Science.gov

Sample records for summer convective storms

  1. Mesoscale aspects of convective storms

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1981-01-01

    The structure, evolution and mechanisms of mesoscale convective disturbances are reviewed and observation techniques for "nowcasting" their nature are discussed. A generalized mesometeorological scale is given, classifying both low and high pressure systems. Mesoscale storms are shown often to induce strong winds, but their wind speeds are significantly less than those accompanied by submesoscale disturbances, such as tornadoes, downbursts, and microbursts. Mesoscale convective complexes, severe storm wakes, and flash floods are considered. The understanding of the evolution of supercells is essential for improving nowcasting capabilities and a very accurate combination of radar and satellite measurements is required.

  2. Convective storms in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sánchez-Lavega, A.

    2013-05-01

    The atmospheres of the planets in the Solar System have different physical properties that in some cases can be considered as extreme when compared with our own planet's more familiar atmosphere. From the tenuous and cold atmosphere of Mars to the dense and warm atmosphere of Venus in the case of the terrestrial planets, to the gigantic atmospheres of the outer planets, or the nitrogen and methane atmosphere of Saturn's moon Titan, we can find a large variety of physical environments. The comparative study of these atmospheres provides a better understanding of the physics of a geophysical fluid. In many of these worlds convective storms of different intensity appear. They are analogous to terrestrial atmospheres fed by the release of latent heat when one of the gases in the atmosphere condenses and they are therefore called moist convective storms. In many of these planets they can produce severe meteorological phenomena and by studying them in a comparative way we can aspire to get a further insight in the dynamics of these atmospheres even beyond the scope of moist convection. A classical example is the structure of the complex systems of winds in the giant planets Jupiter and Saturn. These winds are zonal and alternate in latitude but their deep structure is not accessible to direct observation. However the behaviour of large--scale convective storms vertically extending over the "weather layer" allows to study the buried roots of these winds. Another interesting atmosphere with a rather different structure of convection is Titan, a world where methane is close to its triple point in the atmosphere and can condense in bright clouds with large precipitation fluxes that may model part of the orography of the surface making Titan a world with a methane cycle similar to the hydrological cycle of Earth's atmosphere.

  3. Interactions Between Convective Storms and Their Environment

    NASA Technical Reports Server (NTRS)

    Maddox, R. A.; Hoxit, L. R.; Chappell, C. F.

    1979-01-01

    The ways in which intense convective storms interact with their environment are considered for a number of specific severe storm situations. A physical model of subcloud wind fields and vertical wind profiles was developed to explain the often observed intensification of convective storms that move along or across thermal boundaries. A number of special, unusually dense, data sets were used to substantiate features of the model. GOES imagery was used in conjunction with objectively analyzed surface wind data to develop a nowcast technique that might be used to identify specific storm cells likely to become tornadic. It was shown that circulations associated with organized meso-alpha and meso-beta scale storm complexes may, on occasion, strongly modify tropospheric thermodynamic patterns and flow fields.

  4. 1939DECEMBER 2007AMERICAN METEOROLOGICAL SOCIETY | THE CONVECTIVE STORM

    E-print Network

    Reading, University of

    , an international project obtained detailed observations of nascent convective clouds in maritime southern England1939DECEMBER 2007AMERICAN METEOROLOGICAL SOCIETY | THE CONVECTIVE STORM INITIATION PROJECT BY KEITH flood situations is in the prediction of the To study why, where, and when deep convection breaks out

  5. Observations of Florida Convective Storms Using Dual Wavelength Airborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Heymsfield, A. J.; Belcher, L.

    2004-01-01

    NASA conducted the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) during July 2002 for improved understanding of tropical cirrus. One of the goals was to improve the understanding of cirrus generation by convective updrafts. The reasons why some convective storms produce extensive cirrus anvils is only partially related to convective instability and the vertical transport ice mass by updrafts. Convective microphysics must also have an important role on cirrus generation, for example, there are hypotheses that homogeneous nucleation in convective updrafts is a major source of anvil ice particles. In this paper, we report on one intense CRYSTAL- FACE convective case on 16 July 2002 that produced extensive anvil.

  6. Severe convective storms in the European societal context

    NASA Astrophysics Data System (ADS)

    Doswell, Charles A.

    2015-05-01

    Basic issues associated with how a forecast becomes effective in helping users make decisions based on weather information are described, with a special emphasis on how this might develop in Europe. The notion of a chain of events that begins when the forecast is issued and ends with the user taking effective actions is used to point out what needs to be done to make the process work properly. Geophysical hazard risks and how people respond to the risks associated with them are discussed, concluding that complacency is a major challenge to helping people make appropriate decisions when severe convective storms threaten them. The situation in Europe regarding the threat of severe convective storms is reviewed and some conclusions are drawn. The key conclusion is that there must be a substantial effort to convince Europeans that they are not immune to severe convective weather hazards, since without public support, the weather community in Europe can do little to mitigate the threats posed by severe convective storms.

  7. A-Train Observations of Deep Convective Storm Tops

    NASA Technical Reports Server (NTRS)

    Setvak, Martin; Bedka, Kristopher; Lindsey, Daniel T.; Sokol, Alois; Charvat, Zdenek; Stastka, Jindrich; Wang, Pao K.

    2013-01-01

    The paper highlights simultaneous observations of tops of deep convective clouds from several space-borne instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Aqua satellite, Cloud Profiling Radar (CPR) of the CloudSat satellite, and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) flown on the CALIPSO satellite. These satellites share very close orbits, thus together with several other satellites they are referred to as the "A-Train" constellation. Though the primary responsibility of these satellites and their instrumentation is much broader than observations of fine-scale processes atop convective storms, in this study we document how data from the A-Train can contribute to a better understanding and interpretation of various storm-top features, such as overshooting tops, cold-U/V and cold ring features with their coupled embedded warm areas, above anvil ice plumes and jumping cirrus. The relationships between MODIS multi-spectral brightness temperature difference (BTD) fields and cloud top signatures observed by the CPR and CALIOP are also examined in detail to highlight the variability in BTD signals across convective storm events.

  8. Observations of Florida Convective Storms using Dual Wavelength Airborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Heymsfield, A. J.; Belcher, L.

    2004-01-01

    NASA conducted the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) during July 2002 for improved understanding of tropical cirrus. One of the goals was to improve the understanding of cirrus generation by convective updrafts. The reasons why some convective storms produce extensive cirrus anvils is only partially related to convective instability and the vertical transport ice mass by updrafts. Convective microphysics must also have an important role on cirrus generation, for example, there are hypotheses that homogeneous nucleation in convective updrafts is a major source of anvil ice particles. In this paper, we report on one intense CRYSTAL-FACE convective case on 16 July 2002 that produced extensive anvil. During CRYSTAL-FACE, up to 5 aircraft flying from low- to high-altitudes, were coordinated for the study of thunderstorm-generated cirrus. The NASA high-altitude (20 km) ER-2 aircraft with remote sensing objectives flew above the convection, and other aircraft such as the WB-57 performing in situ measurements flew below the ER-2. The ER-2 remote sensing instruments included two nadir viewing airborne radars. The CRS 94 GHz radar and the EDOP 9.6 GHz radar were flown together for the first time during CRYSTAL-FACE and they provided a unique opportunity to examine the structure of 16 July case from a dual-wavelength perspective. EDOP and CRS are complementary for studying convection and cirrus since CRS is more sensitive than EDOP for cirrus, and EDOP is considerably less attenuating in convective regions. In addition to the aircraft, coordinated ground-based radar measurements were taken with the NPOL S-Band (3 GHz) multiparameter radar. One of the initial goals was to determine whether dual-wavelength airborne measurements could identify supercooled water regions.

  9. Spatial and diurnal variations of storm heights in the East Asia summer monsoon: storm height regimes and large-scale diurnal modulation

    NASA Astrophysics Data System (ADS)

    Park, Myung-Sook; Lee, Myong-In; Kim, Hyerim; Im, Jungho; Yoo, Jung-Moon

    2015-04-01

    This study investigates the spatial and diurnal variation of storm height in the East Asia summer monsoon region using 13-year Tropical Rainfall Measuring Mission Precipitation Radar data. Precipitating storms are classified as shallow (<5 km), middle (5-10 km), and deep (>10 km) depending the height. Four different regimes are identified to characterize the region: the continental (CT) shallow regime over inland China with elevated terrain, the CT deep over the Chinese Plain, the coastal (CS) middle over the East China Sea and South Sea of Korea, and the CS shallow over the south coastal area of Japan. This regime separation reflects well the distinctive regional difference in the rainfall contribution by each storm type. The occurrence frequencies of shallow, middle, and deep storms exhibit pronounced diurnal variation as well, but with significant differences in the amplitude and phase across the regimes. These lead to a diversity in the diurnal variation of surface rainfall such as bimodal morning and late evening peaks in the two CT regimes and the single morning peak in the two CS regimes. Processes involved in the diurnal variation of storms are different across the regimes, indicating difference in the contributing role of surface heating, large-scale diurnal circulation, and diurnal propagations of convective systems. The storm height also affects the rain intensity. This study highlights that the East Asia summer monsoon has distinctive sub-regional variation of the storm height distribution, thereby providing unique differences in the rainfall amount, intensity, and the diurnal variation.

  10. Characteristics of Extreme Summer Convection over equatorial America and Africa

    NASA Astrophysics Data System (ADS)

    Zuluaga, M. D.; Houze, R.

    2013-12-01

    Fourteen years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) version 7 data for June-August show the temporal and spatial characteristics of extreme convection over equatorial regions of the American and African continents. We identify three types of extreme systems: storms with deep convective cores (contiguous convective 40 dBZ echoes extending ?10 km in height), storms with wide convective cores (contiguous convective 40 dBZ echoes with areas >1,000 km2) and storms with broad stratiform regions (stratiform echo >50,000 km2). European Centre for Medium-Range Weather Forecast (ECMWF) reanalysis is used to describe the environmental conditions around these forms of extreme convection. Storms with deep convective cores occur mainly over land: in the equatorial Americas, maximum occurrence is in western Mexico, Northern Colombia and Venezuela; in Africa, the region of maximum occurrence is a broad zone enclosing the central and west Sudanian Savanna, south of the Sahel region. Storms with wide convective radar echoes occur in these same general locations. In the American sector, storms with broad stratiform precipitation regions (typifying robust mesoscale convective systems) occur mainly over the eastern tropical Pacific Ocean and the Colombia-Panama bight. In the African sector, storms with broad stratiform precipitation areas occur primarily over the eastern tropical Atlantic Ocean near the coast of West Africa. ECMWF reanalyses show how the regions of extreme deep convection associated with both continents are located mainly in regions affected by diurnal heating and influenced by atmospheric jets in regions with strong humidity gradients. Composite analysis of the synoptic conditions leading to the three forms of extreme convection provides insights into the forcing mechanisms in which these systems occur. These analyses show how the monsoonal flow directed towards the Andes slopes is mainly what concentrates the occurrence of extreme cases over tropical America. Over Africa the monsoon is also important in modulating the occurrence of extreme convection; however, diurnal heating and the passage of African Easterly Waves are of primary importance in distributing the extreme convection zonally across the tropical African savannas.

  11. Violent pyro-convective storm devastates Australia's capital and pollutes the stratosphere

    E-print Network

    Daniel, Rosenfeld

    Violent pyro-convective storm devastates Australia's capital and pollutes the stratosphere Michael-making firestorms in southeast Australia in 2003, responsible for at least 500 destroyed buildings and four lost-convective storm devastates Australia's capital and pollutes the stratosphere, Geophys. Res. Lett., 33, L05815, doi

  12. Mesospheric concentric gravity waves generated by multiple convective storms over the North American Great Plain

    E-print Network

    Vadas, Sharon

    Mesospheric concentric gravity waves generated by multiple convective storms over the North), Mesospheric concentric gravity waves generated by multiple convective storms over the North American Great in the general circulation, temperature, and constituent structure of the mesosphere and lower thermo- sphere

  13. Electrical Behavior of Downburst-Producing Convective Storms over the High Plains

    E-print Network

    Pryor, K L

    2006-01-01

    A great body of research literature pertaining to microburst generation in convective storms has focused on thermodynamic factors of the pre-convective environment as well as storm morphology as observed by radar imagery. Derived products based on Geostationary Operational Environmental Satellite (GOES) sounder data have been found to be especially useful in the study of thermodynamic environments. However, addressed much less frequently is the relationship between convective storm electrification, lightning phenomenology and downburst generation. Previous research in lightning production by convective storms has identified that electrification, phenomenology, and polarity are dependent upon the thermodynamic structure of the ambient atmosphere, especially vertical moisture stratification. It has already been addressed that buoyant energy and moisture stratification are important factors in convective storm development and downburst generation. This research effort investigates and derives a qualitative relat...

  14. Transport of Formaldehyde to the Upper Troposphere In Deep Convective Storms During the 2012 DC3 Study

    NASA Astrophysics Data System (ADS)

    Fried, A.; Weibring, P.; Richter, D.; Walega, J.; Olson, J. R.; Crawford, J. H.; Barth, M. C.; Apel, E. C.; Hornbrook, R. S.; Bela, M. M.; Toon, O. B.; Blake, D. R.; Blake, N. J.; Luo, Z. J.

    2014-12-01

    The Deep Convective Clouds and Chemistry (DC3) campaign in the summer of 2012 provided an opportunity to study the impacts of deep convection on reactive and soluble precursors of ozone and HOx radicals, including CH2O, in the upper troposphere and lower stratosphere (UTLS) over North America. Formaldehyde measurements were acquired in the inflow and outflow of numerous storms on the NASA DC-8 and NSF/NCAR GV-aircraft employing fast, sensitive, and accurate difference frequency generation infrared absorption spectrometers. Since our Fall 2013 AGU Meeting poster, we have developed an improved methodology based upon 3 independent approaches, to determine the amount of CH2O that is scavenged by deep convective storms. The first approach is based upon WRF-Chem model simulations, which provides greater confidence in the determination of CH2O scavenging efficiencies and allows the estimation of CH2O ice retention factors.The second approach is a modified mixing model employing 4 non-reactive passive tracers (n,i-butane, n,i-pentane) to estimate altitude-dependent lateral entrainment rates. This information is coupled with time-dependent measurements in the outflow of various storms, which when extrapolated to time zero in the storm core, results in estimates of CH2O scavenging efficiencies. This analysis includes estimates of photochemically produced CH2O in the storm core. A third approach is based upon CH2O/n-butane ratio comparisons in both the storm inflow and outflow. Results from various storms over Oklahoma, Colorado, and Alabama will be presented. However, the analysis will primarily focus on the May 29, 2012 supercell storm in Oklahoma. During this storm, the 4 passive tracers produced a very consistent lateral entrainment rate of 0.083 ± 0.008 km-1, a value that broadly agrees with entrainment rates determined previously from analyzing moist static energy profiles (Luo et al., Geophys. Res. Lett., 2010). For this storm, the 3-independent approaches give CH2O scavenging efficiencies in the 49-55% range. Although somewhat higher than previous determinations, there is still sufficient transport of CH2O to the UTLS, thus providing an important source to the HOx budget in convective outflow regions.

  15. Numerical modeling of severe convective storms occurring in the Carpathian Basin

    NASA Astrophysics Data System (ADS)

    Horváth, Á.; Geresdi, I.; Németh, P.; Csirmaz, K.; Dombai, F.

    Squall lines often cause serious damages due to the strong surface outflow, hail, or heavy precipitation in Hungary every summer. Squall lines in the Carpathian Basin can be classified into two main categories: pre-frontal squall-lines and frontal convective lines. In this paper, these two types of severe mesoscale phenomena are investigated using the high resolution numerical weather prediction model, the MM5. The case study for the first type of convective systems occurred on 18th May 2005 when two main convective lines with their embedded severe storms formed daytime and caused high-velocity wind events and extensive damages in the eastern part of Hungary. The second case study is a frontal squall line that hit Budapest on 20th August 2006 and the associated high precipitation (HP) supercells reached the capital of Hungary at same time when the traditional Constitution Day firework began. The consequences were catastrophic: five people were killed and more than one thousand were injured due to the extreme weather. The non-hydrostatic high resolution MM5 model was able to simulate and catch the severe weather events occurred on the days under discussion. Moreover, the model was able to compute the detailed structure of the supercells embedded in thunderstorm lines. By studying the equivalent potential temperature (EPT) fields at lower levels, we state that in the prefrontal case, there is a competition between the supercell thunderstorms for the wet and warm air. A thunderstorm that can collect the wet and warm air from larger area will have longer lifetime and more intense updraft. In the second case, the frontal squall lines, the movement and the behavior of the supercell storms embedded in the line was highly determined by the synoptic-scale motions and less affected by the EPT field of the prefrontal masses.

  16. Changes in concentration of Alternaria and Cladosporium spores during summer storms.

    PubMed

    Grinn-Gofro?, Agnieszka; Strzelczak, Agnieszka

    2013-09-01

    Fungal spores are known to cause allergic sensitization. Recent studies reported a strong association between asthma symptoms and thunderstorms that could be explained by an increase in airborne fungal spore concentrations. Just before and during thunderstorms the values of meteorological parameters rapidly change. Therefore, the goal of this study was to create a predictive model for hourly concentrations of atmospheric Alternaria and Cladosporium spores on days with summer storms in Szczecin (Poland) based on meteorological conditions. For this study we have chosen all days of June, July and August (2004-2009) with convective thunderstorms. There were statistically significant relationships between spore concentration and meteorological parameters: positive for air temperature and ozone content while negative for relative humidity. In general, before a thunderstorm, air temperature and ozone concentration increased, which was accompanied by a considerable increase in spore concentration. During and after a storm, relative humidity increased while both air temperature ozone concentration along with spore concentrations decreased. Artificial neural networks (ANN) were used to assess forecasting possibilities. Good performance of ANN models in this study suggest that it is possible to predict spore concentrations from meteorological variables 2 h in advance and, thus, warn people with spore-related asthma symptoms about the increasing abundance of airborne fungi on days with storms. PMID:23161270

  17. Changes in concentration of Alternaria and Cladosporium spores during summer storms

    NASA Astrophysics Data System (ADS)

    Grinn-Gofro?, Agnieszka; Strzelczak, Agnieszka

    2013-09-01

    Fungal spores are known to cause allergic sensitization. Recent studies reported a strong association between asthma symptoms and thunderstorms that could be explained by an increase in airborne fungal spore concentrations. Just before and during thunderstorms the values of meteorological parameters rapidly change. Therefore, the goal of this study was to create a predictive model for hourly concentrations of atmospheric Alternaria and Cladosporium spores on days with summer storms in Szczecin (Poland) based on meteorological conditions. For this study we have chosen all days of June, July and August (2004-2009) with convective thunderstorms. There were statistically significant relationships between spore concentration and meteorological parameters: positive for air temperature and ozone content while negative for relative humidity. In general, before a thunderstorm, air temperature and ozone concentration increased, which was accompanied by a considerable increase in spore concentration. During and after a storm, relative humidity increased while both air temperature ozone concentration along with spore concentrations decreased. Artificial neural networks (ANN) were used to assess forecasting possibilities. Good performance of ANN models in this study suggest that it is possible to predict spore concentrations from meteorological variables 2 h in advance and, thus, warn people with spore-related asthma symptoms about the increasing abundance of airborne fungi on days with storms.

  18. Evidence for Gravity Wave Seeding of Convective Ionosphere Storms Initiated by Deep Troposphere Convection

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Pfaff, R. F., Jr.; Dao, E. V.; Holzworth, R. H., II

    2014-12-01

    With the increase in solar activity, the Communications/Outage Forecast System satellite (C/NOFS) now goes below the F peak. As such, we now can study the development of Convective Ionospheric Storms (CIS) and, most importantly, large-scale seeding of the low growth-rate Rayleigh-Taylor (R-T) instability. Two mechanisms have been suggested for such seeding: the Collisional Kelvin-Helmholtz Instability (CKHI) and internal atmospheric gravity waves. A number of observations have shown that the spectrum of fully developed topside structures peaks at 600 km and extends to over 1000 km. These structures are exceedingly difficult to explain by CKHI. Here we show that sinusoidal plasma oscillations on the bottomside during daytime develop classical R-T structures on the nightside with the background 600 km structure still apparent. In two case studies, thunderstorm activity was observed east of the sinusoidal features in the two hours preceding the C/NOFS passes. Thus, we argue that convective tropospheric storms are a likely source of these sinusoidal features.

  19. Electrical Behavior of Downburst-Producing Convective Storms over the Western United States

    E-print Network

    Pryor, K

    2006-01-01

    A great body of research literature pertaining to microburst generation in convective storms has focused on thermodynamic factors of the pre-convective environment as well as storm morphology as observed by radar imagery. Derived products based on GOES sounder data have been found to be especially useful in the study of thermodynamic environments. However, addressed much less frequently is the relationship between convective storm electrification, lightning phenomenology and downburst generation. Previous research in lightning production by convective storms has identified that electrification, phenomenology (i.e. flash rate, density), and polarity are dependent upon the thermodynamic structure of the ambient atmosphere, especially vertical moisture stratification. Thus, relevant parameters to describe the thermodynamic setting would include CAPE, due to its influence on updraft strength, and cloud liquid water content, due to its relationship to precipitation physical processes. It has already been addressed...

  20. Remote sensing of severe convective storms over Qinghai-Xizang Plateau

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liu, J. M.; Tsao, D. Y.; Smith, R. E.

    1984-01-01

    The American satellite, GOES-1 was moved to the Indian Ocean at 58 deg E during the First GARP Global Experiment (FGGE). The Qinghai-Xizang Plateau significantly affects the initiation and development of heavy rainfall and severe storms in China, just as the Rocky Mountains influence the local storms in the United States. Satelite remote sensing of short-lived, meso-scale convective storms is particularly important for covering a huge area of a high elevation with a low population density, such as the Qinghai-Xizang Plateau. Results of this study show that a high growth rate of the convective clouds, followed by a rapid collapse of the cloud top, is associated with heavy rainfall in the area. The tops of the convective clouds developed over the Plateau lie between the altitudes of the two tropopauses, while the tops of convective clouds associated with severe storms in the United States usually extend much above the tropopause.

  1. European climatology of severe convective storm environmental parameters: A test for significant tornado events

    E-print Network

    Romero, Romu

    and discussion of the main results. It is hypothesized that preferred areas for severe thunderstorms occurrence element for gaining knowledge of the impact of severe convective storms in Europe and for the design

  2. Atmospheric structure and variability in areas of convective storms determined from 3-h rawinsonde data

    NASA Technical Reports Server (NTRS)

    Wilson, G. S.; Scoggins, J. R.

    1976-01-01

    The structure and variability of the atmosphere in areas of radar-observed convection were established by using 3-h rawinsonde and surface data from NASA's second Atmospheric Variability Experiment. Convective activity was shown to exist in areas where the low and middle troposphere is moist and the air is potentially and convectively unstable and has upward motion, in combination with positive moisture advection, at either the surface or within the boundary layer. The large variability of the parameters associated with convective storms over time intervals less than 12 h was also demonstrated so as to possibly produce a change in the probability of convective activity by a factor of 8 or more in 3 h. Between 30 and 60 percent of the total changes in parameters associated with convective activity over a 12-h period were shown to take place during a 3-h period. These large changes in parameters are related to subsynoptic-scale systems that often produce convective storms.

  3. Convective rain rates and their evolution during storms in a semiarid climate

    NASA Technical Reports Server (NTRS)

    Doneaud, A. A.; Miller, J. R., Jr.; Ionescu-Niscov, S.

    1984-01-01

    The semiarid climate of the U.S. northern High Plains region has been studied with respect to rain rates and their evolution during summertime convective storms, using radar data from a total of 750 radar echo clusters. Analysis of this data suggests that the average rain rate R among storms is in a first approximation independent of the total rain volume, if the entire storm duration is considered in the averaging process. R primarily depends on the reflectivity threshold considered in calculating the area coverage integrated over the lifetime of the storm. R evolution during storms is analyzed by dividing each storm lifetime into 10 min, 1, 2, and 4 hours, as well as growing and decaying periods. The value of R remained independent of the total rain volume when the growing or decaying periods of storms were considered separately.

  4. SEVERE CONVECTIVE STORMS --AN OVERVIEW Chapter 1 in

    E-print Network

    Doswell III, Charles A.

    , it is one of the three main processes by which heat is transported: radiation, conduction, and convection. Meteorologists typically use the term convection to refer to heat transport by the vertical component of the flow. Convection takes many forms in the atmosphere; a comprehensive treatment of the topic can be found in Emanuel

  5. Assessment of a GOES microburst product for two early cold season convective storms

    E-print Network

    Pryor, Kenneth L

    2010-01-01

    This paper presents an assessment of the new Geostationary Operational Environmental Satellite (GOES) imager channel 3 - 4 brightness temperature difference (BTD) product for two early cold season severe convective storm events that occurred over the Mid-Atlantic region on 17 November and 1 December 2010. Both of these events involved squall lines that produced strong downbursts as they tracked over the Tidal Potomac River and Chesapeake Bay regions. It has been found recently that the BTD between GOES infrared channel 3 (water vapor) and channel 4 (thermal infrared) can highlight regions where severe outflow wind generation (i.e. downbursts, microbursts) is likely due to the channeling of dry mid-tropospheric air into the precipitation core of a deep, moist convective storm. These two cases demonstrate effective operational use of this image product for cold-season convective storm events.

  6. Organization of Oceanic Convection during the Onset of the 1998 East Asian Summer Monsoon

    E-print Network

    Johnson, Richard H.

    converging into deep convective systems over the Indonesian­ Malaysian maritime continent. The structureOrganization of Oceanic Convection during the Onset of the 1998 East Asian Summer Monsoon RICHARD H modes of convection over the northern South China Sea (SCS) during the onset of the summer monsoon

  7. Initialization of a modeled convective storm using Doppler radar-derived fields

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Ray, Peter S.; Johnson, Kenneth W.

