crystals and other types of crystals are the cause of urolithiasis, and these are related to oxidative stress. The search for new compounds with antioxidant qualities and inhibitors of these crystal formations is therefore necessary. In this study, we extracted four sulfated polysaccharides, a fucoglucoxyloglucuronan (DJ-0.3v), a heterofucan (DJ-0.4v), and two glucans (DJ-0.5v and DJ-1.2v), from the marine alga Dictyopteris justii. The presence of sulfated polysaccharides was confirmed by chemical analysis and FT-IR. All the sulfated polysaccharides presented antioxidant activity under different conditions in some of the in vitro tests and inhibited the formation of calcium oxalate crystals. Fucan DJ-0.4v was the polysaccharide that showed the best antioxidant activity and was one of the best inhibitors of the crystallization of calcium oxalate. Glucan DJ-0.5v was the second most potent inhibitor of the formation of oxalate crystals, as it stabilized dehydrated oxalate crystals (less aggressive form), preventing them from transforming into monohydrate crystals (more aggressive form). The obtained data lead us to propose that these sulfated polysaccharides are promising agents for use in the treatment of urolithiasis. PMID:24287990

  6. High molecular weight polysaccharide that binds and inhibits virus

    DOEpatents

    Konowalchuk, Thomas W

    2014-01-14

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  7. Controlled sulfatation of natural anionic bacterial polysaccharides can yield agents with specific regenerating activity in vivo.

    PubMed

    Petit, Emmanuel; Papy-Garcia, Dulce; Muller, Guy; Courtois, Bernard; Caruelle, Jean-Pierre; Courtois, Josiane

    2004-01-01

    The regenerating activities of chemically modified anionic bacterial polysaccharides by O-sulfonation were investigated using a in vivo model of rat injured muscle regeneration. Glucuronan (GA), a linear homopolysaccharide of -->4)-beta-D-GlcpA-(1--> residues partially acetylated at the C-3 and/or the C-2 position, and glucoglucuronan (GGA), a linear heteropolysaccharide of -->3)-beta-D-GlcpA-(1-->4)-beta-D-Glcp-(1--> residues were sulfated. SO3-DMF sulfatation complex provided polysaccharides with different sulfur contents, however, a depolymerization occurred because we did not use large excess of pyridine to obtain pure modified polysaccharides. A regenerating activity on injured extensor digitorum longus (EDL) muscles on rats was obtained with these two sulfated anionic polymers. The position of sulfate groups on glucoglucuronan (primary or secondary alcohol) seems to have no influence on the biological activity by opposition to the degree of sulfatation both for the glucuronans and the glucoglucuronans. The yield of acetate groups in the glucuronan polymer modulated the specific activity. PMID:15003004

  8. Characterization and cytotoxic activity of sulfated derivatives of polysaccharides from Agaricus brasiliensis

    PubMed Central

    Cardozo, F. T. G. S.; Camelini, C. M.; Cordeiro, M. N. S.; Mascarello, A.; Malagoli, B. G.; Larsen, I.; Rossi, M. J.; Nunes, R. J.; Braga, F. C.; Brandt, C.R.; Simões, C. M. O.

    2014-01-01

    Agaricus brasiliensis cell-wall polysaccharides isolated from fruiting body (FR) and mycelium (MI) and their respective sulfated derivatives (FR-S and MI-S) were chemically characterized using elemental analysis, TLC, FT-IR, NMR, HPLC, and thermal analysis. Cytotoxic activity was evaluated against A549 tumor cells by MTT and sulforhodamine assays. The average molecular weight (Mw) of FR and MI was estimated to be 609 and 310 kDa, respectively. FR-S (127 kDa) and MI-S (86 kDa) had lower Mw, probably due to hydrolysis occurred during the sulfation reaction. FR-S and MI-S presented ~14 % sulfur content in elemental analysis. Sulfation of samples was characterized by the appearance of two new absorption bands at 1253 and 810 cm−1 in the infrared spectra, related to S=O and C-S-O sulfate groups, respectively. Through 1H and 13C NMR analysis FR-S was characterized as a (1→6)-(1→3)-β-D-glucan fully sulfated at C-4 and C-6 terminal and partially sulfated at C-6 of (1→3)-β-D-glucan moiety. MI-S was shown to be a (1→3)-β-D-gluco-(1→2)-β-D-mannan, partially sulfated at C-2, C-3, C-4, and C-6, and fully sulfated at C-6 of the terminal residues. The combination of high degree of sulfation and low molecular weight was correlated with the increased cytotoxic activity (48 h of treatment) of both FR-S (EC50=605.6 μg/mL) and MI-S (EC50=342.1 μg/mL) compared to the non-sulfated polysaccharides FR and MI (EC50>1500 μg/mL). PMID:23511057

  9. Neuroprotective effect of sulfated polysaccharide isolated from sea cucumber Stichopus japonicus on 6-OHDA-induced death in SH-SY5Y through inhibition of MAPK and NF-κB and activation of PI3K/Akt signaling pathways.

    PubMed

    Cui, Chao; Cui, Ningshan; Wang, Peng; Song, Shuliang; Liang, Hao; Ji, Aiguo

    2016-02-01

    The purpose of this study is to investigate the protective effect and molecular mechanism of the sulfated polysaccharide (SJP) isolated from the sea cucumber Stichopus japonicus against 6-OHDA-induced toxicity in SH-SY5Y cells. The results showed that SJP could protect SH-SY5Y cells against 6-OHDA-induced cell injury. We found that SJP effectively improves cell viability, decreases LDH leakage, and reverses morphological damage. Moreover, SJP significantly increases SOD activity but decreases MDA levels and ROS generation. Effect of SJP on 6-OHDA-induced cell death in SH-SY5Y cells is associated with an arrest in the G1/S phase of the cell cycle and inhibits the expression of Cyclin D3. 6-OHDA-induced intracellular generation of ROS and mitochondrial dysfunctions, release of cytochrome c, imbalance of Bax/Bcl-2, cleaved caspase-9/caspase-9 and cleaved caspase-3/caspase-3 ratio, and p-p53 activation were strikingly attenuated by SJP pretreatment. Meanwhile, SJP counteracted NF-κB activation, thereby preventing up-regulation of iNOS and intracellular NO release. The data provide the first evidence that SJP protects SH-SY5Y cells against 6-OHDA toxicity possibly by inhibiting MAPK and NF-κB and activating PI3K/Akt signaling pathways. Thus, SJP is a candidate for further evaluation of its protective effects against neurodegeneration in PD. PMID:26773499

  10. Antitumor activity of a sulfated polysaccharide from Enteromorpha intestinalis targeted against hepatoma through mitochondrial pathway.

    PubMed

    Wang, Xuxia; Chen, Ying; Wang, Jingjie; Liu, Zhenxiong; Zhao, Shuguang

    2014-02-01

    A sulfated polysaccharide (EI-SP), extracted from Enteromorpha intestinalis that is a kind of algae, is found to have anticancer activity. This study was designed to investigate the anti-tumor effect of EI-SP on human hepatoma HepG2 cell line and its possible mechanisms. An MTT assay showed that EI-SP could specifically inhibit the growth of human hepatoma HepG2 cells in a dose-dependent manner. Analysis by flow cytometry indicated that the apoptosis of tumor cells increased after treatment with EI-SP in range of 100-400 ?g/ml. Furthermore, Western blot analysis showed that EI-SP treatment led to decreased protein expression of Bcl-2 and an increase in Bax, cleaved caspase-3, cleaved caspase-9 and cleaved poly(ADP-ribose) polymerase (PARP). Moreover, it was found that EI-SP caused a loss of mitochondrial membrane potential (?? m) and the release of cytochrome c to the cytosol. Collectively, our results showed that the EI-SP induces apoptosis in HepG2 cells involving a caspases-mediated mitochondrial signalling pathway. PMID:24197975

  11. Regioselective sulfation of Artemisia sphaerocephala polysaccharide: Solution conformation and antioxidant activities in vitro.

    PubMed

    Wang, Junlong; Yang, Wen; Tang, YinYing; Xu, Qing; Huang, Shengli; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2016-01-20

    Regioselective modification is an effective approach to synthesize polysaccharides with different structure features and improved properties. In this study, regioselective sulfation of Artemisia sphaerocephala polysaccharide (SRSASP) was prepared by using triphenylchloromethane (TrCl) as protecting precursor. The decrease in fractal dimension (df) values (1.56-2.04) of SRSASP was observed in size-exclusion chromatography combined with multi angle laser light scattering (SEC-MALLS) analysis. Compared to sample substituted at C-6, SRSASP showed a more expanded conformation of random coil, which was attributed to the breakup of hydrogen bonds and elastic contributions. Circular dichroism (CD), methylene blue (MB) and congo red (CR) spectrophotometric method and atomic force microscopy (AFM) results confirmed the conformational transition and stiffness of the chains after sulfation. SRSASP exhibited enhanced antioxidant activities in the DPPH, superoxide and hydroxyl radical scavenging assay. Sulfation at C-2 or C-3 was favorable for the chelation which might prevent the generation of hydroxyl radicals. It concluded that the degree of substitution and substitution position were the factors influencing biological activities of sulfated polysaccharides. PMID:26572384

  12. Sulfated modification of the polysaccharide from Sphallerocarpus gracilis and its antioxidant activities.

    PubMed

    Xu, Yunfei; Song, Shen; Wei, Yanxia; Wang, Fengxia; Zhao, Min; Guo, Jie; Zhang, Ji

    2016-06-01

    Sphallerocarpus gracilis (S. gracilis) is a little-investigated edible plant and used as traditional Chinese medicine. In this study, polysaccharide extracted from S. gracilis,deproteined and purified. The polysaccharide (SGP) was chemically modified to obtain its sulfated derivatives (S-SGP) using the method of chlorosulfonic acid/pyridine (CSA/Pyr). In order to acquire the derivative with the highest degree of substitution (DS), the optimum conditions of the sulfation were obtained based on response surface design (RSD), and the structural characterizations and antioxidant properties of the S-SGP were comparatively investigated by Fourier transform infrared spectrometry (FT-IR), GC-MS analysis, size exclusion chromatography (SEC), and DPPH radical assay, hydroxyl radical assay, superoxide radical assay, and reducing power assay, respectively. Results showed that the modification was successful, and obtained the optimum combination of conditions. Compared with SGP, the sulfated polysaccharide with relatively the decreased degree of molecular weight (Mw) but the same composition of monosaccharides exhibited better antioxidant activities in DPPH, hydroxyl, superoxide radical and reducing power assay. These results indicated that the antioxidant activities in vitro of the S-SGP from S. gracilis may be related to combined effects of Mw, monosaccharide composition, and sulfate content. PMID:26893048

  13. Chemical characteristics and anticoagulant activities of two sulfated polysaccharides from Enteromorpha linza (Chlorophyta)

    NASA Astrophysics Data System (ADS)

    Qi, Xiaohui; Mao, Wenjun; Chen, Yin; Chen, Yanli; Zhao, Chunqi; Li, Na; Wang, Chunyan

    2013-03-01

    Two sulfated polysaccharides, designated MP and SP, were extracted from the marine green alga Enteromorpha linza using hot water and then purified using ion-exchange and size-exclusion chromatography. The anticoagulant activities of MP and SP were examined by determination of their activated partial thromboplastin time (APTT), thrombin time (TT) and prothrombin time (PT) using human plasma. Results showed that MP and SP were composed of abundant rhamnose with small amounts of xylose and glucuronic acid, whereas SP also contained a small amount of galactose. Approximate molecular weights of MP and SP were 535 and 502 kDa, respectively. As compared with SP, MP had higher contents of sulfate ester (19.0%) and uronic acid (14.9%). The MP mainly consisted of (1→4)-linked rhamnose residues with partially sulfated groups at the C-3 position, and small amounts of (1→3, 4)-linked rhamnose, (1→2, 4)-linked rhamnose, (1→4)-linked glucuronic acid and (1→4)-linked xylose residues. The SP contained abundant (1→4)-linked rhamnose with minor amounts of (1→3)-linked rhamnose, (1→3, 4)-linked rhamnose, (1→2, 4)-linked rhamnose, (1→4)-linked glucuronic acid, (1→4)-linked xylose, and (1→3)-linked galactose residues. The sulfate groups were mainly located at C-3 of (1→4)-linked rhamnose residues. Both MP and SP, in particular the former, effectively prolonged APTT and TT. This work demonstrates that MP and SP have unique structural characteristics distinct from those of other sulfated polysaccharides from Enteromorpha. The MP is a potential source of anticoagulant, and the difference in anticoagulant activities of the two sulfated polysaccharides is directly linked to the discrepancy of their chemical features.

  14. Effect of Chuanminshen violaceum polysaccharides and its sulfated derivatives on immunosuppression induced by cyclophosphamide in mice

    PubMed Central

    Zhao, Xinghong; Zhang, Yuetian; Song, Xu; Yin, Zhongqiong; Jia, Renyong; Zhao, Xingfang; Lai, Xin; Wang, Guangxi; Liang, Xiaoxia; He, Changliang; Yin, Lizi; Lv, Cheng; Zhao, Ling; Shu, Gang; Ye, Gang; Shi, Fei

    2015-01-01

    One hundred mice were randomly divided into five groups. The mice in one group were injected with physiological saline as the normal control group. The mice in the other four groups were injected with physiological saline, sulfated Chuanminshen violaceum polysaccharides (SCVP), Chuanminshen violaceum polysaccharide (CVP) and astragalus polysaccharide (AP) once daily for 7 d and then with cyclophosphamide (CY) in the last 3 d. The serum cytokine level, apoptosis protein expressions, spleen lymphocyte proliferation, changes in peripheral blood T-cell subsets, and immune organ index were then measured. Results showed that SCVP and CVP can overcome CY-induced immunosuppression by promoting spleen lymphocyte proliferation, raising serum IFN-? and IL-2 levels, enlarging immune organ indexes, and decreasing excessive apoptosis. Moreover, SCVP and CVP showed the potential to treat autoimmune diseases based on CD4+/CD8+ ratios. Results suggested that SCVP and CVP exhibited the potential to treat autoimmune and immunosuppression diseases. PMID:25785030

  15. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches

    PubMed Central

    Silva, Tiago H.; Alves, Anabela; Popa, Elena G.; Reys, Lara L.; Gomes, Manuela E.; Sousa, Rui A.; Silva, Simone S.; Mano, João F.; Reis, Rui L.

    2012-01-01

    Biomedical field is constantly requesting for new biomaterials, with innovative properties. Natural polymers appear as materials of election for this goal due to their biocompatibility and biodegradability. In particular, materials found in marine environment are of great interest since the chemical and biological diversity found in this environment is almost uncountable and continuously growing with the research in deeper waters. Moreover, there is also a slower risk of these materials to pose illnesses to humans. In particular, sulfated polysaccharides can be found in marine environment, in different algae species. These polysaccharides don’t have equivalent in the terrestrial plants and resembles the chemical and biological properties of mammalian glycosaminoglycans. In this perspective, are receiving growing interest for application on health-related fields. On this review, we will focus on the biomedical applications of marine algae sulfated polymers, in particular on the development of innovative systems for tissue engineering and drug delivery approaches. PMID:23507892

  16. Freshwater Plants Synthesize Sulfated Polysaccharides: Heterogalactans from Water Hyacinth (Eicchornia crassipes)

    PubMed Central

    Dantas-Santos, Nednaldo; Gomes, Dayanne Lopes; Costa, Leandro Silva; Cordeiro, Sara Lima; Costa, Mariana Santos Santana Pereira; Trindade, Edvaldo Silva; Franco, Célia Regina Chavichiolo; Scortecci, Kátia Castanho; Leite, Edda Lisboa; Rocha, Hugo Alexandre Oliveira

    2012-01-01

    Sulfated polysaccharides (SP) are found mainly in seaweeds and animals. To date, they have only been found in six plants and all inhabit saline environments. Furthermore, there are no reports of SP in freshwater or terrestrial plants. As such, this study investigated the presence of SP in freshwaters Eichhornia crassipes, Egeria densa, Egeria naja, Cabomba caroliniana, Hydrocotyle bonariensis and Nymphaea ampla. Chemical analysis identified sulfate in N. ampla, H. bonariensis and, more specifically, E. crassipes. In addition, chemical analysis, FT-IR spectroscopy, histological analysis, scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDXA), as well as agarose gel electrophoresis detected SP in all parts of E. crassipes, primarily in the root (epidermis and vascular bundle). Galactose, glucose and arabinose are the main monosaccharides found in the sulfated polysaccharides from E. crassipes. In activated partial thromboplastin time (APTT) test, to evaluate the intrinsic coagulation pathway, SP from the root and rhizome prolonged the coagulation time to double the baseline value, with 0.1 mg/mL and 0.15 mg/mL, respectively. However, SP from the leaf and petiole showed no anticoagulant activity. Eichornia SP demonstrated promising anticoagulant potential and have been selected for further studies on bioguided fractionation; isolation and characterization of pure polysaccharides from this species. Additionally in vivo experiments are needed and are already underway. PMID:22312297

  17. A Direct Sulfation Process of a Marine Polysaccharide in Ionic Liquid

    PubMed Central

    Sinquin, Corinne; Ratiskol, Jacqueline; Weiss, Pierre; Cérantola, Stéphane; Le Bideau, Jean

    2015-01-01

    GY785 is an exopolysaccharide produced by a mesophilic bacterial strain Alteromonas infernus discovered in the deep-sea hydrothermal vents. GY785 highly sulfated derivative (GY785 DRS) was previously demonstrated to be a promising molecule driving the efficient mesenchymal stem cell chondrogenesis for cartilage repair. This glycosaminoglycan- (GAG-) like compound was modified in a classical solvent (N,N′-dimethylformamide). However, the use of classical solvents limits the polysaccharide solubility and causes the backbone degradation. In the present study, a one-step efficient sulfation process devoid of side effects (e.g., polysaccharide depolymerization and/or degradation) was developed to produce GAG-like derivatives. The sulfation of GY785 derivative (GY785 DR) was carried out using ionic liquid as a reaction medium. The successful sulfation of this anionic and highly branched heteropolysaccharide performed in ionic liquid would facilitate the production of new molecules of high specificity for biological targets such as tissue engineering or regenerative medicine. PMID:26090416

  18. Perspective on the Use of Sulfated Polysaccharides from Marine Organisms as a Source of New Antithrombotic Drugs

    PubMed Central

    Mourão, Paulo A. S.

    2015-01-01

    Thromboembolic diseases are increasing worldwide and always require anticoagulant therapy. We still need safer and more secure antithrombotic drugs than those presently available. Sulfated polysaccharides from marine organisms may constitute a new source for the development of such drugs. Investigation of these compounds usually attempts to reproduce the therapeutic effects of heparin. However, we may need to follow different routes, focusing particularly in the following aspects: (1) defining precisely the specific structures required for interaction of these sulfated polysaccharides with proteins of the coagulation system; (2) looking for alternative mechanisms of action, distinct from those of heparin; (3) identifying side effects (mostly pro-coagulant action and hypotension rather than bleeding) and preparing derivatives that retain the desired antithrombotic action but are devoid of side effects; (4) considering that sulfated polysaccharides with low anticoagulant action on in vitro assays may display potent effects on animal models of experimental thrombosis; and finally (5) investigating the antithrombotic effect of these sulfated polysaccharides after oral administration or preparing derivatives that may achieve this effect. If these aspects are successfully addressed, sulfated polysaccharides from marine organisms may conquer the frontier of antithrombotic therapy and open new avenues for treatment or prevention of thromboembolic diseases. PMID:25955754

  19. Sulfated modification of longan polysaccharide and its immunomodulatory and antitumor activity in vitro.

    PubMed

    Jiang, Jie; Meng, Fa-Yan; He, Zhou; Ning, Yuan-Ling; Li, Xue-Hua; Song, Hui; Wang, Jing; Zhou, Rui

    2014-06-01

    A water-soluble polysaccharide fraction (LP1) was prepared from Dimocarpus longan Lour. by hot water extraction, DEAE-cellulose and Sephadex G-100 chromatography. Its sulfated derivative (LP1-S) was prepared by the sulfuric acid method. Preliminary tests in vitro showed LP1 and LP1-S could stimulate murine lymphocytes proliferation, increase pinocytic activity of murine macrophages and production of nitric oxide (NO), interleukin 6 (IL-6), IL-1β and tumor necrosis factor-alpha (TNF-α) in macrophages. Furthermore, LP1-S exhibited higher antiproliferative activity against human nasopharyngeal carcinoma HONE1 cells in vitro than LP1, which might be caused by the sulfate group in its structures. These results indicated that the LP1-S might be useful for developing safe antitumor drugs or health food. PMID:24680807

  20. Chemoprevention of Diethylnitrosamine-Initiated and Phenobarbital-Promoted Hepatocarcinogenesis in Rats by Sulfated Polysaccharides and Aqueous Extract of Ulva lactuca.

    PubMed

    Hussein, Usama K; Mahmoud, Hamada M; Farrag, Asmaa G; Bishayee, Anupam

    2015-11-01

    Hepatocellular carcinoma (HCC) is one of the common cancers and lethal diseases worldwide. Both oxidative stress and chronic inflammation contribute to the pathogenesis of HCC. Because of limited treatment options and a grave prognosis of HCC, preventive management has been emphasized. The marine macroalgae Ulva lactuca (Ulvaceae) is consumed by humans and livestock because of its nutritional value. Recent studies showed that various extracts of U. lactuca possess antiviral, antiplasmodial, antinephrotoxic, antioxidant, and anti-inflammatory properties. However, very limited information is available on anticancer potential of U. lactuca with no reports on liver cancer chemopreventive efficacy of this marine algae. Accordingly, the present study was initiated to evaluate the possible antihepatocarcinogenic effects and antioxidant mechanisms of action of various U. lactuca extracts against a clinically relevant rodent model of HCC. Initiation of hepatocarcinogenesis was performed in Sprague-Dawley rats by a single injection of dietary carcinogen diethylnitrosamine (DENA, 200 mg/kg, intraperitoneally), followed by promotion with phenobarbital (0.05%) in drinking water. The rats were fed with daily oral dose (50 mg/kg) of polysaccharide sulfate or aqueous extract of U. lactuca for 2, 12, and 24 weeks. At these timepoints, blood samples were taken to measure hepatic injury markers, including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, γ-glutamyl transferase, and bilirubin. The liver tissue was harvested for measurement of hepatic oxidative indices, including lipid peroxidation, reduced glutathione, nitric oxide, catalase, superoxide dismutase, glutathione reductase, and glutathione S-transferase. Hepatic histopathology, immunohistochemical analysis of cell proliferation and apoptosis by DNA fragmentation assay were performed. Our results clearly indicate that sulfated polysaccharides of U. lactuca exert a marked chemoprevention of DENA-initiated hepatocarcinogenesis through inhibition of abnormal cell proliferation and induction of apoptosis. A modest inhibition rat liver carcinogenesis was observed with the aqueous extract. The sulfated polysaccharides altered serum parameters of hepatic damage and modulated various components of the hepatic enzymatic and nonenzymatic antioxidant defense systems. The sulfated polysaccharides from U. lactuca may have unique properties of providing protection against DENA-induced oxidative stress which could contribute to chemoprevention of experimental hepatocarcinogenesis. U. lactuca sulfated polysaccharides could be developed as chemopreventive and therapeutic drug against human HCC. PMID:26130745

  1. In vitro antioxidant activities of sulfated polysaccharide ascophyllan isolated from Ascophyllum nodosum.

    PubMed

    Abu, Ryogo; Jiang, Zedong; Ueno, Mikinori; Okimura, Takasi; Yamaguchi, Kenichi; Oda, Tatsuya

    2013-08-01

    Antioxidant activities of sulfated polysaccharide ascophyllan from Ascophyllum nodosum was investigated in vitro by various assays, and compared with those of fucoidan. A chemiluminescence (CL) analysis using a luminol analog, L-012, showed that ascophyllan scavenges superoxide, and the activity is greater than fucoidan. However, in the presence of 10μg/ml of ascophyllan or 10μg/ml and 100μg/ml of fucoidan, slightly enhanced CL-responses were observed. Since EDTA-treatment resulted in disappearance of the enhancement effects, it was suggested that metal ions especially iron ions in the polysaccharides might be involved in this phenomenon. In fact, metal element analysis revealed that ascophyllan and fucoidan inherently contain iron and other metal elements. EDTA-treatment resulted in significant increase in Fe(2+)-chelating activities of these polysaccharides. In an electron spin resonance (ESR)-spin trapping analysis in which direct UV-radiation to hydrogen peroxide was used as a source of hydroxyl radical, ascophyllan and fucoidan showed potent hydroxyl radical scavenging activity with similar extent. Reducing power of ascophyllan was stronger than that of fucoidan. Our results indicate that ascophyllan can exhibit direct and potent antioxidant activity. PMID:23643974

  2. Biochemical characteristics and antioxidant activity of crude and purified sulfated polysaccharides from Gracilaria fisheri.

    PubMed

    Imjongjairak, Siriluck; Ratanakhanokchai, Khanok; Laohakunjit, Natta; Tachaapaikoon, Chakrit; Pason, Patthra; Waeonukul, Rattiya

    2016-03-01

    Sulfated polysaccharides (SPs) from Gracilaria fisheri of Thailand, which were extracted in low-temperature (25 °C) water showed the highest content of phenolic compounds compared with those extracted at high temperature (55 °C). Crude SP antioxidant activity was evaluated by measuring the DPPH free radical scavenging effect which is directly related to the level of phenolic compounds. The sulfate content, total sugar, and SPs yield were also directly related to the extraction temperature. All extracts contained galactose as a major monosaccharide. High antioxidant activity of crude SP, positively correlated with the phenolic compound contents (R(2) = 0.996) contributed by the existence of sulfate groups and phenolic compounds. In purified SP, F1 fraction exhibited strong radical scavenging ability, but it was not significantly different compared to crude SP extracted at 25 °C. This indicated that the appropriate density and distribution of sulfate groups in the SP extract showed the best antioxidant activity. PMID:26507584

  3. Separation, characterization and anticancer activities of a sulfated polysaccharide from Undaria pinnatifida.

    PubMed

    Han, Yun; Wu, Jun; Liu, Tingting; Hu, Youdong; Zheng, Qiusheng; Wang, Binsheng; Lin, Haiyan; Li, Xia

    2016-02-01

    The purpose of this paper was to investigate separation, characterization and anticancer activities of a sulfated polysaccharide (SPUP) from Undaria pinnatifida. Firstly, polysaccharide from U. pinnatifida was separated by DEAE-52 cellulose and Sephacryl S-400 column chromatography. As results, SPUP was obtained with the yield of 19.42%. Then, SPUP was characterized using chemical analysis, gas chromatography, size-exclusion HPLC chromatography, UV-vis spectra and FT-IR spectrum. The content of total sugar, uronic acid, protein and sulfate radical were 80.48%, 3.21%, 7.12% and 29.14%, respectively. SPUP was a heteropolysaccharide composed of fucose, glucose and galactose in a molar percentage of 27.15:19.34:53.51 with molecular weight of 97.9 kDa. Finally, the strongly against breast cancer activity of SPUP was confirmed by DMBA-induced breast cancer rats model. AS results, SPUP can significantly restrain breast abnormal enlargement, prolong tumor latency and reduced tumor incidence. Immunomodulatory activity and regulating abnormal sex hormones level might contribute to its anticancer activities. PMID:26616455

  4. The comparison of antioxidative and hepatoprotective activities of Codonopsis pilosula polysaccharide (CP) and sulfated CP.

    PubMed

    Liu, Cui; Chen, Jin; Li, Entao; Fan, Qiang; Wang, Deyun; Li, Peng; Li, Xiuping; Chen, Xingying; Qiu, Shulei; Gao, Zhenzhen; Li, Hongquan; Hu, Yuanliang

    2015-02-01

    Codonopsis pilosula polysaccharide (CP) was extracted, purified and modified by chlorosulfonic acid-pyridine method to obtain a sulfated CP (sCP). Their antioxidative activities in vitro were compared through the free radical-scavenging test. The results demonstrated that the scavenging capabilities of sCP were significantly stronger than those of CP. In vivo test, the mice hepatic injury model was prepared by BCG/LPS method, then administrated respectively with sCP and CP at three dosages, the biochemical indexes in serum, antioxidative indexes in liver homogenate and histopathological change in liver of the mice were compared. The results showed that in high (200mg/kg) and middle (150mg/kg) dosages of sCP groups, the contents of ALT, AST and TNF-? in serum and MDA in liver homogenate were significantly lower than those in the model group and numerically lower than those in the CP groups, the activities of SOD and GSH-Px in liver homogenate were significantly higher than those in the model group and numerically higher than those in the CP groups. In the model group there were obvious pathological changes in the liver, while in the sCP groups were near normal. These results indicate that sCP and CP possess antioxidative activity in vitro and in vivo, the activity of sCP is stronger than that of CP and sulfation modification can enhance the antioxidative and hepatoprotective activities of Codonopsis pilosula polysaccharide. PMID:25543057

  5. METHOD OF INHIBITING CORROSION IN URANYL SULFATE SOLUTIONS

    DOEpatents

    Bohlmann, E.G.; Griess, J.C. Jr.

    1960-08-23

    A method is given for treating a uranyl sulfate solution to inhibit the corrosiveness of the solution and elevate the phase separation temperature of the solution. Lithium sulfate is added to the solution in an amount ranging from 0.25 to 1.3 times the uranyl sulfate concentration. The corrosiveness of the solution with respect to stainless steel is substantially decreased by this means. This treatment also serves to raise the phase separation temperature of the solution (above 250 deg C), at which time the uranyl sulfate solution separates into two liquid phases of unequal uranium concentration and thus becomes unsuitable as nuclear reactor fuel.

  6. Occurrence of sulfated fucose branches in fucosylated chondroitin sulfate are essential for the polysaccharide effect preventing muscle damage induced by toxins and crude venom from Bothrops jararacussu snake.

    PubMed

    Monteiro-Machado, Marcos; Tomaz, Marcelo A; Fonseca, Roberto J C; Strauch, Marcelo A; Cons, Bruno L; Borges, Paula A; Patrão-Neto, Fernando C; Tavares-Henriques, Matheus S; Teixeira-Cruz, Jhonatha M; Calil-Elias, Sabrina; Cintra, Adélia C O; Martinez, Ana Maria B; Mourão, Paulo A S; Melo, Paulo A

    2015-05-01

    Snake envenoming is an important public health problem around the world, particularly in tropics. Beyond deaths, morbidity induced by snake venoms, such as myotoxicity, is of pivotal consequence to population. Bothrops jararacussu is the main venomous snake in southeast region of Brazil, and particularly presents strong myotoxic effect. The only available therapy, antibothropic antivenom, poorly affects venom-induced myotoxicity. The aim of this study is to assess the ability of fucosylated chondroitin sulfate (fucCS), a glycosaminoglycan with anticoagulant and antithrombotic properties, and its derivatives to inhibit toxic activities of B. jararacussu crude venom and its isolated toxins, named bothropstoxins (BthTX-I and BthTX-II). The in vitro myotoxic activities induced by crude venom, by BthTX-I alone and by toxins together were abolished by fucCS. Carboxyl reduction (fucCS-CR) kept this ability whereas defucosilation (defucCS) abrogates myoprotection. We observed the same pattern in the response of these polysaccharides in antagonizing the increase in plasma creatine kinase (CK) levels, the reduction of skeletal muscle CK content and the rise of myeloperoxidase (MPO) activity induced by crude venom and isolated toxins. FucCS inhibited edematogenic activity and partially prevented the reduction of total leukocytes in blood when pre-incubated with crude venom. Furthermore, the venom procoagulant effect was completely antagonized by increasing concentrations of fucCS, although this polyanion could stop neither the tail bleeding nor the skin hemorrhage induced by Bothrops jararaca venom. The B. jararacussu phospholipase, hyaluronidase, proteolytic and collagenase activities were inhibited in vitro. The results suggest that fucCS could be able to interact with both toxins, and it is able to inhibit BthTX-II phospholipase activity. Light microscopy of extensor digitorum longus muscle (EDL) muscle showed myoprotection by fucCS, once necrotic areas, edema and inflammatory cells were all decreased as compared to venom injection alone. Altogether, data show that fucCS was able to inhibit myotoxicity and inflammation induced by B. jararacussu venom and its phospholipase toxins, BthTX-I and BthTX-II. Thus, fucosylated chondroitin sulfate is a new polyanion with potential to be used as an adjuvant in the treatment of snakebites in the future. PMID:25702961

  7. A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects.

    PubMed

    Dore, Celina Maria P Guerra; das C Faustino Alves, Monique Gabriela; Will, Luiza Sheyla E Pofírio; Costa, Thiago G; Sabry, Diego A; de Souza Rêgo, Leonardo Augusto R; Accardo, Camila M; Rocha, Hugo Alexandre O; Filgueira, Luciana Guimarães A; Leite, Edda Lisboa

    2013-01-01

    Fucan (SV1) sulfated polysaccharides from the brown algae Sargassum vulgare were extracted, fractionated in acetone and examined with respect to chemical composition, anticoagulant, anti-inflammatory, antithrombotic effects and cellular proliferation. These polysaccharides contain low levels of protein, high level of carbohydrate and sulfate. Monosaccharides analysis revealed that SV1 was composed of fucose, galactose, xylose, glucuronic acid and mannose. SV1 polysaccharide prolonged activated partial thromboplastin time (aPTT) and exhibited high antithrombotic action in vivo, with a concentration ten times higher than heparin activity. PSV1, a purified form in gel filtration showed very low biological activities. SV1 stimulated the enzymatic activity of FXa. Its action on DPPH radical scavenging activity was 22%. This polymer has no cytotoxic action (hemolytic) on ABO and Rh blood types in different erythrocyte groups. It displays strong anti-inflammatory action at all concentrations tested in the carrageenan-induced paw edema model, demonstrated by reduced edema and cellular infiltration. PMID:23044157

  8. Therapeutic Potential of Anti-Angiogenic Multitarget N,O-Sulfated E. Coli K5 Polysaccharide in Diabetic Retinopathy.

    PubMed

    Rezzola, Sara; Dal Monte, Massimo; Belleri, Mirella; Bugatti, Antonella; Chiodelli, Paola; Corsini, Michela; Cammalleri, Maurizio; Cancarini, Anna; Morbidelli, Lucia; Oreste, Pasqua; Bagnoli, Paola; Semeraro, Francesco; Presta, Marco

    2015-07-01

    Vascular endothelial growth factor (VEGF) blockers have been developed for the treatment of proliferative diabetic retinopathy (PDR), the leading cause of visual impairments in the working-age population in the Western world. However, limitations to anti-VEGF therapies may exist because of the local production of other proangiogenic factors that may cause resistance to anti-VEGF interventions. Thus, novel therapeutic approaches targeting additional pathways are required. Here, we identified a sulfated derivative of the Escherichia coli polysaccharide K5 [K5-N,OS(H)] as a multitarget molecule highly effective in inhibiting VEGF-driven angiogenic responses in different in vitro, ex vivo, and in vivo assays, including a murine model of oxygen-induced retinopathy. Furthermore, K5-N,OS(H) binds a variety of heparin-binding angiogenic factors upregulated in PDR vitreous humor besides VEGF, thus inhibiting their biological activity. Finally, K5-N,OS(H) hampers the angiogenic activity exerted in vitro and in vivo by human vitreous fluid samples collected from patients with PDR. Together, the data provide compelling experimental evidence that K5-N,OS(H) represents an antiangiogenic multitarget molecule with potential implications for the therapy of pathologic neovessel formation in the retina of patients with PDR. PMID:25695948

  9. Anti-metastatic effects of the sulfated polysaccharide ascophyllan isolated from Ascophyllum nodosum on B16 melanoma.

    PubMed

    Abu, Ryogo; Jiang, Zedong; Ueno, Mikinori; Isaka, Shogo; Nakazono, Satoru; Okimura, Takasi; Cho, Kichul; Yamaguchi, Kenichi; Kim, Daekyung; Oda, Tatsuya

    2015-03-20

    We previously found that ascophyllan, a sulfated polysaccharide isolated from brown seaweed Ascophyllum nodosum, exhibited antitumor activity in sarcoma-180 tumor-bearing mice. In this study, we found that ascophyllan inhibited the migration and adhesion of B16 melanoma cells by reducing the expression of N-cadherin and enhancing the expression of E-cadherin in a concentration-dependent manner. Transwell invasion assay revealed that ascophyllan suppressed the invasion ability of B16 cells. It also inhibited the expression of matrix metalloprotease-9 (MMP-9) mRNA and the secretion of MMP-9 protein in B16 cells, a process that may involve the extracellular signal-regulated kinase (ERK) signaling pathway. Furthermore, ascophyllan administered intraperitoneally at 25 mg/kg showed anti-metastatic activity in a mouse model of metastasis induced by intravenous injection of B16 cells, and the number of lung surface metastatic nodules in ascophyllan-treated mice was significantly reduced compared to that in the untreated control mice. Since splenic natural killer cell activity enhanced in the mice injected with ascophyllan intraperitoneally, we suggest that ascophyllan may exhibit in vivo anti-metastatic activity on B16 melanoma cells through activation of the host immune system in addition to a direct action on cancer cells. PMID:25623538

  10. Ulvan, a sulfated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway.

    PubMed

    Jaulneau, Valérie; Lafitte, Claude; Jacquet, Christophe; Fournier, Sylvie; Salamagne, Sylvie; Briand, Xavier; Esquerré-Tugayé, Marie-Thérèse; Dumas, Bernard

    2010-01-01

    The industrial use of elicitors as alternative tools for disease control needs the identification of abundant sources of them. We report on an elicitor obtained from the green algae Ulva spp. A fraction containing most exclusively the sulfated polysaccharide known as ulvan-induced expression of a GUS gene placed under the control of a lipoxygenase gene promoter. Gene expression profiling was performed upon ulvan treatments on Medicago truncatula and compared to phytohormone effects. Ulvan induced a gene expression signature similar to that observed upon methyl jasmonate treatment (MeJA). Involvement of jasmonic acid (JA) in ulvan response was confirmed by detecting induction of protease inhibitory activity and by hormonal profiling of JA, salicylic acid (SA) and abscisic acid (ABA). Ulvan activity on the hormonal pathway was further consolidated by using Arabidopsis hormonal mutants. Altogether, our results demonstrate that green algae are a potential reservoir of ulvan elicitor which acts through the JA pathway. PMID:20445752

  11. Ulvan, a Sulfated Polysaccharide from Green Algae, Activates Plant Immunity through the Jasmonic Acid Signaling Pathway

    PubMed Central

    Jaulneau, Valérie; Lafitte, Claude; Jacquet, Christophe; Fournier, Sylvie; Salamagne, Sylvie; Briand, Xavier; Esquerré-Tugayé, Marie-Thérèse; Dumas, Bernard

    2010-01-01

    The industrial use of elicitors as alternative tools for disease control needs the identification of abundant sources of them. We report on an elicitor obtained from the green algae Ulva spp. A fraction containing most exclusively the sulfated polysaccharide known as ulvan-induced expression of a GUS gene placed under the control of a lipoxygenase gene promoter. Gene expression profiling was performed upon ulvan treatments on Medicago truncatula and compared to phytohormone effects. Ulvan induced a gene expression signature similar to that observed upon methyl jasmonate treatment (MeJA). Involvement of jasmonic acid (JA) in ulvan response was confirmed by detecting induction of protease inhibitory activity and by hormonal profiling of JA, salicylic acid (SA) and abscisic acid (ABA). Ulvan activity on the hormonal pathway was further consolidated by using Arabidopsis hormonal mutants. Altogether, our results demonstrate that green algae are a potential reservoir of ulvan elicitor which acts through the JA pathway. PMID:20445752

  12. Microanalysis and preliminary pharmacokinetic studies of a sulfated polysaccharide from Laminaria japonica

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Sun, Delin; Zhao, Xia; Jin, Weihua; Wang, Jing; Zhang, Quanbin

    2016-01-01

    A rapid, sensitive and reproducible high performance liquid chromatography (HPLC) method with post-column fluorescence derivatization has been developed to determine the amount of low-molecular-weight sulfated polysaccharide (GFS) in vivo. The metabolism of GFS has been shown to fit a two component model following its administration by intravenous injection, and its pharmacokinetic parameters were determined to be as follows: half-time of distribution phase ( t 1/2α)=11.24±2.93 min, half-time of elimination phase ( t 1/2β)=98.20±25.78 min, maximum concentration ( C max)=110.53 μg/mL and peak time ( T max)=5 min. The pharmacokinetic behavior of GFS was also investigated following intragastric administration. However, the concentration of GFS found in serum was too low for detection, and GFS could only be detected for up to 2 h after intragastric administration (200 mg/kg body weight). Thus, the bioavailability of GFS was low following intragastric administration because of the metabolism of GFS. In conclusion, HPLC with postcolumn derivatization could be used for quantitative microanalysis and pharmacokinetic studies to determine the presence of polysaccharides in the serum following intravenous injection.

  13. Microanalysis and preliminary pharmacokinetic studies of a sulfated polysaccharide from Laminaria japonica

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Sun, Delin; Zhao, Xia; Jin, Weihua; Wang, Jing; Zhang, Quanbin

    2015-06-01

    A rapid, sensitive and reproducible high performance liquid chromatography (HPLC) method with post-column fluorescence derivatization has been developed to determine the amount of lowmolecularweight sulfated polysaccharide (GFS) in vivo. The metabolism of GFS has been shown to fit a two component model following its administration by intravenous injection, and its pharmacokinetic parameters were determined to be as follows: half-time of distribution phase (t 1/2?)=11.242.93 min, half-time of elimination phase (t 1/2?)=98.2025.78 min, maximum concentration (C max)=110.53 g/mL and peak time (T max)=5 min. The pharmacokinetic behavior of GFS was also investigated following intragastric administration. However, the concentration of GFS found in serum was too low for detection, and GFS could only be detected for up to 2 h after intragastric administration (200 mg/kg body weight). Thus, the bioavailability of GFS was low following intragastric administration because of the metabolism of GFS. In conclusion, HPLC with postcolumn derivatization could be used for quantitative microanalysis and pharmacokinetic studies to determine the presence of polysaccharides in the serum following intravenous injection.

  14. Inhibition of α-glucosidase by polysaccharides from the fruit hull of Camellia oleifera Abel.

    PubMed

    Zhang, Sheng; Li, Xiang-Zhou

    2015-01-22

    We isolated and purified polysaccharides from the Camellia oleifera Abel. fruit hull and studied its hypoglycemic potential. Our results revealed six polysaccharides (CFPA-1-5 & CFPB) from the aqueous extract from the defatted C. oleifera fruit hull. Purified polysaccharides (purity >90%) were investigated for the inhibition of α-glucosidase activity in vitro. Two polysaccharides, CFPB and CFPA-3 were present in high concentration in the fruit hull and showed a dose-dependent inhibition of α-glucosidase activity, with IC50 concentrations of 11.80 and 10.95 μg/mL, respectively. This result suggests that polysaccharides (CFP) extracted from the fruit hull of C. oleifera may have potential as functional foods with featuring a hypoglycemic effect. PMID:25439865

  15. Immunomodulatory of selenium nano-particles decorated by sulfated Ganoderma lucidum polysaccharides.

    PubMed

    Wang, Jianguo; Zhang, Yifeng; Yuan, Yahong; Yue, Tianli

    2014-06-01

    In this study, we employed a one-step method to prepare selenium nanoparticles (SeNPs) decorated by the water-soluble derivative of Ganoderma lucidum polysaccharides (SPS). The SeNPs-SPS complexes were stable, and the diameter of the SeNPs was homogeneous at around 25 nm. We investigated the anti-inflammatory activity of SeNPs-SPS against murine Raw 264.7 macrophage cells induced by LPS. SeNPs-SPS were found to significantly inhibit LPS-stimulated nitric oxide (NO) production against Raw 264.7 macrophages. RT-PCR results reveal the down-regulation of mRNA gene expressions for pro-inflammatory cytokines, including inducible NO synthase (iNOS), interleukin (IL)-1 and TNF-α in a dose-dependent manner. However, the anti-inflammation cytokine IL-10 was markedly increased. In the NF-κB signal pathway, SeNPs-SPS significantly inhibited the phosphorylation of Iκ-Bα. Similar results were observed for inhibition of the phosphorylation of JNK1/2 and p38 mitogen-activated protein kinase(MAPKs), whereas ERK1/2 MAPK was not apparently affected by SeNPs-SPS. All of these results suggest that SeNPs-SPS complexes have anti-inflammatory potential modulating pro-/anti-inflammation cytokine secretion profiles, and that the mechanism is partially due to inhibition of activations of NF-κB, JNK1/2 and p38 MAPKs. PMID:24626144

  16. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides

    PubMed Central

    Song, Lin; Chen, Xiaolin; Liu, Xiaodong; Zhang, Fubo; Hu, Linfeng; Yue, Yang; Li, Kecheng; Li, Pengcheng

    2015-01-01

    Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV. PMID:26729137

  17. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides.

    PubMed

    Song, Lin; Chen, Xiaolin; Liu, Xiaodong; Zhang, Fubo; Hu, Linfeng; Yue, Yang; Li, Kecheng; Li, Pengcheng

    2015-01-01

    Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV. PMID:26729137

  18. Molecular Basis of the Receptor Interactions of Polysialic Acid (polySia), polySia Mimetics, and Sulfated Polysaccharides.

    PubMed

    Zhang, Ruiyan; Loers, Gabriele; Schachner, Melitta; Boelens, Rolf; Wienk, Hans; Siebert, Simone; Eckert, Thomas; Kraan, Stefan; Rojas-Macias, Miguel A; Lütteke, Thomas; Galuska, Sebastian P; Scheidig, Axel; Petridis, Athanasios K; Liang, Songping; Billeter, Martin; Schauer, Roland; Steinmeyer, Jürgen; Schröder, Jens-Michael; Siebert, Hans-Christian

    2016-05-01

    Polysialic acid (polySia) and polySia glycomimetic molecules support nerve cell regeneration, differentiation, and neuronal plasticity. With a combination of biophysical and biochemical methods, as well as data mining and molecular modeling techniques, it is possible to correlate specific ligand-receptor interactions with biochemical processes and in vivo studies that focus on the potential therapeutic impact of polySia, polySia glycomimetics, and sulfated polysaccharides in neuronal diseases. With this strategy, the receptor interactions of polySia and polySia mimetics can be understood on a submolecular level. As the HNK-1 glycan also enhances neuronal functions, we tested whether similar sulfated oligo- and polysaccharides from seaweed could be suitable, in addition to polySia, for finding potential new routes into patient care focusing on an improved cure for various neuronal diseases. The knowledge obtained here on the structural interplay between polySia or sulfated polysaccharides and their receptors can be exploited to develop new drugs and application routes for the treatment of neurological diseases and dysfunctions. PMID:27136597

  19. Antioxidant capacity and cytotoxicity of sulfated polysaccharide TLH-3 from Tricholoma lobayense.

    PubMed

    Li, Xuehui; Lu, Yongming; Zhang, Wenna; Yuan, Shixiong; Zhou, Liyuan; Wang, Liming; Ding, Qiuying; Wang, Dandan; Yang, Weiwei; Cai, Zhengnan; Chen, Yan

    2016-01-01

    Polysaccharide TLH-3 from the fruit body of Tricholoma lobayense Heim has shown outstanding antioxidant activity. In order to further explore it, TLH-3 was successfully modified to obtain a sulfated derivative (STLH-3). The chemical characteristics of STLH-3 and TLH-3 were determined by high performance liquid chromatography and infrared spectroscopy. Antioxidant activity and cytotoxicity of the samples were investigated in vitro. The antioxidant activities of STLH-3 were significantly improved. In the four indicators of antioxidant activity, the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion scavenging activities of STLH-3 have exceeded that of Vitamin C (Vc). The cytotoxicity against tumor cells including human cervical carcinoma cell line (HeLa) and human breast cancer cell line (MCF-7) of STLH-3 was obviously stronger than that of TLH-3. STLH-3 had no toxic on human embryonic lung fibroblasts (HELF) cells. These results suggested that STLH-3 would be a promising bioactive macromolecule for potential applications in the field of health care and pharmaceutical. PMID:26449529

  20. Biosensors coated with sulfated polysaccharides for the detection of hepatocyte growth factor/scatter factor in cell culture medium.

    PubMed

    Berger, Manuel; Welle, Alexander; Gottwald, Eric; Rapp, Michael; Lnge, Kerstin

    2010-12-15

    Process control methods for cell culture bioreactors include on-line monitoring of protein concentrations. Bioreactor samples typically contain high amounts of different proteins. The direct detection of a single protein in this complex medium is a challenging task within the development of biosensors with label-free detection. We introduce the development of a mass-sensitive biosensor based on surface acoustic waves (SAW) for the detection of hepatocyte growth factor/scatter factor (HGF/SF) in the serum containing medium of a miniaturized bioreactor for culturing hepatocytes. The specificity of the biosensor was obtained following two approaches. In the first approach, antibodies against HGF (anti-HGF) were immobilized covalently via an intermediate layer of dicarboxy polyethylene glycol on the biosensor surface. In the second approach, dextran sulfate and fucoidan were used as sensor coatings exploiting the fact that HGF binds specifically to those sulfated polysaccharides. Performing HGF assays, similar results were obtained using biosensors coated with dextran sulfate and biosensors coated with anti-HGF. Even higher sensor signals were obtained using biosensors coated with fucoidan, particularly at 37C. Therefore, biosensor coatings based on biospecific sulfated polysaccharides offer a simple and cost-saving alternative compared to the commonly used coating with antibodies. PMID:20719493

  1. Inhibition of spontaneous canine benign prostatic hyperplasia by an Urtica fissa polysaccharide fraction.

    PubMed

    Xiaocheng, Chen; Shan, He; Yuxing, Lu; Lizhen, Yuan; Linmao, Ding; Shoujun, Yuan; Qinglin, Zhang

    2015-01-01

    In this study, we investigated the inhibition of spontaneous canine benign prostatic hyperplasia by a crude polysaccharide fraction extracted from Urtica fissa roots and stems. After oral administration of U. fissa polysaccharide fraction for 3 months, the dog prostatic volume reduced significantly when compared to that before treatment using CT examination. The high-dosage U. fissa polysaccharide fraction (120 mg/kg body weight/day) and finasteride (0.5 mg/kg body weight/day) treatments showed both almost 30 % reduction of the initial prostatic volume. At the end of the administration of U. fissa polysaccharide fraction, the prostates were excised, and the volumes were measured by water displacement. The prostatic volume showed significant decrease by 11 %, 15 %, and 21 % for the 30, 60, and 120 mg/kg/day U. fissa polysaccharide fraction treatment groups, respectively, compared to the control group. Histological observation found that U. fissa polysaccharide fraction inhibited the dog prostatic epithelial cells proliferation and enlarged glandular lumen diameter. The crude polysaccharide fraction of U. fissa is a possible new candidate for the treatment of benign prostatic hyperplasia. PMID:25473922

  2. Sulphation can enhance the antioxidant activity of polysaccharides produced by Enterobacter cloacae Z0206.

    PubMed

    Jin, Mingliang; Wang, Youming; Huang, Ming; Lu, Zeqing; Wang, Yizhen

    2014-01-01

    The protective effects of sulfated polysaccharide derivatives produced by Enterobacter cloacae Z0206 against H₂O₂-induced oxidative damage in RAW264.7 murine macrophages as well as the possible mechanisms governing the protective effects were studied. Sulfated polysaccharides protected RAW264.7 cells from oxidative damage and apoptosis induced by H₂O₂ by protecting the cellular structure; improving the activity of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px); and inhibiting caspase-3 activation and DNA fragmentation. In addition, the sulfated polysaccharides conferred higher levels of protection from H₂O₂-induced oxidative damage in RAW264.7 murine macrophages compared to the native polysaccharide lacking sulfation. These results indicated that sulfated modifications might be an effective approach to enhance the antioxidant activity of polysaccharides produced by E. cloacae Z0206, and the sulfated derivatives of these polysaccharides may act as potent antioxidant agents. PMID:24274552

  3. Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years.

    PubMed

    Wang, Lingchong; Wang, Xiangyu; Wu, Hao; Liu, Rui

    2014-09-01

    Among the three main divisions of marine macroalgae (Chlorophyta, Phaeophyta and Rhodophyta), marine green algae are valuable sources of structurally diverse bioactive compounds and remain largely unexploited in nutraceutical and pharmaceutical areas. Recently, a great deal of interest has been developed to isolate novel sulfated polysaccharides (SPs) from marine green algae because of their numerous health beneficial effects. Green seaweeds are known to synthesize large quantities of SPs and are well established sources of these particularly interesting molecules such as ulvans from Ulva and Enteromorpha, sulfated rhamnans from Monostroma, sulfated arabinogalactans from Codium, sulfated galacotans from Caulerpa, and some special sulfated mannans from different species. These SPs exhibit many beneficial biological activities such as anticoagulant, antiviral, antioxidative, antitumor, immunomodulating, antihyperlipidemic and antihepatotoxic activities. Therefore, marine algae derived SPs have great potential for further development as healthy food and medical products. The present review focuses on SPs derived from marine green algae and presents an overview of the recent progress of determinations of their structural types and biological activities, especially their potential health benefits. PMID:25257786

  4. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years

    PubMed Central

    Wang, Lingchong; Wang, Xiangyu; Wu, Hao; Liu, Rui

    2014-01-01

    Among the three main divisions of marine macroalgae (Chlorophyta, Phaeophyta and Rhodophyta), marine green algae are valuable sources of structurally diverse bioactive compounds and remain largely unexploited in nutraceutical and pharmaceutical areas. Recently, a great deal of interest has been developed to isolate novel sulfated polysaccharides (SPs) from marine green algae because of their numerous health beneficial effects. Green seaweeds are known to synthesize large quantities of SPs and are well established sources of these particularly interesting molecules such as ulvans from Ulva and Enteromorpha, sulfated rhamnans from Monostroma, sulfated arabinogalactans from Codium, sulfated galacotans from Caulerpa, and some special sulfated mannans from different species. These SPs exhibit many beneficial biological activities such as anticoagulant, antiviral, antioxidative, antitumor, immunomodulating, antihyperlipidemic and antihepatotoxic activities. Therefore, marine algae derived SPs have great potential for further development as healthy food and medical products. The present review focuses on SPs derived from marine green algae and presents an overview of the recent progress of determinations of their structural types and biological activities, especially their potential health benefits. PMID:25257786

  5. Inhibition of Oxidative Stress by Low-Molecular-Weight Polysaccharides with Various Functional Groups in Skin Fibroblasts

    PubMed Central

    Chen, Szu-Kai; Hsu, Chu-Hsi; Tsai, Min-Lang; Chen, Rong-Huei; Drummen, Gregor P. C.

    2013-01-01

    The aim of this study was to evaluate the in cellulo inhibition of hydrogen-peroxide-induced oxidative stress in skin fibroblasts using different low-molecular-weight polysaccharides (LMPS) prepared from agar (LMAG), chitosan (LMCH) and starch (LMST), which contain various different functional groups (i.e., sulfate, amine, and hydroxyl groups). The following parameters were evaluated: cell viability, intracellular oxidant production, lipid peroxidation, and DNA damage. Trolox was used as a positive control in order to allow comparison of the antioxidant efficacies of the various LMPS. The experimentally determined attenuation of oxidative stress by LMPS in skin fibroblasts was: LMCH > LMAG > LMST. The different protection levels of these LMPS may be due to the physic-chemical properties of the LMPS’ functional groups, including electron transfer ability, metal ion chelating capacities, radical stabilizing capacity, and the hydrophobicity of the constituent sugars. The results suggest that LMCH might constitute a novel and potential dermal therapeutic and sun-protective agent. PMID:24071940

  6. Algal sulfated carrageenan inhibits proliferation of MDA-MB-231 cells via apoptosis regulatory genes.

    PubMed

    Murad, Hossam; Ghannam, Ahmed; Al-Ktaifani, Mahmoud; Abbas, Assef; Hawat, Mohammad

    2015-03-01

    Marine algae are prolific sources of sulfated polysaccharides, which may explain the low incidence of certain cancers in countries that traditionally consume marine food. Breast cancer is one of the most common types of non‑skin cancer in females. In this study, extracted sulfated carrageenan (ESC), predominantly consisting of ι‑carrageenan extracted from the red alga Laurencia papillosa, was characterized using Fourier transform infrared spectrometry. The biological effects of the identified extract were investigated and its potential cytotoxic activity was tested against the MDA‑MB‑231 cancer cell line. The biological biometer of the inhibitory concentration of the polysaccharide‑treated MDA‑MB‑231 cells was determined as 50 µM. Treatment with 50 µM ESC inhibited cell proliferation and promptly induced cell death through nuclear condensation and DNA fragmentation. Characterization of polysaccharide‑treated MDA‑MB‑231 cell death revealed that induction of apoptosis occurred via the activation of the extrinsic apoptotic caspase‑8 gene. The apoptotic signaling pathway was regulated through caspase‑3, caspase‑9, p53, Bax and Bcl‑2 genes. These findings suggest that ESC may serve as a potential therapeutic agent to target breast cancer via prompting apoptosis. PMID:25384757

  7. Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin

    PubMed Central

    Verespy III, Stephen; Mehta, Akul Y.; Afosah, Daniel; Al-Horani, Rami A.; Desai, Umesh R.

    2016-01-01

    Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (<500 nM) and high selectivity for thrombin (>150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding. PMID:27053426

  8. Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin.

    PubMed

    Verespy Iii, Stephen; Mehta, Akul Y; Afosah, Daniel; Al-Horani, Rami A; Desai, Umesh R

    2016-01-01

    Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (<500 nM) and high selectivity for thrombin (>150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80-100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding. PMID:27053426

  9. Polysaccharides from Korean Citrus hallabong peels inhibit angiogenesis and breast cancer cell migration.

    PubMed

    Park, J Y; Shin, M S; Kim, S N; Kim, H Y; Kim, K H; Shin, K S; Kang, K S

    2016-04-01

    Although the peel of the hallabong (Citrus sphaerocarpa) fruit is rich in polysaccharides, which are valuable dietary ingredients for human health, it is normally wasted. The present study aimed to utilize the peel waste and identify properties it may have against breast cancer metastasis. Hallabong peel extract containing crude polysaccharides was fractionated by gel permeation chromatography to produce four different polysaccharide fractions (HBE-I, -II, -III, and -IV). The HBE polysaccharides significantly blocked tube formation of human umbilical vein vascular endothelial cells (HUVECs), at a concentration of 12.5 or 25μg/mL. Tube formation appeared to be more sensitive to HBE-II than to other HBE polysaccharides. HBE-II also inhibited breast cancer cell migration, through downregulation of matrix metalloproteinase-9 (MMP-9) in MDA-MB-231 triple-negative breast cancer cells. Therefore, inhibition of tube formation and MMP-9-mediated migration observed in HUVEC and MDA-MB-231 cells, respectively, are likely to be important therapeutic targets in triple-negative breast cancer metastasis. PMID:26778161

  10. Simple and Rapid Quality Control of Sulfated Glycans by a Fluorescence Sensor Assay—Exemplarily Developed for the Sulfated Polysaccharides from Red Algae Delesseria sanguinea

    PubMed Central

    Lühn, Susanne; Grimm, Juliane C.; Alban, Susanne

    2014-01-01

    Sulfated polysaccharides (SP) from algae are of great interest due to their manifold biological activities. Obstacles to commercial (especially medical) application include considerable variability and complex chemical composition making the analysis and the quality control challenging. The aim of this study was to evaluate a simple microplate assay for screening the quality of SP. It is based on the fluorescence intensity (FI) increase of the sensor molecule Polymer-H by SP and was originally developed for direct quantification of SP. Exemplarily, 65 SP batches isolated from the red alga Delesseria sanguinea (D.s.-SP) and several other algae polysaccharides were investigated. Their FI increase in the Polymer-H assay was compared with other analytical parameters. By testing just one concentration of a D.s.-SP sample, quality deviations from the reference D.s.-SP and thus both batch-to-batch variability and stability can be detected. Further, structurally distinct SP showed to differ in their concentration-dependent FI profiles. By using corresponding reference compounds, the Polymer-H assay is therefore applicable as identification assay with high negative predictability. In conclusion, the Polymer-H assay showed to represent not only a simple method for quantification, but also for characterization identification and differentiation of SP of marine origin. PMID:24727392

  11. Inhibition of synthesis of heparan sulfate by selenate: Possible dependence on sulfation for chain polymerization

    SciTech Connect

    Dietrich, C.P.; Nader, H.B. ); Buonassisi, V.; Colburn, P. )

    1988-01-01

    Selenate, a sulfation inhibitor, blocks the synthesis of heparan sulfate and chondroitin sulfate by cultured endothelial cells. In contrast, selenate does not affect the production of hyaluronic acid, a nonsulfated glycosaminoglycan. No differences in molecular weight, ({sup 3}H)glucosamine/({sup 35}S)sulfuric acid ratios, or disaccharide composition were observed when the heparan sulfate synthesized by selenate-treated cells was compared with that of control cells. The absence of undersulfated chains in preparations from cultures exposed to selenate supports the concept that, in the intact cell, the polymerization of heparan sulfate might be dependent on the sulfation of the saccharide units added to the growing glycosaminoglycan chain.

  12. Strong cellulase inhibition by Mannan polysaccharides in cellulose conversion to sugars.

    PubMed

    Kumar, Rajeev; Wyman, Charles E

    2014-07-01

    Cellulase enzymes contribute a major fraction of the total cost for biological conversion of lignocellulosic biomass to fuels and chemicals. Although a several fold reduction in cellulase production costs and enhancement of cellulase activity and stability have been reported in recent years, sugar yields are still lower at low enzyme doses than desired commercially. We recently reported that hemicellulose xylan and its oligomers strongly inhibit cellulase and that supplementation of cellulase with xylanase and β-xylosidase would significantly reduce such inhibition. In this study, mannan polysaccharides and their enzymatically prepared hydrolyzates were discovered to be strongly inhibitory to fungal cellulase in cellulose conversion (>50% drop in % relative conversion), even at a small concentration of 0.1 g/L, and inhibition was much greater than experienced by other known inhibitors such as cellobiose, xylooligomers, and furfural. Furthermore, cellulase inhibition dramatically increased with heteromannan loading and mannan substitution with galactose side units. In general, enzymatically prepared hydrolyzates were less inhibitory than their respective mannan polysaccharides except highly substituted ones. Supplementation of cellulase with commercial accessory enzymes such as xylanase, pectinase, and β-glucosidase was effective in greatly relieving inhibition but only for less substituted heteromannans. However, cellulase supplementation with purified heteromannan specific enzymes relieved inhibition by these more substituted heteromannans as well, suggesting that commercial preparations need to have higher amounts of such activities to realize high sugar yields at the low enzyme protein loadings needed for low cost fuels production. PMID:24522973

  13. Structural characterization and biological activities of a novel polysaccharide from cultured Cordyceps militaris and its sulfated derivative.

    PubMed

    Jing, Yongshuai; Zhu, Jianhua; Liu, Ting; Bi, Sixue; Hu, Xianjing; Chen, Zhiyan; Song, Liyan; Lv, Wenjie; Yu, Rongmin

    2015-04-01

    A novel polysaccharide (CMPA90-1; compound 1) was isolated from the cultured fruiting bodies of Cordyceps militaris. The chemical structure of compound 1 was elucidated by acid hydrolysis, periodate oxidation, Smith degradation, and methylation analysis, along with Fourier transform infrared spectroscopy, high-performance anion-exchange chromatography coupled with pulsed amperometric detection, gas chromatography-mass spectrometry, and one-dimensional [(1)H and (13)C nuclear magnetic resonance (NMR)] and two-dimensional NMR (heteronuclear single-quantum coherence and heteronuclear multiple-bond correlation). Sulfation of compound 1 by the chlorosulfonic acid-pyridine (CSA-Pyr) method led to synthesis of its sulfated analogue (CMPA90-M1; compound 2). The ultrastructures of both compounds 1 and 2 were further characterized by scanning electron microscopy and atomic force microscopy. The results of antioxidant assays showed that compounds 1 and 2 exhibited free-radical-scavenging effects, ferrous-ion-chelating ability, and reducing power. Also, in the cytotoxicity assay, compounds 1 and 2 showed inhibitory activity against A549 cells, with IC50 values of 39.08 and 17.33 μg/mL, respectively. PMID:25785351

  14. The effect of sulfated polysaccharides on the crystallization of calcite superstructures

    NASA Astrophysics Data System (ADS)

    Fried, Ruth; Mastai, Yitzhak

    2012-01-01

    Calcite with unique morphology and uniform size has been successfully synthesized in the presence of classes of polysaccharides based on carrageenans. In the crystallization of calcite, the choice of different carrageenans, (iota, lambda and kappa), as additives concedes systematic study of the influence of different chemical structures and particularly molecular charge on the formation of CaCO 3 crystals. The uniform calcite superstructures are formed by assemblies and aggregation of calcite crystals. The mechanism for the formation of calcite superstructures was studied by a variety of techniques, SEM, TEM, XRD, time-resolved conductivity and light scattering measurements, focusing on the early stages of crystals' nucleation and aggregation.

  15. Inhibition of Streptococcus mutans polysaccharide synthesis by molecules targeting glycosyltransferase activity

    PubMed Central

    Ren, Zhi; Chen, Lulu; Li, Jiyao; Li, Yuqing

    2016-01-01

    Glycosyltransferase (Gtf) is one of the crucial virulence factors of Streptococcus mutans, a major etiological pathogen of dental caries. All the available evidence indicates that extracellular polysaccharide, particularly glucans produced by S. mutans Gtfs, contribute to the cariogenicity of dental biofilms. Therefore, inhibition of Gtf activity and the consequential polysaccharide synthesis may impair the virulence of cariogenic biofilms, which could be an alternative strategy to prevent the biofilm-related disease. Up to now, many Gtf inhibitors have been recognized in natural products, which remain the major and largely unexplored source of Gtf inhibitors. These include catechin-based polyphenols, flavonoids, proanthocyanidin oligomers, polymeric polyphenols, and some other plant-derived compounds. Metal ions, oxidizing agents, and some other synthetic compounds represent another source of Gtf inhibitors, with some novel molecules either discovered by structure-based virtual screening or synthesized based on key structures of known inhibitors as templates. Antibodies that inhibit one or more Gtfs have also been developed as topical agents. Although many agents have been shown to possess potent inhibitory activity against glucan synthesis by Gtfs, bacterial cell adherence, and caries development in animal models, much research remains to be performed to find out their mechanism of action, biological safety, cariostatic efficacies, and overall influence on the entire oral community. As a strategy to inhibit the virulence of cariogenic microbes rather than eradicate them from the microbial community, Gtf inhibition represents an approach of great potential to prevent dental caries. PMID:27105419

  16. Asparagus polysaccharide and gum with hepatic artery embolization induces tumor growth and inhibits angiogenesis in an orthotopic hepatocellular carcinoma model.

    PubMed

    Weng, Ling-Ling; Xiang, Jian-Feng; Lin, Jin-Bo; Yi, Shang-Hui; Yang, Li-Tao; Li, Yi-Sheng; Zeng, Hao-Tao; Lin, Sheng-Ming; Xin, Dong-Wei; Zhao, Hai-Liang; Qiu, Shu-Qi; Chen, Tao; Zhang, Min-Guang

    2014-01-01

    Liver cancer is one of leading digestive malignancies with high morbidity and mortality. There is an urgent need for the development of novel therapies for this deadly disease. It has been proven that asparagus polysaccharide, one of the most active derivates from the traditional medicine asparagus, possesses notable antitumor properties. However, little is known about the efficacy of asparagus polysaccharide as an adjuvant for liver cancer chemotherapy. Herein, we reported that asparagus polysaccharide and its embolic agent form, asparagus gum, significantly inhibited liver tumor growth with transcatheter arterial chemoembolization (TACE) therapy in an orthotopic hepatocellular carcinoma (HCC) tumor model, while significantly inhibiting angiogenesis and promoting tumor cell apoptosis. Moreover, asparagine gelatinous possessed immunomodulatory functions and showed little toxicity to the host. These results highlight the chemotherapeutic potential of asparagus polysaccharide and warrant a future focus on development as novel chemotherapeutic agent for liver cancer TACE therapy. PMID:25605207

  17. A pure polysaccharide from Ephedra sinica treating on arthritis and inhibiting cytokines expression.

    PubMed

    Wang, Qiuhong; Shu, Zunpeng; Xing, Na; Xu, Bingqing; Wang, Changfu; Sun, Guibo; Sun, Xiaobo; Kuang, Haixue

    2016-05-01

    In our previous study, we found that the acidic polysaccharides of Ephedra sinica had immunosuppressive effect to treat rheumatoid arthritis and the pure polysaccharide ESP-B4 was the main composition of the acidic polysaccharides. At present, the exact molecular mechanism of ESP-B4 on treating arthritis is unclear. We are thus evaluating the properties of ESP-B4 on LPS-induced THP-1 pro-monocytic cells and adjuvant-induced arthritis in Wistar rats via TLR4. In vitro, ESP-B4 decreased the production of cytokines induced by LPS. In addition, ESP-B4 reduced the LPS-stimulated nuclear translocation of p65 subunit of NF-κB. Pretreatment with ESP-B4 significantly down-regulated the phosphorylation of MAPKs induced by LPS. Furthermore, in vivo, after 12 days of disease induced by adjuvant, rats were treated with ESP-B4 for 16 days. ESP-B4 significantly improved all parameters of inflammation. ESP-B4 reduced the release of inflammatory factors and cytokines by inhibiting the TLR4 signaling pathway to treat rheumatoid arthritis. PMID:26835987

  18. Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative.

