Science.gov

Sample records for sulfide laser crystals

  1. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, W.F.; Page, R.H.; DeLoach, L.D.; Payne, S.A.

    1996-07-30

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr{sup 2+}-doped ZnS and ZnSe generate laser action near 2.3 {micro}m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d{sup 4} and d{sup 6} electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers. 18 figs.

  2. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, William F.; Page, Ralph H.; DeLoach, Laura D.; Payne, Stephen A.

    1996-01-01

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr.sup.2+ -doped ZnS and ZnSe generate laser action near 2.3 .mu.m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d.sup.4 and d.sup.6 electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers.

  3. Laser demonstrations of rare-earth ions in low-phonon chloride and sulfide crystals

    SciTech Connect

    Nostrand, M; Page, R; Payne, S; Schunemann, P; Isaenko, L

    2000-04-01

    Laser results are summarized for the low-phonon hosts KPb{sub 2}Cl{sub 5} and CaGa{sub 2}S{sub 4}. Radiative quantum efficiencies were determined in KPb{sub 2}Cl{sub 5}:Dy{sup 3+} directly from emission spectra in order to accurately determine its long-wavelength potential. The results indicate that room-temperature laser action should be possible to near 9 {micro}m in this host.

  4. Tunable liquid crystal lasers

    NASA Astrophysics Data System (ADS)

    Woltman, Scott J.

    Liquid crystal lasers are dye-doped distributed feedback lasing systems. Fabricated by coupling the periodic structure of a liquid crystal medium with a fluorescent dye, the emission from these systems is tunable by controlling the liquid crystal system---be it through electric or thermal field effects, photochemical reactions, mechanical deformations, etc. The laser action arises from an extended interaction time between the radiation field, the laser emission, and the matter field, the periodic liquid crystal medium, at the edge of the photonic band gap. In this thesis, several tunable liquid crystal laser systems are investigated: cholesteric liquid crystals, holographic-polymer dispersed liquid crystals and liquid crystal polarization gratings. The primary focus has been to fabricate systems that are tunable through electrical means, as applications requiring mechanical or thermal changes are often difficult to control. Cholesteric liquid crystal lasers are helical Bragg reflectors, with a band gap for circularly polarized light of equivalent handedness to their helix. These materials were doped with a laser dye and laser emission was observed. The use of an in-plane electric field tends to unwind the helical pitch of the film and in doing so tunable emission was demonstrated for ˜15 nm. Holographic-polymer dispersed liquid crystals (H-PDLCs) are grating structures consisting of alternating layers of polymer and liquid crystal, with different indices of refraction. The application of an electric field index matches these layers and switches off the grating. Thus, laser emission can be switched on and off through the use of an electric field. Spatially tunable H-PDLC lasers were fabricated by creating chirped gratings, formed by divergent beams. The emission was shown to tune ˜5 nm as the pump beam was translated across a 1 inch film. Liquid crystal polarization gratings use photo-patterned alignment layers, through a polarization holography exposure, to

  5. Physical properties of superconducting single crystal iron sulfide

    NASA Astrophysics Data System (ADS)

    Rodriguez, Efrain E.; Borg, Christopher K. H.; Zhou, Xiuquan; Paglione, Johnpierre; University of Maryland Collaboration

    Recently, the simple binary tetragonal iron sulfide, FeS, was found to be a superconductor with a Tc = 5 K. We have prepared single crystals of tetragonal iron sulfide through hydrothermal de-intercalation of KxFe2-yS2. The KxFe2-yS2 single crystal precursors were grown by slow cooling of stoichiometric melts of K, Fe and S. The silver, plate-like FeS single crystals were highly crystalline with a superconducting transition temperature (Tc) of 4 K. The high quality of the FeS crystals revealed highly anisotropic nature of the magnetic and electronic properties intrinsic to FeS. The physical properties and thermal stability of single crystal FeS will be discussed in detail.

  6. Crystal growth of sulfide materials from alkali polysulfide liquids

    NASA Technical Reports Server (NTRS)

    White, W. B.

    1979-01-01

    The fluids experiment system was designed for low temperature solution growth, nominally aqueous solution growth. The alkali polysulfides, compositions in the systems Na2S-S and K2S-S form liquids in the temperature range of 190 C to 400 C. These can be used as solvents for other important classes of materials such as transition metal and other sulfides which are not soluble in aqueous media. Among these materials are luminescent and electroluminescent crystals whose physical properties are sensitive functions of crystal perfection and which could, therefore, serve as test materials for perfection improvement under microgravity conditions.

  7. Laser cleaning of sulfide scale on compressor impeller blade

    NASA Astrophysics Data System (ADS)

    Tang, Q. H.; Zhou, D.; Wang, Y. L.; Liu, G. F.

    2015-11-01

    Sulfide scale on the surface of a compressor impeller blade can considerably reduce the impeller performance and its service life. To prepare for subsequent remanufacturing, such as plasma spraying, it needs to be removed completely. In the corrosion process on an FV(520)B stainless steel, sulfide scale is divided into two layers because of different outward diffusion rates of Cr, Ni and Fe. In this paper, the cleaning threshold values of the upper and inner layers and the damage threshold value of the substrate were investigated using a pulsed fiber laser. To obtain experimental evidence, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and 3D surface profilometry were employed to investigate the two kinds of sulfide layers on specimens before, during, and after laser cleaning.

  8. Photonic Crystal Nanocavity Lasers

    NASA Astrophysics Data System (ADS)

    Scherer, Axel

    2001-03-01

    Two- and three-dimensional microfabricated mirrors are generally referred to as photonic bandgap (PBG) crystals, and can be lithographically constructed to match a given frequency to confine light to very small volumes.1 For mirrors matching light emission at 1550nm, the lattice parameter a should correspond to 500nm, and the radius of the holes should be 180nm. By combining the slab waveguide design from microdisk lasers with the concept of microfabricating Bragg reflectors around a 2-D Fabry-Perot structure, we arrive at the design for ultra-small sub-3 optical nanocavity photonic crystal lasers. The mode volume in these laser cavities can be as small as 2.5 cubic half wavelengths or 0.03m3, and spontaneous emission in the cavity can be very efficiently coupled into the lasing mode. This efficient coupling in turn results in significant advantages of these nanocavity lasers over devices with larger mode volumes, as high modulation speed and very low threshold power light emission are expected. If the photonic crystal is designed appropriately and is not too porous, it is also possible to efficiently guide light within the perforated slab and to minimize diffraction losses. This waveguiding within a photonic crystal provides us with an opportunity to couple light from one cavity to another, or into connecting waveguides. By creating two-dimensional photonic crystals, which are microfabricated into InGaAsP slabs, we have recently defined the smallest lasers to date. When combined with high index contrast slabs in which light can be efficiently guided, microfabricated two-dimensional photonic bandgap mirrors provide the geometries needed to confine light into extremely small volumes with high Q.1,2,3,4 Two-dimensional Fabry-Perot resonators with microfabricated mirrors are formed when defects are introduced into the periodic photonic bandgap structure. It is then possible to tune these cavities lithographically by changing the precise geometry of the microstructures

  9. Photonic crystal microcavity lasers and laser arrays

    NASA Astrophysics Data System (ADS)

    Cao, Jiang-Rong

    As a state-of-the-art technology, photonic crystal microcavity lasers have great potentials to resolve many semiconductor laser performance challenges, owing to their compact size, high spontaneous emission factor, and inherent advantages in dimension scalability. This thesis describes efficient numerical analyzing methods for multimode photonic crystal microcavities, including a parallel computing three-dimensional finite-difference time-domain method combined with Pade interpolation, point group projection, and vectorial Green's function method. With the help of these analyzing tools, various experimental photonic crystal microcavity devices fabricated in InGaAsP/InP based materials were studies. Room temperature optical pumped InGaAsP suspended membrane photonic crystal microcavity lasers were demonstrated. Their lithographical fine-tuning, above room temperature operations, mode identifications and polarizations were demonstrated. Room temperature continuous wave (CW) optically pumped photonic crystal microcavity lasers at diameter less than 3.2 mum were demonstrated with crystalline alpha-Al 2O3 (sapphire) as a cladding layer to the InGaAsP membrane. The far-field radiation profiles from these microcavity lasers were measured and compared with our numerical modeling predictions. Two electrical injection scenes for photonic crystal microcavity lasers were introduced, together with some preliminary results including the demonstrations of optically pumped lasing of highly doped cavities and cavities with an electrical conduction post underneath. Electrically excited photonic crystal microcavity light emitting diodes (LEDs) were also experimentally demonstrated.

  10. Magnetotransport in Pulsed Laser Deposited Manganese Doped Lead Sulfide Films

    NASA Astrophysics Data System (ADS)

    Rimal, Gaurab; Sapkota, Keshab; Maksymov, Artur; Spinu, Leonard; Wang, Wenyong; Tang, Jinke

    Diluted magnetic semiconductors (DMS) have been proposed as promising candidates for spintronic applications. Most research in this field has been confined to III-V and II-VI semiconductor system. There are reports on IV-VI semiconductors, however reports on lead sulfide (PbS) based DMS is limited. We study the transport, magnetic and structural properties of manganese doped lead sulfide (Mn:PbS) films produced by pulsed laser deposition (PLD). The films are found to show hopping transport at low tempeature. Low temperature magnetoresistance (MR) studies show that the sign of MR can be changed by application of gate voltage. The magnetic properties of the films were also studied which showed ferromagnetic behavior at room temperature.

  11. Multicolor photonic crystal laser array

    SciTech Connect

    Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming

    2015-04-28

    A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.

  12. Thermoluminescence in gallium sulfide crystals: an unusual heating rate dependence

    NASA Astrophysics Data System (ADS)

    Delice, S.; Bulur, E.; Gasanly, N. M.

    2015-03-01

    Trap centres in gallium sulfide single crystals have been investigated by thermoluminescence measurements in the temperature range of 10-230 K. A curve-fitting method was utilized to evaluate the activation energies (52, 200 and 304 meV) of the revealed three trap centres. The heating rate dependence and trap distribution of the peaks have been studied using experimental techniques based on various heating rates and various illumination temperatures, respectively. An anomalous heating rate dependence of the high-temperature peak was found by carrying out TL measurements with various heating rates between 0.2 and 1.0 K/s. This behaviour was explained on the basis of a semi-localized transition model. Whereas normal heating rate dependence was established for low-temperature peak, that is, the TL intensity of the glow curve decreases and the peak maximum temperature shifts to higher values with increasing the heating rate. Moreover, a quasi-continuous trap distribution with the increase of activation energies from 52 to 90 meV, from 200 to 268 meV and from 304 to 469 meV for the observed three different traps was established employing the various illumination temperatures method.

  13. Crystal structure controlled synthesis and characterization of copper sulfide nanoparticles

    NASA Astrophysics Data System (ADS)

    Senthilkumar, M.; Babu, S. Moorthy

    2016-05-01

    Phase pure, controlled crystal structure of digenite (Cu9S5) copper sulfide nanoparticles were synthesized by hot injection method at the temperature of 180°C. The mixture of Oleylamine, 1-Octadecene and 1-Dodecanethiol were taken as solvent as well as capping agents. The effect of the mixture of solvents on the phase formation and morphology of the synthesized nanoparticles were analysed. The nanocrystals were characterized using X-Ray diffraction (XRD) which confirms the presence of single phase rhombohedral digenite Cu9S5 NPs, Morphological analysis clearly depicts the formation of hexagonal faceted Cu9S5 NPs, Energy dispersive X-ray absorption spectroscopy (EDS) reveals the stoichiometric ratio of 1.8:1 for synthesized NPs. From the UV-Vis absorption spectroscopy the bandgap value of Cu1.8S is found to be 1.71 eV. The presence of capping agents along the surface of the Cu9S5 NPs was confirmed from FTIR analysis.

  14. Laser Irradiated Growth of Protein Crystal

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Takano, Kazufumi; Hosokawa, Youichiroh; Inoue, Tsuyoshi; Mori, Yusuke; Matsumura, Hiroyoshi; Yoshimura, Masashi; Tsunaka, Yasuo; Morikawa, Masaaki; Kanaya, Shigenori; Masuhara, Hiroshi; Kai, Yasushi; Sasaki, Takatomo

    2003-07-01

    We succeeded in the first ever generation of protein crystals by laser irradiation. We call this process Laser Irradiated Growth Technique (LIGHT). Effective crystallization was confirmed by applying an intense femtosecond laser. The crystallization period was dramatically shortened by LIGHT. In addition, protein crystals were obtained by LIGHT from normally uncrystallized conditions. These results indicate that intense femtosecond laser irradiation generates crystal nuclei; protein crystals can then be grown from the nuclei that act as seeds in a supersaturated solution. The nuclei formation is possible primarily due to nonlinear nucleation processes of an intense femtosecond laser with a peak intensity of over a gigawatt (GW).

  15. Photonic Crystal Laser Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M

    2003-05-21

    Photonic crystals have great potential for use as laser-driven accelerator structures. A photonic crystal is a dielectric structure arranged in a periodic geometry. Like a crystalline solid with its electronic band structure, the modes of a photonic crystal lie in a set of allowed photonic bands. Similarly, it is possible for a photonic crystal to exhibit one or more photonic band gaps, with frequencies in the gap unable to propagate in the crystal. Thus photonic crystals can confine an optical mode in an all-dielectric structure, eliminating the need for metals and their characteristic losses at optical frequencies. We discuss several geometries of photonic crystal accelerator structures. Photonic crystal fibers (PCFs) are optical fibers which can confine a speed-of-light optical mode in vacuum. Planar structures, both two- and three-dimensional, can also confine such a mode, and have the additional advantage that they can be manufactured using common microfabrication techniques such as those used for integrated circuits. This allows for a variety of possible materials, so that dielectrics with desirable optical and radiation-hardness properties can be chosen. We discuss examples of simulated photonic crystal structures to demonstrate the scaling laws and trade-offs involved, and touch on potential fabrication processes.

  16. Laser schlieren crystal monitor

    NASA Technical Reports Server (NTRS)

    Owen, Robert B. (Inventor); Johnston, Mary H. (Inventor)

    1987-01-01

    A system and method for monitoring the state of a crystal which is suspended in a solution is described which includes providing a light source for emitting a beam of light along an optical axis. A collimating lens is arranged along the optical axis for collimating the emitted beam to provide a first collimated light beam consisting of parallel light rays. By passing the first collimated light beam through a transparent container, a number of the parallel light rays are deflected off the surfaces of said crystal being monitored according to the refractive index gradient to provide a deflected beam of deflected light rays. A focusing lens is arranged along optical axis for focusing the deflected rays towards a desired focal point. A knife edge is arranged in a predetermined orientation at the focal point; and a screen is provided. A portion of the deflected beam is blocked with the knife edge to project only a portion of the deflected beam. A band is created at one edge of the image of the crystal which indicates the state of change of the surface of the crystal being monitored.

  17. Stress Tuning of Laser Crystals

    NASA Technical Reports Server (NTRS)

    Carty, Atherton A.

    1995-01-01

    The topic of stress tunable laser crystals is addressed in this study with the purpose of determining the piezo-optic coefficients of a new laser material. This data was collected using a quadruple pass birefringence technique because of its high degree of sensitivity relative to the other methods examined including fringe shift analysis using a Mach-Zender interferometer. A green He-Ne laser was passed through a light chopper and Glan-Thompson prism before entering a crystal of Erbium doped Yttrium Aluminum Garnet (Er:YAG) (used in order to validate the experimental technique). The Er:YAG crystal is mounted in a press mechanism and the laser is quadruple passed through test specimen before being returned through the prism and the orthogonally polarized portion of the beam measured with a optical sensor. At a later stage, the Er:YAG crystal was replaced with a new crystal in order to determine the piezo-optic coefficients of this uncharacterized material. The applied load was monitored with the use of a 50 lb. load cell placed in line with the press. Light transmission readings were taken using a lock-in amplifier while load cell measurements were taken with a voltmeter from a 5 volt, 0.5 amp power supply. Despite the fact that an effective crystal press damping system was developed, size limitations precluded the use of the complete system. For this reason, data points were taken only once per full turn so as to minimize the effect of non uniform load application on the collected data. Good correlation was found in the transmission data between the experimentally determined Er:YAG and the previously known peizo-optic constants of non-doped crystal with which it was compared. The variation which was found between the two could be accounted for by the aforementioned presence of Erbium in the experimental sample (for which exact empirical data was not known). The same test procedure was then carried out on a Yttrium Gallium Aluminum garnet (YGAG) for the purpose of

  18. Laser alexandrite crystals grown by horizontal oriented crystallization technique

    NASA Astrophysics Data System (ADS)

    Gurov, V. V.; Tsvetkov, E. G.; Yurkin, A. M.

    2008-05-01

    Comparative studies were performed for alexandrite crystals, Al 2BeO 4:Cr 3+, employed in solid state lasers and grown by the horizontal oriented crystallization (HOC) technique and alexandrite crystals grown by the Czochralski (Cz) method. It was shown that the structural quality and possibilities of generation of stimulated emission HOC-crystals are similar to Cz-crystals, whereas their damage threshold is about three times higher. The obtained results and considerably lower cost price of HOC-alexandrite crystals prove their advantageous application in powerful laser systems, which require large laser rods with a higher resistance to laser beam. It is emphasized that application of HOC technique is promising for growth of laser crystals of other high-temperature oxide compounds.

  19. Laser Schlieren Crystal-Growth Imager

    NASA Technical Reports Server (NTRS)

    Owen, R. B.; Johnston, M. H.

    1986-01-01

    Crystal observed as it grows from melt with aid of laser schlieren imaging. Observation method allows entire perimeter of growing crystal to be inspected. Isolated crystal facets examined, convection flows and temperature and concentration gradients revealed. Method does not require contact with, or proximity to, crystal.

  20. Crystallization of magmatic sulfides: An empirical model and application to Sudbury ores

    NASA Astrophysics Data System (ADS)

    Mungall, James E.

    2007-06-01

    I present an empirical parameterization of low-pressure melting relations of monosulfide solid solution in the system Ni-Cu-Fe-S-O and use it to argue that sulfide ores at Sudbury are almost exclusively cumulate in origin. In the model the solid is considered to be composed of four components NiS, CuS, FeS, and rad S, where rad S represents substitution of a vacancy for a cation. The liquid solution is considered to be a mixture of cations Ni, Fe, and Cu and anions S and O. The exchange of metals and sulfur between solid and melt is treated as a series of reactions of the form M l + S l = MS s, where subscripts l and s denote liquid and solid, respectively, allowing the definition of an exchange coefficient K=XsMS/(XlM×XlS) where X denotes mole fraction. I have fitted equations of the form log KD = a/ T + bXlS + c to the existing database for coexisting sulfide liquid-monosulfide solid solution for each of the liquid components Ni, Cu, and S. The fitted KD expressions have been implemented in a Matlab program to estimate the compositions of coexisting solid and liquid sulfide phases in the system Ni-Cu-Fe-S-O, using the liquidus temperature approximation of Fleet and Pan [Fleet M. E. and Pan Y. (1994) Fractional crystallization of anhydrous sulfide liquid in the system Fe-Ni-Cu-S, with application to magmatic sulfide deposits. Geochim. Cosmochim. Acta58, 3369-3377], and using a crude approximation to the liquidus surface of magnetite. Ni is found to be incompatible with mss over most of the range of conditions of crystallization of natural sulfide magmas, becoming compatible only at the lowest temperatures and highest Ni and Cu contents attained. Comparison with compositions of sulfide ores from Sudbury demonstrates that many ore compositions are distributed along mixing lines between primary mss and intermediate solid solution (iss) or between high pentlandite (heazlewoodite solid solution; hzss) and iss. The mss-iss trend can be modeled as a mixing line between

  1. Melt Growth of a Nonlinear Optical Crystal Triethylphosphine Sulfide using Modified Bridgman-Stockbarger Technique

    NASA Technical Reports Server (NTRS)

    Curry, K.; Aggarwal, M. D.; Choi, J.; Wang, W. S.; Lai, R. B.; Penn, Benjamin G.; Frazier, Donald O.

    1999-01-01

    Bulk single crystals of triethylphosphine sulfide (C2H5)3P(S), a potential nonlinear optical organic material has been grown from melt using Bridgman- Stockbarger method. Commercially available material triethylphosphine sulfide procured from Johnson Matthey was purified by physical vapor transport using low pressure sublimaton (about 30 mTorr). Modified Bridgman-Stockbarger technique is characterized by the smallest possible quantity of product in the melt for a short period of time. The temperature gradient was chosen to be about 10 C/cm and the ampoule was lowering rate was chosen to be 0.2-0.3 mm/h. For various growth conditions, several single crystal of triethylphosphine sulfide have been grown with sizes 10X10X15mm(exp 3). The second harmonic generation (SHG) efficiency was measured and has been found to be comparable to phase matched potassium dihydrogen phosphate crystals. Further characterization of the grown single crystals is in progress and the results will be presented at the symposium.

  2. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, Kathleen I.; DeLoach, Laura D.; Payne, Stephen A.; Keszler, Douglas A.

    1997-01-01

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM'(BO.sub.3)F, where M, M' are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO.sub.3 F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator.

  3. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, K.I.; DeLoach, L.D.; Payne, S.A.; Keszler, D.A.

    1997-10-14

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM{prime}(BO{sub 3})F, where M, M{prime} are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO{sub 3}F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator. 6 figs.

  4. Artificial silver sulfide Ag2S: Crystal structure and particle size in deposited powders

    NASA Astrophysics Data System (ADS)

    Sadovnikov, S. I.; Gusev, A. I.; Rempel, A. A.

    2015-07-01

    Chemical deposition from aqueous solutions of silver nitrate and sodium sulfide was used for synthesis of coarse-crystalline and nanocrystalline silver sulfide Ag2S powders. Sodium citrate was used as a complexing and stabilizing agent during synthesis. X-ray diffraction study shows that synthesized Ag2S powders have monoclinic (space group P21/c) α-Ag2S acanthite type crystal structure. The unit cell of artificial monoclinic silver sulfide Ag2S contains four Ag2S formula units and has the following parameters: a = 0.42264 nm, b = 0.69282 nm, c = 0.95317 nm and β = 125.554°. The size of silver sulfide particles in deposited powders was estimated by the X-ray diffraction and BET methods. By varying the ratio between the concentrations of reagents in the initial reaction mixture it is possible to deposit Ag2S nanoparticles with average size ranging in the interval from ∼1000 to ∼30 nm. Ag2S nanopowders have no deformation distortions of the crystal lattice practically because the microstrains ε in the synthesized powders do not exceed 0.15%. All the Ag2S powders with different particle size have an identical morphology.

  5. Assessment of Hydrogen Sulfide Minimum Detection Limits of an Open Path Tunable Diode Laser

    EPA Science Inventory

    During June 2007, U.S. EPA conducted a feasibility study to determine whether the EPA OTM 10 measurement approach, also known as radial plume mapping (RPM), was feasible. A Boreal open-path tunable diode laser (OP-TDL) to collect path-integrated hydrogen sulfide measurements alon...

  6. Membrane Protein Crystallization Using Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Murakami, Satoshi; Niino, Ai; Matsumura, Hiroyoshi; Takano, Kazufumi; Inoue, Tsuyoshi; Mori, Yusuke; Yamaguchi, Akihito; Sasaki, Takatomo

    2004-10-01

    We demonstrate the crystallization of a membrane protein using femtosecond laser irradiation. This method, which we call the laser irradiated growth technique (LIGHT), is useful for producing AcrB crystals in a solution of low supersaturation range. LIGHT is characterized by reduced nucleation times. This feature is important for crystallizing membrane proteins because of their labile properties when solubilized as protein-detergent micelles. Using LIGHT, high-quality crystals of a membrane transporter protein, AcrB, were obtained. The resulting crystals were found to be of sufficiently high resolution for X-ray diffraction. The results reported here indicate that LIGHT is a powerful tool for membrane protein crystallization, as well as for the growth of soluble proteins.

  7. Photonic crystal surface-emitting lasers

    SciTech Connect

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2015-06-23

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-plane feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.

  8. Experiment on laser performance of Alexandrite crystals

    SciTech Connect

    ZHANG Shoudu; ZHANG Kemin

    1984-07-01

    The electron vibration laser output in Alexandrite crystals has been obtained. The free oscillation threshold is 170 J, the laser output energy is 140 mJ, and the center wavelength is 7526 A. The emission is linearly polarized in the crystallographic b direction and the laser performance improves at elevated temperatures. Using a quartz double-refraction filter as a tuning element, tunable emission has been observed at room temperature.

  9. Femtosecond laser crystallization of amorphous Ge

    SciTech Connect

    Salihoglu, Omer; Aydinli, Atilla; Kueruem, Ulas; Gul Yaglioglu, H.; Elmali, Ayhan

    2011-06-15

    Ultrafast crystallization of amorphous germanium (a-Ge) in ambient has been studied. Plasma enhanced chemical vapor deposition grown a-Ge was irradiated with single femtosecond laser pulses of various durations with a range of fluences from below melting to above ablation threshold. Extensive use of Raman scattering has been employed to determine post solidification features aided by scanning electron microscopy and atomic force microscopy measurements. Linewidth of the Ge optic phonon at 300 cm{sup -1} as a function of laser fluence provides a signature for the crystallization of a-Ge. Various crystallization regimes including nanostructures in the form of nanospheres have been identified.

  10. Fluoride laser crystals: old and new

    NASA Astrophysics Data System (ADS)

    Jenssen, Hans P.; Cassanho, Arlete

    2006-02-01

    The development of oxide and fluoride materials as gain materials of choice for solid state lasers ranges from early materials such as Calcium Fluoride and Calcium Tungstate crystals to the now ubiquitous Nd hosts YLF, YAG and Vanadate. Among Tunable laser materials, MgF II - an early favorite, gave way to superior oxides such as Alexandrite and Ti:Sapphire only to be followed by development of still newer tunable fluoride media, notably, fluoride colquiriites such as Cr-doped LiSAF and LiCaF. Newer fluoride crystals, such as Barium Yttrium Fluoride BaY II F 8 (BYF), KY 3F 10 (KYF) and the tunable Cr doped LiCaGaF 6 are attractive laser materials, but their growth has not been optimized. Key advantages of two of these new crystals are discussed. Crystal growth results for BYF and Cr:LiCaGaF 6 as well as some material characterization are presented.

  11. Controlling laser emission by selecting crystal orientation

    NASA Astrophysics Data System (ADS)

    Chen, Lijuan; Han, Shujuan; Wang, Zhengping; Wang, Jiyang; Zhang, Huanjin; Yu, Haohai; Han, Shuo; Xu, Xinguang

    2013-01-01

    Based on the anisotropy of laser crystal, we demonstrate a method of adjusting laser emission by selecting crystal orientation. When the light propagating direction varies from a to c axis of Nd:LiGd(MoO4)2 crystal, emission wavelength exhibits a sensitive change of 1061 nm → 1061/1062 + 1068 nm → 1068 nm. The experimental discipline is well explained by a theoretical study of simulating on the spatial distribution of stimulated emission cross-section. This letter manifests that the laser property along non-principal-axis direction is also valuable for research and application, which breaks through the traditional custom of using laser materials processed along principal-axis.

  12. Novel inclusion in laser crystals

    SciTech Connect

    Ma Xiaoshan; Wang Siting; Jin Zhongru; Shen Yafang; Chen Jiaguang

    1986-12-01

    In growing alexandrite crystals, a novel inclusion has been found. The inclusions are quantitatively analyzed by an electronic probe and the mechanism for forming inclusions is suggested. In our Bridgman MgF/sub 2/ crystals, the inclusions in <001> direction have also been observed.

  13. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, B.; /SLAC

    2005-09-19

    We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We demonstrate guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode. We also discuss particle beam dynamics in the structure, presenting a novel method for focusing the beam. In addition we describe some potential coupling methods for the structure.