    1993-01-01

    A method is developed to initialize convective storm simulations with Doppler radar-derived fields. Input fields for initialization include velocity, rainwater derived from radar reflectivity, and pressure and temperature fields obtained through thermodynamic retrieval. A procedure has been developed to fill in missing wind data, followed by a variational adjustment to the filled wind field to minimize 'shocks' that would otherwise cause the simulated fields to deteriorate rapidly. A series of experiments using data from a simulated storm establishes the feasibility of the initialization method. Multiple-Doppler radar observations from the 20 May 1977 Del City tornadic storm are used for the initialization experiments. Simulation results are shown and compared to observations taken at a later time. The simulated storm shows good agreement with the subsequent observations, though the simulated storm appears to be evolving faster than observed. Possible reasons for the discrepancies are discussed.

  8. Severe convective storm detection based on satellite infrared imagery analysis

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1984-01-01

    Several cases of GOES digital infrared data and Doppler Sounder array data during the three-hour time period immediately preceding the touchdown of the tornado were analyzed. Tornado-associated clouds are compared with non-tornado-associated clouds using satellite infrared data, ray tracing of gravity waves detected by the Doppler Sounder array and rawinsonde data. The satellite observations are at 15-minute intervals. Our study shows that tornado-associated clouds are always accompanied by overshooting turrets penetrating above the tropopause. The growth rate of the overshooting turret above the tropopause for severe storm-associated clouds is much greater than that for non-severe storm-associated clouds.

  9. Urban Aerosol Impacts on Downwind Convective Storms SUSAN C. VAN DEN HEEVER AND WILLIAM R. COTTON

    E-print Network

    Collett Jr., Jeffrey L.

    Urban Aerosol Impacts on Downwind Convective Storms SUSAN C. VAN DEN HEEVER AND WILLIAM R. COTTON March 2006, in final form 27 September 2006) ABSTRACT The impacts of urban-enhanced aerosol land use processes and aerosol microphysics are both incorporated. The results indicate that urban

  10. Transient luminous events above two mesoscale convective systems: Storm structure and evolution

    NASA Astrophysics Data System (ADS)

    Lang, Timothy J.; Lyons, Walter A.; Rutledge, Steven A.; Meyer, Jonathan D.; MacGorman, Donald R.; Cummer, Steven A.

    2010-05-01

    Two warm-season mesoscale convective systems (MCSs) were analyzed with respect to their production of transient luminous events (TLEs), mainly sprites. The 20 June 2007 symmetric MCS produced 282 observed TLEs over a 4 h period, during which the storm's intense convection weakened and its stratiform region strengthened. TLE production corresponded well to convective intensity. The convective elements of the MCS contained normal-polarity tripole charge structures with upper-level positive charge (<-40°C), midlevel negative charge (-20°C), and low-level positive charge near the melting level. In contrast to previous sprite studies, the stratiform charge layer involved in TLE production by parent positive cloud-to-ground (+CG) lightning resided at upper levels. This layer was physically connected to upper-level convective positive charge via a downward sloping pathway. The average altitude discharged by TLE-parent flashes during TLE activity was 8.2 km above mean sea level (MSL; -25°C). The 9 May 2007 asymmetric MCS produced 25 observed TLEs over a 2 h period, during which the storm's convection rapidly weakened before recovering later. Unlike 20 June, TLE production was approximately anticorrelated with convective intensity. The 9 May storm, which also had a normal tripole in its convection, best fit the conventional model of low-altitude positive charge playing the dominant role in sprite production; however, the average altitude discharged during the TLE phase of flashes still was higher than the melting level: 6.1 km MSL (-15°C). Based on these results, it is inferred that sprite production and sprite-parent positive charge altitude depend on MCS morphology.

  11. Spatial characteristics of observed precipitation fields: A catalog of summer storms in Arizona, Volume 2

    NASA Technical Reports Server (NTRS)

    Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodriguez-Iturbe, I.

    1986-01-01

    The parameters of the conceptual model are evaluated from the analysis of eight years of summer rainstorm data from the dense raingage network in the Walnut Gulch catchment near Tucson, Arizona. The occurrence of measurable rain at any one of the 93 gages during a noon to noon day defined a storm. The total rainfall at each of the gages during a storm day constituted the data set for a single storm. The data are interpolated onto a fine grid and analyzed to obtain: an isohyetal plot at 2 mm intervals, the first three moments of point storm depth, the spatial correlation function, the spatial variance function, and the spatial distribution of the total storm depth. The description of the data analysis and the computer programs necessary to read the associated data tapes are presented.

  12. Simulating supercell thunderstorms in a convective boundary layer: Effects on storm and boundary layer properties

    NASA Astrophysics Data System (ADS)

    Nowotarski, Christopher J.

    Nearly all previous numerical simulations of supercell thunderstorms have neglected surface uxes of heat, moisture, and momentum as well as horizontal inhomogeneities in the near-storm environment from resulting dry boundary layer convection. This investigation uses coupled radiation and land-surface schemes within an idealized cloud model to identify the effects of organized boundary layer convection in the form of horizontal convective rolls (HCRs) on the strength, structure, and evolution of simulated supercell thunderstorms. The in uence of HCRs and the importance of their orientation relative to storm motion is tested by comparing simulations with a convective boundary layer (CBL) against those with a horizontally homogeneous base state having the same mean environment. The impact of anvil shading on the CBL is tested by comparing simulations with and without the effects of clouds in the radiative transfer scheme. The results of these simulations indicate that HCRs provide a potentially important source of environmental vertical vorticity in the sheared, near-storm boundary layer. These vorticity perturbations are amplified both beneath the main supercell updraft and along the trailing out ow boundary, leading to the formation of occasionally intense misovortices. HCRs perpendicular to storm motion are found to have a detrimental effect on the strength and persistence of the lowlevel mesocyclone, particularly during its initial development. Though the mean environment is less supportive of low-level rotation with a wind profile conducive to HCRs oriented parallel to storm motion, such HCRs are found to often enhance the low-level mesocyclone circulation. When anvil shading is included, stabilization results in generally weaker low-level mesocyclone circulation, regardless of HCR orientation. Moreover, HCRs diminish in the near-storm environment such that the effects of HCRs on the supercell are mitigated. HCRs are also shown to be a necessary condition for the formation of so-called "feeder clouds" and anking line convection in these simulations. These findings suggest potentially important rami fications regarding both non-mesocyclone and mesocyclone tornadoes in supercell thunderstorms in an environment with active boundary layer convection.

  13. Sensitivity of summer ensembles of super-parameterized US mesoscale convective systems to cloud resolving model microphysics and resolution

    NASA Astrophysics Data System (ADS)

    Elliott, E.; Yu, S.; Kooperman, G. J.; Morrison, H.; Wang, M.; Pritchard, M. S.

    2014-12-01

    Microphysical and resolution sensitivities of explicitly resolved convection within mesoscale convective systems (MCSs) in the central United States are well documented in the context of single case studies simulated by cloud resolving models (CRMs) under tight boundary and initial condition constraints. While such an experimental design allows researchers to causatively isolate the effects of CRM microphysical and resolution parameterizations on modeled MCSs, it is still challenging to produce conclusions generalizable to multiple storms. The uncertainty associated with the results of such experiments comes both from the necessary physical constraints imposed by the limited CRM domain as well as the inability to evaluate or control model internal variability. A computationally practical method to minimize these uncertainties is the use of super-parameterized (SP) global climate models (GCMs), in which CRMs are embedded within GCMs to allow their free interaction with one another as orchestrated by large-scale global dynamics. This study uses NCAR's SP Community Atmosphere Model 5 (SP-CAM5) to evaluate microphysical and horizontal resolution sensitivities in summer ensembles of nocturnal MCSs in the central United States. Storm events within each run were identified using an objective empirical orthogonal function (EOF) algorithm, then further calibrated to harmonize individual storm signals and account for the temporal and spatial heterogeneity between them. Three summers of control data from a baseline simulation are used to assess model internal interannual variability to measure its magnitude relative to sensitivities in a number of distinct experimental runs with varying CRM parameters. Results comparing sensitivities of convective intensity to changes in fall speed assumptions about dense rimed species, one- vs. two-moment microphysics, and CRM horizontal resolution will be discussed.

  14. Isolating the response of Central US summer precipitation to anthropogenic climate change in global simulations with explicitly resolved convection

    NASA Astrophysics Data System (ADS)

    Kooperman, G. J.; Pritchard, M. S.; Somerville, R. C.

    2013-12-01

    Organized propagating storms, known as mesoscale convective systems (MCSs) bring nearly 60% of summer rainfall to the Central US but are not simulated by conventional global climate models (GCMs). GCMs that do not realistically represent the physical mechanisms that generate MCSs in nature cannot assess how they may respond to climate change, and as a result disagree on the sign of future US precipitation trends. Important questions remain highly uncertain: How will summer storms in the Central US respond to higher greenhouse gas concentrations? Will changes in the pattern or intensity of rain associated with these organized storms lead to more drought or flood conditions? A new GCM that apparently captures key aspects of MCS physics is one that simultaneously resolves small- and large-scale processes in an approach called super-parameterization (SP), which uses simplified cloud resolving models in place of conventional parameterizations. Here a new regional MCS index is developed to evaluate the signal in observations, and conventional- and super-parameterized versions of the NCAR Community Atmosphere Model (CAM). Analysis across three versions of SP-CAM (3.0, 3.5, and 5.0) show the emergence of nocturnal, eastward propagating convection is a robust feature of SP. Composite analysis reveals that the extent, intensity, and frequency of MCS events and resulting precipitation are most realistic in SP-CAM5.0. Climate change experiments (4x CO2) with SP-CAM5.0 suggest that future storms may become more intense with more liquid/ice condensate, greater areal extent, higher rainfall rate, and longer persistence.

  15. Midweek increase in U.S. summer rain and storm heights suggests air pollution

    E-print Network

    Daniel, Rosenfeld

    Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates air pollution suppresses cloud-drop coalescence and early rainout during the growth of thunderstorms suggests air pollution invigorates rainstorms, J. Geophys. Res., 113, D02209, doi:10.1029/2007JD008623. 1

  16. Investigating the life-cycle of summer convection activity using high temporal resolution satellite data and lightning measurements

    NASA Astrophysics Data System (ADS)

    Lagouvardos, K.; Kotroni, V.; Mazarakis, N.

    2009-09-01

    The aim of this work is to investigate the onset and life-cycle of convective activity during the warm period of the year, in selected areas of Greece, Italy and southern France. For that purpose, 5-min METEOSAT imagery (rapid scanning) is used, together with lightning measurements made by ZEUS lightning detection system. For selected days during spring and summer 2009, an analysis is performed in order to investigate the life-cycle of convective activity (of the order of a couple of hours) and how this life-cycle is related with the lightning measurements. The final aim is to provide a better insight on the lightning activity associated with different stages of the storm development (developing, mature, decaying stages).

  17. Spatial characteristics of observed precipitation fields: A catalog of summer storms in Arizona, Volume 1

    NASA Technical Reports Server (NTRS)

    Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodrigues-Iturbe, I.

    1986-01-01

    Eight years of summer raingage observations are analyzed for a dense, 93 gage, network operated by the U. S. Department of Agriculture, Agricultural Research Service, in their 150 sq km Walnut Gulch catchment near Tucson, Arizona. Storms are defined by the total depths collected at each raingage during the noon to noon period for which there was depth recorded at any of the gages. For each of the resulting 428 storms, the 93 gage depths are interpolated onto a dense grid and the resulting random field is anlyzed. Presented are: storm depth isohyets at 2 mm contour intervals, first three moments of point storm depth, spatial correlation function, spatial variance function, and the spatial distribution of total rainstorm depth.

  18. Study of Ardmore, Oklahoma storm clouds. I - Convective storm cloud initiation and development based on the remote sensing gravity-wave-induced convection. II - Satellite infrared remote sensing and numerical simulation

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y. D.

    1991-01-01

    The role of gravity waves is discussed with respect to the vertical velocity of convection. Specific attention is given to wave-induced convection which contributes to the fractions of formation and the development of severe convective storms. Large-amplitude gravity waves and convective instability were investigated in storm clouds above Ardmore, Oklahoma. Rapid-scan satellite imagery and radar summaries provide evidence of water-vapor condensation related to convection which is introduced by gravity waves. Gravity wave periods of 35 minutes are found to initiate weak convection, which can be intensified by gravity waves with periods of 20 minutes. The convective motion reaches a maximum about one hour before funnel clouds develop. Other mechanisms which contribute to convective motion are considered, but gravity waves are the major contributor to the initiation, formation, and development of mesoscale storm clouds. Cloud modeling based on satellite imagery and sounding data showed that by overshooting cloud tops that penetrated the tropopause, storm clouds mature; that these clouds collapse about 9 minutes before the touchdown of tornadoes; and that cloud tops collapse at a high rate about 6 minutes before tornadoes lift off.

  19. Lightning, overshooting top and hail characteristics for strong convective storms in Central Europe

    NASA Astrophysics Data System (ADS)

    Jurkovi?, Petra Mikuš; Mahovi?, Nataša Strelec; Po?akal, Damir

    2015-07-01

    Lightning activity in storms with overshooting tops and hail-producing storms over Central Europe is studied, in order to find typical lightning characteristics that can be useful in nowcasting of the severity of the storm and its ability to produce hail. The first part of the study gives the analysis of lightning activity in thunderstorms with overshooting tops (OT) for the warm part of the year (May-September) from 2009 to 2010 over central and southeastern Europe. Deep convective clouds with OT were detected in Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) data, using methods based on the infrared window (IRW, 10.8 ?m) channel and absorption channels of water vapor (WV, 6.2 ?m) and ozone (O3, 9.7 ?m) in the form of brightness temperature differences. The locations and times of the detected OT were compared to the distribution and types of lightning strokes, which were provided by the LINET Lightning Location System. The results show that the spatial distribution of lightning generally coincides with the spatial distribution of the detected OT. The largest numbers of lightning strokes and OT were found in western Hungary, southeastern Austria, northeastern Slovenia and the northern Adriatic. The largest number of OT occurred between 1600 and 1800 UTC, whereas from 0600 to 1000 UTC OT detections were rather rare. Lightning activity showed a similar temporal distribution, with an increase in lightning activity evident at or close to the time of the OT detections. At the time of and close to the location of the OT, the lightning was found to occur well above the tropopause and was clearly related to the OT of cumulonimbus clouds. In the second part of the study, lightning characteristics are studied for 35 events of hail-producing thunderstorms over Croatia in the summer months (May to September), from 2008 to 2012. The lightning distribution, also registered by LINET, was compared to hail parameters based on measurements at the hailpad polygon. A polygon with dimensions of 30 km × 20 km was located in the area of highest average number of days with hail occurrence in the continental part of Croatia. In a majority of the studied cases, the number of total lightning strokes sharply increased slightly before the beginning of hailfall. At the time the hailfall started there is a brief decrease in the number of lightning strokes, followed by a sharp increase shortly after. Additionally, larger hailstones with higher kinetic energy values appeared at the beginning of the hailshower. Microphysical properties of the cloud tops, investigated using MSG SEVIRI 3.9 ?m reflectivity, i.e. profiles of the effective radii of cloud particles vs. temperature, clearly verify the presence of strong updrafts associated with hail-producing clouds.

  20. Hybrid ensemble-3DVar radar data assimilation for the short-term prediction of convective storms

    NASA Astrophysics Data System (ADS)

    Carley, Jacob R.

    This two-part study develops and tests a hybrid ensemble-3DVar radar data assimilation system for the short-term prediction of convective storms. A key component of this work is the use of the operational regional numerical weather prediction infrastructure of the United States National Weather Service (NWS). Recently, the NWS's Gridpoint Statistical Interpolation system (GSI) has been extended to include a hybrid ensemble-3DVar assimilation capability, allowing for the inclusion of flow dependent background error statistics in the 3DVar cost function. A convenient aspect of the hybrid ensemble-3DVar approach is its resource manageability. The initial implementation of the system may only use 3DVar and the hybrid aspect can be implemented gradually where additional ensemble members can be added as computational resources allow. Therefore the hybrid ensemble-3DVar method may be a particularly appealing approach for an operational numerical weather prediction (NWP) center where resources are at a premium. The first part of this study focuses on the development of a storm-scale, hybrid ensemble-3DVar radar data assimilation system. An observation operator for radar reflectivity is introduced, static background errors for additional hydrometeor control variables are obtained, an ensemble prediction system is implemented, and an algorithm is developed to assimilate radar observations. This system is applied to a real-data case which exhibits varying convective modes. It is found that, when compared to 3DVar, the hybrid ensemble-3DVar assimilation approach provides a closer fit to observations, produces cold pools which are much stronger than what was observed in the 3DVar experiment, and all experiments have a vertical velocity field at the final analysis time which exhibits generally weak upward vertical motion fields. The weak vertical motion field is hypothesized to be a result of the lack of vertical velocity control variable and thus there is no coupling amongst the three components of the wind. The second part of this study tests the radar data assimilation experiments through the evaluation of short, 1 hour forecasts initialized from the storm-scale analyses. It is found that the weak upward vertical velocity fields found in the storm-scale analyses did not preclude the development of deep convective storms with upward vertical motion representative of the observed storm types. In all radar data assimilation experiments a general eastward displacement of forecast storms relative to observed storms is observed. This displacement is hypothesized to be a result of storm re-development along cold pools during the first 10 to 20 minutes of the forecast. Furthermore, objective verification indicates that radar data assimilation compared to a case of no data assimilation generally improves the forecasts, and hybrid ensemble-3DVar assimilation yielded initial conditions which provided the best forecasts. A sensitivity was noted to the relative weights given to the static- and ensemble-based background error statistics. Experiments with 50% and 25% of the weight given to the static background error generally yielded the best forecast verification scores overall. It is noted that while these results demonstrate the effectiveness of hybrid ensemble-3DVar radar data assimilation at the convective-scale with the regional operational NWP infrastructure of the NWS, this is only an evaluation with a single case. Additional case studies are recommended before a more general conclusion may be obtained.

  1. CONVECTIVE BURSTS AND THE COUPLING OF SATURN'S EQUATORIAL STORMS AND INTERIOR ROTATION

    SciTech Connect

    Heimpel, Moritz; Aurnou, Jonathan M. E-mail: aurnou@ucla.edu

    2012-02-10

    Temporal variations of Saturn's equatorial jet and magnetic field hint at rich dynamics coupling the atmosphere and the deep interior. However, it has been assumed that rotation of the interior dynamo must be steady over tens of years of modern observations. Here we use a numerical convection model and scaling estimates to show how equatorial convective bursts can transfer angular momentum to the deeper interior. The numerical model allows angular momentum transfer between a fluid outer spherical shell and a rigid inner sphere. Convection drives a prograde equatorial jet exhibiting quasiperiodic bursts that fill the equatorial volume outside the tangent cylinder. For each burst strong changes in the equatorial surface velocity are associated with retrograde torque on the inner sphere. Our results suggest that Saturn's Great White Spot, a giant storm that was observed to fill the equatorial region in 1990, could mobilize a volume of fluid carrying roughly 15% of Saturn's moment of inertia. Conservation of angular momentum then implies that a 20% change in the equatorial jet angular velocity could change the average interior rotation rate by about 0.1%-roughly an order of magnitude less than the apparent rotation rate changes associated with Saturn's kilometric radio (SKR) signal. However, if the SKR signal originates outside the liquid metal core in a 'planetary tachocline' that separates the layer of fast zonal flow from the magnetically controlled and slowly convecting deep interior, then convective bursts can provide a possible mechanism for the observed {approx}1% SKR changes.

  2. Ionospheric convection during the magnetic storm of 20-21 March 1991

    NASA Technical Reports Server (NTRS)

    Taylor, J. R.; Yeoman, T. K.; Lester, M.; Buonsanto, M. J.; Scali, J. L.; Ruohoniemi, J. M.; Kelly, J. D.

    1994-01-01

    We report on the response of high-latitude ionospheric convection during the magnetic storm of March 20-21 1990. IMP-8 measurements of solar wind plasma and interplanetary magnetic field (IMF), ionospheric convection flow measurements from the Wick and Goose Bay coherent radars, EISCAT, Millstone Hill and Sondrestorm incoherent radars and three digisondes at Millstone Hill, Goose Bay and Qaanaaq are presented. Two intervals of particular interest have been indentified. The first starts with a storm sudden commencement at 2243 UT on March 20 and includes the ionospheric activity in the following 7 h. The response time of the ionospheric convection to the southward tuning of the IMF in the dusk to midnight local times is found to be approximately half that measured in a similar study at comparable local times during more normal solar wind conditions. A subsequent reconfiguration of the nightside convection pattern was also observed, although it was not possible to distinguish between effects due to possible changes in B(sub y) and effects due to substorm activity. The second interval, 1200-2100 UT 21 March 1990, included a southward turning of the IMF which resulted in the B(sub z) component becoming -10 nT. The response time on the dayside to this change in the IMF at the magnetopause was approximately 15 min to 30 min which is a factor of approximately 2 greater than those previously measured at higher latitudes. A movement of the nightside flow reversal, possibly driven by current systems associated with the substorm expansion phases, was observed, implying that the nightside convection pattern can be dominated by substorm activity.

  3. Ionospsheric observation of enhanced convection-initiated gravity waves during tornadic storms

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1981-01-01

    Atmospheric gravity waves associated with tornadoes, with locally severe storms occuring with tornadoes, and with hurricanes were studied through the coupling between the ionosphere and the troposphere. Reverse group ray tracing computations of gravity waves observed by an ionospheric Doppler sounder array were analyzed. The results of ray tracing computations and comparisons between the computed location of the wave sources and with conventional meteorological data indicate that the computed sources of the waves were near the touchdown of the tornadoes, near the eye of the hurricanes, and directly on the squall line of the severe thunderstorms. The signals excited occurred one hour in advance of the tornadoes and three hours in advance of the hurricanes. Satellite photographs show convective overshooting turrets occurring at the same locations and times the gravity waves were being excited. It is suggested that gravity wave observations, conventional meteorological data, and satellite photographs be combined to develop a remote sensing technique for detecting severe storms.

  4. Satellite infrared imagery, rawinsonde data, and gravity wave remote sensing of severe convective storms

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1982-01-01

    GOES digital infrared data during the time period between two hours before the touchdown of tornado and the tornado touchdown time were used in this study. Comparison between tornado-associated clouds and non-tornado-associated clouds indicates that the difference between overshooting cloud top temperature and the tropopause temperature, or how much the cloud has penetrated above the tropopause, rather than either the absolute temperature of penetrative cloud top or the height of the top of overshooting turret is significant for the possible formation of severe storms. The penetrative overshooting cloud top collapses about 15 to 30 minutes before the touchdown of tornado. Gravity waves were detected from the severe convective storms.

  5. Influence of the Convection Electric Field Models on Predicted Plasmapause Positions During Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Pierrard, V.; Khazanov, G.; Cabrera, J.; Lemaire, J.

    2007-01-01

    In the present work, we determine how three well documented models of the magnetospheric electric field, and two different mechanisms proposed for the formation of the plasmapause influence the radial distance, the shape and the evolution of the plasmapause during the geomagnetic storms of 28 October 2001 and of 17 April 2002. The convection electric field models considered are: Mcllwain's E51) electric field model, Volland-Stern's model and Weimer's statistical model compiled from low-Earth orbit satellite data. The mechanisms for the formation of the plasmapause to be tested are: (i) the MHD theory where the plasmapause should correspond to the last-closed- equipotential (LCE) or last-closed-streamline (LCS), if the E-field distribution is stationary or time-dependent respectively; (ii) the interchange mechanism where the plasmapause corresponds to streamlines tangent to a Zero-Parallel-Force surface where the field-aligned plasma distribution becomes convectively unstable during enhancements of the E-field intensity in the nightside local time sector. The results of the different time dependent simulations are compared with concomitant EUV observations when available. The plasmatails or plumes observed after both selected geomagnetic storms are predicted in all simulations and for all E-field models. However, their shapes are quite different depending on the E-field models and the mechanisms that are used. Despite the partial success of the simulations to reproduce plumes during magnetic storms and substorms, there remains a long way to go before the detailed structures observed in the EUV observations during periods of geomagnetic activity can be accounted for very precisely by the existing E-field models. Furthermore, it cannot be excluded that the mechanisms currently identified to explain the formation of "Carpenter's knee" during substorm events, will', have to be revised or complemented in the cases of geomagnetic storms.

  6. The distribution of deep convection over ocean and land during the Asian summer monsoon

    NASA Technical Reports Server (NTRS)

    Grossman, Robert L.; Garcia, Oswaldo

    1990-01-01

    The characteristics of the convection over the summer monsoon are investigated using the highly reflective cloud (HRC) data set (which is a subjective-analyzed daily index of organized deep convection, at one degree resolution, for years between 1971 and 1988 of the polar-orbiting satellite imagery). The results of the analysis are used to obtain the geographical distribution of HRCs for the climatological mean summer monsoon season and its four component months and to examine the intraseasonal variation of convection over selected areas. The model results of Webster and Chou (1980) are tested by comparing the relative frequency of occurrence of HRC for continental areas, coastal zones, and open ocean.

  7. Evaluation and development of satellite inferences of convective storm intensity using combined case study and thunderstorm model simulations

    NASA Technical Reports Server (NTRS)

    Cotton, W. R.; Tripoli, G. J.

    1982-01-01

    Observational requirements for predicting convective storm development and intensity as suggested by recent numerical experiments are examined. Recent 3D numerical experiments are interpreted with regard to the relationship between overshooting tops and surface wind gusts. The development of software for emulating satellite inferred cloud properties using 3D cloud model predicted data and the simulation of Heymsfield (1981) Northern Illinois storm are described as well as the development of a conceptual/semi-quantitative model of eastward propagating, mesoscale convective complexes forming to the lee of the Rocky Mountains.

  8. The Impact of Microphysics and Planetary Boundary Layer Physics on Model Simulation of U.S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Medlin, Jeffrey M.; Wood, Lance

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics pararneterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRn Center to select NOAAlNWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boWldary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage oflightuing activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the physics package choices. The design of the experiments thus allows for more direct interpretation of the sensitivities to each possible physics combination. The results should assist forecasters in their efforts to anticipate and correct for possible biases in simulated WRF convection patterns, and help the modeling community refine their model parameterizations.