    PubMed

    Chen, Lulu; Ren, Zhi; Zhou, Xuedong; Zeng, Jumei; Zou, Jing; Li, Yuqing

    2016-01-01

    Dental caries, a biofilm-related oral disease, is a result of disruption of the microbial ecological balance in the oral environment. Streptococcus mutans, which is one of the primary cariogenic bacteria, produces glucosyltransferases (Gtfs) that synthesize extracellular polysaccharides (EPSs). The EPSs, especially water-insoluble glucans, contribute to the formation of dental plaque, biofilm stability, and structural integrity, by allowing bacteria to adhere to tooth surfaces and supplying the bacteria with protection against noxious stimuli and other environmental attacks. The identification of novel alternatives that selectively inhibit cariogenic organisms without suppressing oral microbial residents is required. The goal of the current study is to investigate the influence of an oxazole derivative on S. mutans biofilm formation and the development of dental caries in rats, given that oxazole and its derivatives often exhibit extensive and pharmacologically important biological activities. Our data shows that one particular oxazole derivative, named 5H6, inhibited the formation of S. mutans biofilms and prevented synthesis of extracellular polysaccharides by antagonizing Gtfs in vitro, without affecting the growth of the bacteria. In addition, topical applications with the inhibitor resulted in diminished incidence and severity of both smooth and sulcal surface caries in vivo with a lower percentage of S. mutans in the animals' dental plaque compared to the control group (P < 0.05). Our results showed that this oxazole derivative has the capacity to inhibit biofilm formation and cariogenicity of S. mutans. PMID:26526453

  19. Inhibition of hydroxycinnamic acid sulfation by flavonoids and their conjugated metabolites.

    PubMed

    Wong, Chi Chun; Williamson, Gary

    2013-01-01

    Hydroxycinnamic acids and flavonoids are dietary phenolic antioxidants that are abundant in our diet. Hydroxycinnamic acids are highly sulfated in vivo, and sulfotransferases (SULTs), in particular SULT1A1, play a major role in their metabolism. Flavonoids are potent inhibitors of human SULTs. In this study, the potential metabolic interaction between dietary hydroxycinnamic acids and flavonoids was investigated. Flavonoids, such as luteolin, quercetin, daidzein, and genistein, are identified as potent inhibitors of hydroxycinnamic acid sulfation in human liver S9 homogenate with IC50 values <1 µM. The inhibitory activity was less potent in the human intestinal S9 homogenate. We also demonstrate that quercetin conjugates found in vivo (quercetin-3-O-glucuronide, quercetin-7-O-glucuronide, and quercetin-3'-O-sulfate) moderately inhibited the sulfation of hydroxycinnamic acids in human liver S9. In an intact cellular system, human HepG2 cells, caffeic acid and ferulic acid sulfation was inhibited by luteolin and quercetin (IC50 : 1.6-3.9 µM). Quercetin-3'-O-sulfate weakly inhibited sulfation. Quercetin glucuronides, limited by their low cellular uptake, were ineffective. These data suggest that the inhibition of SULTs by flavonoids and in vivo flavonoid conjugates may modify the bioavailability of dietary hydroxycinnamic acids by suppressing their conversion to sulfated metabolites. PMID:24038617

  20. Interactions between sulfated polysaccharides from sea brown algae and Toll-like receptors on HEK293 eukaryotic cells in vitro.

    PubMed

    Makarenkova, I D; Logunov, D Yu; Tukhvatulin, A I; Semenova, I B; Besednova, N N; Zvyagintseva, T N

    2012-12-01

    We studied the interactions between sulfated polysaccharides, fucoidans from sea brown algae Laminaria japonica, Laminaria cichorioides, and Fucus evanescens, with human Toll-like receptors (TLR) expressed on membranes of cultured human embryonic kidney cells (HEK293-null, HEK293-TLR2/CD14, HEK293-hTLR4/CD14-MD2, and HEK293-hTLR5). Fucoidans interacted with TLR-2 and TLR-4, but not with TLR-5, and were nontoxic for the cell cultures. L. japonica fucoidan (1 mg/ml), L. cichorioides fucoidan (100 μg/ml and 1 mg/ml), and F. evanescens fucoidan (10 μg/ml-1 mg/ml) activated transcription nuclear factor NF-ϰB by binding specifically to TLR-2. L. japonica fucoidan (100 μg/ml and 1 mg/ml), L. cichorioides fucoidan (10 μg/ml-1 mg/ml), and F. evanescens fucoidan (1 μg/ml-1 mg/ml) activated NF-ϰB via binding to TLR-4. These results indicated that fucoidans could induce in vivo defense from pathogenic microorganisms of various classes. PMID:23330135

  1. Vitamin C-sulfate inhibits mineralization in chondrocyte cultures: a caveat

    NASA Technical Reports Server (NTRS)

    Boskey, A. L.; Blank, R. D.; Doty, S. B.

    2001-01-01

    Differentiating chick limb-bud mesenchymal cell micro-mass cultures routinely mineralize in the presence of 10% fetal calf serum, antibiotics, 4 mM inorganic phosphate (or 2.5 mM beta-glycerophosphate), 0.3 mg/ml glutamine and either 25 microg/ml vitamin C or 5-12 microg/ml vitamin C-sulfate. The failure of these cultures to produce a mineralized matrix (assessed by electron microscopy, 45Ca uptake and Fourier transform infrared microscopy) led to the evaluation of each of these additives. We report here that the "stable" vitamin C-sulfate (ascorbic acid-2-sulfate) causes increased sulfate incorporation into the cartilage matrix. Furthermore, the release of sulfate from the vitamin C derivative appears to be responsible for the inhibition of mineral deposition, as demonstrated in cultures with equimolar amounts of vitamin C and sodium sulfate.

  2. Effect and mechanisms of curdlan sulfate on inhibiting HBV infection and acting as an HB vaccine adjuvant.

    PubMed

    Li, Pingli; Tan, Haining; Xu, Dongqing; Yin, Fengxin; Cheng, Yanna; Zhang, Xinke; Liu, Yuhong; Wang, Fengshan

    2014-09-22

    In this study, the effect and mechanisms of curdlan sulfate (CS3) on hepatitis B virus (HBV) infection and promoting immune response of the mice immunized with recombinant hepatitis B surface protein (HBsAg) were investigated. The results showed that CS3 could inhibit HBV infection of HepG2 and HepaRG cells, especially the process of HBV particle binding to the cell surfaces. The surface plasmon response (SPR) technology indicated that CS3 could bind with recombinant HBsAg and the binding ability depended on the content of sulfate groups on the polysaccharide chains. Co-administration of CS3 to BALB/c mice immunized with HBsAg significantly enhanced the influx of macrophages and dendritic cells in spleen, increased antigen-specific CD4+ and CD8+ cell numbers, and promoted splenocyte proliferation. The titer of HBsAg-specific antibodies was also augmented by use of CS3 as a vaccine adjuvant. The higher expression of interferon (IFN)-γ, lower expression of interleukin (IL)-4, and higher IgG2a/IgG1 ratio within the anti-HBsAg antibodies in mice immunized with HBsAg plus CS3 than those in mice receiving HBsAg alone indicated that CS3 induced a shift toward a Th1-biased immune response. These results presented that CS3 could be developed as an immunotherapy agent or vaccine adjuvant for HBV infection treatment or prevention. PMID:24906778

  3. Effect of Astragalus polysaccharide and its sulfated derivative on growth performance and immune condition of lipopolysaccharide-treated broilers.

    PubMed

    Wang, Xiaofei; Li, Yulong; Shen, Jing; Wang, Siyu; Yao, Junhu; Yang, Xiaojun

    2015-05-01

    This study evaluates the immunomodulating activities of Astragalus polysaccharide (APS) and sulfated APS (SAPS) in LPS-infected broiler chicks. SAPS was derived using the classic chlorosulfonic acid-pyridine method. On day 16, the birds were injected intramuscularly with 0.5 mL of either saline, APS (4 or 8 mg/kg of body weight (BW), shorten as APS-4 or APS-8) or SAPS (4 or 8 mg/kg of BW, shorten as SAPS-4 or SAPS-8) once a day for three successive days. On days 19 and 20, the birds were intraperitoneally injected with 0.5 mL of LPS (1mg/kg of BW). Saline was used as blank control. Compared with the blank control, LPS-treated birds showed lower daily body weight gain (BWG), average daily feed intake (ADFI), villus height and intraepithelial lymphocytes (IEL) number in jejunum, and higher feed conversion ratio (FCR, feed:gain), spleen index, plasma NO concentration, blood heterophil:lymphocyte (H:L) ratio, and the production of NO in the blood T lymphocytes. Compared with the LPS group, birds in APS-4, SAPS-4 and SAPS-8 groups showed decreased FCR (P<0.05). Moreover, SAPS increased BWG and jejunal villus height (P<0.05) at 8 mg/kg BW. Plasma NO concentration was lower in APS-8 group than that in LPS group (P<0.05). Both APS-8 and SAPS-8 treatments elevated the number of jejunal IEL (P<0.05), and decreased blood H:L ratio (P<0.05), respectively. Administration of APS or SAPS did not affect the ADFI, immune organ index, crypt depth and mucosal thickness of the jejunum, and the number of goblet cell. Our findings suggested that APS and SAPS possessed dose-dependent growth-promoting and immunomodulating effect, and was a potential development direction for immunomodulator under early LPS stimulation condition. PMID:25748840

  4. Inhibition of the classical pathway of complement by meningococcal capsular polysaccharides

    PubMed Central

    Agarwal, Sarika; Vasudhev, Shreekant; DeOliveira, Rosane; Ram, Sanjay

    2014-01-01

    Almost all invasive Neisseria meningitidis isolates express capsular polysaccharide. Antibody (Ab) is required for complement-dependent killing of meningococci. While alternative pathway evasion has received considerable attention, little is known about classical pathway (CP) inhibition by meningococci and forms the basis of this study. We engineered capsulated and unencapsulated isogenic mutant strains of groups A, B, C, W and Y meningococci to express similar amounts of the same factor H-binding protein (fHbp; a key component of group B meningococcal vaccines) molecule. Despite similar anti-fHbp mAb binding, significantly less C4b was deposited on all five encapsulated mutants compared to their unencapsulated counterparts (P<0.01), when purified C1 and C4 were used to deposit C4b. Reduced C4b deposition was the result of capsule-mediated inhibition of C1q engagement by Ab. C4b deposition correlated linearly with C1q engagement by anti-fHbp. While B, C, W and Y capsules limited CP-mediated killing by anti-fHbp, the unencapsulated group A mutant paradoxically was more resistant than its encapsulated counterpart. Strains varied considerably in their susceptibility to anti-fHbp and complement despite similar Ab binding, which may have implications for the activity of fHbp-based vaccines. Capsule also limited C4b deposition by anti-porin A mAbs. Capsule expression decreased binding of an anti-LOS IgM mAb (~1.2 to 2-fold reduction in fluorescence). Akin to observations with IgG, capsule also decreased IgM-mediated C4b deposition when IgM binding to the mutant strain pairs was normalized. In conclusion, we show that capsular polysaccharide, a critical meningococcal virulence factor, inhibits the CP of complement. PMID:25015832

  5. Inhibition of the classical pathway of complement by meningococcal capsular polysaccharides.

    PubMed

    Agarwal, Sarika; Vasudhev, Shreekant; DeOliveira, Rosane B; Ram, Sanjay

    2014-08-15

    Almost all invasive Neisseria meningitidis isolates express capsular polysaccharide. Ab is required for complement-dependent killing of meningococci. Although alternative pathway evasion has received considerable attention, little is known about classical pathway (CP) inhibition by meningococci, which forms the basis of this study. We engineered capsulated and unencapsulated isogenic mutant strains of groups A, B, C, W, and Y meningococci to express similar amounts of the same factor H-binding protein (fHbp; a key component of group B meningococcal vaccines) molecule. Despite similar anti-fHbp mAb binding, significantly less C4b was deposited on all five encapsulated mutants compared with their unencapsulated counterparts (p < 0.01) when purified C1 and C4 were used to deposit C4b. Reduced C4b deposition was the result of capsule-mediated inhibition of C1q engagement by Ab. C4b deposition correlated linearly with C1q engagement by anti-fHbp. Whereas B, C, W, and Y capsules limited CP-mediated killing by anti-fHbp, the unencapsulated group A mutant paradoxically was more resistant than its encapsulated counterpart. Strains varied considerably in their susceptibility to anti-fHbp and complement despite similar Ab binding, which may have implications for the activity of fHbp-based vaccines. Capsule also limited C4b deposition by anti-porin A mAbs. Capsule expression decreased binding of an anti-lipooligosaccharide IgM mAb (∼ 1.2- to 2-fold reduction in fluorescence). Akin to observations with IgG, capsule also decreased IgM-mediated C4b deposition when IgM binding to the mutant strain pairs was normalized. In conclusion, we show that capsular polysaccharide, a critical meningococcal virulence factor, inhibits the CP of complement. PMID:25015832

  6. Grateloupia longifolia polysaccharide inhibits angiogenesis by downregulating tissue factor expression in HMEC-1 endothelial cells

    PubMed Central

    Zhang, Chao; Yang, Fan; Zhang, Xiong-Wen; Wang, Shun-Chun; Li, Mei-Hong; Lin, Li-Ping; Ding, Jian

    2006-01-01

    The antiangiogenic and antitumor properties of Grateloupia longifolia polysaccharide (GLP), a new type of polysaccharide isolated from the marine alga, were investigated with several in vitro and in vivo models. Possible mechanisms underlying its antiangiogenic activity were also assessed. GLP dose-dependently inhibited proliferation of human microvascular endothelial cells (HMEC-1) and human umbilical vein endothelial cells (HUVEC), with IC50 values of 0.86 and 0.64 mg ml−1, respectively. In tube formation and cell migration assays using HMEC-1 cells, noncytotoxic doses of GLP significantly inhibited formation of intact tube networks and reduced the number of migratory cells. Inhibition by GLP was VEGF-independent. In the chick chorioallantoic membrane (CAM) assay, GLP (2.5 μg egg−1) reduced new vessel formation compared with the vehicle control. GLP (0.1 mg plug−1) also reduced the vessel density in Matrigel plugs implanted in mice. The levels of pan and phosphorylated recptors for VEGF, VEGFR-1 (flt-1) and VEGFR-2 (KDR) were not significantly altered by 5 mg ml−1 GLP treatment of HMEC-1, although tissue factor (TF) showed significant decreases at both mRNA and protein levels following GLP treatment. In mice bearing sarcoma-180 cells, intravenous administration of GLP (200 mg kg−1) decreased tumor weight by 52% without obvious toxicity. Vascular density in sections of the tumor was reduced by 64% after GLP treatment. Collectively, these results indicate that GLP has antitumor properties, associated at least, in part, with the antiangiogenesis induced by downregulation of TF. PMID:16715123

  7. Glufosinate and Ammonium Sulfate Inhibits Atrazine Degradation in Adapted Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The co-application of glufosinate with nitrogen fertilizers may alter atrazine co-metabolism, thereby extending the herbicide’s residual weed control in adapted soils. The objective of this study was to assess the effects of glufosinate, ammonium sulfate, and the combination of glufosinate and ammo...

  8. Polysaccharide isolated from Angelica sinensis inhibits hepcidin expression in rats with iron deficiency anemia.

    PubMed

    Liu, Jin-Yu; Zhang, Yu; You, Ru-Xu; Zeng, Fang; Guo, Dan; Wang, Kai-Ping

    2012-10-01

    A novel polysaccharide named Angelica sinensis polysaccharide (ASP) was obtained from the powdered and defatted roots of A. sinensis (Oliv.) Diels. The molecular weight of ASP was determined to be 78 kDa and was 95.0% sugars consisting of mostly arabinose, glucose, and galactose with a molar ratio of 1:5.68:3.91. A previous study indicated that ASP may increase plasma iron levels by suppressing the expression of hepcidin, a negative regulator of body iron metabolism, in the liver. The present study aims to clarify the inhibitory effect of ASP on hepcidin expression in rat models of iron deficiency anemia (IDA), and clarify the mechanisms involved. It was demonstrated that ASP significantly reduced hepcidin expression by inhibiting the expression of mothers against decapentaplegic protein 4 (SMAD4) in liver and stimulating the secretion of erythropoietin, which further downregulated hepcidin by repressing CCAAT/enhancer-binding protein α (C/EBPα) and the phosphorylation of signal transducer and activator of transcription 3/5. The results indicate that ASP can suppress the expression of hepcidin in rats with IDA, and may be useful for the treatment of IDA. PMID:22985399

  9. Safflower polysaccharide inhibits the proliferation and metastasis of MCF-7 breast cancer cell.

    PubMed

    Luo, Zhongbing; Zeng, Hongxie; Ye, Yongqiang; Liu, Lianbin; Li, Shaojin; Zhang, Junyi; Luo, Rongcheng

    2015-06-01

    Breast cancer accounts for 22.9% of all types of cancer in females worldwide. Safflower polysaccharide (SPS) is an active fraction purified from safflower petals (Carthamus tinctorius L). The present study investigated the effects of safflower polysaccharide on the proliferation and metastasis of breast cancer cells. Cell viability was analyzed using an MTT assay following treatment of the MCF‑7 cells with increasing concentrations of SPS. The results demonstrated that the SPS compound significantly inhibited the proliferation of the MCF‑7 human breast cancer cell line and these inhibitory effects increased in a dose‑ and time‑dependent manner. The half maximal inhibitory concentration (IC50) value of SPS on breast cancer cells, following treatment for 72 h, was detected using an MTT assay and was calculated as 0.12 mg/ml. The apoptotic rate was detected using flow cytometry in the MCF‑7 human breast cancer cell line and the results revealed that SPS induced cell apoptosis. The apoptotic rate of the MCF‑7 cells treated with SPS was significantly higher compared with that of the untreated cells and increased in a dose‑dependent manner. The expression of B‑cell lymphoma 2 (Bcl‑2) was downregulated and the expression of Bcl‑2‑associated X protein was upregulated in the MCF‑7 cells treated with SPS in a time‑dependent manner. Additionally, the expression of matrix metalloproteinase‑9 was significantly reduced and the expression of tissue inhibitor of metalloproteinase‑1 was increased in the MCF‑7 human breast cancer cell treated with SPS. These results demonstrated that SPS inhibited the metastasis of MCF‑7 breast cancer cells and understanding the underlying mechanisms may provide novel strategies in breast cancer therapy. PMID:25673029

  10. 2-Bromoethanesulfonate, sulfate, molybdate, and ethanesulfonate inhibit anaerobic dechlorination of polychlorobiphenyls by pasteurized microorganisms

    SciTech Connect

    Ye, D. |; Quensen, J.F. III; Boyd, S.A.; Tiedje, J.M.

    1999-01-01

    Dechlorination of (PCB Aroclor 1242) by pasteurized microorganisms was inhibited by 2-bromoethanesulfonate (BES), sulfate, molybdate, and ethanesulfonate. Consumption of these anions and production of sulfide from BES were detected. The inhibition could not be relieved by hydrogen. Taken together these results suggest that pattern M dechlorination is mediated by spore-forming sulfidogenic bacteria. These results also suggest that BES may inhibit anaerobic dechlorination by nonmethanogens by more than one mechanism.

  11. 2-Bromoethanesulfonate, Sulfate, Molybdate, and Ethanesulfonate Inhibit Anaerobic Dechlorination of Polychlorobiphenyls by Pasteurized Microorganisms

    PubMed Central

    Ye, Dingyi; Quensen, John F.; Tiedje, James M.; Boyd, Stephen A.

    1999-01-01

    Dechlorination of Aroclor 1242 by pasteurized microorganisms was inhibited by 2-bromoethanesulfonate (BES), sulfate, molybdate, and ethanesulfonate. Consumption of these anions and production of sulfide from BES were detected. The inhibition could not be relieved by hydrogen. Taken together these results suggest that pattern M dechlorination is mediated by spore-forming sulfidogenic bacteria. These results also suggest that BES may inhibit anaerobic dechlorination by nonmethanogens by more than one mechanism. PMID:9872802

  12. Modeling sulfate removal by inhibited mesophilic mixed anaerobic communities using a statistical approach.

    PubMed

    Moon, Chungman; Singh, Rajesh; Chaganti, Subba Rao; Lalman, Jerald A

    2013-05-01

    Optimizing sulfate removal by a mixed anaerobic mesophilic culture fed glucose, linoleic acid (LA) and sulfate under several pH conditions was performed using a three factor three level Box-Behnken design (BBD). Based on the BBD approach, a statistical model was developed to predict the residual sulfate concentration. The LA concentration, initial pH and the COD/SO4(2-) ratio were the three experimental factors under consideration. Increasing the COD/SO4(2-) ratio increased the quantity of sulfate removed. The COD/SO4(2-) ratio showed the largest effect on reducing the sulfate level. Significant interactions between the three experimental factors were confirmed by the surface plots, interaction plot and ANOVA. An analysis of residuals verified accuracy of the model. Acetate and H2 production was dominant in cultures with the pH set at 6.0 and 6.75 and fed LA. After 168 h, butyrate and H2S were associated with the largest quantity of sulfate removed. At a D-optimality value of 1.0, a minimum response (residual sulfate concentration) of 36.2 mg L(-1) was recorded at 1500 mg L(-1) LA with a COD/SO4(2-) ratio of 2.18 and a pH set at 6.0. Based on the conditions under consideration, the model provided a useful approach for predicting the residual sulfate concentration in inhibited mixed anaerobic cultures. PMID:23466036

  13. Heparin cofactor II is degraded by heparan sulfate and dextran sulfate.

    PubMed

    Saito, Akio

    2015-02-20

    Heparan sulfate normally binds to heparin cofactor II and modulates the coagulation pathway by inhibiting thrombin. However, when human heparin cofactor II was incubated with heparan sulfate, heparin cofactor II became degraded. Other glycosaminoglycans were tested, including hyaluronic acid, chondroitin sulfates, dermatan sulfate, and heparin, but only dextran sulfate also degraded heparin cofactor II. Pretreatment of heparan sulfate with heparinase reduced its heparin cofactor II-degrading activity. Heparan sulfate and dextran sulfate diminished the thrombin inhibitory activity of heparin cofactor II. Other serpins, including antithrombin III and pigment epithelium-derived factor, were also degraded by heparan sulfate. This is the first evidence of acidic polysaccharides exhibiting protein-degrading activity without the aid of other proteins. PMID:25600805

  14. Inhibition of Klebsiella pneumoniae Growth and Capsular Polysaccharide Biosynthesis by Fructus mume

    PubMed Central

    Lin, Tien-Huang; Huang, Su-Hua; Wu, Chien-Chen; Liu, Hsin-Ho; Jinn, Tzyy-Rong; Chen, Yeh; Lin, Ching-Ting

    2013-01-01

    Klebsiella pneumoniae is the predominant pathogen isolated from liver abscess of diabetic patients in Asian countries. With the spread of multiple-drug-resistant K. pneumoniae, there is an increasing need for the development of alternative bactericides and approaches to block the production of bacterial virulence factors. Capsular polysaccharide (CPS), especially from the K1 and K2 serotypes, is considered the major determinant for K. pneumoniae virulence. We found that extracts of the traditional Chinese medicine Fructus mume inhibited the growth of K. pneumoniae strains of both serotypes. Furthermore, Fructus mume decreased the mucoviscosity, and the CPS produced in a dose-dependent manner, thus reducing bacterial resistance to serum killing. Quantitative reverse transcription polymerase chain reaction analyses showed that Fructus mume downregulated the mRNA levels of cps biosynthesis genes in both serotypes, possibly by increasing the intracellular iron concentration in K. pneumoniae. Moreover, citric acid, a major organic acid in Fructus mume extracts, was found to have an inhibitory effect on growth and CPS biosynthesis in K. pneumoniae. Taken together, our results indicate that Fructus mume not only possesses antibacterial activity against highly virulent K. pneumoniae strains but also inhibits bacterial CPS biosynthesis, thereby facilitating pathogen clearance by the host immune system. PMID:24062785

  15. Inhibition of Klebsiella pneumoniae Growth and Capsular Polysaccharide Biosynthesis by Fructus mume.

    PubMed

    Lin, Tien-Huang; Huang, Su-Hua; Wu, Chien-Chen; Liu, Hsin-Ho; Jinn, Tzyy-Rong; Chen, Yeh; Lin, Ching-Ting

    2013-01-01

    Klebsiella pneumoniae is the predominant pathogen isolated from liver abscess of diabetic patients in Asian countries. With the spread of multiple-drug-resistant K. pneumoniae, there is an increasing need for the development of alternative bactericides and approaches to block the production of bacterial virulence factors. Capsular polysaccharide (CPS), especially from the K1 and K2 serotypes, is considered the major determinant for K. pneumoniae virulence. We found that extracts of the traditional Chinese medicine Fructus mume inhibited the growth of K. pneumoniae strains of both serotypes. Furthermore, Fructus mume decreased the mucoviscosity, and the CPS produced in a dose-dependent manner, thus reducing bacterial resistance to serum killing. Quantitative reverse transcription polymerase chain reaction analyses showed that Fructus mume downregulated the mRNA levels of cps biosynthesis genes in both serotypes, possibly by increasing the intracellular iron concentration in K. pneumoniae. Moreover, citric acid, a major organic acid in Fructus mume extracts, was found to have an inhibitory effect on growth and CPS biosynthesis in K. pneumoniae. Taken together, our results indicate that Fructus mume not only possesses antibacterial activity against highly virulent K. pneumoniae strains but also inhibits bacterial CPS biosynthesis, thereby facilitating pathogen clearance by the host immune system. PMID:24062785

  16. Antibiofilm polysaccharides

    PubMed Central

    Rendueles, Olaya; Kaplan, Jeffrey B.; Ghigo, Jean-Marc

    2012-01-01

    Summary Bacterial extracellular polysaccharides have been shown to mediate many of the cell-to cell and cell-to-surface interactions that are required for the formation, cohesion and stabilization of bacterial biofilms. However, recent studies have identified several bacterial polysaccharides that inhibit biofilm formation by a wide-spectrum of bacteria and fungi both in vitro and in vivo. This review discusses the composition, modes of action, and potential biological roles of antibiofilm polysaccharides recently identified in bacteria and eukaria. Some of these molecules may have technological applications as antibiofilm agents in industry and medicine. PMID:22730907

  17. Mechanism of Sulfate Transport Inhibition by Cycloheximide in Plant Tissues 1

    PubMed Central

    Renosto, Franco; Ferrari, Giovanni

    1975-01-01

    Inhibition by cycloheximide of sulfate transport in both barley roots (Hordeum vulgare L.) and potato tuber (Solanum tuberosum L.) increases with increasing inhibitor concentration only to a limited extent, depending on the length of the tissue incubation with the inhibitor. In contrast to this, increasing concentrations of dinitrophenol have a rapid and total inhibitory effect on the active transport. Leucine transport in the same tissues is strongly inhibited by dinitrophenol but is not affected by cycloheximide, whereas incorporation into protein is mainly inhibited by cycloheximide. It appears that the mechanism of transport inhibition by cycloheximide in plant tissues consists in stopping new carrier synthesis and not in the disruption of energy flow. Sulfate carriers show comparable decay rates in barley roots and potato tuber, the mean life being shorter than that of the leucine carriers. These appear more stable in roots than in storage tissues. PMID:16659329

  18. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    PubMed

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems. PMID:26901075

  19. VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF ENOS

    EPA Science Inventory

    VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF eNOS.

    Zhuowei Li, Jacqueline D. Carter, Lisa A. Dailey, Joleen Soukup, Yuh-Chin T. Huang. CEMALB, University of North Carolina and NHEERL, US EPA, Chapel Hill, North Ca...

  20. VANADL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF ENOS

    EPA Science Inventory

    VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF eNOS. Zhuowei Li, Jacqueline D. Carter, Lisa A. Dailey, Joleen Soukup, Yuh-Chin T. Huang. CEMALB, University of North Carolina and ORD, US EPA, Chapel Hill, North Carolina
    V...

  1. Magnesium sulfate inhibits sufentanil-induced cough during anesthetic induction

    PubMed Central

    An, Li-Jun; Gui, Bo; Su, Zhen; Zhang, Yang; Liu, Hai-Lin

    2015-01-01

    Sufentanil-induced cough is a common phenomenon during the induction of anesthesia. This double-blind, randomized, and placebo-controlled study was designed to investigate the effects of prophylactic magnesium sulfate (MgSO4) on the incidence and severity of sufentanil-induced cough. A total of 165 patients who were scheduled for elective surgery under general anesthesia were allocated into three groups (I, II, and III; n = 55 each) that were injected with either 50 ml of normal saline, 30 or 50 mg/kg of MgSO4 (diluted with normal saline into 50 ml). One minute following the injection, all patients were injected with 1.0 μg/kg of sufentanil within 5 s. The incidence and severity of cough were recorded 30 s after the sufentanil injection. The hemodynamic parameters and plasma magnesium concentration of the patients were also noted. Three patients dropped out the study due to an obvious burning sensation during the injection of 50 mg/kg of MgSO4. Although the injection of 50 mg/kg of MgSO4 increased the plasma magnesium level, the increase remained within the therapeutic range (2-4 mmol/L). The incidence of cough was much higher in group I than in groups II and III (47.1% vs. 16.4% and 7.6%, respectively, P < 0.05). Compared with group I, group III had the lowest incidence of mild cough and both groups II and III had lower incidence of moderate and severe cough (P < 0.05). There were no differences in the hemodynamic data at three timepoints among the three groups. In conclusion, sufentanil-induced cough may be suppressed effectively and safely by prophylactic use of 30 mg/kg of MgSO4 during anesthetic induction. PMID:26550339

  2. Cordyceps sinensis polysaccharide inhibits PDGF-BB-induced inflammation and ROS production in human mesangial cells.

    PubMed

    Wang, Ying; Wang, Yan; Liu, Dan; Wang, Wang; Zhao, Huan; Wang, Min; Yin, Hongping

    2015-07-10

    CPS-F, a polysaccharide derived from Cordyceps sinensis, is a potential anti-inflammatory and anti-oxidative agent. We demonstrated that CPS-F not only inhibits platelet-derived growth factor BB (PDGF-BB)-induced intracellular reactive oxygen species (ROS) generation, and up-regulation of tumor necrosis factor-? (TNF-?), TNF-? receptor 1 (TNFR1), and monocyte chemotactic protein-1 (MCP-1), but also acts synergistically in combination with MAPK/ERK inhibitor U0126 and PI3K/Akt inhibitor LY294002. Additionally, up-regulation of pro-inflammatory factors was reversed by use of a combination of CPS-F and NADPH oxidase (NOX) inhibitor diphenyleneiodonium chloride (DPI) or silencing of NOX1. Furthermore, CPS-F prevents the PDGF receptor ? (PDGFR?) promoter activity induced by PDGF-BB in transfected cells and ameliorates increased levels of TNF-?, TNFR1, and MCP-1 when PDGFR? is silenced, thereby suggesting that CPS-F possesses a bidirectional regulatory function. Our findings suggest CPS-F may exert its therapeutic effect for the treatment of glomerulonephritis related to human mesangial cells (HMCs) through the ERK1/2/Akt pathways. PMID:25857968

  3. Presence of sulfate does not inhibit low-temperature dolomite precipitation

    NASA Astrophysics Data System (ADS)

    Sánchez-Román, Mónica; McKenzie, Judith A.; de Luca Rebello Wagener, Angela; Rivadeneyra, Maria A.; Vasconcelos, Crisógono

    2009-07-01

    The hypothesis that sulfate inhibits dolomite formation evolved from geochemical studies of porewaters from deep-sea sedimentary sequences and has been tested with hydrothermal experiments. We examined the sulfate inhibition factor using aerobic culture experiments with Virgibacillus marismortui and Halomonas meridiana, two moderately halophilic aerobic bacteria, which metabolize independent of sulfate concentration. The culture experiments were conducted at 25 and 35 °C using variable SO 42- concentrations (0, 14, 28 and 56 mM) and demonstrate that halophilic aerobic bacteria mediate direct precipitation of dolomite with or without SO 42- in the culture media which simulate dolomite occurrences commonly found under the Earth's surface conditions. Hence, we report that the presence of sulfate does not inhibit dolomite precipitation. Further, we hypothesize that, if sedimentary dolomite is a direct precipitate, as in our low-temperature culture experiments, the kinetic factors involved are likely to be quite different from those governing a dolomite replacement reaction, such as in hydrothermal experiments. Consequently, the occurrence and, presumably, growth of dolomite in SO 42--rich aerobic cultures may shed new light on the long-standing Dolomite Problem.

  4. Sulfated polyanions inhibit invasion of erythrocytes by plasmodial merozoites and cytoadherence of endothelial cells to parasitized erythrocytes.

    PubMed Central

    Xiao, L; Yang, C; Patterson, P S; Udhayakumar, V; Lal, A A

    1996-01-01

    Sulfated proteoglycans have been shown to be involved in the binding of sporozoites of malaria parasites to hepatocytes. In this study, we have evaluated the effect of sulfated glycosaminoglycans on the invasion of erythrocytes by Plasmodium falciparum merozoites and cytoadherence of parasitized erythrocytes (PRBC) to endothelial cells. Invasion of erythrocytes by HB3EC-6 (an HB3 line selected for high binding to endothelial cells) was inhibited by dextran sulfate 500K, dextran sulfate 5K, sulfatides, fucoidan, and heparin but not by chondroitin sulfate A. With the exception of sulfatides, the invasion-inhibitory effect was not mediated by killing of parasites. Cytoadherence of HB3EC-6 to human microvascular endothelial cells (HMEC-1) and inhibited by these sulfated glycoconjugates. The highly sulfated dextran sulfate 500K had the highest inhibitory effect on both invasion and cytoadherence, whereas the positively charged protamine sulfate promoted cytoadherence. Because preincubation of PRBC with sulfated glycosaminoglycans and treatment of target cells with heparinase had no significant inhibition on cytoadherence, it is unlikely that sulfated glycoconjugates are used directly by endothelial cells as cytoadhesion receptors. In an vivo experiment, we found that the administration of dextran sulfate 500K to CBA/Ca mice infected with Plasmodium berghei ANKA reduced parasitemia and delayed the death associated with anemia. These observations suggest that sulfated polyanions inhibit the invasion of erythrocytes by merozoites and cytoadherence of PRBC to endothelial cells by increasing negative repulsive charge and sterically interfering with the ligand-receptor interaction after binding to target cells. PMID:8606103

  5. Expanding the 3-O-Sulfate Proteome-Enhanced Binding of Neuropilin-1 to 3-O-Sulfated Heparan Sulfate Modulates Its Activity.

    PubMed

    Thacker, Bryan E; Seamen, Emylie; Lawrence, Roger; Parker, Matthew W; Xu, Yongmei; Liu, Jian; Vander Kooi, Craig W; Esko, Jeffrey D

    2016-04-15

    Binding of proteins to heparan sulfate is driven predominantly by electrostatic interactions between positively charged amino acid residues in the protein and negatively charged sulfate groups located at various positions along the polysaccharide chain. Although many heparin/heparan-sulfate-binding proteins have been described, few exhibit preferential binding for heparan sulfates containing relatively rare 3-O-sulfated glucosamine residues. To expand the "3-O-sulfate proteome," affinity matrices were created from Chinese hamster ovary (CHO) cell heparan sulfate engineered in vitro with and without 3-O-sulfate groups. Fractionation of different animal sera yielded several proteins that bound specifically to columns containing 3-O-sulfated heparan sulfate modified by two members of the heparan sulfate 3-O-sulfotransferase superfamily, Hs3st1 and Hs3st2. Neuropilin-1 was analyzed in detail because it has been implicated in angiogenesis and axon guidance. We show that 3-O-sulfation enhanced the binding of neuropilin-1 to heparan sulfate immobilized on plastic plates and to heparan sulfate present on cultured cells. Chemoenzymatically synthesized 3-O-sulfated heparan sulfate dodecamers protected neuropilin-1 from thermal denaturation and inhibited neuropilin-1-dependent, semaphorin-3a-induced growth cone collapse of neurons derived from murine dorsal root ganglia. The effect of 3-O-sulfation was cell autonomous and specific to Hs3st2 based on collapse assays of neurons derived from Hs3st1- and Hs3st2-deficient mice. Finally, 3-O-sulfated heparan sulfate enhanced the inhibition of endothelial cell sprouting by exogenous heparan sulfate. These findings demonstrate a reliable method to identify members of the 3-O-sulfate proteome and that 3-O-sulfation of heparan sulfate can modulate axonal growth cone collapse and endothelial cell sprouting. PMID:26731579

  6. Monitoring and Modeling Microbial Sulfate Reduction and Inhibition in a Mesoscale Tank Experiment

    NASA Astrophysics Data System (ADS)

    Hubbard, C. G.; Wu, Y.; Li, L.; Piceno, Y. M.; Cheng, Y.; Bill, M.; Coates, J. D.; Andersen, G. L.; Conrad, M. E.; Ajo Franklin, J. B.

    2014-12-01

    Subsurface biogeochemical cycling at the field-scale is controlled by a complex interplay between hydrological, geochemical and biological parameters. Mesoscale tank experiments can help to bridge the gap in complexity and understanding between well constrained batch and column experiments, and the interpretation of field data. In this contribution we present the results of a tank experiment investigating microbial sulfate reduction and inhibition in a porous media (20-30 mesh Ottawa sand). Microbial sulfate reduction is a process of wide biogeochemical significance, including in the context of oil reservoirs where the generation of sulfide can result in corrosion of steel infrastructure and additional downstream processing. Inhibition of sulfate reduction is therefore a high priority for this industry. Tracer experiments were conducted at the start and end of the experiment to constrain flow pathways and heterogeneities. The tank was inoculated with a San Francisco Bay mud/water enrichment utilizing acetate as the electron donor and continuous flow was initiated using bay-water with 10 mM acetate. Samples were taken from an array of 12 steel boreholes and showed spatiotemporal heterogeneities in the development of sulfidogenesis, reaching a peak of ~5 mM dissolved sulfide 71 days after inoculation. 10 mM perchlorate was then added to the influent to inhibit sulfidogenesis and dissolved sulfide decreased to ~0.03 mM by day 95. Stable isotope analysis of dissolved sulfate showed an increase in δ34S by ~10‰ compared with influent values but δ34S did not return to influent values by day 95, which may be indicative of the mixing between new and residual sulfate in the tank. Ongoing microbial community analyses are being used to help constrain microbial metabolisms. Finally, all the data is being integrated into a reactive transport model to better constrain the observed interplay between hydrology, geochemistry and biology.

  7. Heparan sulfate inhibits hematopoietic stem and progenitor cell migration and engraftment in mucopolysaccharidosis I.

    PubMed

    Watson, H Angharad; Holley, Rebecca J; Langford-Smith, Kia J; Wilkinson, Fiona L; van Kuppevelt, Toin H; Wynn, Robert F; Wraith, J Edmond; Merry, Catherine L R; Bigger, Brian W

    2014-12-26

    Mucopolysaccharidosis I Hurler (MPSI-H) is a pediatric lysosomal storage disease caused by genetic deficiencies in IDUA, coding for α-l-iduronidase. Idua(-/-) mice share similar clinical pathology with patients, including the accumulation of the undegraded glycosaminoglycans (GAGs) heparan sulfate (HS), and dermatan sulfate (DS), progressive neurodegeneration, and dysostosis multiplex. Hematopoietic stem cell transplantation (HSCT) is the most effective treatment for Hurler patients, but reduced intensity conditioning is a risk factor in transplantation, suggesting an underlying defect in hematopoietic cell engraftment. HS is a co-receptor in the CXCL12/CXCR4 axis of hematopoietic stem and progenitor cell (HSPC) migration to the bone marrow (BM), but the effect of HS alterations on HSPC migration, or the functional role of HS in MPSI-H are unknown. We demonstrate defective WT HSPC engraftment and migration in Idua(-/-) recipient BM, particularly under reduced intensity conditioning. Both intra- but especially extracellular Idua(-/-) BM HS was significantly increased and abnormally sulfated. Soluble heparinase-sensitive GAGs from Idua(-/-) BM and specifically 2-O-sulfated HS, elevated in Idua(-/-) BM, both inhibited CXCL12-mediated WT HSPC transwell migration, while DS had no effect. Thus we have shown that excess overly sulfated extracellular HS binds, and sequesters CXCL12, limiting hematopoietic migration and providing a potential mechanism for the limited scope of HSCT in Hurler disease. PMID:25359774

  8. A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans

    PubMed Central

    Colpitts, Che C.

    2014-01-01

    ABSTRACT Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. IMPORTANCE This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others. PMID:24789779

  9. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    NASA Astrophysics Data System (ADS)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  10. Divergent Synthesis of Chondroitin Sulfate Disaccharides and Identification of Sulfate Motifs that Inhibit Triple Negative Breast Cancer

    NASA Astrophysics Data System (ADS)

    Wei Poh, Zhong; Heng Gan, Chin; Lee, Eric J.; Guo, Suxian; Yip, George W.; Lam, Yulin

    2015-09-01

    Glycosaminoglycans (GAGs) regulate many important physiological processes. A pertinent issue to address is whether GAGs encode important functional information via introduction of position specific sulfate groups in the GAG structure. However, procurement of pure, homogenous GAG motifs to probe the “sulfation code” is a challenging task due to isolation difficulty and structural complexity. To this end, we devised a versatile synthetic strategy to obtain all the 16 theoretically possible sulfation patterns in the chondroitin sulfate (CS) repeating unit; these include rare but potentially important sulfated motifs which have not been isolated earlier. Biological evaluation indicated that CS sulfation patterns had differing effects for different breast cancer cell types, and the greatest inhibitory effect was observed for the most aggressive, triple negative breast cancer cell line MDA-MB-231.

  11. Divergent Synthesis of Chondroitin Sulfate Disaccharides and Identification of Sulfate Motifs that Inhibit Triple Negative Breast Cancer.

    PubMed

    Poh, Zhong Wei; Gan, Chin Heng; Lee, Eric J; Guo, Suxian; Yip, George W; Lam, Yulin

    2015-01-01

    Glycosaminoglycans (GAGs) regulate many important physiological processes. A pertinent issue to address is whether GAGs encode important functional information via introduction of position specific sulfate groups in the GAG structure. However, procurement of pure, homogenous GAG motifs to probe the "sulfation code" is a challenging task due to isolation difficulty and structural complexity. To this end, we devised a versatile synthetic strategy to obtain all the 16 theoretically possible sulfation patterns in the chondroitin sulfate (CS) repeating unit; these include rare but potentially important sulfated motifs which have not been isolated earlier. Biological evaluation indicated that CS sulfation patterns had differing effects for different breast cancer cell types, and the greatest inhibitory effect was observed for the most aggressive, triple negative breast cancer cell line MDA-MB-231. PMID:26400608

  12. Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus.

    PubMed

    Zhu, Zhen-Yuan; Luo, You; Dong, Guo-Ling; Ren, Yuan-Yuan; Chen, Li-Jing; Guo, Ming-Zhu; Wang, Xiao-Ting; Yang, Xue-Ying; Zhang, Yongmin

    2016-06-01

    A novel homogeneous polysaccharide fraction (APS) was extracted from Astragalus by hot water and purified by Sephadex G-100 and G-75 column. Its molecular weight was 693kDa. APS and APS with ultra-high pressure treatment exhibited significant inhibitory abilities on a-glucosidase, inhibition rate from high to low in order was 400MPa-APS, 300MPa-APS, 500MPa-APS and APS. The inhibition ​percentage of 400MPa-APS (1.5mg/mL) was 49% (max.). This suggested that the inhibitory activity of APS on a-glucosidase was improved by ultra-high pressure treatment. FT-IR, SEM, CD spectra, atomic force microscope and Congo red test analysis of APS and 400MPa-APS showed ultra-high pressure treatment didn't change the preliminary structure but had an effect on its advanced structure. PMID:26993530

  13. The Antitumor Effect of Gekko Sulfated Glycopeptide by Inhibiting bFGF-Induced Lymphangiogenesis

    PubMed Central

    Ding, Xiu-Li; Man, Ya-Nan; Hao, Jian; Zhu, Cui-Hong; Liu, Chang; Yang, Xue

    2016-01-01

    Objective. To study the antilymphangiogenesis effect of Gekko Sulfated Glycopeptide (GSPP) on human lymphatic endothelial cells (hLECs). Methods. MTS was conducted to confirm the antiproliferation effect of GSPP on hLECs; flow cytometry was employed to detect hLECs cycle distribution; the antimigration effect of GSPP on hLECs was investigated by wound healing experiment and transwell experiment; tube formation assay was used to examine its inhibitory effect on the lymphangiogenesis; western blotting was conducted to detect the expression of extracellular signal-regulated kinase1/2 (Erk1/2) and p-Erk1/2 after GSPP and basic fibroblast growth factor (bFGF) treatment. Nude mice models were established to investigate the antitumor effect of GSPP in vivo. Decreased lymphangiogenesis caused by GSPP in vivo was verified by immunohistochemical staining. Results. In vitro, GSPP (10 μg/mL, 100 μg/mL) significantly inhibited bFGF-induced hLECs proliferation, migration, and tube-like structure formation (P < 0.05) and antagonized the phosphorylation activation of Erk1/2 induced by bFGF. In vivo, GSPP treatment (200 mg/kg/d) not only inhibited the growth of colon carcinoma, but also inhibited the tumor lymphangiogenesis. Conclusion. GSPP possesses the antitumor ability by inhibiting bFGF-inducing lymphangiogenesis in vitro and in vivo, which may further inhibit tumor lymphatic metastasis. PMID:27190997

  14. Dextran sulfate sodium inhibits amyloid-β oligomer binding to cellular prion protein.

    PubMed

    Aimi, Takahiro; Suzuki, Koichiro; Hoshino, Tatsuya; Mizushima, Tohru

    2015-08-01

    Amyloid-β peptide (Aβ), especially its oligomeric form, is believed to play an important role in the pathogenesis of Alzheimer's disease (AD). To this end, the binding of Aβ oligomer to cellular prion protein (PrP(C)) plays an important role in synaptic dysfunction in a mouse model of AD. Here, we have screened for compounds that inhibit Aβ oligomer binding to PrP(C) from medicines already used clinically (Mizushima Approved Medicine Library 1), and identified dextran sulfate sodium (DSS) as a candidate. In a cell-free assay, DSS inhibited Aβ oligomer binding to PrP(C) but not to ephrin receptor B2, another endogenous receptor for Aβ oligomers, suggesting that the drug's action is specific to the binding of Aβ oligomer to PrP(C) . Dextran on the other hand did not affect this binding. DSS also suppressed Aβ oligomer binding to cells expressing PrP(C) but not to control cells. Furthermore, while incubation of mouse hippocampal slices with Aβ oligomers inhibited the induction of long-term potentiation, simultaneous treatment with DSS restored the long-term potentiation. As DSS has already been approved for use in patients with hypertriglyceridemia, and its safety in humans has been confirmed, we propose further analysis of this drug as a candidate for AD treatment. Amyloid-β peptide (Aβ) oligomer-binding to cellular prion protein (PrP(C) ) is important in synaptic dysfunction in Alzheimer's disease (AD). We found here that dextran sulfate sodium (DSS) inhibits Aβ oligomer binding to PrP(C) . Simultaneous treatment of hippocampal slices with DSS restored long-term potentiation (LTP) in the presence of Aβ oligomers. Since DSS has already been approved for clinical use, we propose this drug is a candidate drug for AD treatment. PMID:25963375

  15. Bismuth Dimercaptopropanol (BisBAL) Inhibits the Expression of Extracellular Polysaccharides and Proteins by Brevundimonas diminuta: Implications for Membrane Microfiltration

    SciTech Connect

    Badireddy, Appala R.; Chellam, Shankararaman; Yanina, Svetlana; Gassman, Paul L.; Rosso, Kevin M.

    2008-02-15

    A 2:1 molar ratio preparation of bismuth with a lipophilic dithiol (3-dimercapto-1-propanol, BAL)significantly reduced extracellular polymeric substances (EPS) expression by Brevundimonas diminuta in suspended cultures at levels just below the minimum inhibitory concentration (MIC). Total polysaccharides and proteins secreted by B. diminuta decreased by approximately 95% over a 5-day period when exposed to the bismuth-BAL chelate (BisBAL) at near MIC (12 μM). Fourier-transform infrared spectroscopy (FTIR) suggested that a possible mechanism of biofilm disruption by BisBAL is the inhibition of carbohydrate Oacetylation. FTIR also revealed extensive homology between EPS samples with and without BisBAL treatment, with proteins, polysaccharides, and peptides varying predominantly only in the amount expressed. EPS secretion decreased following BisBAL treatment as verified by atomic force microscopy and scanning electron microscopy. Without BisBAL treatment, a slime-like EPS matrix secreted by B. diminuta resulted in biofouling and inefficient hydrodynamic backwashing of microfiltration membranes.

  16. A novel sulfate-reducing bacteria detection method based on inhibition of cysteine protease activity.

    PubMed

    Qi, Peng; Zhang, Dun; Wan, Yi

    2014-11-01

    Sulfate-reducing bacteria (SRB) have been extensively studied in corrosion and environmental science. However, fast enumeration of SRB population is still a difficult task. This work presents a novel specific SRB detection method based on inhibition of cysteine protease activity. The hydrolytic activity of cysteine protease was inhibited by taking advantage of sulfide, the characteristic metabolic product of SRB, to attack active cysteine thiol group in cysteine protease catalytic sites. The active thiol S-sulfhydration process could be used for SRB detection, since the amount of sulfide accumulated in culture medium was highly related with initial bacterial concentration. The working conditions of cysteine protease have been optimized to obtain better detection capability, and the SRB detection performances have been evaluated in this work. The proposed SRB detection method based on inhibition of cysteine protease activity avoided the use of biological recognition elements. In addition, compared with the widely used most probable number (MPN) method which would take up to at least 15days to accomplish whole detection process, the method based on inhibition of papain activity could detect SRB in 2 days, with a detection limit of 5.21×10(2) cfu mL(-1). The detection time for SRB population quantitative analysis was greatly shortened. PMID:25127594

  17. Chondroitin-4-sulfation negatively regulates axonal guidance and growth

    PubMed Central

    Wang, Hang; Katagiri, Yasuhiro; McCann, Thomas E.; Unsworth, Edward; Goldsmith, Paul; Yu, Zu-Xi; Tan, Fei; Santiago, Lizzie; Mills, Edward M.; Wang, Yu; Symes, Aviva J.; Geller, Herbert M.

    2008-01-01

    Summary Glycosaminoglycan (GAG) side chains endow extracellular matrix proteoglycans with diversity and complexity based upon the length, composition, and charge distribution of the polysaccharide chain. Using cultured primary neurons, we show that specific sulfation in the GAG chains of chondroitin sulfate (CS) mediates neuronal guidance cues and axonal growth inhibition. Chondroitin-4-sulfate (CS-A), but not chondroitin-6-sulfate (CS-C), exhibits a strong negative guidance cue to mouse cerebellar granule neurons. Enzymatic and gene-based manipulations of 4-sulfation in the GAG side chains alter their ability to direct growing axons. Furthermore, 4-sulfated CS GAG chains are rapidly and significantly increased in regions that do not support axonal regeneration proximal to spinal cord lesions in mice. Thus, our findings provide the evidence showing that specific sulfation along the carbohydrate backbone carries instructions to regulate neuronal function. PMID:18768934

  18. Cholesterol Sulfate and Cholesterol Sulfotransferase Inhibit Gluconeogenesis by Targeting Hepatocyte Nuclear Factor 4α

    PubMed Central

    Shi, Xiongjie; Cheng, Qiuqiong; Xu, Leyuan; Yan, Jiong; Jiang, Mengxi; He, Jinhan; Xu, Meishu; Stefanovic-Racic, Maja; Sipula, Ian; O'Doherty, Robert Martin; Ren, Shunlin

    2014-01-01

    Sulfotransferase (SULT)-mediated sulfation represents a critical mechanism in regulating the chemical and functional homeostasis of endogenous and exogenous molecules. The cholesterol sulfotransferase SULT2B1b catalyzes the sulfoconjugation of cholesterol to synthesize cholesterol sulfate (CS). In this study, we showed that the expression of SULT2B1b in the liver was induced in obese mice and during the transition from the fasted to the fed state, suggesting that the regulation of SULT2B1b is physiologically relevant. CS and SULT2B1b inhibited gluconeogenesis by targeting the gluconeogenic factor hepatocyte nuclear factor 4α (HNF4α) in both cell cultures and transgenic mice. Treatment of mice with CS or transgenic overexpression of the CS-generating enzyme SULT2B1b in the liver inhibited hepatic gluconeogenesis and alleviated metabolic abnormalities both in mice with diet-induced obesity (DIO) and in leptin-deficient (ob/ob) mice. Mechanistically, CS and SULT2B1b inhibited gluconeogenesis by suppressing the expression of acetyl coenzyme A (acetyl-CoA) synthetase (Acss), leading to decreased acetylation and nuclear exclusion of HNF4α. Our results also suggested that leptin is a potential effector of SULT2B1b in improving metabolic function. We conclude that SULT2B1b and its enzymatic by-product CS are important metabolic regulators that control glucose metabolism, suggesting CS as a potential therapeutic agent and SULT2B1b as a potential therapeutic target for metabolic disorders. PMID:24277929

  19. Anti-tumor activity and the mechanism of SIP-S: A sulfated polysaccharide with anti-metastatic effect.

    PubMed

    Zong, Aizhen; Liu, Yuhong; Zhang, Yan; Song, Xinlei; Shi, Yikang; Cao, Hongzhi; Liu, Chunhui; Cheng, Yanna; Jiang, Wenjie; Du, Fangling; Wang, Fengshan

    2015-09-20

    Our previous studies demonstrated that SIP-S had anti-metastatic activity and inhibited the growth of metastatic foci. Here we report the anti-tumor and immunoregulatory potential of SIP-S. SIP-S could significantly inhibit tumor growth in S180-bearing mice, and the inhibition rates was 43.7% at 30 mg/kg d. Besides, SIP-S could improve the thymus and spleen indices of S180-bearing mice and the mice treated with CTX. The combination of SIP-S (15 mg/kg d) with CTX (12.5 mg/kg d) showed higher anti-tumor potency than CTX (25 mg/kg d) alone. These results indicated that SIP-S had immunoenhancing and anticancer activity, and the immunoenhancing activity might be one mechanism for its anti-tumor activity. Flow cytometry results showed that SIP-S could induce tumor cells apoptosis. Western blot analysis indicated that SIP-S could upregulate the expression of pro-apoptotic proteins, caspase-3, -8, -9 and Bax, and downregulate the expression of anti-apoptotic protein PARP-1 in tumor cells in a dose-dependent manner. In summary, SIP-S has anti-tumor activity, which may be associated with its immunostimulating and pro-apoptotic activity. PMID:26050887

  20. Lead inhibits the core protein synthesis of a large heparan sulfate proteoglycan perlecan by proliferating vascular endothelial cells in culture.

    PubMed

    Fujiwara, Y; Kaji, T

    1999-04-15

    We characterized proteoglycans synthesized by growing cultured bovine aortic endothelial cells after exposure to lead. Lead significantly decreased the incorporation of both [3H]glucosamine and [35S]sulfate into glycosaminoglycans accumulated in the cell layer and the conditioned medium of the cells in a dose-dependent manner. Proteoglycans metabolically labeled with [35S]sulfate in the presence of lead were separated into heparan sulfate proteoglycans (HSPGs) and more highly charged chondroitin/dermatan sulfate proteoglycans by DEAE-Sephacel ion-exchange chromatography. It was found that lead markedly inhibited the synthesis of HSPGs. Sepharose CL-4B molecular sieve gel filtration showed that the marked decrease by lead occurred in the high molecular weight subclass of HSPGs. However, the length of heparan sulfate chains (approximately 50 kDa) was unchanged when analyzed by Sepharose CL-6B chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of core proteins showed that lead reduced the accumulation of a high molecular weight (approximately 400 kDa) HSPG core protein in the cell layer and the conditioned medium; the core protein was identified as a perlecan core by Western blot analysis. It is suggested that lead inhibits the synthesis of the perlecan core protein in growing endothelial cells without a change of heparan sulfate chain length. The present data support the hypothesis that inhibition of endothelial cell proliferation by lead may result from a lower response of the cells to endogenous basic fibroblast growth factor whose binding to the receptor is strongly promoted by heparan sulfate chains of perlecan. PMID:10378482

  1. Anti-fibrotic effect of Cordyceps sinensis polysaccharide: Inhibiting HSC activation, TGF-?1/Smad signalling, MMPs and TIMPs.

    PubMed

    Peng, Jinghua; Li, Xuemei; Feng, Qin; Chen, Liang; Xu, Lili; Hu, Yiyang

    2013-06-01

    Cordyceps sinensis has been used to treat liver disease in traditional Chinese medicine for thousands of years. Polysaccharide extracted from cultured Cordyceps sinensis mycelia (CS-PS) is the major active components of cordyceps sinensis with anti-liver injury effects. In the present study, the effects of CS-PS on hepatic stellate cell (HSC) activation, transforming growth factor-?1 (TGF-?1)/Smad pathway, as well as matrix metalloproteinase (MMP) 2, MMP9 and tissue inhibitor of metalloproteinase (TIMP) 1, TIMP2, were investigated in liver fibrosis in rats induced by carbon tetrachloride (CCl4). Colchicine was used as a positive control. The effect of CS-PS inhibition liver injury and fibrosis was confirmed by decreasing serum alanine aminotransferase, aspartate aminotransferase, total bilirubin, hepatic hydroxyproline and increasing serum albumin, as well as alleviation of histological changes, which was comparable to that of colchicine. With CS-PS treatment, hepatic ?-smooth muscle actin, TGF-?1, TGF-?1 receptor (T?R)-I, T?R-II, p-Smad2, p-Smad3 and TIMP2 proteins expression were down-regulated comparing to that in CCl4 group. The activities of MMP2 and MMP9 in liver tissue were also inhibited in CS-PS-treated group. It is indicated that the effects of CS-PS anti-liver fibrosis are probably associated with the inhibition on HSC activation, TGF-?1/Smads signalling pathway, as well as MMP2, MMP9 activity and TIMP2 expression. PMID:23918878

  2. Sulfated Galactan from Palisada flagellifera Inhibits Toxic Effects of Lachesis muta Snake Venom

    PubMed Central

    da Silva, Ana Cláudia Rodrigues; Ferreira, Luciana Garcia; Duarte, Maria Eugênia Rabello; Noseda, Miguel Daniel; Sanchez, Eladio Flores; Fuly, André Lopes

    2015-01-01

    In Brazil, snakebites are a public health problem and accidents caused by Lachesis muta have the highest mortality index. Envenomation by L. muta is characterized by systemic (hypotension, bleeding and renal failure) and local effects (necrosis, pain and edema). The treatment to reverse the evolution of all the toxic effects is performed by injection of antivenom. However, such therapy does not effectively neutralize tissue damage or any other local effect, since in most cases victims delay seeking appropriate medical care. In this way, alternative therapies are in demand, and molecules from natural sources have been exhaustively tested. In this paper, we analyzed the inhibitory effect of a sulfated galactan obtained from the red seaweed Palisada flagellifera against some toxic activities of L. muta venom. Incubation of sulfated galactan with venom resulted in inhibition of hemolysis, coagulation, proteolysis, edema and hemorrhage. Neutralization of hemorrhage was also observed when the galactan was administered after or before the venom injection; thus mimicking a real in vivo situation. Moreover, the galactan blocked the edema caused by a phospholipase A2 isolated from the same venom. Therefore, the galactan from P. flagellifera may represent a promising tool to treat envenomation by L. muta as a coadjuvant for the conventional antivenom. PMID:26110897

  3. Sulfated Galactan from Palisada flagellifera Inhibits Toxic Effects of Lachesis muta Snake Venom.

    PubMed

    da Silva, Ana Cláudia Rodrigues; Ferreira, Luciana Garcia; Duarte, Maria Eugênia Rabello; Noseda, Miguel Daniel; Sanchez, Eladio Flores; Fuly, André Lopes

    2015-06-01

    In Brazil, snakebites are a public health problem and accidents caused by Lachesis muta have the highest mortality index. Envenomation by L. muta is characterized by systemic (hypotension, bleeding and renal failure) and local effects (necrosis, pain and edema). The treatment to reverse the evolution of all the toxic effects is performed by injection of antivenom. However, such therapy does not effectively neutralize tissue damage or any other local effect, since in most cases victims delay seeking appropriate medical care. In this way, alternative therapies are in demand, and molecules from natural sources have been exhaustively tested. In this paper, we analyzed the inhibitory effect of a sulfated galactan obtained from the red seaweed Palisada flagellifera against some toxic activities of L. muta venom. Incubation of sulfated galactan with venom resulted in inhibition of hemolysis, coagulation, proteolysis, edema and hemorrhage. Neutralization of hemorrhage was also observed when the galactan was administered after or before the venom injection; thus mimicking a real in vivo situation. Moreover, the galactan blocked the edema caused by a phospholipase A2 isolated from the same venom. Therefore, the galactan from P. flagellifera may represent a promising tool to treat envenomation by L. muta as a coadjuvant for the conventional antivenom. PMID:26110897

  4. Chondroitin Sulfate-E Binds to Both Osteoactivin and Integrin αVβ3 and Inhibits Osteoclast Differentiation.

    PubMed

    Miyazaki, Tatsuya; Miyauchi, Satoshi; Anada, Takahisa; Tawada, Akira; Suzuki, Osamu

    2015-10-01

    Integrins and their ligands have been suggested to be associated with osteoclast-mediated bone resorption. The present study was designed to investigate whether chondroitin sulfate E (CS-E), which is one of the sulfated glycosaminoglycans (GAGs), is involved in osteoactivin (OA) activity, and osteoclast differentiation. The binding affinity of sulfated GAGs to integrin and its ligand was measured using biotin-labeled CS-E, and the osteoclast differentiation was evaluated by tartrate-resistant acid phosphatase staining and a pit formation assay. CS-E as well as CS-B, synthetic chondroitin polysulfate, and heparin inhibited osteoclast differentiation of bone marrow-derived macrophages. Pre-coating of OA to synthetic calcium phosphate-coated plates enhanced the osteoclastic differentiation of RAW264 cells, and addition of a neutralizing antibody to OA inhibited its differentiation. CS-E bound not only to OA, fibronectin, and vitronectin, but also to its receptor integrin αVβ3, and inhibited the direct binding of OA to integrin αVβ3. Furthermore, CS-E blocked the binding of OA to cells and inhibited OA-induced osteoclastic differentiation. On the other hand, heparinase treatment of RAW264 cells inhibited osteoclastic differentiation. Since binding of OA to the cells was inhibited by the presence of heparan sulfate or heparinase treatment of cells, heparan sulfate proteoglycan (HSPG) was also considered to be an OA receptor. Taken together, the present results suggest that CS-E is capable of inhibiting OA-induced osteoclast differentiation by blocking the interaction of OA to integrin αVβ3 and HSPG. PMID:25820496

  5. Critical Differences between Pneumococcal Polysaccharide Enzyme-Linked Immunosorbent Assays with and without 22F Inhibition at Low Antibody Concentrations in Pediatric Sera

    PubMed Central

    Henckaerts, Isabelle; Goldblatt, David; Ashton, Lindsey; Poolman, Jan

    2006-01-01

    A comparative study was conducted between two laboratories in order to evaluate the differences between two enzyme-linked immunosorbent assay (ELISA) techniques for the detection of pneumococcal anti-capsular polysaccharide antibodies. One laboratory used an assay including heterologous 22F polysaccharide inhibition, and the other laboratory employed a non-22F reference assay. After conjugate immunization, 30 pediatric post-primary immunization sera with antipolysaccharide concentrations ranging from <0.05 to 15 ?g/ml were analyzed. Aggregate reverse cumulative distribution curves combining concentrations of antibodies against serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F revealed similar results for both methods at antibody levels of >1 ?g/ml. However, at antibody levels of <1 ?g/ml, the distribution curve measured with the 22F inhibition ELISA shifted toward lower levels. This observation suggests that the 22F inhibition assay is more specific at low antibody concentrations, which was confirmed by heterologous polysaccharide inhibition experiments. Translation of low antibody levels suggested that the proposed threshold concentration of 0.35 ?g/ml determined with the non-22F ELISA corresponded to a concentration of 0.20 ?g/ml with the 22F inhibition ELISA. Pneumococcal antipolysaccharide ELISA including 22F inhibition can be recommended as a reference method. PMID:16522777

  6. Dietary Supplementation with Soluble Plantain Non-Starch Polysaccharides Inhibits Intestinal Invasion of Salmonella Typhimurium in the Chicken

    PubMed Central

    Simpson, Hannah L.; Williams, Jonathan M.; Humphrey, Suzie; Salisbury, Anne-Marie; Watson, Alastair J. M.; Fry, Stephen C.; O'Brien, David; Roberts, Carol L.; O'Kennedy, Niamh; Keita, Åsa V.; Söderholm, Johan D.; Rhodes, Jonathan M.; Campbell, Barry J.

    2014-01-01

    Soluble fibres (non-starch polysaccharides, NSP) from edible plants but particularly plantain banana (Musa spp.), have been shown in vitro and ex vivo to prevent various enteric pathogens from adhering to, or translocating across, the human intestinal epithelium, a property that we have termed contrabiotic. Here we report that dietary plantain fibre prevents invasion of the chicken intestinal mucosa by Salmonella. In vivo experiments were performed with chicks fed from hatch on a pellet diet containing soluble plantain NSP (0 to 200 mg/d) and orally infected with S.Typhimurium 4/74 at 8 d of age. Birds were sacrificed 3, 6 and 10 d post-infection. Bacteria were enumerated from liver, spleen and caecal contents. In vitro studies were performed using chicken caecal crypts and porcine intestinal epithelial cells infected with Salmonella enterica serovars following pre-treatment separately with soluble plantain NSP and acidic or neutral polysaccharide fractions of plantain NSP, each compared with saline vehicle. Bacterial adherence and invasion were assessed by gentamicin protection assay. In vivo dietary supplementation with plantain NSP 50 mg/d reduced invasion by S.Typhimurium, as reflected by viable bacterial counts from splenic tissue, by 98.9% (95% CI, 98.1–99.7; P<0.0001). In vitro studies confirmed that plantain NSP (5–10 mg/ml) inhibited adhesion of S.Typhimurium 4/74 to a porcine epithelial cell-line (73% mean inhibition (95% CI, 64–81); P<0.001) and to primary chick caecal crypts (82% mean inhibition (95% CI, 75–90); P<0.001). Adherence inhibition was shown to be mediated via an effect on the epithelial cells and Ussing chamber experiments with ex-vivo human ileal mucosa showed that this effect was associated with increased short circuit current but no change in electrical resistance. The inhibitory activity of plantain NSP lay mainly within the acidic/pectic (homogalacturonan-rich) component. Supplementation of chick feed with plantain NSP was well tolerated and shows promise as a simple approach for reducing invasive salmonellosis. PMID:24498347

  7. Dietary supplementation with soluble plantain non-starch polysaccharides inhibits intestinal invasion of Salmonella Typhimurium in the chicken.

    PubMed

    Parsons, Bryony N; Wigley, Paul; Simpson, Hannah L; Williams, Jonathan M; Humphrey, Suzie; Salisbury, Anne-Marie; Watson, Alastair J M; Fry, Stephen C; O'Brien, David; Roberts, Carol L; O'Kennedy, Niamh; Keita, Asa V; Söderholm, Johan D; Rhodes, Jonathan M; Campbell, Barry J

    2014-01-01

    Soluble fibres (non-starch polysaccharides, NSP) from edible plants but particularly plantain banana (Musa spp.), have been shown in vitro and ex vivo to prevent various enteric pathogens from adhering to, or translocating across, the human intestinal epithelium, a property that we have termed contrabiotic. Here we report that dietary plantain fibre prevents invasion of the chicken intestinal mucosa by Salmonella. In vivo experiments were performed with chicks fed from hatch on a pellet diet containing soluble plantain NSP (0 to 200 mg/d) and orally infected with S.Typhimurium 4/74 at 8 d of age. Birds were sacrificed 3, 6 and 10 d post-infection. Bacteria were enumerated from liver, spleen and caecal contents. In vitro studies were performed using chicken caecal crypts and porcine intestinal epithelial cells infected with Salmonella enterica serovars following pre-treatment separately with soluble plantain NSP and acidic or neutral polysaccharide fractions of plantain NSP, each compared with saline vehicle. Bacterial adherence and invasion were assessed by gentamicin protection assay. In vivo dietary supplementation with plantain NSP 50 mg/d reduced invasion by S.Typhimurium, as reflected by viable bacterial counts from splenic tissue, by 98.9% (95% CI, 98.1-99.7; P<0.0001). In vitro studies confirmed that plantain NSP (5-10 mg/ml) inhibited adhesion of S.Typhimurium 4/74 to a porcine epithelial cell-line (73% mean inhibition (95% CI, 64-81); P<0.001) and to primary chick caecal crypts (82% mean inhibition (95% CI, 75-90); P<0.001). Adherence inhibition was shown to be mediated via an effect on the epithelial cells and Ussing chamber experiments with ex-vivo human ileal mucosa showed that this effect was associated with increased short circuit current but no change in electrical resistance. The inhibitory activity of plantain NSP lay mainly within the acidic/pectic (homogalacturonan-rich) component. Supplementation of chick feed with plantain NSP was well tolerated and shows promise as a simple approach for reducing invasive salmonellosis. PMID:24498347

  8. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems

    USGS Publications Warehouse

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A., III; Yang, Xiaofen; Tuovinen, Olli H.; Dong, Hailiang; Fu, Xiang

    2013-01-01

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO3)2 was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0–24.2 mM Pb(II) added as Pb(NO3)2. Anglesite (PbSO4) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe3(SO4)2(OH)6) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9–17.6 μM regardless of the concentrations of Pb(NO3)2 added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO3)2 addition even when anglesite was removed before inoculation. Experiments with 0–48 mM KNO3 demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO3)2 addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.

  9. Perlecan Heparan Sulfate Is Required for the Inhibition of Smooth Muscle Cell Proliferation by All-trans-Retinoic Acid.