  14. Cholesteric liquid crystal photonic crystal lasers and photonic devices

    NASA Astrophysics Data System (ADS)

    Zhou, Ying

    This dissertation discusses cholesteric liquid crystals (CLCs) and polymers based photonic devices including one-dimensional (1D) photonic crystal lasers and broadband circular polarizers. CLCs showing unique self-organized chiral structures have been widely used in bistable displays, flexible displays, and reflectors. However, the photonic band gap they exhibit opens a new way for generating laser light at the photonic band edge (PBE) or inside the band gap. When doped with an emissive laser dye, cholesteric liquid crystals provide distributed feedback so that mirrorless lasing is hence possible. Due to the limited surface anchoring, the thickness of gain medium and feedback length is tens of micrometers. Therefore lasing efficiency is quite limited and laser beam is highly divergent. To meet the challenges, we demonstrated several new methods to enhance the laser emission while reducing the beam divergence from a cholesteric liquid crystal laser. Enhanced laser emission is demonstrated by incorporating a single external CLC reflector as a polarization conserved reflector. Because the distributed feedback from the active layer is polarization selective, a CLC reflector preserves the original polarization of the reflected light and a further stimulated amplification ensues. As a result of virtually doubled feedback length, the output is dramatically enhanced in the same circular polarization state. Meanwhile, the laser beam divergence is dramatically reduced due to the increased cavity length from micrometer to millimeter scale. Enhanced laser emission is also demonstrated by the in-cell metallic reflector because the active layer is pumped twice. Unlike a CLC reflector, the output from a mirror-reflected CLC laser is linearly polarized as a result of coherent superposition of two orthogonal circular polarization states. The output linear polarization direction can be well controlled and fine tuned by varying the operating temperature and cell gap. Enhanced laser

  15. Photonic quasi-crystal terahertz lasers

    PubMed Central

    Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles

    2014-01-01

    Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1–0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum. PMID:25523102

  16. Non-spherical zinc sulfide colloids as building blocks for three-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Liddell, Chekesha Miata

    The production of monodispersed non-spherical particles is necessary to fully explore the promise of colloidal systems for optical pigments, diffractive elements in smart sensors, and for photonic crystal applications. In the case of photonic crystals, the addition of asymmetry in the lattice enables photonic band gap realization at refractive index values insufficient for assemblies of monodispersed spheres. Additionally, complex building blocks lower the filling fraction of high index material due to geometric packing restrictions so that inverting the structures may not be required. In this work, a route to the production of non-spherical zinc sulfide particles was developed and evaluated for photonic crystal applications. Monodispersed ZnS clusters of close-packed shapes including dimers, trimers, tetramers and tetrahedra were synthesized by two-stage chemical precipitation, starting from homogeneous solutions of metal salt and thioacetamide sulfide ion precursor. The non-spherical particles are hierarchically structured, composed of 500nm--3mum coagulated monodispersed spheres, which are themselves aggregates of 5--10nm single crystal spheroids. Though the particles were porous, the index of refraction was high, n ˜ 2.2, as compared with silica and polystyere, n ˜ 1.5. The mixtures of morphological types synthesized were quantitatively analyzed by image analysis and stereology as well as flow cytometry. The estimated yield of dimers was 23vol%, having average size 1.29 microns and polydispersity 5.67%, well within the requirements for self-assembly. The dimers were obtained in large quantities, ˜1012, for harvesting and use in photonic crystal applications. Techniques such as flow cytometry were explored and may be promising for the separation and collection of the particle populations. Though the production of monodispersed ZnS spheres by the decomposition of thioacetamide has been utilized by other groups, this is the first report of their controlled

  17. Examining Crystals with the Use of a Laser.

    ERIC Educational Resources Information Center

    Koultras, Stratakus

    1993-01-01

    Presents three demonstrations that can help teachers explain crystal properties. The equipment used includes a laser, quartz crystals, and chalk dust. The laser light enables students to observe characteristics of structure that cannot be made with white light. (DDR)

  18. Platinum-Group Element Variations in Hawaiian Lavas: Constraints on the Role of Sulfides during Melt Generation and Fractional Crystallization

    NASA Astrophysics Data System (ADS)

    Lassiter, J. C.

    2003-12-01

    Platinum-group elements (PGE) are highly compatible in mantle and magmatic sulfides, with sulfide melt/silicate melt partition coefficients typically on the order of 104 or higher. PGE abundances in basaltic melts are therefore very sensitive to the presence or absence of residual sulfides during melt generation and the fractionation of magmatic sulfides during crystallization. PGE abundances (Ir, Os, Ru, Pt, Pd) were measured in lavas from Mauna Kea and Koolau volcanoes, Hawaiian Islands to constrain the abundance of residual sulfide in the Hawaiian plume during melt generation as well as the role of sulfide fractionation during melt evolution. Iridium, Os, and Ru are positively correlated with MgO content in lavas ranging from ˜6-28 wt.% MgO. Bulk partition coefficients during fractional crystallization range from ˜4 (Ir) to ˜7 (Os). The compatible behavior of Ir, Os and Ru in Hawaiian melts likely reflects the high compatibility of these elements in Cr-spinel, which coprecipitates with olivine in most Hawaiian lavas. In contrast, no significant trend is observed in Pt or Pd abundances with MgO content, indicating bulk partition coefficients for these elements of ˜1. Pt and Pd are predicted to be incompatible in Cr-spinels, but are highly compatible in magmatic sulfides (Dsulfide/silicate = 4.5x104) . The low bulk partition coefficients for Pt and Pd in the Koolau and Mauna Kea lavas indicate that sulfide segregation was insignificant during fractional crystallization, even in lavas that have experienced up to 25% olivine fractionation. Lack of sulfide saturation/segregation could reflect sulfur degassing in shallow magma chambers. However, deep submarine lavas from the HSDP-2 Mauna Kea drillcore display similar PGE trends. Therefore, it is likely that primary Hawaiian magmas (with ˜15-16 wt.% MgO) are at least ˜20-25% sulfur undersaturated when they reach crustal levels. If the source of Hawaiian lavas contains residual sulfide, primary Hawaiian melts

  19. Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin.

    PubMed

    Flores, Jason F; Fisher, Charles R; Carney, Susan L; Green, Brian N; Freytag, John K; Schaeffer, Stephen W; Royer, William E

    2005-02-22

    Key to the remarkable ability of vestimentiferan tubeworms to thrive in the harsh conditions of hydrothermal vents are hemoglobins that permit the sequestration and delivery of hydrogen sulfide and oxygen to chemoautotrophic bacteria. Here, we demonstrate that zinc ions, not free cysteine residues, bind sulfide in vestimentiferan hemoglobins. The crystal structure of the C1 hemoglobin from the hydrothermal vent tubeworm Riftia pachyptila has been determined to 3.15 A and revealed the unexpected presence of 12 tightly bound Zn(2+) ions near the threefold axes of this D(3) symmetric hollow sphere. Chelation experiments on R. pachyptila whole-coelomic fluid and purified hemoglobins reveal a role for Zn(2+) ions in sulfide binding. Free cysteine residues, previously proposed as sulfide-binding sites in vestimentiferan hemoglobins, are found buried in surprisingly hydrophobic pockets below the surface of the R. pachyptila C1 molecule, suggesting that access of these residues to environmental sulfide is restricted. Attempts to reduce the sulfide-binding capacities of R. pachyptila hemoglobins by addition of a thiol inhibitor were also unsuccessful. These findings challenge the currently accepted paradigm of annelid hemoglobin evolution and adaptation to reducing environments. PMID:15710902

  20. Thermal conductivity of garnet laser crystals

    NASA Astrophysics Data System (ADS)

    Wang, B. S.; Jiang, H. H.; Zhang, Q. L.; Yin, S. T.

    2008-03-01

    The thermal conductivities of nine different synthetic garnet laser crystals at various temperatures, range from 273 to 393 K have been investigated by instantaneous measurement method. The results show that the thermal conductivity of each crystal decreases exponentially with the temperature increasing. It is notable that, different host crystals, such as YAG, GGG, and GSGG have different thermal conductivity, which is attributed to the crucial influence of crystal structure and composition on the absolute value of their thermal conductivity. Moreover, with respect to the same host crystals, the impurity scattering also results in the change of their thermal conductivities. This is because that a higher concentration of doped ions leads to a more phonon scattering modes, which results in a shorter mean free path of the phonons and a lower thermal conductivity. In addition, different host crystals have various dependences of thermal conductivity on dopant concentration. This works provides reliable and useful information for designing high power, high quality, and high stability laser devices.

  1. Thermal conductivity of synthetic garnet laser crystals

    NASA Astrophysics Data System (ADS)

    Wang, B. S.; Jiang, H. H.; Zhang, Q. L.; Yin, S. T.

    2007-07-01

    The thermal conductivities of nine different synthetic garnet laser crystals at various temperatures, range from 273 to 393K have been investigated by instantaneous measurement method. The results show that the thermal conductivity of each crystal decreases exponentially with the temperature increasing. It is notable that, different host crystals, such as YAG, GGG, and GSGG have different thermal conductivity, which is attributed to the crucial influence of crystal structure and composition on the absolute value of their thermal conductivity. Moreover, with respect to the same host crystals, the impurity scattering also results in the change of their thermal conductivities. This is because that a higher concentration of doped ions leads to a more phonon scattering modes, which results in a shorter mean free path of the phonons and a lower thermal conductivity. In addition, different host crystals have various dependences of thermal conductivity on dopant concentration. This works provides reliable and useful information for designing high power, high quality, and high stability laser devices.

  2. New Mid-IR Lasers Based on Rare-Earth-Doped Sulfide and Chloride Materials

    SciTech Connect

    Nostrand, M

    2000-09-01

    Applications in remote-sensing and military countermeasures have driven a need for compact, solid-state mid-IR lasers. Due to multi-phonon quenching, non-traditional hosts are needed to extend current solid-state, room-temperature lasing capabilities beyond {approx} 4 {micro}m. Traditional oxide and fluoride hosts have effective phonon energies in the neighborhood of 1000 cm{sup -1} and 500 cm{sup -1}, respectively. These phonons can effectively quench radiation above 2 and 4 {micro}m, respectively. Materials with lower effective phonon energies such as sulfides and chlorides are the logical candidates for mid-IR (4-10 {micro}m) operation. In this report, laser action is demonstrated in two such hosts, CaGa{sub 2}S{sub 4} and KPb{sub 2}Cl{sub 5}. The CaGa{sub 2}S{sub 4}:Dy{sup 3+} laser operating at 4.3 {micro}m represents the first sulfide laser operating beyond 2 {micro}m. The KPb{sub 2}Cl{sub 5}:Dy{sup 3+} laser operating at 2.4 {micro}m represents the first operation of a chloride-host laser in ambient conditions. Laser action is also reported for CaGa{sub 2}S{sub 4}:Dy{sup 3+} at 2.4 {micro}m, CaGa{sub 2}S{sub 4}:Dy{sup 3+} at 1.4 {micro}m, and KPb{sub 2}Cl{sub 5}:Nd{sup 3+} at 1.06 {micro}m. Both host materials have been fully characterized, including lifetimes, absorption and emission cross sections, radiative branching ratios, and radiative quantum efficiencies. Radiative branching ratios and radiative quantum efficiencies have been determined both by the Judd-Ofelt method (which is based on absorption measurements), and by a novel method described herein which is based on emission measurements. Modeling has been performed to predict laser performance, and a new method to determine emission cross section from slope efficiency and threshold data is developed. With the introduction and laser demonstration of rare-earth-doped CaGa{sub 2}S{sub 4} and KPb{sub 2}Cl{sub 5}, direct generation of mid-IR laser radiation in a solid-state host has been demonstrated. In

  3. Carbonyl sulfide detection with a thermoelectrically cooled midinfrared quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Roller, Chad; Kosterev, Anatoliy A.; Tittel, Frank K.; Uehara, Kiyoji; Gmachl, Claire; Sivco, Deborah L.

    2003-11-01

    A compact absorption spectrometer with a midinfrared tunable quantum cascade laser operating at 4.86 μm (2054 cm-1) is used to measure lower concentrations of carbonyl sulfide (COS) in air. A detection sensitivity of ~30 parts in 109 of COS and the selectivity of two stable isotopes, 12C16O32S and 12C16O34S, are demonstrated. Specifically, the feasibility of detecting COS in expired human breath as a potential noninvasive medical diagnostic tool is investigated.

  4. Laser damage resistant nematic liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Raszewski, Z.; Piecek, W.; Jaroszewicz, L.; Soms, L.; Marczak, J.; Nowinowski-Kruszelnicki, E.; Perkowski, P.; Kedzierski, J.; Miszczyk, E.; Olifierczuk, M.; Morawiak, P.; Mazur, R.

    2013-08-01

    There exists a problem in diagnostics of a dense plasma (so-called Thomson diagnostics). For this purpose, the plasma is illuminated by series of high energy laser pulses. Such pulses are generated by several independent lasers operating sequentially, and these pulses are to be directed along an exactly the same optical path. In this case, the energy of each separate pulse is as large as 3 J, so it is impossible to generate a burst of such pulses by a single laser. In this situation, several independent lasers have to be used. To form optical path with λ = 1.064 μm and absolute value of the energy of laser pulse through of 3 J, a special refractive index matched twisted Nematic Liquid Crystal Cell (NLCC) of type LCNP2 with switching on time τON smaller than 5 μs might be applied. High laser damage resistance of NLCC and short τON can be fulfilled by preparation of liquid crystal cells with Liquid Crystal Mixture (LCM), well tuned to twisted nematic electro-optical effect, and well tuned all optical interfaces (Air - Antireflection - Quartz Plate - Electrode - Blocking Film - Aligning Layer - LCM - Aligning Layer - Blocking Film - Electrode - Quartz Plate - Antireflection - Air). In such LCNP2 cell, the transmission is higher than 97% at λ = 1.064 μm, as it is presented by Gooch and Tarry [J. Phys. D: Appl. Phys. 8, 1575 (1975)]. The safe laser density energy is about 0.6 J/cm2 for a train of laser pulses (λ = 1.064 μm, pulse duration 10 ns FWHM, pulse repetition rate 100 pps, train duration 10 s), so the area of liquid crystal cell tolerating 3 J through it shall be as large as 5 cm2. Due to the presence of two blocking film layers between electrodes, LCNP2 can be driven by high voltages. Switching on time smaller than τON = 5 μs was obtained under 200 V switching voltage.

  5. Ionization of oriented carbonyl sulfide molecules by intense circularly polarized laser pulses

    SciTech Connect

    Dimitrovski, Darko; Abu-samha, Mahmoud; Madsen, Lars Bojer; Filsinger, Frank; Meijer, Gerard; Kuepper, Jochen; Holmegaard, Lotte; Kalhoej, Line; Nielsen, Jens H.; Stapelfeldt, Henrik

    2011-02-15

    We present combined experimental and theoretical results on strong-field ionization of oriented carbonyl sulfide molecules by circularly polarized laser pulses. The obtained molecular frame photoelectron angular distributions show pronounced asymmetries perpendicular to the direction of the molecular electric dipole moment. These findings are explained by a tunneling model invoking the laser-induced Stark shifts associated with the dipoles and polarizabilities of the molecule and its unrelaxed cation. The focus of the present article is to understand the strong-field ionization of one-dimensionally-oriented polar molecules, in particular asymmetries in the emission direction of the photoelectrons. In the following article [Phys. Rev. A 83, 023406 (2011)] the focus is to understand strong-field ionization from three-dimensionally-oriented asymmetric top molecules, in particular the suppression of electron emission in nodal planes of molecular orbitals.

  6. IR laser-induced protein crystal transformation

    SciTech Connect

    Kiefersauer, Reiner Grandl, Brigitte; Krapp, Stephan; Huber, Robert

    2014-05-01

    A novel method and the associated instrumentation for improving crystalline order (higher resolution of X-ray diffraction and reduced mosaicity) of protein crystals by precisely controlled heating is demonstrated. Crystal transformation is optically controlled by a video system. A method and the design of instrumentation, and its preliminary practical realisation, including test experiments, with the object of inducing phase changes of biomolecular crystals by controlled dehydration through heating with infrared (IR) light are described. The aim is to generate and select crystalline phases through transformation in the solid state which have improved order (higher resolution in X-ray diffraction experiments) and reduced mosaic spread (more uniformly aligned mosaic blocks) for diffraction data collection and analysis. The crystal is heated by pulsed and/or constant IR laser irradiation. Loss of crystal water following heating and its reabsorption through equilibration with the environment is measured optically by a video system. Heating proved superior to traditional controlled dehydration by humidity change for the test cases CODH (carbon monoxide dehydrogenase) and CLK2 (a protein kinase). Heating with IR light is experimentally simple and offers an exploration of a much broader parameter space than the traditional method, as it allows the option of varying the rate of phase changes through modification of the IR pulse strength, width and repeat frequency. It impacts the crystal instantaneously, isotropically and homogeneously, and is therefore expected to cause less mechanical stress.

  7. Iron Isotope Fractionation in Iron Meteorites: New Insights into Metal-Sulfide Segregation and Core Crystallization

    NASA Astrophysics Data System (ADS)

    Williams, H. M.; Halliday, A. N.; Teutsch, N.; Levasseur, S.

    2004-12-01

    Recent studies have demonstrated that substantial iron isotope fractionation occurs between pallasite metal, troilite and olivine [1,2] and that smaller variations exist in the iron isotope compositions (δ 57/54Fe) of bulk meteorites [3-5]. Interpreting such isotopic variations in terms of planetary formation processes is hampered by a lack of knowledge regarding the behavior of iron isotopes during accretion and core-mantle differentiation. Many iron meteorites are considered to be remnants of asteroidal cores and may be used to place preliminary constraints on the behavior of iron isotopes during planetary core formation and crystallization. We present iron isotope data obtained using standard MC-ICPMS methods [6] for metal and sulfide fractions extracted from iron meteorites. The metal fractions have δ 57/54Fe values ranging from 0.02‰ to 0.27‰ . Replicate large samples (10-15g) of the metal fractions of several meteorites have δ 57/54Fe values within 0.02‰ of each other. There do not appear to be any strong relationships between the δ 57/54Fe values of the metal phases and the trace element compositions of the meteorites studied. However, considerable variation exists in the δ 57/54Fe values of the troilites. These range from -0.40‰ to 0.29‰ . In most cases, the troilites have δ 57/54Fe values that are lighter than those of the corresponding metal fractions by ˜ 0.5‰ . Given the slow cooling rates inferred for iron meteorites it is likely that these phases are in isotopic equilibrium. If the isotopic fractionation between metal and troilite is representative of the fractionation between sulfide and melt during core crystallization, then the large differences recently proposed for the initial S contents of the cores of the different iron meteorite parent bodies [7] could be reflected in the δ 57/54Fe values of bulk iron meteorites. This hypothesis will be evaluated in the light of further data. 1 F. Poitrasson et al., Lunar and Planetary

  8. LASERS: Efficient neodymium-doped gadolinium gallium garnet crystal laser

    NASA Astrophysics Data System (ADS)

    Doroshenko, Maxim E.; Osiko, Vyacheslav V.; Sigachev, V. B.; Timoshechkin, M. I.

    1991-07-01

    An investigation was made of the stimulated emission parameters of a laser utilizing a gadolinium gallium garnet crystal doped with neodymium ions (YAG:Nd) at the 1.062 μm wavelength. The free-running efficiency was the highest so far achieved for flashlamp-pumped lasers utilizing unsensitized garnets. For an active element 8 mm in diameter and 120 mm long the absolute efficiency was 5.4% and the differential efficiency was 5.9%. The average free-running power was 170 W. A comparison was made of the optical powers of thermal lenses in cylindrical GGG:Nd and YAG:Nd active elements and this was found to be 2.4 times higher for a GGG:Nd crystal at the same pump powers. It was shown that by using traditional methods of compensating for the thermal lens in cylindrical active elements, it is possible to develop pulsed GGG:Nd crystal lasers having an average output power higher than 100 W, an efficiency of ~ 4%, and an angular divergence of less than 10 mrad.

  9. In situ AFM observations of Ca-Mg carbonate crystallization catalyzed by dissolved sulfide: Implications for sedimentary dolomite formation

    NASA Astrophysics Data System (ADS)

    Zhang, Fangfu; Yan, Chao; Teng, H. Henry; Roden, Eric E.; Xu, Huifang

    2013-03-01

    It has been observed that the metabolism of sulfate-reducing bacteria can overcome the energy barrier to Mg2+ incorporation into growing Ca-Mg carbonates and enhance dolomite precipitation, although the role of SRB in dolomite formation is still under debate. In this study, we presented in situ AFM observations of Ca-Mg carbonate {1 0 4} surface growing from supersaturated solutions. Our data showed that not only can Mg2+ modify the morphology of the polygonal growth hillocks and impede step growth, but it can also inhibit 1-D step nucleation, resulting in the inability for spirals to continue their vertical growth. However, in the presence of dissolved sulfide, both the 1-D step nucleation and step growth which had been retarded by Mg2+ ions were significantly enhanced. For example, in the presence as low as 0.13 mM dissolved sulfide, the step velocity can be increased by more than 9 times compared to that in contact with solutions containing Mg2+ ions but no dissolved sulfide. The Ca-Mg carbonate growth hillock in contact with dissolved sulfide-bearing growth solutions eventually developed a micromosaic-like structure. Based on our observations, we propose that the overall catalytic effect of dissolved sulfide may be twofold, one to stabilize the critical nuclei during 1-D step nucleation by the adsorption of dissolved sulfide on Ca-Mg carbonate surfaces and two to facilitate the dehydration of surface Mg2+-water complexes during growth. We hypothesize that dissolved sulfide may adsorb on crystal faces through hydrogen bonding between the H in HS-/H2S and the O in calcite CO32- to weaken the rigid Mg2+ hydration shell, resulting in an elevated activation entropy for particle attachment and hence a larger kinetic coefficient for step growth. Together with previous studies on disorder dolomite precipitation induced by dissolved sulfide, we demonstrate the catalysis role of dissolved sulfide in sedimentary dolomite formation associate with SRB, which may shed new

  10. 980-nm Q-switched photonic crystal fiber laser by MoS2 saturable absorber

    NASA Astrophysics Data System (ADS)

    Li, Pingxue; Liang, Boxing; Su, Meng; Zhang, Yuefei; Zhao, Yan; Zhang, Mengmeng; Ma, Chunmei; Su, Ning

    2016-05-01

    We demonstrate a 980-nm Q-switch Yb-doped photonic crystal fiber laser by a multilayer molybdenum sulfide polymer composite as the broadband saturable absorber which is prepared by the chemical vapor deposition method. We achieve passively Q-switching operations at 978 nm with the pulse width of 2.7 and 0.63 μs, corresponding to the repetition rate of 212 and 221 kHz, respectively. The maximum output power is 127 mW. It is the first time that MoS2 Q-switched Yb-doped photonic crystal fiber laser at 980 nm is demonstrated. The experimental results show that few-layer MoS2 is a promising broadband saturable absorber material.

  11. Interaction of the excited ions-activators in laser crystals

    NASA Astrophysics Data System (ADS)

    Zubenko, D. A.; Noginov, M. A.; Ostroumov, Vasiliy G.; Semenkov, S. G.; Smirnov, V. A.; Shcherbakov, Ivan A.

    1992-11-01

    Processes of interaction of excited ions are investigated in several laser crystals: Er-Er -- in YSGG:Cr, Er and GSAG:Cr,Er crystals; Ho-Ho -- in YSGG:Cr, Ho crystals; Tm-Tm -- in YSGG:Cr,Tm and YAG:Cr,Tm crystals; Tm-Ho -- in YSGG:Cr, Tm, Ho and YSAG:Cr, Tm, Ho crystals; Cr-Cr -- in 11 of different laser crystals (ruby, YAG, GSGG, YSGG, LICAF, et al.); Cr-TR (Er, Ho, Tb, Tm, Nd, -- TR) in YAG, YSGG, GSGG, GSAG crystals.

  12. IR laser-induced protein crystal transformation

    PubMed Central

    Kiefersauer, Reiner; Grandl, Brigitte; Krapp, Stephan; Huber, Robert

    2014-01-01

    A method and the design of instrumentation, and its preliminary practical realisation, including test experiments, with the object of inducing phase changes of biomolecular crystals by controlled dehydration through heating with infrared (IR) light are described. The aim is to generate and select crystalline phases through transformation in the solid state which have improved order (higher resolution in X-ray diffraction experiments) and reduced mosaic spread (more uniformly aligned mosaic blocks) for diffraction data collection and analysis. The crystal is heated by pulsed and/or constant IR laser irradiation. Loss of crystal water following heating and its reabsorption through equilibration with the environment is measured optically by a video system. Heating proved superior to traditional controlled dehydration by humidity change for the test cases CODH (carbon monoxide dehydrogenase) and CLK2 (a protein kinase). Heating with IR light is experimentally simple and offers an exploration of a much broader parameter space than the traditional method, as it allows the option of varying the rate of phase changes through modification of the IR pulse strength, width and repeat frequency. It impacts the crystal instantaneously, isotropically and homogeneously, and is therefore expected to cause less mechanical stress. PMID:24816092

  13. Transient Plasma Photonic Crystals for High-Power Lasers

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2016-06-01

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  14. Transient Plasma Photonic Crystals for High-Power Lasers.

    PubMed

    Lehmann, G; Spatschek, K H

    2016-06-01

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible. PMID:27314721

  15. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  16. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  17. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  18. A liquid crystal-based passive badge for personal monitoring of exposure to hydrogen sulfide.

    PubMed

    Robinson, Sheila E; Grinwald, Bart A; Bremer, Laura L; Kupcho, Kurt A; Acharya, Bharat R; Owens, Patrick D

    2014-01-01

    A new liquid crystal (LC)-based passive dosimeter badge for personal monitoring of exposure to hydrogen sulfide (H2S) gas is reported. When a thin film of LC supported on a surface functionalized with lead perchlorate Pb(ClO4)2 (the LC sensor) is exposed to H2S, the orientation of LC molecules in the film changes from perpendicular to parallel. This reorientation induces a change in the appearance of the LC film when viewed between crossed polarizers. A H2S dosimeter was fabricated by pairing a LC sensor with a glass substrate forming a headspace between the two surfaces, to control diffusion of H2S across the LC film. When the dosimeter is exposed to H2S, a bright front appears as a function of exposure time. An algorithm has been developed to correlate this response length and exposure dose. The dosimeters are functionally stable when subjected to extreme temperature and humidity fluctuations, and are immune to a number of potentially interfering chemicals, except mercaptans. These dosimeters detect H2S at 0.2 ppm TWA (8 hr) with ±20% overall accuracy. The dosimeters were used to monitor the personal exposure of personnel working in an oil refinery. The TWA concentrations measured by the LC-based dosimeters correlate strongly with the NIOSH 1063 method that uses a sorbent tube and a pump followed by laboratory analysis. Thus, the LC-based dosimeters can provide a sensitive tool for on-site assessment of personal exposure to H2S in different environments. PMID:24766440

  19. Laser crystallization and localized growth of nanomaterials for solar applications

    NASA Astrophysics Data System (ADS)

    In, Jungbin; Ryu, Sang-Gil; Lee, Daeho; Ahn, Sanghoon; Zheng, Andy Cheng; Hwang, David Jae-Seok; Grigoropoulos, Costas P.

    2013-09-01

    Laser-assisted localized growth of semiconducting nanostructures is reported. As is the case of conventional crystal growth, localized laser enables three kinds of crystal growth: (1) melt growth (recrystallization) of amorphous silicon nanopillars by pulsed laser; (2) vapor growth (chemical vapor deposition) of germanium nanowires; (3) solution growth (hydrothermal growth) of zinc oxide nanowires. The results not only demonstrate programmable and digital fabrication of laser-assisted crystal growth, but also reveal unusual growth chacracteristics (grain morphologies, growth kinetics). Related to solar applications, it is suggested that these structures can act as epitaxial seeds for growth of coarse grains and as multi-spectral centers for enhanced and engineered light absorption.

  20. Assessment of carbon fiber-reinforced polyphenylene sulfide by means of laser ultrasound

    NASA Astrophysics Data System (ADS)

    Kalms, Michael; Peters, Christian; Wierbos, Ronald

    2011-04-01

    From automobile industry to aerospace, thermoformed composites are more and more in use. Thermoplastics offer a number of attractive applications in commercial use like short production times, tailored solutions, recyclability and lower cost. The thermoforming process allows for producing carbon fiber-reinforced parts in a wide range of different geometric shapes. On the other hand this benefit requires a demanding nondestructive testing procedure especially for security relevant parts. A contactless method which is able to fulfil this requirement is the extension of the ultrasound technique with laser technology. It opens up new opportunities for quality assessment during manufacturing like inspection of complex surfaces including small radii, remote observation and nondestructive testing of hot items directly after the thermal forming process. We describe the successful application of laser-based ultrasound on small complex thermoformed composite parts (Cetex® PPS). Cetex consists of semicrystalline polyphenylene sulfide thermoplastics providing outstanding toughness and excellent chemical and solvent resistance. It is qualified in aircraft industry for multiple structural applications. For instance, Cetex is used in the Airbus A380 engine air intakes and the wing fixed leading edge (J-Nose). We investigated several test samples with intentionally introduced defects. The smallest flaw size detected was 2 mm in diameter for delaminations and 6 mm in diameter for porosity.

  1. Method for reducing energy losses in laser crystals

    DOEpatents

    Atherton, L.J.; DeYoreo, J.J.; Roberts, D.H.

    1992-03-24

    A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light. 12 figs.

  2. Method for reducing energy losses in laser crystals

    DOEpatents

    Atherton, L. Jeffrey; DeYoreo, James J.; Roberts, David H.

    1992-01-01

    A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light.

  3. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  4. Production of Testing of Laser Crystals

    SciTech Connect

    Schmidt, T.

    1999-01-21

    Lasers and nonlinear optical system are being developed to allow the construction of all solid state lasers with tunable output in the mid-infrared (3-5{micro}m). In these systems potassium titanyl phosphate (KTP) and its analogs (KTA, RTA and CTA) are used to construct Optical Parametric Oscillators (OPOs). In the past, large (5 mm x 5 mm x 15 mm) crystals of KTA, RTA and CTA have been difficult to obtain, and were costly as well. Also, the arsenate materials were limited in spectral range due to an AsO{sub 4} overtone in the 3.5 to 5.0 {micro}m region. There has also been interest in materials which self-OPO. This process is done by doping nonlinear materials with lasing ions. This effort investigated the development of mixed metal analogs of KTA, which would last and also suppress the AsO{sub 4} absorption overtones to allow more efficient mid-infrared OPO operation.