  9. The Impacts of Microphysics and Planetary Boundary Layer Physics on Model Simulations of U. S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.; Case, J. L.; Zavodsky, B. T.; Srikishen, J.; Medlin, J. M.; Wood, L.

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics parameterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRT Center to select NOAA/NWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boundary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage of lightning activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the physics package choices. The design of the experiments thus allows for more direct interpretation of the sensitivities to each possible physics combination. The results should assist forecasters in their efforts to anticipate and correct for possible biases in simulated WRF convection patterns, and help the modeling community refine their model parameterizations.

  10. Sprite-producing Convective Storms within the Colorado Lightning Mapping Array

    NASA Astrophysics Data System (ADS)

    Lyons, W. A.; Cummer, S. A.; Rison, W.; Krehbiel, P. R.; Lang, T. J.; Rutledge, S. A.; Lu, G.; Stanley, M. A.; Ashcraft, T.; Nelson, T. E.

    2012-12-01

    The multi-year, multi-institution effort entitled Physical Origins of Coupling to the Upper Atmosphere from Lightning (PhOCAL), has among its goals to qualitatively understand the meteorology and lightning flash characteristics that produce the unusual and/or very energetic lightning responsible for phenomena such as sprites, halos, elves, blue jets and gigantic jets, collectively known as Transient Luminous Events (TLEs). A key task is to obtain simultaneous video, ideally with a high-speed imager (HSI), of both a TLE and its parent lightning discharge, within the domain of a 3-D Lightning Mapping Array (LMA). While conceptually simple, this task is logistically quite complicated. In 2012, a new 15-station Colorado LMA (COLMA) became operational, covering northeastern Colorado, with the Yucca Ridge Field Station (YRFS) near its western edge. The National Charge Moment Change Network (CMCN), which since 2007 has been documenting sprite-class +CGs (those with impulse change moment changes >100 C km), indicates that a strong gradient of energetic +CGs exists west-to-east through the COLMA, with the most likely region for sprite-producing storms being in the COLMA eastern fringes (western Kansas and Nebraska). Yet, on 8 and 25 June, 2012, intense convective systems formed in the COLMA along and just east of the Front Range, producing severe weather and intense lightning. On the 8th, four sprite parent +CGs were captured at 3000 fps from YRFS with the sprites confirmed by dual (conventional speed) cameras in New Mexico. In a second storm on the 25th, viewing conditions prevented +CG video acquisition, but sprites were logged over the COLMA and detailed reconstructions of the discharges are being made. The parent discharges often began as upward negative leaders propagating into a mid-level positive charge layer at 8-10 km. They often originated within or near the convective core before expanding outward into a stratiform region and involving several hundred square kilometers, to be followed by +CG and strong continuing currents. LMA indications of recoil leaders appear confirmed by some high-speed video. These storms were somewhat smaller than the typical sprite-bearing MCS. The storm structures will be categorized using GOES IR, NEXRAD reflectivity, NLDN lightning data, CMCN impulse charge moment data, and full charge moment charge retrievals. The sprite parent CG discharges will be cataloged along with their points of origin, the height and volume from which charge is removed, the charge lowered to ground, and the continuing current characteristics. These CGs will be placed in the context of the storms' meteorological structure and evolution.

  11. Midweek Increase in U.S. Summer Rain and Storm Heights, Suggests Air Pollution Invigorates Rainstorms

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong; Yoo, Jung-Moon; Hahnenberger, Maura

    2007-01-01

    Tropical Rainfall Measuring Mission (TRMM) satellite data show a significant midweek increase in summertime rainfall over the southeast U.S., due to afternoon intensification. TRMM radar data show a significant midweek increase in rain area and in the heights reached by afternoon storms. Weekly variations in model-reanalysis wind patterns over the region and in rain-gauge data are consistent with the satellite data. A midweek decrease of rainfall over the nearby Atlantic is also seen. EPA measurements of particulate concentrations show a midweek peak over much of the U.S. These observations are consistent with the theory that anthropogenic air pollution suppresses cloud-drop coalescence and early rainout during the growth of thunderstorms over land, allowing more water to be carried above the 0 C isotherm, where freezing yields additional latent heat, invigorating the storms--most dramatically evidenced by the shift in the midweek distribution of afternoon-storm heights--and producing large ice hydrometeors. The enhanced convection induces regional convergence, uplifting and an overall increase of rainfall. Compensating downward air motion suppresses convection over the adjacent ocean areas. Pre-TRMM-era data suggest that the weekly cycle only became strong enough to be detectable beginning in the 1980's. Rain-gauge data also suggest that a weekly cycle may have been detectable in the 1940's, but with peak rainfall on Sunday or Monday, possibly explained by the difference in composition of aerosol pollution at that time. This "weekend effect" may thus offer climate researchers an opportunity to study the regional climate-scale impact of aerosols on storm development and monsoon-like circulation.

  12. Columns of differential reflectivity: a precursor for storm evolution and convective rain

    NASA Astrophysics Data System (ADS)

    Troemel, S.; Diederich, M.; Kumjian, M. R.; Picca, J. C.; Simmer, C.

    2012-12-01

    Nowcasting aims at providing accurate information about weather hazards related to convection at a very high refresh rate well suited for fast evolving convective systems. Polarimetric weather radars arise as a key tool to provide "seamless" analysis and nowcast of convective risk to aviation, because of their ability to observe 3dimensional storm structure, evolution, microphysical processes, and generated precipitation. Columns of differential reflectivity ZDR measured by polarimetric weather radars are prominent signatures associated with thunderstorm updrafts. Since greater vertical velocities can loft larger drops and water-coated ice particles to higher altitudes above the environmental freezing level, the integrated ZDR column above the freezing level increases with increasing updraft intensity. Frequently, they can extend several kilometers above the environmental freezing level. These positive ZDR values above the environmental freezing level point to the presence of large, oblate raindrops and perhaps water-coated hailstones and graupel. Analyses on the informative content of ZDR columns as precursor for storm evolution will be presented based on both the X-band polarimetric data collected by the twin radars (XPol Bonn and XPol Jülich) in the Bonn area, Germany, and volume radar data collected with the S-band KOUN radar, in Norman, Oklahoma. In order to derive the ZDR column product, radar volume data is interpolated onto a three-dimensional Cartesian (x,y,z) grid and then, for each (x,y) coordinate, the number of vertical grid boxes above the freezing level containing ZDR values in excess of a predetermined threshold (=1dB) are counted. The ZDR column product is simply a count of the number of grid boxes, which can be converted into "ZDR column volume" by simply multiplying the count by the dimension ?x?y?z of the grid box. Interdependencies between the volumes of ZDR columns above the environmental freezing level, precipitation near the surface, the VIL-value (Vertically Integrated Liquid) and the cloud top heights already in use for monitoring the tendency of convective development in aviation applications are analyzed. The VIL-value at a certain location is the sum of all observed radar reflectivities converted to liquid water content in a vertical column above this location and can be regarded as a measure for the potential rainfall. Time series of all variables are then compared with each other both qualitatively and quantitatively. Analyses show among others that the ZDR column volume above the 0°C level is related to a time-lagged increase in low-level horizontal reflectivity ZH. This implies that the increasing ZDR column volume precedes an intensification of surface precipitation and can be identified as a precursor for convective rain.

  13. Convective Modes for Significant Severe Thunderstorms in the Contiguous United States. Part I: Storm Classification and Climatology

    E-print Network

    Convective Modes for Significant Severe Thunderstorms in the Contiguous United States. Part I 901 tornado and significant severe thunderstorm events, representing 78.5% of all such reports BROYLES NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma HAROLD E. BROOKS NOAA/National Severe

  14. A Five-Year Climatology of Elevated Severe Convective Storms in the United States East of the Rocky Mountains

    E-print Network

    Schultz, David

    of the Rocky Mountains KATHERINE L. HORGAN 1,2,* , DAVID M. SCHULTZ 3,4 , JOHN E. HALES JR.5 , STEPHEN F-year climatology of elevated severe convective storms was constructed for 1983­ 1987 east of the Rocky Mountains. Of the 1826 days during the five-year period, 1689 (91%) had surface fronts east of the Rockies. Of the 1689

  15. Climatology and variability of the Middle Eastern summer Shamal wind : Implications to dust storm variability

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Notaro, M.

    2014-12-01

    The climatology and variability of Shamal wind, an important regulator of summertime Middle Eastern dust storm activity, have been poorly characterized in the scientific literature. The Middle Eastern Shamal is a strong low-level northwesterly wind, which can lift dust from the Syrian and Iraqi deserts and transport it to the Persian Gulf and Arabian Peninsula. Despite its critical role as a dust storm driver, the variability and controls of summertime Shamal wind has not been addressed by previous studies. The spatial distribution and seasonal cycle of the Shamal wind during 1970-2013, along with its interannual variability, covariability with dust storm activities, and potential link to sea surface temperatures (SSTs) in the tropical Pacific Ocean and Mediterranean Sea, are studied using hourly station records, reanalysis data, and remotely-sensed data. According to a wind-direction and speed-based criterion for Shamal days, the summertime Shamal behaves like a summer monsoon with variability in its onset, termination, and distinct break periods. Based on a multi-station criterion for Shamal onset and termination, the onset occurs on May 23 ± 8 days (one standard deviation), and the termination date is Sep 2 ± 21 days. The highest wind speed on a Shamal day occurs around the noon along the west coast of the Persian Gulf, corresponding to a peak in horizontal pressure gradient. The onset of Shamal is associated with the development of low pressure over Iran and high pressure over the eastern Mediterranean and northwestern Arabian Peninsula - an eastward expansion of the high over subtropical Atlantic. El Niño events support the delayed onset and weaker intensity of the summer Shamal. Intensified summer Shamal winds are associated with anomalously cool Mediterranean SSTs, which enhance the high pressure over the eastern Mediterranean. The impacts of El Niño-Southern Oscillation and Mediterranean SSTs on summer Shamal are validated by an independent statistical method, the General Equilibrium Feedback Assessment. Periods of enhanced Shamal wind intensity favor increased summertime floating dust frequency (temporal correlation = 0.77,1975-2013), dust storm frequency (temporal correlation = 0.57, 1975-2013), and aerosol optical depth (temporal correlation = 0.73, 2000-2013).

  16. The impact of vegetation on the atmospheric boundary layer and convective storms

    SciTech Connect

    Lee, T.J.

    1992-01-01

    The impact of vegetation on atmospheric boundary layer and convective storms is examined through the construction and testing of a soil-vegetation-atmospheric transfer (SVAT) model. The Land Ecosystem-Atmospheric (LEAF) model is developed using an elevated canopy structure, an above-canopy aerodynamic resistance, two in-canopy aerodynamic resistances, and one stomatal conductance functions. The air temperature and humidity are assumed to be constant in the canopy whereas the wind and radiation follow a specified vertical profile. A simple dump-bucket method is used to parameterize the interception of precipitation and a multi-layer soil model is utilized to handle the vertical transfer of soil water. Evaporation from soil and wet leaves and transpiration from dry leaves are evaluated separately. The solid water uptake is based on soil water potential rather than on length of roots. Separate energy budgets for vegetation and for soil are used in order to remove unnecessary assumptions on energy partition between the vegetation and the substrate. Primary parameters are LAI, maximum stomatal conductance, and albedo. Secondary parameters include displacement height and environmental controls on stomatal resistance function. The Multi-response Randomized Bock Permutation (MRBP) procedure is used to help choose the model parameter values. The Fourier Amplitude Sensitivity Test (FAST) is applied to understand the model behavior in response to changes in model parameters. LEAF is used to study growth of boundary layer and local thermal circulations generated by surface inhomogeneities. Results show that atmospheric boundary layer is cooler and more moist over unstressed vegetation than over bare dry soil. Thermally forced circulation can result from the juxtaposition of two vegetation types due to different biophysical characteristics. Simulations show that the surface spatial heterogeneities made by vegetation play an important role in generating local convective storms.

  17. The Impact of Vegetation on the Atmospheric Boundary Layer and Convective Storms

    NASA Astrophysics Data System (ADS)

    Lee, Tsengdar John

    The impact of vegetation on atmospheric boundary layer and convective storms is examined through the construction and testing of a soil-vegetation-atmosphere transfer (SVAT) model. The Land Ecosystem-Atmosphere (LEAF) model is developed using an elevated canopy structure, an above -canopy aerodynamic resistance, two in-canopy aerodynamic resistances, and one stomatal conductance functions. The air temperature and humidity are assumed to be constant in the canopy whereas the wind and radiation follow a specified vertical profile. A simple dump-bucket method is used to parameterize the interception of precipitation and a multi-layer soil model is utilized to handle the vertical transfer of soil water. Evaporation from soil and wet leaves and transpiration from dry leaves are evaluated separately. The solid water uptake is based on soil water potential rather than on the length of roots. Separate energy budgets for vegetation and for the soil are used in order to remove unnecessary assumptions on energy partition between the vegetation and the substrate. Primary parameters are LAI, maximum stomatal conductance, and albedo. Secondary parameters include displacement height and environmental controls on stomatal resistance function. Due to the complexity of the LEAF model, statistical methods are used to improve LEAF model performance. The Multi-response Randomized Bock Permutation (MRBP) procedure is used to guide the choice of model parameter values. The Fourier Amplitude Sensitivity Test (FAST) is applied to better understand the model behavior in response to the changes in model parameters. Finally, LEAF is used to study the growth of boundary layer and the local thermal circulations generated by surface inhomogeneities. Results show the atmospheric boundary layer is substantially cooler and more moist over unstressed vegetation than over bare dry soil. Thermally forced circulation can result from the juxtaposition of two vegetation types due to different biophysical characteristics. Results from three-dimensional simulations show that the surface spatial heterogeneities made by vegetation play an important role in generating local convective storms.

  18. The impact of vegetation on the atmospheric boundary layer and convective storms

    NASA Astrophysics Data System (ADS)

    Lee, Tsengdar John

    1992-01-01

    The impact of vegetation on atmospheric boundary layer and convective storms is examined through the construction and testing of a soil-vegetation-atmosphere transfer (SVAT) model. The Land Ecosystem-Atmosphere (LEAF) model is developed using an elevated canopy structure, an above-canopy aerodynamic resistance, two in-canopy aerodynamic resistances, and one stomatal conductance functions. The air temperature and humidity are assumed to be constant in the canopy whereas the wind and radiation follow a specified vertical profile. A simple dump-bucket method is used to parameterize the interception of precipitation and a multi-layer soil model is utilized to handle the vertical transfer of soil water. Evaporation from soil and wet leaves and transpiration from dry leaves are evaluated separately. The solid water uptake is based on soil water potential rather than on the length of roots. Separate energy budgets for vegetation and for the soil are used in order to remove unnecessary assumptions on energy partition between the vegetation and the substrate. Primary parameters are LAI, maximum stomatal conductance, and albedo. Secondary parameters include displacement height and environmental controls on stomatal resistance function. Due to the complexity of the LEAF model, statistical methods are used to improve LEAF model performance. The Multi-response Randomized Bock Permutation (MRBP) procedure is used to guide the choice of model parameter values. The Fourier Amplitude Sensitivity Test (FAST) is applied to better understand the model behavior in response to the changes in model parameters. Finally, LEAF is used to study the growth of boundary layer and the local thermal circulations generated by surface inhomogeneities. Results show the atmospheric boundary layer is substantially cooler and more moist over unstressed vegetation than over bare dry soil. Thermally forced circulation can result from the juxtaposition of two vegetation types due to different biophysical characteristics. Results from three-dimensional simulations show that the surface spatial heterogeneities made by vegetation play an important role in generating local convective storms.

  19. Sensitivity analysis of numerically-simulated convective storms using direct and adjoint methods

    SciTech Connect

    Park, S.K.; Droegemeier, K.K.; Bischof, C.; Knauff, T.

    1994-06-01

    The goal of this project is to evaluate the sensitivity of numerically modeled convective storms to control parameters such as the initial conditions, boundary conditions, environment, and various physical and computational parameters. In other words, the authors seek the gradient of the solution vector with respect to specified parameters. One can use two approaches to accomplish this task. In the first or so-called brute force method, one uses a fully nonlinear model to generate a control forecast starting from a specified initial state. Then, a number of other forecasts are made in which chosen parameters (e.g., initial conditions) are systematically varied. The obvious drawback is that a large number of full model predictions are needed to examine the effects of only a single parameter. The authors describe herein an alternative, essentially automated method (ADIFOR, or Automatic DIfferentiation of FORtran) for obtaining the solution gradient that bypasses the adjoint altogether yet provides even more information about the gradient. (ADIFOR, like the adjoint technique, is constrained by the linearity assumption.) Applied to a 1-D moist cloud model, the authors assess the utility of ADIFOR relative to the brute force approach and evaluate the validity of the tangent linear approximation in the context of deep convection.

  20. Environmental control of deep convective clouds on Titan: The combined effect of CAPE and wind shear on storm dynamics, morphology, and lifetime

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot C. R.; Barth, E. L.

    2015-04-01

    Titan has deep convective clouds driven by the release of latent from methane condensation. As on Earth, the presence of convective available potential energy (CAPE), which quantifies the amount of energy available through condensation, is required for storms to develop. While CAPE is a requirement for storms, the dynamics, morphology, and longevity of storms on Earth is controlled by both CAPE and wind shear, often expressed as a ratio in the form of the bulk Richardson Number. The impact of CAPE and wind shear on storms in a Titan-like environment are explored through numerical simulation. Model results indicate that Titan storms should respond to changes in the Richardson Number in a manner similar to storms on Earth. Very long-lived storms (>24 h) propagating for 1000 km or more might be possible on Titan when CAPE and wind shear are properly balanced. Some of the simulated storms exhibit dynamics similar to squall lines. Varying amounts of shear in the Titan environment might explain the variety of convective cloud expressions—varying from short-lived single cell storms to longer-lived linear features and large cloud bursts—identified in Cassini orbiter and ground-based observations. The varying amounts and spatial distribution of precipitation, as well as surface winds associated with storms, should have implications on the formation of fluvial and aeolian features and on the exchange of methane with the surface and lakes.

  1. Automatic differentiation as a tool for sensitivity analysis of a convective storm in a 3-D cloud model

    SciTech Connect

    Park, S.K.; Droegemeier, K.K.; Bischof, C.H.

    1996-10-01

    The ADIFOR automatic differentiation tool is applied to a 3-D storm-scale meteorological model to generate a sensitivity-enhanced code capable of providing derivatives of all model output variables and related diagnostic (derived) parameters as a function of specified control parameters. The tangent linear approximation, applied to a deep convective storm by the first of its kind using a full-physics compressible model, is valid up to 50 min for a 1% water vapor perturbations. The result is very encouraging considering the highly nonlinear and discontinuous properties of solutions. The ADIFOR-generated code has provided valuable sensitivity information on storm dynamics. Especially, it is very efficient and useful for investigating how a perturbation inserted at earlier time propagates through the model variables at later times. However, it is computationally very expensive to be applied to the variational data assimilation, especially for 3-D meteorological models, which potentially have a large number of input variables.

  2. P1.22 A FIVE-YEAR CLIMATOLOGY OF ELEVATED SEVERE CONVECTIVE STORMS IN THE UNITED STATES EAST OF THE ROCKY MOUNTAINS

    E-print Network

    Schultz, David

    , Oklahoma Robert H. Johns Norman, Oklahoma Stephen F. Corfidi NOAA/Storm Prediction Center, Norman, Oklahoma John E. Hales NOAA/Storm Prediction Center, Norman, Oklahoma 1. INTRODUCTION Deep convection can ), or tornadoes (e.g., Johns and Doswell 1992). Significant severe weather is defined by Hales (1988) as hail 2 in

  3. A field experiment observes wintertime atmospheric and oceanic convection over the Gulf Stream, where the ocean gives up its heat to the atmosphere during intense storms.

    E-print Network

    Fratantoni, David

    A field experiment observes wintertime atmospheric and oceanic convection over the Gulf Stream, where the ocean gives up its heat to the atmosphere during intense storms. O ne of the best to the atmosphere (see Fig. 1, top), triggering vigorous wintertime convection on both sides of the air

  4. Enhancement of seasonal prediction of East Asian summer rainfall related to western tropical Pacific convection

    NASA Astrophysics Data System (ADS)

    Lee, Doo Young; Ahn, Joong-Bae; Yoo, Jin-Ho

    2014-09-01

    The prediction skills of climate model simulations in the western tropical Pacific (WTP) and East Asian region are assessed using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers (June-August) during the period 1983-2005, along with corresponding observed and reanalyzed data. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP Indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index or each MPI. Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by hybrid dynamical-statistical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using a hybrid dynamical-statistical approach compared to the dynamical forecast alone.

  5. Enhancement of seasonal prediction of East Asian summer rainfall related to western tropical Pacific convection

    NASA Astrophysics Data System (ADS)

    Lee, Doo Young; Ahn, Joong-Bae; Yoo, Jin-Ho

    2015-08-01

    The prediction skills of climate model simulations in the western tropical Pacific (WTP) and East Asian region are assessed using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers (June-August) during the period 1983-2005, along with corresponding observed and reanalyzed data. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP Indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index or each MPI. Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by hybrid dynamical-statistical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using a hybrid dynamical-statistical approach compared to the dynamical forecast alone.

  6. Urban Effects on Summer Monsoon Convection in Phoenix, Arizona (USA): A Model Case Study of Aug. 2-3, 2005

    E-print Network

    Castro, Christopher L.

    Urban Effects on Summer Monsoon Convection in Phoenix, Arizona (USA): A Model Case Study of Aug. 2 sensitivity analysis, the impact of urban physical characteristics that may affect thunderstorm development of the convective event reasonably well. In agreement with the observed precipitation pattern, urban physical

  7. The Impacts of Microphysics and Planetary Boundary Layer Physics on Model Simulations of U.S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley; Srikishen, Jayanthi; Medlin, Jeffrey; Wood, Lance

    2014-01-01

    Convection-allowing numerical weather simula- tions have often been shown to produce convective storms that have significant sensitivity to choices of model physical parameterizations. Among the most important of these sensitivities are those related to cloud microphysics, but planetary boundary layer parameterizations also have a significant impact on the evolution of the convection. Aspects of the simulated convection that display sensitivity to these physics schemes include updraft size and intensity, simulated radar reflectivity, timing and placement of storm initi- ation and decay, total storm rainfall, and other storm features derived from storm structure and hydrometeor fields, such as predicted lightning flash rates. In addition to the basic parameters listed above, the simulated storms may also exhibit sensitivity to im- posed initial conditions, such as the fields of soil temper- ature and moisture, vegetation cover and health, and sea and lake water surface temperatures. Some of these sensitivities may rival those of the basic physics sensi- tivities mentioned earlier. These sensitivities have the potential to disrupt the accuracy of short-term forecast simulations of convective storms, and thereby pose sig- nificant difficulties for weather forecasters. To make a systematic study of the quantitative impacts of each of these sensitivities, a matrix of simulations has been performed using all combinations of eight separate microphysics schemes, three boundary layer schemes, and two sets of initial conditions. The first version of initial conditions consists of the default data from large-scale operational model fields, while the second features specialized higher- resolution soil conditions, vegetation conditions and water surface temperatures derived from datasets created at NASA's Short-term Prediction and Operational Research Tran- sition (SPoRT) Center at the National Space Science and Technology Center (NSSTC) in Huntsville, AL. Simulations as outlined above, each 48 in number, were conducted for five midsummer weakly sheared coastal convective events each at two sites, Mobile, AL (MOB) and Houston, TX (HGX). Of special interest to operational forecasters at MOB and HGX were accuracy of timing and placement of convective storm initiation, reflectivity magnitudes and coverage, rainfall and inferred lightning threat.

  8. Heat transfers in a double-skin roof ventilated by natural convection in summer time

    E-print Network

    Biwole, Pascal; Pompeo, C

    2013-01-01

    The double-skin roofs investigated in this paper are formed by adding a metallic screen on an existing sheet metal roof. The system enhances passive cooling of dwellings and can help diminishing power costs for air conditioning in summer or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers are investigated. Depending on its surface properties, the screen reflects a large amount of oncoming solar radiation. Natural convection in the channel underneath drives off the residual heat. The bi-dimensional numerical simulation of the heat transfers through the double skin reveals the most important parameters for the system's efficiency. They are, by order of importance, the sheet metal surface emissivity, the screen internal and external surface emissivity, the insulation thickness and the inclination angle for a channel width over 6 cm. The influence of those parameters on Rayleigh and Nusselt numbers is also investigated. Temperature and air velocity profiles on seve...

  9. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land and Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; Starr, D. OC. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-POL) radar from two field experiments are used to evaluate the Surface ref'ercnce technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in vxo deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at. the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and dry ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level, and that the data are not readil explained in terms of a gamma function raindrop size distribution.

  10. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; O'C.Starr, D. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-Pol) radar from two field experiments are used to evaluate the surface reference technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in two deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and (dry) ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level.

  11. Idealized studies of convective summer precipitation in a cloud-resolving model

    NASA Astrophysics Data System (ADS)

    Schlemmer, L.; Hohenegger, C.; Bretherton, C.; Schär, C.

    2009-04-01

    The expected global temperature increase will lead to an increase of the atmospheric humidity content and an intensification of the hydrological cycle. In the global mean, precipitation is projected to increase, but climate models suggest that mean summer precipitation over Europe will decrease. However, despite this decrease in mean, heavy precipitation events are projected to occur more frequently. Changes in extreme precipitation are important to understand, since they pose an enormous threat. Especially in mountainous regions like the Alps, they often imply great socio-economic impacts. The credibility of these projections, with decreases in mean amounts but increases in peak intensity, is somewhat limited, as convection is parameterized in current climate models due to its small-scale nature. Simulations of present-day and future climate performed with a range of regional climate models in the context of the PRUDENCE project have revealed a large spread of the amount and distribution of precipitation. Differences between climate models are especially large in summer, when synoptic-scale forcing is weak and the chosen model formulation has a great influence. The increasing computer power allows the use with finer grid-spacing in the horizontal, as well as in the vertical direction. The increased resolution enables a more realistic representation of topography and surface fields. Most importantly, the finer grid and the release of the hydrostatic assumption render possible an explicit treatment of convective processes. Here we investigate the response of convection to future climate changes in a cloud-resolving model (CRM) using an extremely high spatial resolution of 1- 2 km. This approach is still far too expensive for standard climate scenarios, but it is becoming feasible for process studies. Using a CRM in an idealized setting, we are trying to infer the response of convection to altered temperature and moisture profiles. The modeling strategy includes a full set of parameterizations, and the atmospheric variables are slowly relaxed towards the prescribed profiles and soil conditions. Results demonstrate how the simulated precipitation amounts and the time of the precipitation peak vary between simulations with different atmospheric background profiles. By systematically altering the environment of convection we try to isolate and assess the key processes that lead to the peculiar precipitation scenarios of the European summer climate.