    PubMed

    Tran-Lundmark, Karin; Tannenberg, Philip; Rauch, Bernhard H; Ekstrand, Johan; Tran, Phan-Kiet; Hedin, Ulf; Kinsella, Michael G

    2015-02-01

    Smooth muscle cell (SMC) proliferation is a key process in stabilization of atherosclerotic plaques, and during restenosis after interventions. A clearer understanding of SMC growth regulation is therefore needed to design specific anti-proliferative therapies. Retinoic acid has been shown to inhibit proliferation of SMCs both in vitro and in vivo and to affect the expression of extracellular matrix molecules. To explore the mechanisms behind the growth inhibitory activity of retinoic acid, we hypothesized that retinoids may induce the expression of perlecan, a large heparan sulfate proteoglycan with anti-proliferative properties. Perlecan expression and accumulation was induced in murine SMC cultures by all-trans-retinoic acid (AtRA). Moreover, the growth inhibitory effect of AtRA on wild-type cells was greatly diminished in SMCs from transgenic mice expressing heparan sulfate-deficient perlecan, indicating that the inhibition is perlecan heparan sulfate-dependent. In addition, AtRA influenced activation and phosphorylation of PTEN and Akt differently in wild-type and mutant SMCs, consistent with previous studies of perlecan-dependent SMC growth inhibition. We demonstrate that AtRA regulates perlecan expression in SMCs and that the inhibition of SMC proliferation by AtRA is, at least in part, secondary to an increased expression of perlecan and dependent upon its heparan sulfate-chains. PMID:25078760

  10. Pu-erh tea polysaccharides decrease blood sugar by inhibition of α-glucosidase activity in vitro and in mice.

    PubMed

    Deng, Yea-Tyz; Lin-Shiau, Shoei-Yn; Shyur, Lie-Fen; Lin, Jen-Kun

    2015-05-01

    Type 2 diabetes is mainly induced by environmental factors such as being overweight, decreased physical activity and inbalanced energy metabolism, such as pancreatic beta-cell dysfunction and peripheral insulin resistance. Acarbose, a microbial carbohydrate and an alpha-glucosidase inhibitor, is currently a useful agent for attenuating type 2 diabetes. However, it is usually accompanied by many side effects, such as abdominal distention, flatulence, diarrhea and meteorism. These side effects may be caused by its strong inhibition of alpha-amylase, leading to the accumulation of several undigested carbohydrates. The bacteria residing in the colon can further ferment the undigested carbohydrate to release gas. Finding a new alpha-glucosidase inhibitor with a low inhibitory effect on alpha-amylase is highly anticipated. In this report we describe a group of carbohydrates found in pu-erh tea polysaccharide (PTPS) that can inhibit alpha-glucosidase but have less of an inhibitory effect on alpha-amylase. The preliminary experiments on mice indicate that PTPS might be better than acarbose at suppressing blood glucose after oral administration of a carbohydrate diet; it is recommended that further clinical trials are required in type 2 diabetes in future studies. PMID:25820466

  11. Inhibition of migration and induction of apoptosis in LoVo human colon cancer cells by polysaccharides from Ganoderma lucidum.

    PubMed

    Liang, Zeng-Enni; Yi, You-Jin; Guo, Yu-Tong; Wang, Ren-Cai; Hu, Qiu-Long; Xiong, Xing-Yao

    2015-11-01

    Ganoderma lucidum polysaccharides (GLPs), which were purified from the medicinal herb G. lucidum followed by ethanol precipitation, protein depletion using the Sevage assay, purification using DEAE‑cellulose (DE-52), dialysis and the use of ultrafiltration membranes, are used as an ingredient in traditional anticancer treatments in China. The aim of the current study was to evaluate the anticancer effects and investigate the underlying molecular mechanisms of GLPs on LoVo human colon cancer cells. The results demonstrated that the GLP‑mediated anticancer effect in LoVo cells was characterized by cytotoxicity, migration inhibition, enhanced DNA fragmentation, morphological alterations and increased lactate dehydrogenase release. Furthermore, the activation of caspases‑3, ‑8 and ‑9 was involved in GLP‑stimulated apoptosis. Additionally, treatment with GLPs promoted the expression of Fas and caspase‑3 proteins, whilst reducing the expression of cleaved poly(ADP‑ribose) polymerase. These data indicate that GLPs demonstrate potential antitumor activity in human colon cancer cells, predominantly through the inhibition of migration and induction of apoptosis. Furthermore, activation of the Fas/caspase-dependent apoptosis pathway is involved in the cytotoxicity of GLPs. PMID:26397202

  12. Tremella Polysaccharides attenuated sepsis through inhibiting abnormal CD4⁺CD25(high) regulatory T cells in mice.

    PubMed

    Shi, Zhen-wei; Liu, Yi; Xu, Yan; Hong, Yu-rong; Liu, Qi; Li, Xiao-lu; Wang, Zhi-gang

    2014-01-01

    Tremella Polysaccharides (TPS) have been reported to play an important role in regulating immune responses. Tregs are widely identified as the critical reason for immune dysfunction during sepsis. However, whether TPS could influence the immunomodulatory activities of Tregs in post-burn sepsis mice remains unclear. In this experiment, we researched the effects of TPS on peripheral blood Tregs in sepsis mouse induced by burn plus Pseudomonas aeruginosa infection. Results showed that TPS reversed the influences of Tregs on CD4⁺T cells proliferation and polarization and declined the level of IL-10 in burn plus P. aeruginosa infection mice. In addition, TPS notably reduced the mortality of post-burn sepsis mice. Therefore, TPS could inhibit the abnormal activities of CD4⁺CD25(high) Tregs in burn with P. aeruginosa infection mice, at least in part via inhibiting IL-10 secretion, and trigger a shift of Th2 to Th1 with activation of CD4⁺T cells in burn with P. aeruginosa infection mice. PMID:24662726

  13. Extracellular polysaccharides do not inhibit the reaction between Streptococcus mutans and its specific immunoglobulin G (IgG) or penetration of the IgG through S. mutans biofilm.

    PubMed

    Zhu, M; Takenaka, S; Sato, M; Hoshino, E

    2001-02-01

    The present study investigated whether extracellular polysaccharides inhibit reaction between Streptococcus mutans and its specific immunoglobulin G (IgG) and penetration of the IgG through S. mutans biofilm. The planktonic organisms with or without extracellular polysaccharides were prepared, incubated with rabbit IgG against whole cell of S. mutans and fluorescein isothiocyanate (FITC)-conjugated goat affinity purified antibody to rabbit IgG. Biofilms with or without extracellular polysaccharides were formed on cover glasses and incubated with rabbit IgG against S. mutans and FITC-conjugated goat antibody to rabbit IgG. Then, biofilms were stained with propidium iodide. The amount of specific IgG binding on S. mutans was determined by FITC intensity with a fluorescence microplate reader. The penetration of IgG through biofilms was determined by confocal laser scanning microscopy. The results showed that the fluorescence intensity of FITC in planktonic organisms with extracellular polysaccharides was similar to that in planktonic organisms without extracellular polysaccharides, indicating that extracellular polysaccharides did not inhibit the reaction between S. mutans and its specific IgG. Although biofilms of S. mutans with extracellular polysaccharides were much thicker and denser than those without extracellular polysaccharides, the speed with which IgG penetrated through both of the biofilms did not differ significantly, suggesting that penetration of IgG through S. mutans biofilm was not affected by extracellular polysaccharides. PMID:11169140

  14. Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host-cell interaction

    NASA Astrophysics Data System (ADS)

    Hu, Yu-Peng; Lin, Shu-Yi; Huang, Cheng-Yen; Zulueta, Medel Manuel L.; Liu, Jing-Yuan; Chang, Wen; Hung, Shang-Cheng

    2011-07-01

    Cell surface carbohydrates play significant roles in a number of biologically important processes. Heparan sulfate, for instance, is a ubiquitously distributed polysulfated polysaccharide that is involved, among other things, in the initial step of herpes simplex virus type 1 (HSV-1) infection. The virus interacts with cell-surface heparan sulfate to facilitate host-cell attachment and entry. 3-O-Sulfonated heparan sulfate has been found to function as an HSV-1 entry receptor. Achieving a complete understanding of these interactions requires the chemical synthesis of such oligosaccharides, but this remains challenging. Here, we present a convenient approach for the synthesis of two irregular 3-O-sulfonated heparan sulfate octasaccharides, making use of a key disaccharide intermediate to acquire different building blocks for the oligosaccharide chain assembly. Despite substantial structural differences, the prepared 3-O-sulfonated sugars blocked viral infection in a dosage-dependent manner with remarkable similarity to one another.

  15. Streptococcus suis Capsular Polysaccharide Inhibits Phagocytosis through Destabilization of Lipid Microdomains and Prevents Lactosylceramide-Dependent Recognition

    PubMed Central

    Houde, Mathieu; Gottschalk, Marcelo; Gagnon, Fleur; Van Calsteren, Marie-Rose

    2012-01-01

    Streptococcus suis type 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans. S. suis infects the host through the respiratory route, reaches the bloodstream, and persists until breaching into the central nervous system. The capsular polysaccharide (CPS) of S. suis type 2 is considered a key virulence factor of the bacteria. Though CPS allows S. suis to adhere to the membrane of cells of the immune system, it provides protection against phagocytosis. In fact, nonencapsulated mutants are easily internalized and killed by macrophages and dendritic cells. The objective of this work was to study the molecular mechanisms by which the CPS of S. suis prevents phagocytosis. By using latex beads covalently linked with purified CPS, it was shown that CPS itself was sufficient to inhibit entry of both latex beads and bystander fluorescent beads into macrophages. Upon contact with macrophages, encapsulated S. suis was shown to destabilize lipid microdomains at the cell surface, to block nitric oxide (NO) production during infection, and to prevent lactosylceramide accumulation at the phagocytic cup during infection. In contrast, the nonencapsulated mutant was easily internalized via lipid rafts, in a filipin-sensitive manner, leading to lactosylceramide recruitment and strong NO production. This is the first report to identify a role for CPS in lipid microdomain stability and to recognize an interaction between S. suis and lactosylceramide in phagocytes. PMID:22124659

  16. Raspberry pulp polysaccharides inhibit tumor growth via immunopotentiation and enhance docetaxel chemotherapy against malignant melanoma in vivo.

    PubMed

    Yang, Yong-Jing; Xu, Han-Mei; Suo, You-Rui

    2015-09-01

    It has been reported previously that the systemic efficacy of chemotherapeutic agents is substantially restricted for some cancer types, including malignant melanoma. Therefore, the development of more effective treatment modalities remains a critical, albeit elusive, goal in anticancer therapy. The study presented here evaluates the antitumor activity of raspberry pulp polysaccharides (RPPs) against malignant melanoma using a murine tumor-bearing model. Furthermore, the underlying mechanism of this antitumor activity has also been investigated. The results show that while RPP exhibits no direct cytotoxic effect on HT-29, MGC-803, HeLa, Bel-7402, L02 and B16F10 cells in vitro, it does demonstrate a dose-dependent growth inhibition of melanoma in vivo with an inhibition ratio of 59.95% at a dose of 400 mg kg(-1). Besides this, the body weight and spleen index in tumor-bearing mice have also been improved in RPP-treated groups. RPP is also found to induce splenocyte proliferation and is able to upregulate the activity of immune-related enzymes, including acid phosphatase (ACP), alkaline phosphatase (AKP), lactate dehydrogenase (LDH) and superoxide dismutase (SOD) in the spleen of tumor-bearing mice. The levels of tumor necrosis factor ? (TNF-?), interferon ? (IFN-?) and interleukin 2 (IL-2) in the serum of tumor-bearing mice show to be effectively increased upon RPP treatment. Histopathological analyses show that RPP induces tumor tissue necrosis by increasing inflammatory cell infiltration and causes no lesions to liver and kidney tissues. Remarkably, RPP further enhances the antitumor effect of the chemotherapeutic drug docetaxel and alleviates docetaxel-induced liver and kidney lesions in tumor-bearing mice. These findings indicate that RPP exhibits antitumor activity in vivo against malignant melanoma, partly by enhancing the cellular immune response of the host organism. In summary, RPP features critical properties to potentially find use as an immunopotentiating agent or as a chemotherapy adjuvant agent for the treatment of malignant melanoma. PMID:26200777

  17. Acidic Polysaccharide Extracts from Gastrodia Rhizomes Suppress the Atherosclerosis Risk Index through Inhibition of the Serum Cholesterol Composition in Sprague Dawley Rats Fed a High-Fat Diet

    PubMed Central

    Kim, Kui-Jin; Lee, Ok-Hwan; Han, Chan-Kyu; Kim, Young-Chan; Hong, Hee-Do

    2012-01-01

    Obesity is associated with a broad spectrum of cardio-metabolic disturbances, including atherosclerosis and cardiovascular disease (CDV). A high-fat diet has been shown to cause an elevation of the plasma cholesterol levels in humans, and the control of serum cholesterol has been demonstrated to be important in the prevention of CVD and atherosclerosis. The aims of this study were to demonstrate that crude and acidic polysaccharide extracts from Gastrodia rhizomes suppress atherosclerosis through the regulation of serum lipids in Sprague Dawley (SD) rats fed a high-fat diet. We examined the concentrations of serum lipids, including total cholesterol, triglycerides, high-density lipoproteins (HDL) cholesterol, and low-density lipoproteins (LDL) cholesterol, in SD rats fed a high-fat diet and evaluated the atherogenic index. Here, we show that both crude and acidic polysaccharide extracts from Gastrodia rhizomes inhibited the total cholesterol and LDL levels. Moreover, there was a significantly suppressed atherosclerosis risk due to the acidic polysaccharide extract from Gastrodia rhizome. Taken together, our results suggested that acidic polysaccharide extracts from Gastrodia rhizomes might be beneficial for lowering the incidence of CVD and atherosclerosis by reducing the de novo synthesis of total cholesterol and the LDL levels. PMID:22408412

  18. Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor.

    PubMed

    Zamze, Susanne; Martinez-Pomares, Luisa; Jones, Hannah; Taylor, Philip R; Stillion, Richard J; Gordon, Siamon; Wong, Simon Y C

    2002-11-01

    The in vitro binding of the macrophage mannose receptor to a range of different bacterial polysaccharides was investigated. The receptor was shown to bind to purified capsular polysaccharides from Streptococcus pneumoniae and to the lipopolysaccharides, but not capsular polysaccharides, from Klebsiella pneumoniae. Binding was Ca(2+)-dependent and inhibitable with d-mannose. A fusion protein of the mannose receptor containing carbohydrate recognition domains 4-7 and a full-length soluble form of the mannose receptor containing all domains external to the transmembrane region both displayed very similar binding specificities toward bacterial polysaccharides, suggesting that domains 4-7 are sufficient for recognition of these structures. Surprisingly, no direct correlation could be made between polysaccharide structure and binding to the mannose receptor, suggesting that polysaccharide conformation may play an important role in recognition. The full-length soluble form of the mannose receptor was able to bind simultaneously both polysaccharide via the carbohydrate recognition domains and sulfated oligosaccharide via the cysteine-rich domain. The possible involvement of the mannose receptor, either cell surface or soluble, in the innate and adaptive immune responses to bacterial polysaccharides is discussed. PMID:12196537

  19. Pectic polysaccharide from corn (Zea mays L.) effectively inhibited multi-step mediated cancer cell growth and metastasis.

    PubMed

    Jayaram, Smitha; Kapoor, Sabeeta; Dharmesh, Shylaja M

    2015-06-25

    Corn pectic polysaccharide (COPP) inhibited galectin-3 mediated hemagglutination at Minimum Inhibitory Concentration (MIC) of 4.08 μg/mL as opposed to citrus pectin (25 μg/mL), a well known galectin-3 inhibitor and lactose (4.16 μg/mL)--sugar specific to galectin-3. COPP effectively (72%) inhibited invasion and metastasis in experimental animals. In vivo results were substantiated by modulation of cancer specific markers such as galectin-3, which is a key molecule for initiation of metastatic cascade, vascular endothelial growth factor (VEGF) that enhances angiogenesis, matrix metalloproteinases 2 and 9 that are required for invasion, NF-κB, a transcription factor for proliferative potency of tumor cells and a phosphoglucoisomerase (PGI), the activity of which favors cancer cell growth. Structural characterization studies indicate the active component (relatively less acidic, 0.05 M ammonium carbonate, 160 kDa fraction) which showed antimetastatic potency in vitro with MIC of 0.09 μg/mL, and ∼ 45 fold increase in the activity when compared to that of COPP. Gas liquid chromatographic analysis indicated the presence of rhamnose (1%), arabinose (20%), xylose (3%), mannose (4%), galactose (54%) and uronic acid (10%) in different proportions. However, correlative data attributed galectin-3 inhibitory activity to enhanced levels of arabinose and galactose. FTIR, HPLC and NMR spectroscopic analysis further highlights that COPP is an arabinogalactan with methyl/ethyl esters. It is therefore suggested that the blockade of galectin-3 mediated lung metastasis appears to be a result of an inhibition of mixed functions induced during metastasis. The data signifies the importance of dietary carbohydrate as cancer-preventive agent. Although pectin digestibility and absorption are issues of concern, promising in vivo data provides evidence for the cancer preventive property of corn. The present study reveals for the first time a new component of corn, i.e.,--corn pectin with cancer preventive activity apart from corn starch that has been in wide use for multipurpose health benefits. PMID:25882088

  20. Vincristine sulfate-induced cell transformation, mitotic inhibition and aneuploidy in cultured Syrian hamster embryo cells

    SciTech Connect

    Tsutsui, T.; Suzuki, N.; Maizumi, H.; Barrett, J.C.

    1986-01-01

    Vincristine, a naturally occurring Vinca alkaloid and widely used anti-neoplastic agent, was examined for its ability to induce cell transformation, inhibition of growth and mitosis, and genetic effects in Syrian hamster embryo cells in culture. Treatment of the cells with doses of less than or equal to 1 ng/ml vincristine sulfate (VCR) had no effect on cell growth, while exposure to greater than or equal to 3 ng/ml reduced the growth rate and treatment with 30 ng/ml resulted in no detectable increase in cell number. At this latter dose the mitotic index of the cells increased significantly suggesting that VCR delayed completion of mitosis. Exposure of the cells to VCR at doses of 1-10 ng/ml for 48 h resulted in morphological transformation of the cells in a doserelated fashion. The vincristine-treated transformed colonies were morphologically indistinguishable from colonies transformed by benzo(a)pyrene or other chemical carcinogens. Morphological transformation was induced by VCR at non-toxic and slightly toxic doses as measured by a reduction in colony-forming ability of the treated cells. Over the dose range which resulted in cell transformation, VCR failed to induce either detectable gene mutations at two genetic loci, unscheduled DNA synthesis, or chromosome aberrations in the Syrian hamster embryo cells. However, a significant dose-dependent increase in aneuploid cells with a near-diploid chromosome number was induced by VCR. Both chromosome losses and gains were induced which is consistent with a non-disjunctional mechanism. These results further support our hypothesis that aneuploidy is one possible mechanism for induction of this early step in the neoplastic transformation of Syrian hamster embryo cells. Furthermore, these findings indicate that VCR may have some carcinogenic potential if exposure to rapidly dividing cells occurs.

  1. Inhibition of vagally mediated immune-to-brain signaling by vanadyl sulfate speeds recovery from sickness

    PubMed Central

    Johnson, Daniel R.; O'Connor, Jason C.; Dantzer, Robert; Freund, Gregory G.

    2005-01-01

    To the ill patient with diabetes, the behavioral symptoms of sickness such as fatigue and apathy are debilitating and can prevent recuperation. Here we report that peripherally administered insulin-like growth factor 1 (IGF-1) attenuates LPS-dependent depression of social exploration (sickness) in nondiabetic (db/+) but not in diabetic (db/db) mice. We show that the insulin/IGF-1 mimetic vanadyl sulfate (VS) is effective at augmenting recovery from sickness in both db/+ and db/db mice. Specifically, peak illness was reached at 2 h for both VS and control animals injected with LPS, and VS mice recovered 50% faster than non-VS-treated animals. Examination of the mechanism of VS action in db/+ mice showed that VS paradoxically augmented peritoneal macrophage responsivity to LPS, increasing both peritoneal and ex vivo macrophage production of IL-1β and IL-6 but not TNF-α. The effects of VS in promoting recovery from sickness were not restricted to LPS, because they were also observed after direct administration of IL-1β. To explore the possibility that VS impairs immune-to-brain communication via vagal afferents, the vagally mediated satiety-inducing effects of cholecystokinin 8 were tested in db/+ mice. Cholecystokinin decreased food intake in saline-injected mice but not in VS-treated mice. VS also inhibited LPS-dependent up-regulation of IL-1β and IL-6 mRNA in the brain, while increasing by 50% the cerebral expression of transcripts of the specific antagonist of IL-1 receptors IL-1RA and IL-1R2. Taken together, these data indicate that VS improves recovery from LPS-induced sickness by blocking vagally mediated immune-to-brain signaling and by up-regulating brain expression of IL-1β antagonists. PMID:16217019

  2. Reducing phosphorus runoff and inhibiting ammonia loss from poultry manure with aluminum sulfate

    SciTech Connect

    Moore, P.A. Jr.; Daniel, T.C.; Edwards, D.R.

    2000-02-01

    Applications of aluminum sulfate (Al{sub 2}(SO{sub 4}){sub 3} {center_dot} 14H{sub 2}O), commonly referred to as alum, to poultry litter have been shown to decrease P runoff from lands fertilized with litter and to inhibit NH{sub 3} volatilization. The objectives of this study were to evaluate the effects of alum applications in commercial broiler houses on: (1) NH{sub 3} volatilization (in-house), (2) poultry production, (3) litter chemistry, and (4) P runoff following litter application. Two farms were used for this study: one had six poultry houses and the other had four. The litter in half of the houses at each farm was treated with alum; the other houses were controls. Alum was applied at a rate of 1,816 kg/house, which corresponded to 0.091 kg/bird. Each year the houses were cleaned in the spring and the litter was broadcast onto paired watersheds in tall fescue at each farm. Results from this study showed that alum applications lowered the litter pH, particularly during the first 3 to 4 wk of each growout. Reductions in litter pH resulted in less NH{sub 3} volatilization, which led to reductions in atmospheric NH{sub 3} in the alum-treated houses. Broilers grown on alum-treated litter were significantly heavier than controls (1.73 kg vs. 1.66 kg). Soluble reactive phosphorus (SRP) concentrations in runoff from pastures fertilized with alum-treated litter averaged 73% lower than that from normal litter throughout a 3-yr period. These results indicate that alum-treatment of poultry litter is a very effective best management practice that reduces nonpoint source pollution while it increases agricultural productivity.

  3. Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate.

    PubMed

    Carlson, Hans K; Kuehl, Jennifer V; Hazra, Amrita B; Justice, Nicholas B; Stoeva, Magdalena K; Sczesnak, Andrew; Mullan, Mark R; Iavarone, Anthony T; Engelbrektson, Anna; Price, Morgan N; Deutschbauer, Adam M; Arkin, Adam P; Coates, John D

    2015-06-01

    We investigated perchlorate (ClO(4)(-)) and chlorate (ClO(3)(-)) (collectively (per)chlorate) in comparison with nitrate as potential inhibitors of sulfide (H(2)S) production by mesophilic sulfate-reducing microorganisms (SRMs). We demonstrate the specificity and potency of (per)chlorate as direct SRM inhibitors in both pure cultures and undefined sulfidogenic communities. We demonstrate that (per)chlorate and nitrate are antagonistic inhibitors and resistance is cross-inducible implying that these compounds share at least one common mechanism of resistance. Using tagged-transposon pools we identified genes responsible for sensitivity and resistance in Desulfovibrio alaskensis G20. We found that mutants in Dde_2702 (Rex), a repressor of the central sulfate-reduction pathway were resistant to both (per)chlorate and nitrate. In general, Rex derepresses its regulon in response to increasing intracellular NADH:NAD(+) ratios. In cells in which respiratory sulfate reduction is inhibited, NADH:NAD(+) ratios should increase leading to derepression of the sulfate-reduction pathway. In support of this, in (per)chlorate or nitrate-stressed wild-type G20 we observed higher NADH:NAD(+) ratios, increased transcripts and increased peptide counts for genes in the core Rex regulon. We conclude that one mode of (per)chlorate and nitrate toxicity is as direct inhibitors of the central sulfate-reduction pathway. Our results demonstrate that (per)chlorate are more potent inhibitors than nitrate in both pure cultures and communities, implying that they represent an attractive alternative for controlling sulfidogenesis in industrial ecosystems. Of these, perchlorate offers better application logistics because of its inhibitory potency, solubility, relative chemical stability, low affinity for mineral cations and high mobility in environmental systems. PMID:25405978

  4. Direct detection of HSulf-1 and HSulf-2 activities on extracellular heparan sulfate and their inhibition by PI-88

    PubMed Central

    Hossain, Md Motarab; Hosono-Fukao, Tomomi; Tang, Renhong; Sugaya, Noriko; van Kuppevelt, Toin H; Jenniskens, Guido J; Kimata, Koji; Rosen, Steven D; Uchimura, Kenji

    2010-01-01

    Heparan sulfates (HS) bind a diversity of protein ligands on the cell surface and in the extracellular matrix and thus can modulate cell signaling. The state of sulfation in glucosamines and uronic acids within the chains strongly influences their binding. We have previously cloned and characterized two human extracellular endoglucosamine 6-sulfatases, HSulf-1 and HSulf-2, which selectively liberate the 6-O sulfate groups on glucosamines present in N, 6-O, and 2-O trisulfated disaccharides of intact HS and heparins. These enzymes serve important roles in development and are upregulated in a number of cancers. To determine whether the Sulfs act on the trisulfated disaccharides that exist on the cell surface, we expressed HSulfs in cultured cells and performed a flow cytometric analysis with the RB4CD12, an anti-HS antibody that recognizes N- and O-sulfated HS saccharides. The endogenously expressed level of the cell surface RB4CD12 epitope was greatly diminished in CHO, HEK293, and HeLa cells transfected with HSulf-1 or HSulf-2 cDNA. In correspondence with the RB4CD12 finding, the N, 6-O, and 2-O trisulfated disaccharides of the HS isolated from the cell surface/extracellular matrix were dramatically reduced in the Sulf-expressed HEK293 cells. We then developed an ELISA and confirmed that the RB4CD12 epitope in immobilized heparin was degraded by purified recombinant HSulf-1 and HSulf-2, and conditioned medium (CM) of MCF-7 breast carcinoma cells, which contain a native form of HSulf-2. Furthermore, HSulf-1 and HSulf-2 exerted activity against the epitope expressed on microvessels of mouse brains. Both HSulf activities were potently inhibited by PI-88, a sulfated heparin mimetic with anti-cancer activities. These findings provide new strategies for monitoring the extracellular remodeling of HS by Sulfs during normal and pathophysiological processes. PMID:19822709

  5. [Inhibition of the activity of sulfate-reducing bacteria in produced water from oil reservoir by nitrate].

    PubMed

    Yang, De-Yu; Zhang, Ying; Shi, Rong-Jiu; Han, Si-Qin; Li, Guang-Zhe; Li, Guo-Qiao; Zhao, Jin-Yi

    2014-01-01

    Growth and metabolic activity of sulfate-reducing bacteria (SRB) can result in souring of oil reservoirs, leading to various problems in aspects of environmental pollution and corrosion. Nitrate addition and management of nitrate-reducing bacteria (NRB) offer potential solutions to controlling souring in oil reservoirs. In this paper, a facultive chemolithotrophic NRB, designated as DNB-8, was isolated from the produced fluid of a water-flooded oil reservoir at Daqing oilfield. Then the efficacies and mechanisms of various concentrations of nitrate in combination with DNB-8 in the inhibition of the activity of SRB enriched culture were compared. Results showed that 1.0 mmol x L(-1) of nitrate or 0.45 mmol x L(-1) of nitrite inhibited the sulfate-reducing activity of SRB enrichments; the competitive reduction of nitrate by DNB-8 and the nitrite produced were responsible for the suppression. Besides, the SRB enrichment cultures showed a metabolic pathway of dissimilatory nitrate reduction to ammonium (DNRA) via nitrite. The SRB cultures could possibly alleviate the nitrite inhibition by DNRA when they were subjected to high-strength nitrate. PMID:24720222

  6. INHIBITION OF REDUCTIVE DECHLORINATION BY SULFATE REDUCTION IN MICROCOSMS (ABSTRACT ONLY)

    EPA Science Inventory

    High sulfate (>1,000 mg/L) concentrations are potentially problematic for field implementation of in situ bioremediation of chlorinated ethenes because its reduction competes for electron donor with reductive dechlorination. As a result of this competition, reductive dechl...

  7. Effect of Hormones on the Turnover of Polysaccharides in Connective Tissues

    PubMed Central

    Dziewiatkowski, Dominic D.

    1964-01-01

    A number of hormones somehow modify the turnover of the polysaccharides in a variety of connective tissues. In hypophysectomized animals the turnover of chondroitin sulfate and hyaluronic acid is decreased; when such animals are given growth hormone the turnover of chondroitin sulfate is enhanced but that of hyaluronic acid is unaltered. The effect of parathyroid extracts may be of a dual nature: in some connective tissues there may be an increase in the rate at which chondroitin sulfate is catabolized, in other tissues its synthesis may be stimulated. Thyroxine effectively restores toward normal the depressed synthesis and breakdown of polysaccharides in hypothyroid animals. Estradiol, in addition to inhibiting the resorption of the metaphyses in rats, inhibits the synthesis of chondroitin sulfate in cartilage and aorta. Cortisone too inhibits the synthesis of chondroitin sulfates and hyaluronic acid; its effect on their catabolism is not as striking. ImagesFigure 1Figure 9Figure 5Figure 6Figure 10Figure 11Figure 12Figure 13Figure 14Figure 15 PMID:14104083

  8. [NO3-/NO2- inhibits sulfate-reducing activity of the enrichment culture of sulfate-reducing prokaryotes from an off-shore oil reservoir at Bohai Bay, China].

    PubMed

    Liu, Hong-Yu; Shi, Rong-Jiu; Zhang, Ying; Shi, Zhen-Guo; Zhang, Ying-Yue; Yu, Liang; Zhang, Xiao-Bo; Tan, Tao

    2014-08-01

    Long-term injection of sulfate-rich water into oil reservoirs stimulates the proliferation of sulfate-reducing prokaryotes (SRP) therein and results in production of a great amount of H2S, leading to souring in oil reservoirs and related environmental problems. In this study, we first, using modified API RP 38 medium, enriched SRP present in production water from a producing well at Bohai Bay, China, and then examined the inhibitory effects of nitrate or nitrite on sulfate reduction activity of the SRP. Results showed that the enriched SRP culture exhibited a high sulfate reduction activity as indicated by a sulfate-reducing rate of 10.4 mmol SO4(2-) x d(-1) x g(-1) dry cell. In presence of 0.4, 0.8, 1.8, and 4.2 mmol x L(-1) nitrate, sulfate reduction was inhibited for 5, 9, 20, and over 35 days, respectively. With the addition of 0.6, 0.9, 1.4, 2.6 and 4.6 mmol x L(-1) of nitrite, the inhibitory period lasted 3, 12, 22, and over 39 days, respectively. The SRP enrichment culture could dissimilatorily reduce nitrate to ammonium. When sulfate, nitrate and nitrite coexisted, nitrate or nitrite was preferentially used over sulfate as electron acceptor by the enriched SRP. This competitive use of electron acceptor and the strong inhibitory effect of nitrite possibly accounted for the suppression of nitrate and nitrite on the sulfate-reducing activity of the enriched SRP cultures from offshore oil reservoir at Bohai Bay. PMID:25509091

  9. Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway.

    PubMed

    Gong, Juanjuan; Sun, Fumou; Li, Yihang; Zhou, Xiaoling; Duan, Zhenzhen; Duan, Fugang; Zhao, Lei; Chen, Hansen; Qi, Suhua; Shen, Jiangang

    2015-04-01

    Momordica charantia (MC) is a medicinal plant for stroke treatment in Traditional Chinese Medicine, but its active compounds and molecular targets are unknown yet. M. charantia polysaccharide (MCP) is one of the important bioactive components in MC. In the present study, we tested the hypothesis that MCP has neuroprotective effects against cerebral ischemia/reperfusion injury through scavenging superoxide (O2(-)), nitric oxide (NO) and peroxynitrite (ONOO(-)) and inhibiting c-Jun N-terminal protein kinase (JNK3) signaling cascades. We conducted experiments with in vivo global and focal cerebral ischemia/reperfusion rat models and in vitro oxygen glucose deprivation (OGD) neural cells. The effects of MCP on apoptotic cell death and infarction volume, the bioactivities of scavenging O2(-), NO and ONOO(-), inhibiting lipid peroxidation and modulating JNK3 signaling pathway were investigated. Major results are summarized as below: (1) MCP dose-dependently attenuated apoptotic cell death in neural cells under OGD condition in vitro and reduced infarction volume in ischemic brains in vivo; (2) MCP had directing scavenging effects on NO, O2(-) and ONOO(-) and inhibited lipid peroxidation; (3) MCP inhibited the activations of JNK3/c-Jun/Fas-L and JNK3/cytochrome C/caspases-3 signaling cascades in ischemic brains in vivo. Taken together, we conclude that MCP could be a promising neuroprotective ingredient of M. charantia and its mechanisms could be at least in part attributed to its antioxidant activities and inhibiting JNK3 signaling cascades during cerebral ischemia/reperfusion injury. PMID:25510970

  10. Biological activities of fucose-containing polysaccharide ascophyllan isolated from the brown alga Ascophyllum nodosum.

    PubMed

    Nakayasu, Seiichirou; Soegima, Ryo; Yamaguchi, Kenichi; Oda, Tatsuya

    2009-04-23

    A fucose-containing, sulfated polysaccharide ascophyllan was isolated from the brown alga Ascophyllum nodosum. Composition analysis demonstrated that ascophyllan mainly contains uronic acid, xylose, fucose, and sulfate half ester in approximately equimolecular proportions, which are evidently distinct from those of alginate and fucoidan. Ascophyllan inhibited the proliferation of U937 cells in a concentration-dependent manner, and DNA-fragmentation and typical apoptotic nuclear morphological changes were observed in the ascophyllan-treated cells. Furthermore, ascophyllan induced the secretion of tumor necrosis factor-alpha (TNF-alpha) and granulocyte colony-stimulating factor (G-CSF) from mouse macrophage cell line RAW264.7. PMID:19352011

  11. A RG-II Type Polysaccharide Purified from Aconitum coreanum Alleviates Lipopolysaccharide-Induced Inflammation by Inhibiting the NF-κB Signal Pathway

    PubMed Central

    Li, Xiaojun; Jiang, Jiaye; Shi, Songshan; Bligh, S. W. Annie; Li, Yuan; Jiang, Yongbo; Huang, Dan; Ke, Yan; Wang, Shunchun

    2014-01-01

    Korean mondshood root polysaccharides (KMPS) isolated from the root of Aconitum coreanum (Lévl.) Rapaics have shown anti-inflammatory activity, which is strongly influenced by their chemical structures and chain conformations. However, the mechanisms of the anti-inflammatory effect by these polysaccharides have yet to be elucidated. A RG-II polysaccharide (KMPS-2E, Mw 84.8 kDa) was isolated from KMPS and its chemical structure was characterized by FT-IR and NMR spectroscopy, gas chromatography–mass spectrometry and high-performance liquid chromatography. The backbone of KMPS-2E consisted of units of [→6) -β-D-Galp (1→3)-β-L-Rhap-(1→4)-β-D-GalpA-(1→3)-β-D-Galp-(1→] with the side chain →5)-β-D-Arap (1→3, 5)-β-D-Arap (1→ attached to the backbone through O-4 of (1→3,4)-L-Rhap. T-β-D-Galp is attached to the backbone through O-6 of (1→3,6)-β-D-Galp residues and T-β-D-Ara is connected to the end group of each chain. The anti-inflammatory effects of KMPS-2E and the underlying mechanisms using lipopolysaccharide (LPS) - stimulated RAW 264.7 macrophages and carrageenan-induced hind paw edema were investigated. KMPS-2E (50, 100 and 200 µg/mL) inhibits iNOS, TLR4, phospho-NF-κB–p65 expression, phosphor-IKK, phosphor-IκB-α expression as well as the degradation of IκB-α and the gene expression of inflammatory cytokines (TNF-α, IL-1β, iNOS and IL-6) mediated by the NF-κB signal pathways in macrophages. KMPS-2E also inhibited LPS-induced activation of NF-κB as assayed by electrophorectic mobility shift assay (EMSA) in a dose-dependent manner and it reduced NF-κB DNA binding affinity by 62.1% at 200µg/mL. In rats, KMPS-2E (200 mg/kg) can significantly inhibit carrageenan-induced paw edema as ibuprofen (200 mg/kg) within 3 h after a single oral dose. The results indicate that KMPS-2E is a promising herb-derived drug against acute inflammation. PMID:24927178

  12. Hexavalent chromium reduction in Desulfovibrio vulgarisHildenborough causes transitory inhibition of sulfate reduction and cellgrowth

    SciTech Connect

    Klonowska, A.; Clark, M.E.; Thieman, S.B.; Giles, B.J.; Wall,J.D.; Fields, M.W.

    2008-01-07

    Desulfovibrio vulgaris Hildenborough is a well-studiedsulfate reducer that can reduce heavy metals and radionuclides [e.g.,Cr(VI) and U(VI)]. Cultures grown in a defined medium had a lag period ofapproximately 30 h when exposed to 0.05 mM Cr(VI). Substrate analysesrevealed that although Cr(VI) was reduced within the first 5 h, growthwas not observed for an additional 20 h. The growth lag could beexplained by a decline in cell viability; however, during this time smallamounts of lactate were still utilized without sulfate reduction oracetate formation. Approximately 40 h after Cr exposure (0.05 mM),sulfate reduction occurred concurrently with the accumulation of acetate.Similar amounts of hydrogen were produced by Cr-exposed cells compared tocontrol cells, and lactate was not converted to glycogen duringnon-growth conditions. D. vulgaris cells treated with a reducing agentand then exposed to Cr(VI) still experienced a growth lag, but theaddition of ascorbate at the time of Cr(VI) addition prevented the lagperiod. In addition, cells grown on pyruvate displayed more tolerance toCr(VI) compared to lactate-grown cells. These results indicated that D.vulgaris utilized lactate during Cr(VI) exposure without the reduction ofsulfate or production of acetate, and that ascorbate and pyruvate couldprotect D. vulgaris cells from Cr(VI)/Cr(III) toxicity.

  13. Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment

    PubMed Central

    Engelbrektson, Anna; Hubbard, Christopher G.; Tom, Lauren M.; Boussina, Aaron; Jin, Yong T.; Wong, Hayden; Piceno, Yvette M.; Carlson, Hans K.; Conrad, Mark E.; Anderson, Gary; Coates, John D.

    2014-01-01

    Microbial sulfate reduction is a primary cause of oil reservoir souring. Here we show that amendment with chlorate or perchlorate [collectively (per)chlorate] potentially resolves this issue. Triplicate packed columns inoculated with marine sediment were flushed with coastal water amended with yeast extract and one of nitrate, chlorate, or perchlorate. Results showed that although sulfide production was dramatically reduced by all treatments, effluent sulfide was observed in the nitrate (10 mM) treatment after an initial inhibition period. In contrast, no effluent sulfide was observed with (per)chlorate (10 mM). Microbial community analyses indicated temporal community shifts and phylogenetic clustering by treatment. Nitrate addition stimulated Xanthomonadaceae and Rhizobiaceae growth, supporting their role in nitrate metabolism. (Per)chlorate showed distinct effects on microbial community structure compared with nitrate and resulted in a general suppression of the community relative to the untreated control combined with a significant decrease in sulfate reducing species abundance indicating specific toxicity. Furthermore, chlorate stimulated Pseudomonadaceae and Pseudoalteromonadaceae, members of which are known chlorate respirers, suggesting that chlorate may also control sulfidogenesis by biocompetitive exclusion of sulfate-reduction. Perchlorate addition stimulated Desulfobulbaceae and Desulfomonadaceae, which contain sulfide oxidizing and elemental sulfur-reducing species respectively, suggesting that effluent sulfide concentrations may be controlled through sulfur redox cycling in addition to toxicity and biocompetitive exclusion. Sulfur isotope analyses further support sulfur cycling in the columns, even when sulfide is not detected. This study indicates that (per)chlorate show great promise as inhibitors of sulfidogenesis in natural communities and provides insight into which organisms and respiratory processes are involved. PMID:25071731

  14. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells.

    PubMed

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20-40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  15. Polysaccharide Isolated from Zizyphus jujuba (紅棗 Hóng Zǎo) Inhibits Interleukin-2 Production in Jurkat T Cells

    PubMed Central

    Hsu, Bo-Yang; Kuo, Yuh-Chi; Chen, Bing-Huei

    2014-01-01

    Zizyphus jujuba (紅棗 Hóng Zǎo), a traditional Chinese herb widely used in many Asian countries, has been shown to possess vital biological activities such as anti-cancer activity. The objective of this study was to evaluate the immunomodulatory effect of deproteinated polysaccharide (DP) isolated from Z. jujuba. The DP isolated from Z. jujuba consisted of two polysaccharide fractions and their molecular weights (MWs) were found to be 143,108 and 67,633 Da, respectively. The DP could significantly decrease interleukin (IL)-2 production in phytohemagglutinin (PHA)-activated Jurkat T cells in a dose-dependent manner after 48 h of incubation, with the inhibition being 47.5%, 61.2%, and 81.7% for DP concentrations of 0.75, 1.75, and 2.5 mg/ml, respectively. Thus, our study showed that DP isolated from Z. jujuba may possess anti-inflammatory activity as it could significantly reduce IL-2 production in activated Jurkat T cells. PMID:24860737

  16. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    PubMed Central

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  17. The in ovo conversion of oestrone to oestrone sulfate is rapid and subject to inhibition by Bisphenol A.

    PubMed

    Paitz, Ryan T; Bowden, Rachel M

    2015-04-01

    Vertebrate embryos develop in the presence of maternally derived steroids. While these steroids can influence development, embryonic enzymes are thought to buffer some steroid sensitive processes, such as gonadal differentiation, from the effects of maternal steroids. Many of these same enzymes may also buffer the embryo from chemicals present in the environment, but this may alter their capacity to metabolize maternal steroids. Here, we characterized the ability of red-eared slider (Trachemys scripta) embryos to metabolize oestrone immediately following oviposition and tested whether a prevalent environmental chemical, Bisphenol A (BPA), would affect the in ovo conversion of oestrone to oestrone sulfate. We found that tritiated oestrone applied at the time of oviposition is mostly converted to oestrone sulfate within 6 h. However, when BPA is present, that conversion is inhibited, resulting in elevated oestrone levels. Our finding of rapid in ovo metabolism of steroids suggests that maternally derived enzymes are present in the egg and can alter embryonic exposure to exogenous chemicals. The disruption of this metabolism by BPA demonstrates how environmental chemicals might change embryonic exposure to endogenous substances within the egg. Taken together, these findings highlight the dynamic nature of the early endocrine environment in developing vertebrates. PMID:25904318

  18. Peptide-derivatized dendrimers inhibit human cytomegalovirus infection by blocking virus binding to cell surface heparan sulfate.

    PubMed

    Luganini, Anna; Giuliani, Andrea; Pirri, Giovanna; Pizzuto, Lorena; Landolfo, Santo; Gribaudo, Giorgio

    2010-03-01

    Dendrimers are hyperbranched synthetic well-defined molecules with a number of potential applications, especially in relation to the need for new antiviral agents. One subclass of dendrimers are peptide-derivatized dendrimers which consist of a peptidyl branching core and covalently attached surface peptide functional units. Few studies have addressed the potential uses of peptide dendrimers as direct-acting antiviral agents. Here, we report on the ability of two peptide dendrimers, SB105 and SB105_A10, to directly and almost completely inhibit human cytomegalovirus (HCMV) replication in both primary fibroblasts and endothelial cells; the agents were also found to inhibit murine CMV replication, whereas they were not able to inhibit adenovirus or vesicular stomatitis virus. The peptide dendrimers prevented adsorption of the HCMV to cells at 4 degrees C, whereas SB104, a dendrimer with a different amino acid sequence within the functional group and minimal anticytomegaloviral activity, was ineffective in blocking HCMV attachment. In effect, SB105_A10 bound to human cells through an interaction with cell surface heparan sulfate and thereby blocked virion attachment to target cells. These results indicate that the SB105 and SB105_A10 dendrimers could provide a useful starting point for the development of novel molecules to block HCMV infection. PMID:20083141

  19. Purified polysaccharides of Geoffroea spinosa barks have anticoagulant and antithrombotic activities devoid of hemorrhagic risks.

    PubMed

    Souza, Racquel O S; Assreuy, Ana M S; Madeira, Juliana C; Chagas, Francisco D S; Parreiras, Luane A; Santos, Gustavo R C; Mourão, Paulo A S; Pereira, Maria G

    2015-06-25

    Polysaccharides were extracted from the barks of Geoffroea spinosa, purified using anion exchange chromatography and characterized by chemical and methylation analysis, complemented by infrared and NMR spectroscopies. These polysaccharides were tested for their anticoagulant, antithrombotic and antiplatelet activities and also for their effects on bleeding. Unfractionated polysaccharide contains low levels of protein and high levels of carbohydrate (including hexuronic acid). The purified polysaccharides (fractions FII and FIII) are composed of arabinose (Ara), rhamnose (Rha), hexuronic acid, small amounts of galactose, but no sulfate ester. They have highly complex structure, which was partially characterized. NMR and methylation analysis indicate that the polysaccharides have a core of α-Rhap and branches of 5-linked α-Araf. Residues of 4-linked α-GalpA are also found in the structure. The unfractionated (TPL) and fraction FIII, but not fractions FI and FII, prolonged the activated partial thromboplastin time (aPTT). TPL, FII and FIII inhibited the platelet aggregation induced by ADP. More significantly, both unfractionated and purified fractions exhibited potent antithrombotic effect (31-60%) and the fractions did not modify the bleeding tendency. These plant polysaccharides could be alternative source of new anticoagulant, antiplatelet and antithrombotic compounds devoid of the undesirable risk of hemorrhage. PMID:25839813

  20. An HPLC Method for Microanalysis and Pharmacokinetics of Marine Sulfated Polysaccharide PSS-Loaded Poly Lactic-co-Glycolic Acid (PLGA) Nanoparticles in Rat Plasma

    PubMed Central

    Li, Peng-Li; Li, Chun-Xia; Xue, Yi-Ting; Li, Hai-Hua; Liu, Hong-Bing; He, Xiao-Xi; Yu, Guang-Li; Guan, Hua-Shi

    2013-01-01

    This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS) in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted from rat plasma with d-glucuronic acid as internal standard. Isocratic chromatographic separation was performed on a TSKgel G2500 PWxL column with the mobile phase of 0.1 M sodium sulfate at a flow rate of 0.5 mL/min. Analyte detection was achieved by fluorescence detection (FLD) at 250 nm (excitation) and 435 nm (emission) using guanidine hydrochloride as postcolumn derivatizing reagent in an alkaline medium at 120 °C. The calibration curve was linear over a concentration range of 1–500 μg/mL, and the lower limit of detection (LLOD) was found to be 250 ng/mL. This validated method was applied successfully to the pharmacokinetic study of PSS and PSS-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (PSS-NP) in rat plasma after a single intravenous (PSS only) and oral administration (PSS and PSS-NP). Significant differences in the main pharmacokinetic parameters of PSS and PSS-NP were observed. The relative bioavailability of PSS-NP was 190.10% compared with PSS which shows that PSS-NP can improve oral bioavailability. PMID:23549283

  1. A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition

    PubMed Central

    Kuo, Ping-Hsueh; Chang, Pei-Lin; Wang, Wen-Ching; Chuang, Yung-Jen; Chang, Margaret Dah-Tsyr

    2015-01-01

    As heparan sulfate proteoglycans (HSPGs) are known as co-receptors to interact with numerous growth factors and then modulate downstream biological activities, overexpression of HS/HSPG on cell surface acts as an increasingly reliable prognostic factor in tumor progression. Cell penetrating peptides (CPPs) are short-chain peptides developed as functionalized vectors for delivery approaches of impermeable agents. On cell surface negatively charged HS provides the initial attachment of basic CPPs by electrostatic interaction, leading to multiple cellular effects. Here a functional peptide (CPPecp) has been identified from critical HS binding region in hRNase3, a unique RNase family member with in vitro antitumor activity. In this study we analyze a set of HS-binding CPPs derived from natural proteins including CPPecp. In addition to cellular binding and internalization, CPPecp demonstrated multiple functions including strong binding activity to tumor cell surface with higher HS expression, significant inhibitory effects on cancer cell migration, and suppression of angiogenesis in vitro and in vivo. Moreover, different from conventional highly basic CPPs, CPPecp facilitated magnetic nanoparticle to selectively target tumor site in vivo. Therefore, CPPecp could engage its capacity to be developed as biomaterials for diagnostic imaging agent, therapeutic supplement, or functionalized vector for drug delivery. PMID:26064887

  2. Functional polysaccharides from Grifola frondosa aqueous extract inhibit atopic dermatitis-like skin lesions in NC/Nga mice.

    PubMed

    Park, Hyeon Soo; Hwang, Yong Hyeon; Kim, Mun Ki; Hong, Gyeong Eun; Lee, Ho Jeong; Nagappan, Arulkumar; Yumnam, Silvia; Kim, Eun Hee; Heo, Jeong Doo; Lee, Sang Joon; Won, Chung Kil; Kim, Gon Sup

    2015-01-01

    Grifola frondosa (GF), distributed widely in far east Asia including Korea, is popularly used as traditional medicines and health supplementary foods, especially for enhancing the immune functions of the body. To extend the application of GF polysaccharides (GFP) for atopic dermatitis (AD), we investigated the effects of GFP on the 2,4-dinitrochlorobenzene-induced AD-like skin lesion in NC/Nga mice. GFP treatment significantly reduced the dorsa skin dermatitis score and combination treatment with GFP, and dexamethasone has a synergistic effect in AD-like skin lesion by reduced Serum IgE, mast cells infiltration, and cytokines expression. These results indicate that GFP suppressed the AD-like skin lesions by controlling the Th-1/Th-2-type cytokines in NC/Nga mice. These findings strongly suggest that GFP can be useful for AD patients as a novel therapeutic agent and might be used for corticosteroids replacement or supplement agent. PMID:25248662

  3. Astragalus polysaccharide enhances immunity and inhibits H9N2 avian influenza virus in vitro and in vivo

    PubMed Central

    2013-01-01

    This study investigated the humoral immunization of Astragalus polysaccharide (APS) against H9N2 avian influenza virus (H9N2 AIV) infection in chickens. The effects of APS treatment on H9N2 infection was evaluated by an MTT [3(4, 5-dimethylthiazol-2-yl)-2, 3-diphenyl tetrazolium bromide] assay and analysis of MHC and cytokine mRNA expression. The effect on lymphocyte and serum antibody titers in vivo was also investigated. IL-4, IL-6, IL-10, LITAF, IL-12 and antibody titers to H9N2 AIV were enhanced in the first week after APS treatment. The results indicated that APS treatment reduces H9N2 AIV replication and promotes early humoral immune responses in young chickens. PMID:23786718

  4. Free radical scavenging and immunomodulatory activities of Ganoderma lucidum polysaccharides derivatives.

    PubMed

    Wang, Jianguo; Wang, Yutang; Liu, Xuebo; Yuan, Yahong; Yue, Tianli

    2013-01-01

    Polysaccharides extracted from the fruit body of Ganoderma lucidum were sulfated and carboxymethylated as reported. Free radical scavenging and immunomodulatory effects of sulfated and carboxymethylated polysaccharides were studied. Generally, sulfated polysaccharides showed better bioactivities than that of carboxymethylated polysaccharides. The two derivatives were injected intraperitoneally with or without 5-fluorouracil over a period of 7 days in BALB/c female mice. The polysaccharide derivatives increased mouse thymus and spleen index, an indication of improved immunity in mice. At the same time, they improved superoxide dismutase and glutathione peroxidase contents in the mice body. PMID:23044102

  5. Inhibition of Human Respiratory Syncytial Virus Infectivity by a Dendrimeric Heparan Sulfate-Binding Peptide

    PubMed Central

    Donalisio, Manuela; Rusnati, Marco; Cagno, Valeria; Civra, Andrea; Bugatti, Antonella; Giuliani, Andrea; Pirri, Giovanna; Volante, Marco; Papotti, Mauro; Landolfo, Santo

    2012-01-01

    Respiratory syncytial virus (RSV) interacts with cell surface heparan sulfate proteoglycans (HSPGs) to initiate infection. The interaction of RSV with HSPGs thus presents an attractive target for the development of novel inhibitors of RSV infection. In the present study, a minilibrary of linear, dimeric, and dendrimeric peptides containing clusters of basic amino acids was screened with the aim of identifying peptides able to bind HSPGs and thus block RSV attachment and infectivity. Of the compounds identified, the dendrimer SB105-A10 was the most potent inhibitor of RSV infectivity, with 50% inhibitory concentrations (IC50s) of 0.35 ?M and 0.25 ?M measured in Hep-2 and A549 cells, respectively. SB105-A10 was found to bind to both cell types via HSPGs, suggesting that its antiviral activity is indeed exerted by competing with RSV for binding to cell surface HSPGs. SB105-A10 prevented RSV infection when added before the viral inoculum, in line with its proposed HSPG-binding mechanism of action; moreover, antiviral activity was also exhibited when SB105-A10 was added postinfection, as it was able to reduce the cell-to-cell spread of the virus. The antiviral potential of SB105-A10 was further assessed using human-derived tracheal/bronchial epithelial cells cultured to form a pseudostratified, highly differentiated model of the epithelial tissue of the human respiratory tract. SB105-A10 strongly reduced RSV infectivity in this model and exhibited no signs of cytotoxicity or proinflammatory effects. Together, these features render SB105-A10 an attractive candidate for further development as a RSV inhibitor to be administered by aerosol delivery. PMID:22850525

  6. Inhibition of in vitro adhesion and virulence of Porphyromonas gingivalis by aqueous extract and polysaccharides from Rhododendron ferrugineum L. A new way for prophylaxis of periodontitis?

    PubMed

    Löhr, G; Beikler, T; Hensel, A

    2015-12-01

    The effect of an aqueous extract from the leaves of Rhododendron ferrugineum (RF) was investigated for its capacity of inhibiting the adhesion of Porphyromonas gingivalis cells to epithelial buccal KB cells. RF was characterized by HPLC (12.1% taxifolin-3-O-β-l-arabinopyranoside, 1.6% hyperoside, 0.9% isoquercitrin, 1.6% chlorogenic acid and a tannin content of 8.7%). Additionally raw polysaccharides (RPS) were obtained from the leaves of R. ferrugineum by aqueous extraction. RF and RPS interacted in a dose-dependent manner (max. 25% reduction at 1mg/ml each) with the adhesion of P. gingivalis by influencing bacterial outer membrane proteins. On protein level a time- and concentration-dependent inhibition of Arg-gingipain activity by RF was observed, while the Lys-gingipain activity remained unaltered. In addition, RF and RPS inhibited the bacterial hemagglutinin. RF affected the P. gingivalis adhesion also by interacting with KB cells in pre-incubation assays of the eukaryotic host cells, leading to reduced bacterial adhesion of about 75%. Gene expression analysis by RT-PCR indicated significant downregulation for arginine-specific gingipain rgpA by RF, while lysin-specific gingipain kgp and fimbrillinA fimA were strongly upregulated. Moreover, pre-incubation with RF abolished the P. gingivalis induced expression of IL-1β, IL-6, IL-8 and TNFα in KB cells. Results of this study indicate that an aqueous extract from R. ferrugineum combines cytoprotective and antimicrobial effects by both downregulating the expression of pro-inflammatory genes and inhibiting the adhesion of P. gingivalis. Thus RF may be potential candidate for the development of an adjunctive antimicrobial approach in the prevention of periodontal diseases. PMID:26522852

  7. Scutellaria barbata D. Don polysaccharides inhibit the growth of Calu-3 xenograft tumors via suppression of the HER2 pathway and angiogenesis

    PubMed Central

    YANG, JUNFENG; YANG, GUANGYU; HOU, GUANGJIE; LIU, QINGFENG; HU, WEICAI; ZHAO, PU; HE, YI

    2015-01-01

    Scutellaria barbata D. Don, a perennial herb belonging to the family Lamiaceae, is widely distributed throughout China and the Republic of Korea, and has been traditionally used in folk medicine as an antitumor and anti-inflammatory agent. Polysaccharides isolated from Scutellaria barbata D. Don (PSB), have been reported to possess antitumor effects. However, the detailed antitumor mechanisms behind the effects of PSB remain unclear. In the present study, a non-small cell lung cancer cell line harboring the HER2 gene mutation Calu-3, the Calu-3 cell line, was used to investigate the underlying mechanisms of the antitumor effects of PSB. The results revealed that PSB potently inhibited cell proliferation and human epidermal growth factor receptor (HER)2 phosphorylation in vitro, and also downregulated the expression of the downstream signaling molecules, including phosphorylated (phospho-)Akt and phospho-extracellular signal-related kinase. In vivo, PSB demonstrated efficacy at well-tolerated doses, including significant antitumor activity in a Calu-3 subcutaneous xenograft model. Immunohistochemistry (IHC) analysis revealed a PSB dose-dependent reduction of microvessel density, demonstrated by cluster of differentiation 31 staining. The present findings suggest that inhibition of tumor angiogenesis via suppression of the HER2 pathway may be one of the mechanisms by which PSB can be effective in the treatment of cancers. PMID:26137135

  8. A polysaccharide from Glycyrrhiza inflata Licorice inhibits proliferation of human oral cancer cells by inducing apoptosis via mitochondrial pathway.

    PubMed

    Shen, Huan; Zeng, Guang; Sun, Bin; Cai, Xingwei; Bi, Lixia; Tang, Guo; Yang, Yongjin

    2015-06-01

    In the present study, we isolated and characterized a water-soluble polysaccharide (GIP1) from the roots of Glycyrrhiza inflata. The goal of this study was to investigate the anti-tumor effect of GIP1 on the human oral cancer SCC-25 cell line and to explore the possible mechanism. Our experimental result showed that GIP1 (50, 100, and 200 μg/mL) specifically decreased cell viability of SCC-25 cells in a concentration-dependent manner via the induction of apoptosis. Furthermore, Western blot analysis showed that exposure of SCC-25 cells to GIP1 led to down-regulation of anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax, thus causing a loss of mitochondrial membrane potential and the release of cytochrome c to the cytosol. Moreover, we observed activation of the initiator caspaes-9, and the effector caspases-3, but not caspase-8. Concomitantly, GIP1-induced apoptosis can be blocked by caspase-3- or caspase-9-specific inhibitor, but not caspase-8 inhibitor. As well, the cleaved poly (ADP-ribose) polymerase, as a caspae-3 substrate, occurred in SCC-25 cells following GIP1 treatment at three concentrations. Collectively, our results showed that the GIP1 induced apoptosis in SCC-25 cells involving a caspase-dependent mitochondrial signaling pathway. PMID:25663459

  9. Composition and anti-inflammatory effect of polysaccharides from Sargassum horneri in RAW264.7 macrophages.

    PubMed

    Wen, Zheng-Shun; Xiang, Xing-Wei; Jin, Huo-Xi; Guo, Xiang-Yang; Liu, Li-Jia; Huang, Yan-Na; OuYang, Xiao-Kun; Qu, You-Le

    2016-07-01

    Sulfated polysaccharides extracted from brown marine algae have been shown to possess a variety of biological activities. We assessed the potential activity of the sulfated polysaccharide from Sargassum horneri (SP) and its isolated two major components (fraction-1 (F1) and fraction-2 (F2)), on anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. In the present study, analysis of polysaccharide chemical composition found that the constituent ratios of sulfate ester and fucose in SP and F1 were 4.95% vs 7.6%, and 4.48% vs 55.9%, respectively, suggesting that F1 may be a major sulfated polysaccharide containing fucose. Meanwhile, our findings demonstrated that TNF-α secretion levels were significantly (P<0.05) decreased by SP and F1 treatments in LPS-stimulated RAW264.7 cells in a dose-dependent manner under the preventive and repair experimental models. Pro-/anti-inflammatory (TNF-α/IL-10) cytokines secretion ratios by LPS-stimulated RAW264.7 macrophages were significantly (P<0.05) inhibited by SP and F1 treatments, particularly by F1 (at high dose, 200μg/ml). Moreover, NO release and iNOS activity were significantly (P<0.05) inhibited by F1. Collectively, the present study suggested that purified component, F1 from SP, had strong anti-inflammatory effects on LPS-stimulated RAW264.7 macrophages in the preventive and repair manner through inhibiting TNF-α secretion levels and NO release. PMID:26879911

  10. Glucosamine sulfate

    MedlinePlus

    ... Glucosamine Sulphate KCl, Glucosamine-6-Phosphate, GS, Mono-Sulfated Saccharide, Poly-(1->3)-N-Acetyl-2-Amino- ... Sulfate de Glucosamine, Sulfate de Glucosamine 2KCl, SG, Sulfated Monosaccharide, Sulfated Saccharide, Sulfato de Glucosamina. Glucosamine Hydrochloride ...

  11. Peptide 19-2.5 inhibits heparan sulfate-triggered inflammation in murine cardiomyocytes stimulated with human sepsis serum.

    PubMed

    Martin, Lukas; Schmitz, Susanne; De Santis, Rebecca; Doemming, Sabine; Haase, Hajo; Hoeger, Janine; Heinbockel, Lena; Brandenburg, Klaus; Marx, Gernot; Schuerholz, Tobias

    2015-01-01

    Myocardial dysfunction in sepsis has been linked to inflammation caused by pathogen-associated molecular patterns (PAMPs) as well as by host danger-associated molecular patterns (DAMPs). These include soluble heparan sulfate (HS), which triggers the devastating consequences of the pro-inflammatory cascades in severe sepsis and septic shock. Thus, there is increasing interest in the development of anti-infective agents, with effectiveness against both PAMPs and DAMPs. We hypothesized that a synthetic antimicrobial peptide (peptide 19-2.5) inhibits inflammatory response in murine cardiomyocytes (HL-1 cells) stimulated with PAMPs, DAMPs or serum from patients with septic shock by reduction and/or neutralization of soluble HS. In the current study, our data indicate that the treatment with peptide 19-2.5 decreases the inflammatory response in HL-1 cells stimulated with either PAMPs or DAMPs. Furthermore, our work shows that soluble HS in serum from patients with Gram-negative or Gram-positive septic shock induces a strong pro-inflammatory response in HL-1 cells, which can be effectively blocked by peptide 19-2.5. Based on these findings, peptide 19-2.5 is a novel anti-inflammatory agent interacting with both PAMPs and DAMPs, suggesting peptide 19-2.5 may have the potential for further development as a broad-spectrum anti-inflammatory agent in sepsis-induced myocardial inflammation and dysfunction. PMID:26024383

  12. Peptide 19-2.5 Inhibits Heparan Sulfate-Triggered Inflammation in Murine Cardiomyocytes Stimulated with Human Sepsis Serum

    PubMed Central

    Martin, Lukas; Schmitz, Susanne; De Santis, Rebecca; Doemming, Sabine; Haase, Hajo; Hoeger, Janine; Heinbockel, Lena; Brandenburg, Klaus; Marx, Gernot; Schuerholz, Tobias

    2015-01-01

    Myocardial dysfunction in sepsis has been linked to inflammation caused by pathogen-associated molecular patterns (PAMPs) as well as by host danger-associated molecular patterns (DAMPs). These include soluble heparan sulfate (HS), which triggers the devastating consequences of the pro-inflammatory cascades in severe sepsis and septic shock. Thus, there is increasing interest in the development of anti-infective agents, with effectiveness against both PAMPs and DAMPs. We hypothesized that a synthetic antimicrobial peptide (peptide 19-2.5) inhibits inflammatory response in murine cardiomyocytes (HL-1 cells) stimulated with PAMPs, DAMPs or serum from patients with septic shock by reduction and/or neutralization of soluble HS. In the current study, our data indicate that the treatment with peptide 19-2.5 decreases the inflammatory response in HL-1 cells stimulated with either PAMPs or DAMPs. Furthermore, our work shows that soluble HS in serum from patients with Gram-negative or Gram-positive septic shock induces a strong pro-inflammatory response in HL-1 cells, which can be effectively blocked by peptide 19-2.5. Based on these findings, peptide 19-2.5 is a novel anti-inflammatory agent interacting with both PAMPs and DAMPs, suggesting peptide 19-2.5 may have the potential for further development as a broad-spectrum anti-inflammatory agent in sepsis-induced myocardial inflammation and dysfunction. PMID:26024383

  13. Strawberry phytochemicals inhibit azoxymethane/dextran sodium sulfate-induced colorectal carcinogenesis in Crj: CD-1 mice.

    PubMed

    Shi, Ni; Clinton, Steven K; Liu, Zhihua; Wang, Yongquan; Riedl, Kenneth M; Schwartz, Steven J; Zhang, Xiaoli; Pan, Zui; Chen, Tong

    2015-03-01

    Human and experimental colon carcinogenesis are enhanced by a pro-inflammatory microenvironment. Pharmacologically driven chemopreventive agents and dietary variables are hypothesized to have future roles in the prevention of colon cancer by targeting these processes. The current study was designed to determine the ability of dietary lyophilized strawberries to inhibit inflammation-promoted colon carcinogenesis in a preclinical animal model. Mice were given a single i.p. injection of azoxymethane (10 mg kg-1 body weight). One week after injection, mice were administered 2% (w/v) dextran sodium sulfate in drinking water for seven days and then an experimental diet containing chemically characterized lyophilized strawberries for the duration of the bioassay. Mice fed control diet, or experimental diet containing 2.5%, 5.0% or 10.0% strawberries displayed tumor incidence of 100%, 64%, 75% and 44%, respectively (p < 0.05). The mechanistic studies demonstrate that strawberries reduced expression of proinflammatory mediators, suppressed nitrosative stress and decreased phosphorylation of phosphatidylinositol 3-kinase, Akt, extracellular signal-regulated kinase and nuclear factor kappa B. In conclusion, strawberries target proinflammatory mediators and oncogenic signaling for the preventive efficacies against colon carcinogenesis in mice. This works supports future development of fully characterized and precisely controlled functional foods for testing in human clinical trials for this disease. PMID:25763529

  14. Inhibition of vasoactive intestinal polypeptide (VIP) induces resistance to dextran sodium sulfate (DSS)-induced colitis in mice.

    PubMed

    Vu, John P; Million, Mulugeta; Larauche, Muriel; Luong, Leon; Norris, Joshua; Waschek, James A; Pothoulakis, Charalabos; Pisegna, Joseph R; Germano, Patrizia M

    2014-01-01

    VIP is highly expressed in the colon and regulates motility, vasodilatation, and sphincter relaxation. However, its role in the development and progress of colitis is still controversial. Our aim was to determine the participation of VIP on dextran sodium sulfate (DSS)-induced colonic mucosal inflammation using VIP(-/-) and WT mice treated with VIP antagonists. Colitis was induced in 32 adult VIP(-/-) and 14 age-matched WT litter-mates by giving 2.5 % DSS in the drinking water. DSS-treated WT mice were injected daily with VIP antagonists, VIPHyb (n?=?22), PG 97-269 (n?=?9), or vehicle (n?=?31). After euthanasia, colons were examined; colonic cytokines mRNA were quantified. VIP(-/-) mice were remarkably resistant to DSS-induced colitis compared to WT. Similarly, DSS-treated WT mice injected with VIPHyb (1 ?M) or PG 97-269 (1 nM) had significantly reduced clinical signs of colitis. Furthermore, colonic expression of IL-1?, TNF-?, and IL-6 was significantly lower in VIP(-/-) and VIPHyb or PG 97-269 compared to vehicle-treated WT. Genetic deletion of VIP or pharmacological inhibition of VIP receptors resulted in resistance to colitis. These data demonstrate a pro-inflammatory role for VIP in murine colitis and suggest that VIP antagonists may be an effective clinical treatment for human inflammatory bowel diseases. PMID:24395090

  15. Strawberry Phytochemicals Inhibit Azoxymethane/Dextran Sodium Sulfate-Induced Colorectal Carcinogenesis in Crj: CD-1 Mice

    PubMed Central

    Shi, Ni; Clinton, Steven K.; Liu, Zhihua; Wang, Yongquan; Riedl, Kenneth M.; Schwartz, Steven J.; Zhang, Xiaoli; Pan, Zui; Chen, Tong

    2015-01-01

    Human and experimental colon carcinogenesis are enhanced by a pro-inflammatory microenvironment. Pharmacologically driven chemopreventive agents and dietary variables are hypothesized to have future roles in the prevention of colon cancer by targeting these processes. The current study was designed to determine the ability of dietary lyophilized strawberries to inhibit inflammation-promoted colon carcinogenesis in a preclinical animal model. Mice were given a single i.p. injection of azoxymethane (10 mg kg−1 body weight). One week after injection, mice were administered 2% (w/v) dextran sodium sulfate in drinking water for seven days and then an experimental diet containing chemically characterized lyophilized strawberries for the duration of the bioassay. Mice fed control diet, or experimental diet containing 2.5%, 5.0% or 10.0% strawberries displayed tumor incidence of 100%, 64%, 75% and 44%, respectively (p < 0.05). The mechanistic studies demonstrate that strawberries reduced expression of proinflammatory mediators, suppressed nitrosative stress and decreased phosphorylation of phosphatidylinositol 3-kinase, Akt, extracellular signal-regulated kinase and nuclear factor kappa B. In conclusion, strawberries target proinflammatory mediators and oncogenic signaling for the preventive efficacies against colon carcinogenesis in mice. This works supports future development of fully characterized and precisely controlled functional foods for testing in human clinical trials for this disease. PMID:25763529

  16. The Predominant Molecular State of Bound Enzyme Determines the Strength and Type of Product Inhibition in the Hydrolysis of Recalcitrant Polysaccharides by Processive Enzymes*

    PubMed Central

    Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit

    2015-01-01

    Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the 14C-labeled crystalline polymeric substrates 14C chitin nanowhiskers and 14C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki(obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki(obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation. PMID:25767120

  17. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes.