  5. Effect of cadmium sulfide nanorod content on Freedericksz threshold voltage, splay and bend elastic constants in liquid-crystal nanocomposites

    NASA Astrophysics Data System (ADS)

    Nayek, Prasenjit; Karan, Santanu; Kundu, Sudarshan; Lee, Seung Hee; Das Gupta, Sudeshna; Roy, Soumen Kumar; Roy, Subir Kumar

    2012-06-01

    This report describes how doping liquid crystals (LC) with rod-like hexagonal semiconductor nanoprisms alters the dielectric and elastic properties of the composites as compared with a pristine nematic liquid crystal (NLC). Cadmium sulfide nanorods were synthesized via the solvothermal process and blended with a NLC. Nanorods were highly miscible with NLC and produced a topological defect-free texture up to a certain limit. A good dark state was achieved during the homeotropic configuration of the cell within that limit. Appreciable changes in splay and bend elastic constants of the LCs were observed after blending with nanorods. Long-range order was established in the hybrid system, and consequently the anisotropy was increased. The threshold voltage decreased dramatically by ˜31%. Dielectric study revealed a high-frequency mode, which might be due to anchoring of the LC with nanorods.

  6. Laser-induced microwave generation with nonlinear optical crystals

    NASA Astrophysics Data System (ADS)

    Borghesani, Francesco; Braggio, Caterina; Carugno, Giovanni; Della Valle, Federico; Ruoso, Giuseppe

    2014-05-01

    We report about a novel technique to generate microwave radiation by the irradiation of a nonlinear optical crystal with uniformly spaced, ultrashort optical pulses delivered by a mode-locked laser. We study systematically the laser polarization and intensity dependence of the microwave signal to conclusively show that it is a nonlinear phenomenon and that it originates from optical rectification. The measurements have been conducted using KTP, LBO and ZnSe crystals. The observed pulsed microwave signals are harmonically related to the laser pulses repetition rate, a feature that can be exploited to develop an innovative ultrafast laser detector.

  7. AFM CHARACTERIZATION OF LASER INDUCED DAMAGE ON CDZNTE CRYSTAL SURFACES

    SciTech Connect

    Hawkins, S; Lucile Teague, L; Martine Duff, M; Eliel Villa-Aleman, E

    2008-06-10

    Semi-conducting CdZnTe (or CZT) crystals can be used in a variety of detector-type applications. CZT shows great promise for use as a gamma radiation spectrometer. However, its performance is adversely affected by point defects, structural and compositional heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity), secondary phases and in some cases, damage caused by external forces. One example is damage that occurs during characterization of the surface by a laser during Raman spectroscopy. Even minimal laser power can cause Te enriched areas on the surface to appear. The Raman spectra resulting from measurements at moderate intensity laser power show large increases in peak intensity that is attributed to Te. Atomic Force Microscopy (AFM) was used to characterize the extent of damage to the CZT crystal surface following exposure to the Raman laser. AFM data reveal localized surface damage in the areas exposed to the Raman laser beam. The degree of surface damage to the crystal is dependent on the laser power, with the most observable damage occurring at high laser power. Moreover, intensity increases in the Te peaks of the Raman spectra are observed even at low laser power with little to no visible damage observed by AFM. AFM results also suggest that exposure to the same amount of laser power yields different amounts of surface damage depending on whether the exposed surface is the Te terminating face or the Cd terminating face of CZT.

  8. Laser induced damage of sapphire and titanium doped sapphire crystals under femtosecond to nanosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Bussière, B.; Utéza, O.; Sanner, N.; Sentis, M.; Riboulet, G.; Vigroux, L.; Commandré, M.; Wagner, F.; Natoli, J.-Y.; Chambaret, J.-P.

    2009-10-01

    The use of large Ti:Sapphire crystals in ultra fast high peak power laser amplifiers makes crucial the problem of crystal laser induced damage. These works aim to quantify the laser induced damage threshold (LIDT) of Sapphire and Ti:Sapphire crystals under femtosecond, picosecond and nanosecond laser pulse irradiations, which are typically encountered in such laser chains. Furthermore, a study of the influence of cryogenic conditions on the LIDT of Ti:Sapphire crystals and of their anti-reflection coating has been performed. The results are important to understand the mechanisms leading to the damage, and to reveal the key parameters which will have to be optimized in future high peak power laser chains.

  9. Automated harvesting and processing of protein crystals through laser photoablation.

    PubMed

    Zander, Ulrich; Hoffmann, Guillaume; Cornaciu, Irina; Marquette, Jean-Pierre; Papp, Gergely; Landret, Christophe; Seroul, Gaël; Sinoir, Jérémy; Röwer, Martin; Felisaz, Frank; Rodriguez-Puente, Sonia; Mariaule, Vincent; Murphy, Peter; Mathieu, Magali; Cipriani, Florent; Márquez, José Antonio

    2016-04-01

    Currently, macromolecular crystallography projects often require the use of highly automated facilities for crystallization and X-ray data collection. However, crystal harvesting and processing largely depend on manual operations. Here, a series of new methods are presented based on the use of a low X-ray-background film as a crystallization support and a photoablation laser that enable the automation of major operations required for the preparation of crystals for X-ray diffraction experiments. In this approach, the controlled removal of the mother liquor before crystal mounting simplifies the cryocooling process, in many cases eliminating the use of cryoprotectant agents, while crystal-soaking experiments are performed through diffusion, precluding the need for repeated sample-recovery and transfer operations. Moreover, the high-precision laser enables new mounting strategies that are not accessible through other methods. This approach bridges an important gap in automation and can contribute to expanding the capabilities of modern macromolecular crystallography facilities. PMID:27050125

  10. Automated harvesting and processing of protein crystals through laser photoablation

    PubMed Central

    Zander, Ulrich; Hoffmann, Guillaume; Cornaciu, Irina; Marquette, Jean-Pierre; Papp, Gergely; Landret, Christophe; Seroul, Gaël; Sinoir, Jérémy; Röwer, Martin; Felisaz, Frank; Rodriguez-Puente, Sonia; Mariaule, Vincent; Murphy, Peter; Mathieu, Magali; Cipriani, Florent; Márquez, José Antonio

    2016-01-01

    Currently, macromolecular crystallography projects often require the use of highly automated facilities for crystallization and X-ray data collection. However, crystal harvesting and processing largely depend on manual operations. Here, a series of new methods are presented based on the use of a low X-ray-background film as a crystallization support and a photoablation laser that enable the automation of major operations required for the preparation of crystals for X-ray diffraction experiments. In this approach, the controlled removal of the mother liquor before crystal mounting simplifies the cryocooling process, in many cases eliminating the use of cryoprotectant agents, while crystal-soaking experiments are performed through diffusion, precluding the need for repeated sample-recovery and transfer operations. Moreover, the high-precision laser enables new mounting strategies that are not accessible through other methods. This approach bridges an important gap in automation and can contribute to expanding the capabilities of modern macromolecular crystallography facilities. PMID:27050125

  11. Eddy covariance carbonyl sulfide flux measurements with a quantum cascade laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gerdel, Katharina; Spielmann, Felix M.; Hammerle, Albin; Wohlfahrt, Georg

    2016-04-01

    Carbonyl sulfide (COS) is the most abundant sulfur containing trace gas present in the troposphere at concentrations of around 500 ppt. Recent interest in COS by the ecosystem-physiological community has been sparked by the fact that COS co-diffuses into plant leaves pretty much the same way as carbon dioxide (CO2) does, but in contrast to CO2, COS is not known to be emitted by plants. Thus uptake of COS by vegetation has the potential to be used as a tracer for canopy gross photosynthesis, which cannot be measured directly, however represents a key term in the global carbon cycle. Since a few years, quantum cascade laser absorption spectrometers (QCLAS) are commercially available with the precision, sensitivity and time response suitable for eddy covariance (EC) flux measurements. While there exist a handful of published reports on EC flux measurements in the recent literature, no rigorous investigation of the applicability of QCLAS for EC COS flux measurements has been carried out so far, nor have been EC processing and QA/QC steps developed for carbon dioxide and water vapor flux measurements within FLUXNET been assessed for COS. The aim of this study is to close this knowledge gap, to discuss critical steps in the post-processing chain of COS EC flux measurements and to devise best-practice guidelines for COS EC flux data processing. To this end we collected EC COS (and CO2, H2O and CO) flux measurements above a temperate mountain grassland in Austria over the vegetation period 2015 with a commercially available QCLAS. We discuss various aspects of EC data post-processing, in particular issues with the time-lag estimation between sonic anemometer and QCLAS signals and QCLAS time series detrending, as well as QA/QC, in particular flux detection limits, random flux uncertainty, the interaction of various processing steps with common EC QA/QC filters (e.g. detrending and stationarity tests), u*-filtering, etc.

  12. Crystallization temperatures and stable isotope compositions of Mississippi valley-type carbonates and sulfides of the Trenton Limestone, Wyandot County, Ohio

    USGS Publications Warehouse

    Haefner, R.J.; Mancuso, J.J.; Frizado, J.P.; Shelton, K.L.; Gregg, J.M.

    1988-01-01

    This study provides the first quantitative data on crystallization temperatures and isotopic compositions of Mississippi Valley-type mineralization in northwest Ohio. Samples of Trenton Limestone sulfides and associated carbonates were obtained from drill cores penetrating the Wyandot fracture zone, Wyandot County, Ohio. -Authors

  13. Laser induced melting and crystallization of boron doped amorphous silicon

    SciTech Connect

    Nebel, C.E.; Schoeniger, S.; Dahlheimer, B.; Stutzmann, M.

    1997-07-01

    Transient reflectivity experiments have been performed to measure the dynamics of laser-induced melting of amorphous silicon (a-Si) and the crystallization to {micro}c-Si of films with different thicknesses on Corning 7059 glass. The laser-induced melting takes place with a velocity of 13 to 24 m/s, while the solidification is about a factor 10 slower. The crystallization starts at the Si/glass interface and at the surface. In the center of the films Si remains liquid for an extended period of time. The crystallization dynamics point towards an heterogeneous morphology of laser-crystallized Si, where the surface and the interface layers are composed of small grains and the bulk of larger grains.

  14. Crystal growth, spectral and laser properties of Nd:LSAT single crystal

    NASA Astrophysics Data System (ADS)

    Hu, P. C.; Yin, J. G.; Zhao, C. C.; Gong, J.; He, X. M.; Zhang, L. H.; Liang, X. Y.; Hang, Y.

    2011-10-01

    Nd:(La, Sr)(Al, Ta)O3 (Nd:LSAT) crystal was grown by the Czochralski method. The absorption and fluorescence spectra of Nd:LSAT crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LSAT crystal was demonstrated. The result of diode-pumped laser operation of Nd:LSAT crystal single crystal is reported for what is to our knowledge the first time. The maximum output power at 1064 nm was obtained to be 165 mW under the incident pump power of 3 W, with the slope efficiency 10.9%.

  15. Threshold Characteristics of Slow-Light Photonic Crystal Lasers.

    PubMed

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa; Chen, Yaohui; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2016-02-12

    The threshold properties of photonic crystal quantum dot lasers operating in the slow-light regime are investigated experimentally and theoretically. Measurements show that, in contrast to conventional lasers, the threshold gain attains a minimum value for a specific cavity length. The experimental results are explained by an analytical theory for the laser threshold that takes into account the effects of slow light and random disorder due to unavoidable fabrication imperfections. Longer lasers are found to operate deeper into the slow-light region, leading to a trade-off between slow-light induced reduction of the mirror loss and slow-light enhancement of disorder-induced losses. PMID:26918991

  16. Threshold Characteristics of Slow-Light Photonic Crystal Lasers

    NASA Astrophysics Data System (ADS)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa; Chen, Yaohui; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2016-02-01

    The threshold properties of photonic crystal quantum dot lasers operating in the slow-light regime are investigated experimentally and theoretically. Measurements show that, in contrast to conventional lasers, the threshold gain attains a minimum value for a specific cavity length. The experimental results are explained by an analytical theory for the laser threshold that takes into account the effects of slow light and random disorder due to unavoidable fabrication imperfections. Longer lasers are found to operate deeper into the slow-light region, leading to a trade-off between slow-light induced reduction of the mirror loss and slow-light enhancement of disorder-induced losses.

  17. Numerical simulation of laser focusing properties inside birefringent crystal.

    PubMed

    Deng, Leimin; Liu, Peng; Duan, Jun; Zeng, Xiaoyan; Wu, Baoye; Wang, Xizhao

    2016-02-01

    The transmission properties of a focused laser inside anisotropic material are complex due to the birefringent effect, which has remarkable influence on the light distribution and frequency multiplication efficiency of crystals. Meanwhile, it will also affect the laser micromachining precision of birefringent materials with random polarization. In this study, ray tracing and diffraction integral methods were proposed to develop the mathematical model of a laser focused through an isotropic medium into a KDP crystal. Using these models, the focusing properties and 3D light intensity distribution of a focused laser inside a KDP crystal at different orientations were investigated. The research shows that the size and shape of the E-ray focus will distort, and its peak power density decreases rapidly with the decrease of the angle between the optical axis and the crystal surface. Meanwhile, the focal position of the E-ray will also move with the change of optical axis orientation. Based on the simulated results, an approximate 3D light intensity equation of a laser focused into birefringent material was also proposed, which is in good agreement with the theoretical analysis. The related simulated results have an important engineering value for nonlinear optics and laser processing of birefringent materials. PMID:26836091

  18. Crystal imager development at the Laboratory for Laser Energetics

    NASA Astrophysics Data System (ADS)

    Mileham, C.; Stoeckl, C.; Theobald, W.; Fiksel, G.; Guy, D.; Junquist, R. K.; Nilson, P. M.; Sangster, T. C.; Shoup, M. J.

    2012-10-01

    Narrowband x-ray imagers using spherically bent crystals have been implemented on all three laser facilities (MTW, OMEGA EP, and OMEGA) at the University of Rochester's Laboratory for Laser Energetics. These spherical crystal imagers (SCI's) use a 150-μm-thick, 25.4-mm-diam quartz crystal cut either along the 2131 plane to reflect the Cu Kα line at ˜8 keV with a Bragg angle of 88.7° or along the 1011 plane to reflect the Si Heα line at ˜1.865 keV with a Bragg angle of 83.9°. The SCI systems can be set up to either image the self-emission of a laser-heated target or to backlight a high-energy-density plasma object.

  19. Efficient frequency conversion of laser sources in nonlinear crystals

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1985-01-01

    The use of nonlinear crystals to extend the frequency range of solid-state laser sources is proposed. The harmonic generation of high-average-power laser sources and CW-laser-sources nonlinear crystals is considered. The development of Nd:YAG pumped parametric oscillators and optical parametric amplifiers using LiNbO3 or AgGaS2 is studied. The LiNbO3 oscillator has tunable output over the 1.4-4.0 micron range and is applicable for remote sensing measurements of molecules and of humidity and temperature; AgGaS2 oscillators provide the potential for 3-15 micron infrared generation. Advances in material synthesis techniques related to the design and synthesis of nonlinear media are discussed. Various procedures for the synthesis of nonlinear crystals are described.

  20. CDS solid state phase insensitive ultrasonic transducer. [annealing dadmium sulfide crystals

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1980-01-01

    A phase insensitive ultrasonic transducer which includes a CdS crystal that is annealed for a selected period of time and at a selected temperature to provide substantially maximum acoustic attenuation at the operating frequency of the transducer is described. Two electrodes are attached to the crystal with amplifier means and a signal processing system connected to one of the electrodes to provide an ultrasonic receiver.

  1. Solution and crystal structures of a sperm whale myoglobin triple mutant that mimics the sulfide-binding hemoglobin from Lucina pectinata.

    PubMed

    Nguyen, B D; Zhao, X; Vyas, K; La Mar, G N; Lile, R A; Brucker, E A; Phillips, G N; Olson, J S; Wittenberg, J B

    1998-04-17

    The bivalve mollusc Lucina pectinata harbors sulfide-oxidizing chemoautotrophic bacteria and expresses a monomeric hemoglobin I, HbI, with normal O2, but extraordinarily high sulfide affinity. The crystal structure of aquomet Lucina HbI has revealed an active site with three residues not commonly found in vertebrate globins: Phe(B10), Gln(E7), and Phe(E11) (Rizzi, M., Wittenberg, J. B., Coda, A., Fasano, M., Ascenzi, P., and Bolognesi, M. (1994) J. Mol. Biol. 244, 86-89). Engineering these three residues into sperm whale myoglobin results in a triple mutant with approximately 700-fold higher sulfide affinity than for wild-type. The single crystal x-ray structure of the aquomet derivative of the myoglobin triple mutant and the solution 1H NMR active site structures of the cyanomet derivatives of both the myoglobin mutant and Lucina HbI have been determined to examine further the structural origin of their unusually high sulfide affinities. The major differences in the distal pocket is that in the aquomet form the carbonyl of Gln64(E7) serves as a H-bond acceptor, whereas in the cyanomet form the amido group acts as H-bond donor to the bound ligand. Phe68(E11) is rotated approximately 90 degrees about chi2 and located approximately 1-2 A closer to the iron atom in the myoglobin triple mutant relative to its conformation in Lucina HbI. The change in orientation potentially eliminates the stabilizing interaction with sulfide and, together with the decrease in size of the distal pocket, accounts for the 7-fold lower sulfide affinity of the myoglobin mutant compared with that of Lucina HbI. PMID:9545280

  2. Laser-Induced Thermal-Mechanical Damage Characteristics of Cleartran Multispectral Zinc Sulfide with Temperature-Dependent Properties

    NASA Astrophysics Data System (ADS)

    Peng, Yajing; Jiang, Yanxue; Yang, Yanqiang

    2015-01-01

    Laser-induced thermal-mechanical damage characteristics of window materials are the focus problems in laser weapon and anti-radiation reinforcement technology. Thermal-mechanical effects and damage characteristics are investigated for cleartran multispectral zinc sulfide (ZnS) thin film window materials irradiated by continuous laser using three-dimensional (3D) thermal-mechanical model. Some temperature-dependent parameters are introduced into the model. The temporal-spatial distributions of temperature and thermal stress are exhibited. The damage mechanism is analyzed. The influences of temperature effect of material parameters and laser intensity on the development of thermal stress and the damage characteristics are examined. The results show, the von Mises equivalent stress along the thickness direction is fluctuant, which originates from the transformation of principal stresses from compressive stress to tensile stress with the increase of depth from irradiated surface. The damage originates from the thermal stress but not the melting. The thermal stress is increased and the damage is accelerated by introducing the temperature effect of parameters or the increasing laser intensity.

  3. Crystal structure of laser-induced subsurface modifications in Si

    SciTech Connect

    Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; Haberl, B.; Bradby, J. E.; Williams, J. S.; Huis in ’t Veld, A. J.

    2015-06-04

    Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystal structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.

  4. Laser Crystallization of Organic-Inorganic Hybrid Perovskite Solar Cells.

    PubMed

    Jeon, Taewoo; Jin, Hyeong Min; Lee, Seung Hyun; Lee, Ju Min; Park, Hyung Il; Kim, Mi Kyung; Lee, Keon Jae; Shin, Byungha; Kim, Sang Ouk

    2016-08-23

    Organic-inorganic hybrid perovskites attract enormous research interest for next generation solar energy harvest. Synergistic crystalline structures comprising organic and inorganic components enable solution processing of perovskite films. A reliable crystallization method for perovskites, compatible with fast continuous process over large-area flexible substrates, is crucial for high performance solar cell production. Here, we present laser crystallization of hybrid perovskite solar cells using near-infrared (NIR) laser (λ = 1064 nm). Crystalline morphology of CH3NH3PbI3 (MAPbI3) perovskite films are widely controllable with laser irradiation condition while maintaining film uniformity. Photothermal heating effectively assisted by interfacial photoconversion layers is critical for phase transformation without beam damage of multilayered device structures. Notably, laser crystallization attains higher device performances than conventional thermal annealing. Fast laser crystallization with manufacture level scan rate (1 m min(-1)) demonstrates inverted-type perovskite solar cells with 11.3 and 8.0% efficiencies on typical glass and flexible polymer substrates, respectively, without rigorous device optimization. PMID:27377145

  5. 250 W single-crystal fiber Yb:YAG laser.

    PubMed

    Délen, Xavier; Piehler, Stefan; Didierjean, Julien; Aubry, Nicolas; Voss, Andreas; Ahmed, Marwan Abdou; Graf, Thomas; Balembois, Francois; Georges, Patrick

    2012-07-15

    We demonstrate an Yb:YAG single-crystal fiber laser with 251 W output power in continuous-wave and an optical efficiency of 44%. This performance can be explained by the high overlap between pump and signal beams brought by the pump guiding and by the good thermal management provided by the single-crystal fiber geometry. The oscillator performance with a reflectivity of the output coupler as low as 20% also shows high potential for power amplification. PMID:22825171

  6. Thermal, optical and spectroscopic characterizations of borate laser crystals

    NASA Astrophysics Data System (ADS)

    Chavoutier, M.; Jubera, V.; Veber, P.; Velazquez, M.; Viraphong, O.; Hejtmanek, J.; Decourt, R.; Debray, J.; Menaert, B.; Segonds, P.; Adamietz, F.; Rodriguez, V.; Manek-Hönninger, I.; Fargues, A.; Descamps, D.; Garcia, A.

    2011-02-01

    The Yb-content Li 6Ln(BO 3) 3 ( Ln: Gd, Y) solid solution has been investigated. Crystal growth has been successful for several compositions. A 22% molar content of ytterbium ions was determined by chemical analysis (ICP). Physical properties relevant to laser operation like mechanical hardness, thermal expansion and thermal conductivity were measured on single crystals. Optical measurements, including refractive index and low temperature spectroscopy, were also performed. Finally, the effect of the Y/Gd ratio is discussed.

  7. Synthesis of Mesostructured Copper Sulfide by Cation Exchange and Liquid Crystal Templating

    SciTech Connect

    Lubeck, C R; Doyle, F M; Gash, A E; Satcher, J H; Han, T Y

    2005-08-01

    describe for the first time, the successful synthesis of highly ordered, mesostructured Cu{sub x}S, by combining the templating of the supramolecular assemblies of non-ionic amphiphilic polymer method with the cation exchange method to transform mesostructured cadmium sulfide (CdS) into mesostructured copper sulfides (CuS, Cu{sub 2}S).

  8. Three-Dimensional Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, B.; /SLAC

    2006-09-07

    We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We describe guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode, including particle beam dynamics and potential coupling methods for the structure. We also discuss possible materials and power sources for this structure and their effects on performance parameters, as well as possible manufacturing techniques and the required tolerances. In addition we describe the computational technique and possible improvements in numerical modeling that would aid development of photonic crystal structures.

  9. Rare earth ion doped non linear laser crystals

    NASA Astrophysics Data System (ADS)

    Jaque, D.; Romero, J. J.; Ramirez, M. O.; Garcia, J. A. S.; de Las Heras, C.; Bausa, L. E.; Sole, J. G.

    2003-01-01

    We show how non linear crystals activated with Yb3+ or Nd3+ ions can be used to develop diode pumped solid state lasers emitting in the visible region of the electromagnetic spectrum. For this purpose we have selected relevant examples of systems investigated in our laboratory.

  10. Ytterbium- and neodymium-doped vanadate laser hose crystals having the apatite crystal structure

    DOEpatents

    Payne, Stephen A.; Kway, Wayne L.; DeLoach, Laura D.; Krupke, William F.; Chai, Bruce H. T.

    1994-01-01

    Yb.sup.3+ and Nd.sup.3+ doped Sr.sub.5 (VO.sub.4).sub.3 F crystals serve as useful infrared laser media that exhibit low thresholds of oscillation and high slope efficiencies, and can be grown with high optical quality. These laser media possess unusually high absorption and emission cross sections, which provide the crystals with the ability to generate greater gain for a given amount of pump power. Many related crystals such as Sr.sub.5 (VO.sub.4).sub.3 F crystals doped with other rare earths, transition metals, or actinides, as well as the many structural analogs of Sr.sub.5 (VO.sub.4).sub.3 F, where the Sr.sup.2+ and F.sup.- ions are replaced by related chemical species, have similar properties.

  11. Ytterbium- and neodymium-doped vanadate laser hose crystals having the apatite crystal structure

    DOEpatents

    Payne, S.A.; Kway, W.L.; DeLoach, L.D.; Krupke, W.F.; Chai, B.H.T.

    1994-08-23

    Yb[sup 3+] and Nd[sup 3+] doped Sr[sub 5](VO[sub 4])[sub 3]F crystals serve as useful infrared laser media that exhibit low thresholds of oscillation and high slope efficiencies, and can be grown with high optical quality. These laser media possess unusually high absorption and emission cross sections, which provide the crystals with the ability to generate greater gain for a given amount of pump power. Many related crystals such as Sr[sub 5](VO[sub 4])[sub 3]F crystals doped with other rare earths, transition metals, or actinides, as well as the many structural analogs of Sr[sub 5](VO[sub 4])[sub 3]F, where the Sr[sup 2+] and F[sup [minus

  12. Sulfur incorporation into copper indium diselenide single crystals through annealing in hydrogen sulfide

    SciTech Connect

    Titus, Jochen; Birkmire, Robert W.; Hack, Christina; Mueller, Georg; McKeown, Patrick

    2006-02-15

    CuInSe{sub 2} crystals were sulfurized in a H{sub 2}S-Ar gas mixture at 575 deg. C. The focus was on the resulting mass transport, in particular, on the interdiffusion of Se and S. Experiments were done for various sulfurization times, and the resulting S distribution was measured by Auger electron spectroscopy sputter depth profiling and analyzed with the Boltzmann-Matano method. A one-dimensional diffusion process had shaped the S distribution in these crystals. The respective diffusion coefficient was on the order of 10{sup -16} cm{sup 2}/s, and it varied only slightly with the S content in CuIn(Se,S){sub 2}.

  13. Probing the Crystal Structure, Composition-Dependent Absolute Energy Levels, and Electrocatalytic Properties of Silver Indium Sulfide Nanostructures.

    PubMed

    Saji, Pintu; Ganguli, Ashok K; Bhat, Mohsin A; Ingole, Pravin P

    2016-04-18

    The absolute electronic energy levels in silver indium sulfide (AIS) nanocrystals (NCs) with varying compositions and crystallographic phases have been determined by using cyclic voltammetry. Different crystallographic phases, that is, metastable cubic, orthorhombic, monoclinic, and a mixture of cubic and orthorhombic AIS NCs, were studied. The band gap values estimated from the cyclic voltammetry measurements match well with the band gap values calculated from the diffuse reflectance spectra measurements. The AIS nanostructures were found to show good electrocatalytic activity towards the hydrogen evolution reaction (HER). Our results clearly establish that the electronic and electrocatalytic properties of AIS NCs are strongly sensitive to the composition and crystal structure of AIS NCs. Monoclinic AIS was found to be the most active HER electrocatalyst, with electrocatalytic activity that is almost comparable to the MoS2 -based nanostructures reported in the literature, whereas cubic AIS was observed to be the least active of the studied crystallographic phases and compositions. In view of the HER activity and electronic band structure parameters observed herein, we hypothesize that the Fermi energy level of AIS NCs is an important factor that decides the electrocatalytic efficiency of these nanocomposites. The work presented herein, in addition to being the first of its kind regarding the composition and phase-dependence of electrochemical aspects of AIS NCs, also presents a simple solvothermal method for the synthesis of different crystallographic phases with various Ag/In molar ratios. PMID:26812447

  14. Crystal and Magnetic Structures of the Oxide Sulfides CaCoSO and BaCoSO.

    PubMed

    Salter, Edward J T; Blandy, Jack N; Clarke, Simon J

    2016-02-15

    CaCoSO, synthesized from CaO, Co, and S at 900 °C, is isostructural with CaZnSO and CaFeSO. The structure is non-centrosymmetric by virtue of the arrangement of the vertex-sharing CoS3O tetrahedra which are linked by their sulfide vertices to form layers. The crystal structure adopts space group P63mc (No. 186), and the lattice parameters are a = 3.7524(9) Å and c = 11.138(3) Å at room temperature with two formula units in the unit cell. The compound is highly insulating, and powder neutron diffraction measurements reveal long-range antiferromagnetic order with a propagation vector k = (1/3, 1/3, 1/2). The magnetic scattering from a powder sample can be modeled starting from a 120° arrangement of Co(2+) spin vectors in the triangular planes and then applying a canting out of the planes which can be modeled in the magnetic space group C(c)c (space group 9.40 in the Belov, Neronova, and Smirnova (BNS) scheme) with Co(2+) moments of 2.72(5) μ(B). The antiferromagnetic structure of the recently reported compound BaCoSO, which has a very different crystal structure from CaCoSO, is also described, and this magnetic structure and the magnitude of the ordered moment (2.75(2) μ(B)) are found by experiment to be similar to those predicted computationally. PMID:26824255

  15. Crystal Structure of Human Arginase l Complexed with Thiosemicarbazide Reveals an Unusual Thiocarbonly u-Sulfide Ligand in the Binuclear Manganese Cluster

    SciTech Connect

    Di Costanzo,L.; Pique, M.; Christianson, D.