  12. Enhancement of seasonal prediction of East Asian summer rainfall related to the western tropical Pacific convection

    NASA Astrophysics Data System (ADS)

    Lee, D. Y.; Ahn, J. B.; Yoo, J. H.

    2014-12-01

    The prediction skills of climate model simulations in the western tropical Pacific (WTP) and East Asian region are assessed using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers (June-August) during the period 1983-2005, along with corresponding observed and reanalyzed data. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation (ENSO) developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index (EASMI) or each MP index (MPI). Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by statistical-empirical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using the statistical-empirical method compared to the dynamical models. Acknowledgements This work was carried out with the support of the Rural Development Administration Cooperative Research Program for Agriculture Science and Technology Development under Grant Project No. PJ009953, Republic of Korea.

  13. The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability?

    SciTech Connect

    Zipser, E.J.; Lutz, K.R.

    1994-08-01

    Reflectivity data from Doppler radars are used to construct vertical profiles of radar reflectivity (VPRR) of convective cells in mesoscale convective systems (MCSs) in three different environmental regimes. The National Center for Atmospheric Research CP-3 and CP-4 radars are used to calculate median VPRR for MCSs in the Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central in 1985. The National Oceanic and Atmospheric Administration-Tropical Ocean Global Atmosphere radar in Darwin, Australia, is used to calculate VPRR for MCSs observed both in oceanic, monsoon regimes and in continental, break period regimes during the wet seasons of 1987/88 and 1988/89. The midlatitude and tropical continental VPRRs both exhibit maximum reflectivity somewhat above the surface and have a gradual decrease in reflectivity with height above the freezing level. In sharp contrast, the tropical oceanic profile has a maximum reflectivity at the lowest level and a very rapid decrease in reflectivity with height beginning just above the freezing level. The tropical oceanic profile in the Darwin area is almost the same shape as that for two other tropical oceanic regimes, leading to the conclustion that it is characteristic. The absolute values of reflectivity in the 0 to 20 C range are compared with values in the literature thought to represent a threshold for rapid storm electrification leading to lightning, about 40 dBZ at -10 C. The large negative vertical gradient of reflectivity in this temperature range for oceanic storms is hypothesized to be a direct result of the characteristically weaker vertical velocities observed in MCSs over tropical oceans..

  14. A two year (2008-2009) analysis of severe convective storms in the Mediterranean basin as observed by satellite imagery

    NASA Astrophysics Data System (ADS)

    Gozzini, B.; Melani, S.; Pasi, F.; Ortolani, A.

    2010-09-01

    The increasing damages caused by natural disasters, a great part of them being direct or indirect effects of severe convective storms (SCS), seem to suggest that extreme events occur with greater frequency, also as a consequence of climate changes. A better comprehension of the genesis and evolution of SCS is then necessary to clarify if and what is changing in these extreme events. The major reason to go through the mechanisms driving such events is given by the growing need to have timely and precise predictions of severe weather events, especially in areas that show to be more and more sensitive to their occurrence. When dealing with severe weather events, either from a researcher or an operational point of view, it is necessary to know precisely the conditions under which these events take place to upgrade conceptual models or theories, and consequently to improve the quality of forecasts as well as to establish effective warning decision procedures. The Mediterranean basin is, in general terms, a sea of small areal extent, characterised by the presence of several islands; thus, a severe convection phenomenon originating over the sea, that lasts several hours, is very likely to make landfall during its lifetime. On the other hand, these storms are quasi-stationary or very slow moving so that, when convection happens close to the shoreline, it is normally very dangerous and in many cases can cause very severe weather, with flash floods or tornadoes. An example of these extreme events is one of the case study analysed in this work, regarding the flash flood occurred in Giampileri (Sicily, Italy) the evening of 1st October 2009, where 18 people died, other 79 injured and the historical centre of the village seriously damaged. Severe weather systems and strong convection occurring in the Mediterranean basin have been investigated for two years (2008-2009) using geostationary (MSG) and polar orbiting (AVHRR) satellite data, supported by ECMWF analyses and severe weather reports. The spatial and seasonal variability of storm occurrence have been also analysed, as well as the most favourable synoptic conditions for their formation. The analysis shows the existence of preferential areas of genesis of these extreme events, mainly located in the central Mediterranean (i.e., Ionic and Tyrrhenian seas), where the storms develop and grow preferentially in fall. The synoptic features, identified as precursors of severe convective events genesis, show how the totality of the identified cases occur in mid-troposphere (500 hPa) troughs or cut-off circulation within southerly flow, with values of deep level shear of at least 15 m s-1 and high ?e (850 hPa) values. Among all the detected cases of severe convection, two selected cases of enhanced-V features are presented in detail, either for the different synoptic environments in which they are embedded, and for being long-lived or severe in terms of heavy rainfall and damages they produced at the ground. In a long-term perspective, this preliminary study aims to make a climatological database of severe weather events occurring in the Mediterranean sea which may critically impact on the Italian peninsula and potentially affect population, in order to develop an objective procedure which can support regional meteorological services in forecasting extreme events, their development and impact, for taking proper early decisions.

  15. 9.5 SPATIAL DISTRIBUTIONS OF TORNADIC NEAR-STORM ENVIRONMENTS BY CONVECTIVE MODE

    E-print Network

    -period samples of soundings associated with severe thunderstorms (Craven and Brooks 2004). Meanwhile, much attention in recent years has focused on convective mode and its influences on severe thunderstorm of convective mode categories associated with severe thunderstorms across the Midwestern United States. Later

  16. Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part I: Observation Operators for Reflectivity and

    E-print Network

    Zhang, Guifu

    the Weather Sur- veillance Radar-1988 Doppler (WSR-88D), the radial velocity and equivalent radar reflectivityAssimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part I: Observation Operators for Reflectivity and Polarimetric Variables YOUNGSUN JUNG School

  17. Introduction Large Scale Storm Scale Summary Error Growth at The Convective Scale

    E-print Network

    Plant, Robert

    , meteorology and data assimilation with policy and climate change in mind our bit: ensemble technique for storm System provides estimation of uncertainties: this benefits forecast user: more conscious choices flood of uncertainties: this benefits forecast user: more conscious choices flood warning & alerts transport related

  18. Changes in monoterpene mixing ratios during summer storms in rural New Hampshire (USA)

    USGS Publications Warehouse

    Haase, Karl B.; Jordan, C.; Mentis, E.; Cottrell, L.; Mayne, H.R.; Talbot, R.; Sive, B.C.

    2011-01-01

    Monoterpenes are an important class of biogenic hydrocarbons that influence ambient air quality and are a principle source of secondary organic aerosol (SOA). Emitted from vegetation, monoterpenes are a product of photosynthesis and act as a response to a variety of environmental factors. Most parameterizations of monoterpene emissions are based on clear weather models that do not take into account episodic conditions that can drastically change production and release rates into the atmosphere. Here, the monoterpene dataset from the rural Thompson Farm measurement site in Durham, New Hampshire is examined in the context of a set of known severe storm events. While some storm systems had a negligible influence on ambient monoterpene mixing ratios, the average storm event increased mixing ratios by 0.59 ?? 0.21 ppbv, a factor of 93% above pre-storm levels. In some events, mixing ratios reached the 10's of ppbv range and persisted overnight. These mixing ratios correspond to increases in the monoterpene emission rate, ranging from 120 to 1240 g km-2 h -1 compared to an estimated clear weather rate of 116 to 193 g km-2 h-1. Considering the regularity of storm events over most forested areas, this could be an important factor to consider when modeling global monoterpene emissions and their resulting influence on the formation of organic aerosols.

  19. Changes in monoterpene mixing ratios during summer storms in rural New Hampshire (USA)

    USGS Publications Warehouse

    Haase, K.B.; Jordan, C.; Mentis, E.; Cottrell, L.; Mayne, H.R.; Talbot, R.; Sive, B.C.

    2011-01-01

    Monoterpenes are an important class of biogenic hydrocarbons that influence ambient air quality and are a principle source of secondary organic aerosol (SOA). Emitted from vegetation, monoterpenes are a product of photosynthesis and act as a response to a variety of environmental factors. Most parameterizations of monoterpene emissions are based on clear weather models that do not take into account episodic conditions that can drastically change production and release rates into the atmosphere. Here, the ongoing monoterpene dataset from the rural Thompson Farm measurement site in Durham, New Hampshire is examined in the context of a set of known severe storm events. While some storm systems had a negligible influence on ambient monoterpene mixing ratios, the average storm event increased mixing ratios by 0.59 ?? 0.21 ppbv, a factor of 93 % above pre-storm levels. In some events, mixing ratios reached the 10's of ppbv range and persisted overnight. These mixing ratios correspond to increases in the monoterpene emission rate, ranging from 120 to 1240 g km-2 h -1 compared to an estimated clear weather rate of 116 to 193 g km-2 h-1. Considering the regularity of storm events over most forested areas, this could be an important factor to consider when modeling global monoterpene emissions and their resulting influence on the formation of organic aerosols. ?? 2011 Author(s).

  20. Convective storms over Germany during Pentecost 2014: Numerical sensitivity studies with the COSMO model

    NASA Astrophysics Data System (ADS)

    Barthlott, Christian; Mühr, Bernhard; Hoose, Corinna

    2015-04-01

    During Pentecost 2014, central Europe was affected by an unusually high number of convective systems leading to severe damages due to strong winds, heavy precipitation, hail, and lightning. In Germany, wind gusts of 144 km/h were observed at Duesseldorf airport and maximum temperatures reached nearly 38 degrees C in southwestern Germany. An almost stationary low pressure system over the northern Atlantic and a ridge stretching from Africa to northern Europe led to very high low-level temperatures due to advection of warm air in combination with solar insolation. We present convection-permitting numerical simulations for two days of this event (8 and 9 June 2014) using the COnsortium for Small-scale MOdeling (COSMO) model. Whereas a reference run with more or less operational settings was successful in reproducing the convective events of the first day, it failed to adequately reproduce the events of the second day. Several sensitivity studies with an enlarged model domain, increased horizontal grid spacing, and using a more sophisticated 2-moment microphysical scheme are conducted to investigate the reasons for model deficiencies and convection initiation in general.

  1. Transient luminous events above two mesoscale convective systems: Storm structure and evolution

    E-print Network

    Collett Jr., Jeffrey L.

    . The convective elements of the MCS contained normalpolarity tripole charge structures with upperlevel positive. Introduction [2] Sprites, a class of transient luminous event (TLE) that occurs above thunderstorms in warmseason thunderstorms is the dis- charging of hundreds of C of positive charge within a lat- erally

  2. Variation of Ice Crystal Size, Shape and Asymmetry Parameter in Tops of Convective Storm Systems Observed during SEAC4RS

    NASA Astrophysics Data System (ADS)

    van Diedenhoven, B.; Cairns, B.; Fridlind, A. M.; Ackerman, A. S.

    2014-12-01

    The sizes and shapes of ice particles in tops of convective storms have a significant impact on their radiative properties. Ice crystal sizes and shapes likely vary with altitude, environmental conditions and convective strength, but these relationships are not well characterized. The rich dataset of the NASA SEAC4RS field campaign offers unique perspectives to further identify variations of ice crystal sizes and shapes and their relations to environmental and dynamical conditions. Here we focus on data acquired with the Research Scanning Polarimeter (RSP), which was mounted on the high-altitude ER-2 aircraft during SEAC4RS. RSP's unique multi-angular, multi-wavelength total and polarized reflectance measurements allow retrieval of ice effective radius, the aspect ratio of components of ice crystals, the crystal distortion level and ice asymmetry parameter, as well as cloud optical thickness and cloud top height. Using RSP data, as well as data from the eMAS and CPL sensors and in situ probes, we explore the statistical variation of ice properties retrieved during SEAC4RS in tops of convective systems. The data indicates that, in general, ice crystal populations consistent with plate-like components with aspect ratios near 0.4 are prevalent at cloud tops. The asymmetry parameter is around 0.76-0.8 and generally decreases with increasing cloud top height, mainly because the ice crystal distortion increases with height. Below about 12 km height, the effective radius decreases with increasing altitude, as previously shown for convective clouds using satellite data, but at higher levels the SEAC4RS data indicate a transition to effective radii increasing with cloud top height. Here we explore some possible explanations for this transition, related to its approximate coincidence with the level of minimum stability and the homogeneous freezing level, either of which could affect ice crystal formation and evolution. Additionally, we will demonstrate some of the variability in ice crystal size, shape and asymmetry parameter at different locations and atmospheric conditions observed during SEAC4RS.

  3. High resolution radiometric measurements of convective storms during the GATE experiment

    NASA Technical Reports Server (NTRS)

    Fowler, G.; Lisa, A. S.

    1976-01-01

    Using passive microwave data from the NASA CV-990 aircraft and radar data collected during the Global Atmospheric Research Program Atlantic Tropical Experiment (GATE), an empirical model was developed relating brightness temperatures sensed at 19.35 GHz to surface rainfall rates. This model agreed well with theoretical computations of the relationship between microwave radiation and precipitation in the tropics. The GATE aircraft microwave data was then used to determine the detailed structure of convective systems. The high spatial resolution of the data permitted identification of individual cells which retained unique identities throughout their lifetimes in larger cloud masses and allowed analysis of the effects of cloud merger.

  4. Overview of ESSL's severe convective storms research using the European Severe Weather Database ESWD

    NASA Astrophysics Data System (ADS)

    Dotzek, Nikolai; Groenemeijer, Pieter; Feuerstein, Bernold; Holzer, Alois M.

    Severe thunderstorms constitute a major weather hazard in Europe, with an estimated total damage of 5-8 billion euros each year nowadays. Even though there is an upward trend in damage due to increases in vulnerability and possibly also due to climate change impacts, a pan-European database of severe thunderstorm reports in a homogeneous data format did not exist until a few years ago. The development of this European Severe Weather Database (ESWD) provided the final impetus for the establishment of the European Severe Storms Laboratory (ESSL) as a non-profit research organisation in 2006, after having started as an informal network in 2002. Our paper provides an overview of the first research results that have been achieved by ESSL. We start by outlining the reporting practice and quality-control procedure for the database, which has been enhanced by a major software upgrade in the fall of 2008. It becomes apparent that the state of reporting converges to a realistic description of the severe storms climatology, corroborating, for instance, earlier estimates of tornado occurrence in Europe. Nevertheless, a further rise in the number of reported events must be expected, even without the presence of any physical trends. The European tornado and damaging wind intensity distributions as a function of the Fujita scale are quantitatively similar to long-term distributions from the USA, except for a strong underreporting of weak events (F0) that still persists in Europe. In addition, the ESSL has recently proposed a new wind speed scale, the Energy- or " E-scale" which is linked to physical quantities and can be calibrated. Finally, we demonstrate the large potential of ESWD data use for forecast or nowcasting/warning verification purposes.

  5. Generated using V3.2 of the official AMS LATEX templatejournal page layout FOR AUTHOR USE ONLY, NOT FOR SUBMISSION! The three-dimensional morphology of simulated and observed convective storms over

    E-print Network

    Hogan, Robin

    - physical Evolution of Convective Storms). The 3-GHz Chilbolton Advanced Meteorological Radar was set up 2011; Varble et al. 2011; Caine et al. 2013; McBeath et al. 2013). However, these studies were mostly

  6. Determination of Storm Flashing/Non-Flashing Condition From Convective and Environmental Observations

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.

    2002-01-01

    A simple and fundamental problem in cloud electrification is whether or not a cloud can be determined to be producing lightning or not producing lightning, based solely on knowledge of its microphysical (and perhaps environmental) state. A merged database of TRMM radar, microwave and lightning observations and NCEP reanalysis environmental parameters is used to answer this question, for the tropics. The formal skill of traditional, univariate rule-based approaches (e.g., 35 dBZ occurrence at 6 km altitude) is quantified (via the probability of detection (POD), false alarm rate (FAR) and critical skill index (CSI)). Under indiscriminate application to the tropics, peak rule-based CSI for categorization of flashing storms is approximately 50%, with peak POD approximately 67% and minimum FAR approximately 33%, with peak CSI found for radar reflectivity-based parameters at 7-7.5 km altitude (near -15C). Separation of land and ocean domains yields approximately 5-10% gains in CSI over land. Conventional multivariate categorization techniques (discriminant analysis) are then applied, and less conventional (neural network) categorization techniques are also discussed.

  7. Radar Observation of Large Attenuation in Convective Storms: Implications for the Dropsize Distribution

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.

    2000-01-01

    Airborne meteorological radars typically operate at attenuating wavelengths. The path integrated attenuation (PIA) can be estimated using the surface reference technique (SRT). In this method, an initial value is determined for the radar cross section of the earth surface in a rain-free area in relatively close proximity to the rain cloud. During subsequent observations of precipitation any decrease 'in the observed surface cross section from the reference value s assumed to be a result of the two-way attenuation along the propagation path. In this paper we present selected instances of high PIA observed over land by an airborne radar. The observations were taken in Brazil and Florida during TRMM (Tropical Rainfall Measurement Mission) field campaigns. We compared these observations with collocated and nearly simultaneous ground-based radar observations by an S-band radar that is not subject to significant attenuation. In this preliminary evaluation, a systematic difference in the attenuation in the two storms is attributed to a difference in the raindrop size distributions; this is supported by observations of ZDR (differential reflectivity).

  8. Three-Dimensional Simulation of a Convective Storm: Sensitivity Studies on Subgrid Parameterization and Spatial Resolution.

    NASA Astrophysics Data System (ADS)

    Redelsperger, J. L.; Sommeria, G.

    1986-11-01

    This article presents the main features of a three-dimensional model for deep convection developed with special care given to the formulation of subgrid turbulent processes. It explicitly simulates the dynamics of turbulent eddies, including condensation and precipitation processes. Second-order moments are expressed as a function of the grid-averaged field of variables and of a prognostic turbulent kinetic energy. The formulation includes a simple statistical treatment of subgrid condensation and subgrid conversion of cloud water into rain water. The coherence and relative importance of the various closure hypotheses are tested in an idealized case of precipitating cloud.Results indicate the extent that features of the computed field are dependent on hypotheses used in the turbulence closure, choice of the basic turbulent variables, and formulation of the second-order moments. Significant benefits are obtained from the use of variables that are conserved in the condensation process. The computation of grid-scale condensation and precipitation is mostly dependent on the hypotheses made respectively for subgrid condensation and precipitation. Finally, it is shown that an advanced subgrid turbulence parameterization can partially compensate for the effects of a low spatial resolution.

  9. Mesoscale aspects of jet streak coupling and implications for the short term forecasting of severe convective storms. [severe environmental storms and mesoscale experiment (SESAME)

    NASA Technical Reports Server (NTRS)

    Uccellini, L. W.; Kocin, P. J.

    1981-01-01

    An analysis of a tornado outbreak in Wichita Falls, Texas was analyzed. The coupling of upper and lower tropospheric jet streaks, leading to severe storm outbreaks is illustrated. The high resolution SESAME data sets indicate that mass and momentum adjustments which couple upper and lower tropospheric jets occur within a 3 to 6 hr time frame over a 100 to 500 km domain, and establish the role of isallobaric forcing in the storm development. It is suggested that the output rate of data from the existing 12 hr network be increased to provide better temporal resolution of wind, mass and moisture data.

  10. Analysis of Summer Thunderstorms in Central Alabama Using the NASA Land Information System

    NASA Technical Reports Server (NTRS)

    James, Robert; Case, Jonathan; Molthan, Andrew; Jedloved, Gary

    2010-01-01

    Forecasters have difficulty predicting "random" afternoon thunderstorms during the summer months. Differences in soil characteristics could be a contributing factor for storms. The NASA Land Information System (LIS) may assist forecasters in predicting summer convection by identifying boundaries in land characteristics. This project identified case dates during the summer of 2009 by analyzing synoptic weather maps, radar, and satellite data to look for weak atmospheric forcing and disorganized convective development. Boundaries in land characteristics that may have lead to convective initiation in central Alabama were then identified using LIS.

  11. P10.7 The Evolution of Multi-Scale Ensemble Guidance in the Prediction of Convective and Severe Convective Storms

    E-print Network

    -impact weather and includes thunderstorms, hail, wind, tornadoes, excessive convective rainfall, localizedPa spaghetti diagram (single contour interval of 5760 m) is shown in Fig. 2. The GEFS was clearly supportive

  12. Near-Surface Vortex Structure in a Tornado and in a Sub-Tornado-Strength Convective-Storm Vortex Observed by a Mobile, W-Band Radar during VORTEX2

    E-print Network

    Xue, Ming

    Near-Surface Vortex Structure in a Tornado and in a Sub-Tornado-Strength Convective-Storm Vortex Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) field campaign, a very high-resolution, mobile, W-band Doppler radar collected near-surface (#200 m AGL) observations in an EF-0 tornado near

  13. Effects of acid deposition on dissolution of carbonate stone during summer storms in the Adirondack Mountains, New York, 1987-89

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, S.I.

    1994-01-01

    This study is part of a long-term research program designed to identify and quantify acid rain damage to carbonate stone. Acidic deposition accelerates the dissolution of carbonate-stone monuments and building materials. Sequential sampling of runoff from carbonate-stone (marble) and glass (reference) microcatchments in the Adirondack Mountains in New York State provided a detailed record of the episodic fluctuations in rain rate and runoff chemistry during individual summer storms. Rain rate and chemical concentrations from carbonate-stone and glass runoff fluctuated three to tenfold during storms. Net calcium-ion concentrations from the carbonatestone runoff, a measure of stone dissolution, typically fluctuated twofold during these storms. High net sulfate and net calcium concentrations in the first effective runoff at the start of a storm indicated that atmospheric pollutants deposited on the stone surface during dry periods formed calcium sulfate minerals, an important process in carbonate stone dissolution. Dissolution of the carbonate stone generally increased up to twofold during coincident episodes of low rain rate (less than 5 millimeters per hour) and decreased rainfall (glass runoff) pH (less than 4.0); episodes of high rain rate (cloudbursts) were coincident with a rapid increase in rainfall pH and also a rapid decrease in the dissolution of carbonate-stone. During a storm, it seems the most important factors causing increased dissolution of carbonate stone are coincident periods of low rain rate and decreased rainfall pH. Dissolution of the carbonate stone decreased slightly as the rain rate exceeded about 5 millimeters per hour, probably in response to rapidly increasing rainfall pH during episodes of high rain rate and shorter contact time between the runoff and the stone surface. High runoff rates resulting from cloudbursts remove calcium sulfate minerals formed during dry periods prior to storms and also remove dissolution products formed in large measure by chemical weathering as a result of episodes of low rain rate and decreased rainfall pH during a storm.

  14. The influence of Nunataks on atmospheric boundary layer convection during summer in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Stenmark, Aurora; Hole, Lars Robert; Voss, Paul; Reuder, Joachim; Jonassen, Marius O.

    2014-06-01

    The effects of nunataks on temperature profiles and wind patterns are studied using simulations from the Weather Research and Forecasting model. Simulations are compared to hourly observations from an automatic weather station located at the Troll Research Station in Dronning Maud Land. Areas of bare ground have been implemented in the model, and the simulations correspond well with meteorological measurements acquired during the 4 day simulation period. The nunataks are radiatively heated during daytime, and free convection occurs in the overlying atmospheric boundary layer. The inflow below the updraft forces strong horizontal convergence at the surface, whereas weaker divergence appears aloft. In a control run with a completely ice-covered surface, the convection is absent. In situ observations carried out by a remotely controlled balloon and a small model airplane compare well with model temperature profiles, but these are only available over the ice field upwind to the nunatak.

  15. Synoptic pattern and severe weather associated with the wide convection over Southeast China during the summer monsoon period

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Luo, Yali; Zhang, Renhe

    2015-02-01

    Based on the Tropical Rainfall Measuring Mission (TRMM) precipitation radar observations, wide convection (WC) is defined as contiguous convective echoes over 40 dBZ, accompanied with a near surface rainfall area exceeding 1000 km2. In Southeast China, the maximal occurrence frequency of WC takes place over the flat land region in the central plain of East China during the summer monsoon period of 1998-2010. When WC occurs in this region, the 500-hPa atmospheric fields are categorized into three patterns by using an objective classification method, i.e., the deep-trough-control (DTr) pattern, the subtropical-high-maintenance (STH) pattern, and the typhoon-effect (Typh) pattern, which respectively accounts for 20.8%, 52.8%, and 26.4% of the total WC occurrences. The DTr pattern starts to emerge the earliest (16-31 May) and occurs the most often in the second half of June; the STH pattern has a significant occurrence peak in the first half of July; the Typh pattern occurs mostly in July and August. Nearly all WC occurrences in this region are associated with thunderstorms, due to large convective available potential energy and abundant moisture. Among the three synoptic patterns, the DTr pattern features the driest and coldest air in the region, leading to the least occurrences of short-duration heavy rainfall. Strong winds occur the most often under the DTr pattern, probably owing to the largest difference in air humidity between the mid and low troposphere. Hail at the surface is rare for all occurrences of WC, which is probably related to the humid environmental air under all weather patterns and the high (> 5 km) freezing level under the STH pattern.