    PubMed

    Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit

    2015-05-01

    Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the (14)C-labeled crystalline polymeric substrates (14)C chitin nanowhiskers and (14)C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki (obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki (obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation. PMID:25767120

  18. Chemical structure and anticoagulant activity of highly pyruvylated sulfated galactans from tropical green seaweeds of the order Bryopsidales.

    PubMed

    Arata, Paula X; Quintana, Irene; Canelón, Dilsia J; Vera, Beatriz E; Compagnone, Reinaldo S; Ciancia, Marina

    2015-05-20

    Sulfated and pyruvylated galactans were isolated from three tropical species of the Bryopsidales, Penicillus capitatus, Udotea flabellum, and Halimeda opuntia. They represent the only important sulfated polysaccharides present in the cell walls of these highly calcified seaweeds of the suborder Halimedineae. Their structural features were studied by chemical analyses and NMR spectroscopy. Their backbone comprises 3-, 6-, and 3,6-linkages, constituted by major amounts of 3-linked 4,6-O-(1'-carboxy)ethylidene-d-galactopyranose units in part sulfated on C-2. Sulfation on C-2 was not found in galactans from other seaweeds of this order. In addition, a complex sulfation pattern, comprising also 4-, 6-, and 4,6-disulfated galactose units was found. A fraction from P. capitatus, F1, showed a moderate anticoagulant activity, evaluated by general coagulation tests and also kinetics of fibrin formation was assayed. Besides, preliminary results suggest that one of the possible mechanisms involved is direct thrombin inhibition. PMID:25817682

  19. Sulphated Polysaccharides from Ulva clathrata and Cladosiphon okamuranus Seaweeds both Inhibit Viral Attachment/Entry and Cell-Cell Fusion, in NDV Infection

    PubMed Central

    Aguilar-Briseño, José Alberto; Cruz-Suarez, Lucia Elizabeth; Sassi, Jean-François; Ricque-Marie, Denis; Zapata-Benavides, Pablo; Mendoza-Gamboa, Edgar; Rodríguez-Padilla, Cristina; Trejo-Avila, Laura María

    2015-01-01

    Sulphated polysaccharides (SP) extracted from seaweeds have antiviral properties and are much less cytotoxic than conventional drugs, but little is known about their mode of action. Combination antiviral chemotherapy may offer advantages over single agent therapy, increasing efficiency, potency and delaying the emergence of resistant virus. The paramyxoviridae family includes pathogens causing morbidity and mortality worldwide in humans and animals, such as the Newcastle Disease Virus (NDV) in poultry. This study aims at determining the antiviral activity and mechanism of action in vitro of an ulvan (SP from the green seaweed Ulva clathrata), and of its mixture with a fucoidan (SP from Cladosiphon okamuranus), against La Sota NDV strain. The ulvan antiviral activity was tested using syncytia formation, exhibiting an IC50 of 0.1 μg/mL; ulvan had a better anti cell-cell spread effect than that previously shown for fucoidan, and inhibited cell-cell fusion via a direct effect on the F0 protein, but did not show any virucidal effect. The mixture of ulvan and fucoidan showed a greater anti-spread effect than SPs alone, but ulvan antagonizes the effect of fucoidan on the viral attachment/entry. Both SPs may be promising antivirals against paramyxovirus infection but their mixture has no clear synergistic advantage. PMID:25629385

  20. Doxorubicin-loaded polysaccharide nanoparticles suppress the growth of murine colorectal carcinoma and inhibit the metastasis of murine mammary carcinoma in rodent models.

    PubMed

    Li, Mingqiang; Tang, Zhaohui; Zhang, Dawei; Sun, Hai; Liu, Huaiyu; Zhang, Ying; Zhang, Yuanyuan; Chen, Xuesi

    2015-05-01

    As a synergistic drug combination, doxorubicin-loaded cisplatin crosslinked polysaccharide-based nanoparticles (Dex-SA-DOX-CDDP) have demonstrated enhanced antitumor efficacy and reduced systemic toxicity via optimized biodistribution, controlled drug release, prolonged blood circulation, and improved tolerability, compared to the non-crosslinked nanoparticles or free doxorubicin. Herein, we apply the Dex-SA-DOX-CDDP nanoparticles as an efficient antitumor agent to treat colorectal and breast tumors in three different in vivo models, i.e. subcutaneously implanted colorectal carcinoma, dimethylhydrazine-induced autochthonous colorectal carcinoma, and metastatic mammary carcinoma, which more closely simulate the natural milieu of the original tumor with intact pathological and immunological responses. Based on the properties of this combination in higher tumor accumulation and penetrating efficiency, the Dex-SA-DOX-CDDP nanoparticles significantly decreased the tumor sizes in CT26 cell line xenograft tumors compared to control. In addition, the affected animals' lifespan was significantly extended after the Dex-SA-DOX-CDDP treatment, in the autochthonous colon cancer model. Moreover, with the aid of iRGD, Dex-SA-DOX-CDDP could effectively block primary tumor growth and prevent the metastasis of 4T1 murine mammary carcinoma. In conclusion, Dex-SA-DOX-CDDP nanoparticles remarkably inhibit growth of colorectal carcinoma and metastasis of mammary carcinoma in vivo, which provides potential application as a safe and efficient antitumor agent in treatment of these cancers. PMID:25771007

  1. In vivo immunomodulatory effects of Antrodia camphorata polysaccharides in a T1/T2 doubly transgenic mouse model for inhibiting infection of Schistosoma mansoni

    SciTech Connect

    Cheng, P.-C.; Hsu, C.-Y.; Chen, C.-C.; Lee, K.-M.

    2008-03-01

    Antrodia camphorata (A. camphorata) is a fungus commonly used for treatment of viral hepatitis and cancer in Chinese folk medicine. Extract of A. camphorate is reported to possess anti-inflammatory, antihepatitis B virus and anticancer activities. In this study, we tested the in vivo effects of polysaccharides derived from A. camphorata (AC-PS) on immune function by detection of cytokine expression and evaluation of the immune phenotype in a T1/T2 doubly transgenic mouse model. The protective effect of AC-PS in mice was tested by infection with Schistosoma mansoni. The induction of large amounts of IFN-{gamma}, IL-2 and TNF-a mRNA were detected after 2 and 4 weeks of oral AC-PS administration in BALB/c and C57BL/6 mice. In transgenic mice, 3 to 6 weeks of oral AC-PS administration increased the proportion of CD4{sup +} T cells and B cells within the spleen. More specifically, there was an increase of Th1 CD4{sup +} T cells and Be1 cells among spleen cells as observed by detection the of Type1/Type2 marker molecules. By using a disease model of parasitic infection, we found that AC-PS treatment inhibited infection with S. mansoni in BALB/C and C57BL/6 mice. AC-PS appears to influence the immune system of mice into developing Th1 responses and have potential for preventing infection with S. mansoni.

  2. Sulphated polysaccharides from Ulva clathrata and Cladosiphon okamuranus seaweeds both inhibit viral attachment/entry and cell-cell fusion, in NDV infection.

    PubMed

    Aguilar-Briseño, José Alberto; Cruz-Suarez, Lucia Elizabeth; Sassi, Jean-François; Ricque-Marie, Denis; Zapata-Benavides, Pablo; Mendoza-Gamboa, Edgar; Rodríguez-Padilla, Cristina; Trejo-Avila, Laura María

    2015-02-01

    Sulphated polysaccharides (SP) extracted from seaweeds have antiviral properties and are much less cytotoxic than conventional drugs, but little is known about their mode of action. Combination antiviral chemotherapy may offer advantages over single agent therapy, increasing efficiency, potency and delaying the emergence of resistant virus. The paramyxoviridae family includes pathogens causing morbidity and mortality worldwide in humans and animals, such as the Newcastle Disease Virus (NDV) in poultry. This study aims at determining the antiviral activity and mechanism of action in vitro of an ulvan (SP from the green seaweed Ulva clathrata), and of its mixture with a fucoidan (SP from Cladosiphon okamuranus), against La Sota NDV strain. The ulvan antiviral activity was tested using syncytia formation, exhibiting an IC50 of 0.1 μg/mL; ulvan had a better anti cell-cell spread effect than that previously shown for fucoidan, and inhibited cell-cell fusion via a direct effect on the F0 protein, but did not show any virucidal effect. The mixture of ulvan and fucoidan showed a greater anti-spread effect than SPs alone, but ulvan antagonizes the effect of fucoidan on the viral attachment/entry. Both SPs may be promising antivirals against paramyxovirus infection but their mixture has no clear synergistic advantage. PMID:25629385

  3. Avidity of the Immunoglobulin G Response to a Neisseria meningitidis Group C Polysaccharide Conjugate Vaccine as Measured by Inhibition and Chaotropic Enzyme-Linked Immunosorbent Assays▿

    PubMed Central

    Harris, Shannon L.; Tsao, How; Ashton, Lindsey; Goldblatt, David; Fernsten, Philip

    2007-01-01

    Antibody avidity, the strength of the multivalent interaction between antibodies and their antigens, is an important characteristic of protective immune responses. We have developed an inhibition enzyme-linked immunosorbent assay (ELISA) to measure antibody avidity for the capsular polysaccharide (PS) of Neisseria meningitidis group C (MnC) and determined the avidity constants (KDs) for 100 sera from children immunized with an MnC PS conjugate vaccine. The avidity constants were compared to the avidity indices (AI) obtained for the same sera using a chaotropic ELISA protocol. After the primary immunization series, the geometric mean (GM) KD was 674 nM and did not change in the months following immunization. However, the GM avidity did increase after the booster dose (GM KD, 414 nM 1 month after booster immunization). In contrast, the GM AI increased from an initial value of 118 after the primary immunization series to 147 6 months after the completion of the primary immunization series and then further increased to 178 after booster immunization. At the individual subject level, the avidity constant and AI correlated after the primary immunization series and after booster immunization but not prior to boosting. This work suggests that the AI, as measured by the chaotropic ELISA, in contrast to the KD, reflects changes that render antibody populations less susceptible to disruption by chaotropic agents without directly affecting the strength of the binding interactions. PMID:17287312

  4. Chondroitin Sulfate Is Indispensable for Pluripotency and Differentiation of Mouse Embryonic Stem Cells

    NASA Astrophysics Data System (ADS)

    Izumikawa, Tomomi; Sato, Ban; Kitagawa, Hiroshi

    2014-01-01

    Chondroitin sulfate (CS) proteoglycans are present on the surfaces of virtually all cells and in the extracellular matrix and are required for cytokinesis at early developmental stages. Studies have shown that heparan sulfate (HS) is essential for maintaining mouse embryonic stem cells (ESCs) that are primed for differentiation, whereas the function of CS has not yet been elucidated. To clarify the role of CS, we generated glucuronyltransferase-I-knockout ESCs lacking CS. We found that CS was required to maintain the pluripotency of ESCs and promoted initial ESC commitment to differentiation compared with HS. In addition, CS-A and CS-E polysaccharides, but not CS-C polysaccharides, bound to E-cadherin and enhanced ESC differentiation. Multiple-lineage differentiation was inhibited in chondroitinase ABC-digested wild-type ESCs. Collectively, these results suggest that CS is a novel determinant in controlling the functional integrity of ESCs via binding to E-cadherin.

  5. Chondroitin Sulfate Is Indispensable for Pluripotency and Differentiation of Mouse Embryonic Stem Cells

    PubMed Central

    Izumikawa, Tomomi; Sato, Ban; Kitagawa, Hiroshi

    2014-01-01

    Chondroitin sulfate (CS) proteoglycans are present on the surfaces of virtually all cells and in the extracellular matrix and are required for cytokinesis at early developmental stages. Studies have shown that heparan sulfate (HS) is essential for maintaining mouse embryonic stem cells (ESCs) that are primed for differentiation, whereas the function of CS has not yet been elucidated. To clarify the role of CS, we generated glucuronyltransferase-I-knockout ESCs lacking CS. We found that CS was required to maintain the pluripotency of ESCs and promoted initial ESC commitment to differentiation compared with HS. In addition, CS-A and CS-E polysaccharides, but not CS-C polysaccharides, bound to E-cadherin and enhanced ESC differentiation. Multiple-lineage differentiation was inhibited in chondroitinase ABC-digested wild-type ESCs. Collectively, these results suggest that CS is a novel determinant in controlling the functional integrity of ESCs via binding to E-cadherin. PMID:24424429

  6. Polysaccharide Degradation

    NASA Astrophysics Data System (ADS)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  7. Proteoglycans synthesized by cultured bovine aortic smooth muscle cells after exposure to lead: lead selectively inhibits the synthesis of versican, a large chondroitin sulfate proteoglycan.

    PubMed

    Fujiwara, Y; Yamamoto, C; Kaji, T

    2000-11-23

    To investigate the effects of lead on the formation of extracellular matrix in the vascular wall, we characterized proteoglycans synthesized by cultured vascular smooth muscle cells after exposure to the metal by biochemical techniques. Confluent cultures of bovine aortic smooth muscle cells were metabolically labeled with [(35)S]sulfate or [(35)S]methionine/cysteine in the presence of lead nitrate. The amount of glycosaminoglycans (GAGs) was evaluated by the incorporation of [(35)S]sulfate into GAGs by the cetylpyridinium chloride precipitation method. The labeled proteoglycans were characterized by DEAE-Sephacel ion exchange chromatography and Sepharose CL-2B molecular sieve chromatography. The GAG M(r) and composition were analyzed by Sepharose CL-6B chromatography, and the core protein M(r) was analyzed by SDS-polyacrylamide gel electrophoresis, before and after digestion with papain or chondroitin ABC lyase. Lead significantly decreased the [(35)S]sulfate incorporation into GAGs accumulated in the cell layer and the conditioned medium. [(35)S]Sulfate-labeled proteoglycans obtained from the cell layer and the conditioned medium were separated into three peaks on DEAE-Sephacel chromatography and only the peak with the highest charge density was decreased by lead. The highly charged peak was eluted near the void volume on Sepharose CL-2B molecular sieve chromatography and sensitive to chondroitin ABC lyase on Sepharose CL-6B chromatography, indicating that lead selectively inhibits the synthesis of large and highly charged chondroitin/dermatan sulfate proteoglycans (CS/DSPGs). However, the size of chondroitin/dermatan sulfate chains of the CS/DSPGs was M(r) approximately 47000 in both the control and lead-treated cultures. On the other hand, lead decreased the accumulation of a large CS/DSPG with a core protein of approximately 450 kDa in the cell layer and the conditioned medium; the core protein was identified as versican core by Western blot analysis. It is therefore suggested that lead inhibits the synthesis of the versican core protein in vascular smooth muscle cells without a change in length of chondroitin/dermatan sulfate side chains. As a result, versican-poor extracellular matrix would be induced by lead in vascular smooth muscle cells. PMID:11118666

  8. The potent activity of sulfated polysaccharide, ascophyllan, isolated from Ascophyllum nodosum to induce nitric oxide and cytokine production from mouse macrophage RAW264.7 cells: Comparison between ascophyllan and fucoidan.

    PubMed

    Jiang, Zedong; Okimura, Takasi; Yamaguchi, Kenichi; Oda, Tatsuya

    2011-11-30

    Ascophyllan isolated from the brown alga Ascophyllum nodosum is a fucose-containing sulfated polysaccharide, which has similar but distinct characteristic monosaccharide composition and entire chemical structure to fucoidan. In this study, we examined the effects of ascophyllan, fucoidan isolated from A. nodosum (A-fucoidan), and fucoidan from Sigma (S-fucoidan) as a representative fucoidan derived from other source (Fucus vesiculosus) on mouse macrophage cell line RAW264.7 cells. No significant cytotoxic effects of ascophyllan and A-fucoidan on RAW264.7 cells were observed up to 1000μg/ml, while S-fucoidan showed cytotoxic effect in a concentration-dependent manner. Ascophyllan induced extremely higher level of nitric oxide (NO) production from RAW264.7 cells than those induced by fucoidans over the concentration range tested (0-200μg/ml). Reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis revealed that expression level of inducible NO synthase (iNOS) in ascophyllan-treated RAW264.7 cells was much higher than the levels detected in the cells treated with fucoidans. Furthermore, the activities of ascophyllan to induce the secretion of tumor necrosis factor-α (TNF-α) and granulocyte colony-stimulating factor (G-CSF) from RAW264.7 cells were also greater than those induced by fucoidans especially at lower concentration range (3.1-50μg/ml). The activities of ascophyllan to induce NO and cytokine production in mouse peritoneal macrophages were also stronger than those of fucoidans. Electrophoretic mobility shift assay (EMSA) using infrared dye labeled nuclear factor-kappa B (NF-κB) and AP-1 consensus sequences suggested that ascophyllan can strongly activate these transcription factors. Marked increase in the nuclear translocation of p65, and the phosphorylation and degradation of IκB-α were also observed in ascophyllan-treated RAW264.7 cells. Analysis using mitogen-activated protein (MAP) kinase inhibitors and western blot analysis suggested that c-Jun N-terminal kinase (JNK) and p38 MAP kinase are mainly involved in ascophyllan-induced NO production. PMID:22024029

  9. Anti-Epileptic Effect of Ganoderma Lucidum Polysaccharides by Inhibition of Intracellular Calcium Accumulation and Stimulation of Expression of CaMKII α in Epileptic Hippocampal Neurons

    PubMed Central

    Wang, Shu-Qiu; Li, Xiao-Jie; Qiu, Hong-Bin; Jiang, Zhi-Mei; Simon, Maria; Ma, Xiao-Ru; Liu, Lei; Liu, Jun-Xing; Wang, Fang-Fang; Liang, Yan-Feng; Wu, Jia-Mei; Di, Wei-Hua; Zhou, Shaobo

    2014-01-01

    Purpose To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP), the changes of intracellular calcium and CaMK II α expression in a model of epileptic neurons were investigated. Method Primary hippocampal neurons were divided into: 1) Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2) Model group I: neurons were incubated with Mg2+ free medium for 3 hours; 3) Model group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4) GLP group I: neurons were incubated with Mg2+ free medium containing GLP (0.375 mg/ml) for 3 hours; 5) GLP group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II α protein expression was assessed by Western-blot. Ca2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca2+ turnover was observed under a laser scanning confocal microscope. Results The CaMK II α expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca2+ fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes. Conclusion GLP may inhibit calcium overload and promote CaMK II α expression to protect epileptic neurons. PMID:25010576

  10. Sulfated glycosaminoglycan deposition and processing at the basal epithelial surface in branching and beta-D-xyloside-inhibited embryonic salivary glands

    SciTech Connect

    Spooner, B.S.; Bassett, K.; Stokes, B.

    1985-05-01

    The authors investigated whether the inhibition of proteoglycan synthesis and salivary branching morphogenesis by beta-D-xyloside was related to the deposition and processing of newly synthesized glycosaminoglycans at the basal epithelial surface that correlates with normal branching activity. Forty eight-hour cultures of control and 0.5 mM beta-xyloside-treated submandibular rudiments were labeled for 2 hr with (/sup 35/S)sulfate and fixed and processed for autoradiography, immediately or after 2, 4, 6, or 8 hr of postlabeling chase in nonradioactive medium. The data demonstrated that deposition of chondroitin sulfate-rich material at the basal epithelial surface was strikingly reduced in beta-xyloside-treated rudiments, while patterns of label loss during postlabeling chase were not altered.

  11. Modification of Low Molecular Weight Polysaccharides from Tremella Fuciformis and Their Antioxidant Activity in Vitro

    PubMed Central

    Wu, Qiong; Zheng, Cheng; Ning, Zheng-Xiang; Yang, Bao

    2007-01-01

    In this study, sulfated low molecular-weight Tremella fuciformis polysaccharides (SLTP) with different sulfate contents were synthesized and their antioxidant activities, including superoxide anion radical, 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical and hydroxyl radical scavenging activities were investigated. The results indicated that, compared to natural Tremella fuciformis polysaccharide (TP) and low molecular weight Tremella fuciformis polysaccharide (LTP), sulfated LTP (SLTP) exhibited stronger scavenging activity towards superoxide anion, DPPH and hydroxyl radicals. In all the cases the effect was found to be dose dependent. The scavenging activity of SLTP was found to be in parallel with the degree of sulfation of SLTP.

  12. Structure and biological activity of a fucosylated chondroitin sulfate from the sea cucumber Cucumaria japonica.

    PubMed

    Ustyuzhanina, Nadezhda E; Bilan, Maria I; Dmitrenok, Andrey S; Shashkov, Alexander S; Kusaykin, Mikhail I; Stonik, Valentin A; Nifantiev, Nikolay E; Usov, Anatolii I

    2016-05-01

    A fucosylated chondroitin sulfate (FCS) was isolated from the body wall of Pacific sea cucumberCucumaria japonicaby extraction in the presence of papain followed by Cetavlon precipitation and anion-exchange chromatography. FCS was shown to containd-GalNAc,d-GlcA,l-Fuc and sulfate in molar proportions of about 1:1:1:4.5. Structure of FCS was elucidated using NMR spectroscopy and methylation analysis of the native polysaccharide and products of its desulfation and carboxyl reduction. The polysaccharide was shown to contain a typical chondroitin core →3)-β-d-GalNAc-(1→4)-β-d-GlcA-(1→. Sulfate groups in this core occupy O-4 and the majority of O-6 of GalNAc. Fucosyl branches are represented by 3,4- and 2,4-disulfated units in a ratio of 4:1 and are linked to O-3 of GlcA. In addition, ∼33% of GlcA are 3-O-sulfated, and hence, the presence of short fucooligosaccharide chains side by side with monofucosyl branches cannot be excluded. FCS was shown to inhibit platelets aggregation in vitro mediated by collagen and ristocetin, but not adenosine diphosphate, and demonstrated significant anticoagulant activity, which is connected with its ability to enhance inhibition of thrombin and factor Xa by antithrombin III, as well as to influence von Willebrand factor activity. The latest property significantly distinguished FCS from low-molecular-weight heparin. PMID:26681734

  13. Oleanolic acid ameliorates dextran sodium sulfate-induced colitis in mice by restoring the balance of Th17/Treg cells and inhibiting NF-κB signaling pathway.

    PubMed

    Kang, Geum-Dan; Lim, Sumin; Kim, Dong-Hyun

    2015-12-01

    In a preliminary experiment, it was found that oleanolic acid (OA), which is widely distributed in food and medicinal plants, inhibited interleukin (IL)-6/tumor growth factor beta-induced differentiation of splenic T cells into Th17 cells. Moreover, OA induced the differentiation of splenic T cells into Treg cells. Therefore, we examined the anti-inflammatory effect of OA in mice with dextran sodium sulfate (DSS)-induced colitis. Oral administration of OA significantly inhibited DSS-induced colon shortening, macroscopic score, and myeloperoxidase activity. Treatment with OA inhibited DSS-induced differentiation to Th17 cells and downregulated the expression of RORγt and IL-17 in the lamina propria of colon and Treg cell differentiation and Foxp3 and IL-10 expression were increased. OA treatment increased the DSS-suppressed expression of tight junction proteins such as ZO-1, occludin, and claudin-1 in the colon. Moreover, OA treatment inhibited DSS-induced expression of tumor necrosis factor-α, interleukin (IL)-1β, and IL-17, the activation of NF-κB and mitogen-activated protein kinases, and increased IL-10 expression. OA also inhibited the activation of NF-κB and expression of proinflammatory cytokines in LPS-stimulated peritoneal macrophages. These findings suggest that OA may ameliorate inflammatory diseases such as colitis by inhibiting Th17 cell differentiation and increasing Treg cell differentiation. PMID:26514300

  14. Epitope mapping by a Wnt-blocking antibody: evidence of the Wnt binding domain in heparan sulfate.

    PubMed

    Gao, Wei; Xu, Yongmei; Liu, Jian; Ho, Mitchell

    2016-01-01

    Heparan sulfate (HS) is a polysaccharide known to modulate many important biological processes, including Wnt signaling. However, the biochemical interaction between HS and Wnt molecules is not well characterized largely due to the lack of suitable methods. To determine the Wnt binding domain in HS, we used a Wnt signaling-inhibitory antibody (HS20) and a panel of synthetic HS oligosaccharides with distinct lengths and sulfation modifications. We found that the binding of HS20 to heparan sulfate required sulfation at both the C2 position (2-O-sulfation) and C6 position (6-O-sulfation). The oligosaccharides with the greatest competitive effect for HS20 binding were between six and eight saccharide residues in length. Additionally, a four residue-long oligosaccharide could also be recognized by HS20 if an additional 3-O-sulfation modification was present. Furthermore, similar oligosaccharides with 2-O, 6-O and 3-O-sulfations showed inhibition for Wnt activation. These results have revealed that HS20 and Wnt recognize a HS structure containing IdoA2S and GlcNS6S, and that the 3-O-sulfation in GlcNS6S3S significantly enhances the binding of both HS20 and Wnt. This study provides the evidence for identifying the Wnt binding domain in HS and suggests a therapeutic approach to target the interaction of Wnt and HS in cancer and other diseases. PMID:27185050

  15. Comparison of Physicochemical Characteristics and Anticoagulant Activities of Polysaccharides from Three Sea Cucumbers

    PubMed Central

    Luo, Lan; Wu, Mingyi; Xu, Li; Lian, Wu; Xiang, Jingying; Lu, Feng; Gao, Na; Xiao, Chuang; Wang, Shengmin; Zhao, Jinhua

    2013-01-01

    In order to search for sulfated polysaccharides in different invertebrate connective tissues and to examine their biological activities, we have isolated three types of polysaccharides from the body wall of the three sea cucumbers Holothuria edulis, Apostichopus japonicas and Holothuria nobilis. The physicochemical properties and anticoagulant activities of these polysaccharides were examined and compared. The chemical composition analysis and nuclear magnetic resonance (NMR) analysis indicate that two types of polysaccharides, sulfated fucan and fucosylated chondroitin sulfate (FuCS), were found in all of the three species and in addition a neutral glycan was observed in H. edulis. The neutral α-glucan was firstly obtained from sea cucumber. The same type of polysaccharides from different species of sea cucumbers have similar physicochemical properties and anticoagulant activities, but those of different types of glycans are significantly different, possibly due to their different monosaccharide compositions, electric charges and average molecular weights. The FuCSs have stronger anticoagulant activities than the sulfated fucans, although the molecular sizes of the FuCSs are lower than those of the sulfated fucans, whereas the neutral glucan has no activity, as expected from the absence of sulfate. Thus, anticoagulant activities of the different type of polysaccharides are likely to relate to monosaccharide composition and sulfate content. Preliminary analysis suggests that the sulfation patterns of the FuCSs may result in the difference in anticoagulant activities. Our data could help elucidate the structure-activity relationship of the sea cucumber polysaccharides. PMID:23385300

  16. Production of immunoregulatory polysaccharides from Crassostrea hongkongensis and their positive effects as a nutrition factor in modulating the effectiveness and toxicity of 5-FU chemotherapy in mice.

    PubMed

    Cai, Bingna; Chen, Hua; Sun, Han; Wan, Peng; Sun, Huili; Pan, Jianyu

    2016-01-20

    Chemotherapy is generally accompanied by undesirable side effects, such as immunosuppression and malnutrition, which reduce tolerance to cancer therapies. Prior studies have shown that immunonutrition improves the clinical outcomes of cancer patients. In this study, immunoregulatory polysaccharides from Crassostrea hongkongensis were included in a nutrition formula that was administered to S180 tumor-bearing mice in combination with 5-fluorouracil (5-FU) treatment. The C30-60% fraction of the polysaccharides was characterized as a branched polysaccharide, with a high amount of d-glucose (96.76% of the total) and the highest uronic acid and sulfate groups' content among all of the polysaccharide fractions. The C30-60% polysaccharide fraction showed a maximal proliferative effect on RAW264.7 cells and T lymphocytes at a concentration of 0.0391 mg mL(-1) and 0.0781 mg mL(-1), respectively. Moreover, the combination treatment of the C30-60% polysaccharide-based nutrition formula (OPNF) with the administration of 5-FU effectively inhibited the growth of tumors and notably increased the leucocyte and lymphocyte counts in S180 tumor-bearing mice. In addition, a slight increase in the erythrocyte and hemoglobin values was observed in the mice treated with the combination of OPNF and 5-FU. These results suggest that supplementation with a C30-60%-based enteral formula would be beneficial for patients undergoing chemotherapy with 5-FU. PMID:26507007

  17. Chondroitin sulfate

    MedlinePlus

    ... in combination with glucosamine sulfate, shark cartilage, and camphor. Some people also inject chondroitin sulfate into the ... in combination with glucosamine sulfate, shark cartilage, and camphor seems to reduce arthritis symptoms. However, any symptom ...

  18. Hydrogen sulfide from a NaHS source attenuates dextran sulfate sodium (DSS)-induced inflammation via inhibiting nuclear factor-κB

    PubMed Central

    Chen, Xi; Liu, Xi-shuang

    2016-01-01

    This study investigated the alleviating effects of hydrogen sulfide (H2S), derived from sodium hydrosulfide (NaHS), on inflammation induced by dextran sulfate sodium (DSS) in both in vivo and in vitro models. We found that NaHS injection markedly decreased rectal bleeding, diarrhea, and histological injury in DSS-challenged mice. NaHS (20 μmol/L) reversed DSS-induced inhibition in cell viability in Caco-2 cells and alleviated pro-inflammation cytokine expression in vivo and in vitro, indicating an anti-inflammatory function for H2S. It was also found that H2S may regulate cytokine expression by inhibiting the nuclear factor-κB (NF-κB) signaling pathway. In conclusion, our results demonstrated that H2S alleviated DSS-induced inflammation in vivo and in vitro and that the signal mechanism might be associated with the NF-κB signaling pathway. PMID:26984841

  19. Hydrogen sulfide from a NaHS source attenuates dextran sulfate sodium (DSS)-induced inflammation via inhibiting nuclear factor-κB.

    PubMed

    Chen, Xi; Liu, Xi-Shuang

    2016-03-01

    This study investigated the alleviating effects of hydrogen sulfide (H2S), derived from sodium hydrosulfide (NaHS), on inflammation induced by dextran sulfate sodium (DSS) in both in vivo and in vitro models. We found that NaHS injection markedly decreased rectal bleeding, diarrhea, and histological injury in DSS-challenged mice. NaHS (20 μmol/L) reversed DSS-induced inhibition in cell viability in Caco-2 cells and alleviated pro-inflammation cytokine expression in vivo and in vitro, indicating an anti-inflammatory function for H2S. It was also found that H2S may regulate cytokine expression by inhibiting the nuclear factor-κB (NF-κB) signaling pathway. In conclusion, our results demonstrated that H2S alleviated DSS-induced inflammation in vivo and in vitro and that the signal mechanism might be associated with the NF-κB signaling pathway. PMID:26984841

  20. Heparan Sulfate Proteoglycans May Promote or Inhibit Cancer Progression by Interacting with Integrins and Affecting Cell Migration

    PubMed Central

    Soares, Mariana A.; Teixeira, Felipe C. O. B.; Fontes, Miguel; Arêas, Ana Lúcia; Leal, Marcelo G.; Pavão, Mauro S. G.; Stelling, Mariana P.

    2015-01-01

    The metastatic disease is one of the main consequences of tumor progression, being responsible for most cancer-related deaths worldwide. This review intends to present and discuss data on the relationship between integrins and heparan sulfate proteoglycans in health and cancer progression. Integrins are a family of cell surface transmembrane receptors, responsible for cell-matrix and cell-cell adhesion. Integrins' main functions include cell adhesion, migration, and survival. Heparan sulfate proteoglycans (HSPGs) are cell surface molecules that play important roles as cell receptors, cofactors, and overall direct or indirect contributors to cell organization. Both molecules can act in conjunction to modulate cell behavior and affect malignancy. In this review, we will discuss the different contexts in which various integrins, such as α5, αV, β1, and β3, interact with HSPGs species, such as syndecans and perlecans, affecting tissue homeostasis. PMID:26558271

  1. The efficacy of a sulphated polysaccharide fraction from Hypnea musciformis against diarrhea in rodents.

    PubMed

    Sousa, Nayara A; Barros, Francisco Clark N; Araújo, Thiago S L; Costa, Douglas S; Souza, Luan Kelves M; Sousa, Francisca Beatriz M; Leódido, Ana Carolina M; Pacífico, Dvison M; Araújo, Simone de; Bezerra, Francisco F; Freitas, Ana Lúcia P; Medeiros, Jand Venes R

    2016-05-01

    Seaweeds are sources of diverse bioactive compounds, such as sulphated polysaccharides. This study was designed to evaluate the chemical composition and anti-diarrheal activity of a fraction of sulphated polysaccharide (PLS) obtained from the red seaweed Hypnea musciformis in different animal models, and to elucidate the underlying mechanisms. PLS was obtained by aqueous extraction, with a yield of 31.8% of the seaweed dry weight. The total carbohydrate content accounted for 99% of the sample. The sulfate content of the polysaccharide was 5.08% and the percentage of carbon was 25.98%. Pretreatment with all doses of PLS inhibited castor oil-induced diarrhea, with reduction of the total amount of stool, diarrheal stools, and the severity of diarrhea. PLS (90mg/Kg) decreased castor oil- and PGE2-induced enteropooling. In addition, PLS (90mg/Kg) increased the Na(+)/K(+)-ATPase activity in the small intestine and reduced gastrointestinal transit, possibly via activation of cholinergic receptors. Interestingly, the cholera toxin-induced fluid secretion and Cl(-) ion levels decreased in the intestinal contents of the animals pretreated with PLS (90mg/kg), probably via reduction of toxin-GM1 receptor binding. In conclusion, PLS exerts anti-diarrheal activity by increasing Na(+)/K(+)-ATPase activity, inhibiting gastrointestinal motility, and blocking the toxin-GM1 receptor binding. PMID:26879913

  2. Human Monoclonal Antibody Targeting the Heparan Sulfate Chains of Glypican-3 Inhibits HGF-Mediated Migration and Motility of Hepatocellular Carcinoma Cells

    PubMed Central

    Gao, Wei; Kim, Heungnam; Ho, Mitchell

    2015-01-01

    Heparan sulfate proteoglycans (HSPGs) participate in many processes related to tumor development, including tumorigenesis and metastasis. HSPGs contain one or more heparan sulfate (HS) chains that are covalently linked to a core protein. Glypican-3 (GPC3) is a cell surface-associated HSPG that is highly expressed in hepatocellular carcinoma (HCC). GPC3 is involved in Wnt3a-dependent HCC cell proliferation. Our previous study reported that HS20, a human monoclonal antibody targeting the HS chains on GPC3, inhibited Wnt3a/β-catenin activation. In the current study, we showed that the HS chains of GPC3 could mediate HCC cells’ migration and motility. Knocking down GPC3 or targeting the HS chains by HS20 inhibited HCC cell migration and motility. However, HS20 had no effect on GPC3 knockdown cells or GPC3 negative cells. In addition, an antibody that recognizes the core protein of GPC3 did not change the rate of cell motility. HCC cell migration and motility did not respond to either canonical or non-canonical Wnt induction, but did increase under hepatocyte growth factor (HGF) treatment. HS20-treated HCC cells exhibited less ability for HGF-mediated migration and motility. Furthermore, HS20 inhibited in vitro HCC spheroid formation and liver tumor growth in mice. GPC3 interacted with HGF; however, a mutant GPC3 lacking the HS chain showed less interaction with HGF. Blocking the HS chains on GPC3 with HS20 reduced c-Met activation in HGF-treated HCC cells and 3D-cultured spheroids. Taken together, our study suggests that GPC3 is involved in HCC cell migration and motility through HS chain-mediated cooperation with the HGF/Met pathway, showing how HS targeting has potential therapeutic implications for liver cancer. PMID:26332121

  3. Human Monoclonal Antibody Targeting the Heparan Sulfate Chains of Glypican-3 Inhibits HGF-Mediated Migration and Motility of Hepatocellular Carcinoma Cells.

    PubMed

    Gao, Wei; Kim, Heungnam; Ho, Mitchell

    2015-01-01

    Heparan sulfate proteoglycans (HSPGs) participate in many processes related to tumor development, including tumorigenesis and metastasis. HSPGs contain one or more heparan sulfate (HS) chains that are covalently linked to a core protein. Glypican-3 (GPC3) is a cell surface-associated HSPG that is highly expressed in hepatocellular carcinoma (HCC). GPC3 is involved in Wnt3a-dependent HCC cell proliferation. Our previous study reported that HS20, a human monoclonal antibody targeting the HS chains on GPC3, inhibited Wnt3a/β-catenin activation. In the current study, we showed that the HS chains of GPC3 could mediate HCC cells' migration and motility. Knocking down GPC3 or targeting the HS chains by HS20 inhibited HCC cell migration and motility. However, HS20 had no effect on GPC3 knockdown cells or GPC3 negative cells. In addition, an antibody that recognizes the core protein of GPC3 did not change the rate of cell motility. HCC cell migration and motility did not respond to either canonical or non-canonical Wnt induction, but did increase under hepatocyte growth factor (HGF) treatment. HS20-treated HCC cells exhibited less ability for HGF-mediated migration and motility. Furthermore, HS20 inhibited in vitro HCC spheroid formation and liver tumor growth in mice. GPC3 interacted with HGF; however, a mutant GPC3 lacking the HS chain showed less interaction with HGF. Blocking the HS chains on GPC3 with HS20 reduced c-Met activation in HGF-treated HCC cells and 3D-cultured spheroids. Taken together, our study suggests that GPC3 is involved in HCC cell migration and motility through HS chain-mediated cooperation with the HGF/Met pathway, showing how HS targeting has potential therapeutic implications for liver cancer. PMID:26332121

  4. Structural elucidation of polysaccharide fractions from the brown alga Coccophora langsdorfii and in vitro investigation of their anticancer activity.

    PubMed

    Imbs, Tatiana I; Ermakova, Svetlana P; Malyarenko Vishchuk, Olesya S; Isakov, Vladimir V; Zvyagintseva, Tatiana N

    2016-01-01

    Laminaran, fucoidan, and alginate were isolated from the brown alga Coccophora langsdorfii collected in the Japan Sea. The structural characteristics of polysaccharides were investigated by NMR spectroscopy. The laminaran was determined as β-d-glucan, which consisted of 80% of 1,3- and 20% of 1,6-linked residues and was terminated with mannitol. The alginate was a guluronic acid-rich polysaccharide (M/G=0.85). Fucoidan, sulfated α-l-fucan, contained a linear backbone of alternating (1→3)- and (1→4)- linked α-l-fucopyranose residues with sulfate at C2 and C4 of (1→3)-α-l-fucopyranose residues. Anticancer activity of this fucoidan was investigated in comparison with activity of fucoidan having similar linear backbone from the brown alga Fucus evanescens. The fucoidan from C. langsdorfii significantly inhibited colony formation of SK-MEL-5 and SK-MEL-28 melanoma cells (the percentage of inhibition was 28 and 76, respectively) and weakly inhibited colony formation of breast adenocarcinoma cells MDA-MB-231 (the percentage of inhibition was about 5). Similar results were obtained for fucoidan from F. evanescens; the percentage of inhibition of colony formation of SK-MEL-5 and SK-MEL-28 melanoma cells was 54 and 56, respectively. The inhibition of colony formation of breast adenocarcinoma cells MDA-MB-231 was weak. We suppose that other sulfated and partially acetylated fucoidans consisting of (1→3)- and (1→4)-linked α-l-fucopyranose residues may suppress progression of melanoma cell colony formation similar to fucoidans of C. langsdorfii and F. evanescens. PMID:26453864

  5. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling

    NASA Astrophysics Data System (ADS)

    Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan

    2015-02-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  6. Anticoagulant activity of a unique sulfated pyranosic (1->3)-β-L-arabinan through direct interaction with thrombin.

    PubMed

    Fernández, Paula V; Quintana, Irene; Cerezo, Alberto S; Caramelo, Julio J; Pol-Fachin, Laercio; Verli, Hugo; Estevez, José M; Ciancia, Marina

    2013-01-01

    A highly sulfated 3-linked β-arabinan (Ab1) with arabinose in the pyranose form was obtained from green seaweed Codium vermilara (Bryopsidales). It comprised major amounts of units sulfated on C-2 and C-4 and constitutes the first polysaccharide of this type isolated in the pure form and fully characterized. Ab1 showed anticoagulant activity by global coagulation tests. Less sulfated arabinans obtained from the same seaweed have less or no activity. Ab1 exerts its activity through direct and indirect (antithrombin- and heparin cofactor II-mediated) inhibition of thrombin. Direct thrombin inhibition was studied in detail. By native PAGE, it was possible to detect formation of a complex between Ab1 and human thrombin (HT). Ab1 binding to HT was measured by fluorescence spectroscopy. CD spectra of the Ab1 complex suggested that ligand binding induced a small conformational change on HT. Ab1-thrombin interactions were studied by molecular dynamic simulations using the persulfated octasaccharide as model compound. Most carbohydrate-protein contacts would occur by interaction of sulfate groups with basic amino acid residues on the surface of the enzyme, more than 60% of them being performed by the exosite 2-composing residues. In these interactions, the sulfate groups on C-2 were shown to interact more intensely with the thrombin structure. In contrast, the disulfated oligosaccharide does not promote major conformational modifications at the catalytic site when complexed to exosite 1. These results show that this novel pyranosic sulfated arabinan Ab1 exerts its anticoagulant activity by a mechanism different from those found previously for other sulfated polysaccharides and glycosaminoglycans. PMID:23161548

  7. Anticoagulant Activity of a Unique Sulfated Pyranosic (1→3)-β-l-Arabinan through Direct Interaction with Thrombin*

    PubMed Central

    Fernández, Paula V.; Quintana, Irene; Cerezo, Alberto S.; Caramelo, Julio J.; Pol-Fachin, Laercio; Verli, Hugo; Estevez, José M.; Ciancia, Marina

    2013-01-01

    A highly sulfated 3-linked β-arabinan (Ab1) with arabinose in the pyranose form was obtained from green seaweed Codium vermilara (Bryopsidales). It comprised major amounts of units sulfated on C-2 and C-4 and constitutes the first polysaccharide of this type isolated in the pure form and fully characterized. Ab1 showed anticoagulant activity by global coagulation tests. Less sulfated arabinans obtained from the same seaweed have less or no activity. Ab1 exerts its activity through direct and indirect (antithrombin- and heparin cofactor II-mediated) inhibition of thrombin. Direct thrombin inhibition was studied in detail. By native PAGE, it was possible to detect formation of a complex between Ab1 and human thrombin (HT). Ab1 binding to HT was measured by fluorescence spectroscopy. CD spectra of the Ab1 complex suggested that ligand binding induced a small conformational change on HT. Ab1-thrombin interactions were studied by molecular dynamic simulations using the persulfated octasaccharide as model compound. Most carbohydrate-protein contacts would occur by interaction of sulfate groups with basic amino acid residues on the surface of the enzyme, more than 60% of them being performed by the exosite 2-composing residues. In these interactions, the sulfate groups on C-2 were shown to interact more intensely with the thrombin structure. In contrast, the disulfated oligosaccharide does not promote major conformational modifications at the catalytic site when complexed to exosite 1. These results show that this novel pyranosic sulfated arabinan Ab1 exerts its anticoagulant activity by a mechanism different from those found previously for other sulfated polysaccharides and glycosaminoglycans. PMID:23161548

  8. Polysaccharides from Smilax glabra inhibit the pro-inflammatory mediators via ERK1/2 and JNK pathways in LPS-induced RAW264.7 cells.

    PubMed

    Lu, Chuan-li; Wei, Zhu; Min, Wang; Hu, Meng-mei; Chen, Wen-long; Xu, Xiao-jie; Lu, Chuan-jian

    2015-05-20

    The rhizomes of Smilax glabra have been used as both food and folk medicine in many countries for a long time. However, little research has been reported on polysaccharides of S. glabra. In the present study, two polysaccharide fractions, SGP-1 and SGP-2, were isolated from the rhizomes of S. glabra with the number average molecular weights of 1.72 × 10(2)kDa and 1.31 × 10(2)kDa, and the weight average molecular weights of 1.31 × 10(5)kDa and 1.18 × 10(5)kDa, respectively, and their mainly monosaccharide compositions were both galactose and rhamnose (2.5:1). Both SGP-1 and SGP-2 significantly suppressed the release of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from LPS-induced RAW 264.7 cells, as well as the mRNA expression of inducible nitric oxide synthase (iNOS), TNF-α and IL-6. Additionally, SGP-1 and SGP-2 repressed the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK). These findings strongly suggested polysaccharides were also the anti-inflammatory active ingredient for S. glabra, and the potential of SGP-1 and SGP-2 as the anti-inflammatory agents. PMID:25817687

  9. Cloning and characterization of a novel chondroitin sulfate/dermatan sulfate 4-O-endosulfatase from a marine bacterium.

    PubMed

    Wang, Wenshuang; Han, Wenjun; Cai, Xingya; Zheng, Xiaoyu; Sugahara, Kazuyuki; Li, Fuchuan

    2015-03-20

    Sulfatases are potentially useful tools for structure-function studies of glycosaminoglycans (GAGs). To date, various GAG exosulfatases have been identified in eukaryotes and prokaryotes. However, endosulfatases that act on GAGs have rarely been reported. Recently, a novel HA and CS lyase (HCLase) was identified for the first time from a marine bacterium (Han, W., Wang, W., Zhao, M., Sugahara, K., and Li, F. (2014) J. Biol. Chem. 289, 27886-27898). In this study, a putative sulfatase gene, closely linked to the hclase gene in the genome, was recombinantly expressed and characterized in detail. The recombinant protein showed a specific N-acetylgalactosamine-4-O-sulfatase activity that removes 4-O-sulfate from both disaccharides and polysaccharides of chondroitin sulfate (CS)/dermatan sulfate (DS), suggesting that this sulfatase represents a novel endosulfatase. The novel endosulfatase exhibited maximal reaction rate in a phosphate buffer (pH 8.0) at 30 °C and effectively removed 17-65% of 4-O-sulfates from various CS and DS and thus significantly inhibited the interactions of CS and DS with a positively supercharged fluorescent protein. Moreover, this endosulfatase significantly promoted the digestion of CS by HCLase, suggesting that it enhances the digestion of CS/DS by the bacterium. Therefore, this endosulfatase is a potential tool for use in CS/DS-related studies and applications. PMID:25648894

  10. Cloning and Characterization of a Novel Chondroitin Sulfate/Dermatan Sulfate 4-O-Endosulfatase from a Marine Bacterium*

    PubMed Central

    Wang, Wenshuang; Han, Wenjun; Cai, Xingya; Zheng, Xiaoyu; Sugahara, Kazuyuki; Li, Fuchuan

    2015-01-01

    Sulfatases are potentially useful tools for structure-function studies of glycosaminoglycans (GAGs). To date, various GAG exosulfatases have been identified in eukaryotes and prokaryotes. However, endosulfatases that act on GAGs have rarely been reported. Recently, a novel HA and CS lyase (HCLase) was identified for the first time from a marine bacterium (Han, W., Wang, W., Zhao, M., Sugahara, K., and Li, F. (2014) J. Biol. Chem. 289, 27886–27898). In this study, a putative sulfatase gene, closely linked to the hclase gene in the genome, was recombinantly expressed and characterized in detail. The recombinant protein showed a specific N-acetylgalactosamine-4-O-sulfatase activity that removes 4-O-sulfate from both disaccharides and polysaccharides of chondroitin sulfate (CS)/dermatan sulfate (DS), suggesting that this sulfatase represents a novel endosulfatase. The novel endosulfatase exhibited maximal reaction rate in a phosphate buffer (pH 8.0) at 30 °C and effectively removed 17–65% of 4-O-sulfates from various CS and DS and thus significantly inhibited the interactions of CS and DS with a positively supercharged fluorescent protein. Moreover, this endosulfatase significantly promoted the digestion of CS by HCLase, suggesting that it enhances the digestion of CS/DS by the bacterium. Therefore, this endosulfatase is a potential tool for use in CS/DS-related studies and applications. PMID:25648894

  11. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.

    PubMed

    Zuo, R; Ornek, D; Syrett, B C; Green, R M; Hsu, C-H; Mansfeld, F B; Wood, T K

    2004-04-01

    Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50-90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel. PMID:12898064

  12. Enzymatic Modifications of Polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polysaccharides are often modified chemically in order to improve its properties or to impart specific characteristics. Indeed quite a few commercial products are based on modified polysaccharides. In this talk, I shall describe a new set of modified polysaccharides based on enzymatic reactions. ...

  13. Health benefits of algal polysaccharides in human nutrition.

    PubMed

    Mišurcová, Ladislava; Škrovánková, Soňa; Samek, Dušan; Ambrožová, Jarmila; Machů, Ludmila

    2012-01-01

    The interest in functional food, both freshwater and marine algal products with their possible promotional health effects, increases also in regions where algae are considered as rather exotic food. Increased attention about algae as an abundant source of many nutrients and dietary fiber from the nutrition point of view, as well as from the scientific approaches to explore new nutraceuticals and pharmaceuticals, is based on the presence of many bioactive compounds including polysaccharides extracted from algal matter. Diverse chemical composition of dietary fiber polysaccharides is responsible for their different physicochemical properties, such as their ability to be fermented by the human colonic microbiota resulted in health benefit effects. Fundamental seaweed polysaccharides are presented by alginates, agars, carrageenans, ulvanes, and fucoidans, which are widely used in the food and pharmaceutical industry and also in other branches of industry. Moreover, freshwater algae and seaweed polysaccharides have emerged as an important source of bioactive natural compounds which are responsible for their possible physiological effects. Especially, sulfate polysaccharides exhibit immunomodulatory, antitumor, antithrombotic, anticoagulant, anti-mutagenic, anti-inflammatory, antimicrobial, and antiviral activities including anti-HIV infection, herpes, and hepatitis viruses. Generally, biological activity of sulfate polysaccharides is related to their different composition and mainly to the extent of the sulfation of their molecules. Significant attention has been recently focused on the use of both freshwater algae and seaweed for developing functional food by reason of a great variety of nutrients that are essential for human health. PMID:22909979

  14. The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview

    PubMed Central

    Wang, Wei; Wang, Shi-Xin; Guan, Hua-Shi

    2012-01-01

    Recently, the studies on the antiviral activities of marine natural products, especially marine polysaccharides, are attracting more and more attention all over the world. Marine-derived polysaccharides and their lower molecular weight oligosaccharide derivatives have been shown to possess a variety of antiviral activities. This paper will review the recent progress in research on the antiviral activities and the mechanisms of these polysaccharides obtained from marine organisms. In particular, it will provide an update on the antiviral actions of the sulfated polysaccharides derived from marine algae including carrageenans, alginates, and fucans, relating to their structure features and the structure–activity relationships. In addition, the recent findings on the different mechanisms of antiviral actions of marine polysaccharides and their potential for therapeutic application will also be summarized in detail. PMID:23235364

  15. Bioengineered heparins and heparan sulfates.

    PubMed

    Fu, Li; Suflita, Matthew; Linhardt, Robert J

    2016-02-01

    Heparin and heparan sulfates are closely related linear anionic polysaccharides, called glycosaminoglycans, which exhibit a number of important biological and pharmacological activities. These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of animal cells. While heparan sulfate is a widely distributed membrane and extracellular glycosaminoglycan, heparin is found primarily intracellularly in the granules of mast cells. While heparin has historically received most of the scientific attention for its anticoagulant activity, interest has steadily grown in the multi-faceted role heparan sulfate plays in normal and pathophysiology. The chemical synthesis of these glycosaminoglycans is largely precluded by their structural complexity. Today, we depend on livestock animal tissues for the isolation and the annual commercial production of hundred ton quantities of heparin used in the manufacture of anticoagulant drugs and medical device coatings. The variability of animal-sourced heparin and heparan sulfates, their inherent impurities, the limited availability of source tissues, the poor control of these source materials and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans, driven by both therapeutic applications and as probes to study their natural functions. This review focuses on the complex biology of these glycosaminoglycans in human health and disease, and the use of recombinant technology in the chemoenzymatic synthesis and metabolic engineering of heparin and heparan sulfates. PMID:26555370

  16. Oroxyloside prevents dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB pathway through PPARγ activation.

    PubMed

    Wang, Xiaoping; Sun, Yang; Zhao, Yue; Ding, Youxiang; Zhang, Xiaobo; Kong, Lingyi; Li, Zhiyu; Guo, Qinglong; Zhao, Li

    2016-04-15

    Oroxyloside, as a metabolite of oroxylin A, may harbor various beneficial bioactivities which have rarely been reported in the previous studies. Here we established the dextran sulfate sodium (DSS)-induced experimental colitis and evaluated the anti-inflammatory effect of oroxyloside in vivo. As a result, oroxyloside attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. Furthermore, oroxyloside inhibited inflammatory cell infiltration and decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities as well. The production of pro-inflammatory cytokines in serum and colon was also significantly reduced by oroxyloside. We unraveled the underlying mechanisms that oroxyloside inhibited NF-κB pathway by activating Peroxisome Proliferator-Activated Receptor γ (PPARγ) to attenuate DSS-induced colitis. Moreover, we investigated the anti-inflammatory effect and mechanisms of oroxyloside in the mouse macrophage cell line RAW264.7 and bone marrow derived macrophages (BMDM). Oroxyloside decreased several LPS-induced inflammatory cytokines, including IL-1β, IL-6 and TNF-α in RAW264.7 and BMDM. We also found that oroxyloside inhibited LPS-induced activation of NF-κB signaling pathway via activating PPARγ in RAW 264.7 and BMDM. Docking study showed that oroxyloside could bind with PPARγ. GW9662, the inhibitor of PPARγ, and PPARγ siRNA transfection blocked the effect of oroxyloside on PPARγ activation. Our study suggested that oroxyloside prevented DSS-induced colitis by inhibiting NF-κB pathway through PPARγ activation. Therefore, oroxyloside may be a promising and effective agent for inflammatory bowel disease (IBD). PMID:26947454

  17. Ginsenoside Metabolite Compound K Promotes Recovery of Dextran Sulfate Sodium-Induced Colitis and Inhibits Inflammatory Responses by Suppressing NF-κB Activation

    PubMed Central

    Li, Juan; Zhong, Wei; Wang, Weiwei; Hu, Shaoping; Yuan, Jiahui; Zhang, Bing; Hu, Tianhui; Song, Gang

    2014-01-01

    Phytogenic compounds with anti-oxidant and anti-inflammatory properties, such as ginsenoside metabolite compound K (CK) or berberine (BBR), are currently discussed as promising complementary agents in the prevention and treatment of cancer and inflammation. The latest study showed that ginsenoside Rb1 and its metabolites could inhibit TNBS-induced colitis injury. However, the functional mechanisms of anti-inflammation effects of ginsenoside, particularly its metabolite CK are still not clear. Here, using dextran sulfate sodium (DSS)-induced colitis in mice, clinical parameters, intestinal integrity, pro-inflammatory cytokines production, and signaling pathways in colonic tissues were determined. In mild and sever colitis mice, CK and BBR (as a positive agent) alleviated colitis histopathology injury, ameliorated myeloperoxidase (MPO) activity, reduced pro-inflammatory cytokines production, such as, IL-6, IL-1β, TNF-α, and increased anti-inflammatory cytokine IL-10 production in both mice colon tissues and blood. Nevertheless, the results revealed that CK and BBR inhibited NF-κB p65 nuclear translocation, downregulated p-IκBα and upregulated IκBα, indicating that CK, as well as BBR, suppressed the activation of the NF-κB pathway in the progression of colitis with immunofluorescence, immunohistochemical and western blotting analysis. Furthermore, CK inhibited pro-inflammatory cytokines production in LPS-activated macrophages via down-regulation of NF-κB signaling pathway. Taken together, our results not only reveal that CK promotes the recovery of the progression of colitis and inhibits the inflammatory responses by suppressing NF-κB activation, but also suggest that CK downregulates intestinal inflammation through regulating the activation of macrophages and pro-inflammatory cytokines production. PMID:24504372

  18. Optimization of chemical sulfation, structural characterization and anticoagulant activity of Agaricus bisporus fucogalactan.

    PubMed

    Román, Yony; Iacomini, Marcello; Sassaki, Guilherme L; Cipriani, Thales R

    2016-08-01

    A fucogalactan (E) was isolated from aqueous extract of Agaricus bisporus. The monosaccharide composition, methylation, and NMR analyses showed it is constituted by a (1→6)-linked α-d-Galp main-chain, partially methylated at O-3, and partially substituted at O-2 by non-reducing end-units of α-l-Fucp or α-d-Galp. HPSEC analysis showed it had Mw of 1.28×10(4)gmol(-1). The polysaccharide was sulfated modifying reaction time, molar ratio of sulfation agent to hydroxyl group on the polysaccharide (ηClSO3H/OH ratio), and ratio of total reaction volume to weight of sample (VT/w ratio; μLmg(-1)). The degree of substitution (DS) was evaluated for all sulfated derivatives. The sulfated fucogalactan with the highest DS value (2.83) had the best anticoagulant activity on Activated Partial Thromboplastin Time (APTT) and Protrombin Time (PT) assays. This sulfated fucogalactan, named E100, was obtained with the optimal conditions of ηClSO3H/OH ratio of 18, VT/w ratio of 100, in 6h of reaction. The results showed that E100 produces a linear increment of APTT for concentrations of 15-45μgmL(-1), whereas PT was almost constant between 20 and 400μgmL(-1), suggesting an anticoagulant activity via inhibition of the intrinsic pathway of blood coagulation. NMR and methylation analyses showed that α-d-Galp units of the main chain were greatly sulfated on 2-O-, 3-O-, and 4-O-positions. PMID:27112883

  19. Identification of a Dendrimeric Heparan Sulfate-Binding Peptide That Inhibits Infectivity of Genital Types of Human Papillomaviruses?

    PubMed Central

    Donalisio, Manuela; Rusnati, Marco; Civra, Andrea; Bugatti, Antonella; Allemand, Donatella; Pirri, Giovanna; Giuliani, Andrea; Landolfo, Santo; Lembo, David

    2010-01-01

    Peptide dendrimers consist of a peptidyl branching core and/or covalently attached surface functional units. They show a variety of biological properties, including antiviral activity. In this study, a minilibrary of linear, dimeric, and dendrimeric peptides containing clusters of basic amino acids was evaluated for in vitro activity against human papillomaviruses (HPVs). The peptide dendrimer SB105-A10 was found to be a potent inhibitor of genital HPV types (i.e., types 16, 18, and 6) in pseudovirus-based neutralization assays. The 50% inhibitory concentration was between 2.8 and 4.2 ?g/ml (0.59 and 0.88 ?M), and no evidence of cytotoxicity was observed. SB105-A10 interacts with immobilized heparin and with heparan sulfates exposed on the cell surface, most likely preventing virus attachment. The findings from this study indicate SB105-A10 to be a leading candidate compound for further development as an active ingredient of a topical microbicide against HPV and other sexually transmitted viral infections. PMID:20643894

  20. Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: Applications for microbial enhanced oil recovery.

    PubMed

    Zhao, Feng; Zhou, Ji-Dong; Ma, Fang; Shi, Rong-Jiu; Han, Si-Qin; Zhang, Jie; Zhang, Ying

    2016-05-01

    Sulfate-reducing bacteria (SRB) are widely existed in oil production system, and its H2S product inhibits rhamnolipid producing bacteria. In-situ production of rhamnolipid is promising for microbial enhanced oil recovery. Inhibition of SRB, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl were investigated. Strain Rhl can simultaneously remove S(2-) (>92%) and produce rhamnolipid (>136mg/l) under S(2-) stress below 33.3mg/l. Rhl reduced the SRB numbers from 10(9) to 10(5)cells/ml, and the production of H2S was delayed and decreased to below 2mg/l. Rhl also produced rhamnolipid and removed S(2-) under laboratory simulated oil reservoir conditions. High-throughput sequencing data demonstrated that addition of strain Rhl significantly changed the original microbial communities of oilfield production water and decreased the species and abundance of SRB. Bioaugmentation of strain Rhl in oilfield is promising for simultaneous control of SRB, removal of S(2-) and enhance oil recovery. PMID:26868152

  1. The Sasa quelpaertensis Leaf Extract Inhibits the Dextran Sulfate Sodium-induced Mouse Colitis Through Modulation of Antioxidant Enzyme Expression

    PubMed Central

    Yeom, Yiseul; Kim, Yuri

    2015-01-01

    Background: Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease. The objective of this study is to investigate the protective effect of Sasa quelpaertensis leaf extract (SQE) against oxidative stress in mice with dextran sulfate sodium (DSS)-induced colitis. Methods: Mice were treated with SQE (100 mg/kg or 300 mg/kg body weight) by gavage in advance two weeks before inflammation was induced. Then, the mice were administered with 2.5% DSS in drinking water for 7 days and normal drinking water for 7 days between two DSS treatment. Disease activity index values, gut motility, and severity of the resulting oxidative DNA damage were analyzed. The antioxidant effect of SQE was evaluated by measuring malondialdehyde (MDA) and superoxide dismutase (SOD) activity in plasma samples. Catalase activity and expressions levels of glutathione peroxidase 1 (Gpx1), SOD1, and SOD2 were also detected in colon tissues. Results: Administration of SQE significantly reduced the severity of DSS-induced colitis compared to the control (Ctrl) group. Levels of 8-oxo-dG, an oxidative DNA damage marker, were significantly lower in the SQE group compared to the untreated DSS Ctrl group. In the SQE (300 mg/kg) group, MDA levels were significantly lower, while SOD and catalase activity levels in the plasma samples were significantly higher compared with the DSS Ctrl group. The expression levels of the antioxidant enzymes, SOD2 and Gpx1, were significantly higher, while the levels of SOD 1 expression were lower, in the colon tissues of the DSS Ctrl group compared with those of the Ctrl group. In contrast, administration of SQE significantly down-regulated SOD2 and Gpx1 expressions and up-regulated SOD1 expression. Conclusions: These results indicate that SQE efficiently suppresses oxidative stress in DSS-induced colitis in mice, and its action is associated with the regulation of antioxidant enzymes. PMID:26151047

  2. Method for producing capsular polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor); Richards, Gil F. (Inventor)

    1994-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  3. Chemical Modification of Polysaccharides

    PubMed Central

    Cumpstey, Ian

    2013-01-01

    This review covers methods for modifying the structures of polysaccharides. The introduction of hydrophobic, acidic, basic, or other functionality into polysaccharide structures can alter the properties of materials based on these substances. The development of chemical methods to achieve this aim is an ongoing area of research that is expected to become more important as the emphasis on using renewable starting materials and sustainable processes increases in the future. The methods covered in this review include ester and ether formation using saccharide oxygen nucleophiles, including enzymatic reactions and aspects of regioselectivity; the introduction of heteroatomic nucleophiles into polysaccharide chains; the oxidation of polysaccharides, including oxidative glycol cleavage, chemical oxidation of primary alcohols to carboxylic acids, and enzymatic oxidation of primary alcohols to aldehydes; reactions of uronic-acid-based polysaccharides; nucleophilic reactions of the amines of chitosan; and the formation of unsaturated polysaccharide derivatives. PMID:24151557

  4. The effect of polysaccharide depolymerizing enzyme in gel diffusion and haemagglutination studies

    PubMed Central

    Watson, K. C.

    1966-01-01

    Enzyme causing depolymerization of homologous polysaccharide is released during the lytic cycle of phage infection of certain encapsulated bacteria. A study of an enzyme active on Klebsiella pneumoniae type 2 polysaccharide showed that in gel diffusion tests it was capable of disrupting precipitates composed of polysaccharide and homologous antibody. This reaction was specifically inhibited by a rabbit anti-enzyme serum. In haemagglutination tests polysaccharide coated cells failed to agglutinate with antiserum after exposure to high enzyme concentrations. Similarly, enzyme treated polysaccharide was incapable of inhibiting agglutination of substrate coated cells. PMID:4956606

  5. Ulvans induce resistance against plant pathogenic fungi independently of their sulfation degree.

    PubMed

    de Freitas, Mateus B; Ferreira, Luciana G; Hawerroth, Caroline; Duarte, Maria Eugênia R; Noseda, Miguel D; Stadnik, Marciel J

    2015-11-20

    The present work aimed to evaluate the defense responses induced by chemically sulfated ulvans in Arabidopsis thaliana plants against the phytopathogenic fungi Alternaria brassicicola and Colletotrichum higginsianum. Derivatives with growing sulfate content (from 20.9 to 36.6%) were prepared with SO3-pyridine complex in formamide. NMR and FTIR spectroscopic analyses confirmed the increase of sulfate groups after the chemical sulfation process. The native sulfated polysaccharide (18.9% of sulfate) and its chemically sulfated derivatives similarly reduced the severity of both pathogenic fungi infections. Collectively, our results suggest that ulvans induce resistance against both fungal pathogens independently of its sulfation degree. PMID:26344294

  6. Antiangiogenic activities of polysaccharides isolated from medicinal fungi.

    PubMed

    Chen, Shih Chung; Lu, Mei-Kuang; Cheng, Jing-Jy; Wang, Danny Ling

    2005-08-15

    Extracted polysaccharides from medicinal fungi, including Antrodia cinnamomea, Antrodia malicola, Antrodia xantha, Antrodiella liebmannii, Agaricus murrill, and Rigidoporus ulmarius, were investigated for their effects on vascular endothelial growth factor (VEGF)-induced tube formation in endothelial cells (ECs). Chemical analysis revealed that myo-inositol, sorbitol, fucose, galactosamine, glucosamine, galactose, glucose, and mannose were the neutral sugars in these polysaccharides. These fungal polysaccharides showed no toxicity to ECs. For the inhibition of endothelial tube formation, extracted polysaccharides from A. xantha and R. ulmarius were shown to produce greater inhibition compared to those from other fungi. Fucose, glucose and mannose were the predominant monosaccharides from these two fungi. These results suggest that monosaccharides may play a role in the inhibitory effect of these fungi on endothelial tube formation. In contrast to the inhibition on tube formation from polysaccharides of A. cinnamomea and A. malicola, polysaccharides from A. xantha and R. ulmarius, with molecular weight between 2693-2876 and 304-325 kDa, were critical for this inhibitory activity. Our results show that polysaccharides isolated from A. xantha and R. ulmarius provide greater antiangiogenesis than those from commercialized A. murrill (Brazilian mushroom) and A. cinnamomea. These studies provide a basis for the potential development of these polysaccharides for antiangiogenesis usage. PMID:16046081

  7. Renal heparan sulfate proteoglycans modulate fibroblast growth factor 2 signaling in experimental chronic transplant dysfunction.

    PubMed

    Katta, Kirankumar; Boersema, Miriam; Adepu, Saritha; Rienstra, Heleen; Celie, Johanna W A M; Mencke, Rik; Molema, Grietje; van Goor, Harry; Berden, Jo H M; Navis, Gerjan; Hillebrands, Jan-Luuk; van den Born, Jacob

    2013-11-01

    Depending on the glycan structure, proteoglycans can act as coreceptors for growth factors. We hypothesized that proteoglycans and their growth factor ligands orchestrate tissue remodeling in chronic transplant dysfunction. We have previously shown perlecan to be selectively up-regulated in the glomeruli and arteries in a rat renal transplantation model. Using the same model, here we present quantitative RT-PCR profiling data on proteoglycans and growth factors from laser-microdissected glomeruli, arterial tunicae mediae, and neointimae at 12 weeks after transplantation. In glomeruli and neointimae of allografts, selective induction of the matrix heparan sulfate proteoglycan perlecan was observed, along with massive accumulation of fibroblast growth factor 2 (FGF2). Profiling the heparan sulfate polysaccharide side chains revealed conversion from a non-FGF2-binding heparan sulfate phenotype in control and isografted kidneys toward a FGF2-binding phenotype in allografts. In vitro experiments with perlecan-positive rat mesangial cells showed that FGF2-induced proliferation is dependent on sulfation and can be inhibited by exogenously added heparan sulfate. These findings indicate that matrix proteoglycans such as perlecan serve as functional docking platforms for FGF2 in chronic transplant dysfunction. We speculate that heparin-like glycomimetics could be a promising intervention to retard development of glomerulosclerosis and neointima formation in chronic transplant dysfunction. PMID:24035513

  8. Extracellular matrix of smooth muscle cells: interaction of collagen type V with heparan sulfate proteoglycan

    SciTech Connect

    Gay, S.; Hoeoek, M.; Gay, R.E.; Magargal, W.W.; Reynertson, R.H.

    1986-03-05

    Alteration in the extracellular matrix produced by smooth muscle cells may play a role in the development of atherosclerotic lesions. Consequently the authors have initiated studies on the structural organization of the extracellular matrix produced by cultured smooth muscle cells. Immunohisotological examination of this matrix using well-characterized mono- and polyclonal antibodies showed a partial codistribution of heparan sulfate (HS) proteoglycans with a number of different matrix components including collagen types I, III, IV, V and VI, laminin and fibronectin. Subsequent binding studies between isolated matrix proteins and HS showed that the polysaccharide interacts strongly with type V collagen and to a lesser extent with fibronectin as well as collagen types III and VI. The interaction between type V and HS was readily inhibited by heparin and highly sulfated HS but not be dermatan sulfate, chondroitin sulfate or HS with a low sulfate content. Furthermore, (/sup 35/S)-HS proteoglycans isolated from cultured smooth muscle cells could be adsorbed on a column of sepharose conjugated with native type V collagen and eluted in a salt gradient. Hence, the interaction between type V and HS may play a major part in stabilizing the extracellular matrix of the vessel wall.

  9. PS3, a semisynthetic beta-1,3-glucan sulfate, diminishes contact hypersensitivity responses through inhibition of L- and P-selectin functions.