    2007-01-01

    The crystal structure of the human arginase I-thiosemicarbazide complex reveals an unusual thiocarbonyl {mu}-sulfide ligand in the binuclear manganese cluster. The CS moiety of thiosemicarbazide bridges Mn2+A and Mn2+B with coordination distances of 2.6 and 2.4 Angstroms, respectively. Otherwise, the binding of thiosemicarbazide to human arginase I does not cause any significant structural changes in the active site. The crystal structure of the unliganded enzyme reveals a hydrogen-bonded water molecule that could support proton transfer between a {mu}-water molecule and H141 to regenerate the nucleophilic {mu}-hydroxide ion in the final step of catalysis.

  16. Gold in the Brunswick No. 12 volcanogenic massive sulfide deposit, Bathurst Mining Camp, Canada: Evidence from bulk ore analysis and laser ablation ICP-MS data on sulfide phases

    NASA Astrophysics Data System (ADS)

    McClenaghan, Sean H.; Lentz, David R.; Martin, Jillian; Diegor, Wilfredo G.

    2009-07-01

    The 329-Mt Brunswick No. 12 volcanogenic massive sulfide deposit (total resource of 163 Mt at 10.4% Zn, 4.2% Pb, 0.34% Cu, and 115 g/t Ag) is hosted within a Middle Ordovician bimodal volcanic and sedimentary sequence. Massive sulfides are for the most part syngenetic, and the bulk of the sulfide ore occurs as a Zn-Pb-rich banded sulfide facies that forms an intimate relationship with a laterally extensive Algoma-type iron formation and defines the Brunswick Horizon. Zone refining of stratiform sulfides is considered to have resulted in the development of a large replacement-style Cu-rich basal sulfide facies, which is generally confined between the banded sulfide facies and an underlying stringer sulfide zone. Complex polyphase deformation and associated lower- to upper-greenschist facies regional metamorphism is responsible for the present geometry of the deposit. Textural modification has resulted in a general increase in grain size through the development of pyrite and arsenopyrite porphyroblasts, which tend to overprint primary mineral assemblages. Despite the heterogeneous ductile deformation, primary features have locally been preserved, such as fine-grained colloform pyrite and base and precious metal zonation within the Main Zone. Base metal and trace element abundances in massive sulfides from the Brunswick No. 12 deposit indicate two distinct geochemical associations. The basal sulfide facies, characterized by a proximal high-temperature hydrothermal signature (Cu-Co-Bi-Se), contains generally low Au contents averaging 0.39 ppm ( n = 34). Conversely, Au is enriched in the banded sulfide facies, averaging 1.1 ppm Au ( n = 21), and is associated with an exhalative suite of elements (Zn-Pb-As-Sb-Ag-Sn). Finely laminated sulfide lenses hosted by iron formation at the north end of the Main Zone are further enriched in Au, averaging 1.7 ppm ( n = 41) and ranging up to 8.2 ppm. Laser ablation inductively coupled plasma-mass spectrometry (ICP-MS) analyses of

  17. Ultraviolet Laser-induced ignition of RDX single crystal.

    PubMed

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-01-01

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm(2). The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique. PMID:26847854

  18. Ultraviolet Laser-induced ignition of RDX single crystal

    PubMed Central

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-01-01

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm2. The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique. PMID:26847854

  19. Ultraviolet Laser-induced ignition of RDX single crystal

    NASA Astrophysics Data System (ADS)

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-02-01

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm2. The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique.

  20. Crystal structure of laser-induced subsurface modifications in Si

    DOE PAGESBeta

    Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; Haberl, B.; Bradby, J. E.; Williams, J. S.; Huis in ’t Veld, A. J.

    2015-06-04

    Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystalmore » structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.« less

  1. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique

    USGS Publications Warehouse

    Wilson, S.A.; Ridley, W.I.; Koenig, A.E.

    2002-01-01

    The requirements of standard materials for LA-ICP-MS analysis have been difficult to meet for the determination of trace elements in sulfides. We describe a method for the production of synthetic sulfides by precipitation from solution. The method is detailed by the production of approximately 200 g of a material, PS-1, with a suite of chalcophilic trace elements in an Fe-Zn-Cu-S matrix. Preliminary composition data, together with an evaluation of the homogeneity for individual elements, suggests that this type of material meets the requirements for a sulfide calibration standard that allows for quantitative analysis. Contamination of the standard with Na suggests that H2S gas may prove a better sulfur source for future experiments. We recommend that calibration data be collected in whatever mode is closest to that employed for the analysis of the unknown material, because of variable fractionation effects as a function of analytical mode. For instance, if individual spot analyses are attempted on unknown sample, then a raster of several individual spot analyses, not a continuous scan, should be collected and averaged for the standard. Hg and Au are exceptions to the above and calibration data should always be collected in a scanning mode. Au is more heterogeneously distributed than other trace metals and large-area scans are required to provide an average value for calibration purposes. We emphasize that the values given in Table 1 are preliminary values. Further chemical characterization of this standard, through a round-robin analysis program, will allow the USGS to provide both certified and recommended values for individual elements. The USGS has developed PS-1 as a potential new LA-ICP-MS standard for use by the analytical community, and requests for this material should be addressed to S. Wilson. However, it is stressed that an important aspect of the method described here is the flexibility for individual investigators to produce sulfides with a wide range

  2. Piezoelectric resonance calorimetry of nonlinear-optical crystals under laser irradiation

    NASA Astrophysics Data System (ADS)

    Ryabushkin, Oleg A.; Konyashkin, Aleksey V.; Myasnikov, Daniil V.; Tyrtyshnyy, Valentin A.; Vershinin, Oleg I.

    2013-09-01

    Novel method is proposed for determination of nonlinear-optical crystal both heat transfer and optical absorption coefficients by measuring kinetics of the laser-irradiated crystal temperature-dependent piezoelectric resonance frequency. When laser radiation propagates through the crystal its temperature evaluation with time is directly determined from crystal piezoelectric resonance frequency shift, which is precisely measured by analyzing crystal response to the applied ac electric voltage. Heat transfer and optical absorption coefficients are obtained using measured characteristic time of crystal laser heating kinetics by solving nonstationary heat conduction equation. Experiments were performed with nonlinear-optical α-quartz, lithium triborate (LBO) and periodically poled lithium niobate (PPLN) crystals.

  3. AR coatings on laser crystals for HiPER project

    NASA Astrophysics Data System (ADS)

    Oulehla, Jindřich; Pokorný, Pavel

    2010-08-01

    In this contribution we present a technology for deposition of interference coatings for optical components designed to operate as active media in power pulsed lasers. The aim of the technology is to prepare crystals for lasers for the HiPER project (High Power laser Energy Research) which should demonstrate the feasibility of laser driven fusion as a future energy source. Diode pumped solid state lasers (DPSSL) are the most likely option for fusion ignition. The choice of material for the lasers active medium is critical. Some of the most important properties include the ability to be antireflection coated to reduce the energy losses and increase the overall efficiency. This contribution deals with some of the materials considered to be candidates for slabs serving as the active medium of the DPSSLs. We tested Yb:YAG, Yb:CaF2 samples. As large amounts of heat need to be dissipated during laser operation, cryogenic cooling is necessary. Appropriate coating materials and techniques need to be chosen. Therefore differences between available coating techniques are investigated in terms of adhesion, enduring of stress resulting from temperature shocks, etc. Coated samples were placed into cryogenic environment in order to simulate conditions similar to those in real life operation. Optical microscopy was used for coating investigation after the conducted experiments.

  4. Optical coatings on laser crystals for HiPER project

    NASA Astrophysics Data System (ADS)

    Oulehla, Jindrich; Pokorný, Pavel; Lazar, Josef

    2011-12-01

    In this contribution we present a technology for deposition of interference coatings for optical components designed to operate as active media in power pulsed lasers. The aim of the technology is to prepare crystals for lasers for the HiPER project (High Power laser Energy Research facility) which should demonstrate the feasibility of laser driven fusion as a future energy source. Diode pumped solid state lasers (DPSSL) are the most likely option for fusion ignition. The choice of the material for the lasers' active medium is critical. Some of the most important properties include the ability to be antireflection coated to reduce the energy losses and increase the overall efficiency. This contribution deals with some of the materials considered to be candidates for slabs serving as the active medium of the DPSSLs. We tested Yb:YAG and Yb:CaF2 samples. As large amounts of heat need to be dissipated during laser operation, cryogenic cooling is necessary. Appropriate coating materials and techniques need to be chosen. Therefore differences between available coating techniques are investigated in terms of adhesion, enduring of stress from temperature shocks, etc. Coated samples were placed into cryogenic environment in order to simulate conditions similar to those in real life operation. Optical microscopy was used for coating investigation after the conducted experiments.

  5. Optical coatings on laser crystals for HiPER project

    NASA Astrophysics Data System (ADS)

    Oulehla, Jindrich; Pokorný, Pavel; Lazar, Josef

    2011-06-01

    In this contribution we present a technology for deposition of interference coatings for optical components designed to operate as active media in power pulsed lasers. The aim of the technology is to prepare crystals for lasers for the HiPER project (High Power laser Energy Research) which should demonstrate the feasibility of laser driven fusion as a future energy source. Diode pumped solid state lasers (DPSSL) are the most likely option for fusion ignition. The choice of material for the lasers active medium is critical. Some of the most important properties include the ability to be antireflection coated to reduce the energy losses and increase the overall efficiency. This contribution deals with some of the materials considered to be candidates for slabs serving as the active medium of the DPSSLs. We tested Yb:YAG, Yb:CaF2 and Yb:KGW samples. As large amounts of heat need to be dissipated during laser operation, cryogenic cooling is necessary. Appropriate coating materials and techniques need to be chosen. Therefore differences between available coating techniques are investigated in terms of adhesion, enduring of stress resulting from temperature shocks, etc. Coated samples were placed in a specially designed cryogenic apparatus in order to simulate conditions similar to those in real life operation. Optical microscopy and spectrophotometer measurements were used for coating investigation after the conducted experiments.

  6. Laser-diode pumped glass-clad Ti:sapphire crystal fiber laser.

    PubMed

    Wang, Shih-Chang; Hsu, Chun-Yang; Yang, Tzu-Te; Jheng, Dong-Yo; Yang, Teng-I; Ho, Tuan-Shu; Huang, Sheng-Lung

    2016-07-15

    Efficient glass-clad crystal fiber (CF) lasers were demonstrated using a Ti:sapphire crystalline core as the gain medium. With a core diameter of 18 μm, the laser diode (LD) pump source can be effectively coupled and guided throughout the crystal fiber for a low threshold and high slope efficiency laser operation. The advantage of high heat dissipation efficiency of the fiber structure can be derived from the low core temperature rising measurement (i.e., 17 K/W) with passive cooling. At an output transmittance of 23%, the lowest absorbed threshold of 118.2 mW and highest slope efficiency of 29.6% were achieved, with linear laser polarization. PMID:27420499

  7. Temperature distribution of laser crystal in LD end-pumped Nd:YAG/LBO blue laser

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zheng, Yibo; Li, Simian; Jia, Liping; Kang, Junjian

    2012-11-01

    In this study, LD end-pumped Nd:YAG/LBO solid state blue laser is realized by even hollow cavity. A thermal distribution model of Nd:YAG crystal is established. Based on the calculation, the temperature distribution of laser crystal is obtained. The results show that the temperature decreases from the pump end to the launch end exponentially. When the pumping power is 10 W and the radius of pumping beams is 240μm, a biggest output power 1.06 W of blue light is achieved, giving an optical conversion efficiency of 10.6%.

  8. ACTIVE MEDIA. LASERS: Study of a Nd3+:KGW crystal laser transversely pumped by laser diode bars

    NASA Astrophysics Data System (ADS)

    Abazadze, Aleksandr Yu; Zverev, Georgii M.; Kolbatskov, Yurii M.; Ustimenko, N. S.

    2004-01-01

    A Nd3+:KGW crystal laser transversely pumped by laser diode bars is studied experimentally. The optimisation of the laser parameters provided the maximum slope efficiency of ~50 % at 1.067 μm in the free running regime. Using the SRS self-conversion in a Nd3+: KWG laser, lasing was obtained in the eye-safe spectral region at 1.538 nm with the energy up to 5 mJ and a pulse repetition rate up to 20 Hz.

  9. Surfactant-controlled composition and crystal structure of manganese(II) sulfide nanocrystals prepared by solvothermal synthesis

    PubMed Central

    Capetti, Elena; Ferretti, Anna M; Dal Santo, Vladimiro

    2015-01-01

    Summary We investigated how the outcome of the solvothermal synthesis of manganese(II) sulfide (MnS) nanocrystals (NCs) is affected by the type and amount of long chain surfactant present in the reaction mixture. Prompted by a previous observation that a larger than stoichiometric amount of sulfur is required [Puglisi, A.; Mondini, S.; Cenedese, S.; Ferretti, A. M.; Santo, N.; Ponti A. Chem. Mater. 2010, 22, 2804–2813], we carried out a wide set of reactions using Mn(II) carboxylates and Mn2(CO)10 as precursors with varying amounts of sulfur and carboxylic acid. MnS NCs were obtained provided that the S/Mn ratio was larger than the L/Mn ratio, otherwise MnO NCs were produced. Since MnS can crystallize in three distinct phases (rock salt α-MnS, zincblende β-MnS, and wurtzite γ-MnS), we also investigated whether the surfactant affected the NC polymorphism. We found that MnS polymorphism can be controlled by appropriate selection of the surfactant. γ-MnS nanocrystals formed when a 1:2 mixture of long chain carboxylic acid and amine was used, irrespective of the presence of carboxylic acid as a free surfactant or ligand in the metal precursor. When we used a single surfactant (carboxylic acid, alcohol, thiol, amine), α-MnS nanocrystals were obtained. The peculiar role of the amine seems to be related to its basicity. The nanocrystals were characterized by TEM and electron diffraction; ATR-FTIR spectroscopy provided information about the surfactants adsorbed on the NCs. PMID:26734522

  10. Large mode-volume, large beta, photonic crystal laser resonator

    SciTech Connect

    Dezfouli, Mohsen Kamandar; Dignam, Marc M.

    2014-12-15

    We propose an optical resonator formed from the coupling of 13, L2 defects in a triangular-lattice photonic crystal slab. Using a tight-binding formalism, we optimized the coupled-defect cavity design to obtain a resonator with predicted single-mode operation, a mode volume five times that of an L2-cavity mode and a beta factor of 0.39. The results are confirmed using finite-difference time domain simulations. This resonator is very promising for use as a single mode photonic crystal vertical-cavity surface-emitting laser with high saturation output power compared to a laser consisting of one of the single-defect cavities.

  11. Low-voltage-tunable nanobeam lasers immersed in liquid crystals.

    PubMed

    Kim, Sejeong; Kim, Hwi-Min; Son, Jaehyun; Kim, Yun-Ho; Ok, Jong Min; Kim, Ki Soo; Jung, Hee-Tae; Min, Bumki; Lee, Yong-Hee

    2014-12-15

    A low-voltage-tunable one-dimensional nanobeam laser is realized by employing lithographically defined lateral electrodes. An InGaAsP nanobeam with a sub-micrometer width is transfer-printed in the middle of two electrodes using a polydimethylsiloxane stamp. Spectral tuning is achieved by controlling the molecular alignment of the surrounding liquid crystals (LCs). From μm-scale-gap structures, a total wavelength shift that exceed 6 nm is observed at a low voltage of less than 10 V. A measured spectral tuning rate of 0.87 nm/V, which is the largest value ever reported to our knowledge among LC-tuned photonic crystal lasers, was also noted. PMID:25607018

  12. Fabrication of photonic crystal lasers by nanomolding of solgel glasses.

    PubMed

    Schueller, O J; Whitesides, G M; Rogers, J A; Meier, M; Dodabalapur, A

    1999-09-20

    We demonstrate the formation, in a single process step, of periodic arrays of features of surface relief with submicrometer lateral dimensions in hybrid organic and inorganic solgel glasses by using elastomeric molding techniques. Lasers formed with molded photonic crystal resonators that consist of triangular, square, and honeycomb lattices of cylindrical posts and holes show emission spectra and lasing thresholds that are similar to devices formed by conventional high-resolution photolithographic patterning of thick layers of thermally grown oxide. PMID:18324096

  13. Smectic liquid crystal cell with heat pulse and laser

    SciTech Connect

    Mash, D.H.

    1984-10-16

    A method of operating a homeotropically aligned smectic liquid crystal cell in which the cell is turned from a clear to a scattering state by illumination with an intense flash of light after which a focused laser beam is scanned across the layer to leave clear tracks where homeotropic alignment has been restored thereby producing a display providing, in projection, bright lines on a dark background.

  14. Czochralski growth and laser performance of alexandrite crystals

    SciTech Connect

    Guo, X.; Zhang, B.; Wu, L.; Chen, M.

    1986-08-15

    Alexandrite (BeAl/sub 2/O/sub 4/:Cr/sup 3 +/) crystals have been growing by the Czochralski technique and continually tunable laser output with energy of 304 mJ and slope efficiency of 0.46% in the wavelength range from 735 to 786 nm has been obtained using c-axis rods. Tunable Q-switch pulse output and LiIO/sub 3/ double-frequency have been also obtained.

  15. Reabsorption trapping of luminecence in laser crystals: enhancement of energy storage and upconversion

    SciTech Connect

    Noginov, M.A.

    1997-06-01

    It is shown that reabsorption of luminescence in laser crystals can enhance energy storage, energy transfer, and upconversion in solid-state laser media. These effects, experimentally observed in Yb-doped and Er-doped crystals, can potentially decrease the threshold for compact cw pumped lasers. The influence of parasitic laser modes and the amplification of spontaneous emission on population inversion in reflective coated laser elements is discussed. {copyright} 1997 Optical Society of America

  16. Crystal growth, polarized spectra, and laser performance of Yb:CaGdAlO4 crystal

    NASA Astrophysics Data System (ADS)

    Di, J. Q.; Xu, X. D.; Xia, C. T.; Zheng, L. H.; Aka, G.; Yu, H. H.; Sai, Q. L.; Guo, X. Y.; Zhu, L.

    2016-04-01

    In this paper, the crystal growth, polarized spectra, and laser performance of Yb:CaGdAlO4 crystal were reported. The segregation coefficient of Yb3+ ions was calculated to be 0.47. The cell parameters were determined to be a  =  b  =  0.3658 nm, c  =  1.1985 nm. The peak absorption cross-section was calculated to be 2.65  ×  10-20 cm2 at 979 nm and the peak stimulated emission cross-section was 2.23  ×  10-20 cm2 at 980 nm for the π polarization. The continuous-wave (CW) laser operations of uncoated Yb:CaGdAlO4 crystals with 5  ×  5  ×  3 mm3 in size were demonstrated. A maximum output power of 1.6 W at 1048 nm was obtained with a slope efficiency of 28%. The results show that Yb:CaGdAlO4 crystal is a promising laser medium.

  17. Compact Couplers for Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin; Lin, M.C.; Schwartz, Brian; Byer, Robert; McGuinness, Christopher; Colby, Eric; England, Robert; Noble, Robert; Spencer, James; /SLAC

    2012-07-02

    Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90{sup o}. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

  18. Thermal, optical and spectroscopic characterizations of borate laser crystals

    SciTech Connect

    Chavoutier, M.; Jubera, V.; Veber, P.; Velazquez, M.; Viraphong, O.; Hejtmanek, J.; Decourt, R.; Debray, J.; Menaert, B.; Segonds, P.; Adamietz, F.; Rodriguez, V.; Manek-Hoenninger, I.; Fargues, A.; Descamps, D.; Garcia, A.

    2011-02-15

    The Yb-content Li{sub 6}Ln(BO{sub 3}){sub 3} (Ln: Gd, Y) solid solution has been investigated. Crystal growth has been successful for several compositions. A 22% molar content of ytterbium ions was determined by chemical analysis (ICP). Physical properties relevant to laser operation like mechanical hardness, thermal expansion and thermal conductivity were measured on single crystals. Optical measurements, including refractive index and low temperature spectroscopy, were also performed. Finally, the effect of the Y/Gd ratio is discussed. -- Graphical abstract: Several solid solutions of a rare earth borate were studied. The figure illustrates one of these single crystals obtained by Czochralski and shows thermal behaviour and absorption spectra at low temperature. Display Omitted Research highlights: {yields} We have grown by Czochralski method five Li{sub 6}Ln(BO{sub 3}){sub 3} (Ln=Y, Gd,Yb) single crystals. {yields} Chemical, physical and spectroscopic characteristics are reported. {yields} Data relevant to laser operation are listed.

  19. Multi-Colour Nanowire Photonic Crystal Laser Pixels

    PubMed Central

    Wright, Jeremy B.; Liu, Sheng; Wang, George T.; Li, Qiming; Benz, Alexander; Koleske, Daniel D.; Lu, Ping; Xu, Huiwen; Lester, Luke; Luk, Ting S.; Brener, Igal; Subramania, Ganapathi

    2013-01-01

    Emerging applications such as solid-state lighting and display technologies require micro-scale vertically emitting lasers with controllable distinct lasing wavelengths and broad wavelength tunability arranged in desired geometrical patterns to form “super-pixels”. Conventional edge-emitting lasers and current surface-emitting lasers that require abrupt changes in semiconductor bandgaps or cavity length are not a viable solution. Here, we successfully address these challenges by introducing a new paradigm that extends the laser tuning range additively by employing multiple monolithically grown gain sections each with a different emission centre wavelength. We demonstrate this using broad gain-bandwidth III-nitride multiple quantum well (MQW) heterostructures and a novel top-down nanowire photonic crystal nanofabrication. We obtain single-mode lasing in the blue-violet spectral region with a remarkable 60 nm of tuning (or 16% of the nominal centre wavelength) that is determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum. PMID:24135975

  20. Low-cost laser rangefinder with crystal-controlled accuracy

    NASA Astrophysics Data System (ADS)

    Munro, James F.

    2005-02-01

    We present a novel laser ranging system that offers improved accuracy and low-cost implementations for short to medium range target distance and velocity measurement. This is accomplished through the emission of an eye-safe amplitude modulated laser beam, whose echo return is processed with a phase-computing discrete Fourier transform (DFT). The data for the DFT are collected directly from the received signal through equivalent time sampling, and the automatic gain control (AGC) function is moved to that part of the system where its varying signal propagation time will not impact measurement accuracy. All emission and data collection signals are derived directly from a single crystal oscillator, which establishes the system's accuracy. The system is also capable of resolving the distance/velocity ambiguity problem inherent in conventional hetero/homodyne laser ranging systems, and, lastly, digital data can be transmitted and received concurrently with the distance measurement process.

  1. Laser-induced modification of transparent crystals and glasses

    SciTech Connect

    Bulgakova, N M; Stoian, Razvan; Rosenfeld, A

    2010-12-29

    We analyse the processes taking place in transparent crystals and glasses irradiated by ultrashort laser pulses in the regimes typical of various applications in optoelectronics and photonics. We consider some phenomena, which have been previously described by the authors within the different model representations: charging of the dielectric surface due to electron photoemission resulting in a Coulomb explosion; crater shaping by using an adaptive control of the laser pulse shape; optimisation of the waveguide writing in materials strongly resistant to laser-induced compaction under ordinary irradiation conditions. The developed models and analysis of the processes relying on these models include the elements of the solid-state physics, plasma physics, thermodynamics, theory of elasticity and plasticity. Some important experimental observations which require explanations and adequate description are summarised. (photonics and nanotechnology)

  2. Photoinduced chemical reactions on natural single crystals and synthesized crystallites of mercury(II) sulfide in aqueous solution containing naturally occurring amino acids.

    PubMed

    Pal, Bonamali; Ikeda, Shigeru; Ohtani, Bunsho

    2003-03-10

    Photoirradiation at >300 nm of aqueous suspensions of several natural crystal specimens and synthesized crystallites of mercury(II) sulfide (HgS) induced deaminocyclization of optically active or racemic lysine into pipecolinic acid (PCA) under deaerated conditions. This is the first example, to the best of our knowledge, of photoinduced chemical reactions of natural biological compounds over natural minerals. It was found that the natural HgS crystals had activity higher than those of synthesized ones but lower than those of other sulfides of transition metals, e.g., CdS and ZnS, belonging to the same II-IV chalcogenides. In almost all of the photoreactions, decompostion of HgS occurred to liberate hydrogen sulfide (H(2)S) and Hg(2+), and the latter seemed to have undergone in-situ reductive deposition on HgS as Hg(0) after a certain induction period (24-70 h) during the photoirradiation, as indicated by the darkened color of the suspensions. The formation of PCA, presumably through combination of oxidation of lysine and reduction of an intermediate, cyclic Schiff base, could also be seen after a certain induction time of the Hg(0) formation. This was supported by the fact that the addition of small amount of Hg(2+) (0.5 wt % of HgS) increased the PCA yield by almost 2-fold. We also tried to elucidate certain aspects of the plausible stereochemical reactions in relation to the chiral crystal structure of HgS. Although, in some experiments, slight enantiomeric excess of the product PCA was observed, the excess was below or equal to the experimental error and no other supporting analytical data could not be obtained; we cannot conclude the enantiomeric photoproduction of PCA by the natural chiral HgS specimen. PMID:12611518

  3. Cluster-assisted generation of multi-charged ions in nanosecond laser ionization of pulsed hydrogen sulfide beam at 1064 and 532 nm

    NASA Astrophysics Data System (ADS)

    Niu, Dong-Mei; Li, Hai-Yang; Luo, Xiao-Lin; Liang, Feng; Cheng, Shuang; Li, An-Lin

    2006-07-01

    The multi-charged sulfur ions of Sq+ (q<= 6) have been generated when hydrogen sulfide cluster beams are irradiated by a nanosecond laser of 1064 and 532 nm with an intensity of 1010~ 1012W.cm-2. S6+ is the dominant multi-charged species at 1064 nm, while S4+, S3+ and S2+ ions are the main multi-charged species at 532 nm. A three-step model (i.e., multiphoton ionization triggering, inverse bremsstrahlung heating, electron collision ionizing) is proposed to explain the generation of these multi-charged ions at the laser intensity stated above. The high ionization level of the clusters and the increasing charge state of the ion products with increasing laser wavelength are supposed mainly due to the rate-limiting step, i.e., electron heating by absorption energy from the laser field via inverse bremsstrahlung, which is proportional to λ2, λ being the laser wavelength.

  4. Selenium Sulfide

    MedlinePlus

    Selenium sulfide, an anti-infective agent, relieves itching and flaking of the scalp and removes the dry, ... Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium ...

  5. Laser Scattering Tomography for the Study of Defects in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.; DeLucas, Lawrence; DeMattei, R. C.

    1997-01-01

    The goal of this research is to explore the application of the non-destructive technique of Laser Scattering Tomography (LST) to study the defects in protein crystals and relate them to the x-ray diffraction performance of the crystals. LST has been used successfully for the study of defects in inorganic crystals and. in the case of lysozyme, for protein crystals.

  6. Design and fabrication of a miniature objective consisting of high refractive index zinc sulfide lenses for laser surgery

    NASA Astrophysics Data System (ADS)

    Shadfan, Adam; Pawlowski, Michal; Wang, Ye; Subramanian, Kaushik; Gabay, Ilan; Ben-Yakar, Adela; Tkaczyk, Tomasz

    2016-02-01

    A miniature laser ablation probe relying on an optical fiber to deliver light requires a high coupling efficiency objective with sufficient magnification in order to provide adequate power and field for surgery. A diffraction-limited optical design is presented that utilizes high refractive index zinc sulfide to meet specifications while reducing the miniature objective down to two lenses. The design has a hypercentric conjugate plane on the fiber side and is telecentric on the tissue end. Two versions of the objective were built on a diamond lathe-a traditional cylindrical design and a custom-tapered mount. Both received an antireflective coating. The objectives performed as designed in terms of observable resolution and field of view as measured by imaging a 1951 USAF resolution target. The slanted edge technique was used to find Strehl ratios of 0.75 and 0.78, respectively, indicating nearly diffraction-limited performance. Finally, preliminary ablation experiments indicated threshold fluence of gold film was comparable to similar reported probes.

  7. Increase of bulk optical damage threshold fluences of KDP crystals by laser irradiation and heat treatment

    DOEpatents

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Kennedy, G.C.; Rainer, F.

    1982-07-07

    The bulk optical damage threshold fluence of potassium dihydrogen phosphate (KDP) crystals is increased by irradiating the crystals with laser pulses of duration 1 to 20 nanoseconds of increasing fluence, below the optical damage threshold fluence for untreated crystals, or by baking the crystals for times of the order of 24 hours at temperatures of 110 to 165/sup 0/C, or by a combination of laser irradiation and baking.