  16. On the properties and radiative effects of small convective clouds during the eastern Mediterranean summer

    NASA Astrophysics Data System (ADS)

    Hirsch, Eitan; Koren, Ilan; Altaratz, Orit; Agassi, Eyal

    2015-04-01

    A ground-based field campaign was conducted over the summer of 2011 in Israel to measure the properties of small warm clouds. The horizontal size distribution for cloud sizes of 50-3000 m is presented, with a special focus on the properties of the smallest clouds (liquid water path <10 g m-2, cloud thickness < ˜50 m) and their estimated radiative effect. We show that these small clouds dominate the cloud radiative properties during the summer over the studied region. The average daily cloud cover of the small cloud subset throughout the field campaign was 81 ± 21% (corresponding to 30 ± 14.3% of the total measured time), and they contributed 83 ± 19.4% of the clouds' reflectance. Their average daily radiative effect was estimated at -3.6 ± 2.1 W m-2.

  17. Characterization of mesoscale convective systems over the eastern Pacific during boreal summer

    NASA Astrophysics Data System (ADS)

    Berthet, Sarah; Rouquié, Bastien; Roca, Rémy

    2015-04-01

    The eastern Pacific Ocean is one of the most active tropical disturbances formation regions on earth. This preliminary study is part of a broader project that aims to investigate how mesoscale convective systems (MCS) may be related to these synoptic disturbances with emphasis on local initiation of tropical depressions. As a first step, the main characteristics of the MCS over the eastern Pacific are documented with the help of the recently developed TOOCAN tracking algorithm (Fiolleau and Roca, 2013) applied to the infrared satellite imagery data from GOES-W and -E for the period JJAS 2012-2014. More specifically, the spatial distribution of the MCS population, the statistics of their spatial extensions and durations, as well as their trajectories and propagation speeds are summarized. In addition the environment of the MCS will be investigated using various Global Precipitation Mission datasets and the Megha-Tropiques/SAPHIR humidity microwave sounder derived products. Reference: Fiolleau T. and R. Roca, (2013), An Algorithm For The Detection And Tracking Of Tropical Mesoscale Convective Systems Using Infrared Images From Geostationary Satellite, Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2012.2227762.

  18. Convective mixing layer height during the summer at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Casasanta, Giampietro; Pietroni, Ilaria; Petenko, Igor; Argentini, Stefania

    2013-04-01

    High temporal and spatial resolution mixing layer height measurements were performed with surface-layer mini-sodar at the French-Italian station of Concordia, on the Antarctic plateau, during the summer 2011-2012. The instrument resolution allowed monitoring the summer mixing layer evolution during an entire cycle, i.e. a very shallow nocturnal boundary layer followed by a typical daytime growth. The mixing layer height, variable between ~ 10 m and 300-400 m depending on the diurnal insolation, was analysed as function of the mean and turbulent structure of the low atmosphere. The retrieved values were compared with those calculated using a well-known prognostic equation. Observed and forecasted value were in a fairly good agreement, with and index of agreement (IoA) of 0.57. The role of subsidence was carefully examined and discussed. It was showed that the agreement between modelled and experimental values improves significantly (IoA = 0.84) if the subsidence value in the prognostic equation is varied during the day. To determine a simpler formulation, useful in applications that do not need more sophisticated techniques, dimensional analysis was used to propose and validate a new diagnostic equation, that depends on the surface buoyancy flux, the background stability and the buoyancy parameter.

  19. Simulations of summer monsoon climate over East Asia with a Regional Climate Model (RegCM) using Tiedtke convective parameterization scheme (CPS)

    NASA Astrophysics Data System (ADS)

    Bao, Yan

    2013-12-01

    In this study, we implemented the Tiedtke convective parameterization scheme (CPS) into the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model version 3 (RegCM3) and simulated the East Asian Summer Monsoon (EASM) climate. A 6-year experiment was completed, from September 1996 through August 2002, and compared with an analogous experiment employing the Grell CPS option available in RegCM3. The ability of the model to represent the average climatology was investigated. Our results indicate that the Tiedtke CPS shows a generally good performance in describing surface climate and large-scale circulation throughout the summer monsoon period. Compared to the simulation with Grell CPS, the simulation with Tiedtke scheme shows a number of improvements, including a better distribution of summer monsoon precipitation due to a better positioning of the Western Pacific Subtropical High (WPSH) in the middle troposphere and the southwesterly jet in the lower troposphere, and more realistic seasonal evolution of the monsoon precipitation. The cold surface air temperature bias characteristic frequently seen in Grell scheme over this region is also reduced. Generally, the Tiedtke scheme simulates warm and wet atmospheric conditions in the middle and lower tropospheres, a result more in agreement with the European Centre for Medium-Range Weather Forecasts (ECMWF) 40 Years analysis (ERA-40). The Tiedtke scheme is more prone to activate convection in the lower troposphere than the Grell scheme due to more moist static energy available for activating and supporting the development of convection systems.

  20. Intercomparison of Deep Convection over the Tibetan Plateau-Asian Monsoon Region and Subtropical North America in Boreal Summer Using CloudSat/CALIPSO Data

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zhang, R.; Qian, W.; Luo, Z.

    2012-04-01

    Deep convection in the Tibetan Plateau-southern Asian monsoon region (TP-SAMR) is analyzed using CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data for the boreal summer season (June-August) from 2006 to 2009. Three subregions are defined—the TP, the southern slope of the plateau (PSS), and the SAMR—and deep convection properties (such as occurrence frequency, internal vertical structure, system size, and local environment) are compared among these subregions. To cast them in a broader context, four additional regions that bear some similarity to the TP-SAMR are also discussed: East Asia (EA), tropical northwestern Pacific (NWP), and western and eastern North America (WNA and ENA, respectively). The principal findings are as follows: 1) Compared to the other two subregions of the TP-SAMR, deep convection over the TP is shallower, less frequent, and embedded in smaller-size convection systems, but the cloud tops are more densely packed. These characteristics of deep convection over the TP are closely related to the unique local environment, namely, a significantly lower level of neutral buoyancy (LNB) and much drier atmosphere. 2) In a broader context in which all seven regions are brought together, deep convection in the two tropical regions (NWP and SAMR; mostly over ocean) is similar in many regards. A similar conclusion can be drawn among the four subtropical continental regions (TP, EA, WNA, and ENA). However, tropical oceanic and subtropical land regions present some significant contrasts: deep convection in the latter region occurs less frequently, has lower cloud tops but comparable or slightly higher tops of large radar echo (e.g., 0 and 10 dBZ), and is embedded in smaller systems. The cloud tops of the subtropical land regions are generally more densely packed.Hence, the difference between the TP and SAMRismore of a general contrast between subtropical land regions and tropical oceanic regions during the boreal summer. 3)Deep convection over the PSS possesses some uniqueness of its own because of the distinctive terrain (slopes) and moist low-level monsoon flow. 4) Results from a comparison between the daytime (1:30 p.m.) and nighttime (1:30 a.m.) overpasses are largely consistent with researchers' general understanding of the diurnal variation of tropical and subtropical deep convection.

  1. Response of mating activity of the plainfin midshipman to inflow into San Francisco Bay from a summer storm

    NASA Astrophysics Data System (ADS)

    Bland, R. W.

    2010-12-01

    The plainfin midshipman (Porichthys notatus) is a small fish which nests in estuarine waters during summer months. The male makes a loud continuous droning call to attract females to a nest, where eggs and newborn young are guarded by the male. Midshipman calls have been recorded continuously with a fixed hydrophone near a pier in San Francisco Bay, over two successive mating seasons. A dramatic increase in calling followed a very unusual intense rainstorm in mid-October 2009. This suggests a response to biochemical stimuli from the runoff water. Further study may make it possible to isolate the contaminants producing this alteration of sexual behavior.

  2. Boreal summer intraseasonal variability simulated in the NCEP climate forecast system: insights from moist static energy budget and sensitivity to convective moistening

    NASA Astrophysics Data System (ADS)

    Sooraj, K. P.; Seo, Kyong-Hwan

    2013-09-01

    The NCEP Climate Forecast System (CFS) with the relaxed Arakawa Schubert (RAS, hereafter referred to as CTRL) convection scheme of Moorthi and Suarez exhibits better performance in representing boreal summer tropical intraseasonal variability as compared with a simulation using simplified Arakawa-Schubert scheme. The intraseasonal moist static energy (MSE) budget is analyzed in this version of the CFS model (CTRL), which produces realistic eastward and northward propagation characteristics. The moist and thermodynamic processes involved in the maintenance and propagation of the poleward moving intraseasonal oscillation (ISO) disturbances are examined here. Budget diagnostics show that horizontal MSE advection is the principal component of the budget, contributing to the poleward movement of the convection. The injection of MSE moistens the atmosphere north of the convective area causing the poleward movement of convection by destabilization of the atmosphere. The moistening process is mainly contributed by the climatological wind acting on the anomalous moisture gradient as confirmed from the examination of moisture advection equation. While surface enthalpy fluxes (consisting of radiative and surface turbulent heat fluxes) maintain the ISO anomalies, they oppose the MSE tendency due to horizontal advection thus regulating the poleward propagation characteristics. In addition, the model results show that wind-evaporation feedback dominates over cloud-radiation feedback for ISO propagation; this is in contrast to our estimates using the newly available European Centre for Medium Range Weather Forecasts Interim reanalysis. Sensitivity experiments suggest that intraseasonal variability in the CFS model with the RAS scheme is highly sensitive to the parameterization of both the shallow convection and the convective rain evaporation and downdrafts. Removal of these components adversely affects the propagation characteristics and greatly reduces the amplitude of intraseasonal variability. Our results support the primary importance of the moisture preconditioning ahead of the ISO and the physical relationship between moisture and precipitation. For realistic ISO simulations, models need to represent these features appropriately.

  3. Dust Storms: Why Are Dust Storms a Concern

    MedlinePLUS

    ... blown into the air, often lifted by strong winds. Dust storms can be up to 100 miles ... Southwest during the region’s summer monsoon season, when winds shift, temperatures rise, and conditions are extremely dry. ...

  4. The impact of revised simplified Arakawa-Schubert convection parameterization scheme in CFSv2 on the simulation of the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Ganai, Malay; Mukhopadhyay, P.; Krishna, R. Phani Murali; Mahakur, M.

    2015-08-01

    Keeping the systematic bias of the climate forecast system model version 2 (CFSv2) in mind, an attempt is made to improve the Indian summer monsoon (ISM) rainfall variability in the model from diurnal through daily to seasonal scale. Experiments with default simplified Arakawa-Schubert (SAS) and a revised SAS schemes are carried out to make 15 years climate run (free run) to evaluate the model fidelity with revised SAS as compared to default SAS. It is clearly seen that the revised SAS is able to reduce some of the biases of CFSv2 with default SAS. Improvement is seen in the annual seasonal cycle, onset and withdrawal but most importantly the rainfall probability distribution function (PDF) has improved significantly. To understand the reason behind the PDF improvement, the diurnal rainfall simulation is analysed and it is found that the PDF of diurnal rainfall has significantly improved with respect to even a high resolution CFSv2 T382 version. In the diurnal run with revised SAS, the PDF of rainfall over central India has remarkably improved. The improvement of diurnal cycle of total rainfall has actually been contributed by the improvement of diurnal cycle of convection and associated convective rainfall. This is reflected in outgoing longwave radiation and high cloud diurnal cycle. This improvement of convective cycle has resolved a long standing problem of dry bias by CFSv2 over Indian land mass and wet bias over equatorial Indian Ocean. Besides the improvement, there are some areas where there are still scopes for further development. The cold tropospheric temperature bias, low cloud fractions need further improvement. To check the role of shallow convection, another free run is made with revised SAS along with shallow convection (SC). The major difference between the new and old SC schemes lies in the heating and cooling behavior in lower-atmospheric layers above the planetary boundary layer. However, the inclusion of revised SC scheme could not show much improvement as compared to revised SAS with deep convection. Thus, it seems that revised SAS with deep convection can be a potentially better parameterization scheme for CFSv2 in simulating ISM rainfall variability.

  5. The impact of revised simplified Arakawa-Schubert convection parameterization scheme in CFSv2 on the simulation of the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Ganai, Malay; Mukhopadhyay, P.; Krishna, R. Phani Murali; Mahakur, M.

    2014-09-01

    Keeping the systematic bias of the climate forecast system model version 2 (CFSv2) in mind, an attempt is made to improve the Indian summer monsoon (ISM) rainfall variability in the model from diurnal through daily to seasonal scale. Experiments with default simplified Arakawa-Schubert (SAS) and a revised SAS schemes are carried out to make 15 years climate run (free run) to evaluate the model fidelity with revised SAS as compared to default SAS. It is clearly seen that the revised SAS is able to reduce some of the biases of CFSv2 with default SAS. Improvement is seen in the annual seasonal cycle, onset and withdrawal but most importantly the rainfall probability distribution function (PDF) has improved significantly. To understand the reason behind the PDF improvement, the diurnal rainfall simulation is analysed and it is found that the PDF of diurnal rainfall has significantly improved with respect to even a high resolution CFSv2 T382 version. In the diurnal run with revised SAS, the PDF of rainfall over central India has remarkably improved. The improvement of diurnal cycle of total rainfall has actually been contributed by the improvement of diurnal cycle of convection and associated convective rainfall. This is reflected in outgoing longwave radiation and high cloud diurnal cycle. This improvement of convective cycle has resolved a long standing problem of dry bias by CFSv2 over Indian land mass and wet bias over equatorial Indian Ocean. Besides the improvement, there are some areas where there are still scopes for further development. The cold tropospheric temperature bias, low cloud fractions need further improvement. To check the role of shallow convection, another free run is made with revised SAS along with shallow convection (SC). The major difference between the new and old SC schemes lies in the heating and cooling behavior in lower-atmospheric layers above the planetary boundary layer. However, the inclusion of revised SC scheme could not show much improvement as compared to revised SAS with deep convection. Thus, it seems that revised SAS with deep convection can be a potentially better parameterization scheme for CFSv2 in simulating ISM rainfall variability.

  6. The variations of dominant convection modes over Asia, Indian Ocean, and western Pacific Ocean during the summers of 1997-2004

    NASA Astrophysics Data System (ADS)

    Li, Yuefeng; Xiao, Ziniu; Ju, Jianhua; Hu, Guoquan

    2010-07-01

    The NOAA daily outgoing longwave radiation (OLR) and the Global Precipitation Climatology Project (GPCP) daily precipitation data are used to study the variation of dominant convection modes and their relationships over Asia, the Indian Ocean, and the western Pacific Ocean during the summers from 1997 to 2004. Major findings are as follows: (1) Regression analysis with the OLR indicates the convective variations over Asian monsoon region are more closely associated with the convective activities over the western subtropical Pacific (WSP) than with those over the northern tropical Indian Ocean (NTIO). (2) The EOF analysis of OLR indicates the first mode (EOF1) exhibits the out-of-phase variations between eastern China and India, and between eastern China and the WSP. The OLR EOF1 primarily exhibits seasonal and even longer-term variations. (3) The OLR EOF2 mostly displays in-phase convective variations over India, the Bay of Bengal, and southeastern China. A wavelet analysis reveals intraseasonal variation (ISV) features in 2000, 2001, 2002, and 2004. However, the effective ISV does not take place in every year and it seems to occur only when the centers of an east-west oriented dipole reach enough intensity over the tropical Indian and western Pacific Oceans. (4) The spatial patterns of OLR EOF3 are more complicated than those of EOF1 and EOF2, and an effective ISV is noted from 1999 to 2004. The OLR EOF3 implies there is added complexity of the OLR pattern when the effective ISV occurs. (5) The correlation analysis suggests the precipitation over India is more closely associated with the ISV, seasonal variations, and even longer-term variations than precipitation occurring over eastern China.

  7. Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season

    NASA Astrophysics Data System (ADS)

    Bhat, G. S.; Kumar, Shailendra

    2015-03-01

    The vertical structure of radar reflectivity factor in active convective clouds that form during the South Asian monsoon season is reported using the 2A25 version 6 data product derived from the precipitation radar measurements on board the Tropical Rainfall Measuring Mission satellite. We define two types of convective cells, namely, cumulonimbus towers (CbTs) and intense convective cells (ICCs). CbT is defined referring to a reflectivity threshold of 20 dBZ at 12 km altitude and is at least 9 km thick. ICCs are constructed referring to reflectivity thresholds at 8 km and 3 km altitudes. Cloud properties reported here are based on 10 year climatology. It is observed that the frequency of occurrence of CbTs is highest over the foothills of Himalayas, plains of northern India and Bangladesh, and minimum over the Arabian Sea and equatorial Indian Ocean west of 90°E. The regional differences depend on the reference height selected, namely, small in the case of CbTs and prominent in 6-13 km height range for ICCs. Land cells are more intense than the oceanic ones for convective cells defined using the reflectivity threshold at 3 km, whereas land versus ocean contrasts are not observed in the case of CbTs. Compared to cumulonimbus clouds elsewhere in the tropics, the South Asian counterparts have higher reflectivity values above 11 km altitude.

  8. Estimation of Convective Rainfall from Lightning Observations.

    NASA Astrophysics Data System (ADS)

    Tapia, Alberto; Smith, James A.; Dixon, Michael

    1998-11-01

    The objective of this study is to develop a technique to use lightning observations for estimating convective rainfall. A framework for rainfall estimation is developed in which key elements are 1) the rainfall-lightning ratio, that is, the convective rainfall mass per cloud-to-ground lightning flash; 2) the spatial distribution of rainfall relative to flash locations; and 3) the temporal distribution of rainfall relative to the time of lightning occurrence. These three elements are examined through a study of 22 summer thunderstorms in the domain covered by the Melbourne, Florida, WSR-88D radar during August of 1992 and 1993. The analyses are carried out by combining lightning observations from the National Lightning Detection Network with storm parameters computed from 3D reflectivity observations using the Thunderstorm Identification Tracking and Nowcasting storm-tracking and analysis algorithms. The effect of the prevailing convective regime on the variability of lightning-rainfall relationships is investigated. The rainfall estimation procedure is implemented and tested for a thunderstorm that occurred on 20 August 1992. Striking similarities in the spatial distribution of rainfall estimates are observed for the rainfall maps derived from lightning observations and those derived from WSR-88D reflectivity observations. Rainfall estimates derived from lightning observations are of potential use for short-term prediction of flash floods, especially in regions of poor radar coverage. Potential uses of this method also include correction of radar-estimated rainfall for range effects.

  9. Dust Storm

    Atmospheric Science Data Center

    2013-04-16

    article title:  Massive Dust Storm over Australia     View ... winds and dry conditions caused a massive blanket of dust from Australia's Outback to spread eastward across Queensland and New ... at JPL September 22, 2009 - Massive dust storm over Australia. project:  MISR ...

  10. Climatology of summer midtropospheric perturbations in the U.S. northern plains. Part I: Influence on northwest flow severe weather outbreaks

    SciTech Connect

    Wang, Shih-Yu; Chen, Tsing-Chang; Correia, James

    2011-02-13

    Northwest flow severe weather outbreaks (NWF outbreaks) describe a type of summer convective storm that occurs in areas of mid-level NWF in the central United States. Convective storms associated with NWF outbreaks are often progressive (i.e. traveling a long distance) along systematic, northwestsoutheast oriented tracks throughout the northern plains. Previous studies have observed that progressive convective storms under NWF are often coupled with subsynoptic-scale midtropospheric perturbations (MPs) coming from the Rocky Mountains. This study traces such MPs for the decade of 1997-2006 using the North American Regional Reanalysis to examine their climatology and possible influence on NWF outbreaks. MPs initiated over the Rocky Mountains have a maximum frequency in July when the North American anticyclone fully develops and forms prevailing NWF over the northern plains. MPs developed under this anticyclone appear restricted in their vertical extension. Nevertheless, persistent upward motion is apparent in the leading edge (east) of MPs soon after their genesis subsequently inducing or intensifying convective storms. MPs propagate along systematic tracks similar to those of NWF outbreaks. The propagation of MPs also synchronizes with the progressive behavior of the associated convective storms. When encountering strong low-level jets (LLJs), upward motion and convergence of water vapor flux associated with MPs intensify substantially, resulting in strongly enhanced convection and precipitation. Convective wind and hail frequencies associated with MPs in strong LLJs reveal a pattern and magnitude very similar to that of NWF outbreaks. While about 60% of summer rainfall in the northern plains is linked to MPs, 75% of these instances occur in strong LLJs.

  11. 13.2 A REPORT AND FEATURE-BASED VERIFICATION STUDY OF THE CAPS 2008 STORM-SCALE ENSEMBLE FORECASTS FOR SEVERE CONVECTIVE WEATHER

    E-print Network

    analyzed as guidance for operational forecasts of high-impact, convective weather events. Probabilities useful objective guidance for making informed decisions in severe weather forecasting. 2. BACKGROUND Ensemble forecasts of high-impact, rare weather events generated from models that explicitly resolve

  12. Calibration of a Convective Parameterization Scheme in the WRF Model and its Impact on the Simulation of East Asian Summer Monsoon Precipitation

    SciTech Connect

    Yang, Ben; Zhang, Yaocun; Qian, Yun; Huang, Anning; Yan, Huiping

    2015-03-01

    Reasonably modeling the magnitude, south-north gradient and seasonal propagation of precipitation associated with the East Asian Summer Monsoon (EASM) is a challenging task in the climate community. In this study we calibrate five key parameters in the Kain-Fritsch convection scheme in the WRF model using an efficient importance-sampling algorithm to improve the EASM simulation. We also examine the impacts of the improved EASM precipitation on other physical process. Our results suggest similar model sensitivity and values of optimized parameters across years with different EASM intensities. By applying the optimal parameters, the simulated precipitation and surface energy features are generally improved. The parameters related to downdraft, entrainment coefficients and CAPE consumption time (CCT) can most sensitively affect the precipitation and atmospheric features. Larger downdraft coefficient or CCT decrease the heavy rainfall frequency, while larger entrainment coefficient delays the convection development but build up more potential for heavy rainfall events, causing a possible northward shift of rainfall distribution. The CCT is the most sensitive parameter over wet region and the downdraft parameter plays more important roles over drier northern region. Long-term simulations confirm that by using the optimized parameters the precipitation distributions are better simulated in both weak and strong EASM years. Due to more reasonable simulated precipitation condensational heating, the monsoon circulations are also improved. By using the optimized parameters the biases in the retreating (beginning) of Mei-yu (northern China rainfall) simulated by the standard WRF model are evidently reduced and the seasonal and sub-seasonal variations of the monsoon precipitation are remarkably improved.

  13. Impact of domain size on the simulation of Indian summer monsoon in RegCM4 using mixed convection scheme and driven by HadGEM2

    NASA Astrophysics Data System (ADS)

    Dash, S. K.; Pattnayak, K. C.; Panda, S. K.; Vaddi, Deepika; Mamgain, Ashu

    2015-02-01

    In this study, a smaller domain over India alone and a larger South Asia (SA) domain have been used in the Regional Climate Model version 4.2 (RegCM4.2) to examine the effect of the domain size on the Indian summer monsoon simulations. These simulations were carried out over a period of 36 years at 50 km horizontal resolution with the lateral boundary forcings of the UK Met Office Hadley Centre Global Circulation Model Version 2.0. Results show that the Indian summer monsoon rainfall is significantly reduced when the domain size for the model integration is reduced from SA to the Indian domain. In case of SA domain simulation, the Equitable Threat Scores have higher values in case of very light, light and moderate rainfall events than those in case of the Indian domain simulation. It is also found that the domain size of model integration has dominant impact on the simulated convective precipitation. The cross-equatorial flow and the Somali Jet are better represented in the SA simulation than those in the Indian domain simulation. The vertically integrated moisture flux over the Arabian Sea in the SA domain simulation is close to that in the NCEP/NCAR reanalysis while it is underestimated in the Indian domain simulation. It is important to note that when RegCM4.2 is integrated over the smaller Indian domain, the effects of the Himalayas and the moisture advection from the Indian seas are not properly represented in the model simulation and hence the monsoon circulation and associated rainfall are underestimated over India.

  14. Polarimetric and Multi-Doppler Radar Observations of Sprite-producing Storms

    NASA Technical Reports Server (NTRS)

    Lang, TImothy J.; Lyons, Walter A.; Rutledge, Steven A.; Dolan, Brenda; Cummer, Steven A.; Krehbiel, Paul; Rison, William

    2014-01-01

    Sprites are caused by luminous electrical breakdown of the upper atmosphere, and frequently occur over large mesoscale precipitation systems. Two sprite-producing storms (on 8 and 25 June) were observed in Colorado during the summer of 2012. Unlike most past studies of sprites, these storms were observed by a polarimetric radar - the CSU-CHILL facility - which provided both PPI and RHI scans of the cases. Also available were multiple-Doppler syntheses from CSU-CHILL, local NEXRAD radars, and the CSU-Pawnee radar; as well as data from the Colorado Lightning Mapping Array (COLMA), high speed cameras, and other lightning-detection instrumentation. This unique dataset provided an unprecedented look at the detailed kinematic and microphysical structures of the thunderstorms as they produced sprites, including electrical alignment signatures in the immediate location of the charge layers neutralized by sprite-parent positive cloud-to-ground lightning strokes. One of the sprite-producing cases (25 June) featured an anomalous charge structure and may serve as a model for how sprites can be produced over convection rather than the more typical stratiform regions. Also to be presented will be evidence for advection of charge into a common stratiform precipitation region (on 8 June), which was then tapped by lightning originating from multiple different convective cores to produce sprites. Depending on the outcome of the 2013 convective season, polarimetric data from additional storms that produce sprites and other transient luminous events (TLEs) may be presented.

  15. Explosive supercell growth - A possible indicator for tropical storm intensification?

    NASA Technical Reports Server (NTRS)

    Venne, Monique G.; Lyons, Walter A.; Keen, Cecil S.; Black, Peter G.; Gentry, R. Cecil

    1989-01-01

    Several tropical storm observations are discussed which support the hypothesis that bursts of cloud-to-ground lightning near the center of a developing tropical storm (also called convective exhaust clouds and supercells), indicative of organized deep convection, could provide a valuable diagnostic for intensification over the next 12-36 hours. It is emphasized that further research is required in order to establish the exact role of supercells in tropical storm intensification.