    PubMed

    Alban, Susanne; Ludwig, Ralf J; Bendas, Gerd; Schön, Michael P; Oostingh, Gertie J; Radeke, Heinfried H; Fritzsche, Juliane; Pfeilschifter, Josef; Kaufmann, Roland; Boehncke, Wolf-Henning

    2009-05-01

    Leukocyte extravasation is initiated by an interaction of selectin adhesion molecules and appropriate carbohydrate ligands. Targeting those interactions seems a promising approach to treat chronic inflammation. We developed a beta-1, 3-glucan sulfate (PS3) with inhibitory activity toward L and P-selectins under static conditions. Here, detailed investigation showed inhibition of P- and L-selectins, but not E-selectin under flow conditions (relative reduction of interaction with appropriate ligands to 34.4+/-16.6, 8.5+/-3.6, or 99.5+/-9.9%, respectively, by PS3 for P-, L- or E-selectin). Intravital microscopy revealed reduction of leukocyte rolling in skin microvasculature from 22.7+/-5.0 to 12.6+/-4.0% after injection of PS3. In the next experiments, mice were sensitized with 2,4,-dinitrofluorobenzene (DNFB), and lymphocytes were transferred into syngeneic recipients, which were challenged by DNFB. Inflammatory responses were reduced when immunity was generated in mice treated with PS3 or in L-selectin-deficient mice. No effect was observed when L-selectin-deficient donor mice were treated with PS3, further suggesting that PS3 acted primarily through inhibition of L-selectin. Elicitation of a contact hypersensitivity response was reduced in P-selectin-deficient and in PS3-treated mice. Again, PS3 had no effect in P-selectin-deficient mice. PS3 is a potent P- and L-selectin inhibitor that may add to the therapy of inflammatory diseases. PMID:19052560

  10. Fucosylated Chondroitin Sulfates from the Body Wall of the Sea Cucumber Holothuria forskali

    PubMed Central

    Panagos, Charalampos G.; Thomson, Derek S.; Moss, Claire; Hughes, Adam D.; Kelly, Maeve S.; Liu, Yan; Chai, Wengang; Venkatasamy, Radhakrishnan; Spina, Domenico; Page, Clive P.; Hogwood, John; Woods, Robert J.; Mulloy, Barbara; Bavington, Charlie D.; Uhrn, Duan

    2014-01-01

    Fucosylated chondroitin sulfate (fCS) extracted from the sea cucumber Holothuria forskali is composed of the following repeating trisaccharide unit: ?3)GalNAc?4,6S(1?4) [Fuc?X(1?3)]GlcA?(1?, where X stands for different sulfation patterns of fucose (X = 3,4S (46%), 2,4S (39%), and 4S (15%)). As revealed by NMR and molecular dynamics simulations, the fCS repeating unit adopts a conformation similar to that of the Lex blood group determinant, bringing several sulfate groups into close proximity and creating large negative patches distributed along the helical skeleton of the CS backbone. This may explain the high affinity of fCS oligosaccharides for L- and P-selectins as determined by microarray binding of fCS oligosaccharides prepared by Cu2+-catalyzed Fenton-type and photochemical depolymerization. No binding to E-selectin was observed. fCS poly- and oligosaccharides display low cytotoxicity in vitro, inhibit human neutrophil elastase activity, and inhibit the migration of neutrophils through an endothelial cell layer in vitro. Although the polysaccharide showed some anti-coagulant activity, small oligosaccharide fCS fragments had much reduced anticoagulant properties, with activity mainly via heparin cofactor II. The fCS polysaccharides showed prekallikrein activation comparable with dextran sulfate, whereas the fCS oligosaccharides caused almost no effect. The H. forskali fCS oligosaccharides were also tested in a mouse peritoneal inflammation model, where they caused a reduction in neutrophil infiltration. Overall, the data presented support the action of fCS as an inhibitor of selectin interactions, which play vital roles in inflammation and metastasis progression. Future studies of fCS-selectin interaction using fCS fragments or their mimetics may open new avenues for therapeutic intervention. PMID:25147180

  11. TOP 1 and 2, polysaccharides from Taraxacum officinale, inhibit NFκB-mediated inflammation and accelerate Nrf2-induced antioxidative potential through the modulation of PI3K-Akt signaling pathway in RAW 264.7 cells.

    PubMed

    Park, Chung Mu; Cho, Chung Won; Song, Young Sun

    2014-04-01

    Anti-inflammatory and anti-oxidative activities of polysaccharides from Taraxacum officinale (TOP 1 and 2) were analyzed in RAW 264.7 cells. First, lipopolysaccharide (LPS) was applied to identify anti-inflammatory activity of TOPs, which reduced expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α. TOPs treatment inhibited phosphorylation of inflammatory transcription factor, nuclear factor (NF)κB, and its upstream signaling molecule, PI3K/Akt. Second, cytoprotective potential of TOPs against oxidative stress was investigated via heme oxygenase (HO)-1 induction. HO-1, one of phase II enzymes shows antioxidative activity, was potently induced by TOPs treatment, which was in accordance with the nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). In addition, TOPs treatment phosphorylated PI3K/Akt with slight activation of c-Jun NH2-terminal kinase (JNK). TOPs-mediated HO-1 induction protected macrophage cells from oxidative stress-induced cell death, which was confirmed by SnPP and CoPP (HO-1 inhibitor and inducer, respectively). Consequently, TOPs potently inhibited NFκB-mediated inflammation and accelerated Nrf2-mediated antioxidative potential through the modulation of PI3K/Akt pathway, which would contribute to their promising strategy for novel anti-inflammatory and anti-oxidative agents. PMID:24447978

  12. Properties of polysaccharides in several seaweeds from Atlantic Canada and their potential anti-influenza viral activities

    NASA Astrophysics Data System (ADS)

    Jiao, Guangling; Yu, Guangli; Wang, Wei; Zhao, Xiaoliang; Zhang, Junzeng; Ewart, Stephen H.

    2012-06-01

    To explore the polysaccharides from selected seaweeds of Atlantic Canada and to evaluate their potential anti-influenza virus activities, polysaccharides were isolated from several Atlantic Canadian seaweeds, including three red algae ( Polysiphonia lanosa, Furcellaria lumbricalis, and Palmaria palmata), two brown algae ( Ascophyllum nodosum and Fucus vesiculosus), and one green alga ( Ulva lactuca) by sequential extraction with cold water, hot water, and alkali solutions. These polysaccharides were analyzed for monosaccharide composition and other general chemical properties, and they were evaluated for anti-influenza virus activities. Total sugar contents in these polysaccharides ranged from 15.4% (in U. lactuca) to 91.4% (in F. lumbricalis); sulfation level was as high as 17.6% in a polysaccharide from U. lactuca, whereas it could not be detected in an alikali-extract from P. palmaria. For polysaccharides from red seaweeds, the main sugar units were sulfated galactans (agar or carrageenan) for P. lanosa, F. lumbricalis, and xylans for P. palmata. In brown seaweeds, the polysaccharides largely contained sulfated fucans, whereas the polysaccharides in green seaweed were mainly composed of heteroglycuronans. Screening for antiviral activity against influenza A/PR/8/34 (H1N1) virus revealed that brown algal polysaccharides were particularly effective. Seaweeds from Atlantic Canada are a good source of marine polysaccharides with potential antiviral properties.

  13. Structural Analysis and Anti-Complement Activity of Polysaccharides from Kjellmaniella crsaaifolia

    PubMed Central

    Zhang, Wenjing; Jin, Weihua; Sun, Delin; Zhao, Luyu; Wang, Jing; Duan, Delin; Zhang, Quanbin

    2015-01-01

    Two polysaccharides, named KCA and KCW, were extracted from Kjellmaniella crassifolia using dilute hydrochloric acid and water, respectively. Composition analysis showed that these polysaccharides predominantly consisted of fucose, with galactose, mannose and glucuronic acid as minor components. After degradation and partial desulfation, electrospray ionization mass spectrometry (ESI-MS) was performed, which showed that the polysaccharides consisted of sulfated fucooligosaccharides, sulfated galactofucooligosaccharides and methyl glycosides of mono-sulfated/multi-sulfated fucooligosaccharides. The structures of the oligomeric fragments were further characterized by electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS2 and ESI-CID-MS3). Moreover, the activity of KCA and KCW against the hemolytic activity of both the classical and alternative complement pathways was determined. The activity of KCA was found to be similar to KCW, suggesting that the method of extraction did not influence the activity. In addition, the degraded polysaccharides (DKCA and DKCW) displayed lower activity levels than the crude polysaccharides (KCA and KCW), indicating that molecular weight had an effect on activity. Moreover, the desulfated fractions (ds-DKCA and ds-DKCW) showed less or no activity, which confirmed that sulfate was important for activity. In conclusion, polysaccharides from K. crassifolia may be good candidates for the treatment of diseases involving the complement pathway. PMID:25786064

  14. Structural analysis and anti-complement activity of polysaccharides from Kjellmaniella crsaaifolia.

    PubMed

    Zhang, Wenjing; Jin, Weihua; Sun, Delin; Zhao, Luyu; Wang, Jing; Duan, Delin; Zhang, Quanbin

    2015-03-01

    Two polysaccharides, named KCA and KCW, were extracted from Kjellmaniella crassifolia using dilute hydrochloric acid and water, respectively. Composition analysis showed that these polysaccharides predominantly consisted of fucose, with galactose, mannose and glucuronic acid as minor components. After degradation and partial desulfation, electrospray ionization mass spectrometry (ESI-MS) was performed, which showed that the polysaccharides consisted of sulfated fucooligosaccharides, sulfated galactofucooligosaccharides and methyl glycosides of mono-sulfated/multi-sulfated fucooligosaccharides. The structures of the oligomeric fragments were further characterized by electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS2 and ESI-CID-MS3). Moreover, the activity of KCA and KCW against the hemolytic activity of both the classical and alternative complement pathways was determined. The activity of KCA was found to be similar to KCW, suggesting that the method of extraction did not influence the activity. In addition, the degraded polysaccharides (DKCA and DKCW) displayed lower activity levels than the crude polysaccharides (KCA and KCW), indicating that molecular weight had an effect on activity. Moreover, the desulfated fractions (ds-DKCA and ds-DKCW) showed less or no activity, which confirmed that sulfate was important for activity. In conclusion, polysaccharides from K. crassifolia may be good candidates for the treatment of diseases involving the complement pathway. PMID:25786064

  15. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    SciTech Connect

    Sugumaran, G.; Silbert, J.E.

    1988-04-05

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-(14C)glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo(14C)chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo(14C)chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo(14C) chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo(14C)chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo(14C)chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo(14C)chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo(14C)chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent.

  16. G1-4A, a Polysaccharide from Tinospora cordifolia Inhibits the Survival of Mycobacterium tuberculosis by Modulating Host Immune Responses in TLR4 Dependent Manner

    PubMed Central

    Gupta, Pramod Kumar; Chakraborty, Pampi; Kumar, Santosh; Singh, Prafull Kumar; Rajan, M. G. R.; Sainis, Krishna B.; Kulkarni, Savita

    2016-01-01

    Rapid emergence of drug resistance in Mycobacterium tuberculosis (MTB) is a major health concern and demands the development of novel adjunct immunotherapeutic agents capable of modulating the host immune responses in order to control the pathogen. In the present study, we sought to investigate the immunomodulatory effects of G1-4A, a polysaccharide derived from the Indian medicinal plant Tinospora cordifolia, in in-vitro and aerosol mouse models of MTB infection. G1-4A treatment of MTB infected RAW264.7 macrophages significantly induced the surface expression of MHC-II and CD-86 molecules, secretion of proinflammatory cytokines (TNF-α, IL-β, IL-6, IL-12, IFN-γ) and nitric oxide leading to reduced intracellular survival of both drug sensitive (H37Rv) as well as multi drug resistant strains (Beijing and LAM) of MTB, which was partially attributed to G1-4A induced NO production in TLR4-MyD88 dependent manner. Similarly, bacillary burden was significantly reduced in the lungs of MTB infected BALB/c mice treated with G1-4A, with simultaneous up-regulation of the expression of TNF-α, INF-γ and NOS2 in the mouse lung along with increased levels of Th1 cytokines like IFN-γ, IL-12 and decreased levels of Th2 cytokine like IL-4 in the serum. Furthermore, combination of G1-4A with Isoniazid (INH) exhibited better protection against MTB compared to that due to INH or G1-4A alone, suggesting its potential as adjunct therapy. Our results demonstrate that modulation of host immune responses by G1-4A might improve the therapeutic efficacy of existing anti-tubercular drugs and provide an attractive strategy for the development of alternative therapies to control tuberculosis. PMID:27148868

  17. Polysaccharides from the green seaweed Codium decorticatum. Structure and cell wall distribution.

    PubMed

    Fernández, Paula Virginia; Raffo, María Paula; Alberghina, Josefina; Ciancia, Marina

    2015-03-01

    The cell wall polysaccharides from Codium decorticatum and their assembly were studied and these results were compared with those obtained previously for this genus. The water soluble polysaccharides are: (i) Pyruvylated and sulfated 3- and 6-linked β-D-galactans with sulfate mainly on C-4 and also on C-6. Pyruvate ketals are linked to O-3 and O-4 of terminal β-D-galactose or O-4 and O-6 of 3-linked β-D-galactose. (ii) Sulfated 3-linked β-L-arabinans substituted on C-2 or C-2 and C-4 predominantly with sulfate, but also with single stubs of arabinose, and (iii) 4-linked β-D-mannans with a low degree of sulfation on C-2. The whole polysaccharide system comprises 6.9% of sulfated polysaccharides and 32.9% of fibrillar polysaccharides, mostly insoluble mannans. By in situ localization it was possible to detect two similar fibrillar layers separated by a zone rich in charged polymers. Besides, arabinogalactan proteins co-localized with the fibrillar components. PMID:25498707

  18. Comparison of antioxidant and antiproliferation activities of polysaccharides from eight species of medicinal mushrooms.

    PubMed

    Chen, Peiying; Yong, Yangyang; Gu, Yifan; Wang, Zeliang; Zhang, Shizhu; Lu, Ling

    2015-01-01

    Polysaccharides from mushrooms including Pleurotus eryngii, P. ostreatus, P. nebrodensis, Lentinus edodes, Hypsizygus marmoreus, Flammulina velutipes, Ganoderma lucidum, and Hericium erinaceus were isolated by water extraction and alcohol precipitation. Our results suggest that all tested polysaccharides have the significant antioxidant capacities of scavenging free radicals (1,1-diphenyl-2-picrylhydrazyl and hydroxyl radicals). Among them, the H. erinaceus polysaccharide exhibits the highest 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity, whereas the L. edodes polysaccharide shows the strongest scavenging ability for hydroxyl radicals. Furthermore, using the MCF-7 breast cancer cell line and HeLa cells, all 8 selected polysaccharides are able to inhibit the proliferation of tumor cells, but the strength of inhibition varied depending on the mushroom species and the concentration used. Notably, G. lucidum polysaccharide shows the highest inhibition activity on MCF-7 cells. By comparison, H. erinaceus polysaccharide has the strongest inhibitory effect on HeLa cells. Moreover, high-performance liquid chromatography with a carbohydrate analysis column showed significant differences in polysaccharide components among these mushrooms. Thus our data suggest that the different species of mushrooms have the variable functions because of their own specific polysaccharide components. The 8 mushroom polysaccharides have the potential to be used as valuable functional food additives or sources of therapeutic agents for antioxidant and cancer treatments, especially polysaccharides from H. erinaceus, L. edodes, and G. lucidum. PMID:25954912

  19. Polysaccharide isolated from Agardhiella ramosissima: chemical structure and anti-inflammation activity.

    PubMed

    Batista, Jalles A; Dias, Eulina G N; Brito, Tarcisio V; Prudêncio, Rafael S; Silva, Renan O; Ribeiro, Ronaldo A; Souza, Marcellus Henrique L P; de Paula, Regina C M; Feitosa, Judith P A; Chaves, Luciano S; Melo, Márcia R S; Freitas, Ana L P; Medeiros, Jand-Venes R; Barbosa, André L R

    2014-01-01

    The sulfated polysaccharide (PLS) fraction of Agardhiella ramosissima was characterized by microanalysis, infrared spectroscopy, NMR and gas-liquid-chromatography-mass-spectrometry. The main constituent of PLS was the ι carrageenan. The monosaccharide composition of the PLS showed galactose, 3,6-anhydrogalactose and 6-O-methylgalactose. The PLS (30 mg kg(-1)) significantly reduced the paw oedema induced by carrageenan, dextran, histamine and serotonin and also was able to significantly inhibit leucocyte migration into the peritoneal cavity and decrease the concentration of myeloperoxidase (MPO) in paw tissue. In the antinociceptive tests, the pre-treatment with PLS reduced the number of writhes, the licking time but did not increase the latency time of response. This study demonstrates for the first time the anti-inflammatory and anti-nociceptive effects of PLS from A. ramosissima. Thus, we concluded that PLS could be a new natural tool in pain and acute inflammatory conditions. PMID:24274479

  20. Separation of neutralizing and hemagglutination-inhibiting antibody activities and specificity of antisera to sodium dodecyl sulfate-derived polypeptides of polyoma virions.

    PubMed Central

    Bolen, J B; Consigli, R A

    1980-01-01

    Antisera to the sodium dodecyl sulfate (SDS)-polyacrylamide gel-derived polyoma virion polypeptides were used in immunoprecipitation experiments with ethylene glycol-bis-N,N'-tetraacetic acid (EGTA)-dissociated polyoma virions and capsids to determine the specificity of the antipolyoma polypeptide sera. Additionally, a technique for applying 125I-labeled immunoglobulins to SDS-polyacrylamide gels was used to explore the antigenic specificities of the antisera. The results demonstrated that antisera directed against the SDS-gel-derived VP1, VP2, and VP3 did not react with native polyoma proteins, but would react with the appropriate antigens on denatured polyoma proteins. Antisera against the histone region of such gels reacted with native and denatured polyoma VP1. Separation of neutralizing antibodies from hemagglutination inhibition (HAI) antibodies to polyoma in antisera directed against the histone region of polyacrylamide gels was done by using a polyoma capsid affinity column. The antibodies eluted from this column which did not react with capsids possessed only neutralizing activity, whereas antibodies which bound to capsids possessed only HAI activity. These isolated immunoglobulin G fractions were then used in immunoprecipitation experiments to demonstrate that the antigenic determinants responsible for the HAI activity of the serum were contained on a 16,000-dalton polypeptide, whereas those antigenic determinants responsible for neutralizing activity were contained on a 14,000-dalton polypeptide. Both of these polypeptides present in the histone region of the SDS-gels appeared to be derived from the major virion protein VP1. PMID:6154803

  1. Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom.

    PubMed

    Xing, Peng; Hahnke, Richard L; Unfried, Frank; Markert, Stephanie; Huang, Sixing; Barbeyron, Tristan; Harder, Jens; Becher, Dörte; Schweder, Thomas; Glöckner, Frank Oliver; Amann, Rudolf I; Teeling, Hanno

    2015-06-01

    Members of the flavobacterial genus Polaribacter thrive in response to North Sea spring phytoplankton blooms. We analyzed two respective Polaribacter species by whole genome sequencing, comparative genomics, substrate tests and proteomics. Both can degrade algal polysaccharides but occupy distinct niches. The liquid culture isolate Polaribacter sp. strain Hel1_33_49 has a 3.0-Mbp genome with an overall peptidase:CAZyme ratio of 1.37, four putative polysaccharide utilization loci (PULs) and features proteorhodopsin, whereas the agar plate isolate Polaribacter sp. strain Hel1_85 has a 3.9-Mbp genome with an even peptidase:CAZyme ratio, eight PULs, a mannitol dehydrogenase for decomposing algal mannitol-capped polysaccharides but no proteorhodopsin. Unlike other sequenced Polaribacter species, both isolates have larger sulfatase-rich PULs, supporting earlier assumptions that Polaribacter take part in the decomposition of sulfated polysaccharides. Both strains grow on algal laminarin and the sulfated polysaccharide chondroitin sulfate. For strain Hel1_33_49, we identified by proteomics (i) a laminarin-induced PUL, (ii) chondroitin sulfate-induced CAZymes and (iii) a chondroitin-induced operon that likely enables chondroitin sulfate recognition. These and other data suggest that strain Hel1_33_49 is a planktonic flavobacterium feeding on proteins and a small subset of algal polysaccharides, while the more versatile strain Hel1_85 can decompose a broader spectrum of polysaccharides and likely associates with algae. PMID:25478683

  2. Polysaccharides and food processing.

    PubMed

    Pilnik, W; Rombouts, F M

    1985-10-01

    The rôle of polysaccharides during processing and for the quality of foods is discussed. Starch is the most important energy source for man. Most other polysaccharides are not metabolized for energy, but play an important rôle as dietary fibres. Pectins, alginates, carrageenans, and galactomannans are discussed as functional food additives in relation to their structure and their rheological behaviour, stability and interactions. Endogenous polysaccharides of fruits and vegetables and in products derived from them are responsible for such phenomena as texture (changes), press yields, ease of filtration and clarification, cloud stability, and mouth feel. To achieve desirable properties, the action of endogenous enzymes on polysaccharides must be inactivated and/or exogenous enzymes added as processing aids. This is also true for overcoming haze phenomena in clear juices or to break down undesirable microbial polysaccharides. Dough properties for bread baking can be improved by enzymic breakdown of a restrictive pentoglycan network. Network formation may come about by oxidative coupling of phenol rings of ferulic acid bound to hemicelluloses by ester links. Gels may be made by inducing oxidative coupling in natural or synthetic systems. Stagnation in development of new polysaccharide food additives is ascribed to difficulties in obtaining government approval for food use. PMID:3000594

  3. Species difference in the inhibitory potentials of non-steroidal anti-inflammatory drugs on the hepatic sulfation and glucuronidation of bioactive flavonoids: differential observations among common inhibition parameters.

    PubMed

    Fong, Sophia Yui Kau; Zuo, Zhong

    2014-05-01

    1. This study elucidated the species differences between rats and humans in the inhibitory potential of drugs against sulfation and glucuronidation, and whether such differences depend on the inhibition parameter adopted. 2. With 14 non-steroidal anti-inflammatory drugs (NSAIDs) as model inhibitors and three flavanoids baicalein, wogonin and oroxylin A as model substrates, three common inhibition parameters percentage of control, IC50 and Ki were determined in rat liver cytosols (RLCs), human liver cytosols (HLCs), rat liver microsomes (RLMs) and human liver microsomes (HLMs). The closeness of the inhibition parameters from rat liver preparations to that from human liver preparations was analyzed by geometric mean fold error (GMFE) and statistical comparisons. 3. The percentage of control in RLC/RLM was not significantly different from that in HLC/HLM, with a GMFE of 0.85 (RLC-HLC) and 1.03 (RLM-HLM); whereas the IC50 and Ki in RLC/RLM were significantly different from that in HLC/HLM. The trend of difference was consistent between IC50 and Ki, where these parameters in RLC and RLM underestimated (GMFE <0.5) and overestimated (GMFE >2) that in HLC and HLM, respectively. 4. In conclusion, the inhibitory potentials of NSAIDs against sulfation and glucuronidation in rats and humans were different and depended on the adopted inhibition parameters. PMID:24168065

  4. Inhibition of polysaccharide synthesis by the sinR orthologue PGN_0088 is indirectly associated with the penetration of Porphyromonas gingivalis biofilms by macrolide antibiotics.

    PubMed

    Yamamoto, Reiko; Noiri, Yuichiro; Yamaguchi, Mikiyo; Asahi, Yoko; Maezono, Hazuki; Ebisu, Shigeyuki; Hayashi, Mikako

    2015-02-01

    Microbes commonly adhere to surfaces, aggregate in self-produced extracellular polymeric substances (EPS) and live in biofilms. Periodontitis is a serious oral infection that is initiated by the formation of biofilms by Porphyromonas gingivalis. EPS act as a barrier that protects biofilm-forming cells against sources of stress, including those induced by host immune cells and antimicrobial agents. Therefore, drugs intended to kill such micro-organisms cannot be used for the treatment of biofilm infections. Our previous studies revealed that subminimal inhibitory concentrations (subMIC) of two macrolide antibiotics (azithromycin, AZM and erythromycin, ERY) reduced P. gingivalis biofilms. Furthermore, we demonstrated that the Bacillus subtilis sinR orthologue (PGN_0088) inhibits the synthesis of carbohydrates that are components of EPS in P. gingivalis biofilms. Here, we constructed a novel sinR mutant from P. gingivalis ATCC 33277 and reveal that the increased abundance of carbohydrate in EPS of the mutant led to a reduced infiltration rate of AZM and ERY through EPS, and consequently elevated biofilm resistance to these macrolides. Detailed elucidation of the interaction between the product of the sinR gene and EPS will assist in the development of novel approaches that target EPS to prevent and inhibit the formation of biofilms. PMID:25500494

  5. Diethyl sulfate

    Integrated Risk Information System (IRIS)

    Diethyl sulfate ; CASRN 64 - 67 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  6. Dimethyl sulfate

    Integrated Risk Information System (IRIS)

    Dimethyl sulfate ; CASRN 77 - 78 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  7. Inhibition of Amyloid A Amyloidogenesis in Vivo and in Tissue Culture by 4-Deoxy Analogues of Peracetylated 2-Acetamido-2-Deoxy-α- and β-d-Glucose

    PubMed Central

    Kisilevsky, Robert; Szarek, Walter A.; Ancsin, John B.; Elimova, Elena; Marone, Sandra; Bhat, Shridhar; Berkin, Ali

    2004-01-01

    Two novel sugars, 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-α- and β-d-xylo-hexopyranoses, have been synthesized and their effects on heparan sulfate biosynthesis using primary mouse hepatocytes in tissue culture have been assessed. At concentrations of 0.1 and 1.0 mmol/L a mixture of both anomers significantly inhibited the biosynthesis of heparan sulfate by 60% and 99%, respectively. At 1.0 mmol/L the average molecular weight of the heparan sulfate synthesized is reduced from 77 kd to 40 kd. The biosynthetic inhibition is apparent within 1 hour (the earliest time point examined) of exposure of the hepatocytes to the analogues and appears virtually complete throughout a 24-hour incubation period. Using a radiolabeled version of the β-anomer we demonstrate that the analogue is incorporated into growing heparan sulfate chains. The nature of the analogue, the quantity of analogue isotope incorporated, and the reduction in the size of the heparan sulfate polysaccharide are consistent with UDP activation and incorporation of the analogue and truncation of the growing heparan sulfate chain. At 0.1 mmol/L, and in the presence of a constant concentration of serum amyloid A (the precursor to AA amyloid), each analogue inhibited amyloid deposition (by 95 to 99%) in a tissue culture model of AA amyloidogenesis. At 6 mg/dose twice daily each analogue inhibited in vivo splenic AA amyloid deposition by 65 to 70% when using a rapid induction model of mouse AA amyloidogenesis. These data indicate that polysaccharides, such as heparan sulfate, play an integral part in the pathogenesis of AA amyloid deposition, and potentially other forms of amyloid. These data support our previous work that demonstrated that agents that mimic aspects of heparan sulfate structure and that interfere with heparan sulfate:amyloid protein binding inhibit AA amyloid deposition. They emphasize that heparan sulfate likely plays a critical role in amyloidogenesis, and compounds that interfere with heparan sulfate biosynthesis may provide leads for the development of anti-amyloid therapeutic agents. PMID:15161647

  8. Isolation and antiviral activity of water-soluble Cynomorium songaricum Rupr. polysaccharides.

    PubMed

    Tuvaanjav, Suvdmaa; Shuqin, Han; Komata, Masashi; Ma, Chunjie; Kanamoto, Taisei; Nakashima, Hideki; Yoshida, Takashi

    2016-02-01

    The plant, Cynomorium songaricum Rupr., is used as a traditional medicine in China and Mongolia. In the present study, two new water-soluble polysaccharides isolated from C. songaricum Rupr. were purified by successive Sephadex G-75 and G-50 column chromatographies and then characterized by high resolution NMR and IR spectroscopies. The molecular weights of two polysaccharides were determined by an aqueous GPC to be [Formula: see text] = 3.7 × 10(4) and 1.0 × 10(4), respectively. In addition, it was found that the polysaccharide with the larger molecular weight was an acidic polysaccharide. It was found that the iodine-starch reaction of both isolated polysaccharides was negative and the methylation analysis gave 2, 4, 6-tri-O-methyl alditol acetate as a main product. NMR and IR measurements and sugar analysis revealed that both polysaccharides had a (1 → 3)-α-d-glucopyranosidic main chain with a small number of branches. After sulfation, the sulfated C. songaricum Rupr. polysaccharides were found to have a potent inhibitory effect on HIV infection of MT-4 cells at a 50% effective concentration of 0.3-0.4 μg/ml, a concentration that has almost the same high activity as standard dextran and curdlan sulfates, EC50 = 0.35 and 0.14 μg/ml, respectively. The 50% cytotoxic concentration was low, CC50>1000 μg/ml. In addition, the interaction between the sulfated polysaccharides and poly-l-lysine as a model protein compound was investigated by a surface plasmon resonance to reveal the anti-HIV mechanism. PMID:26838028

  9. Glucose cryoprotectant affects glutathione-responsive antitumor drug release from polysaccharide nanoparticles.

    PubMed

    Curcio, Manuela; Blanco-Fernández, Bárbara; Costoya, Alejandro; Concheiro, Angel; Puoci, Francesco; Alvarez-Lorenzo, Carmen

    2015-06-01

    The aim of this work was to prepare polysaccharide-based nanoparticles (NPs) sensitive to glutathione (GSH), and to elucidate the effect of the concentration of glucose used as cryoprotectant during freeze-drying on the GSH-responsiveness. NPs were obtained via ionic interaction between negatively charged polysaccharides, chondroitin sulfate and dermatan sulfate, and the positively charged thiolated chitosan (CSSH), and crosslinking of CSSH before or after the nanoparticles formation with a disulfide-bond containing crosslinker, N,N'-bis(acryloyl)cystamine (BAC). NPs were freeze-dried with glucose at two different concentrations (0.5 and 5.0%w/w) and then characterized as methotrexate delivery systems, studying the effect of GSH concentration on drug release, efficacy against tumor cells and cellular internalization. Non-loaded NPs were highly compatible with murine fibroblasts and showed a suitable size for being used in anticancer therapy. When methotrexate-loaded NPs were freeze-dried with the highest glucose concentration, they lost their responsiveness to GSH concentration in vitro. Drug-loaded NPs were shown to inhibit the growth of tumor cells (HeLa and CHO-K1) with greater efficiency than free methotrexate, disregarding the concentration of glucose used for freeze-drying. Nevertheless, confocal microscopy studies revealed that cellular internalization of NPs freeze-dried with 5.0% glucose is more difficult than for NPs freeze-dried with lower glucose concentration. Thus, concentration of glucose cryoprotectant should be taken into account during development of NPs intended to release the drug as a function of GSH levels, due to the specific interactions of glucose with GSH. PMID:25917641

  10. Pleurotus tuber-regium Polysaccharides Attenuate Hyperglycemia and Oxidative Stress in Experimental Diabetic Rats

    PubMed Central

    Huang, Hui-Yu; Korivi, Mallikarjuna; Chaing, Ying-Ying; Chien, Ting-Yi; Tsai, Ying-Chieh

    2012-01-01

    Pleurotus tuber-regium contains polysaccharides that are responsible for pharmacological actions, and medicinal effects of these polysaccharides have not yet been studied in diabetic rats. We examined the antidiabetic, antihyperlipidemic, and antioxidant properties of P. tuber-regium polysaccharides in experimental diabetic rats. Forty rats were equally assigned as diabetic high-fat (DHF) diet and polysaccharides treated DHF groups (DHF+1P, DHF+2P, and DHF+3P, 20 mg/kg bodyweight/8-week). Diabetes was induced by chronic low-dose streptozotocin injections and a high-fat diet to mimic type 2 diabetes. Polysaccharides (1P, 2P, and 3P) were extracted from three different strains of P. tuber-regium. Fasting blood glucose and glycosylated hemoglobin (HbA1c) levels substantially decreased, while serum insulin levels were restored by polysaccharides treatment compared to DHF. Furthermore, plasma total cholesterol, triglycerides, and low-density lipoprotein levels were significantly (P < 0.01) lower in polysaccharide groups. High-density lipoprotein levels were attenuated with polysaccharides against diabetes condition. Polysaccharides inhibited (P < 0.01) the lipid peroxidation index (malondialdehyde), and restored superoxide dismutase and glutathione peroxidase activities in the liver of diabetic rats. The antihyperglycemic property of polysaccharides perhaps boosts the antioxidant system that attenuates oxidative stress. We emphasize that P. tuber-regium polysaccharides can be considered as an alternative medicine to treat hyperglycemia and oxidative stress in diabetic rats. PMID:22973406

  11. Monosaccharide precursors for boosting chondroitin-like capsular polysaccharide production.

    PubMed

    Restaino, Odile Francesca; di Lauro, Irene; Cimini, Donatella; Carlino, Elisabetta; De Rosa, Mario; Schiraldi, Chiara

    2013-02-01

    Chondroitin sulfate is a well-known bioactive molecule, widely used as an anti-osteoarthritis drug, that is nowadays mainly produced by animal tissue sources with unsafe extraction procedures. Recent studies have explored an integrated biotechnological-chemical strategy to obtain a chondroitin sulfate precursor from Escherichia coli K4 capsular polysaccharide, demonstrating the influence of environmental and growth conditions on capsule synthesis. In this research work, the flexibility of the strain biosynthetic machinery was investigated to enhance the K4 capsular polysaccharide production by supplementing the growth medium with the monosaccharides (glucuronic acid, galactosamine and fructose) that constitute the chain. Shake flask experiments were performed by adding the sugars singularly or together, by testing monosaccharide different concentrations and times of addition and by observing the bacterial sugar consumption. A K4 capsular polysaccharide production enhancement, compared to the control, was observed in all cases of supplementation and, in particular, significant 68 and 57 % increases were observed when adding 0.385 mM glucuronic acid plus galactosamine or 0.385 mM fructose, respectively. Increased expression levels of the gene kfoC, coding for a K4 polymerase, evaluated in different growth conditions, confirmed the results at the molecular level. Furthermore, batch fermentations, performed in lab-scale reactors (2 L), allowed to double the K4 capsular polysaccharide production values obtained in shake flask conditions, by means of a strict control of the growth parameters. PMID:23053067

  12. Pneumococcal Polysaccharide Vaccine

    MedlinePlus

    ... But some strains of the disease have become resistant to these drugs. This makes prevention of the disease, through vaccination, even more important. Pneumococcal polysaccharide vaccine (PPSV) protects against 23 types of pneumococcal bacteria, including those most likely to cause serious disease. ...

  13. Using an Enzymatic Combinatorial Approach to Identify Novel Anticoagulant Heparan Sulfate Structures

    PubMed Central

    Chen, Jinghua; Jones, Courtney L.; Liu, Jian

    2016-01-01

    Heparan sulfate (HS) represents a major class of glycans that perform central physiological functions. Emerging HS and glycosaminoglycan microarray techniques are used to interrogate the structure and function relationship to develop novel therapeutic agents. Availability of HS with specific sulfation patterns has been a limiting factor, and impedes the accuracy of HS glycomics studies. Although organic synthesis provides oligosaccharides, these may not fully represent the biological functions of polysaccharides. Here, we present a study for developing an enzyme-based approach to synthesize a polysaccharide library with different sulfation patterns. Using different combinations of biosynthetic enzymes, we synthesized eight unique polysaccharides. We discovered that polysaccharides without iduronic acid residue displayed strong binding affinity to antithrombin and high anti-Xa and anti-IIa activities. The enzyme-based synthetic approach could become a general method for discovering new HS structures with unique biological functions. PMID:17884631

  14. Polysaccharide lyases: recent developments as biotechnological tools.

    PubMed

    Michaud, P; Da Costa, A; Courtois, B; Courtois, J

    2003-01-01

    Polysaccharide lyases, which are polysaccharide cleavage enzymes, act mainly on anionic polysaccharides. Produced by prokaryote and eukaryote organisms, these enzymes degrade (1,4) glycosidic bond by a beta elimination mechanism and have unsaturated oligosaccharides as major products. New polysaccharides are cleaved only by their specific polysaccharide lyases. From anionic polysaccharides controlled degradations, various biotechnological applications were investigated. This review catalogues the degradation of bacterial, plant and animal polysaccharides (neutral and anionic) by this family of carbohydrate acting enzymes. PMID:15224891

  15. Interaction of secretory leukocyte protease inhibitor with heparin inhibits proteases involved in asthma.

    PubMed

    Fath, M A; Wu, X; Hileman, R E; Linhardt, R J; Kashem, M A; Nelson, R M; Wright, C D; Abraham, W M

    1998-05-29

    Protease inhibition by secretory leukocyte protease inhibitor (SLPI) is accelerated by the sulfated polysaccharides. The nature of the SLPI-polysaccharide interaction, explored with affinity chromatography, indicated that this interaction was sensitive to the charge and type of polysaccharide. Dextran and chondroitin had the lowest affinity for SLPI, followed by dermatan, heparan, and dextran sulfates. While heparin bound SLPI tightly, the highest affinity heparin chains unexpectedly contained a lower level of sulfation than more weakly interacting chains. Heparin oligosaccharides, prepared using heparin lyase I were SLPI-affinity fractionated. Surprisingly, undersulfated heparin oligosaccharides bound SLPI with the highest affinity, suggesting the importance of free hydroxyl groups for high affinity interaction. Isothermal titration calorimetry was used to determine the thermodynamics of SLPI interaction with a low molecular weight heparin, an undersulfated decasaccharide and a tetrasaccharide. The studies showed 12-14 saccharide units, corresponding to molecular weight of approximately 4,800, were required for a 1:1 (SLPI:heparin) binding stoichiometry. Furthermore, an undersulfated decasaccharide was able to bind SLPI tightly (Kd approximately 13 nM), resulting in its activation and the inhibition of neutrophil elastase and pancreatic chymotrypsin. The in vitro assessment of heparin and the decasaccharide and tetrasaccharide using stopped-flow kinetics suggested that heparin was the optimal choice to study SLPI-based in vivo protease inhibition. SLPI and heparin were co-administered by inhalation in therapy against antigen-induced airway hyperresponsiveness in a sheep bronchoprovocation model. Heparin, in combination with SLPI demonstrated in vivo efficacy reducing early and late phase bronchoconstriction. Heparin also increased the therapeutic activity of SLPI against antigen-induced airway hyperresponsiveness. PMID:9593692

  16. Fermentation optimization and antioxidant activities of mycelial polysaccharides from Morchella esculenta using soybean residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mycelial polysaccharides from Morchella esculenta are active ingredients in a number of medicines that play important roles in immunity improvement and tumor growth inhibition. So far, the production of polysaccharides from M. esculenta mycelia has not been commercialized. The aims of this wor...

  17. Influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of acidic, neutral and basic polysaccharides.

    PubMed

    Wang, Qing-Chi; Zhao, Xia; Pu, Jiang-Hua; Luan, Xiao-Hong

    2016-06-01

    Monosaccharide composition analysis is important for structural characterization of polysaccharides. To investigate the influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of polysaccharides, we chose alginate, starch, chitosan and chondroitin sulfate as representative of acidic, neutral, basic and complex polysaccharides to compare the release degree of monosaccharides under different hydrolytic conditions. The hydrolysis stability of 10 monosaccharide standards was also explored. Results showed that the basic sugars were hard to release but stable, the acidic sugars (uronic acids) were easy to release but unstable, and the release and stability of neutral sugars were in between acidic and basic sugars. In addition, the hydrolysis process was applied to monosaccharide composition analysis of Hippocampus trimaculatus polysaccharide and the appropriate hydrolytic condition was accorded with that of the above four polysaccharides. Thus, different hydrolytic conditions should be used for the monosaccharide composition analysis of polysaccharides based on their structural characteristics. PMID:27083372

  18. Chemically sulfated galactomannan from Dimorphandra gardneriana seed: characterization and toxicity evaluation.

    PubMed

    Moura Neto, E; Sombra, V G; Richter, A R; Abreu, C M W S; Maciel, J S; Cunha, P L R; Ono, L; Sierakowski, M R; Feitosa, J P A; de Paula, R C M

    2014-01-30

    Dimorphandra gardneriana galactomannan (DG) was sulfated in pyridine:formamide using chlorosulfonic acid as the sulfation agent. The degree of substitution was 0.32, determined from the sulfur percentage. Confirmation of sulfation was obtained by FTIR spectroscopy through the presence of an asymmetrical SO stretching vibration at 1,259 cm(-1). NMR data showed that the sulfation occurred on primary hydroxyl groups. NMR and GPC data indicate degradation during reaction with elimination of galactose. At the maximum tested concentration of 1,000 μg/mL, unmodified DG polysaccharide did not show a statistically significant cytotoxicity in Vero cells by the MTT method. Therefore, the CC50>1,000 μg/mL obtained for the sulfated polysaccharides from D. gardneriana in Vero cells point to its lower cytotoxicity than the sulfated galactomannan from Mimosa scabrella. PMID:24299869

  19. Purification and characterization of a glucan from Bacillus Calmette Guerin and the antitumor activity of its sulfated derivative.

    PubMed

    Xu, Xiongbo; Gu, Zixin; Liu, Shao; Gao, Na; He, Xiaozhen; Xin, Xiu

    2015-09-01

    A water-soluble glucan, BCG-PASW, with a molecular weight of 2.10×10(4)Da, was separated from polysaccharide nucleic acid fraction of Bacillus Calmette Guerin (BCG-PSN) using DEAE-52 cellulose and Sephadex G-200 chromatography. Based on gas chromatography-mass spectrometry (GC-MS), fourier transform infrared (FT-IR) spectra, 1D and 2D nuclear magnetic resonance (NMR) spectroscopy techniques (COSY, HSQC and HMBC), BCG-PASW was found to be an α-d-glucan composed of α-d-(1→4)-linked glucopyranosyl residues, with branches at O-6 consisting of non-reducing terminal α-d-Glcp approximately every eight residues. In vitro antitumor activity by MTS method, its sulfated derivative with a substitution degree of 0.59, could inhibite C666-1 nasopharyngeal carcinoma cells growth significantly. The results indicated that the sulfate content play a decisive role in the bioactivities of the polysaccharides. PMID:26005149

  20. Structural composition and differential anticoagulant activities of dermatan sulfates from the skin of four species of rays, Dasyatis americana, Dasyatis gutatta, Aetobatus narinari and Potamotrygon motoro.

    PubMed

    Dellias, Joo M M; Onofre, Glaucia R; Werneck, Cludio C; Landeira-Fernandez, Ana M; Melo, Fabio R; Farias, Wladimir R L; Silva, Luiz-Claudio F

    2004-01-01

    We compared the disaccharide composition of dermatan sulfate (DS) purified from the ventral skin of three species of rays from the Brazilian seacoast, Dasyatis americana, Dasyatis gutatta, Aetobatus narinari and of Potamotrygon motoro, a fresh water species that habits the Amazon River. DS obtained from the four species were composed of non-sulfated, mono-sulfated disaccharides bearing esterified sulfate groups at positions C-4 or C-6 of N-acetyl galactosamine (GalNAc), and disulfated disaccharides bearing esterified sulfate groups at positions C-2 of the uronic acid and at position C-4 or C-6 of GalNAc. However, DS from the skin of P. motoro presented a very low content of the disulfated disaccharides. The anticoagulant actions of ray skin DS, measured by both APTT clotting and HCII-mediated inhibition of thrombin assays, were compared to that of mammalian DS. DS from D. americana had both high APTT and HCII activities, whereas DS from D. gutatta showed activity profiles similar to those of mammalian DS. In contrast, DS from both A. narinari and P. motoro had no measurable activity in the APTT assay. Thus, the anticoagulant activity of ray skin DS is not merely a consequence of their charge density. We speculate that the differences among the anticoagulant activities of these three DS may be related to both different composition and arrangements of the disulfated disaccharide units within their polysaccharide chains. PMID:15556278

  1. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class

    PubMed Central

    Rzeski, Wojciech

    2012-01-01

    Basidiomycete mushrooms represent a valuable source of biologically active compounds with anticancer properties. This feature is primarily attributed to polysaccharides and their derivatives. The anticancer potential of polysaccharides is linked to their origin, composition and chemical structure, solubility and method of isolation. Moreover, their activity can be significantly increased by chemical modifications. Anticancer effects of polysaccharides can be expressed indirectly (immunostimulation) or directly (cell proliferation inhibition and/or apoptosis induction). Among the wide range of polysaccharides with documented anticancer properties, lentinan, polysaccharide-K (PSK) and schizophyllan deserve special attention. These polysaccharides for many years have been successfully applied in cancer treatment and their mechanism of action is the best known. PMID:23788896

  2. Structural Analysis and Anticoagulant Activities of the Novel Sulfated Fucan Possessing a Regular Well-Defined Repeating Unit from Sea Cucumber

    PubMed Central

    Wu, Mingyi; Xu, Li; Zhao, Longyan; Xiao, Chuang; Gao, Na; Luo, Lan; Yang, Lian; Li, Zi; Chen, Lingyun; Zhao, Jinhua

    2015-01-01

    Sulfated fucans, the complex polysaccharides, exhibit various biological activities. Herein, we purified two fucans from the sea cucumbers Holothuria edulis and Ludwigothurea grisea. Their structures were verified by means of HPGPC, FT-IR, GC–MS and NMR. As a result, a novel structural motif for this type of polymers is reported. The fucans have a unique structure composed of a central core of regular (1→2) and (1→3)-linked tetrasaccharide repeating units. Approximately 50% of the units from L. grisea (100% for H. edulis fucan) contain sides of oligosaccharides formed by nonsulfated fucose units linked to the O-4 position of the central core. Anticoagulant activity assays indicate that the sea cucumber fucans strongly inhibit human blood clotting through the intrinsic pathways of the coagulation cascade. Moreover, the mechanism of anticoagulant action of the fucans is selective inhibition of thrombin activity by heparin cofactor II. The distinctive tetrasaccharide repeating units contribute to the anticoagulant action. Additionally, unlike the fucans from marine alga, although the sea cucumber fucans have great molecular weights and affluent sulfates, they do not induce platelet aggregation. Overall, our results may be helpful in understanding the structure-function relationships of the well-defined polysaccharides from invertebrate as new types of safer anticoagulants. PMID:25871288

  3. Sulfate and thiosulfate inhibit oxalate transport via a dPrestin (Slc26a6)-dependent mechanism in an insect model of calcium oxalate nephrolithiasis.

    PubMed

    Landry, Greg M; Hirata, Taku; Anderson, Jacob B; Cabrero, Pablo; Gallo, Christopher J R; Dow, Julian A T; Romero, Michael F

    2016-01-15

    Nephrolithiasis is one of the most common urinary tract disorders, with the majority of kidney stones composed of calcium oxalate (CaOx). Given its prevalence (US occurrence 10%), it is still poorly understood, lacking progress in identifying new therapies because of its complex etiology. Drosophila melanogaster (fruitfly) is a recently developed model of CaOx nephrolithiasis. Effects of sulfate and thiosulfate on crystal formation were investigated using the Drosophila model, as well as electrophysiological effects on both Drosophila (Slc26a5/6; dPrestin) and mouse (mSlc26a6) oxalate transporters utilizing the Xenopus laevis oocyte heterologous expression system. Results indicate that both transport thiosulfate with a much higher affinity than sulfate Additionally, both compounds were effective at decreasing CaOx crystallization when added to the diet. However, these results were not observed when compounds were applied to Malpighian tubules ex vivo. Neither compound affected CaOx crystallization in dPrestin knockdown animals, indicating a role for principal cell-specific dPrestin in luminal oxalate transport. Furthermore, thiosulfate has a higher affinity for dPrestin and mSlc26a6 compared with oxalate These data indicate that thiosulfate's ability to act as a competitive inhibitor of oxalate via dPrestin, can explain the decrease in CaOx crystallization seen in the presence of thiosulfate, but not sulfate. Overall, our findings predict that thiosulfate or oxalate-mimics may be effective as therapeutic competitive inhibitors of CaOx crystallization. PMID:26538444

  4. Hesperetin and its sulfate and glucuronide metabolites inhibit TNF-α induced human aortic endothelial cell migration and decrease plasminogen activator inhibitor-1 (PAI-1) levels.

    PubMed

    Giménez-Bastida, Juan Antonio; González-Sarrías, Antonio; Vallejo, Fernando; Espín, Juan Carlos; Tomás-Barberán, Francisco A

    2016-01-01

    Epidemiological, clinical and preclinical studies have reported the protection offered by citrus consumption, mainly orange, against cardiovascular diseases, which is primarily mediated by the antiatherogenic and vasculoprotective effects of the flavanone hesperetin-7-O-rutinoside (hesperidin). However, flavanone aglycones or glycosides are not present in the bloodstream but their derived phase-II metabolites could be the actual bioactive molecules. To date, only a few studies have explored the effects of circulating hesperetin-derived metabolites (glucuronides and sulfates) on endothelial cells. Herein, we describe for the first time the effects of hesperetin 3'-O-glucuronide, hesperetin 7-O-glucuronide, hesperetin 3'-O-sulfate, hesperetin 7-O-sulfate and hesperetin on human aortic endothelial cell (HAEC) migration upon pro-inflammatory stimuli as an essential step to angiogenesis. Hesperetin and its derived metabolites, at physiologically relevant concentrations (1-10 μM), significantly attenuated cell migration in the presence of the pro-inflammatory cytokine TNF-α (50 ng mL(-1)), which was accompanied and perhaps mediated by a significant decrease in the levels of the thrombogenic plasminogen activator inhibitor-1 (PAI-1). However, hesperetin metabolites did not counteract the TNF-α-induced production of pro-inflammatory interleukin-6 (IL-6) and IL-8. We also study here for the first time, the metabolism of hesperetin and its derived metabolites by HAEC with and without a pro-inflammatory stimulus. All these results reinforce the concept according to which circulating phase-II hesperetin metabolites are critical molecules contributing to the cardioprotective effects upon consumption of citrus fruits such as orange. PMID:26456097

  5. Sulfated polysaccharide heparin used as carrier to load hydrophobic lappaconitine.

    PubMed

    Sun, Wenxiu; Saldaña, Marleny D A; Fan, Liyan; Zhao, Yujia; Dong, Tungalag; Jin, Ye; Zhang, Ji

    2016-03-01

    One-step self-assembly was used to prepare pH-sensitive lappaconitine-loaded low-molecular-weight heparin (LMWH-LA) and to demonstrate that the sulfur group promotes dissolution and has synergistic effect on the analgesic property of lappaconitine (LA). The LMWH-LA was characterized in terms of releasing behavior, pH-sensitivity, analgesic activity and anticoagulation property. The drug loading level of LA in low-molecular-weight heparin (LMWH) reached 24.3% (w/w). The LA, self-assembled in LMWH, released faster in an acidic environment than that in neutral or alkaline environments. Analgesic experiments showed that the LMWH-LA had earlier onset time and longer duration than the LA. Compared with LMWH, the LMWH-LA can reduce clotting time more effectively. These results suggest that the LMWH is a good template and has great potential to achieve synergistic effect of LA. In addition, similar macromolecular structure can be used as a new natural polymeric carrier for loading hydrophobic alkaloids. PMID:26706841

  6. Polysaccharide deposition during cytokinesis: Challenges and future perspectives.

    PubMed

    Drakakaki, Georgia

    2015-07-01

    De novo formation of a new cell wall partitions the cytoplasm of the dividing cell during plant cytokinesis. The development of the cell plate, a transient sheet-like structure, requires the accumulation of vesicles directed by the phragmoplast to the cell plate assembly matrix. Fusion and fission of the accumulated vesicles are accompanied by the deposition of polysaccharides and cell wall structural proteins; together, they are leading to the stabilization of the formed structure which after insertion into the parental wall lead to the maturation of the nascent cross wall. Callose is the most abundant polysaccharide during cell plate formation and during maturation is gradually replaced by cellulose. Matrix polysaccharides such as hemicellulose, and pectins presumably are present throughout all developmental stages, being delivered to the cell plate by secretory vesicles. The availability of novel chemical probes such as endosidin 7, which inhibits callose formation at the cell plate, has proved useful for dissecting the temporal accumulation of vesicles at the cell plate and establishing the critical role of callose during cytokinesis. The use of emerging approaches such as chemical genomics combined with live cell imaging; novel techniques of polysaccharide detection including tagged polysaccharide substrates, newly characterized polysaccharide antibodies and vesicle proteomics can be used to develop a comprehensive model of cell plate development. PMID:26025531

  7. Polysaccharides: Occurrence, Significance, and Properties

    NASA Astrophysics Data System (ADS)

    Bemiller, James N.

    Polysaccharides are properties present significance in all living organisms where they carry out one or more of their diverse functions. While there is no specific category or definition of a complex polysaccharide, most are structurally complex. Polysaccharides contain 1-5 different monosaccharide (sugar) units. The different sugar units may have different anomeric configurations and/or be joined by different glycosidic linkages. Polysaccharides may be linear or branched. Branches may be short saccharide units on a linear backbone or the molecule may have a branch-on-branch structure; in either case, the branches may be isolated or clustered. Polysaccharides may contain non-carbohydrate groups. Esters or cyclic acetal groups, when present, can be removed by appropriate treatments. All polysaccharides are polydisperse, i. e., are present in a range of molecular weights rather than having a single molecular weight. Most are polymolecular, i. e., differ in fine structure from molecule to molecule. So most polysaccharides can be said to be structurally complex. They may be attached to protein molecules or to other polysaccharide molecules. They are solvated by water. Most dissolve in aqueous systems, especially if they are alkaline. Polysaccharides can be depolymerized by acids and heat, specific enzymes, and high pH systems following oxidation. Their hydroxyl groups can be esterified (acylated), etherified (alkylated), and oxidized. Amino groups can be acylated (and deacylated). Carboxyl groups can be converted into esters, amides, and amines. Structural modification makes the molecules even more complex and polymolecular and, perhaps, polydisperse.

  8. Influenza virus neuraminidase contributes to the dextran sulfate-dependent suppressive replication of some influenza A virus strains.

    PubMed

    Yamada, Hiroshi; Moriishi, Eiko; Haredy, Ahmad M; Takenaka, Nobuyuki; Mori, Yasuko; Yamanishi, Koichi; Okamoto, Shigefumi

    2012-12-01

    Dextran sulfate (DS), a negatively charged, sulfated polysaccharide, suppresses the replication of an influenza A virus strain, and this suppression is associated with inhibition of the hemagglutinin (HA)-dependent fusion activity. However, it remains unknown whether the replication of all or just some influenza A virus strains is suppressed by DS, or whether HA is the only target for the replication suppression. In the present study, we found that DS inhibited the replication of some, but not all influenza A virus strains. The suppression in the DS-sensitive strains was dose-dependent and neutralized by diethylaminoethyl-dextran (DD), which has a positive charge. The suppression by DS was observed not only at the initial stage of viral infection, which includes viral attachment and entry, but also at the late stage, which includes virus assembly and release from infected cells. Electron microscopy revealed that the DS induced viral aggregation at the cell surface. The neuraminidase (NA) activity of the strains whose viral replication was inhibited at the late stage was also more suppressed by DS than that of the strains whose replication was not inhibited, and this inhibition of NA activity was also neutralized by adding positively charged DD. Furthermore, we found that replacing the NA gene of a strain in which viral replication was inhibited by DS at the late stage with the NA gene from a strain in which viral replication was not inhibited, eliminated the DS-dependent suppression. These results suggest that the influenza virus NA contributes to the DS-suppressible virus release from infected cells at the late stage, and the suppression may involve the inhibition of NA activity by DS's negative charge. PMID:23022352

  9. Xylanase inhibitors bind to nonstarch polysaccharides.

    PubMed

    Fierens, Ellen; Gebruers, Kurt; Courtin, Christophe M; Delcour, Jan A

    2008-01-23

    This study is an in-depth investigation of the interaction between polysaccharides and the proteinaceous xylanase inhibitors, Triticum aestivum xylanase inhibitor (TAXI), xylanase inhibitor protein (XIP), and thaumatin-like xylanase inhibitor (TLXI). The binding affinities of all three known types of xylanase inhibitors from wheat are studied by measuring the residual xylanase inhibition activity after incubation of the inhibitors in the presence of different polysaccharides, such as beta-glucans and (arabino)xylans. The binding affinities of all three xylanase inhibitors for (arabino)xylans increased with a decreasing arabinose/xylose ratio (A/X ratio). This phenomenon was observed both with water-extractable and water-unextractable (arabino)xylans. The inhibitors also interacted with different soluble and insoluble beta-glucans. None of the inhibitors tested had the ability to hydrolyze the polysaccharides investigated. The present findings contribute to the unraveling of the function of xylanase inhibitors in nature and to the prediction of the effect of added xylanases in cereal-based biotechnological processes, such as bread making and gluten-starch separation. PMID:18092758

  10. Sequence determination of synthesized chondroitin sulfate dodecasaccharides.

    PubMed

    Shioiri, Tatsumasa; Tsuchimoto, Jun; Watanabe, Hideto; Sugiura, Nobuo

    2016-06-01

    Chondroitin sulfate (CS) is a linear acidic polysaccharide composed of repeating disaccharide units of glucuronic acid and N-acetyl-d-galactosamine. The polysaccharide is modified with sulfate groups at different positions by a variety of sulfotransferases. CS chains exhibit various biological and pathological functions by interacting with cytokines and growth factors and regulating their signal transduction. The fine structure of the CS chain defines its specific biological roles. However, structural analysis of CS has been restricted to disaccharide analysis, hampering the understanding of the structure-function relationship of CS chains. Here, we chemo-enzymatically synthesized CS dodecasaccharides having various sulfate modifications using a bioreactor system of bacterial chondroitin polymerase mutants and various CS sulfotransferases. We developed a sequencing method for CS chains using the CS dodecasaccharides. The method consists of (i) labeling a reducing end with 2-aminopyridine (PA), (ii) partial digestion of CS with testicular hyaluronidase, followed by separation of PA-conjugated oligosaccharides with different chain lengths, (iii) limited digestion of these oligosaccharides with chondroitin lyase AC II into disaccharides, followed by labeling with 2-aminobenzamide, (iv) CS disaccharide analysis using a dual-fluorescence HPLC system (reversed-phase ion-pair and ion-exchange chromatography), and (v) estimation of the composition by calculating individual disaccharide ratios. This CS chain sequencing allows characterization of CS-modifying enzymes and provides a useful tool toward understanding the structure-function relationship of CS chains. PMID:26791444

  11. Iodine-Catalyzed Polysaccharide Esterification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review is provided of the recent reports to use iodine-catalyzed esterification reaction to produce esters from polysaccharides. The process entails reaction of the polysaccharide with an acid anhydride in the presence of a catalytic level of iodine, and in the absence of additional solvents. T...

  12. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling

    PubMed Central

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2014-01-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates. PMID:24253764

  13. Polysaccharides and bacterial plugging

    SciTech Connect

    Fogler, H.S.

    1991-11-01

    Before any successful application of Microbial Enhanced Oil Recovery process can be realized, an understanding of the cells' transport and retentive mechanisms in porous media is needed. Cell transport differs from particle transport in their ability to produce polysaccharides, which are used by cells to adhere to surfaces. Cell injection experiments have been conducted using Leuconostoc cells to illustrate the importance of cellular polysaccharide production as a transport mechanism that hinders cell movement and plugs porous media. Kinetic studies of the Leuconostoc cells, carried out to further understand the plugging rates of porous media, have shown that the cells' growth rates are approximately equal when provided with monosaccharide (glucose and fructose) or sucrose. The only difference in cell metabolism is the production of dextran when sucrose is supplied as a carbon source. Experimentally it has also been shown that the cells' growth rate is weakly dependent upon the sucrose concentration in the media, and strongly dependent upon the concentration of yeast extract. The synthesis of cellular dextran has been found to lag behind cell generation, thus indicating that the cells need to reach maturity before they are capable of expressing the detransucrase enzyme and synthesizing insoluble dextran. Dextran yields were found to be dependent upon the sucrose concentration in the media. 10 refs., 9 figs., 9 tabs.

  14. Polysaccharides from Extremophilic Microorganisms

    NASA Astrophysics Data System (ADS)

    Nicolaus, B.; Moriello, V. Schiano; Lama, L.; Poli, A.; Gambacorta, A.

    2004-02-01

    Several marine thermophilic strains were analyzed for exopolysaccharide production. The screening process revealed that a significant number of thermophilic microorganisms were able to produce biopolymers, and some of them also revealed interesting chemical compositions. We have identified four new polysaccharides from thermophilic marine bacteria, with complex primary structures and with different repetitive units: a galacto-mannane type from strain number 4004 and mannane type for the other strains. The thermophilic Bacillus thermantarcticus produces two exocellular polysaccharides (EPS 1, EPS 2) that give the colonies a typical mucous character. The exopolysaccharide fraction was produced with all substrates assayed, although a higher yield 400 mg liter-1 was obtained with mannose as carbon and energy source. NMR spectra confirmed that EPS 1 was a heteropolysaccharide of which the repeating unit was constituted by four different α-D-mannoses and three different β-D-glucoses. It seems to be close to some xantan polymers. EPS 2 was a mannan. Four different α-D-mannoses were found as the repeating unit. Production and chemical studies of biopolymers produced by halophilic archaea, Haloarcula species were also reported.

  15. Why Were Polysaccharides Necessary?

    NASA Astrophysics Data System (ADS)

    Tolstoguzov, Vladimir

    2004-12-01

    The main idea of this paper is that the primordial soup may be modelled by food systems whose structure-property relationship is based on non-specific interactions between denatured biopolymers. According to the proposed hypothesis, polysaccharides were the first biopolymers that decreased concentration of salts in the primordial soup, `compatibilised' and drove the joint evolution of proto-biopolymers. Synthesis of macromolecules within the polysaccharide-rich medium could have resulted in phase separation of the primordial soup and concentration of the polypeptides and nucleic acids in the dispersed phase particles. The concentration of proto-biopolymer mixtures favoured their cross-linking in hybrid supermacromolecules of conjugates. The cross-linking of proto-biopolymers could occur by hydrophobic, electrostatic interactions, H-bonds due to freezing aqueous mixed biopolymer dispersions and/or by covalent bonds due to the Maillard reaction. Cross-linking could have increased the local concentration of chemically different proto-biopolymers, fixed their relative positions and made their interactions reproducible. Attractive-repulsive interactions between cross-linked proto-biopolymer chains could develop pairing of the monomer units, improved chemical stability (against hydrolysis) and led to their mutual catalytic activity and coding. Conjugates could probably evolve to the first self-reproduced entities and then to specialized cellular organelles. Phase separation of the primordial soup with concentration of conjugates in the dispersed particles has probably resulted in proto-cells.

  16. Comparative evaluation of polysaccharides isolated from Astragalus, oyster mushroom, and yacon as inhibitors of α-glucosidase.

    PubMed

    Zhu, Zhen-Yuan; Zhang, Jing-Yi; Chen, Li-Jing; Liu, Xiao-Cui; Liu, Yang; Wang, Wan-Xiao; Zhang, Yong-Min

    2014-04-01

    The incidence of diabetes has increased considerably, and become the third serious chronic disease following cancer and cardiovascular diseases. Though acarbose, metformin, and 1-deoxynojirimycin have good efficacy for clinical application as hypoglycemic drugs, their expensive costs and some degree of side effects have limited their clinical application. Recently, increasing attention has concentrated on the polysaccharides from natural plant and animal sources for diabetes. In order to illustrate the pharmaceutical activity of polysaccharides as natural hypoglycemic agents, polysaccharides isolated from Astragalus, oyster mushroom, and Yacon were evaluated for their inhibitory effects on α-glucosidase. Polysaccharides were extracted and purified from Astragalus, Oyster mushroom, and Yacon with hot water at 90 °C for 3 h, respectively. The total sugar content of the polysaccharide was determined by the phenol-sulfuric acid method. The α-glucosidase inhibitory activity was measured by the glucose oxidase method. The results exhibited that the inhibitory effects on α-glucosidase were in decreasing order, Astragalus > oyster mushroom > Yacon. The α-glucosidase inhibition percentage of Astragalus polysaccharide and oyster mushroom polysaccharide were over 40% at the polysaccharide concentration of 0.4 mg·mL(-1). The IC50 of Astragalus polysaccharide and oyster mushroom polysaccharide were 0.28 and 0.424 mg·mL(-1), respectively. The information obtained from this work is beneficial for the use polysaccharides as a dietary supplement for health foods and therapeutics for diabetes. PMID:24863354

  17. Dead Nano-Sized Lactobacillus plantarum Inhibits Azoxymethane/Dextran Sulfate Sodium-Induced Colon Cancer in Balb/c Mice.

    PubMed

    Lee, Hyun Ah; Kim, Hyunung; Lee, Kwang-Won; Park, Kun-Young

    2015-12-01

    The chemopreventive effects of dead nano-sized Lactobacillus plantarum (nLp) on colon carcinogenesis, induced by dextran sulfate sodium and azoxymethane, were evaluated using Balb/c mice and compared with the effects of pure live L. plantarum (pLp). nLp is a dead shrunken form of L. plantarum derived from kimchi and has a particle size of 0.5-1.0 μm. Animals fed nLp showed less weight loss, longer colons, lower colon weight/length ratios, and fewer colonic tumors compared with pLp. In addition, the administration of nLp significantly reduced the expression of inflammatory markers, mediated the expression of cell cycle and apoptotic markers in colon tissues, and elevated fecal IgA levels more than pLp. Accordingly, the present study shows that the anticolorectal cancer activities of nLp are greater than those of pLp and suggests this is due to the suppression of inflammation, the induction of cell cycle arrest and apoptosis, and enhanced IgA secretion. PMID:26595186

  18. Sulfated Galactofucan from the Brown Alga Saccharina latissima—Variability of Yield, Structural Composition and Bioactivity

    PubMed Central

    Ehrig, Karina; Alban, Susanne

    2014-01-01

    The fucose-containing sulfated polysaccharides (SP) from brown algae exhibit a wide range of bioactivities and are, therefore, considered promising candidates for health-supporting and medicinal applications. A critical issue is their availability in high, reproducible quality. The aim of the present study was to fractionate and characterize the SP extracted from Saccharina latissima (S.l.-SP) harvested from two marine habitats, the Baltic Sea and North Atlantic Ocean, in May, June and September. The fractionation of crude S.l.-SP by anion exchange chromatography including analytical investigations revealed that S.l.-SP is composed of a homogeneous fraction of sulfated galactofucan (SGF) and a mixture of low-sulfated, uronic acid and protein containing heteropolysaccharides. Furthermore, the results indicated that S.l. growing at an intertidal zone with high salinity harvested at the end of the growing period delivered the highest yield of S.l.-SP with SGF as the main fraction (67%). Its SGF had the highest degree of sulfation (0.81), fucose content (86.1%) and fucose/galactose ratio (7.8) and was most active (e.g., elastase inhibition: IC50 0.21 μg/mL). Thus, S.l. from the North Atlantic harvested in autumn proved to be more appropriate for the isolation of S.l.-SP than S.l. from the Baltic Sea and S.l. harvested in spring, respectively. In conclusion, this study demonstrated that habitat and harvest time of brown algae should be considered as factors influencing the yield as well as the composition and thus also the bioactivity of their SP. PMID:25548975

  19. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases.

    PubMed

    Frandsen, Kristian E H; Simmons, Thomas J; Dupree, Paul; Poulsen, Jens-Christian N; Hemsworth, Glyn R; Ciano, Luisa; Johnston, Esther M; Tovborg, Morten; Johansen, Katja S; von Freiesleben, Pernille; Marmuse, Laurence; Fort, Sébastien; Cottaz, Sylvain; Driguez, Hugues; Henrissat, Bernard; Lenfant, Nicolas; Tuna, Floriana; Baldansuren, Amgalanbaatar; Davies, Gideon J; Lo Leggio, Leila; Walton, Paul H

    2016-04-01

    Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery, LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here a structural determination of an LPMO-oligosaccharide complex, yielding detailed insights into the mechanism of action of these enzymes. Using a combination of structure and electron paramagnetic resonance spectroscopy, we reveal the means by which LPMOs interact with saccharide substrates. We further uncover electronic and structural features of the enzyme active site, showing how LPMOs orchestrate the reaction of oxygen with polysaccharide chains. PMID:26928935

  20. Anti-oxidation and Antiapoptotic Effects of Chondroitin Sulfate on 6-Hydroxydopamine-Induced Injury Through the Up-Regulation of Nrf2 and Inhibition of Mitochondria-Mediated Pathway.

    PubMed

    Ju, Chuanxia; Hou, Lin; Sun, Fusheng; Zhang, Li; Zhang, Zheng; Gao, Hua; Wang, Lei; Wang, Dachao; Lv, Yuqiang; Zhao, Xiaodan

    2015-07-01

    The purpose of the study was to investigate the protective effect and molecular mechanism of chondroitin sulfate (CS) against 6-hydroxydopamine (6-OHDA) induced toxicity in the human neuroblastoma cell line SH-SY5Y. The results showed that CS could protect SH-SY5Y cells against 6-OHDA-induced injury. The subsequent mechanism study showed that the anti-oxidation of CS may partly be mediated through inhibiting the intracellular reactive oxygen species overproduction, recovering the reduction of nuclear NF-E2-related factor-2 (Nrf2) expression and the reduction of antioxidants activity induced by 6-OHDA. Furthermore, CS pretreatment significantly attenuated 6-OHDA-induced cell apoptosis and nuclear condensation. 6-OHDA-induced dysfunctions, including the decrease of mitochondrial membrane potential (ΔΨm), increase of intracellular free Ca(2+), imbalance of Bcl-2/Bax ratio, release of Cyt-c from the mitochondria and activation of caspase-3 and caspase-9 were attenuated by CS pretreatment, which demonstrated that CS suppressed 6-OHDA-induced apoptosis in SH-SY5Y cells possibly through mitochondria protection. These results suggest that CS exhibits anti-oxidation through the up-regulation of Nrf2 along with endogenous antioxidant, and reduces apoptosis via inhibiting the mitochondrial pathway to protect SH-SY5Y cells damaged by 6-OHDA. PMID:26033682

  1. Study for anti-angiogenic activities of polysaccharides isolated from Antrodia cinnamomea in endothelial cells.

    PubMed

    Cheng, Jing-Jy; Huang, Nai-Kuei; Chang, Tun-Tschu; Wang, Danny Ling; Lu, Mei-Kuang

    2005-05-13

    The main purposes of this study were to investigate the regulation of polysaccharides isolated from A. cinnamomea on vascular endothelial growth factor (VEGF)-induced cyclin D1 expression and down stream signaling pathway that may correlate with their anti-angiogenc effects in endothelial cells (ECs). Crude and fractionated polysaccharides (Fra-1 to Fra-4) of A. cinnamomea showed slightly toxicity to ECs as compared with their inhibition concentration on angiogenic-related gene expression. The crude extract and fractionated fractions, except for Fra-2, of A. cinnamomea polysaccharides significantly decreased VEGFR2 phosphorylation on tyrosine 1054/1059, cyclin D1 promotor activity, and protein expression induced by VEGF. Crude extract of A. cinnamomea polysaccharides inhibited the binding of VEGF to KDR/flk-1 in a dose-dependent manner. These results indicated that inhibition of VEGF interaction with VEGF receptor 2 is the mechanism serves A. cinnamomea as a protective mechanism composing the anti-angiogenesis function. Furthermore, A. cinnamomea polysaccharides also blocked VEGF-induced migration and capillary-like tube formation of ECs on Matrigel. Taken together, these results indicate that A. cinnamomea polysaccharides inhibit cyclin D1 expression through inhibition of VEGF receptor signaling, leading to the suppression of angiogenesis. PMID:15850596

  2. Engineering of routes to heparin and related polysaccharides

    PubMed Central

    Bhaskar, Ujjwal; Sterner, Eric; Hickey, Anne Marie; Onishi, Akihiro; Zhang, Fuming; Dordick, Jonathan S.; Linhardt, Robert J.