  8. Convex crystal x-ray spectrometer for laser plasma experiments

    SciTech Connect

    May, M.; Heeter, R.; Emig, J.

    2004-10-01

    Measuring time and space-resolved spectra is important for understanding Hohlraum and Halfraum plasmas. Experiments at the OMEGA laser have used the Nova TSPEC which was not optimized for the OMEGA diagnostic space envelope or for the needed spectroscopic coverage and resolution. An improved multipurpose spectrometer snout, the MSPEC, has been constructed and fielded on OMEGA. The MSPEC provides the maximal internal volume for mounting crystals without any beam interferences at either 2x or 3x magnification. The RAP crystal is in a convex mounting geometry bent to a 20 cm radius of curvature. The spectral resolution, E/dE, is about 200 at 2.5 keV. The spectral coverage is 2 to 4.5 keV. The MSPEC can record four separate spectra on the framing camera at time intervals of up to several ns. The spectrometer design and initial field-test performance will be presented and compared to that of the TSPEC.

  9. Coilable single crystals fibers of doped-YAG for high power laser applications

    NASA Astrophysics Data System (ADS)

    Soleimani, Nazila; Ponting, Bennett; Gebremichael, Eminet; Ribuot, Antoine; Maxwell, Gisele

    2014-05-01

    Single crystal fibers are an intermediate between laser crystals and doped glass fibers. They have the advantages of both guiding laser light and matching efficiencies found in bulk crystals, which make them ideal candidates for high-power laser and fiber laser applications. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc.) that will exhibit good wave guiding properties. Direct growth or a combination of growth and cladding experiments are described. Scattering loss measurements at visible wavelengths along with dopant profile characterization are also presented. Laser characterization for these fibers is in progress.

  10. Coilable single crystals fibers of doped-YAG for high power laser applications

    NASA Astrophysics Data System (ADS)

    Soleimani, Nazila; Ponting, Bennett; Gebremichael, Eminet; Ribuot, Antoine; Maxwell, Gisele

    2014-02-01

    Single crystal fibers are an intermediate between laser crystals and doped glass fibers. They have the advantages of both guiding laser light and matching the efficiencies found in bulk crystals, which is making them ideal candidates for high-power laser and fiber laser applications. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc…) that will exhibit good wave guiding properties. Direct growth or a combination of growth and cladding experiments are described. Scattering loss measurements at visible wavelengths along with dopant profile characterization are also presented. Laser characterization for these fibers is in progress.

  11. Producing KDP and DKDP crystals for the NIF laser

    SciTech Connect

    Atherton, L J; Burnham, A K; Combs, R C; Couture, S A; De Yoreo, J J; Hawley-Fedder, R A; Montesant, R C; Robey, H F; Runkel, M; Staggs, M; Wegner, P J; Yan, M; Zaitseva, N P

    1999-09-02

    The cost and physics requirements of the NIF have established two important roles for potassium dihydrogen phosphate (KDP) crystals. 1. To extract more laser energy per unit of flashlamp light and laser glass, the NIF has adopted a multipass architecture as shown in Figure 1. Light is injected in the transport spatial filter, first traverses the power amplifiers, and then is directed to main amplifiers, where it makes four passes before being redirected through the power amplifiers towards the target. To enable the multipass of the main amplifiers, a KDP-containing Pockels cell rotates the polarization of the beam to make it either transmit through or reflect off a polarizer held at Brewster's angle within the main laser cavity. If transmitted, the light reflects off a mirror and makes another pass through the cavity. If reflected, it proceeds through the power amplifier to the target. the original seed crystal as the pyramid faces grow. Unfortunately, this pyramidal growth is very slow, and it takes about two years to grow a crystal to NIF size. To provide more programmatic flexibility and reduce costs in the long run, we have developed an alternative technology commonly called rapid growth. Through a combination of higher temperatures and higher supersaturation of the growth solution, a NIF-size boule can be grown in 1 to 2 months from a small ''point'' seed. However, growing boules of adequate size is not sufficient. Care must be taken to prevent inclusions of growth solution and incorporation of atomically substituted 2. Implosions for ICF work far better at shorter wavelengths due to less generation of hot electrons, which preheat the fuel and make it harder to compress. Compromising between optic lifetime and implosion efficiency, both Nova and the NIF operate at a tripled frequency of the 1053-nm fundamental frequency of a neodymium glass laser. This tripling is accomplished by two crystals, one made of KDP and one made of deuterated KDP (DKDP). The first

  12. Crystal structure of human arginase I complexed with thiosemicarbazide reveals an unusual thiocarbonyl μ-sulfide ligand in the binuclear manganese cluster

    PubMed Central

    Di Costanzo, Luigi; Pique, Michael E.; Christianson, David W.

    2008-01-01

    The crystal structure of the human arginase I-thiosemicarbazide complex reveals an unusual thiocarbonyl μ-sulfide ligand in the binuclear manganese cluster. The C=S moiety of thiosemicarbazide bridges Mn2+A and Mn2+B with coordination distances of 2.6 Å and 2.4 Å, respectively. Otherwise, the binding of thiosemicarbazide to human arginase I does not cause any significant structural changes in the active site. The crystal structure of the unliganded enzyme reveals a hydrogen bonded water molecule that could support proton transfer between a μ-water molecule and H141 to regenerate the nucleophilic μ-hydroxide ion in the final step of catalysis. PMID:17469833

  13. Luminescence and Thermal Properties of Er:GSGG and Yb,Er:GSGG Laser Crystals

    NASA Astrophysics Data System (ADS)

    Sun, Dun-Lu; Luo, Jian-Qiao; Xiao, Jing-Zhong; Zhang, Qing-Li; Chen, Jia-Kang; Liu, Wen-Peng; Kang, Hong-Xiang; Yin, Shao-Tang

    2012-05-01

    Er3+-doped and Yb3+/Er3+ co-doped Gd3Sc2Ga3O12 (abbreviated as Er:GSGG and Yb,Er:GSGG, respectively) laser crystals are investigated by using a combination of spectroscopic measurements and thermal characterizations. An absorption peak of Yb,Er:GSGG crystal shifts to 970 nm and its absorption band broadens obviously, which makes the crystal suitable for pumping by a 970 nm laser diode (LD). This crystal also exhibits a shorter lifetime of a lower laser level, a larger emission cross section and higher thermal conductivity than those of Er:GSGG. All these factors suggest that Yb3+/Er3+ co-doping has a positive effect on improving the spectroscopic and thermal performances in GSGG based laser crystals, and imply that double-doped Yb,Er:GSGG crystal is a potential candidate as an excellent LD pumped 2.79 μm laser material.

  14. Field method for sulfide determination

    SciTech Connect

    Wilson, B L; Schwarser, R R; Chukwuenye, C O

    1982-01-01

    A simple and rapid method was developed for determining the total sulfide concentration in water in the field. Direct measurements were made using a silver/sulfide ion selective electrode in conjunction with a double junction reference electrode connected to an Orion Model 407A/F Specific Ion Meter. The method also made use of a sulfide anti-oxidant buffer (SAOB II) which consists of ascorbic acid, sodium hydroxide, and disodium EDTA. Preweighed sodium sulfide crystals were sealed in air tight plastic volumetric flasks which were used in standardization process in the field. Field standards were prepared by adding SAOB II to the flask containing the sulfide crystals and diluting it to the mark with deionized deaerated water. Serial dilutions of the standards were used to prepare standards of lower concentrations. Concentrations as low as 6 ppB were obtained on lake samples with a reproducibility better than +- 10%.

  15. Ultrafast x-ray diffraction of laser-irradiated crystals

    SciTech Connect

    Heimann, P.A.; Larsson, J.; Chang, Z.

    1997-09-01

    An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si(111) crystal and then by a sample crystal, presently InSb(111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or camshaft operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps.

  16. Double photonic crystal vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Viktorovitch, Pierre; Sciancalepore, Corrado; Bakir, Badhise Ben; Letartre, Xavier; Seassal, Christian

    2013-03-01

    The periodic patterning of the optical medium achieved through photonic crystal membranes (PCMs) can be employed for controlling the resonant coupling of external radiation continuum to above-the-light-line flat edges of the folded band structure in strongly corrugated waveguides, resulting in high reflectivity for an efficient quasi-3D light harnessing. Recently, vertical-cavity surface-emitting lasers (VCSELs) emitting in C-band using a double set of one-dimensional Si/SiO2 photonic crystals as compact, flexible, and power efficient mirrors have been realized within a mass-scale fabrication paradigm by employing standard 200-mm microelectronics pilot lines. Conceived as the basic building block for photonics-on-silicon back-end integration of group III-V laser microsources, the extreme flexibility of the novel photonic architecture enables to perform a tailored modal selection of the optical cavity, including polarization and far-field control. It also offers a wide range of functionality, such as on-chip optical routing and a variety of efficient wavelength tuning-trimming schemes. Device compactness ensures a considerable reduction in the device footprint, power consumption, and parasitics. Furthermore, high fabrication yields obtained thanks to the state-of-the-art molecular wafer bonding of III-V alloys on silicon conjugate excellent device performances with cost-effective high-throughput production, indicating strong perspective industrial potential.

  17. Intracavity second harmonic generation of chemical oxygen iodine laser with a Brewster cut LBO crystal

    NASA Astrophysics Data System (ADS)

    Shimizu, Tomohiro; Tezuka, Takeo; Chen, Kuntetsu; Hashimoto, Katsuki; Uchiyama, Taro

    1997-04-01

    Second harmonic generation of chemical oxygen iodine laser was investigated with a Brewster cut LBO crystal. By utilizing a Brewster cut LBO crystal the loss in the resonator can be suppressed. Further, by reducing crystal absorption, the crystal can't be heated and go off phase match or even crack due to thermal stress. We could obtain 16.4 W of second harmonic power and keep out the crystal from being destroyed by the damage of thermal stress.

  18. Laser-induced photoelectrochemistry. Time-resolved coulostatic-flash studies of cadmium sulfide electrodes

    SciTech Connect

    Richardson, J.H.; Perone, S.P.; Deutscher, S.B.

    1981-02-19

    Coulostatic-flash irradiation of semiconductor-liquid-junction cells with a pulsed laser source permits time-resolved measurements of photopotential transients in the nanosecond time domain. The transients observed with CdS electrodes are unusual in that they exhibit wavelength and solution dependence. Both fast (10 ns) and slow (approx. 100 ns) transients are observed in various aqueous electrolytes with irradiation near the band gap. Similar results in nonaqueous solution and with CdSe suggest that these transient photopotentials are related to processes within the semiconductor itself. A much slower (approx. 1 ..mu..s) transient is observed in polysulfide solution with irradiation in the ultraviolet; it is suggested that this transient photopotential is due to light absorption by polysulfide.

  19. A random laser made of nematic liquid crystal doped with a laser dye

    NASA Astrophysics Data System (ADS)

    Sznitko, L.; Kaliciak, K.; Adamow, A.; Mysliwiec, J.

    2016-06-01

    We report on random laser emission obtained in 5CB and E7 nematic liquid crystal (LC) mixtures doped with 1% weight to weight ratio of DCM laser dye. The LC cell was used as asymmetric planar waveguide were emission was collected from the edge of the sample. Variable stripe length method was utilized to estimate the gain and the losses coefficients. Both systems have shown the threshold energy fluence in order of several mJ/cm2. In both cases above Fredericks potential, significant increase of emission intensity was observed due to the increase of light scattering on liquid crystalline domains. Moreover the use of fifth order of diffraction grating covered with thin alumina film resulted in strong multimode and directional laser emission.

  20. Study on the laser crystal thermal compensation of LD end-pumped Nd:YAG 1319 nm/1338 nm dual-wavelength laser

    NASA Astrophysics Data System (ADS)

    Sun, R.; Wu, C. T.; Yu, M.; Yu, K.; Wang, C.; Jin, G. Y.

    2015-12-01

    The thermal model of laser diode (LD) end-pumped Nd: YAG was established. We analyzed the thermal effect of the crystal during the generation of 1319 nm/1338 nm dual-wavelength laser. Together with the bonded and non-bonded Nd:YAG crystal characteristics, we proposed to consider the bonded crystal’s internal temperature distribution of the three axes abc for the first time. The results showed that, compared with the non-bonded crystals, the bonded crystals could effectively reduce the crystal temperature. It provided a theoretical basis to solve the problem related to the thermal effect of the laser crystal and improve the laser output performance. The Nd:YAG laser crystal thermal model in this article could be widely applicable to similar laser crystals. The results provide a method to analyze and evaluate bonding crystal thermal compensation effectiveness by establishing the Nd:YAG crystal’s temperature distribution.

  1. Packaging consideration of two-dimensional polymer-based photonic crystals for laser beam steering

    NASA Astrophysics Data System (ADS)

    Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T.

    2009-02-01

    In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results were also reported.

  2. ULTRASHORT LIGHT PULSES: Formation of subfemtosecond laser pulses in aperiodically poled nonlinear-optical crystals

    NASA Astrophysics Data System (ADS)

    Shutov, I. V.; Novikov, A. A.; Chirkin, A. S.

    2008-03-01

    The method of synthesis of ultrashort laser pulses in nonlinear aperiodically poled crystals based on the simultaneous generation of several higher optical harmonics is considered. The interaction of four waves with multiple frequencies involving three mutually coupled nonlinear three-frequency processes is studied. It is shown that by introducing intense laser radiation into a crystal, pulses of duration of the order of a few hundreds of attoseconds can be produced at the crystal output.

  3. Mitigation of scattering defect and absorption of DKDP crystals by laser conditioning.

    PubMed

    Wang, Yueliang; Zhao, Yuanan; Hu, Guohang; Peng, Xiaocong; Chang, Junxiu; Xie, Xiaoyi; He, Jun; Guo, Meng; Shao, Jianda

    2015-06-15

    The variation of scattering and absorption in DKDP crystals by laser conditioning was investigated by combining light scattering technique and on-site transmittance measurement technique. Laser-induced disappearance of scattering defects was observed, and variation of transmittance was achieved. Using Mie theory, a kind of absorbing defects, aside from scattering defect, was discovered. Moreover, the experimental results demonstrated that the absorption of crystal could be mitigated by laser conditioning. PMID:26193600

  4. Recent results on high rate growth of KDP-type crystals for power laser systems

    NASA Astrophysics Data System (ADS)

    Bespalov, Viktor I.; Bredikhin, Vladimir I.; Ershov, V. P.; Zilberberg, Victor V.

    1996-02-01

    The two types of high rate growth technology of KDP-type crystal are observed. This technology will be used for effective producing of crystal elements for high-energy laser systems. The recent achievements (in particular the obtaining of 380 by 230 by 50 mm Z-plate from KDP crystal) are reported.

  5. Doping of germanium and silicon crystals with non-hydrogenic acceptors for far infrared lasers

    DOEpatents

    Haller, Eugene E.; Brundermann, Erik

    2000-01-01

    A method for doping semiconductors used for far infrared lasers with non-hydrogenic acceptors having binding energies larger than the energy of the laser photons. Doping of germanium or silicon crystals with beryllium, zinc or copper. A far infrared laser comprising germanium crystals doped with double or triple acceptor dopants permitting the doped laser to be tuned continuously from 1 to 4 terahertz and to operate in continuous mode. A method for operating semiconductor hole population inversion lasers with a closed cycle refrigerator.

  6. Mobility of Electron in DNA Crystals by Laser Radiation

    NASA Technical Reports Server (NTRS)

    Zhang, Kaixi; Zhao, Qingxun; Cui, Zhiyun; Zhang, Ping; Dong, Lifang

    1996-01-01

    The mobility of electrons in laser radiated DNA is closed to the energy transfer and energy migration of a biological molecule. Arrhenius has studied the conductivity of the electrons in a biological molecule. But his result is far from the experimental result and meanwhile the relation between some parameters in his theory and the micro-quantities in DNA is not very clear. In this paper, we propose a new phonon model of electron mobility in DNA and use Lippman-Schwinger equation and S-matrix theory to study the mobility of electrons in DNA crystal. The result is relatively close to the experiment result and some parameters in Arrhenius theory are explained in our work.

  7. Selenium Sulfide

    MedlinePlus

    Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium sulfide usually is used twice a week for the first ... it is irritating. Rinse off all of the lotion.Do not use this medication on children younger ...

  8. Chemical insights into the synthesis and properties of polycrystalline and single crystal iron scandium sulfide (FeSc2S4)

    NASA Astrophysics Data System (ADS)

    Morey, Jennifer R.; Plumb, Kemp W.; Koohpayeh, Seyed M.; Broholm, Collin L.; McQueen, Tyrel M.

    Iron scandium sulfide, FeSc2S4, has recently attracted significant theoretical and experimental interest as a candidate spin-orbital liquid. An AB2X4 spinel, FeSc2S4 (space group Fd-3m, No. 227) features a high degree of frustration associated with the Fe2+, which occupies the A-site diamond sublattice and is tetrahedrally coordinated by sulfur. The Fe2+ ion is in a high spin (S =2) state, resulting in orbital degeneracy due to a single hole on the e orbitals. We report the strides we have made to produce material in powder and single crystal form, and the relationship between the chemistry and the structural, magnetic, and thermodynamic properties of FeSc2S4. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, under Grant No. DEFG02-08ER46544.

  9. Synthesis, crystal and electronic structure of the quaternary sulfides Ln2CuMS5 (Ln=La, Ce; M=Sb, Bi)

    NASA Astrophysics Data System (ADS)

    Kussainova, Ardak M.; Akselrud, Lev G.; Suen, Nian-Tzu; Voss, Leonard; Stoyko, Stanislav; Bobev, Svilen

    2016-01-01

    The series of quaternary sulfides with general formula Ln2CuMS5 (Ln=La, Ce; M=Sb, Bi) have been synthesized by solid-state reactions. Three representative members have been structurally characterized by single-crystal X-ray diffraction. La2CuSbS5 crystallizes in a new structure type (space group Ima2 (no. 46), Z=4, a=13.401(2) Å, b=7.592(1) Å, c=7.598(1) Å, V=773.1(3) Å3). The bismuth analogs of composition La2CuBiS5 and Ce2CuBiS5 crystallize with the La2CuInSe5 structure type (space group Pnma (no. 62), Z=4). Lattice parameters for La2CuBiS5: a=11.9213(5) Å, b=3.9967(2) Å, c=17.0537(8) Å, V=812.56(7) Å3; lattice parameters for Ce2CuBiS5: a=11.9179(15) Å, b=3.9596(5) Å, c=16.955(2) Å, V=800.13(17) Å3). The similarities and the differences between the two structures are discussed. Electronic structure calculations for La2CuSbS5 and La2CuBiS5 are also presented; they suggest semiconducting behavior with energy gaps exceeding 1.7 eV.

  10. Convex Crystal X-ray Spectrometer for Laser Plasma Experiments

    SciTech Connect

    May, M; Heeter, R; Emig, J

    2004-04-15

    Measuring time and space-resolved spectra is important for understanding Hohlraum and Halfraum plasmas. Experiments at the OMEGA laser have used the Nova TSPEC which was not optimized for the OMEGA diagnostic space envelope or for the needed spectroscopic coverage and resolution. An improved multipurpose spectrometer snout, the MSPEC, has been constructed and fielded on OMEGA. The MSPEC provides the maximal internal volume for mounting crystals without any beam interferences at either 2x or 3x magnification. The RAP crystal is in a convex mounting geometry bent to a 20 cm radius of curvature. The spectral resolution, E/dE, is about 200 at 2.5 keV. The spectral coverage is 2 to 4.5 keV. The MSPEC can record four separate spectra on the framing camera at time intervals of up to several ns. The spectrometer design and initial field-test performance will be presented and compared to that of the TSPEC. Work supported by U. S. DoE/UC LLNL contract W-7405-ENG-48

  11. Nonradiative relaxation in tunable solid state laser crystals

    NASA Technical Reports Server (NTRS)

    Gayen, S. K.; Wang, W. B.; Petricevic, V.; Alfano, R. R.

    1986-01-01

    The characteristics of nonradiative transitions between the 4T2 and 2E excited states of trivalent-chromium-ion-activated ruby (containing 0.04 percent Cr2O3 by weight) and alexandrite (containing 0.4 at. percent chromium ion) laser crystals were studied using the technique described by Gayen et al. (1985). In this technique, a 527-nm pulse excites the 4T2 band of the Cr(3+), and the subsequent population kinetics among excited states is monitored by an IR picosecond probe pulse as a function of pump-probe delay. In ruby, a resolution-limited sharp rise in the excited state population was followed by a long-lifetime decay, leading to an upper limit of 7 ps for the 4T2-state nonradiative lifetime. In alexandrite, a longer rise time was followed by a multicomponent decay. A theoretical model is proposed for explaining the induced absorption and the transition dynamics observed in these crystals.

  12. Nonradiative relaxation in tunable solid-state laser crystals

    SciTech Connect

    Gayen, S.K.; Wang, W.B.; Pettricevic, V.; Alfano, R.R.

    1985-12-01

    The picosecond excite-and-probe adsorption technique is used to study the nonradiative transition dynamics between the /sup 4/T/sub 2/ and the /sup 2/ E excited states of two trivalent-chromium-ion-activated laser crystals -- ruby and alexandrite. A 527-nm 7-ps pulse excites the /sup 4/T/sub 2/ pump band of the Cr/sup 3 +/ ion in these crystals, and the subsequent population kinetics among excited states is monitored by an infrared picosecond probe pulse as a function of pump-probe delay. In ruby, a resolution-limited sharp rise in the excited-state population followed by a long-lifetime decay is observed. This leads to an upper limit of 7 ps for the /sup 4/T/sub 2/ state nonradiative lifetime in ruby. In alexandrite, a longer risetime followed by a multicomponent decay is observed. A theoretical model is proposed for explaining the observed induced absorption and kinetics from excited states of the Cr/sup 3 +/ ion in these crystals. In alexandrite, vibrational relaxation rate for transition from the higher-lying vibrational states of /sup 4/T/sub 2/ to the bottom of /sup 4/T/sub 2/ energy parabola is estimated to be approx. 6 x 10/sup 10/ (relaxation time approx. 17 ps). Transition rate from the bottom of /sup 4/T/sub 2/ parabola to the /sup 2/E is found to be of the order of 3.7 x 10/sup 10//s (relaxation time approx. 27 ps), while the thermal refilling rate of /sup 4/T/sub 2/ from /sup 2/E is approx. 3.5 x 10/sup 9//s. The infrared absorption cross section from the excited /sup 4/T/sub 2/ state is estimated to about an order-of-magnitude higher than that from the metastable /sup 2/E level.

  13. Effect of crystallinity on the bulk laser damage and UV absorption of CLBO crystals

    NASA Astrophysics Data System (ADS)

    Ono, R.; Kamimura, T.; Fukumoto, S.; Yap, Y. K.; Yoshimura, M.; Mori, Y.; Sasaki, T.; Yoshida, K.

    2002-04-01

    The influence of crystal defects on bulk laser damage and UV absorption in CsLiB 6O 10 (CLBO) crystals was investigated. A CLBO crystal grown by the solution stirring method had a 2.5-fold higher laser-induced damage threshold (maximum) than conventional CLBO crystals. This highly damage-resistant CLBO crystal had a lower dislocation density (best value, 6.6×10 3/cm 2) than conventional CLBO crystals (best value, 15.0×10 3/cm 2). The temperature increase during UV generation on the output surface of highly damage-resistant CLBzO crystal was lower than that detected in conventional CLBO crystal.

  14. Photonic crystal lasers using wavelength-scale embedded active region

    NASA Astrophysics Data System (ADS)

    Matsuo, Shinji; Sato, Tomonari; Takeda, Koji; Shinya, Akihiko; Nozaki, Kengo; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya; Fujii, Takuro; Hasebe, Koichi; Kakitsuka, Takaaki

    2014-01-01

    Lasers with ultra-low operating energy are desired for use in chip-to-chip and on-chip optical interconnects. If we are to reduce the operating energy, we must reduce the active volume. Therefore, a photonic crystal (PhC) laser with a wavelength-scale cavity has attracted a lot of attention because a PhC provides a large Q-factor with a small volume. To improve this device's performance, we employ an embedded active region structure in which the wavelength-scale active region is buried with an InP PhC slab. This structure enables us to achieve effective confinement of both carriers and photons, and to improve the thermal resistance of the device. Thus, we have obtained a large external differential quantum efficiency of 55% and an output power of -10 dBm by optical pumping. For electrical pumping, we use a lateral p-i-n structure that employs Zn diffusion and Si ion implantation for p-type and n-type doping, respectively. We have achieved room-temperature continuous-wave operation with a threshold current of 7.8 µA and a maximum 3 dB bandwidth of 16.2 GHz. The results of an experimental bit error rate measurement with a 10 Gbit s-1 NRZ signal reveal the minimum operating energy for transferring a single bit of 5.5 fJ. These results show the potential of this laser to be used for very short reach interconnects. We also describe the optimal design of cavity quality (Q) factor in terms of achieving a large output power with a low operating energy using a calculation based on rate equations. When we assume an internal absorption loss of 20 cm-1, the optimized coupling Q-factor is 2000.

  15. Coilable single crystal fibers of doped-YAG for high power laser applications

    NASA Astrophysics Data System (ADS)

    Maxwell, Gisele; Soleimani, Nazila; Ponting, Bennett; Gebremichael, Eminet

    2013-05-01

    Single crystal fibers are an intermediate between laser crystals and doped glass fibers. They can combine the advantages of both by guiding laser light and matching the efficiencies found in bulk crystals, making them ideal candidates for high-power laser and fiber laser applications. In particular, a very interesting feature of single crystal fiber is that they can generate high power in the eye-safe range (Er:YAG) with a high efficiency, opening new possibilities for portable directed energy weapons. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc…) that will exhibit good waveguiding properties. Direct growth or a combination of growth and cladding experiments are described. We have, to date, demonstrated the growth of a flexible foot long 45 microns doped YAG fiber. Scattering loss measurements at visible wavelengths along with dopant profile characterization are also presented. Laser characterization for these fibers is in progress.

  16. Nd:YVO4 and YVO4 laser crystal integration by a direct bonding technique

    NASA Astrophysics Data System (ADS)

    Sugiyama, Akira; Fukuyama, Hiroyasu; Katsumata, Masaki; Okada, Yukikatsu

    2003-04-01

    Laser crystal integration using a neodymium-doped yttrium vanadate (or orthovanadate) laser crystal, and non-doped yttrium vanadate crystals that function as cold fingers has been demonstrated. In our bonding technique of YVO4 crystals, a newly developed dry etching process was adopted in the preparation for contact of mechanically polished surfaces. In the successive heat treatment process, temperature optimization was essential to get rid of precipitation of vanadic acid caused by the thermo-chemical reaction in a vacuum furnace. The bonded surface of 5 mm × 6 mm was studied via optical characteristics and magnified inspection. In addition, we also compared the integrated crystal with a normal one in laser output power pumped by a CW laser diode. From these experiments, it was clear that the integrated Nd:YVO4 laser crystal, securing the well-improved thermal conductivity, can increase laser output power nearly twice that of the conventional single crystal which was cracked in high power laser pumping due to its intrinsic poor thermal conductivity.

  17. Dynamic crystallization during non-isothermal laser treatment of Fe-Si-B metallic glass

    NASA Astrophysics Data System (ADS)

    Joshi, Sameehan S.; Gkriniari, Anna V.; Katakam, Shravana; Dahotre, Narendra B.

    2015-12-01

    Fe-Si-B metallic glass foils were subjected to non-isothermal laser treatment to induce crystallization, and the effect of laser fluence on crystallite size was investigated. Temperature, and corresponding heating and cooling rates generated during laser processing of metallic glass were estimated using multiphysics computational models. Estimation of the onset and arrest temperatures of crystallization was based on the results obtained using the thermal model. Crystallite size was measured with the aid of x-ray diffraction and transmission electron microscopy. The fraction of crystallization was estimated with a differential scanning calorimetry. Crystallite size increased with laser fluence in the initial stages and saturated later within the laser fluence range (0.6-0.9 J mm-2) explored in the current efforts. The fraction of crystallization steadily increased with the increase in laser fluence. Unlike conventional processes, in the present situation the dynamic effects during laser processing dominated the crystallization and growth process. Rapid heating rates during laser processing led to a shift in the onset of crystallization temperature to a higher level. Faster cooling rates prematurely arrested the crystallite growth yielding much finer crystallite sizes.

  18. The electrically and magnetically controllable random laser from dye-doped liquid crystals

    NASA Astrophysics Data System (ADS)

    Ye, Lihua; Liu, Bo; Zhao, Chong; Wang, Yan; Cui, Yiping; Lu, Yanqing

    2014-08-01

    The electrically and magnetically controllable random laser from dye-doped liquid crystals (LCs) was studied. The rubbing-alignment of the polyimide in the LC cell influenced the threshold voltage and the response time of the electrically controllable random laser. When the applied electric field was increased, the response time of the random laser decreased. The magnetically controllable random laser was studied in the hollow fiber structure, of which the response time was less than 1 s.