  16. The Role of Convection in Redistributing Formaldehyde to the Upper Troposphere Over North America and the North Atlantic during the Summer 2004 INTEX Campaign

    NASA Technical Reports Server (NTRS)

    Fried, Alan; Olson, Jennifer R.; Walega, Jim; Crawford, Jim H.; Chen, Gao; Weibring, Petter; Richter, Dirk; Roller, Chad; Tittel, Frank; Porter, Michael; Fuelberg, Henry; Halland, Jeremy; Bertram, Timothy H.; Cohen, Ronald C.; Pickering, Kenneth; Heikes, Brian G.

    2007-01-01

    Measurements of CH2O from a tunable diode laser absorption spectrometer (TDLAS) were acquired onboard the NASA DC-8 during the summer 2004 INTEX-NA (Intercontinental Chemical Transport Experiment - North America) campaign to test our understanding of convection and production mechanisms in the upper troposphere (UT, 6-12-km) over continental North America and the North Atlantic Ocean. Point-by-point comparisons with box model calculations, when MHP (CH3OOH) measurements were available for model constraint, resulted in a median CH2O measurement/model ratio of 0.91 in the UT. Multiple tracers were used to arrive at a set of UT CH2O background and perturbed air mass periods, and 46% of the TDLAS measurements fell within the latter category. At least 66% to 73% of these elevated UT observations were caused by enhanced production from CH2O precursors rather than direct transport of CH2O from the boundary layer. This distinction is important, since the effects from the former can last for over a week or more compared to one day or less in the case of convective transport of CH2O itself. In general, production of CH2O from CH4 was found to be the dominant source term, even in perturbed air masses. This was followed by production from MHP, methanol, PAN type compounds, and ketones, in descending order of their contribution. In the presence of elevated NO from lightning and potentially from the stratosphere, there was a definite trend in the CH2O discrepancy, which for the highest NO mixing ratios produced a median CH2O measurement/model ratio of 3.9 in the 10-12-km range. Discrepancies in CH2O and HO2 in the UT with NO were highly correlated and this provided further information as to the possible mechanism(s) responsible. These discrepancies with NO are consistent with additional production sources of both gases involving CH3O2 + NO reactions, most likely caused by unmeasured hydrocarbons.

  17. Design Considerations for Tsunamis and Storm Surges

    E-print Network

    Petta, Jason

    Design Considerations for Tsunamis and Storm Surges Sara Forde REU Summer 2006 Advisor: Prof. Yin to protect structures against tsunamis and storm surges, including the effect of scour #12;Indian Ocean Tsunami of 2004 · December 26, 2004 an earthquake of Mw = 9.0 occurs northwest of Indonesian island

  18. Influence of late-summer storms on the horizontal variability of phytoplankton pigment determined by coastal zone color scanner images in the Gulf of St. Lawrence, Canada

    NASA Astrophysics Data System (ADS)

    Fuentes-Yaco, Cesar; Vezina, Alain F.; Gosselin, Michel; Gratton, Yves; Larouche, Pierre

    1997-02-01

    The western gulf of St. LAwrence (GSL) is characterized by high, persistent phytoplankton production and functions as the principal supplier of phytoplankton biomass for the central and eastern Gulf. The main objective of this study was to report on the evolution of a wind-induced phytoplankton bloom in this region. We used Coastal Zone Color Scanner images taken on 20, 22, 28, and 30 August 1980 to calculate phytoplankton pigment concentration, sea surface temperature and water reflectance fields. We coupled the satellite information with storm track, wind, air temperature, and bright sunshine data. A strong storm blew over the Gulf between 15 and 17 August, triggering upwelling and mixing processes that presumably made high nutrient concentrations available in the euphotic layer. High atmospheric pressure and southwesterly winds between 18 and 25 August allowed air and water temperatures to rise, stabilizing the water column and stimulating phytoplankton growth. A northern storm between 25 and 27 August associated with clear weather and low temperatures between 28 and 30 August, coinciding with the bloom decline. Water-normalized reflectance values suggested that the estuarine region was characterized by diatoms, the western-central GSL by a mixed composition of diatoms/small flagellates/coccolithophorids, and the eastern-central region by coccolithophorids and small flagellates. These blooms may be critical for fish recruitment. Cooling and warming of the water column by meteorological events seem to be intermittent but frequency at this time of year. The resulting nutrient input may support phytoplankton blooms of intensities similar to or higher than those recorded during spring in the western region of the Gulf.

  19. High-Resolution Modeling of the Predictability of Convective Systems, and Influences by Absorbing Aerosols Over Northern India and the Himalayas Foothills During Boreal Summer

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Myong; Lau, William K.-M.; Tao, Wei-Kuo; Shi, Jainn; Tan, Qian; Chin, Mian; Matsui, Toshihisa; Bian, Huisheng

    2011-01-01

    The Himalayas foothills region (HFR) is an important component of the South Asian monsoon. To the south, the HFR borders the fertile, populous, and heavily polluted Indo-Gangetic Plain (IGP). To the north, it rises to great height (approx. 4-5 km) to the Tibetan Plateau over a distance of less than 100 km. The HFR itself consists of complex mountainous terrain, with strong orographic forcing for precipitation. During the late spring and early summer, dust aerosol from the Thar and Middle East deserts , as well as moisture from the Arabian Sea were transported to the western part of the western part of the IGP and foothills spurs pre-monsoon severe thunderstorm over the region. During the monsoon season (mid June -August) convection from the Bay of Bengal, spread along the foothills northwestward to northern Pakistan. Recent climate model studies and preliminary observations have indicted not only the importance of dynamical forcing of precipitation in the HFR, but also possible strong impacts by the dense aerosols, from both local sources, and remote transport, that blanket the IGP from late spring up to the onset of the monsoon in June, and during monsoon breaks in July. In this work, we use the NASA Unified Weather Research and Forecasting (Nu-WRF) model to study the predictability ( 1-7 days) South Asian monsoon rainfall system. Results of 7 -day forecast experiments using an embedded domain of 27 km and 9 km resolution were conducted for the period June 11- July 15, 2008, with and without aerosol forcing are carried out to assess the intrinsic predictability of rainfall over the HFR, and possible impacts by aerosol direct effect, and possible connection of large-scale South Asian monsoon system.

  20. Multilinear approach to the precipitation-lightning relationship: a case study of summer local electrical storms in the northern part of Spain during 2002-2009 period

    NASA Astrophysics Data System (ADS)

    Herrero, I.; Ezcurra, A.; Areitio, J.; Diaz-Argandoña, J.; Ibarra-Berastegi, G.; Saenz, J.

    2013-11-01

    Storms developed under local instability conditions are studied in the Spanish Basque region with the aim of establishing precipitation-lightning relationships. Those situations may produce, in some cases, flash flood. Data used correspond to daily rain depth (mm) and the number of CG flashes in the area. Rain and lightning are found to be weakly correlated on a daily basis, a fact that seems related to the existence of opposite gradients in their geographical distribution. Rain anomalies, defined as the difference between observed and estimated rain depth based on CG flashes, are analysed by PCA method. Results show a first EOF explaining 50% of the variability that linearly relates the rain anomalies observed each day and that confirms their spatial structure. Based on those results, a multilinear expression has been developed to estimate the rain accumulated daily in the network based on the CG flashes registered in the area. Moreover, accumulates and maximum values of rain are found to be strongly correlated, therefore making the multilinear expression a useful tool to estimate maximum precipitation during those kind of storms.

  1. Gravity wave initiated convection

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1990-01-01

    The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.

  2. Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Gonzalez, Walter D.

    1998-01-01

    One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. The 11-year cycles of both the numbers of sunspots and Earth geomagnetic storms were first noted by Sabine. A few years later, speculation on a causal relationship between flares and storms arose when Carrington reported that a large magnetic storm followed the great September 1859 solar flare. However, it was not until this century that a well-accepted statistical survey on large solar flares and geomagnetic storms was performed, and a significant correlation between flares and geomagnetic storms was noted. Although the two phenomena, one on the Sun and the other on the Earth, were statistically correlated, the exact physical linkage was still an unknown at this time. Various hypotheses were proposed, but it was not until interplanetary spacecraft measurements were available that a high-speed plasma stream rich in helium was associated with an intense solar flare. The velocity of the solar wind increased just prior to and during the helium passage, identifying the solar ejecta for the first time. Space plasma measurements and Skylab's coronagraph images of coronal mass elections (CMES) from the Sun firmly established the plasma link between the Sun and the Earth. One phenomenon associated with magnetic storms is brilliant "blood" red auroras, as shown.

  3. EXTRATROPICAL SYNOPTIC-SCALE PROCESSES AND SEVERE CONVECTION

    E-print Network

    Doswell III, Charles A.

    EXTRATROPICAL SYNOPTIC-SCALE PROCESSES AND SEVERE CONVECTION Chapter 2 in Severe Convective Storms perspective of the interaction between severe convection and extratropical synoptic-scale processes severe convection develops (see, e.g., Newton 1963; Barnes and Newton 1983; Johns and Doswell 1992

  4. A Giant Storm in Saturn's Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Kurth, W. S.; Fischer, G.; Gurnett, D. A.; Zarka, P. M.; Dyudina, U. A.; Ingersoll, A. P.; Ewald, S. P.; Porco, C.; Wesley, A.; Go, C.; Delcroix, M.

    2011-12-01

    Beginning on December 5, 2010, an extraordinary thunderstorm developed as observed via the radio signatures of lightning using the Radio and Plasma Wave Science (RPWS) instrument and the appearance of a convective cloud in Cassini's Imaging Science System (ISS) images. These instruments as well as amateur astronomers across the globe have continued to track this storm to the present. The storm is extraordinary in that it is the first observed by Cassini in the northern hemisphere near 35 degrees planetocentric north latitude and is, by far, the largest storm observed by Cassini during its mission at Saturn and is comparable to the Great White Spot (GWS) storms observed approximately once per Saturn year. The development from the barely visible indications on December 5 to a storm of GWS status occurred over about 3 weeks. Expansion of the storm in latitude within a latitudinal gradient in the wind system of the planet resulted in an elongated eastward tail which entirely circled the planet by February 2011. The primary active cell lies in a relatively localized area around the main plume of high altitude clouds that overshoot the ammonia cloud layer due to strong vertical convection, although other, weaker cells occasionally develop within the tail. The lightning flash rate of this storm peaked at an order of magnitude higher than previously recorded storms with strokes occurring at the rate of 10 per second and the total power estimated for the storm is comparable to Saturn's total emitted power, making it a significant element of the planet's energy budget. That this storm occurred a year or so after northern vernal equinox suggests a seasonal change in the location of Saturn's thunderstorms. We will summarize observations of this extraordinary storm and update its progress as it is ongoing at the time of this writing.

  5. Infrasound generation by tornadic supercell storms

    E-print Network

    Akhalkatsi, M

    2008-01-01

    Acoustic wave generation by turbulence in the stratified, moist atmosphere is studied. It is shown that in the saturated moist air turbulence in addition to the Lighthill's quadrupole and the dipole sources of sound related to stratification and temperature fluctuations, there exist monopole sources related to heat and mass production during the condensation of moisture. We determine acoustic power of these monopole sources. Performed analysis shows that the monopole radiation is dominant for typical parameters of strong convective storms. Obtained results are in good qualitative agreement with the main observed characteristics of infrasound radiation by strong convective storms such as total acoustic power and characteristic frequency.

  6. Dust Storm

    Atmospheric Science Data Center

    2013-04-16

    article title:  Elevated Dust over the Middle East     View ... on April 11, 2004 (top panels) contrast strongly with the dust storm that swept across Iraq and Saudi Arabia on May 13, 2004 (bottom ... (MISR) depict both the abundance of airborne dust, and its height above the surface. The natural-color views at left ...

  7. Monitoring and Understanding Trends in Extreme Storms: State of Knowledge

    E-print Network

    Kunkel, Kenneth E.

    The state of knowledge regarding trends and an understanding of their causes is presented for a specific subset of extreme weather and climate types. For severe convective storms (tornadoes, hailstorms, and severe ...

  8. Weak linkage between the heaviest rainfall and tallest storms

    PubMed Central

    Hamada, Atsushi; Takayabu, Yukari N.; Liu, Chuntao; Zipser, Edward J.

    2015-01-01

    Conventionally, the heaviest rainfall has been linked to the tallest, most intense convective storms. However, the global picture of the linkage between extreme rainfall and convection remains unclear. Here we analyse an 11-year record of spaceborne precipitation radar observations and establish that a relatively small fraction of extreme convective events produces extreme rainfall rates in any region of the tropics and subtropics. Robust differences between extreme rainfall and convective events are found in the rainfall characteristics and environmental conditions, irrespective of region; most extreme rainfall events are characterized by less intense convection with intense radar echoes not extending to extremely high altitudes. Rainfall characteristics and environmental conditions both indicate the importance of warm-rain processes in producing extreme rainfall rates. Our results demonstrate that, even in regions where severe convective storms are representative extreme weather events, the heaviest rainfall events are mostly associated with less intense convection. PMID:25708295

  9. NASA's GPM Gets a Look at Newborn, Late Season Eastern Pacific Tropical Storm Sandra - Duration: 15 seconds.

    NASA Video Gallery

    On Nov. 24, GPM saw intense convective storms south of the tropical storm's center of circulation were dropping rain at a rate of over 80 mm (3.1 inches) per hour. Cloud tops reached heights above ...

  10. Characterization of Mediterranean hail-bearing storms using an operational polarimetric X-band radar

    NASA Astrophysics Data System (ADS)

    Vulpiani, G.; Baldini, L.; Roberto, N.

    2015-07-01

    This work documents the fruitul use of X-band radar observations for the monitoring of severe storms in an operational framework. More specifically, a couple of severe hail-bearing Mediterranean storms occurred in 2013 in southern Italy, flooding two important cities of Sicily, are described in terms of their polarimetric radar signatures and retrieved rainfall fields. It is used the X-band dual-polarization radar operating inside the Catania airport (Sicily, Italy), managed by the Italian Department of Civil Protection. A suitable processing is applied to X-band radar measurements. The crucial procedural step relies on the differential phase processing based on an iterative approach that uses a very short-length (1 km) moving window allowing to properly catch the observed high radial gradients of the differential phase. The parameterization of the attenuation correction algorithm, which use the reconstructed differential phase shift, is derived from electromagnetic simulations based on 3 years of DSD observations collected in Rome (Italy). A Fuzzy Logic hydrometeor classification algorithm was also adopted to support the analysis of the storm characteristics. The precipitation fields amount were reconstructed using a combined polarimetric rainfall algorithm based on reflectivity and specific differential phase. The first considered storm was observed on the 21 February, when a winter convective system, originated in the Tyrrhenian sea, hit only marginally the central-eastern coastline of Sicily causing the flash-flood of Catania. Due to the optimal radar location (the system is located at just few kilometers from the city center), it was possible to well retrieve the storm characteristics, including the amount of rainfall field at ground. Extemporaneous signal extinction, caused by close-range hail core causing significant differential phase shift in very short range path, is documented. The second storm, occurred on 21 August 2013, is a summer mesoscale convective system originated by the temperature gradient between sea and land surface, lasted a few hours and eventually flooded the city of Siracusa. The undergoing physical process, including the storm dynamics, is inferred by analysing the vertical sections of the polarimetric radar measurements. The high registered precipitation amount was fairly well reconstructed even though with a trend to underestimation at increasing distances. Several episodes of signal extinction clearly manifested during the mature stage of the observed supercell.

  11. Characterization of Mediterranean hail-bearing storms using an operational polarimetric X-band radar

    NASA Astrophysics Data System (ADS)

    Vulpiani, G.; Baldini, L.; Roberto, N.

    2015-11-01

    This work documents the effective use of X-band radar observations for monitoring severe storms in an operational framework. Two severe hail-bearing Mediterranean storms that occurred in 2013 in southern Italy, flooding two important Sicilian cities, are described in terms of their polarimetric radar signatures and retrieved rainfall fields. The X-band dual-polarization radar operating inside the Catania airport (Sicily, Italy), managed by the Italian Department of Civil Protection, is considered here. A suitable processing is applied to X-band radar measurements. The crucial procedural step relies on the differential phase processing, being preparatory for attenuation correction and rainfall estimation. It is based on an iterative approach that uses a very short-length (1 km) moving window, allowing proper capture of the observed high radial gradients of the differential phase. The parameterization of the attenuation correction algorithm, which uses the reconstructed differential phase shift, is derived from electromagnetic simulations based on 3 years of drop size distribution (DSD) observations collected in Rome (Italy). A fuzzy logic hydrometeor classification algorithm was also adopted to support the analysis of the storm characteristics. The precipitation field amounts were reconstructed using a combined polarimetric rainfall algorithm based on reflectivity and specific differential phase. The first storm was observed on 21 February when a winter convective system that originated in the Tyrrhenian Sea, marginally hit the central-eastern coastline of Sicily, causing a flash flood in Catania. Due to an optimal location (the system is located a few kilometers from the city center), it was possible to retrieve the storm characteristics fairly well, including the amount of rainfall field at the ground. Extemporaneous signal extinction, caused by close-range hail core causing significant differential phase shift in a very short-range path, is documented. The second storm, on 21 August 2013, was a summer mesoscale convective system that originated from a Mediterranean low pressure system lasting a few hours that eventually flooded the city of Syracuse. The undergoing physical process, including the storm dynamics, is inferred by analyzing the vertical sections of the polarimetric radar measurements. The high registered amount of precipitation was fairly well reconstructed, although with a trend toward underestimation at increasing distances. Several episodes of signal extinction were clearly manifested during the mature stage of the observed supercells.

  12. Influence of open water bodies on the generation of summertime convection over the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Joshi, D.; Bélair, S.; Carrera, M. L.; Leroyer, S.

    2014-12-01

    There are still numerous water features on the Canadian landscape that are not monitored. Specifically, there are landscape features (e.g. the prairies and Canadian shield regions of North America) that are ephemeral in nature and have a significant influence on convective storm generation and local weather patterns through turbulent exchanges of sensible and latent heat between land and the atmosphere. In this study we perform a series of numerical experiments with the GEM (Global Environmental Multiscale model) model at 2.5 km resolution to examine the sensitivity of the atmospheric boundary layer to the presence of open water bodies. At present the land-water fraction in the GEM model is specified by means of static geophysical databases which do not change annually. Uncertainty is introduced into this land-water fraction and the sensitivity of the resulting soil moisture and precipitation is quantified for a series of convective precipitation events over Alberta for the summer 2014 period.

  13. Initiation of deep convection along boundary layer convergence lines in a semitropical environment

    SciTech Connect

    Fankhauser, J.C.; Crook, N.A.; Tuttle, J.; Miller, L.J.; Wade, C.G.

    1995-02-01

    The initiation of deep convection through forcing along boundary layer convergence lines is examined using observations from the Convection and Precipitation/Electrification (CaPE) Experiment conducted in east-central Florida during the summer of 1991. The study is concerned with the evolution and interaction of two converging air masses that were initially separated by an intervening boundary layer characterized by neutral stability and horizontal convective rolls. As anticipated, major thunderstorms erupt when the east coast breeze eventually collides with thunderstorm outflows from the west, but unexpected convection takes place prior to their merger along a well-defined confluence zone associated with a persistent quasi-stationary roll vortex signature. In this study, complementary interactions between roll vortex convergence lines and the sea-breeze front are not sufficient to trigger deep convection. However, organized convergence along the eastward-spreading thunderstorm outflows did interact periodically with roll vortex convergence maxima to initiate a new series of new storms. Results from two-dimensional numerical model simulations replicate many of the observed boundary layer features. Surface heating produces circulations similar to sea-breeze frontal zones that appear near the coastlines and progress steadily toward each other as the interior boundary layer deepens. Vertical velocity maxima develop over the associated convergence zones, but weaker periodic maxima also occur within the interior air mass at intervals similar to the spacing of observed horizontal roll vortices.

  14. Relationship between convective precipitation and lightning activity using radar quantitative precipitation estimates and total lightning data

    NASA Astrophysics Data System (ADS)

    Pineda, N.; Rigo, T.; Bech, J.; Argemí, O.

    2009-09-01

    Thunderstorms can be characterized by both rainfall and lightning. The relationship between convective precipitation and lightning activity may be used as an indicator of the rainfall regime. Besides, a better knowledge of local thunderstorm phenomenology can be very useful to assess weather surveillance tasks. Two types of approach can be distinguished in the bibliography when analyzing the rainfall and lightning activity. On one hand, rain yields (ratio of rain mass to cloud-to-ground flash over a common area) calculated for long temporal and spatial domains and using rain-gauge records to estimate the amounts of precipitation. On the other hand, a case-by-case approach has been used in many studies to analyze the relationship between convective precipitation and lightning in individual storms, using weather radar data to estimate rainfall volumes. Considering a local thunderstorm case study approach, the relation between rainfall and lightning is usually quantified as the Rainfall-Lightning ratio (RLR). This ratio estimates the convective rainfall volume per lightning flash. Intense storms tend to produce lower RLR values than moderate storms, but the range of RLR found in diverse studies is quite wide. This relationship depends on thunderstorm type, local climatology, convective regime, type of lightning flashes considered, oceanic and continental storms, etc. The objective of this paper is to analyze the relationship between convective precipitation and lightning in a case-by-case approach, by means of daily radar-derived quantitative precipitation estimates (QPE) and total lightning data, obtained from observations of the Servei Meteorològic de Catalunya remote sensing systems, which covers an area of approximately 50000 km2 in the NE of the Iberian Peninsula. The analyzed dataset is composed by 45 thunderstorm days from April to October 2008. A good daily correlation has been found between the radar QPE and the CG flash counts (best linear fit with a R^2=0.74). The daily RLR found has a mean value of 86 10^3m3 rainfall volume per CG flash. The daily range of variation is quite wide, as it goes from 19 to 222 10^3m3 per CG flash. This variation has a seasonal component, related to changes in the convective regime. Summer days (July to middle September) had a mean RLR of 57 10^3m3 rainfall volume per CG flash, while from middle September to the end of October the rainfall volume per CG flash doubles (mean of 125 10^3m3 per CG flash).

  15. STORM TIDE SIMULATIONS FOR HURRICANE HUGO (1989): ON THE SIGNIFICANCE OF INCLUDING INLAND FLOODING AREAS

    E-print Network

    Central Florida, University of

    1989-01-01

    STORM TIDE SIMULATIONS FOR HURRICANE HUGO (1989): ON THE SIGNIFICANCE OF INCLUDING INLAND FLOODING Florida Orlando, Florida Summer Term 2004 #12;ABSTRACT In this study, storm tides are simulated element models with triangular elements are applied in order to simulate the storm tides, allow

  16. The Dynamics of Titan's Convective Clouds

    NASA Astrophysics Data System (ADS)

    Rafkin, S. C.

    2012-12-01

    Titan's deep convective clouds are the most dynamic phenomena known to operate within the atmosphere of the moon. Previous studies have focused primarily on the control of these storms by the large scale thermodynamic environment, especially methane abundance, which determines the amount of convective available potential energy (CAPE). This study looks at factors in addition to the thermodynamic environment that may have a first order impact on the evolution and structure of Titan's deep convective clouds. To the extent that thunderstorms on Earth provide a reasonable analog to the storms on Titan, it is well established that CAPE alone is insufficient to determine the structure and behavior of deep convection. Wind shear—both directional and speed—is also known to exert a first order effect. The influence of both CAPE and wind speed shear is typically expressed as the ratio of the two parameters in the form of the Bulk Richardson Number. On Earth, for a fixed value of CAPE, the addition of wind speed shear (i.e., the reduction of the Bulk Richardson Number) will tend to produce storms that are longer lived, tilted upshear with height, and multi-cellular in nature. These multi-cellular storms also tend to be more violent than storms generated in low wind speed shear environments: strong winds and large hail are common. The addition of directional shear (i.e., helicity) can transform the multi-cell storms into single, intense supercell storms. These are the storms associated typically associated with tornadoes. With respect to Titan, if there is a similar dependence on the Bulk Richardson Number, then this would have implications for how long Titan's storms live, how much precipitation they can produce, the area they cover, and the strength and duration of winds. A series of numerical simulations of Titan's deep convective clouds from the Titan Regional Atmospheric Modeling System are presented. A reasonable sweep of the parameter space of CAPE and shear for Titan is used to quantify the dependence of Titan's storms on the same parameters known to affect deep convection on Earth. The results of the simulations and the implications for Titan are then discussed.imulated convection in a calm (left) and wind shear environment (right). Cloud mixing ratio (g/kg) is shaded. Winds are indicated by vectors with a reference in the lower right of each panel.

  17. An examination of the convective charging hypothesis: Charge structure, electric fields, and Maxwell currents

    NASA Astrophysics Data System (ADS)

    Helsdon, John H.; Gattaleeradapan, Sirin; Farley, Richard D.; Waits, C. Christopher

    2002-11-01

    An examination of the convective charging hypothesis is undertaken using our three-dimensional (3D) storm electrification model (SEM). In an attempt to cover the range of storm conditions over which the convective mechanism might be expected to operate, two storms are simulated: a small, weak storm and a larger, severe storm. Elements of the model relevant to the convective hypothesis are the full treatment of small ions, including attachment to hydrometeors, the inclusion of field-dependent surface point discharge, and the components of the Maxwell current. For comparison purposes, each storm is also simulated using a noninductive mechanism. Results from both the small and large storm simulations using convective-only charging indicate disorganized, weak electrical structures during the mature and dissipating stages. Conversely, the use of noninductive charging produces strong electrification in both storms. Maxwell current analysis shows that, for the most part, currents within the storm are dissipative and that the cloud acts as a barrier to the external conduction current when convective-only charging is considered. For the noninductive simulations, the Maxwell current is that of a generator. The treatment of small ions and their attachment to hydrometeors accounts for the formation of screening layers; thus this aspect of the convective charging mechanism still plays an important role in the modeling of thunderstorm charge structures. However, since the convective charging hypothesis, by itself, is unable to produce significant charging or strong electric fields in either simulated cloud, we conclude that it is not a viable mechanism for thunderstorm electrification.