    2011-01-01

    Anticoagulant heparin has been shown to possess important biological functions that vary according to its fine structure. Variability within heparin's structure occurs owing to its biosynthesis and animal tissue-based recovery, and adds another dimension to its complex polymeric structure. The structural variations in chain length and sulfation patterns mediate its interaction with many heparin-binding proteins, thereby, eliciting complex biological responses. The advent of novel chemical and enzymatic approaches for polysaccharide synthesis coupled with high throughput combinatorial approaches for drug discovery have facilitated an increased effort to understand heparin's structure-activity relationships. An improved understanding would offer potential for new therapeutic development through the engineering of polysaccharides. Such a bioengineering approach requires the amalgamation of several different disciplines including carbohydrate synthesis, applied enzymology, metabolic engineering, and process biochemistry. PMID:22048616

  3. Inhibition of hydrogen sulfide, methane, and total gas production and sulfate-reducing bacteria in in vitro swine manure by tannins, with focus on condensed quebracho tannins.

    PubMed

    Whitehead, Terence R; Spence, Cheryl; Cotta, Michael A

    2013-09-01

    Management practices from large-scale swine production facilities have resulted in the increased collection and storage of manure for off-season fertilization use. Odor and emissions produced during storage have increased the tension among rural neighbors and among urban and rural residents. Production of these compounds from stored manure is the result of microbial activity of the anaerobic bacteria populations during storage. In the current study, the inhibitory effects of condensed quebracho tannins on in vitro swine manure for reduction of microbial activity and reduced production of gaseous emissions, including the toxic odorant hydrogen sulfide produced by sulfate-reducing bacteria (SRB), was examined. Swine manure was collected from a local swine facility, diluted in anaerobic buffer, and mixed with 1 % w/v fresh feces. This slurry was combined with quebracho tannins, and total gas and hydrogen sulfide production was monitored over time. Aliquots were removed periodically for isolation of DNA to measure the SRB populations using quantitative PCR. Addition of tannins reduced overall gas, hydrogen sulfide, and methane production by greater than 90 % after 7 days of treatment and continued to at least 28 days. SRB population was also significantly decreased by tannin addition. qRT-PCR of 16S rDNA bacteria genes showed that the total bacterial population was also decreased in these incubations. These results indicate that the tannins elicited a collective effect on the bacterial population and also suggest a reduction in the population of methanogenic microorganisms as demonstrated by reduced methane production in these experiments. Such a generalized effect could be extrapolated to a reduction in other odor-associated emissions during manure storage. PMID:23149758

  4. Sasa quelpaertensis leaf extract suppresses dextran sulfate sodium-induced colitis in mice by inhibiting the proinflammatory mediators and mitogen-activated protein kinase phosphorylation.

    PubMed

    Kim, Kyung-Mi; Kim, Yoo-Sun; Lim, Ji Ye; Min, Soo Jin; Shin, Jae-Ho; Ko, Hee-Chul; Kim, Se-Jae; Lim, Yunsook; Kim, Yuri

    2014-10-01

    Sasa quelpaertensis leaves exert anti-inflammatory and anticarcinogenic effects, although it remains unclear whether these leaves can suppress inflammation-related intestinal diseases. This study hypothesized that Sasa quelpaertensis leaf extract (SQE) exerts a protective effect against inflammation in a dextran sulfate sodium (DSS)-induced colitis mouse model. Therefore, colon tissues of DSS-induced colitis mice that were treated with SQE were assayed for levels of proinflammatory markers, mitogen-activated protein kinase signaling, and activation of nuclear factor κB. For this purpose, mice were pretreated with SQE (100 mg/kg or 300 mg/kg body weight) by gavage for a 2-week period. Mice then received either SQE or sulfasalazine (100 mg/kg body weight) with 2.5% DSS in drinking water for 7 days twice daily and 7 days of tap water ad libitum between DSS treatment. Treatment with SQE was found to attenuate the severity of DSS-induced colitis, as assessed by disease activity index scores, shrinkage of colon length, and histopathologic changes. SQE reduced DSS-induced proliferation in distal colon tissues. It also significantly suppressed levels of tumor necrosis factor-α in serum and colon tissues, nitric oxide synthase, cyclooxygenase, and levels of phosphorylated c-Jun N-terminal kinases, p38, extracellular-signal-regulated kinases 1/2, and IκBα in colon tissues. To our knowledge, this is the first study to demonstrate that SQE supplementation can exert an anti-inflammatory effect on experimental chronic colitis. PMID:25287291

  5. mTOR Inhibition Attenuates Dextran Sulfate Sodium-Induced Colitis by Suppressing T Cell Proliferation and Balancing TH1/TH17/Treg Profile

    PubMed Central

    Wang, Yilin; Wang, Zhengting; Pei, Yaofei; Fan, Rong; Liu, Xiqiang; Wang, Lei; Zhou, Jie; Zheng, Sichang; Zhang, Tianyu; Lin, Yun; Zhang, Maochen; Tao, Ran; Zhong, Jie

    2016-01-01

    It has been established that mammalian target of Rapamycin (mTOR) inhibitors have anti-inflammatory effects in models of experimental colitis. However, the underlying mechanism is largely unknown. In this research, we investigate the anti-inflammatory effects of AZD8055, a potent mTOR inhibitor, on T cell response in dextran sulfate sodium (DSS)-induced colitis in mice, a commonly used animal model of inflammatory bowel diseases (IBD). Severity of colitis is evaluated by changing of body weight, bloody stool, fecal consistency, histology evaluation and cytokine expression. We find that AZD8055 treatment attenuates DSS-induced body weight loss, colon length shortening and pathological damage of the colon. And AZD8055 treatment decreases colonic expression of genes encoding the pro-inflammatory cytokines interferon-γ, interleukin (IL)-17A, IL-1β,IL-6 and tumor necrosis factor(TNF)-a and increases colonic expression of anti-inflammatory cytokines IL-10. We show that AZD8055 treatment decreases the percentages of CD4+ T cells and CD8+ T cells in spleen, lymph nodes and peripheral blood of mice. We also find that AZD8055 treatment significantly reduces the number of T helper 1(TH1) cells and TH17 cells and increases regulatory T (Treg) cells in the lamina propria and mesenteric lymph nodes. Furthermore, we demonstrates that AZD8055 suppresses the proliferation of CD4+ and CD8+ T cells and the differentiation of TH1/TH17 cells and expands Treg cells in vitro. The results suggest that, in experimental colitis, AZD8055 exerts anti-inflammatory effect by regulating T helper cell polarization and proliferation. PMID:27128484

  6. Sulfate adsorption on goethite

    SciTech Connect

    Rietra, R.P.J.J.; Hiemstra, T.; Riemsdijk, W.H. van

    1999-10-15

    Recent spectroscopic work has suggested that only one surface species of sulfate is dominant on hematite. Sulfate is therefore a very suitable anion to test and develop adsorption models for variable charge minerals. The authors have studied sulfate adsorption on goethite covering a large range of sulfate concentrations, surface coverages, pH values, and electrolyte concentrations. Four different techniques were used to cover the entire range of conditions. For characterization at low sulfate concentrations, below the detection limit of sulfate with ICP-AES, the authors used proton-sulfate titrations at constant pH. Adsorption isotherms were studied for the intermediate sulfate concentration range. Acid-base titrations in sodium sulfate and electromobility were used for high sulfate concentrations. All the data can be modeled with one adsorbed species if it is assumed that the charge of adsorbed sulfate is spatially distributed in the interface. The charge distribution of sulfate follows directly from modeling the proton-sulfate adsorption stoichoimemtry sine this stoichiometry is independent of the intrinsic affinity constant of sulfate. The charge distribution can be related to the structure of the surface complex by use of the Pauling bond valence concept and is in accordance with the microscopic structure found by spectroscopy. The intrinsic affinity constant follows from the other measurements. Modeling of the proton-ion stoichoimetry with the commonly used 2-pK models, where adsorbed ions are treated as point charges, is possible only if at least two surface species for sulfate are used.

  7. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    PubMed Central

    Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations. PMID:26484353

  8. A threading receptor for polysaccharides

    NASA Astrophysics Data System (ADS)

    Mooibroek, Tiddo J.; Casas-Solvas, Juan M.; Harniman, Robert L.; Renney, Charles M.; Carter, Tom S.; Crump, Matthew P.; Davis, Anthony P.

    2016-01-01

    Cellulose, chitin and related polysaccharides are key renewable sources of organic molecules and materials. However, poor solubility tends to hamper their exploitation. Synthetic receptors could aid dissolution provided they are capable of cooperative action, for example by multiple threading on a single polysaccharide molecule. Here we report a synthetic receptor designed to form threaded complexes (polypseudorotaxanes) with these natural polymers. The receptor binds fragments of the polysaccharides in aqueous solution with high affinities (Ka up to 19,000 M-1), and is shown—by nuclear Overhauser effect spectroscopy—to adopt the threading geometry. Evidence from induced circular dichroism and atomic force microscopy implies that the receptor also forms polypseudorotaxanes with cellulose and its polycationic analogue chitosan. The results hold promise for polysaccharide solubilization under mild conditions, as well as for new approaches to the design of biologically active molecules.

  9. A threading receptor for polysaccharides.

    PubMed

    Mooibroek, Tiddo J; Casas-Solvas, Juan M; Harniman, Robert L; Renney, Charles M; Carter, Tom S; Crump, Matthew P; Davis, Anthony P

    2016-01-01

    Cellulose, chitin and related polysaccharides are key renewable sources of organic molecules and materials. However, poor solubility tends to hamper their exploitation. Synthetic receptors could aid dissolution provided they are capable of cooperative action, for example by multiple threading on a single polysaccharide molecule. Here we report a synthetic receptor designed to form threaded complexes (polypseudorotaxanes) with these natural polymers. The receptor binds fragments of the polysaccharides in aqueous solution with high affinities (K(a) up to 19,000 M(-1)), and is shown--by nuclear Overhauser effect spectroscopy--to adopt the threading geometry. Evidence from induced circular dichroism and atomic force microscopy implies that the receptor also forms polypseudorotaxanes with cellulose and its polycationic analogue chitosan. The results hold promise for polysaccharide solubilization under mild conditions, as well as for new approaches to the design of biologically active molecules. PMID:26673266

  10. Surface properties of polyurethanes modified by bioactive polysaccharide-based polyelectrolyte multilayers.

    PubMed

    Wang, Yifeng; Hong, Qunfeng; Chen, Yanjun; Lian, Xinxin; Xiong, Yanfei

    2012-12-01

    Lentinan, a mushroom polysaccharide, isolated from Lentinus edodes (Shiitake mushroom) was sulfated in dimethylsulfoxide to obtain a water-soluble derivative coded as LS. Then, two polysaccharide-based polyelectrolytes, polyanionic lentinan sulfate (LS) and polycationic chitosan (CS), were alternatively deposited onto the surfaces of polyurethane (PU) via layer-by-layer (LbL) assembly technique. The surfaces modified by polysaccharide-based multilayers were investigated by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurements. The fibrinogen adsorption and platelet adhesion to the surfaces, cytocompatibility to L-929 cells, and antibacterial activity against Pseudomonas aeruginosa of unmodified PU and LbL-modified PU were tested in vitro, respectively. The results showed that the water contact angle decreased gradually during the successive buildup of the polysaccharide-based multilayers, and decreased slowly after four bilayers were assembled. The surface roughness of PU modified by five bilayers (LS as topmost layer) increased compared with that of unmodified PU. The fibrinogen adsorption on the surface decreased 81% after assembly of five bilayers (LS as topmost layer). The number of adherent platelets on the surface modified by five bilayers (LS as topmost layer) is reduced, in comparison with that of the unmodified PU. The tests of L-929 cells indicated that LbL-modified PU surfaces had better cytocompatibility than unmodified PU. In addition, PU modified by polysaccharide-based multilayers showed antibacterial activity against P. aeruginosa. PMID:22771524

  11. Anticoagulant and antithrombotic activities of low-molecular-weight propylene glycol alginate sodium sulfate (PSS).

    PubMed

    Xin, Meng; Ren, Li; Sun, Yang; Li, Hai-Hua; Guan, Hua-Shi; He, Xiao-Xi; Li, Chun-Xia

    2016-05-23

    Propylene glycol alginate sodium sulfate (PSS), a sulfated polysaccharide derivative, has been used as a heparinoid drug to prevent and treat hyperlipidemia and ischemic cardio-cerebrovascular diseases in China for nearly 30 years. To extend the applications of PSS, a series of low-molecular-weight PSSs (named FPs) were prepared by oxidative-reductive depolymerization, and the antithrombotic activities were investigated thoroughly in vitro and in vivo. The bioactivity evaluation demonstrated a positive correlation between the molecular weight and the anticoagulant and antithrombotic activities of FPs. FPs could prolong the APTT and clotting time and reduce platelet aggregation significantly. FPs could also effectively inhibit factor IIa in the presence of AT-III and HC-II. FPs decreased the wet weights and lengths of the thrombus and increased occlusion times in vivo. FP-6k, a PSS fragment with a molecular weight of 6 kDa, is an optimal antithrombotic candidate for further study and showed little chance for hemorrhagic action. PMID:26974373

  12. Modulating Inhibitors of Transthyretin Fibrillogenesis via Sulfation: Polychlorinated Biphenyl Sulfates as Models1

    PubMed Central

    Grimm, Fabian A.; Lehmler, Hans-Joachim; He, Xianran; Robertson, Larry W.; Duffel, Michael W.

    2015-01-01

    Small molecules that bind with high affinity to thyroxine (T4) binding sites on transthyretin (TTR) kinetically stabilize the protein’s tetrameric structure, thereby efficiently decreasing the rate of tetramer dissociation in TTR related amyloidoses. Current research efforts aim to optimize the amyloid inhibiting properties of known inhibitors, such as derivatives of biphenyls, dibenzofurans and benzooxazoles, by chemical modification. In order to test the hypothesis that sulfate group substituents can improve the efficiencies of such inhibitors, we evaluated the potential of six polychlorinated biphenyl sulfates to inhibit TTR amyloid fibril formation in vitro. In addition, we determined their binding orientations and molecular interactions within the T4 binding site by molecular docking simulations. Utilizing this combined experimental and computational approach, we demonstrated that sulfation significantly improves the amyloid inhibiting properties as compared to both parent and hydroxylated PCBs. Importantly, several PCB sulfates were of equal or higher potency than some of the most effective previously described inhibitors. PMID:25595224

  13. Optimization of a biological sulfate reduction process

    SciTech Connect

    Lebel, A.

    1985-01-01

    A biological sulfate reduction process is presented. It is intended to treat sulfate wastes by converting them to hydrogen sulfide which can be further oxidized to elemental sulfur. An optimization study of a completely-mixed reactor system was performed. Major operating parameters were determined at the bench-scale level. The study was conducted in batch-culture experiments, using a mixed Desulfovibrio culture from sewage. Kinetic values were extrapolated using the Michaelis-Menten model, which best fitted the experimental data. The iron loading and the sulfate loading significantly affected the growth and metabolism of sulfate reducing bacteria (SRB). A model to determine V/sub m/ from the iron and sulfate loading values was explored. The model is limited by sulfate loading greater than 4.3 g/l, where bacterial growth is inhibited. Iron loading is not anticipated to suppress the bacterial metabolism efficiency since it remained in the linear pattern even at inhibition levels. Studies of the metabolic behavior of SRB, using lactic acid as the carbon source, showed a requirement of 2.7 moles of lactate for each mole of sulfate. This technique and its application to the sulfur recovery process are discussed.

  14. Chlorate: a reversible inhibitor of proteoglycan sulfation

    SciTech Connect

    Humphries, D.E.; Silbert, J.E.

    1988-07-15

    Bovine aorta endothelial cells were cultured in medium containing (/sup 3/H)glucosamine, (/sup 35/S)sulfate, and various concentrations of chlorate. Cell growth was not affected by 10 mM chlorate, while 30 mM chlorate had a slight inhibitory effect. Chlorate concentrations greater than 10 mM resulted in significant undersulfation of chondroitin. With 30 mM chlorate, sulfation of chondroitin was reduced to 10% and heparan to 35% of controls, but (/sup 3/H)glucosamine incorporation on a per cell basis did not appear to be inhibited. Removal of chlorate from the culture medium of cells resulted in the rapid resumption of sulfation.

  15. Computer simulation and experimental study of the polysaccharide-polysaccharide interaction in the bacteria Azospirillum brasilense Sp245

    NASA Astrophysics Data System (ADS)

    Arefeva, Oksana A.; Kuznetsov, Pavel E.; Tolmachev, Sergey A.; Kupadze, Machammad S.; Khlebtsov, Boris N.; Rogacheva, Svetlana M.

    2003-09-01

    We have studied the conformational properties and molecular dynamics of polysaccharides by using molecular modeling methods. Theoretical and experimental results of polysaccharide-polysaccharide interactions are described.

  16. Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii.

    PubMed Central

    Holmes, A R; Gopal, P K; Jenkinson, H F

    1995-01-01

    Candida albicans ATCC 10261 and CA2 bound to cells of the oral bacteria Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguis when these bacteria were immobilized onto microtiter plate wells, but they did not bind to cells of Streptococcus mutans or Streptococcus salivarius. Cell wall polysaccharide was extracted with alkali from S. gordonii NCTC 7869, the streptococcal species to which C. albicans bound with highest affinity, and was effective in blocking the coaggregation of C. albicans and S. gordonii cells in the fluid phase. When fixed to microtiter plate wells, the S. gordonii polysaccharide was bound by all strains of C. albicans tested. The polysaccharide contained Rha, Glc, GalNAc, GlcNAc, and Gal and was related compositionally to previously characterized cell wall polysaccharides from strains of S. oralis and S. sanguis. The adherence of yeast cells to the immobilized polysaccharide was not inhibitable by a number of saccharides. Antiserum raised to the S. gordonii NCTC 7869 polysaccharide blocked adherence of C. albicans ATCC 10261 to the polysaccharide. The results identify a complex cell wall polysaccharide of S. gordonii as the coaggregation receptor for C. albicans. Adherent interactions of yeast cells with streptococci and other bacteria may be important for colonization of both hard and soft oral surfaces by C. albicans. PMID:7729891

  17. Extracellular polysaccharides produced by marine bacteria.

    PubMed

    Manivasagan, Panchanathan; Kim, Se-Kwon

    2014-01-01

    Extracellular polysaccharides (EPSs) produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids, and humic substances. Microbial polysaccharides are multifunctional and can be divided into intracellular polysaccharides, structural polysaccharides, and extracellular polysaccharides or exopolysaccharides. Recent advances in biological techniques allow high levels of polysaccharides of interest to be produced in vitro. Biotechnology is a powerful tool to obtain polysaccharides from a variety of marine microorganisms, by controlling the growth conditions in a bioreactor while tailoring the production of biologically active compounds. The aim of this chapter is to give an overview of current knowledge on extracellular polysaccharides producing marine bacteria isolated from marine environment. PMID:25081078

  18. Apigenin supplementation protects the development of dextran sulfate sodium-induced murine experimental colitis by inhibiting canonical and non-canonical inflammasome signaling pathways.

    PubMed

    Márquez-Flores, Yazmín K; Villegas, Isabel; Cárdeno, Ana; Rosillo, M Ángeles; Alarcón-de-la-Lastra, Catalina

    2016-04-01

    The present study was designed to elucidate the protective effects of dietary apigenin (API) enrichment in a chronic colitis model induced by DSS in mice. Inflammatory mediators and the possible role of canonical and non-canonical NLRP3 inflammasome signaling pathways in the beneficial effects of API under chronic inflammatory conditions were also explored. Six-week-old mice were randomized in four dietary groups: sham and control groups received standard diet (SD), and other two groups were fed with API at 0.1%. After 30days, all groups except sham received 3% DSS in drinking water for 5days followed by a regime of 21days of water. Our results revealed that dietary API supplementation decreased the macroscopic and microscopic damage signs of colitis; also, it was capable to down-regulate mPGES, COX-2 and iNOS enzyme colonic expressions and to decrease serum matrix metalloproteinase (MMP-3) levels. Similarly, API diet reduced IL-1β and TNF-α proinflammatory cytokine secretions in primary LPS-stimulated splenocytes. Furthermore, we demonstrated that API anti-inflammatory activity was related with an inhibition of both canonical and non-canonical NLRP3 inflammasome pathways by decreasing proinflammatory IL-1β and IL-18 cytokine levels as a consequence of regulation of cleaved caspase-1 and caspase-11 enzymes. We conclude that API supplement might provide a basis for developing a new dietary strategy for the prevention of chronic ulcerative colitis. PMID:27012631

  19. Heparan sulfate and heparin interactions with proteins

    PubMed Central

    Meneghetti, Maria C. Z.; Hughes, Ashley J.; Rudd, Timothy R.; Nader, Helena B.; Powell, Andrew K.; Yates, Edwin A.; Lima, Marcelo A.

    2015-01-01

    Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissue-specific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro, ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them. The properties that have been thought to bestow protein binding and biological activity upon HS and heparin vary from high levels of sequence specificity to a dependence on charge. In contrast to these opposing opinions, we will argue that the evidence supports both a level of redundancy and a degree of selectivity in the structure–activity relationship. The relationship between this apparent redundancy, the multi-dentate nature of heparin and HS polysaccharide chains, their involvement in protein networks and the multiple binding sites on proteins, each possessing different properties, will also be considered. Finally, the role of cations in modulating HS/heparin activity will be reviewed and some of the implications for structure–activity relationships and regulation will be discussed. PMID:26289657

  20. Heparin and related polysaccharides: synthesis using recombinant enzymes and metabolic engineering.

    PubMed

    Suflita, Matthew; Fu, Li; He, Wenqin; Koffas, Mattheos; Linhardt, Robert J

    2015-09-01

    Glycosaminoglycans are linear anionic polysaccharides that exhibit a number of important biological and pharmacological activities. The two most prominent members of this class of polysaccharides are heparin/heparan sulfate and the chondroitin sulfates (including dermatan sulfate). These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of most animal cells. The chemical synthesis of these glycosaminoglycans is precluded by their structural complexity. Today, we depend on food animal tissues for their isolation and commercial production. Ton quantities of these glycosaminoglycans are used annually as pharmaceuticals and nutraceuticals. The variability of animal-sourced glycosaminoglycans, their inherent impurities, the limited availability of source tissues, the poor control of these source materials, and their manufacturing processes suggest a need for new approaches for their production. Over the past decade, there have been major efforts in the biotechnological production of these glycosaminoglycans. This mini-review focuses on the use of recombinant enzymes and metabolic engineering for the production of heparin and chondroitin sulfates. PMID:26219501

  1. Biochemical And Genetic Modification Of Polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.

    1993-01-01

    Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.

  2. Tyrosine sulfation in precursors of collagen V.

    PubMed

    Fessler, L I; Brosh, S; Chapin, S; Fessler, J H

    1986-04-15

    Radioactive labeling of p-collagens V, collagens V, and, to a small extent, of procollagen V occurred when [35S]sulfate was incubated with tendons or primary tendon cell cultures, or blood vessels and crops of 17- to 19-day-old chick embryos, or with lung slices from neonatal rats. Most or all of this label is in the form of 1 or more sulfated tyrosine residues/chain of p alpha 1(V), alpha 1(V), p alpha 1'(V), alpha 1'(V), p alpha 2(V), and alpha 2(V), and it remains attached through purification by dialysis, ammonium sulfate precipitation, CsCl-GdnCl2 equilibrium buoyant density and velocity sedimentations, ion-exchange chromatography, and sodium dodecyl sulfate gel electrophoresis. Radioactive tyrosine sulfate was identified in alkaline hydrolysates of these collagen V chains, after labeling the tissues with either [35S]sulfate or [3H]tyrosine, by electrophoretic and chromatographic comigration with a tyrosine sulfate standard. Tunicamycin A1, which inhibits the attachment of N-linked complex carbohydrate, did not interfere with the sulfation process. The tyrosine sulfate is located in a noncollagenous domain, which is probably adjacent to the amino end of the collagen helix, and is retained throughout the physiological proteolytic processing of procollagens V. After digestion with Staphylococcus aureus V8 protease, 35S-labeled p alpha 1(V) and alpha 1(V) chains gave the same map of labeled peptides, and this differed from the map given by p alpha 1'(V) and alpha 1'(V) chains. Little sulfation of p alpha 2(V) and alpha 2(V) chains occurs. The implications of these observations for the structure and properties of procollagens V and their derivatives are considered. PMID:3082875

  3. Interfering with UDP-GlcNAc metabolism and heparan sulfate expression using a sugar analog reduces angiogenesis

    PubMed Central

    van Wijk, Xander M.; van den Broek, Sebastiaan A.; Dona, Margo; Naidu, Natasha; Oosterhof, Arie; van de Westerlo, Els M.; Kusters, Lisanne J.; Khaled, Yasmine; Jokela, Tiina A.; Nowak-Sliwinska, Patrycja; Kremer, Hannie; Stringer, Sally E.; Griffioen, Arjan W.; van Wijk, Erwin; van Delft, Floris L.; van Kuppevelt, Toin H.

    2013-01-01

    Heparan sulfate (HS), a long linear polysaccharide, is implicated in various steps of tumorigenesis, including angiogenesis. We successfully interfered with HS biosynthesis using a peracetylated 4-deoxy analog of the HS constituent GlcNAc and studied the compound's metabolic fate and its effect on angiogenesis. The 4-deoxy analog was activated intracellularly into UDP-4-deoxy-GlcNAc and HS expression was inhibited up to ~96% (IC50 = 16 ?M). HS chain size was reduced, without detectable incorporation of the 4-deoxy analog, likely due to reduced levels of UDP-GlcNAc and/or inhibition of glycosyltransferase activity. Comprehensive gene expression analysis revealed reduced expression of genes regulated by HS binding growth factors as FGF-2 and VEGF. Cellular binding and signaling of these angiogenic factors was inhibited. Micro-injection in zebrafish embryos strongly reduced HS biosynthesis, and angiogenesis was inhibited in both zebrafish and chicken model systems. All these data identify 4-deoxy-GlcNAc as a potent inhibitor of HS synthesis which hampers pro-angiogenic signaling and neo-vessel formation. PMID:23972127

  4. ERK Activation by Fucoidan Leads to Inhibition of Melanogenesis in Mel-Ab Cells

    PubMed Central

    Song, Yu Seok; Balcos, Marie Carmel; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Kim, Myo-Kyoung

    2015-01-01

    Fucoidan, a fucose-rich sulfated polysaccharide derived from brown seaweed in the class Phaeophyceae, has been widely studied for its possible health benefits. However, the potential of fucoidan as a possible treatment for hyperpigmentation is not fully understood. This study investigated the effects of fucoidan on melanogenesis and related signaling pathways using Mel-Ab cells. Fucoidan significantly decreased melanin content. While fucoidan treatment decreased tyrosinase activity, it did not do so directly. Western blot analysis indicated that fucoidan downregulated microphthalmia-associated transcription factor and reduced tyrosinase protein expression. Further investigation showed that fucoidan activated the extracellular signal-regulated kinase (ERK) pathway, suggesting a possible mechanism for the inhibition of melanin synthesis. Treatment with PD98059, a specific ERK inhibitor, resulted in the recovery of melanin production. Taken together, these findings suggest that fucoidan inhibits melanogenesis via ERK phosphorylation. PMID:25605994

  5. Characterization, Anti-Inflammatory and Antiproliferative Activities of Natural and Sulfonated Exo-Polysaccharides from Streptococcus thermophilus ASCC 1275.

    PubMed

    Li, Siqian; Shah, Nagendra P

    2016-05-01

    Exo-polysaccharides (EPS) isolated from Streptococcus thermophilus ASCC 1275 were sulfated (31%). High-performance liquid chromatography identified that EPS was composed of mannose (30.19%), galactose (20.10%), glucose (18.05%), glucosamine (16.04%), galactosamine (9.06%), glucuronic acid (3.55%), and ribose (3.01%). Pro-/anti-inflammatory cytokine secretion ratios (IL-1β/IL-10, IL-6/IL-10, and TNF-α/IL-10) of lipopolysaccharide stimulated RAW 264.7 macrophages were significantly decreased by EPS and S.EPS treatments in a dose dependent manner. Furthermore, anti-inflammatory activities of S.EPS improved 49.3% and 24.0% than those of EPS before or after LPS treatment. The reactive oxygen species were inhibited by EPS and S.EPS by 49.6% and 55.1% at 50 μg/mL, respectively. Inhibition activities of S.EPS on nitric oxide production were 12.9% and 55.4% higher than those of EPS at 10 and 50 μg/mL. Additionally, S.EPS exhibited stronger antiproliferative activity on Caco-2 and HepG2 cells. Our results indicated that anti-inflammatory and antiproliferative activities of EPS were significantly (P < 0.01) improved by sulfonation. PMID:27010963

  6. Microbial polysaccharides with actual potential industrial applications.

    PubMed

    Paul, F; Morin, A; Monsan, P

    1986-01-01

    The microbial polysaccharides reviewed include xanthan gum, scleroglucan, PS-10, PS-21 and PS-53 gums, polysaccharides from Alcaligenes sp., PS-7 gum, gellan gum, curdlan, bacterial alginate, dextran, pullulan, Baker's Yeast Glycan, 6-deoxy-hexose-containing polysaccharides and bacterial cellulose. Factors limiting the commercial potential of certain microbial polysaccharides such as availability, rheological properties, and polyvalency are outlined. The polysaccharides are classified according to their uses as viscosity-increasing agents and as gelling agents. A third category includes polysaccharides with specific applications such as tailor-made dextran and pullulan and polysaccharides used as substrates for the preparation of rare sugars. The difficulties encountered in development of a polysaccharide at the industrial level are pointed out. PMID:14542395

  7. Sulfated glycans in inflammation.

    PubMed

    Pomin, Vitor H

    2015-03-01

    Sulfated glycans such as glycosaminoglycans on proteoglycans are key players in both molecular and cellular events of inflammation. They participate in leukocyte rolling along the endothelial surface of inflamed sites; chemokine regulation and its consequential functions in leukocyte guidance, migration and activation; leukocyte transendothelial migration; and structural assembly of the subendothelial basement membrane responsible to control tissue entry of cells. Due to these and other functions, exogenous sulfated glycans of various structures and origins can be used to interventionally down-regulate inflammation processes. In this review article, discussion is given primarily on the anti-inflammatory functions of mammalian heparins, heparan sulfate, chondroitin sulfate, dermatan sulfate and related compounds as well as the holothurian fucosylated chondroitin sulfate and the brown algal fucoidans. Understanding the underlying mechanisms of action of these sulfated glycans in inflammation, helps research programs involved in developing new carbohydrate-based drugs aimed to combat acute and chronic inflammatory disorders. PMID:25576741

  8. Rheologically interesting polysaccharides from yeasts

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Nelson, G. A.; Cathey, C. A.; Fuller, G. G.

    1989-01-01

    We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  9. Benzene oxidation coupled to sulfate reduction

    USGS Publications Warehouse

    Lovley, D.R.; Coates, J.D.; Woodward, J.C.; Phillips, E.J.P.

    1995-01-01

    Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to I ??M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [14C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as 14CO2. Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of 14CO2 from [14C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [14C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O2, with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation.

  10. Sulfated heterorhamnans from the green seaweed Gayralia oxysperma: partial depolymerization, chemical structure and antitumor activity.

    PubMed

    Ropellato, Juliana; Carvalho, Mariana M; Ferreira, Luciana G; Noseda, Miguel D; Zuconelli, Cristiane R; Gonçalves, Alan G; Ducatti, Diogo R B; Kenski, Juliana C N; Nasato, Pauline L; Winnischofer, Sheila M B; Duarte, Maria E R

    2015-03-01

    Sulfated heterorhamnans produced by Gayralia oxysperma were utilized for the preparation of two homogeneous and highly sulfated Smith-degraded products (M(w) of 109 and 251 kDa), which were constituted principally by 3-linked α-L-rhamnosyl units 2- or 4-sulfate and 2-linked α-L-rhamnosyl units 4- or 3,4-sulfate, in different percentages. The homogeneous products and the crude extracts containing the sulfated heterorhamnans showed cytotoxic effect against U87MG cells. These sulfated polysaccharides induced an increase in the number of cells in G1 phase with concomitant increase of the mRNA levels of p53 and p21. The presence of 2-linked disulfated rhamnose residues together with the molecular weight could be important factors to be correlated with the inhibitory effect on human glioblastoma cells. PMID:25498661

  11. Salinity-Induced Anti-Angiogenesis Activities and Structural Changes of the Polysaccharides from Cultured Cordyceps Militaris

    PubMed Central

    Zeng, Yangyang; Han, Zhangrun; Qiu, Peiju; Zhou, Zijing; Tang, Yang; Zhao, Yue; Zheng, Sha; Xu, Chenchen; Zhang, Xiuli; Yin, Pinghe; Jiang, Xiaolu; Lu, Hong; Yu, Guangli; Zhang, Lijuan

    2014-01-01

    Cordyceps is a rare and exotic mushroom that grows out of the head of a mummified caterpillar. Many companies are cultivating Cordyceps to meet the increased demand for its medicinal applications. However, the structures and functions of polysaccharides, one of the pharmaceutical active ingredients in Cordyceps, are difficult to reproduce in vitro. We hypothesized that mimicking the salty environment inside caterpillar bodies might make the cultured fungus synthesize polysaccharides with similar structures and functions to that of wild Cordyceps. By adding either sodium sulfate or sodium chloride into growth media, we observed the salinity-induced anti-angiogenesis activities of the polysaccharides purified from the cultured C. Militaris. To correlate the activities with the polysaccharide structures, we performed the 13C-NMR analysis and observed profound structural changes including different proportions of α and β glycosidic bonds and appearances of uronic acid signals in the polysaccharides purified from the culture after the salts were added. By coupling the techniques of stable 34S-sulfate isotope labeling, aniline- and D5-aniline tagging, and stable isotope facilitated uronic acid-reduction with LC-MS analysis, our data revealed for the first time the existence of covalently linked sulfate and the presence of polygalacuronic acids in the polysaccharides purified from the salt added C. Militaris culture. Our data showed that culturing C. Militaris with added salts changed the biosynthetic scheme and resulted in novel polysaccharide structures and functions. These findings might be insightful in terms of how to make C. Militaris cultures to reach or to exceed the potency of wild Cordyceps in future. PMID:25203294

  12. Purification, chemical modification and immunostimulating activity of polysaccharides from Tremella aurantialba fruit bodies*

    PubMed Central

    Du, Xiu-ju; Zhang, Jing-song; Yang, Yan; Tang, Qing-jiu; Jia, Wei; Pan, Ying-jie

    2010-01-01

    Ultrafiltration and a series of chromatographic steps were used to isolate and purify polysaccharides from Tremella aurantialba fruit bodies. Three crude fractions (TAP50w, TAP10–50w, and TAP1–10w), five semi-purified fractions (TAPA–TAPE), and one purified fraction (TAPA1) were obtained. A sulfated derivative of TAPA1 (TAPA1-s) was prepared by chemical modification. The immunostimulating activity of the polysaccharide fractions in vitro was determined using the mouse spleen lymphocyte proliferation assay. Of the three crude fractions tested, cell proliferation rates were increased most by TAP50w. Furthermore, TAPA1-s was markedly more stimulatory than TAPA1, indicating that sulfonation was an effective way to enhance the immunostimulating activity of polysaccharide. PMID:20506575

  13. Purification, chemical modification and immunostimulating activity of polysaccharides from Tremella aurantialba fruit bodies.

    PubMed

    Du, Xiu-ju; Zhang, Jing-song; Yang, Yan; Tang, Qing-jiu; Jia, Wei; Pan, Ying-jie

    2010-06-01

    Ultrafiltration and a series of chromatographic steps were used to isolate and purify polysaccharides from Tremella aurantialba fruit bodies. Three crude fractions (TAP50w, TAP10-50w, and TAP1-10w), five semi-purified fractions (TAPA-TAPE), and one purified fraction (TAPA1) were obtained. A sulfated derivative of TAPA1 (TAPA1-s) was prepared by chemical modification. The immunostimulating activity of the polysaccharide fractions in vitro was determined using the mouse spleen lymphocyte proliferation assay. Of the three crude fractions tested, cell proliferation rates were increased most by TAP50w. Furthermore, TAPA1-s was markedly more stimulatory than TAPA1, indicating that sulfonation was an effective way to enhance the immunostimulating activity of polysaccharide. PMID:20506575

  14. Extracellular polysaccharide production by thraustochytrid protists.

    PubMed

    Jain, Ruchi; Raghukumar, Seshagiri; Tharanathan, R; Bhosle, N B

    2005-01-01

    Four strains of marine stramenopilan protists, the thraustochytrids, were studied for their ability to produce extracellular polysaccharides (EPSs). Observations by light and scanning electron microscopy revealed the production of a matrix of EPS around groups of cells in stationary cultures. EPS in shake culture filtrates ranged from 0.3 to 1.1 g/L. EPS production, which was studied in greater detail in 2 isolates, SC-1 and CW1, increased with age of cultures, reaching a peak in the stationary phase. Anion exchange chromatography yielded a single fraction of the EPS of both species. The EPS contained 39% to 53% sugars, besides proteins, lipids, uronic acids, and sulfates. Molecular weight of the EPS produced by SC-1 was approximately 94 kDa, and that of CW1, 320 kDa. Glucose formed the major component in the EPS of both isolates-galactose, mannose, and arabinose being the other components. Cultures of both isolates survived air-drying up to a period of 96 hours, suggesting a role for EPS in preventing desiccation of cells. PMID:15909227

  15. ESTIMATION OF THE SULFATED GLYCOSAMINOGLYCAN CONTENT OF BOVINE SKIN WITH ALCIAN BLUE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Procedures selected from the work of Bjornsson and Karlsson for the quantitation of sulfated glycosaminoglycans (SGAGs) with Alcian Blue were modified and adapted to the measurement of this type of polysaccharide in bovine skin. Modifications include: (1) pulverization of the skin under liquid nitr...

  16. Sulfate in fetal development.

    PubMed

    Dawson, Paul A

    2011-08-01

    Sulfate (SO(4)(2-)) is an important nutrient for human growth and development, and is obtained from the diet and the intra-cellular metabolism of sulfur-containing amino acids, including methionine and cysteine. During pregnancy, fetal tissues have a limited capacity to produce sulfate, and rely on sulfate obtained from the maternal circulation. Sulfate enters and exits placental and fetal cells via transporters on the plasma membrane, which maintain a sufficient intracellular supply of sulfate and its universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) for sulfate conjugation (sulfonation) reactions to function effectively. Sulfotransferases mediate sulfonation of numerous endogenous compounds, including proteins and steroids, which biotransforms their biological activities. In addition, sulfonation of proteoglycans is important for maintaining normal structure and development of tissues, as shown for reduced sulfonation of cartilage proteoglycans that leads to developmental dwarfism disorders and four different osteochondrodysplasias (diastrophic dysplasia, atelosteogenesis type II, achondrogenesis type IB and multiple epiphyseal dysplasia). The removal of sulfate via sulfatases is an important step in proteoglycan degradation, and defects in several sulfatases are linked to perturbed fetal bone development, including mesomelia-synostoses syndrome and chondrodysplasia punctata 1. In recent years, interest in sulfate and its role in developmental biology has expanded following the characterisation of sulfate transporters, sulfotransferases and sulfatases and their involvement in fetal growth. This review will focus on the physiological roles of sulfate in fetal development, with links to human and animal pathophysiologies. PMID:21419855

  17. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity

    PubMed Central

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  18. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity.

    PubMed

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  19. In Vitro Antioxidant and Anti-Proliferation Activities of Polysaccharides from Various Extracts of Different Mushrooms

    PubMed Central

    Li, Xiaoyu; Wang, Zhenyu; Wang, Lu; Walid, Elfalleh; Zhang, Hua

    2012-01-01

    Polysaccharides were extracted from eight kinds of Chinese mushrooms using three solvents and were evaluated for their total carbohydrate, polyphenolic and protein contents, and antioxidant and anti-proliferation activities. The results suggested that all the polysaccharides had significant antioxidant capacities (EC50 ranged from 1.70 ± 0.42 to 65.98 ± 1.74 μM TE/g crude polysaccharide inhibition of ABTS+, EC50 ranged from 5.06 ± 0.12 to 127.38 ± 1.58 mg VCE/g CP scavenging of OH· and EC50 ranged from 0.70 ± 0.04 to 33.54 ± 0.49 mg VCE/g CP inhibition of lipid peroxidation) (TE: trolox equivalent; VCE: VC equivalent; CP: crude polysaccharide). The acid extracts of Russula vinosa Lindblad had the highest ABTS+ scavenging activity. Aqueous extracts of Dictyophora indusiata and Hohenbuehelia serotina possessed, respectively, the highest OH· scavenging capacity and ability to inhibit lipid peroxidation. Mushroom extracts also inhibited proliferation of HeLa and HepG2 cells in a dose-dependent manner. These results indicate that the mushroom polysaccharides might be potential antioxidant resources. PMID:22754332

  20. In vitro antioxidant and anti-proliferation activities of polysaccharides from various extracts of different mushrooms.

    PubMed

    Li, Xiaoyu; Wang, Zhenyu; Wang, Lu; Walid, Elfalleh; Zhang, Hua

    2012-01-01

    Polysaccharides were extracted from eight kinds of Chinese mushrooms using three solvents and were evaluated for their total carbohydrate, polyphenolic and protein contents, and antioxidant and anti-proliferation activities. The results suggested that all the polysaccharides had significant antioxidant capacities (EC(50) ranged from 1.70 ± 0.42 to 65.98 ± 1.74 μM TE/g crude polysaccharide inhibition of ABTS(+), EC(50) ranged from 5.06 ± 0.12 to 127.38 ± 1.58 mg VCE/g CP scavenging of OH· and EC(50) ranged from 0.70 ± 0.04 to 33.54 ± 0.49 mg VCE/g CP inhibition of lipid peroxidation) (TE: trolox equivalent; VCE: VC equivalent; CP: crude polysaccharide). The acid extracts of Russula vinosa Lindblad had the highest ABTS(+) scavenging activity. Aqueous extracts of Dictyophora indusiata and Hohenbuehelia serotina possessed, respectively, the highest OH· scavenging capacity and ability to inhibit lipid peroxidation. Mushroom extracts also inhibited proliferation of HeLa and HepG2 cells in a dose-dependent manner. These results indicate that the mushroom polysaccharides might be potential antioxidant resources. PMID:22754332

  1. Structural characterization of a homogalacturonan from Capparis spinosa L. fruits and anti-complement activity of its sulfated derivative.

    PubMed

    Wang, Huijun; Wang, Hongwei; Shi, Songshan; Duan, Jinyou; Wang, Shunchun

    2012-08-01

    A water-soluble polysaccharide CSPS-2B-2 with a molecular mass of 8.8 kDa, was obtained from the fruits of Capparis spinosa L. Chemical and NMR spectral analysis verified CSPS-2B-2 was a linear poly-(1-4)-α-D-galactopyranosyluronic acid in which 12.9±0.4% of carboxyl groups existed as methyl ester and 2.6±0.1% of D-GalpA residues were acetylated. A sulfated derivative Sul-2B-2 with a sulfation degree of 0.88±0.02 was prepared via the substitution of C-2 and/or C-3 of GalpA residues in CSPS-2B-2. Bioassay on the complement and coagulation system demonstrated that Sul-2B-2 (CH(50): 3.5±0.2 μg/mL) had a stronger inhibitory effect on the activation of complement system through the classic pathway than that of heparin (CH(50): 8.9±0.3 μg/mL). Interestingly, Sul-2B-2 at low dose even middle dose (for example 52 μg/mL) had no effect on coagulation system, which was totally different from heparin. Thus, our observation indicated that Sul-2B-2 was more efficient than heparin in inhibiting the activation of the complement system through classical pathway and exhibiting a relatively less anti-coagulant activity. These results suggested that the sulfated derivative Sul-2B-2 prepared from the homogalacturonan in the fruits of Capparis spinosa L, might be a promising drug candidate in case of necessary therapeutic complement inhibition. PMID:22752400

  2. Partial Purification and Characterization of a Polysaccharide Depolymerase Associated with Phage-Infected Erwinia amylovora

    PubMed Central

    Vandenbergh, Peter A.; Wright, Ann M.; Vidaver, Anne K.

    1985-01-01

    Erwinia amylovora infected with bacteriophage ERA103 produced an enzyme which degraded the extracellular polysaccharide of noninfected cells. The depolymerase enzyme was purified 15-fold by a procedure which included ammonium sulfate precipitation, ultracentrifugation, CM-Sephadex batchwise separation, Sephadex G-50 column chromatography, and Sephacryl S-200 column chromatography. The enzyme had a molecular weight of approximately 21,000 and a pH optimum of 6.0. Activity was enhanced by supplements of 2-mercaptoethanol or dithiothreitol. PMID:16346774

  3. Mitochondrial protection and anti-aging activity of Astragalus polysaccharides and their potential mechanism.

    PubMed

    Li, Xing-Tai; Zhang, Ya-Kui; Kuang, Hai-Xue; Jin, Feng-Xin; Liu, De-Wen; Gao, Ming-Bo; Liu, Ze; Xin, Xiao-Juan

    2012-01-01

    The current study was performed to investigate mitochondrial protection and anti-aging activity of Astragalus polysaccharides (APS) and the potential underlying mechanism. Lipid peroxidation of liver and brain mitochondria was induced by Fe(2+)-Vit C in vitro. Thiobarbituric acid (TBA) colorimetry was used to measure the content of thiobarbituric acid reactive substances (TBARS). Mouse liver mitochondrial permeability transition (PT) was induced by calcium overload in vitro and spectrophotometry was used to measure it. The scavenging activities of APS on superoxide anion (O(2) (•-)) and hydroxyl radical (•OH), which were produced by reduced nicotinamide adenine dinucleotide (NADH)-N-Methylphenazonium methyl sulfate (PMS) and hydrogen peroxide (H(2)O(2))-Fe(2+) system respectively, were measured by 4-nitrobluetetrazolium chloride (NBT) reduction and Fenton reaction colorimetry respectively. The Na(2)S(2)O(3) titration method was used to measure the scavenging activities of APS on H(2)O(2). APS could inhibit TBARS production, protect mitochondria from PT, and scavenge O(2) (•-), •OH and H(2)O(2) significantly in a concentration-dependent manner respectively. The back of the neck of mice was injected subcutaneously with D-galactose to induce aging at a dose of 100 mg/kg/d for seven weeks. Moreover, the activities of catalase (CAT), surperoxide dismutase (SOD) and glutathione peroxidase (GPx) and anti-hydroxyl radical which were assayed by using commercial monitoring kits were increased significantly in vivo by APS. According to this research, APS protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting mitochondrial PT and increasing the activities of antioxidases. Therefore, APS has the effect of promoting health. PMID:22408421

  4. Heparan Sulfate Proteoglycans

    PubMed Central

    Sarrazin, Stephane; Lamanna, William C.; Esko, Jeffrey D.

    2011-01-01

    Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein–heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level. PMID:21690215

  5. Diverse Roles of Heparan Sulfate and Heparin in Wound Repair

    PubMed Central

    Olczyk, Pawel; Mencner, Łukasz; Komosinska-Vassev, Katarzyna

    2015-01-01

    Heparan sulfate (HS) and heparin (Hp) are linear polysaccharide chains composed of repeating (1→4) linked pyrosulfuric acid and 2-amino-2-deoxy glucopyranose (glucosamine) residue. Mentioned glycosaminoglycans chains are covalently O-linked to serine residues within the core proteins creating heparan sulfate/heparin proteoglycans (HSPG). The latter ones participate in many physiological and pathological phenomena impacting both the plethora of ligands such as cytokines, growth factors, and adhesion molecules and the variety of the ECM constituents. Moreover, HS/Hp determine the effective wound healing process. Initial growth of HS and Hp amount is pivotal during the early phase of tissue repair; however heparan sulfate and heparin also participate in further stages of tissue regeneration. PMID:26236728

  6. Diverse Roles of Heparan Sulfate and Heparin in Wound Repair.

    PubMed

    Olczyk, Pawel; Mencner, Łukasz; Komosinska-Vassev, Katarzyna

    2015-01-01

    Heparan sulfate (HS) and heparin (Hp) are linear polysaccharide chains composed of repeating (1→4) linked pyrosulfuric acid and 2-amino-2-deoxy glucopyranose (glucosamine) residue. Mentioned glycosaminoglycans chains are covalently O-linked to serine residues within the core proteins creating heparan sulfate/heparin proteoglycans (HSPG). The latter ones participate in many physiological and pathological phenomena impacting both the plethora of ligands such as cytokines, growth factors, and adhesion molecules and the variety of the ECM constituents. Moreover, HS/Hp determine the effective wound healing process. Initial growth of HS and Hp amount is pivotal during the early phase of tissue repair; however heparan sulfate and heparin also participate in further stages of tissue regeneration. PMID:26236728

  7. Sulfated biopolymers for use in recovering petroleum from a subterranean formation

    SciTech Connect

    Tyler, T.N.

    1982-03-09

    Disclosed is a novel sulfated biopolymer, a method for synthesizing the sulfated biopolymer and an oil recovery method employing an aqueous fluid containing the material. The sulfated biopolymer is made by reacting polysaccharides with sulfuric acid in the presence of an aliphatic alcohol at a temperature of from 350 to 750 F, in order to avoid degradation of the polymer by the sulfuric acid. The polymer produces a viscous solution which is less prone to increasing viscosities as shear rate is decreased, which makes it especially suitable for use as a viscosifying polymer in a polymer flooding enhanced oil recovery process.

  8. Polysaccharides templates for assembly of nanosilver.

    PubMed

    Emam, Hossam E; Ahmed, Hanan B

    2016-01-01

    Polysaccharides are particularly attractive in biomedical applications due to its biodegradability and biocompatibility. In addition to its ecofriendly effects and easy processing into different hydrogel shapes, made polysaccharides used on a large scale as suitable media for preparation of silver nanoparticles (AgNPs). In spite of, most of polysaccharides are water insoluble, but it has shown to be quite efficient capping agents and/or nanoreactor matrices for production of AgNPs. Several methods have been developed to get the benefit of multi-functionality for polysaccharides' macromolecules in preparation of AgNPs. Therefore, recently, preparation of nanosilver using different polysaccharides have been the focus of an exponentially increasing number of works devoted to develop nanocomposites by blending AgNPs with different polysaccharides matrices. The current review represents a wide survey for the published studies which interested in using of polysaccharides in nanosilver preparations. PMID:26453881

  9. Isolation and chemical characterization of dissolved and particulate polysaccharides in Mikawa Bay

    NASA Astrophysics Data System (ADS)

    Sakugawa, Hiroshi; Handa, Nobuhiko

    1985-05-01

    Isolation and chemical elucidation of dissolved and particulate polysaccharides in seawater were conducted. The water samples were collected in Mikawa Bay, Japan during a red tide bloom of the dinoflagellate, Prorocentrum minimum. Dissolved polysaccharides were concentrated from 5-101 of seawater with dialysis followed by separation by gel flitration, and isolation by ethanol precipitation. A heteropolysaccharide consisting of glucose, galactose, mannose, xylose, arabinose, fucose and rhamnose and a glucan were isolated from the polysaccharide component having a molecular weight more than 4,000 Dalton and were characterized by several chemical analyses. The heteropolysaccharide is a mucilaginous polysaccharide having a highly branched structure and a molecular weight of 10 4-5 × 10 6 Daltons and probably contains a sulfate half ester: the glucan is a polysaccharide with β-1,3- and 1,6-linkages (chrysolaminaran type). Concentrations of these were respectively ca. 20 and 67 μg l -1 at 1 m, and 2 and 26 μg l -1 at 6 m. A similar heteropolysaccharide was found in the boiling water extract of the particulate matter, while β-glucan was isolated in a much less purified form than the seawater β-glucan. In addition, a large amount of β-1,4 glucan was found in the strong alkali extract of the particulate matter, indicating that this glucan must be a cell wall polysaccharide derived from phytoplankton. These results strongly suggest that the heteropolysaccharide and chrysolaminaran type polysaccharide dissolved in seawater were derived from water soluble carbohydrates of phytoplankton through extracellular release or cell lysis.

  10. Adeno-associated virus type 2 binding study on model heparan sulfate surface

    NASA Astrophysics Data System (ADS)

    Negishi, Atsuko; Liu, Jian; McCarty, Douglas; Samulski, Jude; Superfine, Richard

    2003-11-01

    Understanding the mechanisms involved in virus infections is useful in its application in areas such as gene therapy, drug development and delivery, and biosensors. In collaboration with UNC Gene Therapy Center and School of Pharmacy, we are specifically looking at the interaction between human parvovirus adeno-associated virus type 2 (AAV2), a potential viral vector, and heparan sulfate proteoglycan (HSPG), a known cell surface receptor for AAV2. Recent development in glycobiology has shown that some protein-polysaccharide binding is sugar sequence dependent. Heparan sulfate (HS) is a polysaccharide chain of sulfated iduronic/glucuronic and sulfate glucosamine residues and can be differentiated into sequence specific structures by enzymes. These enzymatic modifications, known as heparan sulfate sulfotransferase modified modifications, have been shown to change the biological nature of heparan sulfate such as specific binding to proteins and viruses. For understanding HS-assisted viral infection mechanisms, we are interested in investigating the binding affinity and stability of AAV to different HS structures. We have developed a model heparan sulfate surface in which AAV adsorption studies are done and analyzed using the atomic force microscope (AFM). In addition, a miniArray assay has been created to facilitate to this study. Adsorption studies are done in 4 white LED wells with approximately 3 mm2 reaction areas which minimize sample use and waste.

  11. Chlorophenol degradation coupled to sulfate reduction

    SciTech Connect

    Haeggblom, M.M.; Young, L.Y. )

    1990-11-01

    We studied chlorophenol degradation under sulfate-reducing conditions with an estuarine sediment inoculum. These cultures degraded 0.1 mM 2-, 3-, and 4-chlorophenol and 2,4-dichlorophenol within 120 to 220 days, but after refeeding with chlorophenols degradation took place in 40 days or less. Further refeeding greatly enhanced the rate of degradation. Sulfate consumption by the cultures corresponded to the stoichiometric values expected for complete oxidation of the chlorophenol to CO{sub 2}. Formation of sulfide from sulfate was confirmed with a radiotracer technique. No methane was formed, verifying that sulfate reduction was the electron sink. Addition of molybdate, a specific inhibitor of sulfate reduction, inhibited chlorophenol degradation completely. These results indicate that the chlorophenols were mineralized under sulfidogenic conditions and that substrate oxidation was coupled to sulfate reduction. In acclimated cultures the three monochlorophenol isomers and 2,4-dichlorophenol were degraded at rates of 8 to 37 {mu}mol liter{sup {minus}1} day{sup {minus}1}. The relative rates of degradation were 4-chlorophenol > 3-chlorophenol > 2-chlorophenol, 2,4-dichlorophenol. Sulfidogenic cultures initiated with biomass from an anaerobic bioreactor used in treatment of pulp-bleaching effluents dechlorinated 2,4-dichlorophenol to 4-chlorophenol, which persisted, whereas 2,6-dichlorophenol was sequentially dechlorinated first to 2-chlorophenol and then to phenol.

  12. Secondary Storage of Dermatan Sulfate in Sanfilippo Disease*

    PubMed Central

    Lamanna, William C.; Lawrence, Roger; Sarrazin, Stphane; Esko, Jeffrey D.

    2011-01-01

    Mucopolysaccharidoses are a group of genetically inherited disorders that result from the defective activity of lysosomal enzymes involved in glycosaminoglycan catabolism, causing their intralysosomal accumulation. Sanfilippo disease describes a subset of mucopolysaccharidoses resulting from defects in heparan sulfate catabolism. Sanfilippo disorders cause severe neuropathology in affected children. The reason for such extensive central nervous system dysfunction is unresolved, but it may be associated with the secondary accumulation of metabolites such as gangliosides. In this article, we describe the accumulation of dermatan sulfate as a novel secondary metabolite in Sanfilippo. Based on chondroitinase ABC digestion, chondroitin/dermatan sulfate levels in fibroblasts from Sanfilippo patients were elevated 25-fold above wild-type dermal fibroblasts. Lysosomal turnover of chondroitin/dermatan sulfate in these cell lines was significantly impaired but could be normalized by reducing heparan sulfate storage using enzyme replacement therapy. Examination of chondroitin/dermatan sulfate catabolic enzymes showed that heparan sulfate and heparin can inhibit iduronate 2-sulfatase. Analysis of the chondroitin/dermatan sulfate fraction by chondroitinase ACII digestion showed dermatan sulfate storage, consistent with inhibition of iduronate 2-sulfatase. The discovery of a novel storage metabolite in Sanfilippo patients may have important implications for diagnosis and understanding disease pathology. PMID:21193389

  13. Automotive sulfate emission data.

    PubMed Central

    Somers, J H

    1975-01-01

    This paper discusses automotive sulfate emission results obtained by the Office of Mobile Source Air Pollution Control of EPA, General Motors, Ford, Chrysler, and Esso. This work has been directed towards obtaining sulfate emission factors for cars with and without catalyst. While the EPA and Chrysler investigations have found significant sulfate formation in noncatalyst cars, GM, Ford, and Esso have found only trace levels from noncatalyst cars. All of these investigators agree that much higher quantities of sulfate are emitted from catalyst cars. The work done to date shows pelleted catalysts to have much lower sulfate emissions over the low speed-EPA Federal Test Procedures than monolith catalysts. This is probably due to temporary storage of sulfates on the catalyst due to chemical interaction with the alumina pellets. The sulfate compounds are, to a large degree, emitted later under higher speed conditions which result in higher catalyst temperatures which decompose the alumina salt. Future work will be directed towards further elucidation of this storage mechanism as well as determining in detail how factors such as air injection rate and catalyst location affect sulfate emissions. PMID:50932

  14. Inhibitory effects of Enteromorpha linza polysaccharide on micronucleus of Allium sativum root cells.

    PubMed

    Zhang, Zhongshan; Wang, Xiaomei; Li, Jingfen; Liu, Chongbin; Zhang, Quanbin

    2016-06-01

    In this study, the antimutagenic function of the polysaccharide from Enteromorpha linza with the micronucleus test of Allium sativum root cells induced by sulfur dioxide and ultraviolet was studied. The concentration-effect relation of the two inducers was firstly evaluated. The results showed that an increase of genotoxicity damage was demonstrated and micronuclei frequency induced by sulfur dioxide and ultraviolet displayed dose dependent increases. All the doses of polysaccharide did affect the micronuclei frequency formation compared with the negative control. And also, the significant increase in inhibition rate of micronuclei frequency was observed with the increase of the dose of polysaccharide. It was showed maximum inhibition of micronuclei frequency cells (71.74% and 66.70%) at a concentration of 200g/mL in three experiments. The low molecular weight polysaccharide showed higher inhibition rate than raw polysaccharide at the higher concentration (50g/mL) in the absence of sulfur dioxide and ultraviolet. It was confirmed to be a good mutant inhibitor. PMID:26927934

  15. Molybdate transport through the plant sulfate transporter SHST1.

    PubMed

    Fitzpatrick, Kate L; Tyerman, Stephen D; Kaiser, Brent N

    2008-04-30

    Molybdenum is an essential micronutrient required by plants. The mechanism of molybdenum uptake in plants is poorly understood, however, evidence has suggested that sulfate transporters may be involved. The sulfate transporter from Stylosanthes hamata, SHST1, restored growth of the sulfate transport yeast mutant, YSD1, on media containing low amounts of molybdate. Kinetic analysis using 99MoO4(2-) demonstrated that SHST1 enhanced the uptake of molybdate into yeast cells at nM concentrations. Uptake was not inhibited by sulfate, but sulfate transport via SHST1 was reduced with molybdate. These results are the first measurement of molybdate transport by a characterised plant sulfate transport protein. PMID:18396170

  16. Phellinus linteus polysaccharide extracts increase the mitochondrial membrane potential and cause apoptotic death of THP-1 monocytes

    PubMed Central

    2013-01-01

    Background The differentiation resp. death of human monocytic THP-1 cells induced by polysaccharide extracts of the medicinal mushrooms Phellinus linteus, Agaricus bisporus and Agaricus brasiliensis have been studied. This study aims to identify leads for the causal effects of these mushroom components on cell differentiation and death. Methods THP-1 cells were treated with different polysaccharide extracts of mushrooms and controls. Morphological effects were observed by light microscopy. Flow cytometry was applied to follow the cell differentiation by cell cycle shifts after staining with propidium iodide, changes of mitochondrial membrane potential after incubation with JC-1, and occurrence of intracellular reactive oxygen species after incubation with hydroethidine. Principal component analysis of the data was performed to evaluate the cellular effects of the different treatments. Results P. linteus polysaccharide extracts induced dose-dependent apoptosis of THP-1 cells within 24h, while A. bisporus and A. brasiliensis polysaccharide extracts caused differentiation into macrophages. A pure P. linteus polysaccharide had no effect. Apoptosis was inhibited by preincubating THP-1 cells with human serum. The principal component analysis revealed that P. linteus, A. bisporus and A. brasiliensis polysaccharide extracts increased reactive oxygen species production. Both A. bisporus and A. brasiliensis polysaccharide extracts decreased the mitochondrial membrane potential, while this was increased by P. linteus polysaccharide extracts. Conclusions P. linteus polysaccharide extracts caused apoptosis of THP-1 monocytes while A. bisporus and A. brasiliensis polysaccharide extracts caused these cells to differentiate into macrophages. The protective effects of human serum suggested that P. linteus polysaccharide extract induced apoptosis by extrinsic pathway, i.e. by binding to the TRAIL receptor. The mitochondrial membrane potential together with reactive oxygen species seems to play an important role in cell differentiation and cell death. PMID:24344650

  17. A zinc complex of heparan sulfate destabilises lysozyme and alters its conformation

    SciTech Connect

    Hughes, Ashley J.; Diamond Light Source Ltd., Diamond House, Didcot, Oxfordshire OX11 0DE ; Hussain, Rohanah; Cosentino, Cesare; Guerrini, Marco; Siligardi, Giuliano; Yates, Edwin A.; Rudd, Timothy R.

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Zinc-heparan sulfate complex destabilises lysozyme, a model amyloid protein. Black-Right-Pointing-Pointer Addition of zinc, without heparan sulfate, stabilises lysozyme. Black-Right-Pointing-Pointer Heparan sulfate cation complexes provide alternative protein folding routes. -- Abstract: The naturally occurring anionic cell surface polysaccharide heparan sulfate is involved in key biological activities and is implicated in amyloid formation. Following addition of Zn-heparan sulfate, hen lysozyme, a model amyloid forming protein, resembled {beta}-rich amyloid by far UV circular dichroism (increased {beta}-sheet: +25%), with a significantly reduced melting temperature (from 68 to 58 Degree-Sign C) by fluorescence shift assay. Secondary structure stability of the Zn-heparan sulfate complex with lysozyme was also distinct from that with heparan sulfate, under stronger denaturation conditions using synchrotron radiation circular dichroism. Changing the cation associated with heparan sulfate is sufficient to alter the conformation and stability of complexes formed between heparan sulfate and lysozyme, substantially reducing the stability of the protein. Complexes of heparan sulfate and cations, such as Zn, which are abundant in the brain, may provide alternative folding routes for proteins.

  18. Structurally altered capsular polysaccharides produced by mutant bacteria

    NASA Technical Reports Server (NTRS)

    Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor); Richards, Gil F. (Inventor)

    1995-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  19. Sucrose release from polysaccharide gels.

    PubMed

    Nishinari, Katsuyoshi; Fang, Yapeng

    2016-05-18

    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed. PMID:26952168

  20. Cellulose degradation by polysaccharide monooxygenases.

    PubMed

    Beeson, William T; Vu, Van V; Span, Elise A; Phillips, Christopher M; Marletta, Michael A

    2015-01-01

    Polysaccharide monooxygenases (PMOs), also known as lytic PMOs (LPMOs), enhance the depolymerization of recalcitrant polysaccharides by hydrolytic enzymes and are found in the majority of cellulolytic fungi and actinomycete bacteria. For more than a decade, PMOs were incorrectly annotated as family 61 glycoside hydrolases (GH61s) or family 33 carbohydrate-binding modules (CBM33s). PMOs have an unusual surface-exposed active site with a tightly bound Cu(II) ion that catalyzes the regioselective hydroxylation of crystalline cellulose, leading to glycosidic bond cleavage. The genomes of some cellulolytic fungi contain more than 20 genes encoding cellulose-active PMOs, suggesting a diversity of biological activities. PMOs show great promise in reducing the cost of conversion of lignocellulosic biomass to fermentable sugars; however, many questions remain about their reaction mechanism and biological function. This review addresses, in depth, the structural and mechanistic aspects of oxidative depolymerization of cellulose by PMOs and considers their biological function and phylogenetic diversity. PMID:25784051

  1. Controls of Polysaccharide Chemistry on the Kinetics and Thermodynamics of Heterogeneous Calcium Carbonate Nucleation

    NASA Astrophysics Data System (ADS)

    Giuffre, A. J.; Han, N.; Dove, P. M.

    2011-12-01

    Polysaccharide fibrils control the orientation of calcium carbonate (CaCO3) biominerals. Good examples are found in the multilayered extracellular mucilaginous sheath of green algae and cyanobacteria and in specialized vesicles inside coccolithophorids. More complex organisms such as arthropods and mollusks form biomineralized exoskeletons and shells that consist of insoluble polysaccharides and soluble acid-rich proteins. In these structures, CaCO3 mineral orientation occurs along fibers of the polysaccharide chitin. This raises the question of whether polysaccharide chemistry has specific roles in directing biomineralization. The last three decades of research show that acidic proteins influence CaCO3 polymorph selection, crystallographic orientation, and nucleation and growth rates but little is known about the function of polysaccharides. In fact, polysaccharides are long considered an inert component of organic frameworks. In this experimental investigation, we test the hypothesis that polysaccharides have chemistry-specific influences on calcification by measuring the kinetics of calcite nucleation onto three types of polysaccharide films under controlled solution compositions. Characterized polysaccharides of simple repeating monomer sequences were chosen as model compounds to represent the major carbohydrates seen in microbial and calcifying environments: 1) alginic acid with carboxyl groups, 2) hyaluronic acid with alternating carboxyl and acetylamine groups, and 3) chitosan with amine and acetylamine groups. Biosubstrates were prepared by electrodeposition of these compounds as thin gel-like films onto gold-coated silicon wafers. Using a flow-through cell, heterogeneous nucleation rates of calcite were measured for a suite of supersaturation conditions. These rate data were compared to similar measurements for carboxyl- and hydroxyl-terminated self-assembled monolayers. Calcite nucleation rates onto the three polysaccharides vary by a factor of 400x. Preliminary analyses of the data attribute these differences to changes in both kinetic and thermodynamic barriers to nucleation. These initial findings indicate that polysaccharide chemistry can have active roles in regulating the kinetics of calcite formation. It may be time to reconsider their presumed function as inert framework molecules for mineralized structures. Future work will investigate CaCO3 nucleation on substrates of polysaccharides with more complex functionalization and monomer sequences to decipher the origins of these effects in promoting or inhibiting mineralization.