  19. Laser processing and in-situ diagnostics for crystallization: from thin films to nanostructures

    NASA Astrophysics Data System (ADS)

    Yoo, Jae-Hyuck; In, Jung Bin; Zheng, Andy Cheng; Ryu, Sang-Gil; Hwang, David J.; Xiang, Bin; Minor, Andrew M.; Grigoropoulos, Costas P.

    2014-10-01

    Recent work on laser-induced crystallization of thin films and nanostructures is presented. Characterization of the morphology of the crystallized area reveals the optimum conditions for sequential lateral growth in a-Si thin films under high-pulsed laser irradiation. Silicon crystal grains of several micrometers in lateral dimensions can be obtained reproducibly. Laser-induced grain morphology change is observed in silicon nanopillars under a transmission electron microscopy (TEM) environment. The TEM is coupled with a near-field scanning optical microscopy (NSOM) pulsed laser processing system. This combination enables immediate scrutiny on the grain morphologies that the pulsed laser irradiation produces. The tip of the amorphous or polycrystalline silicon pillar is transformed into a single crystalline domain via melt-mediated crystallization. The microscopic observation provides a fundamental basis for laser-induced conversion of amorphous nanostructures into coarse-grained crystals. A laser beam shaping strategy is introduced to control the stochastic dewetting of ultrathin silicon film on a foreign substrate under thermal stimulation. Upon a single pulse irradiation of the shaped laser beam, the thermodynamically unstable ultrathin silicon film is dewetted from the glass substrate and transformed to a nanodome. The results suggest that the laser beam shaping strategy for the thermocapillary-induced de-wetting combined with the isotropic etching is a simple alternative for scalable manufacturing of array of nanostructures.

  20. Cantilever-enhanced photoacoustic detection of hydrogen sulfide (H2S) using NIR telecom laser sources near 1.6 µm

    NASA Astrophysics Data System (ADS)

    Moser, H.; Lendl, B.

    2016-04-01

    Sensitive detection of hydrogen sulfide (H2S) at different pressure levels using a cantilever-enhanced photoacoustic detector in combination with a telecom NIR L-band laser source is reported. Amplitude and wavelength modulation schemes for photoacoustic signal generation are compared. A detection limit (3 σ) of 8 ppmv was achieved for amplitude modulation mode with a 50-s averaging time for the H2S absorption near 1.6 µm. As compared to simulated spectra, the cantilever-enhanced photoacoustic detection approach in combination with the sufficiently stable and narrow bandwidth NIR laser is able to reproduce the rotationally resolved H2S spectrum at low pressures of 300 mbar.

  1. Near-infrared femtosecond laser-induced crystallization of amorphous silicon

    SciTech Connect

    Shieh, J.-M.; Chen, Z.-H.; Dai, B.-T.; Wang, Y.-C.; Zaitsev, Alexei; Pan, C.-L.

    2004-08-16

    Amorphous silicon (a-Si) was crystallized by femtosecond laser annealing (FLA) using a near-infrared ({lambda}{approx_equal}800 nm) ultrafast Ti:sapphire laser system. The intense ultrashort laser pulses lead to efficient nonlinear photoenergy absorption and the generation of very dense photoexcited plasma in irradiated materials, enabling nonlinear melting on transparent silicon materials. We studied the structural characteristics of recrystallized films and found that FLA assisted by spatial scanning of laser strip spot constitutes superlateral epitaxy that can crystallize a-Si films with largest grains of {approx}800 nm, requiring laser fluence as low as {approx}45 mJ/cm{sup 2}, and low laser shots. Moreover, the optimal annealing conditions are observed with a significant laser-fluence window ({approx}30%)

  2. A method to give chemically stabilities of photoelectrodes for water splitting: Compositing of a highly crystalized TiO2 layer on a chemically unstable Cu2O photocathode using laser-induced crystallization process

    NASA Astrophysics Data System (ADS)

    Nishikawa, Masami; Fukuda, Masayuki; Nakabayashi, Yukihiro; Saito, Nobuo; Ogawa, Nobuhiro; Nakajima, Tomohiko; Shinoda, Kentaro; Tsuchiya, Tetsuo; Nosaka, Yoshio

    2016-02-01

    To prevent the self-reduction of the Cu2O photocathode for solar hydrogen production, we developed a compositing process of a highly crystalized TiO2 layer on the Cu2O photocathode using an excimer-laser-assisted metal-organic deposition (ELAMOD) process. The TiO2 layer was successfully crystalized without oxidation of Cu2O to CuO mainly owing to a photothermal effect with nanosecond duration time induced by laser absorption of the TiO2 precursor while the crystallization of the TiO2 layer by usual furnace heating process was accompanied by oxidation of Cu2O which degrade the water reduction ability. On the TiO2/Cu2O photocathode prepared by ELAMOD process, the self-reduction of Cu2O did not occur and then photocurrent due to water reduction was constant with reaction time while on the bare Cu2O photocathode, the photocurrent decreased owing to the occurrence of the self-reduction. This indicated that reaction stability of the photocathode was largely enhanced after compositing of the crystallineTiO2 layer. This ELAMOD process would be applicable for any kinds of chemically unstable photoelectrodes containing non-oxides such as sulfides and phosphides, and therefore any kinds of photoelectrodes would have potentials toward a practical use by improving their chemical stabilities.

  3. Spectroscopy and laser performance of Nd:Lu_2O_3 crystal

    NASA Astrophysics Data System (ADS)

    Hao, Liangzhen; Wu, Kui; Cong, Hengjiang; Yu, Haohai; Zhang, Huaijin; Wang, Zhengping; Wang, Jiyang

    2011-08-01

    The spectra of Nd3+:Lu2O3 crystal have been examined at room temperature. Judd-Ofelt theory was applied to calculate the spectral parameters of the crystal. With a laser diode as pump source, a continuous-wave laser output power of 2.81 W is achieved, which is the highest value ever reported in this crystals to our knowledge, and its wavelength is also found to be dual-wavelength. Because of the emission cross-section at 1076 nm and 1080 nm are almost identical, laser oscillation for such two wavelengths can be obtained simultaneously. All the properties show that Nd:Lu2O3 is an excellent crystal for laser applications.

  4. Proper Criteria of Nonlinear Optical Crystals for Space Laser Systems and the Possible Causes for Space Laser Failures

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A.; Dowdye, Edward; Jamison, Tracee; Canham, John

    2005-01-01

    NASA is striving to develop a scientific understanding of the universe and the Earth-Sun System and its response to natural or human-induced changes. Space lasers are vital tools for NASA's missions to advance our understanding of space research and improving our prediction capability for climate, weather, and natural hazards. Unfortunately, several past space missions that utilized lasers proved to be short-lived and unreliable. In this paper, we are reporting the results of our investigations on several nonlinear optical crystals, which are vital components in space lasers. Examples of these investigations are: The correlation of the phase diagrams of nonlinear crystals and its durability, the effect of radiating these crystals by high-energy beams of protons and gamma on their second harmonic efficiency, and measurements of the high-energy and low-energy thresholds for each crystal before and after irradiation. A set of proper criteria for these crystals will be presented. We will also discuss the possible causes of failures in a space laser and propose a solution to a contamination problem in all future space lasers.

  5. Nematic polymer liquid-crystal wave plate for high-power lasers at 1054 nm

    SciTech Connect

    Kreuzer, F. ); Korenic, E.M.; Jacobs, S.D.; Houghton, J.K.; Schmid, A. )

    1994-04-01

    A nematic polymer liquid crystal is used to construct wave plates for use at 1054 nm. Three methods of wave-plate construction are discussed: double substrate with fiber spacers in homogeneous distribution, double substrate with fiber spacers in annular distribution, and single substrate. The polymer liquid crystal shows high laser-damage resistance, making it particularly useful for high-peak-power laser applications. Alignment techniques and measurement of birefringence for the highly viscous polymer are described.

  6. Laser quality single crystal specimens. Final report, 27 September-30 November 1980

    SciTech Connect

    Pollak, T.

    1980-12-15

    Research and development on the crystalline laser host, YLF (LiYF4), was completed during this program. The study involved crystal growth and sample fabrication of rare earth doped YLF. These materials were then evaluated at NRL. A total of 16 laser samples, eight different compositions, were processed during this contract period.

  7. Electro-optic modulator for infrared laser using gallium arsenide crystal

    NASA Technical Reports Server (NTRS)

    Walsh, T. E.

    1968-01-01

    Gallium arsenide electro-optic modulator used for infrared lasers has a mica quarter-wave plate and two calcite polarizers to amplitude or phase modulate an infrared laser light source in the wavelength range from 1 to 3 microns. The large single crystal has uniformly high resistivities, is strain free, and comparable in quality to good optical glass.

  8. Photonic crystal surface-emitting lasers enabled by an accidental Dirac point

    SciTech Connect

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2014-12-02

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-plane feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.

  9. Nanostructuring of single-crystal silicon carbide by picosecond UV laser radiation

    SciTech Connect

    Barmina, E V; Serkov, A A; Shafeev, G A

    2013-12-31

    Surface nanostructures are produced on single-crystal 4H-SiC by laser ablation in water using a Nd : YAG laser (355-nm wavelength, 10-ps pulse duration) as a radiation source. The morphology of the nanostructured surface and the nanostructure size distribution are examined in relation to the energy density of the incident laser beam. The potential of the described process for improving the luminosity of light-emitting diodes on silicon carbide substrates is discussed. (letters)

  10. A multi-dimensional investigation of laser conditioning in KDP and DKDP crystals

    SciTech Connect

    DeMange, P; Negres, R A; Carr, C W; Radousky, H B; Demos, S G

    2005-10-31

    We present a multi-parametric experimental investigation of laser conditioning efficiency and behavior in KDP and DKDP crystals as a function of laser wavelength, fluence, number of pulses, and conditioning protocol. Our results expose complex behaviors associated with damage initiation and conditioning at different wavelengths that provide a major step towards revealing the underlying physics. In addition, we reveal the key parameters for optimal improvement to the damage performance from laser conditioning.

  11. Holographic recording in a doubly doped lithium niobate crystal with two wavelengths: a blue laser diode and a green laser

    NASA Astrophysics Data System (ADS)

    Komori, Yuichi; Ishii, Yukihiro

    2010-08-01

    A doubly-doped LiNbO3 (LN) crystal has been well used as a nonvolatile two-wavelength recording material. By using two levels of the crystal, two-kind holograms can be recorded on one crystal; a hologram is recorded with a 405-nm blue laser diode (LD) for a deep Mn level, and another hologram is with a 532-nm green laser for a shallow Fe level. The recording capacity doubles. A 780-nm LD is non-volatile reconstructing source since the LD line is insensitive to both levels. Multiplexed reconstructed images are demonstrated by using a sharp angular selectivity of a volume LN crystal keeping Bragg condition with spherical reconstructions.

  12. Syntheses, crystal structures, and NLO properties of the quaternary sulfides RE{sub 3}Sb{sub 0.33}SiS{sub 7} (RE=La, Pr)

    SciTech Connect

    Zhao, Hua-Jun

    2015-07-15

    Two quaternary sulfides RE{sub 3}Sb{sub 0.33}SiS{sub 7} (RE=La, Pr) have been prepared from stoichiometric mixtures of elements at 1223 K in an evacuated silica tube. They are the first examples of chalcogenides in the quaternary RE/Si/Sb/Q (RE=rare earth metal; Q=S, Se, Te) system. These two isostructural materials crystallize in the Ce{sub 3}Al{sub 1.67}S{sub 7} structure type in the hexagonal space group P6{sub 3}. Their structure features one-dimensional chains of face-sharing SbS{sub 6} octahedra running parallel to the c direction surrounded by the discrete SiS{sub 4} tetrahedra and RE cations. The La{sub 3}Sb{sub 0.33}SiS{sub 7} exhibits a SHG signal about 0.5 times that of the commercially used IR NLO material AgGaS{sub 2} at 2.05 μm laser. The optical gap of 1.92 eV for La{sub 3}Sb{sub 0.33}SiS{sub 7} was deduced from UV/Vis reflectance spectroscopy. - Graphical abstract: The RE{sub 3}Sb{sub 0.33}SiS{sub 7} (RE=La, Pr), crystalling in the Ce{sub 3}Al{sub 1.67}S{sub 7} structure type, have been prepared. The La{sub 3}Sb{sub 0.33}SiS{sub 7} exhibits a SHG signal about 0.5 times that of the IR NLO material AgGaS{sub 2}. - Highlights: • The RE{sub 3}Sb{sub 0.33}SiS{sub 7} (RE=La, Pr), crystalling in the Ce{sub 3}Al{sub 1.67}S{sub 7} structure type, have been prepared. • The La{sub 3}Sb{sub 0.33}SiS{sub 7} exhibits a SHG signal about 0.5 times that of the IR NLO material AgGaS{sub 2}. • The optical gap of 1.92 eV for La{sub 3}Sb{sub 0.33}SiS{sub 7} was deduced from UV/Vis reflectance spectroscopy.

  13. Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals

    SciTech Connect

    Wagner, Frank R. Natoli, Jean-Yves; Akhouayri, Hassan; Commandré, Mireille; Duchateau, Guillaume

    2014-06-28

    Due to its high effective nonlinearity and the possibility to produce periodically poled crystals, potassium titanyl phosphate (KTiOPO{sub 4}, KTP) is still one of the economically important nonlinear optical materials. In this overview article, we present a large study on catastrophic nanosecond laser induced damage in this material and the very similar RbTiOPO{sub 4} (RTP). Several different systematic studies are included: multiple pulse laser damage, multi-wavelength laser damage in KTP, damage resistance anisotropy, and variations of the laser damage thresholds for RTP crystals of different qualities. All measurements were carried out in comparable experimental conditions using a 1064 nm Q-switched laser and some were repeated at 532 nm. After summarizing the experimental results, we detail the proposed model for laser damage in this material and discuss the experimental results in this context. According to the model, nanosecond laser damage is caused by light-induced generation of transient laser-damage precursors which subsequently provide free electrons that are heated by the same nanosecond pulse. We also present a stimulated Raman scattering measurement and confront slightly different models to the experimental data. Finally, the physical nature of the transient damage precursors is discussed and similarities and differences to laser damage in other crystals are pointed out.

  14. Diode-pumped efficient laser action of Yb3+:LYSO crystal

    NASA Astrophysics Data System (ADS)

    Du, Juan; Liang, Xiaoyan; Xu, Yi; Li, Ruxin; Zhao, Guangjun; Yan, Chengfeng; Su, Liangbi; Xu, Jun; Xu, Zhizhan

    2007-03-01

    Effective diode-pumped continuous wave (CW) tunable laser action of a new alloyed crystal Yb:LYSO is demonstrated. The alloyed LYSO crystal possesses the desirable physical and laser performance of La2SiO5 (LSO), as well as the favorable growth properties and costs of Y2SiO5 (YSO) in the same time. With a 5 at.-% Yb:LYSO sample, the output power of 2.84 W at 1085 nm and an optical-to-optical conversion efficiency of 54.5% are achieved. Its laser wavelength can be tuned over a broad range of 81 nm, from 1030 to 1111 nm.

  15. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    PubMed

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection. PMID:20862016

  16. Mid-infrared photothermal heterodyne spectroscopy in a liquid crystal using a quantum cascade laser

    PubMed Central

    Mërtiri, Alket; Jeys, Thomas; Liberman, Vladimir; Hong, M. K.; Mertz, Jerome; Altug, Hatice; Erramilli, Shyamsunder

    2012-01-01

    We report a technique to measure the mid-infrared photothermal response induced by a tunable quantum cascade laser in the neat liquid crystal 4-octyl-4′-cyanobiphenyl (8CB), without any intercalated dye. Heterodyne detection using a Ti:sapphire laser of the response in the solid, smectic, nematic and isotropic liquid crystal phases allows direct detection of a weak mid-infrared normal mode absorption using an inexpensive photodetector. At high pump power in the nematic phase, we observe an interesting peak splitting in the photothermal response. Tunable lasers that can access still stronger modes will facilitate photothermal heterodyne mid-infrared vibrational spectroscopy. PMID:22912508

  17. Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation.

    PubMed

    Jia, Yuechen; Dong, Ningning; Chen, Feng; Vázquez de Aldana, Javier R; Akhmadaliev, Sh; Zhou, Shengqiang

    2012-04-23

    We report on the fabrication of ridge waveguide in Nd:GGG crystal by using swift C(5+) ion irradiation and femtosecond laser ablation. At room temperature continuous wave laser oscillation at wavelength of ~1063 nm has been realized through the optical pump at 808 nm with a slope efficiency of 41.8% and the pump threshold is 71.6 mW. PMID:22535068

  18. Analog Experiments on Sulfide Foams in Magmatic Ore Deposits

    NASA Astrophysics Data System (ADS)

    Leitch, A. M.; Dahn, D.; Zavala, K.

    2009-05-01

    Metal sulfides form as an immiscible phase from silicate magmas. Dynamic mingling and unmingling of the two phases is important for the development of economic deposits: mingling promotes enrichment of the sulfide in valuable metals, and subsequent unmingling generates massive sulfide. Analog experiments were carried out to investigate mingling processes in immiscible systems, using oil, water and small beads to represent magma, sulfide liquid and silicate crystals. Stirring or injection led to the formation of a foam of analog sulfide droplets within an analog silicate framework. We propose that the partial collapse of such a foam explains massive sulfide lenses at the Voisey's Bay magmatic sulfide deposit, and that crystallization of silicate crystals in the remaining foam walls generates 'net-textured' ores. In the experiments, solid particles had a profound effect on unmingling: analog sulfide droplets were stably contained within analog crystal-rich magma and did not coalesce. We therefore suggest that 'net' and 'leopard' textures in disseminated sulfides indicate mingling of sulfide with crystal-poor magma, whereas isolated disseminated patches of sulfide indicate mingling with a crystal-rich magma.

  19. Far-field detection system for laser beam and crystal alignment

    NASA Astrophysics Data System (ADS)

    Zhang, Jiachen; Liu, Daizhong; Zhu, Baoqiang; Tang, Shunxing; Gao, Yanqi

    2016-03-01

    Laser beam far-field alignment as well as frequency-doubling and frequency-tripling crystal adjustment is very important for high-power laser facility. Separate systems for beam and crystal alignment are generally used while the proposed approach by off-axial grating sampling share common optics for these two functions, reducing both space and cost requirements. This detection system has been demonstrated on the National Laser Facility of Israel. The experimental results indicate that the average far-field alignment error is <5% of the spatial filter pinhole diameter, average autocollimation angle error of crystals is <10 μrad, and average frequency-tripling conversion efficiency is 69.3%, which meet the alignment system requirements on the beam direction and crystals.

  20. Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses.

    PubMed

    Miura, K; Qiu, J; Mitsuyu, T; Hirao, K

    2000-03-15

    We report on space-selective growth of a second-harmonic-generation beta-BaB(2)O(4) (BBO) crystal inside a BaO-Al(2)O(3)-B(2)O(3) glass sample at the focal point of an 800-nm femtosecond laser beam. A spherical heated region was formed during the focused laser irradiation through observation with an optical microscope. We moved the heated region by changing the position of the focal point of the laser beam relative to the glass sample. We grew BBO crystal continuously in the glass sample by adjusting the moving speed of the heated zone. Our results demonstrate that functional crystals can be formed three dimensionally in glasses by use of a nonresonant ultrashort pulsed laser. PMID:18059895

  1. Effect of surface morphology on laser-induced crystallization of amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Jin, Jing; Wang, Guohua; Shi, Weimin; Yang, Weiguang; Yuan, Zhijun; Cao, Zechun; Zhou, Jun; Lou, Qihong; Liu, Jin; Wei, Guangpu

    2013-12-01

    The effect of surface morphology on laser-induced crystallization of hydrogenated intrinsic amorphous silicon (a-Si:H) thin films deposited by PECVD is studied in this paper. The thin films are irritated by a frequency-doubled (λ=532 nm) Nd:YAG pulsed nanosecond laser. An effective melting model is built to identify the variation of melting regime influenced by laser crystallization. Based on the experimental results, the established correlation between the grain growth characterized by AFM and the crystalline fraction (Xc) obtained from Raman spectroscopy suggests that the crystallized process form amorphous phase to polycrystalline phase. Therefore, the highest crystalline fraction (Xc) is obtained by a optimized laser energy density.

  2. Synthesis and magnetic properties of the chromium-doped iron sulfide Fe1-xCrxS single crystalline nanoplates with a NiAs crystal structure.

    PubMed

    Starchikov, S S; Lyubutin, I S; Lin, Chun-Rong; Tseng, Yaw-Teng; Funtov, K O; Ogarkova, Yu L; Dmitrieva, T V; Ivanova, A G

    2015-06-28

    Single crystalline iron sulfide nanoparticles doped with chromium Fe1-xCrxS (0 ≤x≤ 0.15) have been successfully prepared by a thermal decomposition method. The particles are self-organized into the single crystalline plates with the accurate hexagonal shape and dimensions up to 1 μ in plane and about 30-40 nm in thickness. The samples have the NiAs-type crystal structure (P63/mmc) at all Cr concentrations up to x = 0.15. Fe(57)-Mössbauer spectroscopy data reveal four nonequivalent iron sites in these nanocrystals related to the different number of cation vacancies in neighboring of the iron atoms. A 2C-type superstructure or a mixture of 2C and 3C superstructures of vacancy ordering can appear in these samples. It was established that in the Fe1-xCrxS series chromium prefers to replace iron in the cation layers containing vacancies at 0.00 < x < 0.10 and Cr atoms occupy both iron and vacant sites at x > 0.10. The specific magnetic properties, which can be tuned by chromium doping, enable potential applications of these nanoparticles in technical devices using the material with thermally activated magnetic memory, for example, switches or storages. PMID:26018943

  3. Laser radiation frequency doubling in a single-crystal fibre based on a stoichiometric LiNbO{sub 3} crystal

    SciTech Connect

    Kashin, V V; Nikolaev, D A; Rusanov, S Ya; Tsvetkov, V B

    2015-01-31

    We demonstrate the employment of single-crystal optical fibres based on lithium niobate for doubling the laser radiation frequency. The measured characteristics of the fibre confirm its high quality and spatial homogeneity. Parameters of the frequency doublers for neodymium laser radiation (λ = 1 mm) based on fibre and bulk single crystals are compared. Single crystals are grown by the method of laser-heated pedestal growing with heating by radiation of a CO{sub 2} laser (LHPG-method). (nonlinear optical phenomena)

  4. Photonic crystal Fano laser: terahertz modulation and ultrashort pulse generation.

    PubMed

    Mork, J; Chen, Y; Heuck, M

    2014-10-17

    We suggest and analyze a laser with a mirror realized by Fano interference between a waveguide and a nanocavity. For small-amplitude modulation of the nanocavity resonance, the laser can be modulated at frequencies exceeding 1 THz, not being limited by carrier dynamics as for conventional lasers. For larger modulation, a transition from pure frequency modulation to the generation of ultrashort pulses is observed. The laser dynamics is analyzed by generalizing the field equation for conventional lasers to account for a dynamical mirror, described by coupled mode theory. PMID:25361259

  5. Selenium sulfide

    Integrated Risk Information System (IRIS)

    Selenium sulfide ; CASRN 7446 - 34 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  6. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    Hydrogen sulfide ; 7783 - 06 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  7. Carbonyl sulfide

    Integrated Risk Information System (IRIS)

    Carbonyl sulfide ; CASRN 463 - 58 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  8. Passively Q-switched microchip lasers based on Yb:YAG/Cr4+:YAG composite crystal

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Dong, Jun

    2014-02-01

    Efficient passively Q-switched microchip laser based on Yb:YAG/Cr4+:YAG composite crystal has been demonstrated under high brightness single-emitter laser-diode pumping. Maximum average output power of 1.5 W was obtained when the absorbed pump power was 3.65 W, the corresponding optical-to-optical efficiency was over 41%. The slope efficiency was 52.3%. The effect of the cavity length on the performance of Yb:YAG/Cr4+:YAG composite crystal passively Q-switched microchip lasers was investigated. Laser pulses at 1030 nm with pulse width of 466 ps and peak power of 91 kW were achieved with cavity length of 1.7 mm, while laser pulses with pulse width of 665 ps and peak power of 79 kW were obtained with cavity length of 3.7 mm.

  9. Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain

    NASA Astrophysics Data System (ADS)

    Cha, Hyungrae; Bae, Seunghwan; Lee, Myungjae; Jeon, Heonsu

    2016-05-01

    We report optically pumped room temperature single mode laser that contains a thin film of hybrid perovskite, an emerging photonic material, as gain medium. Two-dimensional square lattice photonic crystal (PhC) backbone structure enables single mode laser operation via a photonic bandedge mode, while a thin film of methyl-ammonium lead iodide (CH3NH3PbI3) spin-coated atop provides optical gain for lasing. Two kinds of bandedge modes, Γ and M, are employed, and both devices laser in single mode at similar laser thresholds of ˜200 μJ/cm2 in pulse energy density. Polarization dependence measurements reveal a clear difference between the two kinds of bandedge lasers: isotropic for the Γ-point laser and highly anisotropic for the M-point laser. These observations are consistent with expected modal properties, confirming that the lasing actions indeed originate from the corresponding PhC bandedge modes.

  10. Contamination and Radiation Effects on Nonlinear Crystals for Space Laser Systems

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossain A.; Dowdye, Edward; Jamison, Tracee; Canham, John; Jaeger, Todd

    2005-01-01

    Space Lasers are vital tools for NASA s space missions and military applications. Although, lasers are highly reliable on the ground, several past space laser missions proved to be short-lived and unreliable. In this communication, we are shedding more light on the contamination and radiation issues, which are the most common causes for optical damages and laser failures in space. At first, we will present results based on the study of liquids and subsequently correlate these results to the particulates of the laser system environment. We present a model explaining how the laser beam traps contaminants against the optical surfaces and cause optical damages and the role of gravity in the process. We also report the results of the second harmonic generation efficiency for nonlinear optical crystals irradiated with high-energy beams of protons. In addition, we are proposing to employ the technique of adsorption to minimize the presence of adsorbing molecules present in the laser compartment.

  11. Liquid immiscibility between arsenide and sulfide melts: evidence from a LA-ICP-MS study in magmatic deposits at Serranía de Ronda (Spain)

    NASA Astrophysics Data System (ADS)

    Piña, R.; Gervilla, F.; Barnes, S.-J.; Ortega, L.; Lunar, R.

    2015-03-01

    The chromite-Ni arsenide (Cr-Ni-As) and sulfide-graphite (S-G) deposits from the Serranía de Ronda (Málaga, South Spain) contain an arsenide assemblage (nickeline, maucherite and nickeliferous löllingite) that has been interpreted to represent an arsenide melt and a sulfide-graphite assemblage (pyrrhotite, pentlandite, chalcopyrite and graphite) that has been interpreted to represent a sulfide melt, both of which have been interpreted to have segregated as immiscible liquids from an arsenic-rich sulfide melt. We have determined the platinum-group element (PGE), Au, Ag, Se, Sb, Bi and Te contents of the arsenide and sulfide assemblages using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to establish their partitioning behaviour during the immiscibility of an arsenide melt from a sulfide melt. Previous experimental work has shown that PGE partition more strongly into arsenide melts than into sulfide melts and our results fit with this observation. Arsenide minerals are enriched in all PGE, but especially in elements with the strongest affinity for the arsenide melt, including Ir, Rh and Pt. In contrast and also in agreement with previous studies, Se and Ag partition preferentially into the sulfide assemblage. The PGE-depleted nature of sulfides in the S-G deposits along with the discordant morphologies of the bodies suggest that these sulfides are not mantle sulfides, but that they represent the crystallization product of a PGE-depleted sulfide melt due to the sequestering of PGE by an arsenide melt.

  12. Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing.

    PubMed

    Nie, Weijie; Cheng, Chen; Jia, Yuechen; Romero, Carolina; Vázquez de Aldana, Javier R; Chen, Feng

    2015-05-15

    Low-loss depressed cladding waveguides have been produced in Nd:YAP laser crystal by using direct femtosecond laser writing. Under optical pump at 812 nm at room temperature, continuous-wave simultaneous dual-wavelength laser oscillations at 1064 and 1079 nm, both along TM polarization, have been realized in the waveguiding structures. It has been found that, with the variation of pump polarization, the intensity ratio of 1064 and 1079 nm emissions varies periodically, while the polarization of output dual-wavelength laser remains unchanged. The maximum output power achieved for the Nd:YAP waveguide lasers is ∼200  mW with a slope efficiency of 33.4%. PMID:26393759

  13. Observation of lattice defects in orthorhombic hen-egg white lysozyme crystals with laser scattering tomography

    NASA Astrophysics Data System (ADS)

    Sato, K.; Fukuba, Y.; Mitsuda, T.; Hirai, K.; Moriya, K.