  18. Overshooting Convection from High-resolution NEXRAD Observations 

    E-print Network

    Solomon, David

    2014-01-09

    , magnitude, and location of overshooting convection events. A new method that combines radar reflectivities from individual radars into a three-dimensional composite with high vertical resolution is used to obtain storm top altitudes. These altitudes...

  19. Kinetic energy budget studies of areas of convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.

    1979-01-01

    Synoptic-scale kinetic energy budgets are being computed for three cases when large areas of intense convection occurred over the Central United States. Major energy activity occurs in the storm areas.

  20. Evolution of vertical drafts and cloud-to-ground lightning within the convective region of a mesoscale convective complex 

    E-print Network

    Saul, Scott Henry

    1995-01-01

    convective complex (MCC) was examined over a 100 minute period during the storm's mature stage and compared to that of a squall line. The area-averaged vertical velocity profiles from twenty dual-Doppler analyses indicated significant differences...

  1. Spectrum of infrasound radiation from supercell storms

    E-print Network

    Akhalkatsi, Mariam

    2010-01-01

    We consider the generation of acoustic waves by turbulent convection and perform spectral analysis of a monopole source of sound related to the heat production by condensation of moisture. A quantitative explanation of the correlation between intensity of infrasound generated by supercell storms and later tornado formation is given. It is shown that low lifting condensation level (LCL) and high values of convective available potential energy (CAPE), which are known to favor significant tornadoes, also lead to a strong enhancement of supercell's low frequency acoustic radiation.

  2. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes

    SciTech Connect

    Janjic, Z.I. )

    1994-05-01

    The step-mountain eta model has shown a surprising skill in forecasting severe storms. Much of the credit for this should be given to the Betts and Miller (hereafter referred to as BM) convection scheme and the Mellor-Yamada (hereafter referred to as MY) planetary boundary layer (PBL) formulation. However, the eta model was occasionally producing heavy spurious precipitation over warm water, as well as widely spread light precipitation over oceans. In addition, the convective forcing, particularly the shallow one, could lead to negative entropy changes. As the possible causes of the problems, the convection scheme, the processes at the air-water interface, and the MY level 2 and level 2.5 PBL schemes were reexamined. A major revision of the BM scheme was made, a new marine viscous sublayer scheme was designed, and the MY schemes were returned. The MY level 2.5 turbulent kinetic energy (TKE) is initialized from above in the PBL, so that excessive TKE is dissipated at most places during the PBL spinup. The method for calculating the MY level 2.5 master length scale was rectified. To demonstrate the effects of the new schemes for the deep convection and the viscous sublayer, tests were made using two summer cases: one with heavy spurious precipitation, and another with a successful 36-h forecast of a tropical storm. The new schemes had dramatic positive impacts on the case with the spurious precipitation. The results were also favorable in the tropical storm case. The developments presented here were incorporated into the eta model in 1990. The details of further research will be reported elsewhere. The eta model became operational at the National Meteorological Center, Washington, D.C., in June 1993. 60 refs., 8 figs.

  3. Nowcasting, warning, mitigation, and documentation of hail storms in Styria, Austria

    NASA Astrophysics Data System (ADS)

    Teschl, Franz; Teschl, Reinhard; Paulitsch, Helmut; Randeu, Walter L.

    2013-04-01

    The South-East of the Austrian province of Styria is a hail-hotspot. Typically on more than 50 days in summer hail warnings are released. Since decades, hail mitigation actions are carried out by means of specially equipped aircraft seeding 'suspicious' clouds with silver-iodide generators. In the year 2009, a project was started with the goal to document hail events and to increase the efficiency of hail finding measures. Since decades, the weather situation is observed in this region by the Austrian C-band weather radar network that provides every five minutes updated 3D reflectivity and velocity measurements with a resolution of 1 km. In 2009, the aircraft used for cloud seeding have been equipped with GPS sensors and tablet PCs. As a consequence, the position of the aircraft is accessible in close to real time and can be marked in the weather radar images. Further, the aircraft pilots have access to the current weather radar images. This idea guarantees a two-way information exchange. On the one hand, the pilots get a full picture of the overall weather situation. On the other hand, it can be documented what cloud cells the experienced aircraft pilots regarded as critical and when and where they chose to seed. Since the project started, aircraft seeding has been documented on more than 150 days. This study analyzes convective storms as they were tracked with the weather radar during their life cycle - from the origin to the collapse. Both categories of cells, seeded and unseeded ones, have been analyzed. The duration, the path-length of the track over ground, the vertical profile, the zero-degree isotherm, as well as the precipitation rate have been extracted. These datasets will allow the evaluation of forecast models for convective storms. It was further evaluated if the seeded convective storms met standardized seeding criteria. A long term perspective of the ongoing project is a scientific analysis of the effects of the hail suppression measures based on the comparison of seeded and unseeded convective cells and on documented hail information from the ground.

  4. Geomagnetic Storms January 2013

    E-print Network

    Schrijver, Karel

    for PSP including geomagnetic storms and extreme solar weather. Cover image: Solar flares on the surface;3 Aon Benfield Executive Summary Geomagnetic storms and extreme solar weather are a realistic threat for the scenarios that can arise out of extreme space weather. #12;4 Geomagnetic Storms Threat Assessment Solar

  5. Storms in Space

    NASA Astrophysics Data System (ADS)

    Freeman, John W.

    2001-10-01

    Introduction; The cast of characters; Vignettes of the storm; 1. Two kinds of weather; 2. The saga of the storm; 3. Weather stations in space; 4. Lights in the night: the signature of the storm; 5. A walking tour of the magnetosphere; 6. The sun: where it all begins; 7. Nowcasting and forecasting storms in space; 8. Technology and the risks from storms in space; 9. A conversation with Joe Allen; 10. Manned exploration and space weather hazards; 11. The present and future of space weather forecasting; Mathematical appendix. A closer look; Glossary; Figure captions.

  6. Storms in Space

    NASA Astrophysics Data System (ADS)

    Freeman, John W.

    2012-11-01

    Introduction; The cast of characters; Vignettes of the storm; 1. Two kinds of weather; 2. The saga of the storm; 3. Weather stations in space; 4. Lights in the night: the signature of the storm; 5. A walking tour of the magnetosphere; 6. The sun: where it all begins; 7. Nowcasting and forecasting storms in space; 8. Technology and the risks from storms in space; 9. A conversation with Joe Allen; 10. Manned exploration and space weather hazards; 11. The present and future of space weather forecasting; Mathematical appendix. A closer look; Glossary; Figure captions.

  7. Beaufort Sea storm and resuspension modeling

    NASA Astrophysics Data System (ADS)

    Lintern, D. Gwyn; Macdonald, Robie W.; Solomon, Steven M.; Jakes, Hunter

    2013-11-01

    Along the shallow Beaufort Sea coast of the Arctic Ocean, storm events during the summer are responsible for significant sediment resuspension and transport. Given the paucity of data in this difficult field area, a model has been developed to be used as a tool towards investigation of these processes. Two contrasting set of conditions are modeled; one simulation for a relatively quiescent period and a second simulation for a period that included a moderate and typical northwesterly storm. Results for these two periods are compared with shallow-water current and wave data collected by instrumented moorings. For the calm period, the model did not predict specific events very well, whereas for the period with a strong storm, the model performed very well in predicting wave height and wave period, and less well in predicting currents. However, under both calm and stormy conditions, mean current speeds and mean current directions were predicted with sufficient accuracy to proceed to calculations of sediment transport. Sensitivity analysis showed that currents contribute very little to the wave dominated resuspension, but mean currents could be used for computing sediment transport quantities and directions. Measurements of storm surge were represented well by the model output, aligning perfecting with the building and waning storm, but with a slight overprediction at the peak of the storm. The reasonable reproduction of wave heights and periods, and of storm surge indicate that the model is responding well to the input parameters. The modeling suggests that the most significant sediment erosion occurs at the northern tips of the Mackenzie Delta and the Tuktoyaktuk Peninsula, and around the area of Herschal Island. The model also indicates that waves are not fully developed during a storm for the present day ice limited fetch, and that extending the fetch a further 100 km to simulate ice retreat led to wave heights at the coast being increased by 20 cm.

  8. Application of new methods based on ECMWF ensemble model for predicting severe convective weather situations

    NASA Astrophysics Data System (ADS)

    Lazar, Dora; Ihasz, Istvan

    2013-04-01

    The short and medium range operational forecasts, warning and alarm of the severe weather are one of the most important activities of the Hungarian Meteorological Service. Our study provides comprehensive summary of newly developed methods based on ECMWF ensemble forecasts to assist successful prediction of the convective weather situations. . In the first part of the study a brief overview is given about the components of atmospheric convection, which are the atmospheric lifting force, convergence and vertical wind shear. The atmospheric instability is often used to characterize the so-called instability index; one of the most popular and often used indexes is the convective available potential energy. Heavy convective events, like intensive storms, supercells and tornadoes are needed the vertical instability, adequate moisture and vertical wind shear. As a first step statistical studies of these three parameters are based on nine years time series of 51-member ensemble forecasting model based on convective summer time period, various statistical analyses were performed. Relationship of the rate of the convective and total precipitation and above three parameters was studied by different statistical methods. Four new visualization methods were applied for supporting successful forecasts of severe weathers. Two of the four visualization methods the ensemble meteogram and the ensemble vertical profiles had been available at the beginning of our work. Both methods show probability of the meteorological parameters for the selected location. Additionally two new methods have been developed. First method provides probability map of the event exceeding predefined values, so the incident of the spatial uncertainty is well-defined. The convective weather events are characterized by the incident of space often rhapsodic occurs rather have expected the event area can be selected so that the ensemble forecasts give very good support. Another new visualization tool shows time evolution of predefined multiple thresholds in graphical form for any selected location. With applying this tool degree of the dangerous weather conditions can be well estimated. Besides intensive convective periods are clearly marked during the forecasting period. Developments were done by MAGICS++ software under UNIX operating system. The third part of the study usefulness of these tools is demonstrated in three interesting cases studies of last summer.

  9. The relative contributions of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA

    USGS Publications Warehouse

    Winograd, I.J.; Riggs, A.C.; Coplen, T.B.

    1998-01-01

    A comparison of the stable-isotope signatures of spring waters, snow, snowmelt, summer (July thru September) rain, and cool season (October thru June) rain indicates that the high-intensity, short-duration summer convective storms, which contribute approximately a third of the annual precipitation to the Spring Mountains, provide only a small fraction (perhaps 10%) of the recharge to this major upland in southern Nevada, USA. Late spring snowmelt is the principal means of recharging the fractured Paleozoicage carbonate rocks comprising the central and highest portion of the Spring Mountains. Daily discharge measurements at Peak Spring Canyon Creek during the period 1978-94 show that snowpacks were greatly enhanced during E1 Nin??o events.

  10. Vorticity imbalance and stability in relation to convection

    NASA Technical Reports Server (NTRS)

    Read, W. L.; Scoggins, J. R.

    1977-01-01

    A complete synoptic-scale vorticity budget was related to convection storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of convective storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of convection indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of convective activity. Instability was related to areas of convection; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of convection better than any one item separately.

  11. Dust Lofting and Ingestion by Supercell Storms ROBERT B. SEIGEL AND SUSAN C. VAN DEN HEEVER

    E-print Network

    Collett Jr., Jeffrey L.

    Dust Lofting and Ingestion by Supercell Storms ROBERT B. SEIGEL AND SUSAN C. VAN DEN HEEVER a need for understanding mineral dust entrainment into moist convection. The goal of this study is to examine the pathways in which nonmicrophysically active mineral dust is entrained into supercell storms

  12. Satellite observation and mesoscale cloud modeling of St. Anthony, Minnesota storm clouds

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y. D.; Dodge, J. C.

    1989-01-01

    Both rawinsonde data and geosynchronous satellite imagery were used to study the life cycles of St. Anthony, Minnesota's severe convective storms. Cloud modeling, with input sounding data from Saint Cloud, Minnesota, and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation. Comparisons were made among the seven groups of severe storms which produced an outbreak of 30 tornadoes across the United States.

  13. Extreme Convection of the Near-Equatorial Americas, Africa, and Adjoining Oceans as seen by TRMM

    E-print Network

    Houze Jr., Robert A.

    Extreme Convection of the Near-Equatorial Americas, Africa, and Adjoining Oceans as seen by TRMM and diurnal cycle of extreme convective storms that occur in the tropical band containing the east Pacific Rainfall Measuring Mission (TRMM) Precipitation Radar show three types of convective-stratiform structures

  14. Observations of tropical precipitating clouds ranging from shallow to deep convective systems

    E-print Network

    Masunaga, Hirohiko

    Observations of tropical precipitating clouds ranging from shallow to deep convective systems. The analysis utilizes four storm categories (Shallow, Cumulus Congestus, Deep Stratiform, and Deep Convective precipitating clouds ranging from shallow to deep convective systems, Geophys. Res. Lett., 33, L16805, doi:10

  15. Large Eddy Simulations of Severe Convection Induced Turbulence

    NASA Technical Reports Server (NTRS)

    Ahmad, Nash'at; Proctor, Fred

    2011-01-01

    Convective storms can pose a serious risk to aviation operations since they are often accompanied by turbulence, heavy rain, hail, icing, lightning, strong winds, and poor visibility. They can cause major delays in air traffic due to the re-routing of flights, and by disrupting operations at the airports in the vicinity of the storm system. In this study, the Terminal Area Simulation System is used to simulate five different convective events ranging from a mesoscale convective complex to isolated storms. The occurrence of convection induced turbulence is analyzed from these simulations. The validation of model results with the radar data and other observations is reported and an aircraft-centric turbulence hazard metric calculated for each case is discussed. The turbulence analysis showed that large pockets of significant turbulence hazard can be found in regions of low radar reflectivity. Moderate and severe turbulence was often found in building cumulus turrets and overshooting tops.

  16. Spatial analysis of storm depths from an Arizona raingage network

    NASA Technical Reports Server (NTRS)

    Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodriguez-Iturbe, I.

    1986-01-01

    Eight years of summer rainstorm observations are analyzed by a dense network of 93 raingages operated by the U.S. Department of Agriculture, Agricultural Research Service, in the 150 km Walnut Gulch experimental catchment near Tucson, Arizona. Storms are defined by the total depths collected at each raingage during the noon-to-noon period for which there was depth recorded at any of the gages. For each of the resulting 428 storm days, the gage depths are interpolated onto a dense grid and the resulting random field analyzed to obtain moments, isohyetal plots, spatial correlation function, variance function, and the spatial distribution of storm depth.

  17. Urban Heat Islands and Summertime Convective Thunderstorms in Atlanta: Three Case Studies

    NASA Technical Reports Server (NTRS)

    Bornstein, Robert; Lin, Qinglu; Goodman, H. Michael (Technical Monitor)

    1999-01-01

    Data from both 27 sites in the Atlanta mesonet surface meteorological network and eight National Weather Service sites were analyzed for the period from 26 July to 3 August 1996. Analysis of the six precipitation events over the city during the period (each on a different day) showed that its urban heat island (UHI) induced a convergence zone that initiated three of the storms at different times of the day, i.e., 0630,0845, and 1445 EDT. Previous analysis has shown that New York City (NYC) effects summer daytime thunderstorm formation and/or movement. That study found that during nearly calm regional flow conditions the NYC UHI initiates convective activity. Moving thunderstorms, however, tended to bifurcate and to move around the city, due to its building barrier effect. The current Atlanta results thus agree with the NYC results with respect to thunderstorm initiation.

  18. Convective initiation in the vicinity of the subtropical Andes

    NASA Astrophysics Data System (ADS)

    Rasmussen, K. L.; Houze, R.

    2014-12-01

    Extreme convection tends to form in the vicinity of mountain ranges, and the Andes in subtropical South America help spawn some of the most intense convection in the world. An investigation of the most intense storms for 11 years of TRMM Precipitation Radar (PR) data shows a tendency for squall lines to initiate and develop in this region with the canonical leading convective line/trailing stratiform structure. The synoptic environment and structures of the extreme convection and MCSs in subtropical South America are similar to those found in other regions of the world, especially the United States. In subtropical South America, however, the topographical influence on the convective initiation and maintenance of the MCSs is unique. A capping inversion in the lee of the Andes is important in preventing premature triggering. The Andes and other mountainous terrain of Argentina focus deep convective initiation in a narrow region. Subsequent to initiation, the convection often evolves into propagating mesoscale convective systems similar to those seen over the Great Plains of the U. S. and produces damaging tornadoes, hail, and floods across a wide agricultural region. Numerical simulations conducted with the NCAR Weather Research and Forecasting (WRF) Model extend the observational analysis and provide an objective evaluation of storm initiation, terrain effects, and development mechanisms. The simulated mesoscale systems closely resemble the storm structures seen by the TRMM Precipitation Radar as well as the overall shape and character of the storms shown in GOES satellite data. A sensitivity experiment with different configurations of topography, including both decreasing and increasing the height of the Andes Mountains, provides insight into the significant influence of orography in focusing convective initiation in this region. Lee cyclogenesis and a strong low-level jet are modulated by the height of the Andes Mountains and directly affect the character, intensity, and spatial distribution of the convective systems. A new conceptual model for convective initiation in subtropical South America that integrates the results of the topographic sensitivity experiments will be presented.

  19. Effect of storm type on rainwater composition in southeastern North Carolina

    SciTech Connect

    Willey, J.D.; Bennett, R.I.; Williams, J.M. Denne, R.K.; Kornegay, C.R.; Perlotto, M.S.; Moore, B.M.

    1988-01-01

    Rainwater composition in Wilmington, NC, varies as a function of storm origin or type. During 1983-1987, the most acidic rain and highest sulfate and nitrate concentrations occurred in rain from local summer thunderstorms, followed by rain from continental frontal storms, with the least acidic rain coming from coastal storms. Seasonal variation was observed for rainwater pH (although not for sulfate or nitrate concentrations) from continental storms, with the most acidic rain in the summer. Thunderstorm nitrate concentrations were high enough to affect seasonal averages for nitrate concentration because thunderstorms are a warm-season type of rain. Coastal storm rainwater did not show seasonal changes; this type of rainwater is similar in pH, sulfate, and nitrate concentrations to rainwater in remote areas of the world. Sulfate from sea spray was a small percentage of the total sulfate except in coastal storm rainwater. Large annual differences in rainwater composition were observed.

  20. Numerical Study of Urbanization Effect on 2012 Heavy Storm Precipitation in Beijing

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Liu, S.; Xue, Y.; Oleson, K. W.

    2014-12-01

    In the past few decades, Great Beijing area has experienced rapid and widespread urbanization, which has significantly modified the land surface physical characteristics and affects urban regional climate.A single layer urban canopy module has been developed based on the Community Land Surface Model Urban Module (CLMU) with improvements: the energy balances on the five surface conditions are considered separately: building roof, sun side and shaded side wall, pervious and impervious land surface. A method to calculate sky view factor is developed based on the physically process while most urban models simply provide an empirical value. This method improves the solar and long wave radiation simulation on each surface; a new scheme for calculating the latent heat flux is applied on both wall and impervious land; the anthropogenic heat is considered in terms of industrial production, domestic wastes, vehicles and air condition. The urban effect on summer convective precipitation under the unstable atmospheric condition over Beijing was investigated by simulating a heavy storm event in July 21st 2012. In this storm, precipitation of averagely 164 mm was brought to Beijing within 6 hours, which is the record of past 60 years in the region. Numerical simulating experiment was set up by coupling Weather Research and Forecast (WRF)/SSiB3 model with the Modified CLMU (MCLMU). Several control cases without MCLMU were set up. The horizontal resolution in the inner domains was set to be 2 km. While all of the control results drastically underestimate the urban precipitation, the result of WRF/SSiB3/MCLMU is much closer to the observation. Sensitive experiments show that the existence of large area of impervious surfaces restrain the surface evaporation and latent heat flux in urban while the anthropogenic heat and enhanced sensible heat flux warm up the lower atmospheric layer and strengthen the vertical stratification instability, which is the key factor for storm while moisture is sufficient.

  1. The Vertical Distribution of Dust in the Martian Atmosphere: The Haze in the Clear Season and the Haze After the Storm

    NASA Astrophysics Data System (ADS)

    Heavens, N. G.; Richardson, M. I.; Kleinboehl, A.; Kass, D.; McCleese, D. J.; Mars Climate Sounder Science Team

    2010-12-01

    Observations by the Mars Climate Sounder (MCS) over the last two martian years have permitted the creation of pressure-pegged retrievals of temperature, dust opacity, and water ice opacity at a vertical resolution of approximately 5 km. These retrievals provide information about the vertical distribution of dust and water ice over a wide dynamic range of mass mixing ratio and/or aerosol heating rate. Thus, MCS retrievals can powerfully complement observations by nadir-looking instruments on Mars Reconnaissance Orbiter or surface landers. For whereas nadir-looking instruments are most sensitive to order unity cloud cover near the surface, MCS limb retrievals are most sensitive to the sub-visible hazes farther above the surface. In this presentation, we will discuss two broad types of dust haze we have identified in MCS retrievals and their significance for dust lifting, transport, and removal processes in the martian atmosphere. In late northern spring and early northern summer, the dust mass mixing ratio profile in the tropics appears to have a significant maximum between 15 and 25 km above the local surface, “the high altitude tropical dust maximum.” While water ice condensation on dust particles and orographically-driven dust lifting may play some role in driving this distribution, we have argued that its primary driver is more likely to be a process akin to moist convection in which shortwave heating of dust in Mars’s thin atmosphere has very similar effects to the latent heat released by condensing water vapor in the Earth’s atmosphere. This type of haze is associated with low column dust opacities throughout the latitudinal band in which it occurs. The other type of haze is associated with the much higher column opacities attributed to dust storm activity. We will present examples from north polar cap edge dust storm activity in northern spring, early season tropical dust storm activity in the middle of northern summer, and the global dust storm of 2007. The latter two events produced hazes with dust mass mixing ratio maxima of greater magnitude and at higher altitude than the high altitude tropical dust maximum, which are consonant with hazes observed by MGS/TES during the 2001 global dust storm. These observations raise the question of whether the second type of dust haze could be driven by a larger-scale version of the pseudo-moist convection we have proposed to explain the first.

  2. Arctic Summer Ice Processes

    NASA Technical Reports Server (NTRS)

    Holt, Benjamin

    1999-01-01

    The primary objective of this study is to estimate the flux of heat and freshwater resulting from sea ice melt in the polar seas. The approach taken is to examine the decay of sea ice in the summer months primarily through the use of spaceborne Synthetic Aperture Radar (SAR) imagery. The improved understanding of the dynamics of the melt process can be usefully combined with ice thermodynamic and upper ocean models to form more complete models of ice melt. Models indicate that more heat is absorbed in the upper ocean when the ice cover is composed of smaller rather than larger floes and when there is more open water. Over the course of the summer, floes disintegrate by physical forcing and heating, melting into smaller and smaller sizes. By measuring the change in distribution of floes together with open water over a summer period, we can make estimates of the amount of heating by region and time. In a climatic sense, these studies are intended to improve the understanding of the Arctic heat budget which can then be eventually incorporated into improved global climate models. This work has two focus areas. The first is examining the detailed effect of storms on floe size and open water. A strong Arctic low pressure storm has been shown to loosen up the pack ice, increase the open water concentration well into the pack ice, and change the distribution of floes toward fewer and smaller floes. This suggests episodic melting and the increased importance of horizontal (lateral) melt during storms. The second focus area is related to an extensive ship-based experiment that recently took place in the Arctic called Surface Heat Budget of the Arctic (SHEBA). An icebreaker was placed purposely into the older pack ice north of Alaska in September 1997. The ship served as the base for experimenters who deployed extensive instrumentation to measure the atmosphere, ocean, and ice during a one-year period. My experiment will be to derive similar measurements (floe size, open water, temporal change) using spaceborne SAR data obtained during the summer of 1998, and compare these results with an ocean and ice model of summer melt. Additional information is contained in the original.

  3. Structure of Highly Sheared Tropical Storm Chantal during CAMEX-4

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Halverson, J.; Ritchie, E.; Simpson, Joanne; Molinari, J.; Tian, L.

    2006-01-01

    Tropical Storm Chantal during August 2001 was a storm that failed to intensify over the few days prior to making landfall on the Yucatan Peninsula. An observational study of Tropical Storm Chantal is presented using a diverse dataset including remote and in situ measurements from the NASA ER-2 and DC-8 and the NOAA WP-3D N42RF aircraft and satellite. The authors discuss the storm structure from the larger-scale environment down to the convective scale. Large vertical shear (850-200-hPa shear magnitude range 8-15 m/s) plays a very important role in preventing Chantal from intensifying. The storm had a poorly defined vortex that only extended up to 5-6-km altitude, and an adjacent intense convective region that comprised a mesoscale convective system (MCS). The entire low-level circulation center was in the rain-free western side of the storm, about 80 km to the west-southwest of the MCS. The MCS appears to have been primarily the result of intense convergence between large-scale, low-level easterly flow with embedded downdrafts, and the cyclonic vortex flow. The individual cells in the MCS such as cell 2 during the period of the observations were extremely intense, with reflectivity core diameters of 10 km and peak updrafts exceeding 20 m/s. Associated with this MCS were two broad subsidence (warm) regions, both of which had portions over the vortex. The first layer near 700 hPa was directly above the vortex and covered most of it. The second layer near 500 hPa was along the forward and right flanks of cell 2 and undercut the anvil divergence region above. There was not much resemblance of these subsidence layers to typical upper-level warm cores in hurricanes that are necessary to support strong surface winds and a low central pressure. The observations are compared to previous studies of weakly sheared storms and modeling studies of shear effects and intensification. The configuration of the convective updrafts, low-level circulation, and lack of vertical coherence between the upper- and lower-level warming regions likely inhibited intensification of Chantal. This configuration is consistent with modeled vortices in sheared environments, which suggest the strongest convection and rain in the downshear left quadrant of the storm, and subsidence in the upshear right quadrant. The vertical shear profile is, however, different from what was assumed in previous modeling in that the winds are strongest in the lowest levels and the deep tropospheric vertical shear is on the order of 10-12 m/s.