  2. Review: prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori.

    PubMed

    Besednova, Natalya N; Zaporozhets, Tatyana S; Somova, Larisa M; Kuznetsova, Tatyana A

    2015-04-01

    Helicobacter pylori possesses a broad spectrum of pathogenic factors that allow it to survive and colonize the gastric mucosa, and thus, the pathogenetic targets, which have the same diversity, require search for and the development of alternative, effective, and innocuous means for the eradication of H.pylori. In recent years, fucoidanshave been extensively studied due to the numerous interesting biological activities, including the anti-adhesive, anti-oxidative, antitoxic, immunomodulatory, anticoagulant, and anti-infection effects. This review summarizes thedata on the effects of extracts and sulfated polysaccharides of marine algae, mainly fucoidans, on pathogenic targets in Helicobacter infection. The pathogenetic targets for therapeutic agents after H.pylori infection, such as flagellas, urease, and other enzymes, including adhesins, cytotoxin A (VacA), phospholipase, and L-8, are characterized here. The main target for the sulfated polysaccharides of seaweed is cell receptors of the gastric mucosa. This review presents the published data about the pleiotropic anti-inflammatory effects of polysaccharides on the gastric mucosa. It is known that fucoidan and other sulfated polysaccharides from algae have anti-ulcer effects, prevent the adhesion of H.pylori to, and reduce the formation of biofilm. The authors speculate that the effect of sulfated polysaccharides on the infectious process caused by H.pylori is related to their action on innate and adaptive immunity cells, and also anti-oxidant and antitoxic potential. Presented in the review are materials indicated for the study of extracts and sulfated polysaccharides from seaweed during H.pylori infection, as these compounds are characterized by multimodality actions. Based on the analysis of literary materials in recent years, the authors concluded that fucoidan can be attributed to the generation of new candidates to create drugs intended for the inclusion in the scheme of eradication therapy of H.pylori infection. PMID:25660579

  3. Inhibition of Aflatoxin Synthesis in Aspergillus flavus by Three Structurally Modified Lentinans

    PubMed Central

    Ma, Jinyou; Mo, Haizhen; Chen, Ying; Ding, Ding; Hu, Liangbin

    2014-01-01

    The chemical properties of β-glucans leading to their inhibition on aflatoxin (AF) production by Aspergillus flavus remain unclear. In this study, structurally modified lentinan derivatives were prepared by carboxymethylation, sulfation, and phosphorylation to explore their inhibition activity to AF synthesis. The results demonstrated that inhibitory activity of lentinan decreased at higher or lower concentrations than 200 μg/mL. Compared with lentinan, the sulphated derivatives only performed a reduced optimal inhibition rate at a higher concentration. The phosphorylated derivatives achieved complete inhibition of AF production at 50 μg/mL, but the inhibitory activity was attenuated with an increase of concentration. The minimum concentration of carboxymethylated derivatives to completely inhibit AF synthesis was the same as that of the original lentinan, whereas their inhibition activity was not reduced at the increasing concentration. RT-PCR analyses were conducted to understand the effects of lentinan and its carboxymethylated derivatives on the transcription of certain genes associated with AF biosynthesis. The results showed that lentinan delayed the transcription of aflQ, whereas its carboxymethylated derivatives promoted the transcriptions of all the tested genes. Our results revealed that some chemical group features apart from the β-bond could play the vital role in the prevention of AF formation by polysaccharide, and highlighted the structural modifications which could promote its practicability in the control of aflatoxin contamination. PMID:24599078

  4. Quantification of free polysaccharide in meningococcal polysaccharide-diphtheria toxoid conjugate vaccines.

    PubMed

    Lei, Q P; Shannon, A G; Heller, R K; Lamb, D H

    2000-01-01

    A precipitation method using deoxycholate/HCI has been applied successfully to separate unconjugated free polysaccharide from carrier protein-bound material in meningococcal polysaccharide-diphtheria toxoid conjugate vaccines. The method effectively separated free and bound polysaccharide in conjugate vaccines prepared from Neisseria meningitidis serotypes A, C, W135 and Y. Free polysaccharide remained in the supernatant after deoxycholate treatment while protein-bound polysaccharide was fully precipitated. Testing by both colorimetric assay and high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) has confirmed the selective loss of protein-bound polysaccharide in samples of conjugate vaccine or conjugate vaccine mixed with known amounts of free polysaccharide. This rapid separation method requires minimum sample handling and is specific, reproducible, and allows assessment of free polysaccharide levels in vaccines at final container concentration. PMID:11214246

  5. Marine Polysaccharides in Pharmaceutical Applications: An Overview

    PubMed Central

    Laurienzo, Paola

    2010-01-01

    The enormous variety of polysaccharides that can be extracted from marine plants and animal organisms or produced by marine bacteria means that the field of marine polysaccharides is constantly evolving. Recent advances in biological techniques allow high levels of polysaccharides of interest to be produced in vitro. Biotechnology is a powerful tool to obtain polysaccharides from a variety of micro-organisms, by controlling the growth conditions in a bioreactor while tailoring the production of biologically active compounds. Following an overview of the current knowledge on marine polysaccharides, with special attention to potential pharmaceutical applications and to more recent progress on the discovering of new polysaccharides with biological appealing characteristics, this review will focus on possible strategies for chemical or physical modification aimed to tailor the final properties of interest. PMID:20948899

  6. Polysaccharide-Based Micelles for Drug Delivery

    PubMed Central

    Zhang, Nan; Wardwell, Patricia R.; Bader, Rebecca A.

    2013-01-01

    Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date. PMID:24300453

  7. Antitumor activity of a polysaccharide fraction from Laminaria japonica on U14 cervical carcinoma-bearing mice.

    PubMed

    Zhai, Qingzhi; Li, Xiuli; Yang, Yizhuo; Yu, Ling; Yao, Yuanqing

    2014-01-01

    In the present study, we investigated the in vitro and in vivo antitumor effects of a sulfated polysaccharide fraction from the brown alga Laminaria japonica (LJSP) on cervical carcinoma. In vitro, the results showed that LJSP exhibited the highest cell growth inhibitory effect on cervical carcinoma U14 cells among five tumor cell lines. In vivo, the results showed that LJSP could not only inhibit the growth of the tumor but also enhance the spleen and thymus indexes, as well as the body weight of U14 tumor-bearing mice. Moreover, the white blood cell count of H22 tumor-bearing mice showed no change in the LJSP-treated groups and little toxicological effects were observed on hepatic function and renal function in LJSP-treated mice bearing U14 tumor cells. Besides, LJSP induced apoptosis of transplanted tumor tissues by increasing the ratio of Bax/Bcl-2. These data showed that LJSP exhibited prominent antitumor activities and low toxic effects; thus, it could be developed to a safe and effective anticancer agent. PMID:23922174

  8. Polysaccharide-based nanocomposites and their applications

    PubMed Central

    Zheng, Yingying; Monty, Jonathan; Linhardt, Robert J.

    2014-01-01

    Polysaccharide nanocomposites have become increasingly important materials over the past decade. Polysaccharides offer a green alternative to synthetic polymers in the preparation of soft nanomaterials. They have also been used in composites with hard nanomaterials, such as metal nanoparticles and carbon-based nanomaterials. This mini review describes methods for polysaccharide nanocomposite preparation and reviews the various types and diverse applications for these novel materials. PMID:25498200

  9. Polysaccharide-based nanocomposites and their applications.

    PubMed

    Zheng, Yingying; Monty, Jonathan; Linhardt, Robert J

    2015-03-20

    Polysaccharide nanocomposites have become increasingly important materials over the past decade. Polysaccharides offer a green alternative to synthetic polymers in the preparation of soft nanomaterials. They have also been used in composites with hard nanomaterials, such as metal nanoparticles and carbon-based nanomaterials. This mini review describes methods for polysaccharide nanocomposite preparation and reviews the various types and diverse applications for these novel materials. PMID:25498200

  10. Comparative studies on the immunoregulatory effects of three polysaccharides using high content imaging system.

    PubMed

    Lv, Xiaocheng; Chen, Dandan; Yang, Liecheng; Zhu, Ning; Li, Jingling; Zhao, Jian; Hu, Zhibi; Wang, Fu-Jun; Zhang, Leshuai W

    2016-05-01

    In this study, polysaccharides were isolated from Astragalus membranaceus, Ganoderma lucidum and Radix ophiopogonis and named APSII, GLPII and OGPII for comparison of their immunoactivities. MTT assay indicated that these polysaccharides increased the metabolic activity of Raw264.7 macrophages and induced cell differentiation to dendritic like cells. High content screening and mathematical modeling were used to quantify the cell irregularity, a hallmark of cell differentiation by polysaccharides. The results showed that GLPII increased cell irregularity, but APSII and OGPII had slightly less effects. Imaging analysis also revealed that polysaccharides inhibited cell proliferation while inducing the cell differentiation. In addition, APSII and GLPII but not OGPII induced NO production and enhanced cell phagocytic ability. Interestingly, inducible nitric oxide synthase inhibitor blocked polysaccharide-enhanced phagocytosis, indicating NO production is crucial for macrophages to acquire phagocytic ability, which was further confirmed by correlation studies. APSII and GLPII significantly promoted the maturation of macrophages by the increase in the expression of MHCII, CD40, CD80 and CD86, while OGPII had less effects. In summary, we have suggested a practical and economical method to quantify macrophage differentiation (irregularity) induced by polysaccharides for quality assurance and have found the role of NO production on macrophage phagocytic ability. PMID:26783639

  11. Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment.

    PubMed

    Ballesteros, Lina F; Cerqueira, Miguel A; Teixeira, José A; Mussatto, Solange I

    2015-01-01

    Spent coffee grounds (SCG), obtained during the processing of coffee powder with hot water to make soluble coffee, are the main coffee industry residues and retain approximately seventy percent of the polysaccharides present in the roasted coffee beans. The purpose of this study was to extract polysaccharides from SCG by using an alkali pretreatment with sodium hydroxide at 25°C, and determine the chemical composition, as well as the antioxidant and antimicrobial properties of the extracted polysaccharides. Galactose (60.27%mol) was the dominant sugar in the recovered polysaccharides, followed by arabinose (19.93%mol), glucose (15.37%mol) and mannose (4.43%mol). SCG polysaccharides were thermostable, and presented a typical carbohydrate pattern. Additionally, they showed good antioxidant activity through different methods and presented high antimicrobial percent inhibition against Phoma violacea and Cladosporium cladosporioides (41.27% and 54.60%, respectively). These findings allow identifying possible applications for these polysaccharides in the food industry. PMID:25965493

  12. Utilization of lignocellulosic polysaccharides

    NASA Astrophysics Data System (ADS)

    Fenske, John James

    Lignocellulosic biomass represents a vast supply of fermentable carbohydrates and functional aromatic compounds. Conversion of lignocellulosics to ethanol and other useful products would be of widespread economical and environmental benefit. Better understanding of the behavior of different lignocellulosic feedstocks in fermentation protocols as well as catalytic activities involved in lignocellulosic depolymerization will further enhance the commercial viability of biomass-to-ethanol conversion processes. The relative toxicity of the combined non-xylose components in prehydrolysates derived from three different lignocellulosic biomass feedstocks (poplar, corn stover and switchgrass, or Panicum virgatum L.) was determined using a Pichia stipits fermentation assay. The relative toxicity of the prehydrolysates, in decreasing order, was poplar-derived prehydrolysates > switchgrass-derived prehydrolysates > corn stover-derived prehydrolysates. Ethanol yields averaged 74%, 83% and 88% of control values for poplar, switchgrass and corn stover prehydrolysates, respectively. Volumetric ethanol productivities (g ethanol lsp{-1} hsp{-1}) averaged 32%, 70% and 102% of control values for poplar, switchgrass and corn stover prehydrolysates, respectively. Ethanol productivities correlated closely with acetate concentrations in the prehydrolysates; however, regression lines correlating acetate concentrations and ethanol productivities were found to be feedstock-dependent. Differences in the relative toxicity of xylose-rich prehydrolysates derived from woody and herbaceous feedstocks are likely due to the relative abundance of a variety of inhibitory compounds, e.g. acetate and aromatic compounds. Fourteen aromatic monomers present in prehydrolysates prepared from corn stover, switchgrass, and poplar were tentatively identified by comparison with published mass spectra. The concentrations of the aromatic monomers totaled 112, 141 and 247 mg(l)sp{-1} for corn stover, switchgrass and poplar prehydrolysates, respectively. The woody and herbaceous feedstocks differed in both amount and type of aromatic monomers. The cellulases of Trichoderma reesei are the most widely studied for use in the depolymerization of lignocellulosics. The Trichoderma cellobiohydrolases CBH1 and CBH2 are traditionally categorized as exo-acting cellulases. A simple individual-based model was created to explore the potential effects of native endo activity on substrate-velocity profiles. The model results indicate that an enzyme with a small amount of endo activity will show an apparent substrate inhibition as substrate levels are increased. Actual hydrolysis studies using affinity chromatography-purified CBH2 preparations from three laboratories indicate that CBH2 has native endo activity, while CBH1 does not.

  13. Soluble polysaccharide and biomass of red microalga Porphyridium sp. alter intestinal morphology and reduce serum cholesterol in rats.

    PubMed

    Dvir, I; Chayoth, R; Sod-Moriah, U; Shany, S; Nyska, A; Stark, A H; Madar, Z; Arad, S M

    2000-10-01

    The present study investigated the effects of the red microalga Porphyridium sp. on gastrointestinal physiology and lipid metabolism in male Sprague-Dawley rats. Diets containing dietary fibre from pelleted red microalgal cells (biomass) or their sulfated polysaccharide, pectin or cellulose (control) were fed to rats for a period of 30 d. All three fibre-supplemented diets increased the length of both the small intestine and colon, with a significantly greater effect in rats fed the algal polysaccharide. The polysaccharide also increased mucosa and muscularis cross-sectional area of the jejunum, and caused hypertrophy in the muscularis layer. The algal biomass significantly lowered gastrointestinal transit time by 44% in comparison with the control rats. Serum and mucosal cholecystokinin levels were lower in rats on the pectin and polysaccharide diets, while cholecystokinin levels in rats fed algal biomass were not different from those in the control animals. In comparison with the control diet, all the experimental diets significantly lowered serum cholesterol levels (22-29%). Feeding of non-fermentable algal polysaccharide or biomass significantly increased faecal weight and bile acid excretion compared with pectin-fed or control rats. The algal polysaccharide and biomass were thus shown to be potent hypocholesterolaemic agents active at low concentrations in the diet. Both metabolic and morphological changes were observed following consumption of algae, suggesting several possible mechanisms by which the alga affects lipid metabolism. The results presented in the present study encourage the use of red microalga as a functional food. PMID:11103217

  14. Improvement of the Digestibility of Sulfated Hyaluronans by Bovine Testicular Hyaluronidase: A UV Spectroscopic and Mass Spectrometric Study

    PubMed Central

    Becher, Jana; Möller, Stephanie

    2014-01-01

    Glycosaminoglycans (GAGs) such as hyaluronan (HA) and chondroitin sulfate (CS) are important, natural polysaccharides which occur in biological (connective) tissues and have various biotechnological and medical applications. Additionally, there is increasing evidence that chemically (over)sulfated GAGs possess promising properties and are useful as implant coatings. Unfortunately, a detailed characterization of these GAGs is challenging: although mass spectrometry (MS) is one of the most powerful tools to elucidate the structures of (poly)saccharides, MS is not applicable to high mass polysaccharides, but characteristic oligosaccharides are needed. These oligosaccharides are normally generated by enzymatic digestion. However, chemically modified (particularly sulfated) GAGs are extremely refractive to enzymatic digestion. This study focuses on the investigation of the digestibility of GAGs with different degrees of sulfation by bovine testicular hyaluronidase (BTH). It will be shown by using an adapted spectrophotometric assay that all investigated GAGs can be basically digested if the reaction conditions are carefully adjusted. However, the oligosaccharide yield correlates reciprocally with the number of sulfate residues per polymer repeating unit. Finally, matrix-laser desorption and ionization (MALDI) MS will be used to study the released oligosaccharides and their sulfation patterns. PMID:24971366

  15. Impact of sulfation pattern on the conformation and dynamics of sulfated fucan oligosaccharides as revealed by NMR and MD.

    PubMed

    Queiroz, Ismael N L; Wang, Xiaocong; Glushka, John N; Santos, Gustavo R C; Valente, Ana P; Prestegard, James H; Woods, Robert J; Mourão, Paulo A S; Pomin, Vitor H

    2015-05-01

    Sulfated fucans from sea urchin egg jelly express well-defined chemical structures that vary with species. This species specificity regulates the sperm acrosome reaction, a critical step to assure intra-specific fertilization. In addition, these polysaccharides are involved in other biological activities such as anticoagulation. Although sulfation patterns are relevant to the levels of response in both activities, conformation and dynamics of these glycans are also contributing factors. However, data about these features of sulfated fucans are very rare. To address this, we have employed nuclear magnetic resonance experiments combined with molecular dynamics on structurally defined oligosaccharides derived from two sulfated fucans. The results have indicated that the oligosaccharides are flexible in solution. Ring conformation of their composing units displays just the (1)C4 chair configuration. In a particular octasaccharide, composed of two tetrasaccharide sequences, inter-residual hydrogen bonds play a role to decrease dynamics in these repeating units. Conversely, the linking disaccharide [-3)-α-L-Fucp-2(OSO3(-))-(1-3)-α-L-Fucp-4(OCO3(-))-(1-] located right between the two tetrasaccharide units has amplified motions suggested to be promoted by electrostatic repulsion of sulfates on opposite sides of the central glycosidic bond. This conjunction of information about conformation and dynamics of sulfated fucan oligosaccharides provides new insights to explain how these glycans behave free in solution and influenced by sulfation patterns. It may also serve for future studies concerning structure-function relationship of sulfated fucans, especially those involving sea urchin fertilization and anticoagulation. PMID:25527427

  16. Substrates for Sulfate Reduction and Methane Production in Intertidal Sediments

    PubMed Central

    Winfrey, Michael R.; Ward, David M.

    1983-01-01

    The activity of and potential substrates for methane-producing bacteria and sulfate-reducing bacteria were examined in marsh, estuary, and beach intertidal sediments. Slow rates of methane production were detected in all sediments, although rates of sulfate reduction were 100- to 1,000-fold higher. After sulfate was depleted in sediments, the rates of methane production sharply increased. The addition of methylamine stimulated methanogenesis in the presence of sulfate, and [14C]methylamine was rapidly converted to 14CH4 and 14CO2 in freshly collected marsh sediment. Acetate, hydrogen, or methionine additions did not stimulate methanogenesis. [methyl-14C]methionine and [2-14C]acetate were converted to 14CO2 and not to 14CH4 in fresh sediment. No reduction of 14CO2 to 14CH4 occurred in fresh sediment. Molybdate, an inhibitor of sulfate reduction, inhibited [2-14C]acetate metabolism by 98.5%. Fluoracetate, an inhibitor of acetate metabolism, inhibited sulfate reduction by 61%. These results suggest that acetate is a major electron donor for sulfate reduction in marine sediments. In the presence of high concentrations of sulfate, methane may be derived from novel substrates such as methylamine. PMID:16346165

  17. DHEA-sulfate test

    MedlinePlus

    ... done in children who are maturing too early ( precocious puberty ). It may also be done in women ... tumor of the adrenal gland Polycystic ovary syndrome Precocious puberty A decrease in DHEA sulfate may be ...

  18. De Novo Sequencing of Complex Mixtures of Heparan Sulfate Oligosaccharides.

    PubMed

    Huang, Rongrong; Zong, Chengli; Venot, Andre; Chiu, Yulun; Zhou, Dandan; Boons, Geert-Jan; Sharp, Joshua S

    2016-05-17

    Here, we describe the first sequencing method of a complex mixture of heparan sulfate tetrasaccharides by LC-MS/MS. Heparin and heparan sulfate (HS) are linear polysaccharides that are modified in a complex manner by N- and O-sulfation, N-acetylation, and epimerization of the uronic acid. Heparin and HS are involved in various essential cellular communication processes. The structural analysis of these glycosaminoglycans is challenging due to the lability of their sulfate groups, the high heterogeneity of modifications, and the epimerization of the uronic acids. While advances in liquid chromatography (LC) and mass spectrometry (MS) have enabled compositional profiling of HS oligosaccharide mixtures, online separation and detailed structural analysis of isomeric and epimeric HS mixtures has not been achieved. Here, we report the development and evaluation of a chemical derivatization and tandem mass spectrometry method that can separate and identify isomeric and epimeric structures from complex mixtures. A series of well-defined synthetic HS tetrasaccharides varying in sulfation patterns and uronic acid epimerization were analyzed by chemical derivatization and LC-MS/MS. These synthetic compounds made it possible to establish relationships between HS structure, chromatographic behavior and MS/MS fragmentation characteristics. Using the analytical characteristics determined through the analysis of the synthetic HS tetrasaccharide standards, an HS tetrasacharide mixture derived from natural sources was successfully sequenced. This method represents the first sequencing of complex mixtures of HS oligosaccharides, an essential milestone in the analysis of structure-function relationships of these carbohydrates. PMID:27087275

  19. Antiadhesive activity of ulvan polysaccharides covalently immobilized onto titanium surface.

    PubMed

    Gadenne, Virginie; Lebrun, Laurent; Jouenne, Thierry; Thebault, Pascal

    2013-12-01

    Bacterial adhesion leading to biofilm formation on the surface of implants is responsible for pathogenesis infections. One promising strategy to reduce the risk of infection consists of modifying implant surfaces by antibacterial coating. In the present study, the ability of ulvan, a non biocidal algal polysaccharide, to limit bacterial adhesion on titanium was investigated. To this end, titanium surfaces were modified by two different ulvans. Polysaccharides were covalently immobilized on titanium surfaces which had been previously functionalized by self assembled monolayers of aminoundecyltrimethoxysilane (AUTMS). Each step in the modification process was characterized by contact angle, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Bacterial adhesion assays showed that immobilized ulvans on titanium surface strongly decreased by about 90% the adhesion of Pseudomonas aeruginosa. Moreover, AFM observations showed that the polysaccharide also inhibited the bacterial spreading on the surface but not cell-to-cell interaction. The permanence of the anti-adhesive effect of the surfaces was finally tested on a non-motile organism, i.e., Staphylococcus epidermidis. The results showed that the effect was maintained for at least 24h. PMID:23994748

  20. Polysaccharide production by microalgae. Final report on phase 1

    SciTech Connect

    Benemann, J.R.; Weissman, J.C.

    1980-04-01

    The feasibility of producing commercially valuable polysaccharides from microalgal biomass was demonstrated. Algal biomass with a high polysaccharide content was produced by subjecting cultures to short periods of nitrogen limitation without decreasing overall biomass production rates. Three different algae were studied--unicellular blue-green alga Synechococcus leopoliensis, filamentous blue-green alga Spirulina platensis, and a green colonial alga, Scenedesmus sp. Batch cultures were grown with varying amounts of nitrate to limit nitrogen uptake at various stages in the batch growth curve. In the presence of high nitrate concentrations, the Synechococcus culture became stationary within four days, whereas both Spirulina and Scenedesmus maintained an appreciable growth rate and high daily productivities, for at least a week. With limiting nitrate concentrations, the cellular content of polysaccharide (measured as total carbohydrates) increased markedly, from 20-25 percent to 70-80 percent in Synechococcus and Spirulina. Depending on the level of nitrate used, onset of nitrogen limitation could be set at various culture densities. In all cases, little or no inhibition of total biomass production was noted.

  1. O-Acetylation of Plant Cell Wall Polysaccharides

    PubMed Central

    Gille, Sascha; Pauly, Markus

    2011-01-01

    Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production. PMID:22639638

  2. Crystallization of calcium oxalate monohydrate at dipalmitoylphosphatidylcholine monolayers in the presence of chondroitin sulfate A

    NASA Astrophysics Data System (ADS)

    Ouyang, Jian-Ming; Deng, Sui-Ping; Zhong, Jiu-Ping; Tieke, Bernd; Yu, Shu-Hong

    2004-10-01

    The growth and aggregation of calcium oxalate monohydrate (COM) crystals beneath dipalmitoylphosphatidylcholine (DPPC) monolayers in the presence of chondroitin sulfate A (C4S) was systematically examined under different surface pressure. The results indicated that the addition of C4S can inhibit the crystal growth and prevent the aggregation of COM crystals. Under a DPPC monolayer, well-defined three-dimensional hexagonal prisms and three-dimensional rhombus prisms with sharply angled tips were obtained. The DPPC monolayer at a surface pressure of 10 mN/m can match the Ca2+ distance of the (1 bar 0 1) face of COM better than at 20 mN/m. The addition of C4S could cooperatively modulate the interaction strength between the monolayer (or itself) with the specific morphology determining faces such as (1 bar 0 1) and (0 2 0), and thus results in remarkable stabilization of the (1 bar 0 1) faces. The dramatic changes in morphological details were due to the strong electrostatic interactions between the Ca2+-rich (1 bar 0 1) crystal faces of COM and the polyanionic polysaccharide C4S together with the negatively charged sites of the zwitterionic DPPC monolayers. The increase of the concentration of C4S can further enhance the stabilization of the (1 bar 0 1) face.

  3. Manipulation of cellulose nanocrystal surface sulfate groups toward biomimetic nanostructures in aqueous media.

    PubMed

    Zoppe, Justin O; Johansson, Leena-Sisko; Seppälä, Jukka

    2015-08-01

    We report a facile aqueous procedure to create multivalent displays of sulfonated ligands on CNCs for future applications as viral inhibitors. CNCs were decorated with model compounds containing sulfonate groups via reactions of epoxides and isothiocyanates with amines under alkaline conditions. At first, surface sulfate groups of CNCs were hydrolytically cleaved by alkaline hydrolysis to increase the number of available surface hydroxyls. Success of desulfation was confirmed via dynamic light scattering (DLS), zeta potential measurements and thermogravimetric analysis (TGA). CNC surface hydroxyl groups were then activated with epichlorohydrin before subsequent reactions. As proof of concept toward aqueous pathways for functionalizing nanoparticles with sulfonated ligands, 3-chloro-2-hydroxy-1-propanesulfonic acid sodium salt hydrate (CPSA) and 4-sulfophenyl isothiocyanate sodium salt monohydrate (4-SPITC) were chosen as model compounds to react with homobifunctional 2,2'-(ethylenedioxy)bis(ethylamine) (EBEA) molecular spacer. The approaches presented are not only applicable to polysaccharide nanocrystals, but also other classes of polymeric and inorganic substrates presenting surface hydroxyl groups, as in the case of poly(2-hydroxyethyl methacrylate) (PHEMA), silica or glass. CNCs carrying sulfonated ligands were characterized by ATR-FTIR and UV-vis spectroscopy. Surface chemical compositions of desired elements were determined via X-ray photoelectron spectroscopy (XPS). We anticipate that with these facile aqueous procedures as the proof of concept, a diverse library of target-specific functionalities can be conjugated to CNCs for applications in nanomedicine, especially related to viral inhibition. PMID:25933518

  4. Inhibition of development of Kaposi's sarcoma-related lesions by a bacterial cell wall complex.

    PubMed

    Nakamura, S; Sakurada, S; Salahuddin, S Z; Osada, Y; Tanaka, N G; Sakamoto, N; Sekiguchi, M; Gallo, R C

    1992-03-13

    In vitro and in vivo model systems for the study of human immunodeficiency virus (HIV)-associated Kaposi's sarcoma (KS) were used to evaluate compounds for their potential as therapeutic agents. A sulfated polysaccharide-peptidoglycan compound (SP-PG) produced by bacteria controlled the in vitro growth of acquired immunodeficiency syndrome (AIDS)-associated, KS-derived spindle-shaped cells (AIDS-KS cells) at noncytotoxic concentrations. Angiogenesis induced by AIDS-KS cells in the chicken chorioallantoic membrane assay was blocked by SP-PG, which also inhibited the vascular hyperpermeability response and the angiogenesis associated with the induction of KS-like lesions that develop after subcutaneous inoculation of AIDS-KS cells into nude mice. Suramin, pentosan polysulfate, and interferon alpha, which are currently in use for therapy of KS, were either less effective than SP-PG or much more cytotoxic, or both. PMID:1371891

  5. Factor H and Properdin Recognize Different Epitopes on Renal Tubular Epithelial Heparan Sulfate*

    PubMed Central

    Zaferani, Azadeh; Vivès, Romain R.; van der Pol, Pieter; Navis, Gerjan J.; Daha, Mohamed R.; van Kooten, Cees; Lortat-Jacob, Hugues; Seelen, Marc A.; van den Born, Jacob

    2012-01-01

    During proteinuria, renal tubular epithelial cells become exposed to ultrafiltrate-derived serum proteins, including complement factors. Recently, we showed that properdin binds to tubular heparan sulfates (HS). We now document that factor H also binds to tubular HS, although to a different epitope than properdin. Factor H was present on the urinary side of renal tubular cells in proteinuric, but not in normal renal tissues and colocalized with properdin in proteinuric kidneys. Factor H dose-dependently bound to proximal tubular epithelial cells (PTEC) in vitro. Preincubation of factor H with exogenous heparin and pretreatment of PTECs with heparitinase abolished the binding to PTECs. Surface plasmon resonance experiments showed high affinity of factor H for heparin and HS (KD values of 32 and 93 nm, respectively). Using a library of HS-like polysaccharides, we showed that chain length and high sulfation density are the most important determinants for glycosaminoglycan-factor H interaction and clearly differ from properdin-heparinoid interaction. Coincubation of properdin and factor H did not hamper HS/heparin binding of one another, indicating recognition of different nonoverlapping epitopes on HS/heparin by factor H and properdin. Finally we showed that certain low anticoagulant heparinoids can inhibit properdin binding to tubular HS, with a minor effect on factor H binding to tubular HS. As a result, these heparinoids can control the alternative complement pathway. In conclusion, factor H and properdin interact with different HS epitopes of PTECs. These interactions can be manipulated with some low anticoagulant heparinoids, which can be important for preventing complement-derived tubular injury in proteinuric renal diseases. PMID:22815489

  6. BMP-2 encapsulated polysaccharide nanoparticle modified biphasic calcium phosphate scaffolds for bone tissue regeneration.

    PubMed

    Wang, Zhenming; Wang, Kefeng; Lu, Xiong; Li, Minqi; Liu, Hongrui; Xie, Chaoming; Meng, Fanzhi; Jiang, Ou; Li, Chen; Zhi, Wei

    2015-04-01

    Bone morphology protein-2 (BMP-2) encapsulated chitosan/chondrotin sulfate nanoparticles (CHI/CS NPs) are developed to enhance ectopic bone formation on biphasic calcium phosphate (BCP) scaffolds. BMP-2 contained CHI/CS NPs were prepared by a simple and mild polyelectrolyte complexation process. It does not involve harsh organic solvents and high temperature, and therefore retain growth factors activity. These NPs were immobilized on BCP scaffolds, and realize the sustained release of growth factors from the scaffolds. The bare BCP scaffolds, NP loaded scaffolds (BCP-NP), and NP loaded and polydopamine coated scaffolds (BCP-Dop-NP) were seeded with bone marrow stroma cells (BMSC) to evaluate the osteoinductivity of the scaffolds. BMSC culture results indicate that all scaffolds favor cell adhesion, proliferation, differentiation. Afterwards, the bare BCP, BCP-NP, and BCP-Dop-NP scaffolds were implanted into rabbits intramuscularly to evaluate the ectopic bone formation of scaffolds. In vivo results indicate that the BCP-NP and BCP-Dop-NP scaffolds enhance more ectopic bone formation than the bare BCP scaffolds. Both the in vitro and in vivo results demonstrate that BMP-2 encapsulated polysaccharide NPs are effective to improve the osteoinductivity of the scaffolds. In addition, BCP-NP scaffolds induce more bone formation than BCP-Dop-NP scaffolds. This is because BCP-NP scaffolds harness the intrinsic osteoinductivity BCP and BMP-2, whereas BCP-Dop-NP scaffolds have polydopamine coatings that inhibit the surfaces biological features of BCP scaffolds, and therefore weaken the bone formation ability of scaffolds. PMID:25100662

  7. Benzene oxidation coupled to sulfate reduction.

    PubMed

    Lovley, D R; Coates, J D; Woodward, J C; Phillips, E

    1995-03-01

    Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to 1 (mu)M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [(sup14)C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as (sup14)CO(inf2). Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of (sup14)CO(inf2) from [(sup14)C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [(sup14)C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O(inf2), with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation. PMID:16534979

  8. Anti-herpetic activity of a sulfated xylomannan from Scinaia hatei.

    PubMed

    Mandal, Pinaki; Pujol, Carlos A; Carlucci, María J; Chattopadhyay, Kausik; Damonte, Elsa B; Ray, Bimalendu

    2008-08-01

    Many viruses display affinity for cell surface heparan sulfate proteoglycans with biological relevance in virus entry. This raises the possibility of the application of sulfated polysaccharides in antiviral therapy. In this study we have analyzed polysaccharide fractions isolated from Scinaia hatei. The crude water extract (ShWE) as well as one fraction (F1) obtained by size exclusion chromatography had potent anti-HSV activity. Their inhibitory concentration 50% (IC50) values ranging from 0.5 to 4.6 microg/ml were much lower than the cytotoxic concentration 50% (CC50) values (1000 microg/ml). These fractions had very low anticoagulant activity. Furthermore, they had a weak inactivating effect on virions in a virucidal assay at concentrations in the range of 60-100 microg/ml. Chemical, chromatographic and spectroscopic methods showed that the major polysaccharide, which had 0.4 sulfate group per monomer unit and an apparent molecular mass of 160 kDa, contained a backbone of alpha-(1-->3)-linked D-mannopyranosyl residues substituted at C-6, C-4 and C-2 with single stub of beta-d-xylopyranosyl residues. Sulfate groups, when present, are located at C-4 of alpha-(1-->3)-linked D-mannopyranosyl units, and appeared to be very important for the anti-herpetic activity of this polymer. PMID:18572208

  9. A sulfated alpha-L-fucan from sea cucumber.

    PubMed

    Ribeiro, A C; Vieira, R P; Mourão, P A; Mulloy, B

    1994-03-01

    A purified sulfated alpha-L-fucan from the sea cucumber body wall was studied, before and after almost complete desulfation, using methylation analysis and NMR spectroscopy. NMR analysis indicates that 2,4-di-O-sulfo-L-fucopyranose and unsubstituted fucopyranose are present in equal proportions, and that 2-O-sulfo-L-fucopyranose is present in twice that proportion. There is some NMR evidence that a regular repeating sequence of four residues comprises most or all of the polysaccharide chain. PMID:8181009

  10. Verrucomicrobia Are Candidates for Polysaccharide-Degrading Bacterioplankton in an Arctic Fjord of Svalbard

    PubMed Central

    Cardman, Z.; Arnosti, C.; Durbin, A.; Ziervogel, K.; Cox, C.; Steen, A. D.

    2014-01-01

    In Arctic marine bacterial communities, members of the phylum Verrucomicrobia are consistently detected, although not typically abundant, in 16S rRNA gene clone libraries and pyrotag surveys of the marine water column and in sediments. In an Arctic fjord (Smeerenburgfjord) of Svalbard, members of the Verrucomicrobia, together with Flavobacteria and smaller proportions of Alpha- and Gammaproteobacteria, constituted the most frequently detected bacterioplankton community members in 16S rRNA gene-based clone library analyses of the water column. Parallel measurements in the water column of the activities of six endo-acting polysaccharide hydrolases showed that chondroitin sulfate, laminarin, and xylan hydrolysis accounted for most of the activity. Several Verrucomicrobia water column phylotypes were affiliated with previously sequenced, glycoside hydrolase-rich genomes of individual Verrucomicrobia cells that bound fluorescently labeled laminarin and xylan and therefore constituted candidates for laminarin and xylan hydrolysis. In sediments, the bacterial community was dominated by different lineages of Verrucomicrobia, Bacteroidetes, and Proteobacteria but also included members of multiple phylum-level lineages not observed in the water column. This community hydrolyzed laminarin, xylan, chondroitin sulfate, and three additional polysaccharide substrates at high rates. Comparisons with data from the same fjord in the previous summer showed that the bacterial community in Smeerenburgfjord changed in composition, most conspicuously in the changing detection frequency of Verrucomicrobia in the water column. Nonetheless, in both years the community hydrolyzed the same polysaccharide substrates. PMID:24727271

  11. Polysaccharide Based Hydrogels for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Leone, Gemma; Barbucci, Rolando

    Polysaccharide based hydrogels for their physico-chemical and biological properties can be used as scaffolds for soft tissue regneration and as vehicles for drug controlled release. For both these applications, Hyaluronan shows optimal characteristics even though its quick enzymatic degradability makes this natural polysaccharide unsuitable for applications which require prolonged presence in the human organism.

  12. Bioactive polysaccharides and gut microbiome (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many polysaccharides have shown the ability to reduce plasma cholesterol or postprandial glycemia. Viscosity in the small intestine seems to be required to slow glucose uptake. Cereal mixed linkage beta-glucans, psyllium, glucomannans, and other polysaccharides also seem to require higher molecula...

  13. Solution NMR spectroscopy of food polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many polysaccharides are allowed for direct food use, where they serve a number of useful functions. In addition to possibly being a source of calories, a food polysaccharide may be a dietary fiber, bulking agent, crystallization inhibitor, thickener, encapsulant, gelling agent, foam and emulsion s...

  14. Fucoidan extract derived from Undaria pinnatifida inhibits angiogenesis by human umbilical vein endothelial cells.

    PubMed

    Liu, Fang; Wang, Jia; Chang, Alan K; Liu, Bing; Yang, Lili; Li, Qiaomei; Wang, Peisheng; Zou, Xiangyang

    2012-06-15

    In recent years, anti-angiogenic therapy has become an effective strategy for inhibiting tumor growth. Fucoidan is a class of fucose-enriched sulfated polysaccharides found in brown algae, and it is known to have strong anti-tumor property. Using a human umbilical vein endothelial cells (HUVEC)-based cell culture model, the present study investigated the anti-angiogenic activity of fucoidan extracted from the brown seaweed Undaria pinnatifida. Treatment of HUVECs with various concentrations of fucoidan resulted in significant inhibition of cell proliferation, cell migration, tube formation and vascular network formation. However, significant inhibition of cell proliferation only occurred with longer treatment time (48 h instead of 24h or less). About 40% of cell proliferation and cell migration and 61% of tube formation by HUVECs were inhibited by 400 μg/ml fucoidan, the maximum concentration tested. These results appeared to suggest that modulation of angiogenesis by fucoidan might not occur through growth inhibition and apoptosis. Ex vivo angiogenesis assay demonstrated that at 100 μg/ml, fucoidan caused significant reduction in microvessel outgrowth. Western blot and RT-PCR analyses indicated that at 400 μg/ml, fucoidan significantly reduced the expression of the angiogenesis factor VEGF-A in the suppression of angiogenesis activity. Our results showed that fucoidan isolated from U. pinnatifida may have a new therapeutic potential in the prevention angiogenesis-related diseases. PMID:22510492

  15. 2-Fluoro-L-Fucose Is a Metabolically Incorporated Inhibitor of Plant Cell Wall Polysaccharide Fucosylation

    PubMed Central

    Wallace, Ian S.

    2015-01-01

    The monosaccharide L-fucose (L-Fuc) is a common component of plant cell wall polysaccharides and other plant glycans, including the hemicellulose xyloglucan, pectic rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II), arabinogalactan proteins, and N-linked glycans. Mutations compromising the biosynthesis of many plant cell wall polysaccharides are lethal, and as a result, small molecule inhibitors of plant cell wall polysaccharide biosynthesis have been developed because these molecules can be applied at defined concentrations and developmental stages. In this study, we characterize novel small molecule inhibitors of plant fucosylation. 2-fluoro-L-fucose (2F-Fuc) analogs caused severe growth phenotypes when applied to Arabidopsis seedlings, including reduced root growth and altered root morphology. These phenotypic defects were dependent upon the L-Fuc salvage pathway enzyme L-Fucose Kinase/ GDP-L-Fucose Pyrophosphorylase (FKGP), suggesting that 2F-Fuc is metabolically converted to the sugar nucleotide GDP-2F-Fuc, which serves as the active inhibitory molecule. The L-Fuc content of cell wall matrix polysaccharides was reduced in plants treated with 2F-Fuc, suggesting that this molecule inhibits the incorporation of L-Fuc into these polysaccharides. Additionally, phenotypic defects induced by 2F-Fuc treatment could be partially relieved by the exogenous application of boric acid, suggesting that 2F-Fuc inhibits RG-II biosynthesis. Overall, the results presented here suggest that 2F-Fuc is a metabolically incorporated inhibitor of plant cellular fucosylation events, and potentially suggest that other 2-fluorinated monosaccharides could serve as useful chemical probes for the inhibition of cell wall polysaccharide biosynthesis. PMID:26414071

  16. Polysaccharide-based nanoparticles for theranostic nanomedicine.

    PubMed

    Swierczewska, M; Han, H S; Kim, K; Park, J H; Lee, S

    2016-04-01

    Polysaccharides are natural biological molecules that have numerous advantages for theranostics, the integrated approach of therapeutics and diagnostics. Their derivable reactive groups can be leveraged for functionalization with a nanoparticle-enabling conjugate, therapeutics (small molecules, proteins, peptides, photosensitizers) and/or diagnostic agents (imaging agents, sensors). In addition, polysaccharides are diverse in size and charge, biodegradable and abundant and show low toxicity in vivo. Polysaccharide-based nanoparticles are increasingly being used as platforms for simultaneous drug delivery and imaging and are therefore becoming popular theranostic nanoparticles. The review focuses on the method of nanoparticle formation (self-assembled, physical or chemical cross-linked) when engineering polysaccharide-based nanoparticles for theranostic nanomedicine. We highlight recent examples of polysaccharide-based theranostic systems from literature and their potential for use in the clinic, particularly chitosan- and hyaluronic acid-based NPs. PMID:26639578

  17. Tandem Mass Spectrometry of Heparan Sulfate Negative Ions: Sulfate Loss Patterns and Chemical Modification Methods for Improvement of Product Ion Profiles

    NASA Astrophysics Data System (ADS)

    Shi, Xiaofeng; Huang, Yu; Mao, Yang; Naimy, Hicham; Zaia, Joseph

    2012-09-01

    Heparan sulfate (HS) is a polysaccharide modified with sulfation, acetylation, and epimerization that enable its binding with protein ligands and regulation of important biological processes. Tandem mass spectrometry has been employed to sequence linear biomolecules e.g., proteins and peptides. However, its application in structural characterization of HS is limited due to the neutral loss of sulfate (SO3) during collisional induced dissociation (CID). In this report, we studied the dissociation patterns of HS disaccharides and demonstrate that the N-sulfate (N-S) bond is especially facile during CID. We identified factors that influence the propensities of such losses from precursor ions and proposed a Free Proton Index (FPI) to help select ions that are able to produce meaningful backbone dissociations. We then investigated the thermodynamics and kinetics of SO3 loss from sulfates that are protonated, deprotonated, and metal-adducted using density functional theory computations. The calculations showed that sulfate loss from a protonated site was much more facile than that from a deprotonated or metal-adducted site. Further, the loss of SO3 from N-sulfate was energetically favored by 3-8 kcal/mol in transition states relative to O-sulfates, making it more prone to this process by a substantial factor. In order to reduce the FPI, representing the number of labile sulfates in HS native chains and oligosaccharides, we developed a series of chemical modifications to selectively replace the N-sulfates of the glucosamine with deuterated acetyl group. These modifications effectively reduced the sulfate density on the HS oligosaccharides and generated considerably more backbone dissociation using on-line LC/tandem MS.

  18. Purification, characterization and antitumor activity of polysaccharides from Pleurotus eryngii residue.

    PubMed

    Ma, Gaoxing; Yang, Wenjian; Mariga, Alfred Mugambi; Fang, Yong; Ma, Ning; Pei, Fei; Hu, Qiuhui

    2014-12-19

    A novel water-soluble polysaccharide from Pleurotus eryngii residue was isolated and further purified by DEAE cellulose-52 chromatography and Sephadex G-100 size-exclusion chromatography to yield PEPE-1, PEPE-2 and PEPE-3. Molecular weights were determined by high-performance size-exclusion chromatography (HPSEC). Gas chromatography (GC) analysis of monosaccharide composition confirmed that PEPE-1, PEPE-2 and PEPE-3 were heteropolysaccharides and mainly composed of glucose. Sulfate and uronic acid content, ultraviolet and infrared spectrum were also evaluated. The antitumor activities of the polysaccharides against HepG-2 cells were studied in vitro. Results showed that the three polysaccharides could suppress the proliferation and enhance lactate dehydrogenase (LDH) release of HepG-2 cells in a dose- and time-dependent manner. The effect increased in the order of PEPE-1polysaccharides extracted from P. eryngii residue might be suitable for functional foods and natural antitumor drugs development. PMID:25263894

  19. Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels.

    PubMed

    Hou, Ruixia; Nie, Lei; Du, Gaolai; Xiong, Xiaopeng; Fu, Jun

    2015-08-01

    This paper aims to investigate the synergistic effects of natural polysaccharides and inorganic nanoparticles on cell adhesion and growth on intrinsically cell non-adhesive polyvinyl alcohol (PVA) hydrogels. Previously, we have demonstrated that Fe2O3 and hydroxyapatite (nHAP) nanoparticles are effective in increasing osteoblast growth on PVA hydrogels. Herein, we blended hyaluronic acid (HA) and chondroitin sulfate (CS), two important components of cartilage extracellular matrix (ECM), with Fe2O3/nHAP/PVA hydrogels. The presence of these natural polyelectrolytes dramatically increased the pore size and the equilibrium swelling ratio (ESR) while maintaining excellent compressive strength of hydrogels. Chondrocytes were seeded and cultured on composite PVA hydrogels containing Fe2O3, nHAP and Fe2O3/nHAP hybrids and Fe2O3/nHAP with HA or CS. Confocal laser scanning microscopy (CLSM) and cell counting kit-8 (CCK-8) assay consistently confirmed that the addition of HA or CS promotes chondrocyte adhesion and growth on PVA and composite hydrogels. Particularly, the combination of HA and CS exhibited further promotion to cell adhesion and proliferation compared with any single polysaccharide. The results demonstrated that the magnetic composite nanoparticles and polysaccharides provided synergistic promotion to cell adhesion and growth. Such polysaccharide-augmented composite hydrogels may have potentials in biomedical applications. PMID:26037704

  20. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.

    PubMed

    Chen, Lei; Gin, Karina Y H; He, Yiliang

    2016-02-01

    Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa. PMID:26490939

  1. SULFATE REQUIREMENT FOR IRON OXIDATION BY THIOBACILLUS FERROOXIDANS

    PubMed Central

    Lazaroff, Norman

    1963-01-01

    Lazaroff, Norman (British Columbia Research Council, Vancouver, B.C., Canada). Sulfate requirement for iron oxidation by Thiobacillus ferrooxidans. J. Bacteriol. 85:78–83. 1963.—The growth of Thiobacillus ferrooxidans is initially inhibited in media containing ferrous chloride in place of ferrous sulfate. This inhibition of growth is due to the requirement of a high relative proportion of sulfate ions to chloride (or other anions) for iron oxidation. Adaptation takes place, producing strains which are able to oxidize iron in media containing an initially unfavorable anionic composition. Adaptation is possibly due to the selection of spontaneous mutants capable of oxidizing iron in high chloride, low sulfate media. Such cells are found at a frequency of 10−5 of the population of unadapted cultures. PMID:16561990

  2. Sulfate attack expansion mechanisms

    SciTech Connect

    Müllauer, Wolfram Beddoe, Robin E.; Heinz, Detlef

    2013-10-15

    A specially constructed stress cell was used to measure the stress generated in thin-walled Portland cement mortar cylinders caused by external sulfate attack. The effects of sulfate concentration of the storage solution and C{sub 3}A content of the cement were studied. Changes in mineralogical composition and pore size distribution were investigated by X-ray diffraction and mercury intrusion porosimetry, respectively. Damage is due to the formation of ettringite in small pores (10–50 nm) which generates stresses up to 8 MPa exceeding the tensile strength of the binder matrix. Higher sulfate concentrations and C{sub 3}A contents result in higher stresses. The results can be understood in terms of the effect of crystal surface energy and size on supersaturation and crystal growth pressure.

  3. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ -ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation

    PubMed Central

    Jobe, Timothy O.; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A.; Mendoza-Cózatl, David G.; Schroeder, Julian I.

    2015-01-01

    Summary Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M2 seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion, are necessary to induce the transcription of sulfate assimilation genes during early cadmium stress. PMID:22283708

  4. Isolation of low-molecular-weight heparin/heparan sulfate from marine sources.

    PubMed

    Saravanan, Ramachandran

    2014-01-01

    The glycosaminoglycan (heparin and heparan sulfate) are polyanionic sulfated polysaccharides mostly recognized for its anticoagulant activity. In many countries, low-molecular-weight heparins have replaced the unfractionated heparin, owing to its high bioavailability, half-life, and less adverse effect. The low-molecular-weight heparins differ in mode of preparation (chemical or enzymatic synthesis and chromatography fractionations) and as a consequence in molecular weight distribution, chemical structure, and pharmacological activities. Bovine and porcine body parts are at present used for manufacturing of commercial heparins, and the appearance of mad cow disease and Creutzfeldt-Jakob disease in humans has limited the use of bovine heparin. Consequently, marine organisms come across the new resource for the production of low-molecular-weight heparin and heparan sulfate. The importance of this chapter suggests that the low-molecular-weight heparin and heparan sulfate from marine species could be alternative sources for commercial heparin. PMID:25081076

  5. Isolation, preliminary characterization and hepatoprotective activity of polysaccharides from Tamarindus indica L.

    PubMed

    Samal, Predeep Kumar; Dangi, Jawahar Singh

    2014-02-15

    Polysaccharide was isolated from Tamarindus indica L. (TIP) and was characterized in terms of moisture and ash content, pH, water holding capacity, particle size, tapped density, bulk density, carr's index, Hausners ratio, angle of repose, content of glucose, uronic acid and sulfate. Morphological, spectral (UV-vis, FTIR) and DSC thermal analysis reveals polysaccharide nature of the isolated starch. DPPH radical scavenging activity of TIP shows RSA comparable to that of silymarin. Hepatoprotective potential of TIP in terms of biochemical parameters, SGOT, SGPT, ALP and BRN were significantly increased (P<0.05) and reduction of serum Total protein in the group of rats given thioacetamide (100mg/kg s.c.). Histopathology reveals that TIP under antagonize the effect of thioacetamide by acting, either as membrane stabilizer, thereby preventing the distortion of the cellular ionic environment associated with thioacetamide intoxication, or by preventing interaction of thioacetamide with the transcriptional machinery of the cells. PMID:24507248

  6. Polysaccharides from Medicinal Herbs As Potential Therapeutics for Aging and Age-Related Neurodegeneration

    PubMed Central

    Li, Haifeng; Ma, Fangli; Hu, Minghua; Xiao, Lingyun; Zhang, Ju; Xiang, Yanxia

    2014-01-01

    Abstract Recent studies have uncovered important aging clues, including free radicals, inflammation, telomeres, and life span pathways. Strategies to regulate aging-associated signaling pathways are expected to be effective in the delay and prevention of age-related disorders. For example, herbal polysaccharides with considerable anti-oxidant and anti-inflammation capacities have been shown to be beneficial in aging and age-related neurodegenerative diseases. Polysaccharides capable of reducing cellular senescence and modulating life span via telomere and insulin pathways have also been found to have the potential to inhibit protein aggregation and aggregation-associated neurodegeneration. Here we present the current status of polysaccharides in anti-aging and anti-neurodegenerative studies. PMID:24125569

  7. Comparison of the preliminary characterizations and antioxidant properties of polysaccharides obtained from Phellinus baumii growth on different culture substrates.

    PubMed

    Zhang, Zuo-fa; Lv, Guo-ying; Song, Ting-ting; Jin, Qun-li; Huang, Jian-bo; Fan, Lei-fa; Cai, Wei-ming

    2015-11-01

    Three polysaccharides (PPB-MB, PPB-MW and PPB-MM) were obtained from the fruiting body of Phellinus baumii growth on different culture substrates (mulberry branches, mixed wood sawdust and an equal combination of the two materials) and their chemical composition was investigated. PPB-MM contained the highest contents of neutral sugar (66.59%) and uronic acid (23.38%), followed by PPB-MW and PPB-MB, with PPB-MW having the highest protein content. The three polysaccharides were all composed of six kinds of monosaccharides, namely fucose, mannose, glactose, xylose, arabinose and glucose. The antioxidant activities of the three polysaccharides were determined using lipid peroxidant inhibition, ABTS radical scavenging, and Fe(2+)-chelating assay. Results showed that PPB-MM exhibited the highest antioxidant properties in all the assays. As a result, an equal combination of mulberry branches and mixed wood sawdust serves as a good culture substrate for producing such antioxidant polysaccharides. PMID:26256363

  8. Extraction and bioactivity of polygonatum polysaccharides.

    PubMed

    Jiang, Qunguang; Lv, Yunxia; Dai, Weidong; Miao, Xiongying; Zhong, Dewu

    2013-03-01

    The present study is to explore the optimal extraction parameters and liver protective effect of the polygonatum polysaccharides in vivo. The order of factor effects on polysaccharides production was found to be extraction time (min, A)>ratio of solvent to solid (C)>extraction temperature (C, B)>extraction number (D). The results show that the effects of extraction time (min, A) and ratio of solvent to solid (C) were more significant than those of the other factors. Optimal extraction parameters were as followings: extraction time 120 min, extraction temperature 100 C, ratio of solvent to solid 5, and extraction number 4. Polygonatum polysaccharides was administered orally at doses of 150, 300 and 450 mg/(kg day) to carbon tetrachloride (CCl(4))-treated rats. Results showed that administration of polygonatum polysaccharides could increase rats' final body weight, liver antioxidant enzymes activities (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR)), decrease serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities and liver malondialdehyde (MDA) level. The liver sections obtained from animals supplemented with polygonatum polysaccharides extract demonstrated reduced pathological damages, supporting that polygonatum polysaccharides extract could effectively decrease the toxicity of CCl(4). It can be concluded that polygonatum polysaccharides treatment may prevent CCl(4)-induced liver oxidative injury in experimental rats. PMID:23246900

  9. Anti-tumor activity of a polysaccharide from blueberry.

    PubMed

    Sun, Xiyun; Liu, Ning; Wu, Zhaoxia; Feng, Ying; Meng, Xianjun

    2015-01-01

    Blueberries (Vaccinium spp.) are rich in bioactive compounds. However, the biological activity of polysaccharides from blueberry has not been reported so far. This study evaluated the anti-tumor and immunological activities of a polysaccharide (BBP3-1) from blueberry in S180-bearing mice. The experimental results indicated that BBP3-1 (100 mg·kg-1·d-1) inhibited the tumor growth rate by 73.4%. Moreover, this group, compared with the model control, had shown an effect of increasing both the spleen and thymus indices (p < 0.05), increasing phagocytosis by macrophages (p < 0.05), boosting the proliferation and transformation of lymphocytes (p < 0.01), promoting the secretion of TNF-α, IFN-γ, and IL-2 (p < 0.05) and improving NK cell activity (p < 0.01). From this study, we could easily conclude that BBP3-1 has the ability to inhibit tumor progression and could act as a good immunomodulator. PMID:25734419

  10. Ulvan Lyases Isolated from the Flavobacteria Persicivirga ulvanivorans Are the First Members of a New Polysaccharide Lyase Family*

    PubMed Central

    Nyvall Collén, Pi; Sassi, Jean-François; Rogniaux, Hélène; Marfaing, Hélène; Helbert, William

    2011-01-01

    Ulvans are complex sulfated polysaccharides found in the cell walls of green algae belonging to the genus Ulva. These polysaccharides are composed of disaccharide repetition moieties made up of sulfated rhamnose linked to either glucuronic acid, iduronic acid, or xylose. Two ulvan lyases of 30 and 46 kDa were purified from the culture supernatant of Persicivirga ulvanivorans. Based on peptide sequencing, the gene encoding the 46-kDa ulvan lyase was cloned. Sequence analysis revealed that the protein is modular and possesses a catalytic module similar to that of the 30-kDa ulvan lyase along with a module of unknown function. The ulvan-degrading function of the gene was confirmed by expression of the catalytic module in a heterologous system. The gene encoding the catalytic module has no sequence homolog in sequence databases and is likely to be the first member of a novel polysaccharide lyase family. Analysis of degradation products showed that both the 30- and 46-kDa ulvan lyases are endolytic and cleave the glycosidic bond between the sulfated rhamnose and a glucuronic or iduronic acid. PMID:22009751

  11. Enzymatic method for improving the injectability of polysaccharides

    DOEpatents

    Griffith, William L.; Compere, Alicia L.; Holleman, James W.

    1982-01-01

    A method for enhancing the ability of polysaccharides in aqueous solution to flow through a porous medium comprises contacting the polysaccharides with an endoenzyme capable of hydrolyzing at least one of the linkages of the sugar units of the polysaccharides and maintaining the polysaccharides in contact with the enzyme under hydrolysis conditions for a time sufficient to decrease the tendency of the polysaccharides to plug the porous medium yet insufficient to decrease the viscosity of the aqueous polysaccharides by more than 25%. The partially hydrolyzed polysaccharides are useful as thickening agents for flooding water used to recover oil from oil-containing subterranean formations.

  12. Vacuum ultraviolet action spectroscopy of polysaccharides.

    PubMed

    Enjalbert, Quentin; Brunet, Claire; Vernier, Arnaud; Allouche, Abdul-Rahman; Antoine, Rodolphe; Dugourd, Philippe; Lemoine, Jérôme; Giuliani, Alexandre; Nahon, Laurent

    2013-08-01

    We studied the optical properties of gas-phase polysaccharides (maltose, maltotetraose, and maltohexaose) ions by action spectroscopy using the coupling between a quadrupole ion trap and a vacuum ultraviolet (VUV) beamline at the SOLEIL synchrotron radiation facility (France) in the 7 to 18 eV range. The spectra provide unique benchmarks for evaluation of theoretical data on electronic transitions of model carbohydrates in the VUV range. The effects of the nature of the charge held by polysaccharide ions on the relaxation processes were also explored. Finally the effect of isomerization of polysaccharides (with melezitose and raffinose) on their photofragmentation with VUV photons is presented. PMID:23722725

  13. Distribution of Heparan Sulfate Oligosaccharides in Murine Mucopolysaccharidosis Type IIIA

    PubMed Central

    Mason, Kerryn; Meikle, Peter; Hopwood, John; Fuller, Maria

    2014-01-01

    Heparan sulfate (HS) catabolism begins with endo-degradation of the polysaccharide to smaller HS oligosaccharides, followed by the sequential action of exo-enzymes to reduce these oligosaccharides to monosaccharides and inorganic sulfate. In mucopolysaccharidosis type IIIA (MPS IIIA) the exo-enzyme, N-sulfoglucosamine sulfohydrolase, is deficient resulting in an inability to hydrolyze non-reducing end glucosamine N-sulfate esters. Consequently, partially degraded HS oligosaccharides with non-reducing end glucosamine sulfate esters accumulate. We investigated the distribution of these HS oligosaccharides in tissues of a mouse model of MPS IIIA using high performance liquid chromatography electrospray ionization-tandem mass spectrometry. Oligosaccharide levels were compared to total uronic acid (UA), which was used as a measure of total glycosaminoglycan. Ten oligosaccharides, ranging in size from di- to hexasaccharides, were present in all the tissues examined including brain, spleen, lung, heart, liver, kidney and urine. However, the relative levels varied up to 10-fold, suggesting different levels of HS turnover and storage. The relationship between the di- and tetrasaccharides and total UA was tissue specific with spleen and kidney showing a different disaccharide:total UA ratio than the other tissues. The hexasaccharides showed a stronger correlation with total UA in all tissue types suggesting that hexasaccharides may more accurately reflect the storage burden in these tissues. PMID:25513953

  14. Extraction, isolation and analysis of chondroitin sulfate glycosaminoglycans.

    PubMed

    Nakano, Takuo; Betti, Mirko; Pietrasik, Zeb

    2010-01-01

    Glycosaminoglycans (GAGs) including chondroitin sulfate (CS) and chondroitin sulfate/dermatan sulfate (CS/DS) copolymers are anionic straight chain polysaccharides. They are galactosamine containing GAGs (galactosaminoglycans) having wide range of applications in pharmaceutical, cosmetic and food industries. This article reviews techniques to isolate and characterize these galactosaminoglycans from animal and poultry tissues. Patent based information is also discussed. Cartilaginous tissues are the major source of CS consisting entirely of D-glucuronosyl-N-acetylgalactosamine repeating disaccharide units, in which the galactosamine is sulfated at C4 or C6. In contrast, most galactosaminoglycans in non-cartilaginous connective tissues (e.g. skin and tendon) are CS/DS copolymers comprised of varying proportions of D-glucuronosyl-N-acetylgalactosamine and L-iduronosyl-N-acetylgalactosamine. Tissues are digested with proteinase (e.g. papain) to liberate GAGs, which are fractionated to isolate and purify galactosaminoglycans. Common techniques used for fractionation of GAGs include: precipitation with different concentrations of ethanol; solubilization of GAG precipitated as GAG-quarternary ammonium compound complexes with different concentrations of NaCl; anion exchange chromatography and gel filtration chromatography. Purified galactosaminoglycans are examined by various methods including chondroitinase digestion, high performance liquid chromatography and electrophoresis. Histological methods are used to localize galactosaminoglycans in tissues. The patent information on the CS hydrolase and ultraviolet irradiation may be useful for the preparation of CS oligosaccharide. PMID:20653551

  15. Anti-glycated and antiradical activities in vitro of polysaccharides from Ganoderma capense

    PubMed Central

    Yan, Chunyan; Kong, Fansheng; Zhang, Dezhi; Cui, Jiangxia

    2013-01-01

    Background Ganoderma capense is a Ganoderma species and is widely used, especially in Asia, as a well-known medicinal mushroom for health-promoting effect and for treatment of chronic diseases, such as diabetes, aging, etc. G. capense is rich of polysaccharide. Objective: To isolate the polysaccharides from G. capense and evaluate their anti-glycated and antiradical activities in vitro. Materials and Methods The dried powder of submerged fermentation culturing mycelium of G. capense was defatted, extracted with water/alkaline water followed by ethanol precipitation and deproteinated. And four crude polysaccharides, named as GC50, GC70, GC90 and GCB, were obtained. For the first time, the in vitro anti-glycated activities of the four samples were studied by non-enzymatic glycation reaction. Then, the DPPH radical and hydroxyl radical assays were established to estimate the antiradical capacity of the four samples. Meanwhile the contents of polysaccharides were determined by phenol-sulphuric acid colorimetry. Results and Conclusion Preliminary antiradical in vitro studies indicated that the four crude polysaccharides showed concentration-dependent scavenging abilities on DPPH and hydroxyl radicals. The evaluation of anti-glycation activity suggested that GC70 had good potential for inhibiting the formation of advanced glycation end products. Time- and dose-dependent effects were also observed for all GC70 samples. PMID:23661989

  16. Effect of aloe polysaccharide on caspase-3 expression following cerebral ischemia and reperfusion injury in rats.

    PubMed

    Lu, Zhong-Qian; Deng, Yi-Jun; Lu, Jian-Xia

    2012-08-01

    Stroke is a leading cause of cardiovascular morbidity, economic and social burden and mortality. Novel approaches are needed to address stroke prevention and treatment. The purpose of this study was to explore the effects of aloe polysaccharide on caspase-3 expression following cerebral ischemia reperfusion injury in rats. Male Wistar rats were randomly divided into 5 groups (16 rats in each group): aloe polysaccharide, ginkgo leaf tablet, nimodipine, model and sham surgery groups. The rats were administered the appropriate drug or normal saline for 7 days by gavage. A rat model of cerebral ischemia and reperfusion injury was established using the middle cerebral artery occlusion (MCAO) model. Caspase-3 protein and mRNA expression levels in the cerebral cortex were detected by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR), respectively. Results showed that caspase-3 protein and mRNA expression levels in the cerebral cortex in the aloe polysaccharide, ginkgo leaf tablet and nimodipine groups were significantly lower compared with the model group and were higher than the sham surgery group (P<0.05). No significant difference was observed in caspase-3 protein and mRNA expression among the aloe polysaccharide, the ginkgo leaf tablet and the nimodipine groups (P>0.05). In conclusion, aloe polysaccharide has a protective effect on cerebral ischemia that may be due to the inhibition of neuronal cell apoptosis. PMID:22641427

  17. Soy protein/soy polysaccharide complex nanogels: folic acid loading, protection, and controlled delivery.

    PubMed

    Ding, Xuzhe; Yao, Ping

    2013-07-01

    In this study, we developed a facile approach to produce nanogels via self-assembly of folic acid, soy protein, and soy polysaccharide. High-pressure homogenization was introduced to break down the original aggregates of soy protein, which benefits the binding of soy protein with soy polysaccharide and folic acid at pH 4.0. After a heat treatment that causes the soy protein denaturation and gelation, folic acid-loaded soy protein/soy polysaccharide complex nanogels were fabricated. The nanogels have a polysaccharide surface that makes the nanogels dispersible in acidic conditions where folic acid is insoluble and soy protein forms precipitates after heating. More importantly, the protein and polysaccharide can inhibit the reactions between dissolved oxygen and folic acid during UV irradiation. After the preparation and storage of the nanogels in the presence of heat, oxygen, and light in acidic conditions, most of the folic acid molecules in the nanogels remain in their natural structure and can be released rapidly at neutral pH, that is, in the intestine. Because most food and beverages are acidic, the nanogels are a suitable delivery system of folic acid in food and beverages. PMID:23758109

  18. Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels.

    PubMed

    Jeddou, Khawla Ben; Chaari, Fatma; Maktouf, Sameh; Nouri-Ellouz, Oumèma; Helbert, Claire Boisset; Ghorbel, Raoudha Ellouz

    2016-08-15

    Water-soluble polysaccharides were extracted from potato peel waste (PPW). The structure of the polysaccharides from PPW (PPPW) was examined by means of Fourier transform-infrared spectroscopy (FT-IR) analysis, X-ray diffractometry (XRD) and gas chromatography-mass spectrometry (GC-MS). The results suggest that the extracted polysaccharides form a semi-crystalline polymer constituted essentially of the functional groups CO, CH and OH. Acid hydrolysis of this polymer yielded glucose (76.25%) as the dominant sugar functional properties (water holding capacity: WHC, oil holding capacity: OHC, foaming, and emulsion properties) of this polymer were studied. The PPPW showed interesting water-holding and fat-binding capacities which were 4.097±0.537g/g and 4.398±0.04g/g, respectively. In addition, it presented good foaming and emulsion properties. The antioxidant activity of this polymer was also studied and revealed that the polysaccharides showed interesting 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity (IC50 PPPW=11.578mg/mL), reducing power and β-carotene bleaching inhibition activities, and also a strong ABTS radical scavenging activity (IC50 PPPW=2mg/mL). Overall, the results suggest that the polysaccharide is a promising source of natural antioxidants and can be used as additive in food, pharmaceutical and cosmetic preparations. PMID:27006219

  19. Effect of bacterial polysaccharides on the growth of Gaeumannomyces graminis var. tritici and wheat roots.

    PubMed

    Lasík, J; Stanĕk, M; Vancura, V; Wurst, M

    1979-01-01

    Agrobacterium sp. and related species which in the soil and in the rhizosphere of wheat accompany the fungus Gaemannomyces graminis var. tritici and cause take-all of the wheat roots produced polysaccharides in pure cultures (glucans, mannoglucans and galactomannoglucans). These polysaccharides were utilized better by the mycelium of G. graminis than glucose and polysaccharides of plant origin that occurred on the surface of wheat roots (the so-called mucigel). At lower concentrations these bacterial polysaccharides stimulated growth of wheat roots, higher concentrations (more than 0.1%) were inhibitory. Bacteria inoculated on the surface of wheat first inhibited and then stimulated the development of the plants and their growth. Changes in the growth rate of wheat, the rhizosphere of which was colonized by bacteria simultaneously with the fungus G. graminis and also some changes in the course of the disease of wheat roots caused by the fungus can be explained by the inhibitory or stimulatory effect of polysaccharides of accompanying bacteria. PMID:468081

  20. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  1. Hydrazine/Hydrazine sulfate

    Integrated Risk Information System (IRIS)

    Hydrazine / Hydrazine sulfate ; CASRN 302 - 01 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Non

  2. Polysaccharides-based nanoparticles as drug delivery systems.

    PubMed

    Liu, Zonghua; Jiao, Yanpeng; Wang, Yifei; Zhou, Changren; Zhang, Ziyong

    2008-12-14

    Natural polysaccharides, due to their outstanding merits, have received more and more attention in the field of drug delivery systems. In particular, polysaccharides seem to be the most promising materials in the preparation of nanometeric carriers. This review relates to the newest developments in the preparation of polysaccharides-based nanoparticles. In this review, four mechanisms are introduced to prepare polysaccharides-based nanoparticles, that is, covalent crosslinking, ionic crosslinking, polyelectrolyte complex, and the self-assembly of hydrophobically modified polysaccharides. PMID:18848591

  3. Effects of chlorate on the sulfation process of Trypanosoma cruzi glycoconjugates. Implication of parasite sulfates in cellular invasion.

    PubMed

    Ferrero, Maximiliano R; Soprano, Luciana L; Acosta, Diana M; García, Gabriela A; Esteva, Mónica I; Couto, Alicia S; Duschak, Vilma G

    2014-09-01

    Sulfation, a post-translational modification which plays a key role in various biological processes, is inhibited by competition with chlorate. In Trypanosoma cruzi, the agent of Chagas' disease, sulfated structures have been described as part of glycolipids and we have reported sulfated high-mannose type oligosaccharides in the C-T domain of the cruzipain (Cz) glycoprotein. However, sulfation pathways have not been described yet in this parasite. Herein, we studied the effect of chlorate treatment on T. cruzi with the aim to gain some knowledge about sulfation metabolism and the role of sulfated molecules in this parasite. In chlorate-treated epimastigotes, immunoblotting with anti-sulfates enriched Cz IgGs (AS-enriched IgGs) showed Cz undersulfation. Accordingly, a Cz mobility shift toward higher isoelectric points was observed in 2D-PAGE probed with anti-Cz antibodies. Ultrastructural membrane abnormalities and a significant decrease of dark lipid reservosomes were shown by electron microscopy and a significant decrease in sulfatide levels was confirmed by TLC/UV-MALDI-TOF-MS analysis. Altogether, these results suggest T. cruzi sulfation occurs via PAPS. Sulfated epitopes in trypomastigote and amastigote forms were evidenced using AS-enriched IgGs by immunoblotting. Their presence on trypomastigotes surface was demonstrated by flow cytometry and IF with Cz/dCz specific antibodies. Interestingly, the percentage of infected cardiac HL-1 cells decreased 40% when using chlorate-treated trypomastigotes, suggesting sulfates are involved in the invasion process. The same effect was observed when cells were pre-incubated with dCz, dC-T or an anti-high mannose receptor (HMR) antibody, suggesting Cz sulfates and HMR are also involved in the infection process by T. cruzi. PMID:24879929

  4. Protein Precipitation Using Ammonium Sulfate

    PubMed Central

    Wingfield, Paul T.