    1992-08-01

    The effectivity of using laser scattering tomography (LST) as a nondestructive technique for finding lattice defects in protein crystals is demonstrated using an orthorhombic egg-white lysozyme crystal grown by a batch method. It was found that LST figures could be observed from the crystal portions where no defects were detectable by the naked eye or optical microscopy; the number of microdefects revealed in the LST patterns increased on approaching the crystal surface. Two types of defects were differentiated by polarization analysis: (1) point-type defects, assumed to be microdefects such as vacancies, precipitates, or impurities, and (2) bulk-type defects, assumed to correspond to inclusions.

  14. High-energy picosecond hybrid fiber/crystal laser for thin films solar cells micromachining

    NASA Astrophysics Data System (ADS)

    Lecourt, Jean-Bernard; Boivinet, Simon; Bertrand, Anthony; Lekime, Didier; Hernandez, Yves

    2015-05-01

    We report on an hybrid fiber/crystal ultra-short pulsed laser delivering high pulse energy and high peak power in the picosecond regime. The laser is composed of a mode-lock fiber oscillator, a pulse picker and subsequent fiber amplifiers. The last stage of the laser is a single pass Nd:YVO4 solid-state amplifier. We believe that this combination of both technologies is a very promising approach for making efficient, compact and low cost lasers compatible with industrial requirements.

  15. Far-field detection system for laser beams alignment and crystals alignment

    NASA Astrophysics Data System (ADS)

    Liu, D.; Qin, H.; Zhu, B.

    2015-08-01

    Laser beams far-field alignment is very important for the high power laser facility as well as the frequency doubling crystals adjustment. Traditional beams alignment system and crystals alignment system are separated. That means, they use different optical image systems and CCD cameras, which will occupy larger space and use more money. A new farfield detection system of laser beams is presented with a big diffraction grating (37mm*37mm), a set of optical imaging components and a high resolution CCD camera. This detection system, which is fully demonstrated on the National Laser Facility of Israel, can align high power laser facility beams' direction as well as the frequency doubling crystals. The new system occupies small space in the spatial filter through off-axial grating sampling. The experimental results indicate that the average far-field alignment error is less than 5% of spatial filter pinhole diameter, and the average crystals' matching angle error is less than 10urad, which meet the alignment system requirements for beams and crystals.

  16. A novel laser-based method for controlled crystallization in dental prosthesis materials

    NASA Astrophysics Data System (ADS)

    Cam, Peter; Neuenschwander, Beat; Schwaller, Patrick; Köhli, Benjamin; Lüscher, Beat; Senn, Florian; Kounga, Alain; Appert, Christoph

    2015-02-01

    Glass-ceramic materials are increasingly becoming the material of choice in the field of dental prosthetics, as they can feature both high strength and very good aesthetics. It is believed that their color, microstructure and mechanical properties can be tuned such as to achieve an optimal lifelike performance. In order to reach that ultimate perfection a controlled arrangement of amorphous and crystalline phases in the material is required. A phase transformation from amorphous to crystalline is achieved by a heat treatment at defined temperature levels. The traditional approach is to perform the heat treatment in a furnace. This, however, only allows a homogeneous degree of crystallization over the whole volume of the parent glass material. Here a novel approach using a local heat treatment by laser irradiation is presented. To investigate the potential of this approach the crystallization process of SiO2-Li2O-Al2O3-based glass has been studied with laser systems (pulsed and continuous wave) operating at different wavelengths. Our results show the feasibility of gradual and partial crystallization of the base material using continuous laser irradiation. A dental prosthesis machined from an amorphous glassy state can be effectively treated with laser irradiation and crystallized within a confined region of a few millimeters starting from the body surface. Very good aesthetics have been achieved. Preliminary investigation with pulsed nanosecond lasers of a few hundreds nanoseconds pulse width has enabled more refinement of crystallization and possibility to place start of phase change within the material bulk.

  17. Influence of surface cracks on laser-induced damage resistance of brittle KH₂PO₄ crystal.

    PubMed

    Cheng, Jian; Chen, Mingjun; Liao, Wei; Wang, Haijun; Wang, Jinghe; Xiao, Yong; Li, Mingquan

    2014-11-17

    Single point diamond turning (SPDT) currently is the leading finishing method for achieving ultra-smooth surface on brittle KH(2)PO(4) crystal. In this work, the light intensification modulated by surface cracks introduced by SPDT cutting is numerically simulated using finite-difference time-domain algorithm. The results indicate that the light intensification caused by surface cracks is wavelength, crack geometry and position dependent. Under the irradiation of 355 nm laser, lateral cracks on front surfaces and conical cracks on both front and rear surfaces can produce light intensification as high as hundreds of times, which is sufficient to trigger avalanche ionization and finally lower the laser damage resistance of crystal components. Furthermore, we experimentally tested the laser-induced damage thresholds (LIDTs) on both crack-free and flawed crystal surfaces. The results imply that brittle fracture with a series of surface cracks is the dominant source of laser damage initiation in crystal components. Due to the negative effect of surface cracks, the LIDT on KDP crystal surface could be sharply reduced from 7.85J/cm(2) to 2.33J/cm(2) (355 nm, 6.4 ns). In addition, the experiment of laser-induced damage growth is performed and the damage growth behavior agrees well with the simulation results of light intensification caused by surface cracks with increasing crack depths. PMID:25402114

  18. Thermal Characterization, Crystal Field Analysis and In-Band Pumped Laser Performance of Er Doped NaY(WO4)2 Disordered Laser Crystals

    PubMed Central

    Serrano, María Dolores; Cascales, Concepción; Han, Xiumei; Zaldo, Carlos; Jezowski, Andrzej; Stachowiak, Piotr; Ter-Gabrielyan, Nikolay; Fromzel, Viktor; Dubinskii, Mark

    2013-01-01

    Undoped and Er-doped NaY(WO4)2 disordered single crystals have been grown by the Czochralski technique. The specific heat and thermal conductivity (κ) of these crystals have been characterized from T = 4 K to 700 K and 360 K, respectively. It is shown that κ exhibits anisotropy characteristic of single crystals as well as a κ(T) behavior observed in glasses, with a saturation mean free phonon path of 3.6 Å and 4.5 Å for propagation along a and c crystal axes, respectively. The relative energy positions and irreducible representations of Stark Er3+ levels up to 4G7/2 multiplet have been determined by the combination of experimental low (<10 K) temperature optical absorption and photoluminescence measurements and simulations with a single-electron Hamiltonian including both free-ion and crystal field interactions. Absorption, emission and gain cross sections of the 4I13/2↔4I15/2 laser related transition have been determined at 77 K. The 4I13/2 Er3+ lifetime (τ) was measured in the temperature range of 77–300 K, and was found to change from τ (77K) ≈ 4.5 ms to τ (300K) ≈ 3.5 ms. Laser operation is demonstrated at 77 K and 300 K by resonantly pumping the 4I13/2 multiplet at λ≈1500 nm with a broadband (FWHM≈20 nm) diode laser source perfectly matching the 77 K crystal 4I15/2 → 4I13/2 absorption profile. At 77 K as much as 5.5 W of output power were obtained in π-polarized configuration with a slope efficiency versus absorbed pump power of 57%, the free running laser wavelength in air was λ≈1611 nm with the laser output bandwidth of 3.5 nm. The laser emission was tunable over 30.7 nm, from 1590.7 nm to 1621.4 nm, for the same π-polarized configuration. PMID:23555664

  19. Transient stress evolution and crystallization in laser-irradiated amorphous titania sol-gel films

    SciTech Connect

    Exarhos, G.J.; Hess, N.J. ); Wood, S. . Dept. of Physics)

    1991-10-01

    Amorphous TiO{sub 2} sol-gel films are irreversibly transformed to a crystalline anatase phase when heated to temperatures in excess of 575 K or subjected to intense pulsed or CW laser irradiation. The laser-induced transformation is initiated as a result of impurity absorption and subsequent heating, and results in densification and relative changes in compressive stress of the film. Isothermally annealed films exhibit a decrease in compressive stress as crystallization proceeds while an increase in compressive stress followed by a decrease in stress is observed when crystallization is laser-induced. Raman spectroscopy has been used to characterize the crystallization ingrowth kinetics and is used in this work as a real time probe of both film temperature and localized stress which can be evaluated from shifts in lattice phonon frequencies measured in real time during laser irradiation. The laser not only induces the phase transformation but excites inelastic Raman scattering from which film stress and temperature can be estimated. A second approach for the determination of these parameters requires incorporation of a thin ruby film between the titania and silica substrate. Here, the wavelength shift of the laser-induced ruby fluorescence can be used to quantify interfacial stress; the fluorescence lifetime measurements are used to determine temperature. The advantages and limitations of these techniques for evaluating transient stress and temperature evolution in thin titania films subjected to CW laser irradiation will be discussed.

  20. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    DOEpatents

    Gruen, Dieter M.

    2000-01-01

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  1. Valence state change and defect centers induced by infrared femtosecond laser in Yb:YAG crystals

    NASA Astrophysics Data System (ADS)

    Wang, Xinshun; Liu, Yang; Zhao, Panjuan; Guo, Zhongyi; Li, Yan; Qu, Shiliang

    2015-04-01

    The broad band upconversion luminescence in Yb3+:YAG crystal has been observed in experiments under the irradiation of focused infrared femtosecond laser. The dependence of the fluorescence intensity on the pump power shows that the upconversion luminescence is due to simultaneous two-photon absorption process, which indicates that the broad emission bands at 365 and 463 nm could be assigned to the 5d → 4f transitions of Yb2+ ions and the one at 692 nm could be attributed to the electron-hole recombination process on (Yb2+-F+) centers. The absorption spectra of the Yb:YAG crystal samples before and after femtosecond laser irradiation, and after further annealing reveal that permanent valence state change of Yb ions from Yb3+ to Yb2+ and (Yb2+-F+) centers have been induced by infrared femtosecond laser irradiation in Yb3+:YAG crystal.

  2. Growth, spectral properties, and laser demonstration of Nd:GYSO crystal

    NASA Astrophysics Data System (ADS)

    Li, D. Z.; Xu, X. D.; Cong, Z. H.; Zhang, J.; Tang, D. Y.; Zhou, D. H.; Xia, C. T.; Wu, F.; Xu, J.

    2011-07-01

    An Nd:GYSO crystal has been grown by the Czochralski technique. The cell parameters were analyzed with X-ray diffraction (XRD). Room-temperature absorption and fluorescence spectra and fluorescence lifetime of the Nd:GYSO crystal were measured and analyzed. The Judd-Ofelt intensity parameters Ω 2,4,6 were obtained to be 4.06, 4.65, and 3.63×10-20 cm2, respectively. The absorption and emission cross sections and the branching ratios were calculated. The peak-emission cross section is 3.8×10-20 cm2 at 1074 nm with a FWHM of 8.8 nm. Pumped by a laser diode, a maximum 1.54 W continuous-wave (CW) laser output has been obtained with a slope efficiency of 27.4%. All the results show that Nd:GYSO crystal is a promising laser material.

  3. Tissue temperature measurements during interstitial laser therapy using Cr3+-doped crystals at the fiber tip

    NASA Astrophysics Data System (ADS)

    Svensson, Jenny; Ralsgard, Anna; Johansson, Thomas; Andersson-Engels, Stefan

    2003-10-01

    In this project a technique to optically measure the temperature is evaluated. The measurement is to be performed through optical fibres during photodynamic laser treatments or laser thermo therapy of malignant tumours. For this technique Cr3+-doped crystals were used. The lifetime of the ions" fluorescence were measured, since the fluorescence is strongly temperature dependent. A piece of a crystal was attached to the tip of an optical fibre. The crystal was excited at 635 nm, which is the wavelength most frequently used for photodynamic treatment. An accuracy in the temperature measurement of +/- 0.3 °C was obtained for Cr:LiSAF in the region 20 - 70 °C. This is well within the requirements for this application. Alexandrite and Cr:YAG were also evaluated in this study, also yielding a very good accuracy. A laser treatment was simulated using pork chop as tissue phantom and the temperature was measured.

  4. Laser-Heated Floating Zone Production of Single-Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank; Westfall, Leonard

    1996-01-01

    This report describes how a laser-heated floating zone apparatus can be used to investigate single-crystal fibers of various compositions. A feedrod with a stoichiometric composition of high-purity powders was connected to a pedestal and fed into a laser scan where it combined with a single-crystal fiber seed. A molten zone was formed at this junction. As the feedrod was continuously fed into the laser scan, a single-crystal fiber of a prescribed orientation was withdrawn from the melt. The resultant fibers, whose diameters ranged from 100 to 250 gm, could then be evaluated on the basis of their growth behavior, physical properties, mechanical properties, and fiber perfection.

  5. Laser-Damage-Resistant Photoalignment Layers for High-Peak-Power Liquid Crystal Device Applications

    SciTech Connect

    Marshall, K.L.; Gan, J.; Mitchell, G.; Papernov, S.; Rigatti, A.L.; Schmid, A.W.; Jacobs, S.D.

    2008-10-23

    Large-aperture liquid crystal (LC) devices have been in continuous use since 1995 as polarization control devices in the 40-TW, 351-nm, 60-beam OMEGA Nd:glass laser system at the University of Rochester’s Laboratory for Laser Energetics. The feasibility of using a noncontacting alignment method for high-peak-power LC laser optics by irradiation of a linearly photopolymerizable polymer with polarized UV light was recently investigated. These materials were found to have surprisingly large laser-damage thresholds at 1054 nm, approaching that of bare fused silica (30 to 60 J/cm^2). Their remarkable laser-damage resistance and ease in scalability to large apertures of these photoalignment materials, along with the ability to produce multiple alignment states by photolithographic patterning, opens new doorways for their application in LC devices for optics, photonics, and high-peak-power laser applications.

  6. High-power narrow-vertical-divergence photonic band crystal laser diodes with optimized epitaxial structure

    SciTech Connect

    Liu, Lei; Qu, Hongwei; Liu, Yun; Zhang, Yejin; Zheng, Wanhua; Wang, Yufei; Qi, Aiyi

    2014-12-08

    900 nm longitudinal photonic band crystal (PBC) laser diodes with optimized epitaxial structure are fabricated. With a same calculated fundamental-mode divergence, stronger mode discrimination is achieved by a quasi-periodic index modulation in the PBC waveguide than a periodic one. Experiments show that the introduction of over 5.5 μm-thick PBC waveguide contributes to only 10% increment of the internal loss for the laser diodes. For broad area PBC lasers, output powers of 5.75 W under continuous wave test and over 10 W under quasi-continuous wave test are reported. The vertical divergence angles are 10.5° at full width at half maximum and 21.3° with 95% power content, in conformity with the simulated angles. Such device shows a prospect for high-power narrow-vertical-divergence laser emission from single diode laser and laser bar.

  7. Quantitative correlation between facets defects of RDX crystals and their laser sensitivity.

    PubMed

    Yan, Zhonghua; Liu, Wei; Zhang, Chuanchao; Wang, Xuming; Li, Jinshan; Yang, Zongwei; Xiang, Xia; Huang, Ming; Tan, Bisheng; Zhou, Guorui; Liao, Wei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-08-01

    In this work, the {210} facets of cyclotrimethylenetrinitramine (RDX) single crystals with different quality were studied by scanning electron microscopy and atomic force microscopy. Their laser sensitivity was then assessed using a direct laser ignition test irradiated with ultraviolet laser (wavelength: 355nm, pulse width: 6.4ns). Quantitative relationships between laser sensitivity and surface defects of RDX (210) and (2¯1¯0) facets were investigated. It is determined that the laser sensitivity exhibits significant correlation with the surface roughness, size of which is comparable with scales of laser wavelength. 3D FDTD simulations disclose that this relationship can be well explained with light intensity modulation effects induced by micro-defects on the initial plane wave. PMID:27054669

  8. Progress in the Growth of Yb:S-FAP Laser Crystals

    SciTech Connect

    Schaffers, K I; Tassano, J B; Waide, P A; Payne, S A; Morris, R C

    2000-07-01

    The crystal growth of Yb:S-FAP [Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F] is being studied for 1.047-{micro}m laser operation. These crystals are not yet routinely available and the growth of high optical quality, low loss crystals poses a challenge due to a number of crystal growth issues, including, cloudiness, bubble core defects, anomalous absorption, low-angle grain boundaries, and cracking. At this time, a growth process has been formulated to simultaneously eliminate or greatly diminish each of the defects yielding high quality material. Laser slabs of dimension 4.0 x 6.0 x 0.75 cm are being fabricated from sub-scale pieces using the diffusion bonding technique.

  9. Optical performance of Yb3+ in LiNbO3 laser crystal

    NASA Astrophysics Data System (ADS)

    Bausá, L. E.; Ramírez, M. O.; Montoya, E.

    2004-01-01

    Yb3+ doped crystals are recently attracting much attention as potential solid state laser materials due to the particular characteristics provided by the energy level scheme of this ion. Laser action from Yb3+ doped systems shows several interesting properties such as the possibility of a certain tunability range. The most relevant results obtained in the Yb3+:LiNbO3 system will be shown. We show the main spectroscopic parameters of this system: polarized absorption and luminescence spectra at low and room temperature, and electron-phonon coupling. The laser performance under Ti:sapphire and diode pumping is presented. Stable laser action in the near infrared region and coherent green radiation by self-frequency doubling have been obtained simultaneously in this non-linear host. The results have been obtained for single domain and periodically poled lithium niobate crystals.

  10. Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Ródenas, A.; Sanz García, J. A.; Jaque, D.; Torchia, G. A.; Mendez, C.; Arias, I.; Roso, L.; Agulló-Rueda, F.

    2006-08-01

    The depth-resolved micromodification of single-crystalline femtosecond laser irradiated Nd3+ doped MgO:LiNbO3 crystals is investigated by means of micro-Raman and microluminescence experiments. We have found that a permanent tensile stress of the order of 2GPa is induced in the vicinity of ablated volume as a consequence of the pressure-wave propagation due to the thermoelastic relaxation of the laser irradiated material. Microluminescence experiments have revealed that, as a consequence of the permanent laser induced microstress, a localized redshift of the F3/24→I9/24 luminescence band of Nd3+ ions also takes place due to a crystal field modification. The analysis of Raman and fluorescence bandwidths indicates that a slight lattice disorder and densification is induced by femtosecond laser irradiation.

  11. Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals

    SciTech Connect

    Rodenas, A.; Sanz Garcia, J. A.; Jaque, D.; Torchia, G. A.; Mendez, C.; Arias, I.; Roso, L.; Agullo-Rueda, F.

    2006-08-01

    The depth-resolved micromodification of single-crystalline femtosecond laser irradiated Nd{sup 3+} doped MgO:LiNbO{sub 3} crystals is investigated by means of micro-Raman and microluminescence experiments. We have found that a permanent tensile stress of the order of 2 GPa is induced in the vicinity of ablated volume as a consequence of the pressure-wave propagation due to the thermoelastic relaxation of the laser irradiated material. Microluminescence experiments have revealed that, as a consequence of the permanent laser induced microstress, a localized redshift of the {sup 4}F{sub 3/2}{yields}{sup 4}I{sub 9/2} luminescence band of Nd{sup 3+} ions also takes place due to a crystal field modification. The analysis of Raman and fluorescence bandwidths indicates that a slight lattice disorder and densification is induced by femtosecond laser irradiation.

  12. Diode-pumped two-frequency lasers based on c-cut vanadate crystals

    SciTech Connect

    Sirotkin, A A; Garnov, Sergei V; Zagumennyi, A I; Zavartsev, Yu D; Kutovoi, S A; Vlasov, V I; Shcherbakov, Ivan A

    2009-09-30

    The luminescent and lasing properties of the neo-dymium ion at the {sup 4}F{sub 3/2}-{sup 4}I{sub 11/2} transition in c-cut vanadate crystals (Nd:YVO{sub 4}, Nd:GdVO{sub 4}, and Nd:Gd{sub 1-x}Y{sub x}VO{sub 4}) are studied. Tuning of the laser radiation wavelength ({Delta}{lambda} = 5.4 nm) is demonstrated. Two-frequency laser schemes with the use of a Lyot filter, a Fabry-Perot etalon, and a Brewster prism as spectral selection elements are proposed and experimentally realised. Stable two-frequency lasing of a laser based on the c-cut Nd:GdVO{sub 4} crystal was obtained in the cw, Q-switched (nanosecond pulses), and active acousto-optic mode-locked (picosecond pulses) regimes. (lasers)

  13. Note: Laser beam scanning using a ferroelectric liquid crystal spatial light modulator

    SciTech Connect

    Das, Abhijit; Boruah, Bosanta R.

    2014-04-15

    In this work we describe laser beam scanning using a ferroelectric liquid crystal spatial light modulator. Commercially available ferroelectric liquid crystal spatial light modulators are capable of displaying 85 colored images in 1 s using a time dithering technique. Each colored image, in fact, comprises 24 single bit (black and white) images displayed sequentially. We have used each single bit image to write a binary phase hologram. For a collimated laser beam incident on the hologram, one of the diffracted beams can be made to travel along a user defined direction. We have constructed a beam scanner employing the above arrangement and demonstrated its use to scan a single laser beam in a laser scanning optical sectioning microscope setup.

  14. Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon.

    PubMed

    Zhao, Deyin; Liu, Shihchia; Yang, Hongjun; Ma, Zhenqiang; Reuterskiöld-Hedlund, Carl; Hammar, Mattias; Zhou, Weidong

    2016-01-01

    We report here an optically pumped hybrid III-V/Si photoic crystal surface emitting laser (PCSEL), consisting of a heterogeneously integrated III-V InGaAsP quantum well heterostructure gain medium, printed on a patterned defect-free Si photonic crystal (PC) bandedge cavity. Single mode lasing was achieved for a large area laser, with a side-mode suppression ratio of 28 dB, for lasing operation temperature ~ 200 K. Two types of lasers were demonstrated operating at different temperatures. Detailed modal analysis reveals the lasing mode matches with the estimated lasing gain threshold conditions. Our demonstration promises a hybrid laser sources on Si towards three-dimensional (3D) integrated Si photonics for on-chip wavelength-division multiplex (3D WDM) systems for a wide range of volume photonic/electronic applications in computing, communication, sensing, imaging, etc. PMID:26727551

  15. Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon

    PubMed Central

    Zhao, Deyin; Liu, Shihchia; Yang, Hongjun; Ma, Zhenqiang; Reuterskiöld-Hedlund, Carl; Hammar, Mattias; Zhou, Weidong

    2016-01-01

    We report here an optically pumped hybrid III-V/Si photoic crystal surface emitting laser (PCSEL), consisting of a heterogeneously integrated III-V InGaAsP quantum well heterostructure gain medium, printed on a patterned defect-free Si photonic crystal (PC) bandedge cavity. Single mode lasing was achieved for a large area laser, with a side-mode suppression ratio of 28 dB, for lasing operation temperature ~200 K. Two types of lasers were demonstrated operating at different temperatures. Detailed modal analysis reveals the lasing mode matches with the estimated lasing gain threshold conditions. Our demonstration promises a hybrid laser sources on Si towards three-dimensional (3D) integrated Si photonics for on-chip wavelength-division multiplex (3D WDM) systems for a wide range of volume photonic/electronic applications in computing, communication, sensing, imaging, etc. PMID:26727551

  16. Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon

    NASA Astrophysics Data System (ADS)

    Zhao, Deyin; Liu, Shihchia; Yang, Hongjun; Ma, Zhenqiang; Reuterskiöld-Hedlund, Carl; Hammar, Mattias; Zhou, Weidong

    2016-01-01

    We report here an optically pumped hybrid III-V/Si photoic crystal surface emitting laser (PCSEL), consisting of a heterogeneously integrated III-V InGaAsP quantum well heterostructure gain medium, printed on a patterned defect-free Si photonic crystal (PC) bandedge cavity. Single mode lasing was achieved for a large area laser, with a side-mode suppression ratio of 28 dB, for lasing operation temperature ~200 K. Two types of lasers were demonstrated operating at different temperatures. Detailed modal analysis reveals the lasing mode matches with the estimated lasing gain threshold conditions. Our demonstration promises a hybrid laser sources on Si towards three-dimensional (3D) integrated Si photonics for on-chip wavelength-division multiplex (3D WDM) systems for a wide range of volume photonic/electronic applications in computing, communication, sensing, imaging, etc.

  17. Mid-infrared tunable laser based on the Cr:ZnSe active crystal

    NASA Astrophysics Data System (ADS)

    Koranda, Petr; Jelínková, Helena; Nemec, Michal; Šulc, Jan; Doroshenko, Maxim E.; Basiev, Tasoltan T.; Komar, Vitaly K.; Gerasimenko, Andriy S.; Puzikov, Vyacheslav M.; Badikov, V. V.; Badikov, D. V.

    2008-02-01

    Broadly tunable mid-infrared laser sources operated at room-temperature are desired in many technological and medical applications. The aim of the project was to design and construct broadly tunable powerful Cr:ZnSe laser. The investigated Cr:ZnSe various shaped bulk crystals were grown by the Bridgman method or by the floating zone method. The absorption spectrum was measured to be from 1500 to 2000 nm and the emission spectrum was from 2100 to 2800 nm. Three different lasers were utilized for coherent longitudinal pumping of Cr:ZnSe laser, namely flashlamp-pumped Er:YAP laser (generated wavelength 1660 nm), diode-pumped Tm:YLF laser (generated wavelength 1912 nm) and diode-pumped Tm:YAP laser (generated wavelength 1980 nm). The constructed Cr:ZnSe laser operated in pulsed as well as in continuous-wave regime. In the first case the Cr:ZnSe crystal grown by the floating zone method was studied. The maximal output power in continuous-wave regime was 310 mW with the slope-efficiency 73% for the Tm:YAP laser pumping. In the second case the Cr:ZnSe prism grown by the Bridgman method which served simultaneously as laser active medium and intracavity dispersive element was investigated. For the Er:YAP laser pumping the maximal output energy was 20 mJ with the slope-efficiency 36%. The output radiation was tunable in the range from 2050 nm up to 2750 nm. For the Tm:YAP laser pumping the maximal output power in continuous-wave regime was 175 mW with the slope-efficiency 24%. The output radiation was tunable in the interval from 2220 nm up to 2680 nm. The generated radiation beam spatial structure was close to TEM00.

  18. Passive Q-Switching Laser Performance of Yb:YVO4 Crystal

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Chen, Xiao-Wen; Han, Wen-Juan; Kong, Wei-Jin; Liu, Jun-Hai

    2014-12-01

    We report on the passive Q-switching laser performance of Yb:YVO4 crystal. Utilizing a Cr4+:YAG crystal plate as the saturable absorber, which is of an initial transmission as high as 99.3%, we demonstrate a stable passively Q-switched laser operation at 1017.2 nm, producing an average output power of 0.87 W at a pulse repetition rate of 71.4 kHz, with a slope efficiency of 30%. The resulting pulse energy, duration, and peak power are 12.2 μJ, 87 ns, and 0.14 kW, respectively.

  19. Random laser action in stoichiometric Nd3Ga5O12 garnet crystal powder

    NASA Astrophysics Data System (ADS)

    Iparraguirre, I.; Azkargorta, J.; Kamada, K.; Yoshikawa, A.; Rodríguez-Mendoza, U. R.; Lavín, V.; Barredo-Zuriarrain, M.; Balda, R.; Fernández, J.

    2016-03-01

    This work explores the room temperature infrared random laser (RL) performance of Nd3+ ions in a new stoichiometric Nd3Ga5O12 crystal powder. The time-resolved measurements show that the RL pulse is able to follow the subnanosecond oscillations of the pump pulse profile. The pump threshold energy and the absolute stimulated emission energy have been measured using a method developed by the authors. The laser slope efficiency is the highest compared to other Nd3+ stoichiometric RL crystals.

  20. Investigation of bulk laser damage and absorption of laser light in CsLiB6O10 crystals (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Kamimura, Tomosumi; Yamamoto, Masashi; Akamatsu, Shigenori; Nishioka, Muneyuki; Yoshimura, Masashi; Mori, Yusuke; Sasaki, Takatomo; Yoshida, Kunio

    2004-06-01

    High-power solid-state ultraviolet (UV) lasers by using a have been in high demand because of their convenient operation procedure. An effective technique for UV generation is cascaded sum-frequency generation pumped by the output of near-IR solids-state lasers. The performance of such solid-state UV lasers appears to depend on the ability and reliability of nonlinear optical (NLO) crystals that are employed for laser frequency conversion. Discovery of CsLiB6O10(CLBO) crystals have enabled the production of such practical high-power all solid-state UV lasers. In 2001, UV output power up to 23.0 W by fourth harmonic generation of Nd:YAG laser was achieved. It is fact that laser-induced damage of NLO crystal is a limiting factor on reliable operation of high-power solid-state UV lasers. Bulk laser-induced damage of NLO crystal is related to the crystal's quality. In this paper, we have investigated the relationship among the bulk laser-induced damage threshold (LIDT), dislocation density and absorption of laser light in CLBO crystals with various crystallinity. The bulk LIDT of CLBO increased with decreasing dislocation density. High-quality crystals with a higher LIDT (15 - 18 GW/cm2) have a lower dislocation density of 6.6 x 103/cm2 than that of conventional CLBO (~15.0 x 103/cm2). The relationships between crystal quality and absorption of laser light will be presented.