    2016-01-01

    The basic theory of protein precipitation by addition of ammonium sulfate is presented and the most common applications are listed, Tables are provided for calculating the appropriate amount of ammonium sulfate to add to a particular protein solution. PMID:18429073

  5. CHARACTERIZATION OF CELL WALL POLYSACCHARIDES OF THE COENCOCYTIC GREEN SEAWEED BRYOPSIS PLUMOSA (BRYOPSIDACEAE, CHLOROPHYTA) FROM THE ARGENTINE COAST(1).

    PubMed

    Ciancia, Marina; Alberghina, Josefina; Arata, Paula Ximena; Benavides, Hugo; Leliaert, Frederik; Verbruggen, Heroen; Estevez, Jose Manuel

    2012-04-01

    Bryopsis sp. from a restricted area of the rocky shore of Mar del Plata (Argentina) on the Atlantic coast was identified as Bryopsis plumosa (Hudson) C. Agardh (Bryopsidales, Chlorophyta) based on morphological characters and rbcL and tufA DNA barcodes. To analyze the cell wall polysaccharides of this seaweed, the major room temperature (B1) and 90°C (X1) water extracts were studied. By linkage analysis and NMR spectroscopy, the structure of a sulfated galactan was determined, and putative sulfated rhamnan structures and furanosidic nonsulfated arabinan structures were also found. By anion exchange chromatography of X1, a fraction (F4), comprising a sulfated galactan as major structure was isolated. Structural analysis showed a linear backbone constituted of 3-linked β-d-galactose units, partially sulfated on C-6 and partially substituted with pyruvic acid forming an acetal linked to O-4 and O-6. This galactan has common structural features with those of green seaweeds of the genus Codium (Bryopsidales, Chlorophyta), but some important differences were also found. This is the first report about the structure of the water-soluble polysaccharides biosynthesized by seaweeds of the genus Bryopsis. These sulfated galactans and rhamnans were in situ localized mostly in two layers, one close to the plasma membrane and the other close to the apoplast, leaving a middle amorphous, unstained cell wall zone. In addition, fibrillar polysaccharides, comprising (1→3)-β-d-xylans and cellulose, were obtained by treatment of the residue from the water extractions with an LiCl/DMSO solution at high temperature. These polymers were also localized in a bilayer arrangement. PMID:27009722

  6. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    SciTech Connect

    Dallam, R.D.

    1987-03-23

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H/sub 2//sup 35/SO/sub 4/) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables.

  7. Conformational Analysis of the Oligosaccharides Related to Side Chains of Holothurian Fucosylated Chondroitin Sulfates

    PubMed Central

    Gerbst, Alexey G.; Dmitrenok, Andrey S.; Ustyuzhanina, Nadezhda E.; Nifantiev, Nikolay E.

    2015-01-01

    Anionic polysaccharides fucosylated chondroitin sulfates (FCS) from holothurian species were shown to affect various biological processes, such as metastasis, angiogenesis, clot formation, thrombosis, inflammation, and some others. To understand the mechanism of FCSs action, knowledge about their spatial arrangement is required. We have started the systematic synthesis, conformational analysis, and study of biological activity of the oligosaccharides related to various fragments of these types of natural polysaccharides. In this communication, five molecules representing distinct structural fragments of chondroitin sulfate have been studied by means of molecular modeling and NMR. These are three disaccharides and two trisaccharides containing fucose and glucuronic acid residues with one sulfate group per each fucose residue or without it. Long-range C–H coupling constants were used for the verification of the theoretical models. The presence of two conformers for both linkage types was revealed. For the Fuc–GlA linkage, the dominant conformer was the same as described previously in a literature as the molecular dynamics (MD) average in a dodechasaccharide FCS fragment representing the backbone chain of the polysaccharide including GalNAc residues. This shows that the studied oligosaccharides, in addition to larger ones, may be considered as reliable models for Quantitative Structure-Activity Relationship (QSAR) studies to reveal pharmacophore fragments of FCS. PMID:25686272

  8. Conformational analysis of the oligosaccharides related to side chains of holothurian fucosylated chondroitin sulfates.

    PubMed

    Gerbst, Alexey G; Dmitrenok, Andrey S; Ustyuzhanina, Nadezhda E; Nifantiev, Nikolay E

    2015-02-01

    Anionic polysaccharides fucosylated chondroitin sulfates (FCS) from holothurian species were shown to affect various biological processes, such as metastasis, angiogenesis, clot formation, thrombosis, inflammation, and some others. To understand the mechanism of FCSs action, knowledge about their spatial arrangement is required. We have started the systematic synthesis, conformational analysis, and study of biological activity of the oligosaccharides related to various fragments of these types of natural polysaccharides. In this communication, five molecules representing distinct structural fragments of chondroitin sulfate have been studied by means of molecular modeling and NMR. These are three disaccharides and two trisaccharides containing fucose and glucuronic acid residues with one sulfate group per each fucose residue or without it. Long-range C-H coupling constants were used for the verification of the theoretical models. The presence of two conformers for both linkage types was revealed. For the Fuc-GlA linkage, the dominant conformer was the same as described previously in a literature as the molecular dynamics (MD) average in a dodechasaccharide FCS fragment representing the backbone chain of the polysaccharide including GalNAc residues. This shows that the studied oligosaccharides, in addition to larger ones, may be considered as reliable models for Quantitative Structure-Activity Relationship (QSAR) studies to reveal pharmacophore fragments of FCS. PMID:25686272

  9. Extraction and characterization of polysaccharides from Semen Cassiae by microwave-assisted aqueous two-phase extraction coupled with spectroscopy and HPLC.

    PubMed

    Chen, Zhi; Zhang, Wei; Tang, Xunyou; Fan, Huajun; Xie, Xiujuan; Wan, Qiang; Wu, Xuehao; Tang, James Z

    2016-06-25

    A novel and rapid method for simultaneous extraction and separation of the different polysaccharides from Semen Cassiae (SC) was developed by microwave-assisted aqueous two-phase extraction (MAATPE) in a one-step procedure. Using ethanol/ammonium sulfate system as a multiphase solvent, the effects of MAATPE on the extraction of polysaccharides from SC such as the composition of the ATPS, extraction time, temperature and solvent-to-material ratio were investigated by UV-vis analysis. Under the optimum conditions, the yields of polysaccharides were 4.49% for the top phase, 8.80% for the bottom phase and 13.29% for total polysaccharides, respectively. Compared with heating solvent extraction and ultrasonic assisted extraction, MAATPE exhibited the higher extraction yields in shorter time. Fourier-transform infrared spectra showed that two polysaccharides extracted from SC to the top and bottom phases by MAATPE were different from each other in their chemical structures. Through acid hydrolysis and PMP derivatization prior to HPLC, analytical results by indicated that a polysaccharide of the top phases was a relatively homogeneous homepolysaccharide composed of dominant gucose glucose while that of the bottom phase was a water-soluble heteropolysaccharide with multiple components of glucose, xylose, arabinose, galactose, mannose and glucuronic acid. Molar ratios of monosaccharides were 95.13:4.27:0.60 of glucose: arabinose: galactose for the polysaccharide from the top phase and 62.96:14.07:6.67: 6.67:5.19:4.44 of glucose: xylose: arabinose: galactose: mannose: glucuronic acid for that from the bottom phase, respectively. The mechanism for MAATPE process was also discussed in detail. MAATPE with the aid of microwave and the selectivity of the ATPS not only improved yields of the extraction, but also obtained a variety of polysaccharides. Hence, it was proved as a green, efficient and promising alternative to simultaneous extraction of polysaccharides from SC. PMID:27083817

  10. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by treating ferric oxide...

  11. Monoclonal antibodies against plant cell wall polysaccharides

    SciTech Connect

    Hahn, M.G.; Bucheli, E.; Darvill, A.; Albersheim, P. )

    1989-04-01

    Monoclonal antibodies (McAbs) are useful tools to probe the structure of plant cell wall polysaccharides and to localize these polysaccharides in plant cells and tissues. Murine McAbs were generated against the pectic polysaccharide, rhamnogalacturonan I (RG-I), isolated from suspension-cultured sycamore cells. The McAbs that were obtained were grouped into three classes based upon their reactivities with a variety of plant polysaccharides and membrane glycoproteins. Eleven McAbs (Class I) recognize epitope(s) that appear to be immunodominant and are found in RG-I from sycamore and maize, citrus pectin, polygalacturonic acid, and membrane glycoproteins from suspension-cultured cells of sycamore, maize, tobacco, parsley, and soybean. A second group of five McAbs (Class II) recognize epitope(s) present in sycamore RG-I, but do not bind to any of the other polysaccharides or glycoproteins recognized by Class I. Lastly, one McAb (Class III) reacts with sycamore RG-I, sycamore and tamarind xyloglucan, and sycamore and rice glucuronoarabinoxylan, but does not bind to maize RG-I, polygalacturonic acid or the plant membrane glycoproteins recognized by Class I. McAbs in Classes II and III are likely to be useful in studies of the structure, biosynthesis and localization of plant cell wall polysaccharides.

  12. Genomic Potential for Polysaccharide Deconstruction in Bacteria

    PubMed Central

    Martiny, Adam C.

    2014-01-01

    Glycoside hydrolases are important enzymes that support bacterial growth by enabling the degradation of polysaccharides (e.g., starch, cellulose, xylan, and chitin) in the environment. Presently, little is known about the overall phylogenetic distribution of the genomic potential to degrade these polysaccharides in bacteria. However, knowing the phylogenetic breadth of these traits may help us predict the overall polysaccharide processing in environmental microbial communities. In order to address this, we identified and analyzed the distribution of 392,166 enzyme genes derived from 53 glycoside hydrolase families in 8,133 sequenced bacterial genomes. Enzymes for oligosaccharides and starch/glycogen were observed in most taxonomic groups, whereas glycoside hydrolases for structural polymers (i.e., cellulose, xylan, and chitin) were observed in clusters of relatives at taxonomic levels ranging from species to genus as determined by consenTRAIT. The potential for starch and glycogen processing, as well as oligosaccharide processing, was observed in 85% of the strains, whereas 65% possessed enzymes to degrade some structural polysaccharides (i.e., cellulose, xylan, or chitin). Potential degraders targeting one, two, and three structural polysaccharides accounted for 22.6, 32.9, and 9.3% of genomes analyzed, respectively. Finally, potential degraders targeting multiple structural polysaccharides displayed increased potential for oligosaccharide deconstruction. This study provides a framework for linking the potential for polymer deconstruction with phylogeny in complex microbial assemblages. PMID:25527556

  13. CAPSULAR POLYSACCHARIDE OF AZOTOBACTER AGILIS1

    PubMed Central

    Cohen, Gary H.; Johnstone, Donald B.

    1964-01-01

    Cohen, Gary H. (University of Vermont, Burlington), and Donald B. Johnstone. Capsular polysaccharide of Azotobacter agilis. J. Bacteriol. 88:16951699. 1964.Capsular polysaccharide from Azotobacter agilis strain 132 was recovered from washed cells by alkaline digestion. The polysaccharide was purified by centrifugation, repeated alcohol precipitation, Sevag deproteinization, and treatment with ribonuclease and charcoal-cellulose. Methods of isolation and purification appeared to provide a polymer showing no evidence of heterogeneity when examined by chemical and physical methods. Colorimetric, paper chromatographic, and enzymatic analyses on both intact and acid-hydrolyzed polysaccharide indicated that the polymer contained galactose and rhamnose at a molar ratio of approximately 1.0:0.7. A sialic acid-like component was also present in the polysaccharide. The study shows significant differences in the chemical composition of the extra-cellular polysaccharide of A. agilis and that of A. vinelandii. This adds further biochemical evidence for the right of these species to independent status. Images PMID:14240959

  14. Synthesis of selective inhibitors of heparan sulfate and chondroitin sulfate proteoglycan biosynthesis.

    PubMed

    Mencio, Caitlin; Garud, Dinesh R; Kuberan, Balagurunathan; Koketsu, Mamoru

    2015-01-01

    Glycosaminoglycan (GAG) side chains of proteoglycans are involved in a wide variety of developmental and pathophysiological functions. Similar to a gene knockout, the ability to inhibit GAG biosynthesis would allow us to examine the function of endogenous GAG chains. However, ubiquitously and irreversibly knocking out all GAG biosynthesis would cause multiple effects making it difficult to attribute a specific biological role to a specific GAG structure in spatiotemporal manner. Reversible and selective inhibition of GAG biosynthesis would allow us to examine the importance of endogenous GAGs to specific cellular, tissue, or organ systems. In this chapter, we describe the chemical synthesis and biological evaluation of 4-deoxy-4-fluoro-xylosides as selective inhibitors of heparan sulfate and chondroitin/dermatan sulfate proteoglycan biosynthesis. PMID:25325945

  15. Adeninium cytosinium sulfate.

    PubMed

    Cherouana, Aouatef; Bousboua, Raja; Bendjeddou, Lamia; Dahaoui, Slimane; Lecomte, Claude

    2009-01-01

    In the title compound, C(5)H(6)N(5) (+)·C(4)H(6)N(3)O(+)·SO(4) (2-), the adeninium (AdH(+)) and cytosinium (CytH(+)) cations and sulfate dianion are involved in a three-dimensional hydrogen-bonding network with four different modes, viz. AdH(+)⋯AdH(+), AdH(+)⋯CytH(+), AdH(+)⋯SO(4) (2-) and CytH(+)⋯SO(4) (2-). The adeninium cations form N-H⋯N dimers through the Hoogsteen faces, generating a characteristic R(2) (2)(10) motif. This AdH(+)⋯AdH(+) hydrogen bond in combination with AdH(+)⋯CytH(+ )H-bonds leads to two-dimensional cationic ribbons parallel to the a axis. The sulfate anions inter-link the ribbons into a three-dimensional hydrogen-bonding network and thus reinforce the crystal structure. PMID:21577678

  16. Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments

    USGS Publications Warehouse

    Zehr, J.P.; Oremland, R.S.

    1987-01-01

    Washed cell suspension of Desulfovibrio desulfuricans subsp. aestuarii were capable of reducing nanomolar levels of selenate to selenide as well as sulfate to sulfide. Reduction of these species was inhibited by 1 mM selenate or tungstate. The addition of 1 mM sulfate decreased the reduction of selenate and enhanced the reduction of sulfate. Increasing concentrations of sulfate inhibited rates of selenate reduction but enhanced sulfate reduction rates. Cell suspensions kept in 1 mM selenate were incapable of reducing either selenate or sulfate when the selenate/sulfate ratio was ???0.02, indicating that irreversible inhibition occurs at high selenate concentrations. Anoxic estuarine sediments having an active flora of sulfate-respiring bacteria were capable of a small amount of selenate reduction when ambient sulfate concentrations were low (<4 mM). These results indicate that sulfate is an inhibitor of the reduction of trace qunatitites of selenate. Therefore, direct reduction of traces of selenate to selenide by sulfate-respiring bacteria in natural environments is constrained by the ambient concentration of sulfate ions. The significance of this observation with regard to the role sediments play in sequestering selenium is discussed.

  17. Preliminary study on the potential of polysaccharide from indigenous Tiger's Milk mushroom (Lignosus rhinocerus) as anti-lung cancer agent

    NASA Astrophysics Data System (ADS)

    Lai, Wei Hong; Zainal, Zamri; Daud, Fauzi

    2014-09-01

    Tiger's Milk mushroom is a tropical polypore genus that can be found in the tropical part of the world in Australia, Papua New Guinea, Philippines, Indonesia, Malaysia, Sri Lanka and Vanuatu. In Malaysia, Lignosus rhinocerus is the most sought after medicinal mushroom by Semai aborigine upon request by local herbalist. This priced mushroom has been used traditionally to treat various diseases such as asthma, breast cancer, cough, fever and food poisoning. Current results indicated polysaccharide from sclerotia of indigenous L. rhinocerus extracted through hot water is able to inhibit up to 45% growth of human lung carcinoma. Inhibition is achieved when concentration of polysaccharide are in the range of 4-8 μg/ml. Present preliminary study suggests beta-glucan-rich polysaccharide from sclerotia of indigenous L. rhinocerus has anti-proliferation activity on human lung carcinoma (A549).

  18. Discrepancies in composition and biological effects of different formulations of chondroitin sulfate.

    PubMed

    Martel-Pelletier, Johanne; Farran, Aina; Montell, Eulàlia; Vergés, Josep; Pelletier, Jean-Pierre

    2015-01-01

    Osteoarthritis is a common, progressive joint disease, and treatments generally aim for symptomatic improvement. However, SYmptomatic Slow-Acting Drugs in Osteoarthritis (SYSADOAs) not only reduce joint pain, but slow structural disease progression. One such agent is chondroitin sulfate-a complex, heterogeneous polysaccharide. It is extracted from various animal cartilages, thus has a wide range of molecular weights and different amounts and patterns of sulfation. Chondroitin sulfate has an excellent safety profile, and although various meta-analyses have concluded that it has a beneficial effect on symptoms and structure, others have concluded little or no benefit. This may be due, at least partly, to variations in the quality of the chondroitin sulfate used for a particular study. Chondroitin sulfate is available as pharmaceutical- and nutraceutical-grade products, and the latter have great variations in preparation, composition, purity and effects. Moreover, some products contain a negligible amount of chondroitin sulfate and among samples with reasonable amounts, in vitro testing showed widely varying effects. Of importance, although some showed anti-inflammatory effects, others demonstrated weak effects, and some instances were even pro-inflammatory. This could be related to contaminants, which depend on the origin, production and purification process. It is therefore vitally important that only pharmaceutical-grade chondroitin sulfate be used for treating osteoarthritis patients. PMID:25756648

  19. Modeling the influence of decomposing organic solids on sulfate reduction rates for iron precipitation.

    PubMed

    Hemsi, Paulo S; Shackelford, Charles D; Figueroa, Linda A

    2005-05-01

    The influence of decomposing organic solids on sulfate (S04(2-)) reduction rates for metals precipitation in sulfate-reducing systems, such as in bioreactors and permeable reactive barriers for treatment of acid mine drainage, is modeled. The results are evaluated by comparing the model simulations with published experimental data for two single-substrate and two multiple-substrate batch equilibrium experiments. The comparisons are based on the temporal trends in SO4(2-), ferrous iron (Fe2+), and hydrogen sulfide (H2S) concentrations, as well as on rates of sulfate reduction. The temporal behaviors of organic solid materials, dissolved organic substrates, and different bacterial populations also are simulated. The simulated results using Contois kinetics for polysaccharide decomposition, Monod kinetics for lactate-based sulfate reduction, instantaneous or kinetically controlled precipitation of ferrous iron mono-sulfide (FeS), and partial volatilization of H2S to the gas phase compare favorably with the experimental data. When Contois kinetics of polysaccharide decomposition is replaced by first-order kinetics to simulate one of the single-substrate batch experiments, a comparatively poorer approximation of the rates of sulfate reduction is obtained. The effect of sewage sludge in boosting the short-term rate of sulfate reduction in one of the multiple-substrate experiments also is approximated reasonably well. The results illustrate the importance of the type of kinetics used to describe the decomposition of organic solids on metals precipitation in sulfate-reducing systems as well as the potential application of the model as a predictive tool for assisting in the design of similar biochemical systems. PMID:15926572

  20. A common sugar-nucleotide-mediated mechanism of inhibition of (glycosamino)glycan biosynthesis, as evidenced by 6F-GalNAc (Ac3).

    PubMed

    van Wijk, Xander M; Lawrence, Roger; Thijssen, Victor L; van den Broek, Sebastiaan A; Troost, Ran; van Scherpenzeel, Monique; Naidu, Natasha; Oosterhof, Arie; Griffioen, Arjan W; Lefeber, Dirk J; van Delft, Floris L; van Kuppevelt, Toin H

    2015-07-01

    Glycosaminoglycan (GAG) polysaccharides have been implicated in a variety of cellular processes, and alterations in their amount and structure have been associated with diseases such as cancer. In this study, we probed 11 sugar analogs for their capacity to interfere with GAG biosynthesis. One analog, with a modification not directly involved in the glycosidic bond formation, 6F-N-acetyl-d-galactosamine (GalNAc) (Ac3), was selected for further study on its metabolic and biologic effect. Treatment of human ovarian carcinoma cells with 50 μM 6F-GalNAc (Ac3) inhibited biosynthesis of GAGs (chondroitin/dermatan sulfate by ∼50-60%, heparan sulfate by ∼35%), N-acetyl-d-glucosamine (GlcNAc)/GalNAc containing glycans recognized by the lectins Datura stramonium and peanut agglutinin (by ∼74 and ∼43%, respectively), and O-GlcNAc protein modification. With respect to function, 6F-GalNAc (Ac3) treatment inhibited growth factor signaling and reduced in vivo angiogenesis by ∼33%. Although the analog was readily transformed in cells into the uridine 5'-diphosphate (UDP)-activated form, it was not incorporated into GAGs. Rather, it strongly reduced cellular UDP-GalNAc and UDP-GlcNAc pools. Together with data from the literature, these findings indicate that nucleotide sugar depletion without incorporation is a common mechanism of sugar analogs for inhibiting GAG/glycan biosynthesis. PMID:25868729

  1. Determination of residual dextran sulfate in protein products by SEC-HPLC.

    PubMed

    Tazi, Loubna M; Jayawickreme, Shiranthi

    2016-02-01

    Dextran sulfate is a polyanionic derivative of dextran, produced by esterification of dextran with chlorosulphonic acid. Dextran sulfate with an average molecular weight of 8000Da can be added to the cell culture to inhibit binding of proteins to cells, increasing cellular growth and productivity. Residual dextran sulfate levels must be monitored during the purification process development to insure clearance. A size-exclusion chromatography based HPLC assay has been developed for the separation and quantitation of dextran sulfate in a highly concentrated purified protein drug substance sample. Trichloroacetic acid (TCA) was used to precipitate the protein and separate the dextran sulfate. Detection and quantitation of dextran sulfate was achieved by post column reaction with dimethylene blue to form a metachromatic complex that absorbs visible light at 530nm. The quantitation limit (LOQ) was determined to be 1.5μg/mL dextran sulfate in high concentration protein samples. PMID:26773880

  2. Viscoelastic properties of levan polysaccharides

    NASA Astrophysics Data System (ADS)

    Noll, Kenneth; Rende, Deniz; Ozisik, Rahmi; Toksoy-Oner, Ebru

    2014-03-01

    Levan is a naturally occurring polysaccharide that is composed of β-D-fructofuranose units with β(2-6) linkages between fructose rings. It is synthesized by the action of a secreted levansucrase (EC 2.4.1.10) that converts sucrose into the levan externally (exopolysaccharide). Levan is a homopolysaccharide that is non-toxic, water soluble,, and has anti-tumor activity and low immunological response. Therefore, levan presents great potential to be used as a novel functional biopolymer in foods, feeds, cosmetics, pharmaceutical and chemical industries. Despite these favorable properties, levan has a moderately low mechanical properties and poor film forming capability. In the current study, the agglomeration behavior of levan in water and in saline solutions was investigated at 298 and 310 K by dynamic light scattering and transmission electron microscopy (TEM). The viscoelastic properties of neat and oxidized levan films were studied via nanoindentation experiments in the quasi-static and dynamic modes The material is partially based upon work supported by NSF under Grant Nos. 1200270 and 1003574, and TUBITAK 111M232.

  3. Variations of pH as an additional tool in the analysis of crowded NMR spectra of fucosylated chondroitin sulfates.

    PubMed

    Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Bilan, Maria I; Shashkov, Alexander S; Gerbst, Alexey G; Usov, Anatolii I; Nifantiev, Nikolay E

    2016-03-24

    The influence of pH variation on chemical shift values in NMR spectra of fucosylated chondroitin sulfates was studied using polysaccharides isolated from three sea cucumber species Apostichopus japonicus, Actinopyga mauritiana and Cucumaria japonica. The signals of glucuronic acid residues were found to be the most sensitive to pH changes in comparison to the chemical shifts of the sulfated galactosamine and fucosyl units, most of which were altered insignificantly. It was shown that in the presence of imidazole-HCl buffer (pH 7.2) NMR spectra of the polysaccharides from A. japonicus and A. mauritiana were sufficiently resolved, whereas under acidic conditions their (1)H NMR spectra were complicated by overlapping of H-1 signals of GlcA and GalNAc. In the case of polysaccharide from C. japonica bearing 3-O-fucosylated and 3-O-sulfated glucuronic acid residues in the backbone, acidification of the medium led to separation of H-1 signals of GlcA3S and GalNAc. Therefore, the combination of data obtained at different pH values may be useful for interpretation of overcrowded spectra of fucosylated chondroitin sulfates. PMID:26895544

  4. Acetylated Rhamnogalacturonans from Immature Fruits of Abelmoschus esculentus Inhibit the Adhesion of Helicobacter pylori to Human Gastric Cells by Interaction with Outer Membrane Proteins.

    PubMed

    Thöle, Christian; Brandt, Simone; Ahmed, Niyaz; Hensel, Andreas

    2015-01-01

    Polysaccharide containing extracts from immature fruits of okra (Abelmoschus esculentus) are known to exhibit antiadhesive effects against bacterial adhesion of Helicobacter pylori (H. pylori) to stomach tissue. The present study investigates structural and functional features of polymers responsible for this inhibition of bacterial attachment to host cells. Ammonium sulfate precipitation of an aqueous extract yielded two fractions at 60% and 90% saturation with significant antiadhesive effects against H. pylori, strain J99, (FE60% 68% ± 15%; FE90% 75% ± 11% inhibition rates) after preincubation of the bacteria at 1 mg/mL. Sequential extraction of okra fruits yielded hot buffer soluble solids (HBSS) with dose dependent antiadhesive effects against strain J99 and three clinical isolates. Preincubation of H. pylori with HBSS (1 mg/mL) led to reduced binding to 3'-sialyl lactose, sialylated Le(a) and Le(x). A reduction of bacterial binding to ligands complementary to BabA and SabA was observed when bacteria were pretreated with FE90%. Structural analysis of the antiadhesive polysaccharides (molecular weight, monomer composition, linkage analysis, stereochemistry, and acetylation) indicated the presence of acetylated rhamnogalacturonan-I polymers, decorated with short galactose side chains. Deacetylation of HBSS and FE90% resulted in loss of the antiadhesive activity, indicating esterification being a prerequisite for antiadhesive activity. PMID:26389872

  5. Two Variants of a High-Throughput Fluorescent Microplate Assay of Polysaccharide Endotransglycosylases.

    PubMed

    Kováčová, Kristína; Farkaš, Vladimír

    2016-04-01

    Polysaccharide endotransglycosylases (PETs) are the cell wall-modifying enzymes of fungi and plants. They catalyze random endo-splitting of the polysaccharide donor molecule and transfer of the newly formed reducing sugar residue to the nonreducing end of an acceptor molecule which can be a polysaccharide or an oligosaccharide. Owing to their important role in the cell wall formation, the inhibition of PETs represents an attractive strategy in the fight against fungal infections. We have elaborated two variants of a versatile high-throughput microplate fluorimetric assay that could be used for effective identification of PETs and screening of their inhibitors. Both assays use the respective polysaccharides as the donors and sulforhodamine-labeled oligosaccharides as the acceptors but differ from each other by mode of how the labeled polysaccharide products of transglycosylation are separated from the unreacted oligosaccharide acceptors. In the first variant, the reactions take place in a layer of agar gel laid on the bottoms of the wells of a microtitration plate. After the reaction, the high-Mr transglycosylation products are precipitated with 66 % ethanol and retained within the gel while the low-Mr products and the unreacted acceptors are washed out. In the second variant, the donor polysaccharides are adsorbed to the surface of a microplate well and remain adsorbed there also after becoming labeled in the course of the transglycosylation reaction whereas the unused low-Mr acceptors are washed out. As a proof of versatility, assays of heterologously expressed transglycosylases ScGas1, ScCrh1, and ScCrh2 from the yeast Saccharomyces cerevisiae, CaPhr1 and CaPhr2 from Candida albicans, and of a plant xyloglucan endotransglycosylase (XET) are demonstrated. PMID:26754421

  6. Chemical and physical stability of citral and limonene in sodium dodecyl sulfate-chitosan and gum arabic-stabilized oil-in-water emulsions.

    PubMed

    Djordjevic, Darinka; Cercaci, Luisito; Alamed, Jean; McClements, D Julian; Decker, Eric A

    2007-05-01

    Citral and limonene are the major flavor components of citrus oils. Both of these compounds can undergo chemical degradation leading to loss of flavor and the formation of undesirable off-flavors. Engineering the interface of emulsion droplets with emulsifiers that inhibit chemical reactions could provide a novel technique to stabilize citral and limonene. At present, emulsified flavor oils are usually stabilized by gum arabic (GA), which is a naturally occurring polysaccharide-protein complex. The objective of this study was to examine if citral and limonene were more stable in emulsions stabilized with a sodium dodecyl sulfate (SDS)-chitosan complex than GA. Citral degraded less in GA-stabilized than in SDS-chitosan-stabilized emulsions at pH 3.0. However, SDS-chitosan-stabilized emulsions were more effective at retarding the formation of the citral oxidation product, p-cymene, than GA-stabilized emulsions. Limonene degradation and the formation of limonene oxidation products, limonene oxide and carvone, were lower in the SDS-chitosan- than GA-stabilized emulsions at pH 3.0. The ability of an SDS-chitosan multilayer emulsifier system to inhibit the oxidative deterioration of citral and limonene could be due to the formation of a cationic and thick emulsion droplet interface that could repel prooxidative metals, thus decreasing prooxidant-lipid interactions. PMID:17419641

  7. Preparation, characterization, and anti-Helicobacter pylori activity of Bi3+-Hericium erinaceus polysaccharide complex.

    PubMed

    Zhu, Yang; Chen, Yao; Li, Qian; Zhao, Ting; Zhang, Ming; Feng, Weiwei; Takase, Mohammed; Wu, Xueshan; Zhou, Zhaoxiang; Yang, Liuqing; Wu, Xiangyang

    2014-09-22

    Two new Bi3+-Hericium erinaceus polysaccharide (BiHEP) complexes were prepared using Bi3+ and two purified polysaccharides from H. erinaceus (HEPs), respectively. The complexes were characterized by elemental analysis, FT-IR, CD, SEM, AFM, XRD, and TG. The anti-Helicobacter pylori (Hp) activities in vitro by agar dilution assay of the complexes were evaluated. The molecular weights of HEPs were 197 and 20 kDa, respectively. All the analyses confirmed the formation of new BiHEP complexes with lower content of Bi3+ compared with colloidal bismuth subcitrate (CBS), the most utilized bismuth preparation clinically. Furthermore, HEPs themselves have definite inhibition effects on Hp, and BiHEP complexes have lower content of Bi exhibited strong inhibition effects on Hp (MIC=20 μg/mL), similar to that of CBS with higher content of Bi. The study provides a basis for further development of multiple treatments of Hp infection or new medicines. PMID:24906751

  8. Antioxidant and antimicrobial properties of water soluble polysaccharide from Arachis hypogaea seeds.

    PubMed

    Jiang, Shengjuan; Ma, Yuhan; Yan, Dazhuang

    2014-10-01

    The water soluble crude polysaccharide (AHP) was obtained from the aqueous extracts of the Arachis hypogaea seeds through hot water extraction followed by ethanol precipitation. Antioxidant activities and inhibitory activities against the bacteria of AHP were investigated. AHP at 2 mg/mL was found to inhibit the formation of superoxide anion (55.33 %) and hydroxyl radicals (30.85 %), to scavenge the DPPH radical (57.43 %) and to chelate iron ion (27.83 %) in in vitro systems. AHP also exhibited the antibacterial activities. AHP at 12.5 mg/mL could inhibit the growth of the Gram-positive bacteria, implying that the Gram-positive bacteria were more sensitive to AHP than the Gram-negative bacteria. Polysaccharide with antioxidant and antibacterial activities in the "Chang Sheng Guo" further increased the nutritive values of peanuts as well as the natural health product potential. PMID:25328235

  9. Synthesis of the Oligosaccharides Related to Branching Sites of Fucosylated Chondroitin Sulfates from Sea Cucumbers

    PubMed Central

    Ustyuzhanina, Nadezhda E.; Fomitskaya, Polina A.; Gerbst, Alexey G.; Dmitrenok, Andrey S.; Nifantiev, Nikolay E.

    2015-01-01

    Natural anionic polysaccharides fucosylated chondroitin sulfates (FCS) from sea cucumbers attract great attention nowadays due to their ability to influence various biological processes, such as blood coagulation, thrombosis, angiogenesis, inflammation, bacterial and viral adhesion. To determine pharmacophore fragments in FCS we have started systematic synthesis of oligosaccharides with well-defined structure related to various fragments of these polysaccharides. In this communication, the synthesis of non-sulfated and selectively O-sulfated di- and trisaccharides structurally related to branching sites of FCS is described. The target compounds are built up of propyl β-d-glucuronic acid residue bearing at O-3 α-l-fucosyl or α-l-fucosyl-(1→3)-α-l-fucosyl substituents. O-Sulfation pattern in the fucose units of the synthetic targets was selected according to the known to date holothurian FCS structures. Stereospecific α-glycoside bond formation was achieved using 2-O-benzyl-3,4-di-O-chloroacetyl-α-l-fucosyl trichloroacetimidate as a donor. Stereochemical outcome of the glycosylation was explained by the remote participation of the chloroacetyl groups with the formation of the stabilized glycosyl cations, which could be attacked by the glycosyl acceptor only from the α-side. The experimental results were in good agreement with the SCF/MP2 calculated energies of such participation. The synthesized oligosaccharides are regarded as model compounds for the determination of a structure-activity relationship in FCS. PMID:25648510

  10. Synthesis of the oligosaccharides related to branching sites of fucosylated chondroitin sulfates from sea cucumbers.

    PubMed

    Ustyuzhanina, Nadezhda E; Fomitskaya, Polina A; Gerbst, Alexey G; Dmitrenok, Andrey S; Nifantiev, Nikolay E

    2015-02-01

    Natural anionic polysaccharides fucosylated chondroitin sulfates (FCS) from sea cucumbers attract great attention nowadays due to their ability to influence various biological processes, such as blood coagulation, thrombosis, angiogenesis, inflammation, bacterial and viral adhesion. To determine pharmacophore fragments in FCS we have started systematic synthesis of oligosaccharides with well-defined structure related to various fragments of these polysaccharides. In this communication, the synthesis of non-sulfated and selectively O-sulfated di- and trisaccharides structurally related to branching sites of FCS is described. The target compounds are built up of propyl β-d-glucuronic acid residue bearing at O-3 α-l-fucosyl or α-l-fucosyl-(1→3)-α-l-fucosyl substituents. O-Sulfation pattern in the fucose units of the synthetic targets was selected according to the known to date holothurian FCS structures. Stereospecific α-glycoside bond formation was achieved using 2-O-benzyl-3,4-di-O-chloroacetyl-α-l-fucosyl trichloroacetimidate as a donor. Stereochemical outcome of the glycosylation was explained by the remote participation of the chloroacetyl groups with the formation of the stabilized glycosyl cations, which could be attacked by the glycosyl acceptor only from the α-side. The experimental results were in good agreement with the SCF/MP2 calculated energies of such participation. The synthesized oligosaccharides are regarded as model compounds for the determination of a structure-activity relationship in FCS. PMID:25648510

  11. Experimental study of acid-sulfate alteration of basalt and implications for sulfate deposits on Mars

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Robbins, Mark; Moskowitz, Bruce; Berquó, Thelma S.; Jöns, Niels; Hynek, Brian M.

    2013-04-01

    Acid-sulfate alteration of basalt by SO2-bearing volcanic vapors has been proposed as one possible origin for sulfate-rich deposits on Mars. To better define mineralogical signatures of acid-sulfate alteration, laboratory experiments were performed to investigate alteration pathways and geochemical processes during reaction of basalt with sulfuric acid. Pyroclastic cinders composed of phenocrysts including plagioclase, olivine, and augite embedded in glass were reacted with sulfuric acid at 145 °C for up to 137 days at a range of fluid : rock ratios. During the experiments, the phenocrysts reacted rapidly to form secondary products, while the glass was unreactive. Major products included amorphous silica, anhydrite, and Fe-rich natroalunite, along with minor iron oxides/oxyhydroxides (probably hematite) and trace levels of other sulfates. At the lowest fluid : rock ratio, hexahydrite and an unidentified Fe-silicate phase also occurred as major products. Reaction-path models indicated that formation of the products required both slow dissolution of glass and kinetic inhibitions to precipitation of a number of minerals including phyllosilicates and other aluminosilicates as well as Al- and Fe-oxides/oxyhydroxides. Similar models performed for Martian basalt compositions predict that the initial stages of acid-sulfate alteration of pyroclastic deposits on Mars should result in formation of amorphous silica, anhydrite, Fe-bearing natroalunite, and kieserite, along with relict basaltic glass. In addition, analysis of the experimental products indicates that Fe-bearing natroalunite produces a Mössbauer spectrum closely resembling that of jarosite, suggesting that it should be considered an alternative to the component in sulfate-rich bedrocks at Meridiani Planum that has previously been identified as jarosite.

  12. Crude polysaccharide from an anti-UVB cell clone of Bupleurum scorzonerifolium protect HaCaT cells against UVB-induced oxidative stress.

    PubMed

    Dai, Jinran; Ma, Haiyin; Fan, Jing; Li, Yuzhong; Wang, Jianguang; Ni, Hongmei; Xia, Guangmin; Chen, Suiyun

    2011-12-01

    Bupleurum scorzonerifolium Willd has been found to have a wide range of immunopharmacologic functions. We isolated an anti-UVB B. scorzonerifolium cell clone and found elevated level of polysaccharides. In this study, we investigated the ability of crude polysaccharide (CP) from the anti-UVB B. scorzonerifolium cell clone to inhibit UVB-induced photodamage using a human skin keratinocyte cell line, HaCaT. Cells were UVB irradiated and then incubated in presence of different concentrations of CP. MTT assay showed that the CP did not induce cytotoxic effect under 10 mg/mL and after UVB irradiation, CP can inhibit UVB-induced HaCaT cell death. Decreased reactive oxygen species and lipid peroxidation and increased superoxide dismutase activity showed that CP can act as a free radical scavenger. Furthermore, CP had a strong protective ability against UVB-induced DNA damage. These effects were compared to the crude polysaccharide (CP') from normal B. scorzonerifolium callus at concentration of 20 mg/mL. The portion of crude polysaccharide (CP) from the anti-UVB B. scorzonerifolium cell clone was more than 2.5-fold higher than crude polysaccharide (CP') from normal B. scorzonerifolium callus. Taken together, the protective mechanisms of crude polysaccharide from the anti-UVB B. scorzonerifolium cell clone against UVB-induced photodamage occur by the inhibition of UVB-induced reactive oxygen species production, lipid peroxidation and DNA damage. PMID:21948115

  13. Crystal structure of tris-(piperidinium) hydrogen sulfate sulfate.

    PubMed

    Lukianova, Tamara J; Kinzhybalo, Vasyl; Pietraszko, Adam

    2015-12-01

    In the title molecular salt, 3C5H12N(+)·HSO4 (-)·SO4 (2-), each cation adopts a chair conformation. In the crystal, the hydrogen sulfate ion is connected to the sulfate ion by a strong O-H⋯O hydrogen bond. The packing also features a number of N-H⋯O hydrogen bonds, which lead to a three-dimensional network structure. The hydrogen sulfate anion accepts four hydrogen bonds from two cations, whereas the sulfate ion, as an acceptor, binds to five separate piperidinium cations, forming seven hydrogen bonds. PMID:26870401

  14. Crystal structure of tris­(piperidinium) hydrogen sulfate sulfate

    PubMed Central

    Lukianova, Tamara J.; Kinzhybalo, Vasyl; Pietraszko, Adam

    2015-01-01

    In the title molecular salt, 3C5H12N+·HSO4 −·SO4 2−, each cation adopts a chair conformation. In the crystal, the hydrogen sulfate ion is connected to the sulfate ion by a strong O—H⋯O hydrogen bond. The packing also features a number of N—H⋯O hydrogen bonds, which lead to a three-dimensional network structure. The hydrogen sulfate anion accepts four hydrogen bonds from two cations, whereas the sulfate ion, as an acceptor, binds to five separate piperidinium cations, forming seven hydrogen bonds. PMID:26870401

  15. Structure of a fucose-branched chondroitin sulfate from sea cucumber. Evidence for the presence of 3-O-sulfo-beta-D-glucuronosyl residues.

    PubMed

    Vieira, R P; Mulloy, B; Mourão, P A

    1991-07-25

    The structure of a unique focose-branched chondroitin sulfate isolated from the body wall of a sea cucumber was examined in detail. This glycosaminoglycan contains side chain disaccharide units of sulfated fucopyranosyl units linked to approximately one-half of the glucuronic acid moieties through the O-3 position of the acid. The intact polysaccharide is totally resistant to chondroitinase degradation, whereas, after defucosylation, it is partially degraded by the enzyme. However, only after an additional step of desulfation, the chondroitin from sea cucumber is almost totally degraded by chondroitinase AC or ABC. This result, together with the methylation and NMR studies of the native and chemically modified polysaccharide, suggest that besides the fucose branches, the sea cucumber chondroitin sulfate contains sulfate esters at position O-3 of the beta-D-glucuronic acid units. Furthermore, the proteoglycan from the sea cucumber chondroitin sulfate is recognized by anti-Leu-7 monoclonal antibody, which specifically recognizes 3-sulfoglucuronic acid residues. In analogy with the fucose branched units, the 3-O-sulfo-beta-D-glucuronosyl residues are resistant to chondroitinase degradation. Regarding the position of the glycosidic linkage and site of sulfation in the fucose branches, our results suggest high heterogeneity. Tentatively, it is possible to suggest the preponderance of disaccharide units formed by 3,4-di-O-sulfo-alpha-L-fucopyranosyl units glycosidically linked through position 1----2 to 4-O-sulfo-alpha-L-fucopyranose. Finally, the presence of unusual 4/6-disulfated disaccharide units, together with the common 6-sulfated and non-sulfated units, was detected in the chondroitin sulfate core of this polysaccharide. PMID:1906878

  16. Fractionation and Characterization of Biologically-active Polysaccharides from Artemisia tripartita

    PubMed Central

    Xie, Gang; Schepetkin, Igor A.; Siemsen, Daniel W.; Kirpotina, Liliya N.; Wiley, James A.; Quinn, Mark T.

    2008-01-01

    The leaves of Artemisia species have been traditionally used for prevention and treatment of a number of diseases. In this study, five polysaccharide fractions (designated A-I to A-V) were isolated from the leaves of Artemisia tripartita Rydb. by the sequential use of hot-water extraction, ethanol precipitation, ultra-filtration, and chromatography. The homogeneity and average molecular weight of each fraction were determined by high performance size-exclusion chromatography. Sugar composition analysis revealed that Artemisia polysaccharides consisted primarily of xylose, glucose, arabinose, galactose, and galactosamine. Moreover, all fractions contained at least 3.4% sulfate, and fractions A-II through A-V contained an arabinogalactan type II structure. All fractions exhibited macrophage-activating activity, enhancing production of intracellular reactive oxygen species and release of nitric oxide, interleukin 6, interleukin 10, tumor necrosis factor α, and monocyte chemotactic protein-1. In addition, all fractions exhibited scavenging activity for reactive oxygen species generated enzymatically or produced extracellularly by human neutrophils. Finally, fractions A-I and A-V exhibited complement-fixing activity. Taken together, our results provide a molecular basis to explain at least part of the beneficial therapeutic effects of Artemisia extracts, and suggest the possibility of using Artemisia polysaccharides as an immunotherapeutic adjuvant. PMID:18325553

  17. Ice nucleation activity of polysaccharides

    NASA Astrophysics Data System (ADS)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  18. Ferric sulfates on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1987-01-01

    Evidence is presented for the possible existence of ferric sulfato complexes and hydroxo ferric sulfate minerals in the permafrost of Mars. A sequential combination of ten unique conditions during the cooling history of Mars is suggested which is believed to have generated an environment within Martian permafrost that has stabilized Fe(3+)-SO4(2-)-bearing species. It is argued that minerals belonging to the jarosite and copiapite groups could be present in Martian regolith analyzed in the Viking XRF measurements at Chryse and Utopia, and that maghemite suspected to be coating the Viking magnet arrays is a hydrolysate of dissolved ferric sulfato complexes from exposed Martian permafrost.

  19. Sulfate scale dissolution

    SciTech Connect

    Morris, R.L.; Paul, J.M.

    1992-01-28

    This patent describes a method for removing barium sulfate scale. It comprises contacting the scale with an aqueous solution having a pH of about 8 to about 14 and consisting essentially of a chelating agent comprising a polyaminopolycarboxylic acid or salt of such an acid in a concentration of 0.1 to 1.0 M, and anions of a monocarboxylic acid selected form mercaptoacetic acid, hydroxyacetic acid, aminoacetic acid, or salicyclic acid in a concentration of 0.1 to 1.0 M and which is soluble in the solution under the selected pH conditions, to dissolve the scale.

  20. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles.

    PubMed

    Meier, P J; Valantinas, J; Hugentobler, G; Rahm, I

    1987-10-01

    The mechanism(s) and driving forces for biliary excretion of sulfate were investigated in canalicular rat liver plasma membrane vesicles (cLPM). Incubation of cLPM vesicles in the presence of an inside-to-outside (in, out) bicarbonate gradient (50 mM in, 5 mM out, pH 8.0 in and out), but not pH (pH 8.0 in, 6.0 out) or out-to-in sodium gradients, stimulated sulfate uptake 10-fold compared with the absence of bicarbonate and approximately 2-fold above sulfate equilibrium ("overshoot"). Initial rates of this bicarbonate gradient-driven sulfate uptake were saturable with increasing concentrations of sulfate (apparent Km, approximately 0.3 mM) and could be inhibited by probenecid, N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate, acetazolamide, furosemide,4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid, and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (IC50, approximately 40 microM). Cisinhibition of initial bicarbonate gradient-stimulated sulfate uptake and transstimulation of sulfate uptake in the absence of bicarbonate were observed with sulfate, thiosulfate, and oxalate but not with chloride, nitrate, phosphate, acetate, lactate, glutamate, aspartate, cholate, taurocholate, dehydrocholate, taurodehydrocholate, and reduced or oxidized glutathione. These findings indicate the presence of a sulfate (oxalate)-bicarbonate anion exchange system in canalicular rat liver plasma membranes. In conjunction with the previously reported chloride-bicarbonate exchanger (J. Clin. Invest. 75: 1256-1263, 1985), these findings support the concept that bicarbonate-sensitive transport system might play an important role in bile acid-independent canalicular bile formation. PMID:3661708

  1. Maintaining quality of litchi fruit with acidified calcium sulfate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of acidified calcium sulfate (ACS) on quality of litchi (Litchi chinensis Sonn. cv ‘Brewster’) fruit after harvest was evaluated. ACS at 1.25% or higher concentrations significantly inhibited the activities of polyphenoloxidase and peroxidase in pericarp during storage at both 5 and 10 ºC...

  2. Heparan Sulfate Differences in Rheumatoid Arthritis versus Healthy Sera

    PubMed Central

    López-Hoyos, Marcos; Seo, Youjin; Andaya, Armann; Leary, Julie A.

    2015-01-01

    Heparan sulfate (HS) is a complex and highly variable polysaccharide, expressed ubiquitously on the cell surface as HS proteoglycans (HSPGs), and found in the extracellular matrix as free HS fragments. Its heterogeneity due to various acetylation and sulfation patterns endows a multitude of functions. In animal tissues, HS interacts with a wide range of proteins to mediate numerous biological activities; given its multiple roles in inflammation processes, characterization of HS in human serum has significant potential for elucidating disease mechanisms. Historically, investigation of HS was limited by its low concentration in human serum, together with the complexity of the serum matrix. In this study, we used a modified mass spectrometry method to examine HS disaccharide profiles in the serum of 50 women with rheumatoid arthritis (RA), and compared our results to 51 sera from healthy women. Using various purification methods and online LC-MS/MS, we discovered statistically significant differences in the sulfation and acetylation patterns between populations. Since early diagnosis of RA is considered important in decelerating the disease's progression, identification of specific biomolecule characterizations may provide crucial information towards developing new therapies for suppressing the disease in its early stages. This is the first report of potential glycosaminoglycan biomarkers for RA found in human sera, while acknowledging the obvious fact that a larger population set, and more stringent collection parameters, will need to be investigated in the future. PMID:25217862

  3. Neisseria meningitidis serogroup A capsular polysaccharide acetyltransferase, methods and compositions

    SciTech Connect

    Stephens, David S.; Gudlavalleti, Seshu K.; Tzeng, Yih-Ling; Datta, Anup K.; Carlson, Russell W.

    2011-02-08

    Provided are methods for recombinant production of an O-acetyltransferase and methods for acetylating capsular polysaccharides, especially those of a Serogroup A Neisseria meningitidis using the recombinant O-acetyltransferase, and immunogenic compositions comprising the acetylated capsular polysaccharide.

  4. Immobilized phosphorylase for synthesis of polysaccharides from glucose

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1972-01-01

    Continuous processes for enzymatic production of carbohydrates from glucose are discussed. Key reactant in process is identified as phosphorylase which catalyzes reversible formation or degradation of polysaccharide. Chemical compounds and reactions to synthesize polysaccharides are analyzed.

  5. Ability of sat-1 to transport sulfate, bicarbonate, or oxalate under physiological conditions.

    PubMed

    Krick, Wolfgang; Schnedler, Nina; Burckhardt, Gerhard; Burckhardt, Birgitta C

    2009-07-01

    Tubular reabsorption of sulfate is achieved by the sodium-dependent sulfate transporter, NaSi-1, located at the apical membrane, and the sulfate-anion exchanger, sat-1, located at the basolateral membrane. To delineate the physiological role of rat sat-1, [(35)S]sulfate and [(14)C]oxalate uptake into sat-1-expressing oocytes was determined under various experimental conditions. Influx of [(35)S]sulfate was inhibited by bicarbonate, thiosulfate, sulfite, and oxalate, but not by sulfamate and sulfide, in a competitive manner with K(i) values of 2.7 +/- 1.3 mM, 101.7 +/- 9.7 microM, 53.8 +/- 10.9 microM, and 63.5 +/- 38.7 microM, respectively. Vice versa, [(14)C]oxalate uptake was inhibited by sulfate with a K(i) of 85.9 +/- 9.5 microM. The competitive type of inhibition indicates that these compounds are most likely substrates of sat-1. Physiological plasma bicarbonate concentrations (25 mM) reduced sulfate and oxalate uptake by more than 75%. Simultaneous application of sulfate, bicarbonate, and oxalate abolished sulfate as well as oxalate uptake. These data and electrophysiological studies using a two-electrode voltage-clamp device provide evidence that sat-1 preferentially works as an electroneutral sulfate-bicarbonate or oxalate-bicarbonate exchanger. In kidney proximal tubule cells, sat-1 likely completes sulfate reabsorption from the ultrafiltrate across the basolateral membrane in exchange for bicarbonate. In hepatocytes, oxalate extrusion is most probably mediated either by an exchange for sulfate or bicarbonate. PMID:19369292

  6. The effect of nitrate and sulfate on mediator-less microbial fuel cells with high internal resistance.

    PubMed

    Yi, Taewoo; Harper, Willie F

    2009-11-01

    Microbial fuel cells (MFCs) simultaneously provide waste treatment while capturing energy in the form of electricity. Although these devices are being used in engineered and natural environments where nitrate or sulfate may inhibit power production, the effects of these electron acceptors have not been fully explored. This research investigated the effect of nitrate and sulfate on MFC power production when these chemicals are present at the anode. Nitrate decreased the maximum current and power density by 15 and 17%, respectively, when present at 20 mg/L, and sulfate caused the maximum current and power density to decrease by 4 and 7%, respectively (also at 20 mg/L). Stronger inhibition was observed at higher nitrate and sulfate concentrations, but power production persisted. Coulombic efficiency decreased as nitrate and sulfate levels increased, although this was not primarily due to the biochemical reduction of nitrate or sulfate; rather, it was probably because of the inhibition of exoelectrogens. PMID:19957763

  7. Antioxidative and renoprotective effects of residue polysaccharides from Flammulina velutipes.

    PubMed

    Lin, Lin; Cui, Fangyuan; Zhang, Jianjun; Gao, Xia; Zhou, Meng; Xu, Nuo; Zhao, Huajie; Liu, Min; Zhang, Chen; Jia, Le

    2016-08-01

    Three extractable polysaccharides including Ac-RPS, Al-RPS and En-RPS were extracted from the residue of Flammulina velutipes and their antioxidative and renoprotective effects on STZ-induced mice were investigated. Biochemical and antioxidant analysis showed that the En-RPS had potential effects in decreasing the serum levels of CRE, BUN, ALB and GLU significantly, increasing the renal activities of SOD, CAT and GSH-Px remarkably, and reducing the renal contents of MDA prominently. Furthermore, the histopathological observations also displayed that En-RPS could alleviate kidney damage. These results demonstrated that En-RPS extracted from the residue of F. velutipes possessed potent antioxidant activities, and could be used as a promising therapeutic agent for inhibiting the progression of diabetic nephropathy. In addition, the monosaccharide compositions of these three RPS were also analyzed. PMID:27112888

  8. Characterization of the Salmonella paratyphi C Vi polysaccharide.

    PubMed Central

    Daniels, E M; Schneerson, R; Egan, W M; Szu, S C; Robbins, J B

    1989-01-01

    The Vi capsular polysaccharide (Vi) is both a virulence factor and a protective antigen of Salmonella typhi; its pathogenic role for Salmonella paratyphi C is less well understood. We found no differences between the antigenic and immunogenic properties and the structure of the Vi from representative strains of S. paratyphi C, S. typhi, and Citrobacter freundii. There were, however, differences in both the amount produced per cell and the degree of association with the cell among the Vi from the three species of Enterobacteriaceae. S. paratyphi C produced less Vi than both the wild-type S. typhi and C. freundii did, and it showed the fastest release of Vi into the media. These findings may provide an explanation for the inability of the Vi to inhibit completely the agglutination of S. paratyphi C by anti-O sera. In an outbreak of enteric fever caused by S. paratyphi C, 66 of 78 isolates (85%) were Vi positive. Images PMID:2506132

  9. Structural characterisation of a polysaccharide from radix ranunculus ternati.

    PubMed

    Huang, Xuefeng; Zhao, Yun; Jin, Xin

    2014-01-01

    A water soluble polysaccharide, HB-1, with a molecular weight of 23,930, was isolated from radix Ranunculi ternati. by hot water extraction, ethanol precipitation, deproteination,ultrafiltration and gel-filtration column chromatography. Its sugar composition was determined by GLC as Glc, Ara, and Gal in a molar ration of 16.071: 2.722: 1. And the absolute configuration of Glc was identified as D. Smith degradation and methylation reaction showed the proportion of -(1)Glc (A) was about 16%, -(1)Glc(4)- (B) about 62%, (C) about 14%, and -(1)Gal(6)- (D) about 8%. The repetitive unit was likely composed of 3 As, 3 Cs, 13 Bs and 1 D. Together with the average molecular weight, it was predictable that HB-1 consisted of about seven of the repetitive unit. The inhibition activity of HB-1 on human glioma cell line SF188 was also measured, only to find it inactive. PMID:25587330

  10. Learning from microbial strategies for polysaccharide degradation.

    PubMed

    Hemsworth, Glyn R; Déjean, Guillaume; Davies, Gideon J; Brumer, Harry

    2016-02-15

    Complex carbohydrates are ubiquitous in all kingdoms of life. As major components of the plant cell wall they constitute both a rich renewable carbon source for biotechnological transformation into fuels, chemicals and materials, and also form an important energy source as part of a healthy human diet. In both contexts, there has been significant, sustained interest in understanding how microbes transform these substrates. Classical perspectives of microbial polysaccharide degradation are currently being augmented by recent advances in the discovery of lytic polysaccharide monooxygenases (LPMOs) and polysaccharide utilization loci (PULs). Fundamental discoveries in carbohydrate enzymology are both advancing biological understanding, as well as informing applications in industrial biomass conversion and modulation of the human gut microbiota to mediate health benefits. PMID:26862194

  11. Influence of polysaccharides on wine protein aggregation.

    PubMed

    Jaeckels, Nadine; Meier, Miriam; Dietrich, Helmut; Will, Frank; Decker, Heinz; Fronk, Petra

    2016-06-01

    Polysaccharides are the major high-molecular weight components of wines. In contrast, proteins occur only in small amounts in wine, but contribute to haze formation. The detailed mechanism of aggregation of these proteins, especially in combination with other wine components, remains unclear. This study demonstrates the different aggregation behavior between a buffer and a model wine system by dynamic light scattering. Arabinogalactan-protein, for example, shows an increased aggregation in the model wine system, while in the buffer system a reducing effect is observed. Thus, we could show the importance to examine the behavior of wine additives under conditions close to reality, instead of simpler buffer systems. Additional experiments on melting points of wine proteins reveal that only some isoforms of thaumatin-like proteins and chitinases are involved in haze formation. We can confirm interactions between polysaccharides and proteins, but none of these polysaccharides is able to prevent haze in wine. PMID:26830558

  12. Improvement of lipid profile and antioxidant of hypercholesterolemic albino rats by polysaccharides extracted from the green alga Ulva lactuca Linnaeus

    PubMed Central

    Hassan, Sherif; El-Twab, Sanaa Abd; Hetta, Mona; Mahmoud, Basant

    2011-01-01

    Sulfated polysaccharides from Ulva lactuca were extracted in hot water and precipitated by ethanol then orally gavaged to rats fed on a hypercholesterolemic diet for 21 days to evaluate the antihypercholesterolemic and antioxidant actions. Atorvastatine Ca (Lipitor) was used as a reference drug. The intragastric administration of U. lactuca extract to hypercholesterolemic rats caused significant decrease of serum total lipids, triglycerides, total cholesterol, LDL-cholesterol and vLDL-cholesterol levels. Whereas, HDL-cholesterol concentration was markedly increased by 180%. Aqueous extract showed a significant ameliorative action on elevated atherogenic index, creatine kinase and lactate dehydrogenase activities of hypercholesterolemic group. Furthermore, serum activities of transaminases and alkaline phosphatase were also improved. High fat diet intake caused a highly significantly elevated serum urea, creatinine concentration. These effects were reversed by oral administration of U. lactuca extract. Sulfates polysaccharides extract of U. lactuca ameliorate hepatic enzymatic (catalase, glutathione peroxidase and superoxide dismutase), non-enzymatic (reduced glutathione & total thiol) antioxidant defenses and thiobarbituric acid reactive substances. In conclusion, the tested U. lactuca polysaccharides extract has potent hypocholesterolemic and antioxidant effects in experimentally-induced hypercholesterolemic animal model. PMID:23961145

  13. Adeninium cytosinium sulfate

    PubMed Central

    Cherouana, Aouatef; Bousboua, Raja; Bendjeddou, Lamia; Dahaoui, Slimane; Lecomte, Claude

    2009-01-01

    In the title compound, C5H6N5 +·C4H6N3O+·SO4 2−, the adeninium (AdH+) and cytosinium (CytH+) cations and sulfate dianion are involved in a three-dimensional hydrogen-bonding network with four different modes, viz. AdH+⋯AdH+, AdH+⋯CytH+, AdH+⋯SO4 2− and CytH+⋯SO4 2−. The adeninium cations form N—H⋯N dimers through the Hoogsteen faces, generating a characteristic R 2 2(10) motif. This AdH+⋯AdH+ hydrogen bond in combination with AdH+⋯CytH+ H-bonds leads to two-dimensional cationic ribbons parallel to the a axis. The sulfate anions inter­link the ribbons into a three-dimensional hydrogen-bonding network and thus reinforce the crystal structure. PMID:21577678

  14. The major fimbrial subunit of Bordetella pertussis binds to sulfated sugars.

    PubMed Central

    Geuijen, C A; Willems, R J; Mooi, F R

    1996-01-01

    Bordetella pertussis fimbriae are composed of major and minor subunits, and recently it was shown that the minor fimbrial subunit binds to Vla-5, a receptor located on monocytes (W. Hazenbos, C. Geuijen, B. van den Berg, F. Mooi, and R. van Furth, J. Infect. Dis. 171:924-929, 1995). Here we present evidence that the major subunits bind to sulfated sugars, which are ubiquitous in the respiratory tract. Binding was observed to chondroitin sulfate, heparan sulfate, and dextran sulfate but not to dextran. Removal of the minor subunit from fimbriae did not significantly affect binding to sulfated sugars, indicating that the major subunit alone is sufficient for this binding. Fimbriae were also able to bind HEp-2 cells, which are known to display glycoconjugates on their surface. This binding was not dependent on the presence of the minor subunit. However, binding was dependent on the sulfation state of the glycoconjugates, since inhibition of the sulfation resulted in a significant reduction of fimbria binding. The specificity of fimbria binding was further characterized by using heparan sulfate-derived disaccharides in inhibition assays. Two disaccharides were highly effective inhibitors, and it was observed that both the degree of sulfation and the arrangement of the sulfate groups on the disaccharides were important for binding to fimbriae. B. pertussis bacteria also bound to sulfated sugars and HEp-2 cells, and analysis of B. pertussis mutants indicated that both filamentous hemagglutinin and fimbriae were required for this binding. A host protein present in the extracellular matrix, fibronectin, has binding activities similar to those of B. pertussis fimbriae, binding to both Vla-5 and sulfated sugars. Two regions in the major fimbrial subunit were identified which showed similarity with fibronectin peptides which bind to sulfated sugars. Thus, B. pertussis fimbriae exemplify molecular mimicry and may co-opt host processes by mimicking natural ligand-receptor interactions. PMID:8698492

  15. Galactomannan: a versatile biodegradable seed polysaccharide.

    PubMed

    Prajapati, Vipul D; Jani, Girish K; Moradiya, Naresh G; Randeria, Narayan P; Nagar, Bhanu J; Naikwadi, Nikhil N; Variya, Bhavesh C

    2013-09-01

    Polysaccharides have been finding, in the last decades, very interesting and useful applications in the biomedical and, specifically, in the biopharmaceutical field. Galactomannans are a group of storage polysaccharides from various plant seeds that reserve energy for germination in the endosperm. There are four major sources of seed galactomannans: locust bean (Ceratonia siliqua), guar (Cyamopsis tetragonoloba), tara (Caesalpinia spinosa Kuntze), and fenugreek (Trigonella foenum-graecum L.). Through keen references of reported literature on galactomannans, in this review, we have described occurrence of various galactomannans, its physicochemical properties, characterization, applications, and overview of some major galactomannans. PMID:23707734

  16. Silkrose: A novel acidic polysaccharide from the silkmoth that can stimulate the innate immune response.

    PubMed

    Ohta, Takashi; Kusano, Kie; Ido, Atsushi; Miura, Chiemi; Miura, Takeshi

    2016-01-20

    We have identified a novel acidic polysaccharide from silkmoth (Antheraea yamamai) pupae that activates the mammalian innate immune response. This bioactive polysaccharide was isolated using nitric oxide production in mouse RAW264 macrophages as an indicator of immunostimulatory activity. We named this polysaccharide "silkrose". It has a molecular weight of 3.15 × 10(5) and comprises nine monosaccharides. The expression profiles indicated that silkrose induced the expression of proinflammatory cytokines and interferon β that exist downstream of MyD88-dependent and MyD88-indeptendent signaling pathways. Also, the inhibition of Toll-like receptor 4 (TLR4), which exists upstream of the signaling pathways, led to the suppression of NO production by silkrose. Furthermore, this polysaccharide promoted the activation of nuclear factor kappa B in RAW264 cells, indicating that it stimulates the induction of various cytokines in macrophages through the TLR4 signaling pathway. Our results thus suggest that silkrose activates the innate immune response to various pathogenic microorganisms and viral infections. PMID:26572439

  17. Characterization of acidic polysaccharides from the mollusks through acid hydrolysis.

    PubMed

    Cao, Jiuling; Wen, Chengrong; Lu, Jiaojiao; Teng, Nan; Song, Shuang; Zhu, Beiwei

    2015-10-01

    Uronic acid-containing polysaccharides (UACPs) including glycosaminoglycans (GAGs) exist widely in nature. Herein we propose an elegant methodology to identify UACPs by analyzing their disaccharides produced from the acid hydrolysis using HPLC-MS(n) upon 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization. Based on the optimization of experimental conditions by the single factor experiment and orthogonal test design, the combination of 1.3M TFA at 105°C for 3h is found to be the optimum. Subsequently, these conditions were applied to investigate the distribution of UACPs in 20 selected species of edible Bivalvia and Gastropoda. PMP-disaccharides derived from UACPs in mollusks were identified by comparing the retention time and mass spectra with those of the reference PMP-disaccharides from hyaluronic acid (HA), chondroitin sulfate (CS), heparin (HP), and AGSP with →4)-GlcA(1→2)-Man(1→ repeating units. The analysis reveals the prevalence of CS in the shellfishes as well as the HP, and existence of three non-GAG UACPs in 7 mollusks. PMID:26076626

  18. Carbohydrate-Carbohydrate Interactions Mediated by Sulfate Esters and Calcium Provide the Cell Adhesion Required for the Emergence of Early Metazoans.

    PubMed

    Vilanova, Eduardo; Santos, Gustavo R C; Aquino, Rafael S; Valle-Delgado, Juan J; Anselmetti, Dario; Fernàndez-Busquets, Xavier; Mourão, Paulo A S

    2016-04-29

    Early metazoans had to evolve the first cell adhesion mechanism addressed to maintain a distinctive multicellular morphology. As the oldest extant animals, sponges are good candidates for possessing remnants of the molecules responsible for this crucial evolutionary innovation. Cell adhesion in sponges is mediated by the calcium-dependent multivalent self-interactions of sulfated polysaccharides components of extracellular membrane-bound proteoglycans, namely aggregation factors. Here, we used atomic force microscopy to demonstrate that the aggregation factor of the sponge Desmapsamma anchorata has a circular supramolecular structure and that it thus belongs to the spongican family. Its sulfated polysaccharide units, which were characterized via nuclear magnetic resonance analysis, consist preponderantly of a central backbone composed of 3-α-Glc1 units partially sulfated at 2- and 4-positions and branches of Pyr(4,6)α-Gal1→3-α-Fuc2(SO3)1→3-α-Glc4(SO3)1→3-α-Glc→4-linked to the central α-Glc units. Single-molecule force measurements of self-binding forces of this sulfated polysaccharide and their chemically desulfated and carboxyl-reduced derivatives revealed that the sulfate epitopes and extracellular calcium are essential for providing the strength and stability necessary to sustain cell adhesion in sponges. We further discuss these findings within the framework of the role of molecular structures in the early evolution of metazoans. PMID:26917726

  19. Osmotic Pressure of Aqueous Chondroitin Sulfate Solution: A Molecular Modeling Investigation

    PubMed Central

    Bathe, Mark; Rutledge, Gregory C.; Grodzinsky, Alan J.; Tidor, Bruce

    2005-01-01

    The osmotic pressure of chondroitin sulfate (CS) solution in contact with an aqueous 1:1 salt reservoir of fixed ionic strength is studied using a recently developed coarse-grained molecular model. The effects of sulfation type (4- vs. 6-sulfation), sulfation pattern (statistical distribution of sulfate groups along a chain), ionic strength, CS intrinsic stiffness, and steric interactions on CS osmotic pressure are investigated. At physiological ionic strength (0.15 M NaCl), the sulfation type and pattern, as measured by a standard statistical description of copolymerization, are found to have a negligible influence on CS osmotic pressure, which depends principally on the mean volumetric fixed charge density. The intrinsic backbone stiffness characteristic of polysaccharides such as CS, however, is demonstrated to contribute significantly to its osmotic pressure behavior, which is similar to that of a solution of charged rods for the 20-disaccharide chains considered. Steric excluded volume is found to play a negligible role in determining CS osmotic pressure at physiological ionic strength due to the dominance of repulsive intermolecular electrostatic interactions that maintain chains maximally spaced in that regime, whereas at high ionic-strength steric interactions become dominant due to electrostatic screening. Osmotic pressure predictions are compared to experimental data and to well-established theoretical models including the Donnan theory and the Poisson-Boltzmann cylindrical cell model. PMID:16055525

  20. Structure of a homofructosan from Saussurea costus and anti-complementary activity of its sulfated derivatives.

    PubMed

    Fan, Hongwei; Liu, Fei; Bligh, S W Annie; Shi, Songshan; Wang, Shunchun

    2014-05-25

    A homogeneous water-soluble polysaccharide APS-W1, (2→1)-β-d-fructofuranosan, with an average molecular weight of 3.9kDa, was isolated and characterized from the roots of Saussurea costus. Five sulfated derivatives of APS-W1 with different degrees of sulfation were prepared and they showed strong inhibitory effect on the complement activation through the classical pathway (CP50: 2.2-18.9μg/mL; 8.3μg/mL for heparin) and alternative pathway (AP50: 11.4-115.8μg/mL; 89.2μg/mL for heparin). Mechanism studies by using complement-depleted sera indicated that sulfated derivatives with different positions of sulfation targeted to different complement proteins. Meanwhile the sulfated derivatives have limited anticoagulant effect based on re-calcification time and thrombin time. These results suggested that the sulfated derivatives prepared from APS-W1 could be promising potential complement inhibitors for the treatment of diseases caused by an over-activated complement system. PMID:24708964

  1. Rapid determination of polysaccharides in BianTi Soft Extract by spectrophotometry coupled with gas chromatography-mass spectrometry.

    PubMed

    Zheng, Minxia; Shen, Jie; Yang, Kai; Qian, Songxiang; Feng, Sujuan

    2010-04-01

    A simple approach for the rapid determination of polysaccharides in BianTi Soft Extract using spectrophotometry coupled with gas chromatography-mass spectrometry (GC-MS) was developed. The mixed standard solution composed of D-glucose, D-mannose, galactose and D-xylose in different proportions (1.00: 1.01: 0.12: 0.05) was prepared according to the monosaccharide composition analysis of the polysaccharides by GC-MS. The determination of