  1. Raman and Fluorescence Study of Erbium-Doped Laser-Induced Crystals-in-Glass

    NASA Astrophysics Data System (ADS)

    Knorr, Brian; Veenhuizen, Keith; Stone, Adam; Jain, Himanshu; Dierolf, Volkmar

    Laser induced crystallization of glasses is a spatially selective process which has the potential to produce photonic integrated circuits in a glass matrix. Low temperature Combined Excitation Emission Spectroscopy in Er:LaBGeO5 show that erbium incorporates at predominantly one majority site in both glass-ceramics and laser-induced crystals-in-glass, but that other minority sites also exist. The energy levels of the majority site were quantified. The fluorescence characteristics of the erbium ions in any site in the laser-induced crystals were found to be only weakly influenced by the irradiation conditions during growth. On the other hand, a hidden parameter, potentially boron deficiency-related defects, resulted in a significant change in the incorporation behavior of the erbium ions. Simultaneous scanning confocal Raman and fluorescence spectroscopy showed that the energies of the Raman modes are shifted, and the erbium fluorescence intensity varies, in a non-uniform manner, despite the host glass being homogeneously doped, across the cross-sections of laser-induced crystals in glass. These fluctuations within the Raman and fluorescence are spatially correlated, implying that different erbium sites form preferentially at different locations in the crystal cross-section.

  2. Sum frequency generation of UV laser radiation at 266  nm in LBO crystal.

    PubMed

    Nikitin, D G; Byalkovskiy, O A; Vershinin, O I; Puyu, P V; Tyrtyshnyy, V A

    2016-04-01

    We report experimental results of generation at 266 nm in LBO crystal by frequency mixing of the fundamental (1064 nm) and third harmonic (355 nm) of ytterbium pulsed fiber laser radiation. Deep ultraviolet (DUV) output power of 3.3 W at 266 nm was achieved with 14% IR-to-DUV conversion efficiency. UV-induced bulk degradation of LBO crystals was observed and visualized by the dark field method. PMID:27192312

  3. Efficient laser emission from cladding waveguide inscribed in Nd:GdVO(4) crystal by direct femtosecond laser writing.

    PubMed

    Liu, Hongliang; Tan, Yang; Vázquez de Aldana, Javier R; Chen, Feng

    2014-08-01

    We report on the fabrication of depressed cladding waveguides in Nd:GdVO(4) laser crystal by using femtosecond laser inscription. The cross section of the structure is a circular shape with a diameter of 150 μm. Under the optical pump at 808 nm, the continuous wave (cw) as well as pulsed (Q-switched by graphene saturable absorber) waveguide lasing at 1064 nm has been realized, supporting guidance of both TE and TM polarizations. The maximum output power of 0.57 W was obtained in the cw regime, while the maximum pulse energy of the pulsed laser emissions was up to 19 nJ (corresponding to a maximum average output power of 0.33 W, at a resonant frequency of 18 MHz). The slope efficiencies achieved for the cw and pulsed Nd:GdVO(4) waveguide lasers were as high as 68% and 52%, respectively. PMID:25078226

  4. Multiwavelength green-yellow laser based on a Nd:YAG laser with nonlinear frequency conversion in a LBO crystal.

    PubMed

    Wang, Zhichao; Yang, Feng; Xie, Shiyong; Xu, Yiting; Xu, Jialin; Bo, Yong; Peng, Qinjun; Zhang, Jingyuan; Cui, Dafu; Xu, Zuyan

    2012-06-20

    We demonstrate a multiwavelength laser in the green-yellow region by means of a diode-pumped neodymium-doped yttrium aluminum garnet laser. This laser system combines a homemade 1074 nm and 1112 nm dual-wavelength laser with extracavity second harmonic generation (SHG) or sum-frequency generation in a lithium triborate crystal to generate visible output at any one of three wavelengths, 537 nm, 546 nm, and 556 nm, by simple temperature tuning, which has an important application in detecting carbon monoxide. The maximum average output power at the three wavelengths (537 nm, 546 nm, and 556 nm) was obtained to be 10.5 W, 0.5 W, and 8.5 W, respectively. The maximum SHG conversion efficiency from the infrared to the visible spectral region was about 51%. PMID:22722297

  5. Diode laser crystallization processes of Si thin-film solar cells on glass

    NASA Astrophysics Data System (ADS)

    Yun, Jae Sung; Ahn, Cha Ho; Jung, Miga; Huang, Jialiang; Kim, Kyung Hun; Varlamov, Sergey; Green, Martin A.

    2014-07-01

    The crystallization of Si thin-film on glass using continuous-wave diode laser is performed. The effect of various processing parameters including laser power density and scanning speed is investigated in respect to microstructure and crystallographic orientation. Optimal laser power as per scanning speed is required in order to completely melt the entire Si film. When scan speed of 15-100 cm/min is used, large linear grains are formed along the laser scan direction. Laser scan speed over 100 cm/min forms relatively smaller grains that are titled away from the scan direction. Two diode model fitting of Suns-Voc results have shown that solar cells crystallized with scan speed over 100 cm/min are limited by grain boundary recombination (n = 2). EBSD micrograph shows that the most dominant misorientation angle is 60°. Also, there were regions containing high density of twin boundaries up to ~1.2 × 10-8/cm2. SiOx capping layer is found to be effective for reducing the required laser power density, as well as changing preferred orientation of the film from ⟨ 110 ⟩ to ⟨ 100 ⟩ in surface normal direction. Cracks are always formed during the crystallization process and found to be reducing solar cell performance significantly.

  6. Generation and elimination of polarization-dependent ablation of cubic crystals by femtosecond laser radiation.

    PubMed

    Li, Xin; Rong, Wenlong; Jiang, Lan; Zhang, Kaihu; Li, Cong; Cao, Qiang; Zhang, Guangming; Lu, Yongfeng

    2014-12-01

    We experimentally showed that the π/2-period oscillation of an ablation area with laser polarization direction can be observed in GaAs, ZnSe, MgO and LiF with cubic crystal by a femtosecond laser (800 nm, 100 fs) and that the modulation in the ablation area can be controlled by the laser fluence. While the polarization dependence is sustained in a wide range of laser fluences for a narrow band-gap crystal, it is strongly suppressed with a slight augmentation of laser fluence in a wide band-gap material. The polarization-dependent ablation is explained by the crystal's orientation-dependent reduced-electron mass and the resultant contrasting nonlinear absorptions with slightly different reduced electron mass. The interplay between photoionization and avalanche ionization is discussed to interpret the influence of laser fluence on polarization-dependent ablation. Based on Keldysh's theory, polarization-dependent ablation occurs in a mixed regime between tunneling and multiphoton ionization. PMID:25606947

  7. Sensitive detection of malachite green and crystal violet by nonlinear laser wave mixing and capillary electrophoresis.

    PubMed

    Maxwell, Eric J; Tong, William G

    2016-05-01

    An ultrasensitive label-free antibody-free detection method for malachite green and crystal violet is presented using nonlinear laser wave-mixing spectroscopy and capillary zone electrophoresis. Wave-mixing spectroscopy provides a sensitive absorption-based detection method for trace analytes. This is accomplished by forming dynamic gratings within a sample cell, which diffracts light to create a coherent laser-like signal beam with high optical efficiency and high signal-to-noise ratio. A cubic dependence on laser power and square dependence on analyte concentration make wave mixing sensitive enough to detect molecules in their native form without the use of fluorescent labels for signal enhancement. A 532 nm laser and a 635 nm laser were used for malachite green and crystal violet sample excitation. The use of two lasers of different wavelengths allows the method to simultaneously detect both analytes. Selectivity is obtained through the capillary zone electrophoresis separation, which results in characteristic migration times. Measurement in capillary zone electrophoresis resulted in a limit of detection of 6.9 × 10(-10)M (2.5 × 10(-19) mol) for crystal violet and 8.3 × 10(-11)M (3.0 × 10(-20) mol) for malachite green at S/N of 2. PMID:26998858

  8. Tunable Stokes laser generation based on the stimulated polariton scattering in KTiOPO₄ crystal.

    PubMed

    Jiang, Shiqi; Chen, Xiaohan; Cong, Zhenhua; Zhang, Xingyu; Qin, Zengguang; Liu, Zhaojun; Wang, Weitao; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun

    2015-07-27

    The tunable Stokes laser characteristics based on the stimulated polariton scattering in KTiOPO4 (KTP) crystal and the intracavity frequency doubling properties for the Stokes laser are investigated for the first time. When the pumping laser wavelength is 1064.2 nm, and the angle between the pumping and Stokes beams outside the KTP crystal changes from 1.875° to 6.750°, the obtained tunable Stokes laser wavelength varies discontinuously from 1076.5 nm to 1091.4 nm with four gaps. When the pumping pulse energy is 120.0 mJ, the maximum Stokes pulse energy is 46.5 mJ obtained at the wavelength of 1086.6 nm. By inserting a LiB3O5 (LBO) crystal into the cavity, the obtained frequency-doubled laser wavelength is inconsecutive tunable from 538.5 nm to 543.8 nm. The maximum frequency-doubled laser pulse energy is 15.9 mJ at the wavelength of 543.5 nm. PMID:26367675

  9. Frequency conversion of radiation of IR molecular gas lasers in nonlinear crystals (A review)

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kinyaevskiy, I. O.; Klimachev, Yu. M.; Kotkov, A. A.

    2015-09-01

    The solution of problems related, e.g., to transport of laser radiation in the atmosphere requires availability of a broadband IR laser source operating in the transparency windows of the atmosphere. In this review, we present the results of an investigation of the properties of a hybrid laser system consisting of molecular gas pump lasers and a solid-state laser frequency converter based on nonlinear crystals. We demonstrate broadening and enrichment of spectrum of radiation of the pump laser by means of sum- and difference-frequency generation. In particular, by using a relatively simple laser system consisting of gas-discharge CO and CO2 lasers, radiation tunable over a large number of spectral lines in a broad range of wavelength from 2.5 to 16.6 µm (more than two and a half octaves), which includes two transparency windows of the atmosphere, is obtained. Thus, the possibility of exploring the IR spectral range by means of hybrid laser systems based on frequency conversion of radiation of molecular gas lasers is demonstrated.

  10. High-power efficient cw and pulsed lasers based on bulk Yb : KYW crystals with end diode pumping

    SciTech Connect

    Kim, G H; Yang, G H; Lee, D S; Kulik, Alexander V; Sall', E G; Chizhov, S A; Yashin, V E; Kang, U

    2012-04-30

    End-diode-pumped lasers based on one and two Yb : KYW crystals operating in cw and Q-switched regimes, as well as in the regime of mode-locking, are studied. The single-crystal laser generated stable ultrashort (shorter than 100 fs) laser pulses at wavelengths of 1035 and 1043 nm with an average power exceeding 1 W. The average output power of the two-crystal laser exceeded 18 W in the cw regime and 16 W in the Q-switched regime with a slope efficiency exceeding 30%.

  11. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    DOE PAGESBeta

    Li, T. T.; Bayu Aji, L. B.; Heo, T. W.; Santala, M. K.; Kucheyev, S. O.; Campbell, G. H.

    2016-06-03

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar+ ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. In conclusion, the propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  12. Lateral cavity photonic crystal surface emitting laser based on commercial epitaxial wafer.

    PubMed

    Wang, Yufei; Qu, Hongwei; Zhou, Wenjun; Qi, Aiyi; Zhang, Jianxin; Liu, Lei; Zheng, Wanhua

    2013-04-01

    A lateral cavity photonic crystal surface emitting laser (LC-PCSEL) with airholes of cone-like shape etched near to the active layer is fabricated. It employs only a simple commercial epitaxial wafer without DBR and needs no wafer bonding technique. Surface emitting lasing action at 1575 nm with power of 1.8 mW is observed at room temperature, providing potential values for mass production of electrically driven PCSELs with low cost. Additionally, Fano resonance is utilized to analyze aperture equivalence of PC, and energy distribution in simplified laser structure is simulated to show oscillation and transmission characteristics of laser. PMID:23571974

  13. Self-frequency summing in quantum dot photonic crystal nanocavity lasers

    SciTech Connect

    Ota, Yasutomo; Watanabe, Katsuyuki; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2013-12-09

    We demonstrate self-frequency summing in photonic crystal nanocavity lasers with quantum dot gain. Two dipole modes and a hexapole mode, supported in the cavity, simultaneously showed lasing oscillation in the near infrared wavelength region under optical carrier injection. Meanwhile, within the same laser cavity, the internally generated three laser fields are up-converted to exhibit sharp visible emission lines via intra-cavity nonlinear frequency summing (and doubling) processes. This self-frequency summing process in active nanocavities will pave the way for developing nanoscale nonlinear optical light sources.

  14. Two-dimensional colloid-based photonic crystals for distributed feedback polymer lasers

    SciTech Connect

    Mafouana, Rodrigue; Rehspringer, Jean-Luc; Hirlimann, Charles; Estournes, Claude; Dorkenoo, Kokou D.

    2004-11-08

    We report on a process to design highly ordered monolayers of two-dimensional photonic crystals, made of silica nanoparticules, that can be used for the development of organic optical devices. We have used a photopolymerization process to incorporate a dye gain medium into the nanoparticle layers in order to achieve a laser cavity. The high spatial coherence of the deposits allows for single-mode laser emission in the plane of the layer when the light excitation is perpendicular to the plane. Such periodic films should help in reducing the number of layers needed for future electrically pumped distributed feedback lasers.

  15. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    SciTech Connect

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie

    2015-06-27

    A new batch preparation method is presented for high-density micrometre-sized crystals of the G protein-coupled receptor rhodopsin for use in time-resolved serial femtosecond crystallography at an X-ray free-electron laser using a liquid jet. Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  16. Microchip laser based on Yb:YAG/V:YAG monolith crystal

    NASA Astrophysics Data System (ADS)

    Nejezchleb, Karel; Šulc, Jan; Jelínková, Helena; Škoda, Václav

    2016-03-01

    V:YAG crystal was investigated as a passive Q-switch of longitudinally diode-pumped microchip laser, emitting radiation at wavelength 1030.5 nm. This laser was based on diffusion bonded monolith crystal (diameter 3 mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3 mm long) and saturable absorber (V:YAG crystal, 2 mm long, initial transmission 86 % @ 1031 nm). The microchip resonator consisted of dielectric mirrors directly deposited on the monolith surfaces (pump mirror HT @ 968 nm and HR @ 1031 nm on Yb:YAG part, output coupler with reflection 55 % @ 1031 nm on the V:YAG part). For longitudinal CW pumping of Yb:YAG part, a fibre coupled (core diameter 100 μm, NA = 0.22, emission @ 968 nm) laser diode was used. The laser threshold was 3.8W. The laser slope efficiency for output mean in respect to incident pumping was 16 %. The linearly polarized generated transversal intensity beam profile was close to the fundamental Gaussian mode. The generated pulse length, stable and mostly independent on pumping power, was equal to 1.3 ns (FWHM). The single pulse energy was increasing with the pumping power and for the maximum pumping 9.7W it was 78 μJ which corresponds to the pulse peak-power 56 kW. The maximum Yb:YAG/V:YAG microchip laser mean output power of 1W was reached without observable thermal roll-over. The corresponding Q-switched pulses repetition rate was 13.1 kHz.

  17. Dynamic laser-induced effects in nanocomposite systems based on the cadmium sulfide quantum dots in a silicate matrix.

    PubMed

    Voznesenskiy, S S; Sergeev, A A; Postnova, I V; Galkina, A N; Shchipunov, Yu A; Kulchin, Yu N

    2015-02-23

    In this paper we study the laser-induced modification of optical properties of nanocomposite based on cadmium sulphide quantum dots encapsulated into thiomalic acid shell which were embedded into a porous silica matrix. It was found that exposure to laser radiation at λ = 405.9 nm leads to modification of optical properties of nanocomposite. For this exposed area there is a significant amount of photodynamic changes under subsequent exposure to laser radiation at λ = 405.9 nm, namely photoabsorption and photorefraction which were studied at λ = 633 nm. The value of these effects dependent on the concentration of quantum dots and modifying radiation parameters. Moreover, it has dependence from polarization of exposure radiation. PMID:25836478

  18. Multiwavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Abu Bakar, M. H.; Mahdi, M. A.

    2011-05-01

    A multiwavelength laser comb using a bismuth-based erbium-doped fiber and 50 m photonic crystal fiber is demonstrated in a ring cavity configuration. The fiber laser is solely pumped by a single 1455 nm Raman pump laser to exploit its higher power delivery compared to that of a single-mode laser diode pump. At 264 mW Raman pump power and 1 mW Brillouin pump power, 38 output channels in the L-band have been realized with an optical signal-to-noise ratio above 15 dB and a Stokes line spacing of 0.08 nm. The laser exhibits a tuning range of 12 nm and produces stable Stokes lines across the tuning range between Brillouin pump wavelengths of 1603 nm and 1615 nm.

  19. Continuous-wave and actively Q-switched Nd:LSO crystal lasers

    NASA Astrophysics Data System (ADS)

    Zhuang, S.; Li, D.; Xu, X.; Wang, Z.; Yu, H.; Xu, J.; Chen, L.; Zhao, Y.; Guo, L.; Xu, X.

    2012-04-01

    With a fiber coupled laser diode array as the pump source, Nd-doped Lu2SiO5 (Nd:LSO) crystal lasers at 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions were demonstrated. The active Q-switched dual-wavelength lasers at about 1.08 μm, as well as continuous-wave (CW) and active Q-switched lasers at 1357 nm are reported for the first time, to the best of our knowledge. Considering the small emission cross-sections and long fluorescence lifetime, this material possesses large energy storage ability and excellent Q-switched properties. The special emission wavelength at 1357 nm will have promising applications to be used in many fields, such as THz generation, pumping of Cr3+:LiSAF, repumping of strontium optical clock, laser Doppler velocimeter and distributed fiber sensor.

  20. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    SciTech Connect

    Machida, Emi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ikenoue, Hiroshi

    2012-12-17

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  1. Damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses: theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Meng, Qinglong; Zhang, Bin; Zhong, Sencheng; Zhu, Liguo

    2016-06-01

    The damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses has been studied theoretically and experimentally. Firstly, the model for the damage threshold prediction of crystal materials based on the improved rate equation has been proposed. Then, the experimental measure method of the damage threshold of crystal materials has been given in detail. On the basis, the variation of the damage threshold of lithium niobate crystal with the pulse duration has also been analyzed quantitatively. Finally, the damage threshold of lithium niobate crystal under multiple laser pulses has been measured and compared to the theoretical results. The results show that the transmittance of lithium niobate crystal is almost a constant when the laser pulse fluence is relative low, whereas it decreases linearly with the increase in the laser pulse fluence below the damage threshold. The damage threshold of lithium niobate crystal increases with the increase in the duration of the femtosecond laser pulse. And the damage threshold of lithium niobate crystal under multiple laser pulses is obviously lower than that irradiated by a single laser pulse. The theoretical data fall in good agreement with the experimental results.

  2. Investigation of factors affecting the synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment

    NASA Astrophysics Data System (ADS)

    Darwish, Ayman M.; Eisa, Wael H.; Shabaka, Ali A.; Talaat, Mohamed H.

    2016-01-01

    Pulsed laser ablation in a liquid medium is a promising technique as compared to the other synthetic methods to synthesize different materials in nanoscale form. The laser parameters (e.g., wavelength, pulse width, fluence, and repetition frequency) and liquid medium (e.g., aqueous/nonaqueous liquid or solution with surfactant) were tightly controlled during and after the ablation process. By optimizing these parameters, the particle size and distribution of materials can be adjusted. The UV-vis absorption spectra and weight changes of targets were used for the characterization and comparison of products.

  3. Crystallization of fused silica surfaces by ultra-violet laser irradiation

    NASA Astrophysics Data System (ADS)

    Hirata, Kazuya; Haraguchi, Koshi

    2012-07-01

    In recent years, the increased use of high power lasers has created problems in optical elements due to laser damage. The International Organization for Standardization (ISO) describes in a publication ISO 11254 a laser-power resilience (LPR) test which we used to verify that by flattening the glass substrate of an optical element, we could improve the resistance to laser damage. We report on an evaluation of two types of samples of fused silica substrate whose surface roughness differed (Ra = 0.20 nm and Ra = 0.13 nm) using customized on-line laser damage testing. To induce laser damage to samples, we used the fifth harmonic generation from a Nd:YAG pulse laser (wavelength: 213 nm, pulse width: 4 ns, repetition frequency: 20 Hz). Results show that flattening reduced the progression of laser damage in the meta-phase laser damage phase by 1/3 of that without flattening. However, pro-phase laser damage which started at fluence 2.39 J/cm2 was unrelated to surface roughness. To analyze the pro-phase laser damage, we used x-ray diffraction (XRD), Raman spectroscopy, and variable pressure-type scanning electron microscopy (VP-SEM). From XRD data, we observed XRD patterns of cristobalite (111), cristobalite (102), α-quartz (111), and β-quartz (102). Raman spectrum data showed an increase in the three-membered ring vibration (600 cm-1), four-membered ring vibration (490 cm-1), and many-membered ring vibration (450 cm-1, 390 cm-1, and 300 cm-1). We observed patchy crystallized areas on the sample surfaces in the VP-SEM images. Based on these experimental results, we believe that the dominant factors in pro-phase laser damage are their physical properties. Substrate and thin film material must be appropriately selected in producing an optical element with a high level of resilience to laser exposure.

  4. Liquid crystals as on-demand, variable thickness targets for intense laser applications

    NASA Astrophysics Data System (ADS)

    Poole, Patrick L.; Andereck, C. David; Schumacher, Douglass W.

    2014-10-01

    Laser-based ion acceleration is currently studied for its applications to advanced imaging and cancer therapy, among others. Targets for these and other high-intensity laser experiments are often small metallic foils with few to sub-micron thicknesses, where the thickness determines the physics of the dominant acceleration mechanism. We have developed liquid crystal films that preserve the planar target geometry advantageous to ion acceleration schemes while providing on-demand thickness variation between 50 and 5000 nm. This thickness control is obtained in part by varying the temperature at which films are formed, which governs the phase (and hence molecular ordering) of the liquid crystal material. Liquid crystals typically have vapor pressures well below the 10-6 Torr operating pressures of intense laser target chambers, and films formed in air maintain their thickness during chamber evacuation. Additionally, the minute volume that comprises each film makes the cost of each target well below one cent, in stark contrast to many standard solid targets. We will discuss the details of liquid crystal film control and formation, as well as characterization experiments performed at the Scarlet laser facility. This work was performed with support from DARPA and NNSA.

  5. Possibility of direct measurement of thermoelastic stresses in imperfect crystals subjected to laser radiation

    SciTech Connect

    Prave, G.G.; Chudakov, V.S.; Yanusova, L.G.

    1983-09-01

    The authors discuss the possibility of direct optical polarization investigations of thermoelastic stresses when a laser acts on an imperfect crystal or other isotropic object possessing initial stresses. They propose an optimal method of investigating crystalline plates with surface orientations (100) and (111) with the aid of a photoelectric polariscope.

  6. Laser ablation in CdZnTe crystal due to thermal self-focusing: Secondary phase hydrodynamic expansion

    NASA Astrophysics Data System (ADS)

    Medvid', A.; Mychko, A.; Dauksta, E.; Kosyak, V.; Grase, L.

    2016-06-01

    The present paper deals with the laser ablation in CdZnTe crystal irradiated by pulsed infrared laser. Two values of threshold intensities of the laser ablation were determined, namely of about 8.5 and 6.2 MW/cm2 for the incident and the rear surfaces, correspondingly. Lower intensity of the laser ablation for the rear surface is explained by thermal self-focusing of the laser beam in the CdZnTe crystal due to heating of Te inclusions with a following hydrodynamic expansion.

  7. Spectra and broad-spectral laser operation of a disordered Nd:LiLa(MoO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Xu, Shan; Huang, Xinyang; Li, Bingxuan; Wei, Yong; Huang, Chenghui; Zhuang, Fengjiang; Chen, Weidong; Zhai, Suya; Zhang, Ge

    2013-06-01

    The crystal characteristics of a disordered Nd:LiLa(MoO4)2 laser crystal were investigated in detail, including its structure, absorption, emission and Raman scattering spectra. Laser operation, end-pumped by an 808 nm diode laser, has been demonstrated in both a concave-plano and plane-parallel resonator cavity. A broad-spectral dual-peak laser emission at 1061 nm and 1060 nm with a full width at half maximum of 2 nm was obtained in the experiment. A maximum output power of 267 mW was obtained in the concave-plano cavity. However, in the plane-parallel cavity, laser output of 381 mW was obtained, giving a slope efficiency of 14.5%. The results lay the groundwork for Raman, mode-locked and tunable laser applications generated by a Nd:LiLa(MoO4)2 laser crystal.

  8. Performance comparison of nonlinear crystals for frequency doubling of an 894nm Cs vapor laser

    NASA Astrophysics Data System (ADS)

    Zhdanov, B. V.; Shaffer, M. K.; Lu, Y.; Naumann, B.; Genda, T.; Knize, R. J.

    2010-11-01

    An examination of the efficiencies of three commonly used nonlinear crystals (PPKTP, LBO, and BiBO) when generating second harmonic of a Cesium laser is presented. The experiment investigates both the intracavity and single pass second harmonic generation of 895 nm Cs laser light when operating in quasi-CW and in CW modes and pumped by several watts. A degradation of the conversion efficiencies for each crystal was observed when high fundamental powers or a high duty cycle of the pump were used. For a Cs laser operating at 894nm, PPKTP is found to be the optimal crystal for intracavity SHG in both pulsed and CW modes when operating at SHG powers of several watts. At higher powers, however, the increased absorption coefficient of PPKTP at 447nm, compared to that of BiBO or LBO, may become significant to where another crystal will be more appropriate for this application. Maximum blue light power obtained with PPKTP crystal was about 1.5W in CW mode and 2.5W in QCW.

  9. Excimer laser crystallization of amorphous silicon carbide produced by ion implantation

    NASA Astrophysics Data System (ADS)

    Hedler, A.; Urban, S.; Falk, F.; Hobert, H.; Wesch, W.

    2003-01-01

    4H-SiC was implanted with 100-250 keV Ge + and Xe + ions and doses of 1×10 14 to 1×10 16 cm -2 at room temperature in order to produce 40-200 nm thick amorphous surface layers. The samples were irradiated with 1-50,000 pulses of a KrF excimer laser (248 nm wavelength, 30 ns pulse duration) using fluences of 150-900 mJ/cm 2 to investigate the crystallization process as a function of the laser parameters. Crystallization as well as redistribution of the impurity atoms were analyzed by Rutherford backscattering spectrometry and infrared reflection measurements. Phase transitions occurring during the irradiation were studied by means of time-resolved reflectivity measurements. In order to explain the observed phase transitions numerical analysis was performed by solving the inhomogeneous heat flow equation using the parameters of the corresponding phases. In this work, we give a consistent description of the experimental results by the numerical simulations for the given laser setup. Depending on the amorphous layer thickness, melting, solidification, and crystallization of the amorphous phase can be effectively controlled by both the laser fluence and the number of laser pulses.

  10. Sulfur and sulfides in chondrules

    NASA Astrophysics Data System (ADS)

    Marrocchi, Yves; Libourel, Guy

    2013-10-01

    The nature and distribution of sulfides within type I PO, POP and PP chondrules of the carbonaceous chondrite Vigarano (CV3) have been studied by secondary electron microscopy and electron microprobe. They occur predominantly as spheroidal blebs composed entirely of low-Ni iron sulfide (troilite, FeS) or troilite + magnetite but in less abundance in association with metallic Fe-Ni beads in opaque assemblages. Troilites are mainly located within the low-Ca pyroxene outer zone and their amounts increase with the abundance of low-Ca pyroxene within chondrules, suggesting co-crystallization of troilite and low-Ca pyroxene during high-temperature events. We show that sulfur concentration and sulfide occurrence in chondrules obey high temperature sulfur solubility and saturation laws. Depending on the fS2 and fO2 of the surrounding gas and on the melt composition, mainly the FeO content, sulfur dissolved in chondrule melts may eventually reach a concentration limit, the sulfur content at sulfide saturation (SCSS), at which an immiscible iron sulfide liquid separates from the silicate melt. The occurrence of both a silicate melt and an immiscible iron sulfide liquid is further supported by the non-wetting behavior of sulfides on silicate phases in chondrules due to the high interfacial tension between their precursor iron-sulfide liquid droplets and the surrounding silicate melt during the high temperature chondrule-forming event. The evolution of chondrule melts from PO to PP towards more silicic compositions, very likely due to high PSiO(g) of the surrounding nebular gas, induces saturation of FeS at much lower S content in PP than in PO chondrules, leading to the co-crystallization of iron sulfides and low-Ca pyroxenes. Conditions of co-saturation of low-Ca pyroxene and FeS are only achieved in non canonical environments characterized by high partial pressures of sulfur and SiO and redox conditions more oxidizing than IW-3. Fe and S mass balance calculations also