  4. Supergranular Convection

    NASA Astrophysics Data System (ADS)

    Udayashankar, Paniveni

    2015-12-01

    Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Here the opacity is so large that heat flux transport is mainly by convection rather than by photon diffusion. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection , Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni , U., Krishan, V., Singh, J., Srikanth, R., 2004, MNRAS, 347, 1279-12814) Paniveni , U., Krishan, V., Singh, J., Srikanth, R., 2005, Solar Physics, 231, 1-105) Paniveni , U., Krishan, V., Singh, J., Srikanth, R., 2010, MNRAS, 402, Issue 1, 424-428

  5. Shallow Water Simulations of the Three Last Saturn's Giant Storms

    NASA Astrophysics Data System (ADS)

    Garcia-Melendo, Enrique; Sanchez-Lavega, Agustin

    2015-11-01

    Shallow Water (SW) simulations are used to present a unified study of the polar (1960), equatorial (1990), and mid-latitude (2010) major storms in Saturn nicknamed as Great White Spots (GWS). The 2010 GWS appeared at +40, moved at -30 m s-1 where the Coriolis force is predominant producing an open anticyclone with a high speed peripheral circulation and a cloud front around the convective source; a long-lived anticyclone; and strong zonal advection on the south part of the storm forming a turbulent region. The 1990 GWS onset took place near the equator, between +12 and +5, on the broad prograde equatorial jet (450 m s-1) where equatorial dynamics dominated producing a storm nucleus, with rapid expansion to the west of a Kelvin-Helmholtz instability on the north side of the perturbation due to advection, and trapped equatorial waves which also expanded the storm to the east around the equator. The 1960 GWS appeared at high latitudes (+56) where Coriolis force is predominant in a region where zonal wind velocity is 0 m s-1. SW simulations predict a strong injection of relative vorticity which may produce large anticyclones on the anticyclonic side of the zonal profile, and a quick turbulent expansion on the background cyclonic regions at mid and high latitudes. In general, simulations indicate that negative relative vorticity injected by the storms also defines the natural interaction with the zonal winds at latitudes where the Coriolis force is dominant dictating its large scale dynamical behavior. Numerical experiments on the 1990 storm indicate that the onset of the storm can only be reproduced if the Voyager era background zonal flow is used, which suggests that it dominated the circulation dynamics at the storm’s outbreak region at that time. They also reproduce its most important morphological features, and show the production of planetary waves and turbulence. We discuss possible mechanism for the observed equatorial jet alterations during the storm expansion.

  6. Community Forest Storm Plan PART III. STORM RESPONSE Growing Texas

    E-print Network

    Community Forest Storm Plan PART III. STORM RESPONSE Growing Texas Community Forest Planning: Storms Guide for Texas Communities Texas A&M Forest Service Urban & Community Forestry TFSweb Cole, Galveston #12;Texas A&M Forest Service Community Forest Planning Guide: Storms

  7. Ocean nutrient pathways associated with the passage of a storm

    NASA Astrophysics Data System (ADS)

    Rumyantseva, Anna; Lucas, Natasha; Rippeth, Tom; Martin, Adrian; Painter, Stuart C.; Boyd, Timothy J.; Henson, Stephanie

    2015-08-01

    Storms that affect ocean surface layer dynamics and primary production are a frequent occurrence in the open North Atlantic Ocean. In this study we use an interdisciplinary data set collected in the region to quantify nutrient supply by two pathways associated with a storm event: entrainment of nutrients during a period of high wind forcing and subsequent shear spiking at the pycnocline due to interactions of storm-generated inertial currents with wind. The poststorm increase in surface layer nitrate (by ~20 mmol m-2) was predominantly driven by the first pathway: nutrient intrusion during the storm. Alignment of poststorm inertial currents and surface wind stress caused shear instabilities at the ocean pycnocline, forming the second pathway for nutrient transport into the euphotic zone. During the alignment period, pulses of high-turbulence nitrate flux through the pycnocline (up to 1 mmol m-2 d-1; approximately 25 times higher than the background flux) were detected. However, the impact of the poststorm supply was an order of magnitude lower than during the storm due to the short duration of the pulses. Cumulatively, the storm passage was equivalent to 2.5-5% of the nitrate supplied by winter convection and had a significant effect compared to previously reported (sub)mesoscale dynamics in the region. As storms occur frequently, they can form an important component in local nutrient budgets.

  8. Meteorology, Macrophysics, Microphysics, Microwaves, and Mesoscale Modeling of Mediterranean Mountain Storms: The M8 Laboratory

    NASA Technical Reports Server (NTRS)

    Starr, David O. (Technical Monitor); Smith, Eric A.

    2002-01-01

    Comprehensive understanding of the microphysical nature of Mediterranean storms can be accomplished by a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, from synoptic scale down through the mesoscale, the cloud macrophysical scale, and ultimately the cloud microphysical scale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. This involves intense convective development, stratiform decay, orographic lifting, and sloped frontal lifting processes, as well as the associated vertical motions and thermodynamical instabilities governing physical processes that affect details of the size distributions and fall rates of the various types of hydrometeors found within the storm environment. Insofar as hazardous Mediterranean storms, highlighted in this study by three mountain storms producing damaging floods in northern Italy between 1992 and 2000, developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within a storm domain. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting processes. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size disi:ributions, and fall rates of the various modes of hydrometeors found within hazardous storm environments.

  9. New insights on geomagnetic storms from observations and modeling

    SciTech Connect

    Jordanova, Vania K

    2009-01-01

    Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bzstorms representative of each interplanetary condition with our kinetic ring current atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. We find that periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. During the HSS-driven storm the convection potential is highly variable and causes small sporadic injections into the ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ring current injection penetrating to lower L shells and stronger ring current buildup.

  10. Intensification of Pacific storm track linked to Asian pollution

    PubMed Central

    Zhang, Renyi; Li, Guohui; Fan, Jiwen; Wu, Dong L.; Molina, Mario J.

    2007-01-01

    Indirect radiative forcing of atmospheric aerosols by modification of cloud processes poses the largest uncertainty in climate prediction. We show here a trend of increasing deep convective clouds over the Pacific Ocean in winter from long-term satellite cloud measurements (1984–2005). Simulations with a cloud-resolving weather research and forecast model reveal that the increased deep convective clouds are reproduced when accounting for the aerosol effect from the Asian pollution outflow, which leads to large-scale enhanced convection and precipitation and hence an intensifed storm track over the Pacific. We suggest that the wintertime Pacific is highly vulnerable to the aerosol–cloud interaction because of favorable cloud dynamical and microphysical conditions from the coupling between the Pacific storm track and Asian pollution outflow. The intensified Pacific storm track is climatically significant and represents possibly the first detected climate signal of the aerosol–cloud interaction associated with anthropogenic pollution. In addition to radiative forcing on climate, intensification of the Pacific storm track likely impacts the global general circulation due to its fundamental role in meridional heat transport and forcing of stationary waves. PMID:17374719

  11. Ionospheric storms—A challenge for empirical forecast of the total electron content

    NASA Astrophysics Data System (ADS)

    Borries, C.; Berdermann, J.; Jakowski, N.; Wilken, V.

    2015-04-01

    Since the last decades, the functioning of society depends more and more on well-functioning communication and navigation systems. As the availability and reliability of most of these satellite-based systems can be severely impacted by ionospheric storms, the accurate forecast of these events becomes a required task for mitigating social and economic risks. Here we aim to make initial steps toward an empirical model for ionospheric perturbations related to space weather events that are observable in the total electron content (TEC). The perturbation TEC forecast model will be a fast and robust approach, improving TEC forecasts based on climatological models during storm conditions. The derivation of such a model is a challenging task, because although a general dependence of the storm features (enhancement or depletion of electron density) on the storm onset time, local time, season and geomagnetic latitude is well known, there is a large deviation from the mean behavior. For a better understanding of storm conditions, this paper presents analyses of ionospheric storms observed in the TEC, broken down into diverse classes of storms. It provides a detailed characterization of the typical ionospheric storm behavior over Europe from high to midlatitudes, beyond case studies. Generally, the typical clear strong TEC enhancement starting in high latitudes and propagating equatorward is found to be strongest for storms starting in the morning hours independent of the season. In midlatitudes, it is strongest during noon. In addition, a clear difference between summer and winter storms is reported. While only winter storms develop high-latitude TEC enhancements, only summer storms typically exhibit TEC depletions during the storm recovery phase. During winter storms TEC enhancements can also occur the day following the storm onset, in contrast to summer storms. Strong correlation of TEC perturbation amplitudes to the Bz component of the interplanetary magnetic field and to a proxy of the polar cap potential are shown especially for summer midlatitude TEC enhancements during storms with and onset in the morning hours (6 to 12 UT over Europe) and for winter high-latitude TEC enhancements (around 60?N). The results indicate the potential to derive improved predictions of maximum TEC deviations during space weather events, based on solar wind measurements.

  12. Dusty gust fronts and their contributions to long-lived convection in West Africa/

    E-print Network

    McGraw-Herdeg, Michael (Michael P.)

    2010-01-01

    To model and predict the behavior of West African storms and mesoscale convective systems (MCSs), we must understand the life cycle of gust fronts, which invariably accompany thunderstorms and often initiate them. In this ...

  13. Observation and numerical simulation of a convective initiation during COHMEX

    NASA Technical Reports Server (NTRS)

    Song, J. Aaron; Kaplan, Michael L.

    1991-01-01

    Under a synoptically undisturbed condition, a dual-peak convective lifecycle was observed with the COoperative Huntsville Meteorological EXperiment (COHMEX) observational network over a 24-hour period. The lifecycle included a multicell storm, which lasted about 6 hours, produced a peak rainrate exceeding 100 mm/hr, and initiated a downstream mesoscale convective system. The 24-hour accumulated rainfall of this event was the largest during the entire COHMEX. The downstream mesoscale convective system, unfortunately, was difficult to investigate quantitatively due to the lack of mesoscale observations. The dataset collected near the time of the multicell storm evolution, including its initiation, was one of the best datasets of COHMEX. In this study, the initiation of this multicell storm is chosen as the target of the numerical simulations.

  14. A Study of a Dryline Convective Downburst

    E-print Network

    Pryor, K

    2006-01-01

    During the evening of 11 August 2005, interaction between a westward moving dryline and an eastward moving mesoscale convective system (MCS) resulted in the generation of a strong, downburst-producing convective storm over the western Oklahoma Panhandle. The presence of the dryline over the Oklahoma Panhandle established favorable conditions for hybrid microbursts by enhancing vertical circulation west of the dryline over Cimarron County and hence, the depth of the convective boundary layer (CBL). It is hypothesized that the presence of a deep, adiabatic sub-cloud layer enhanced downdraft instability through evaporational cooling of precipitation upon descent below the cloud base. Prior to convective initiation, the Geostationary Operational Environmental Satellite (GOES) Hybrid Microburst Index (HMI) and Wet Microburst Severity Index (WMSI) products indicated elevated values over the western Oklahoma Panhandle. This downburst event demonstrated the increased role of sub-cloud evaporational cooling (via the H...

  15. Synchronization of radar observations with multi-scale storm tracking

    NASA Astrophysics Data System (ADS)

    Yang, Hongping; Zhang, Jian; Langston, Carrie

    2009-01-01

    The 3-D radar reflectivity data has become increasingly important for use in data assimilation towards convective scale numerical weather prediction as well as next generation precipitation estimation. Typically, reflectivity data from multiple radars are objectively analyzed and mosaiced onto a regional 3-D Cartesian grid prior to being assimilated into the models. One of the scientific issues associated with the mosaic of multi-radar observations is the synchronization of all the observations. Since radar data is usually rapidly updated (˜every 5-10 min), it is common in current multi-radar mosaic techniques to combine multiple radar’ observations within a time window by assuming that the storms are steady within the window. The assumption holds well for slow evolving precipitation systems, but for fast evolving convective storms, this assumption may be violated and the mosaic of radar observations at different times may result in inaccurate storm structure depictions. This study investigates the impact of synchronization on storm structures in multiple radar data analyses using a multi-scale storm tracking algorithm.

  16. The 2008 Super Tuesday Tornado Outbreak: Overview of the Tornadoes and their Parent Storms

    NASA Technical Reports Server (NTRS)

    Knupp, Kevin R.; Coleman, Tim; Carey, Larry; Petersen, Walt

    2008-01-01

    The cold-season Tornado outbreak that occurred over the Southeast on 5-6 February 2008 was significant for the following reasons: about 84 tornadoes were documented over a 15 h period between late afternoon on 5 February and early morning on 6 February 2008; a wide variety of parent storms were associated with the tornadoes; a total of five EF-4 tornadoes occurred, with two forming over Alabama during the early morning hours prior to sunrise; there was a significant lull period between the initial convective and the early morning activity over Alabama 10 hours later; and, a wide spectrum of storm types, ranging from isolated supercell storms to QLCS bow echoes, accompanied the tornadoes. The goal of this paper is to provide a general description of the outbreak including the distribution of tornadoes and supercell storms over the region, a detailed map of the tornado tracks, time series of tornadoes and parent storms, and general characteristics of all parent tornado storms. The total number of major storms (duration greater than 3 h, at least three tornadoes produced) was seven. Several noteworthy storms are described: a long track (198 km long) tornado and its parent storm over Arkansas; a prolific supercell storm persisted for 7-8 hours and produced 16 tornadoes from north-central Mississippi to southern KY; and, bow echo storms (QLCS's) were simultaneous over KY and produced 16 tornadoes.

  17. Identification of Robust Terminal-Area Routes in Convective Weather

    E-print Network

    Balakrishnan, Hamsa

    Convective weather is responsible for large delays and widespread disruptions in the U.S. National Airspace System, especially during summer. Traffic flow management algorithms require reliable forecasts of route blockage ...

  18. Identification of Robust Routes using Convective Weather Forcasts

    E-print Network

    Michalek, Diana

    Convective weather is responsible for large delays and widespread disruptions in the U.S. National Airspace System (NAS), especially during summer months when travel demand is high. This has been the motivation for Air ...

  19. Why do Tornados and Hail Storms Rest on Weekends?

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Daniel; Bell, Thomas L.

    2010-01-01

    When anthropogenic aerosols over the eastern USA during summertime are at their weekly mid-week peak, tornado and hail storm activity there is also near its weekly maximum. The weekly cycle in storm activity is statistically significant and unlikely to be due to natural variability. The pattern of variability supports the hypothesis that air pollution aerosols invigorate deep convective clouds in a moist, unstable atmosphere, to the extent of inducing production of large hailstones and tornados. This is caused by the effect of aerosols on cloud-drop nucleation, making cloud drops smaller, delaying precipitation-forming processes and their evaporation, and hence affecting cloud dynamics.

  20. A methodological critique on using temperature-conditioned resampling for climate projections as in the paper of Gerstengarbe et al. (2013) winter storm- and summer thunderstorm-related loss events in Theoretical and Applied Climatology (TAC)

    NASA Astrophysics Data System (ADS)

    Wechsung, Frank; Wechsung, Maximilian

    2015-08-01

    The STatistical Analogue Resampling Scheme (STARS) statistical approach was recently used to project changes of climate variables in Germany corresponding to a supposed degree of warming. We show by theoretical and empirical analysis that STARS simply transforms interannual gradients between warmer and cooler seasons into climate trends. According to STARS projections, summers in Germany will inevitably become dryer and winters wetter under global warming. Due to the dominance of negative interannual correlations between precipitation and temperature during the year, STARS has a tendency to generate a net annual decrease in precipitation under mean German conditions. Furthermore, according to STARS, the annual level of global radiation would increase in Germany. STARS can be still used, e.g., for generating scenarios in vulnerability and uncertainty studies. However, it is not suitable as a climate downscaling tool to access risks following from changing climate for a finer than general circulation model (GCM) spatial scale.

  1. Severe convective environments in Reanalyses

    NASA Astrophysics Data System (ADS)

    Gutierrez, G.; Kennedy, A. D.

    2014-12-01

    Climate change implies an altering of weather patterns that may change the frequency of high impact events such as severe thunderstorms and their associated dangers (damaging winds, torrential rains, hail, and tornadoes). Presently, very little is known about how climate change will impact these events. Since these phenomenon are not resolved by climate models, proxies are required to understand how these events may change in the future.Prior to investigating how convective environments change in the future, a reference must be obtained to understand the current climatology of convective environments. Studies such as Kennedy et al. (2011) have shown there are significant differences in reanalyses for regions prone to severe weather.Severe weather parameters such as Convective Available Potential Energy (CAPE), Lifted Index, K Index, Total Totals, 0-1 km shear, 0-3 km shear and 0-6 km shear are calculated using soundings from reanalyses for known severe convective environments. Reanalyses included in this study are the North American Regional Reanalysis (NARR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), 20th Century Reanalysis (20CR), Climate Forecast System Reanalysis (CFSR), Japanese 25-year Reanalysis (JRA25), and Japanese 55-year Reanalysis (JRA55). Preliminary findings are presented. If time allows, multi-parameter indices such as Energy Helicity Index, Bunkers storm motion, Significant Tornado Parameter, and Supercell Composite Parameter will also be compared.

  2. Modeling Convection

    ERIC Educational Resources Information Center

    Ebert, James R.; Elliott, Nancy A.; Hurteau, Laura; Schulz, Amanda

    2004-01-01

    Students must understand the fundamental process of convection before they can grasp a wide variety of Earth processes, many of which may seem abstract because of the scales on which they operate. Presentation of a very visual, concrete model prior to instruction on these topics may facilitate students' understanding of processes that are largely…

  3. Convection towers

    DOEpatents

    Prueitt, Melvin L. (Los Alamos, NM)

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  4. Convection towers

    DOEpatents

    Prueitt, Melvin L. (Los Alamos, NM)

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  5. Convection towers

    DOEpatents

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  6. Convection towers

    DOEpatents

    Prueitt, Melvin L. (Los Alamos, NM)

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  7. NOAA Technical Memorandum ERL ESG-15 THE OPERATIONAL METEOROLOGY OF CONVECTIVE WEATHER

    E-print Network

    Doswell III, Charles A.

    after what I call the "1970s revolution" in severe storms research, a scientific revolution driven of scientific storm chasing, and 3) the development of 3-dimensional computer-based numerical models of deep convection. The results of this revolution were coming to be used in various operational applications

  8. Effects of Deep Convection on Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.

    2007-01-01

    This presentation will trace the important research developments of the last 20+ years in defining the roles of deep convection in tropospheric chemistry. The role of deep convection in vertically redistributing trace gases was first verified through field experiments conducted in 1985. The consequences of deep convection have been noted in many other field programs conducted in subsequent years. Modeling efforts predicted that deep convection occurring over polluted continental regions would cause downstream enhancements in photochemical ozone production in the middle and upper troposphere due to the vertical redistribution of ozone precursors. Particularly large post-convective enhancements of ozone production were estimated for convection occurring over regions of pollution from biomass burning and urban areas. These estimates were verified by measurements taken downstream of biomass burning regions of South America. Models also indicate that convective transport of pristine marine boundary layer air causes decreases in ozone production rates in the upper troposphere and that convective downdrafts bring ozone into the boundary layer where it can be destroyed more rapidly. Additional consequences of deep convection are perturbation of photolysis rates, effective wet scavenging of soluble species, nucleation of new particles in convective outflow, and the potential fix stratosphere-troposphere exchange in thunderstorm anvils. The remainder of the talk will focus on production of NO by lightning, its subsequent transport within convective clouds . and its effects on downwind ozone production. Recent applications of cloud/chemistry model simulations combined with anvil NO and lightning flash observations in estimating NO Introduction per flash will be described. These cloud-resolving case-study simulations of convective transport and lightning NO production in different environments have yielded results which are directly applicable to the design of lightning parameterizations for global chemical transport models. The range of mean values (factor of 3) of NO production per flash (or per meter of lightning channel length) that have been deduced from the model will be shown and compared with values of production in the literature that have been deduced using other methods, Results show that on a per flash basis, IC flashes are nearly as productive of NO as CG flashes. When combined with the global flash rate of 44 flashes per second from NASA's Optical Transient Detector (OTD) measurements, these estimates and the results from other techniques yield global NO production rates of 2-9 TgN/year. Vertical profiles of lightning NOx mass at the end of the 3-D storm simulations have been summarized to yield suggested profiles for use in global models. Simulations of the photochemistry over the 24 hours following a storm have been performed to determine the additional ozone production which can be attributed to lightning NO.

  9. The Numerical Simulation of Orographic Storms

    NASA Astrophysics Data System (ADS)

    Bradley, Michael Morgan

    Recent observational studies of winter storms over the Glamorgan Hills of south Wales (Browning et al., 1974, and Hill et al., 1981) have confirmed the importance of the seeder-feeder mechanism of orographic precipitation enhancement, proposed by Bergeron (1965). However, the latter study also indicated that the sensitivity of the enhancement to the low-level wind speed is much greater than predicted by the seeder-feeder model of Bader and Roach (1977), which simulates only the microphysical processes. A new, dynamic mountain model was used to investigate the hypothesis that mountain wave effects were responsible for this increased wind speed sensitivity. The model, which evolved from the cloud model of Klemp and Wilhelmson (1978), is formulated in terrain-following coordinates. In addition to representing convective and stratiform cloud processes, the model is also capable of accurately simulating moderately nonlinear mountain waves, and is suitable for studying many aspects of orographic storms. The simulations show that orographic clouds significantly alter the airflow over hills and, conversely, that mountain waves strongly influence the moist processes. Wind speed, wind shear, atmospheric stability, and relative humidity are all important factors in the complex scale interactions which occur during orographic storms. The results strongly support the hypothesis that certain mountain wave effects greatly increase the wind speed sensitivity of the Bergeron seeder-feeder mechanism.

  10. Into the Eye of the Storm

    NASA Technical Reports Server (NTRS)

    2000-01-01

    MISR acquired this stereoimage of Hurricane Alberto on August 19, 2000 during Terra orbit 3571. At this time, the storm was located in the North Atlantic Ocean, about 1700 kilometers west of the Azores. According to the National Weather Service, Alberto was increasing in intensity and exhibiting maximum sustained winds of about 165 kilometers per hour.

    This stereo 'anaglyph' image was generated using MISR's vertical (nadir)camera plus the 26-degree forward-viewing camera. It is oriented so that the spacecraft's flight path is from left to right. North is at the left. To view the image in 3-D, use red/blue glasses with the red filter over your left eye.

    Near the center of the storm, the 'eye' measures about 60 kilometers in diameter. The steep eye wall, where surface winds reach their peak intensity, is very apparent. Convective thunderclouds are present in the storm's spiral arms, and their three-dimensional structure is visible in this stereo view.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

    For more information: http://www-misr.jpl.nasa.gov

  11. Diagnostics of severe convection and subsynoptic scale ageostrophic circulations

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Diagnostics of severe convection and subsynoptic scale ageostrophic circulations are reported. Mesoscale circulations through forcing of ageostrophic motion by adiabatic, diabatic and frictional processes were studied. The development and application of a hybrid isentropic sigma coordinate numerical model was examined. The numerical model simulates mesoscale ageostrophic circulations associated with propagating jet streaks and severe convection. A complete list of publications and these completed through support of the NASA severe storms research project is included.

  12. Noachis Dust Storm

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-523, 24 October 2003

    The edges of the retreating seasonal polar caps of Mars are sites of frequent dust storms. The temperature contrast between the cold polar cap surfaces and the adjacent, warmer, frost-free surfaces set up the conditions for cold air to come streaming off the polar cap, picking up dust as soon as it hits the frost-free terrain. Dust storms are the result. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dust storm in southeast Noachis Terra near 55oS, 316oW, on 21 June 2001. This was one of several precursor storms that led up to the global dust events of 2001. The frosted surface of the seasonal south polar cap is the lighter-toned terrain in the lower half of the image; the darker upper half is frost-free. Winds are blowing the dust storm (located at left-center) toward the north (top/upper right). The large crater just below the center of the picture is Peneus Patera. It is approximately 120 km (75 mi) across. This MOC red wide angle picture is illuminated by sunlight from the upper left.

  13. Electrification in winter storms and the analysis of thunderstorm overflight

    NASA Technical Reports Server (NTRS)

    Brook, Marx

    1991-01-01

    The emergence of 24 hr operational lightning detection networks has led to the finding that positive lightning strokes, although still much fewer in number than the normal negative strokes, are present in summer and winter storms. Recent papers address the importance of understanding the meteorological conditions which lead to a dominance of one polarity of stroke over another; the appearance of positive strokes at the end of a storm appeared to presage the end-of-storm downdraft and subsidence leading to downburst activity. It is beginning to appear that positive strokes may be important meteorological indicators. Significant research accomplishments on the following topics are addressed: (1) a study to verify that the black boxes used in the lightning networks to detect both negative and positive strokes to ground were accurate; (2) the use of slow tails to determine the polarity of distant lightning; (3) lightning initiation in winter vs. summer storms; (4) the upgrade of sensors for the measurement of electric field signals associated with lightning; (5) the analysis of lightning flash records from storms between 40 and 125 km from the sensor; and (6) an interesting aspect of the initiation process which involves the physical processes driving the stepped leader. The focus of current research and future research plans are presented.

  14. Convection towers

    DOEpatents

    Prueitt, M.L.

    1994-02-08

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  15. Kinetic energy budgets in areas of convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.

    1979-01-01

    Synoptic scale budgets of kinetic energy are computed using 3 and 6 h data from three of NASA's Atmospheric Variability Experiments (AVE's). Numerous areas of intense convection occurred during the three experiments. Large kinetic energy variability, with periods as short as 6 h, is observed in budgets computed over each entire experiment area and over limited volumes that barely enclose the convection and move with it. Kinetic energy generation and transport processes in the smaller volumes are often a maximum when the enclosed storms are near peak intensity, but the nature of the various energy processes differs between storm cases and seems closely related to the synoptic conditions. A commonly observed energy budget for peak storm intensity indicates that generation of kinetic energy by cross-contour flow is the major energy source while dissipation to subgrid scales is the major sink. Synoptic scale vertical motion transports kinetic energy from lower to upper levels of the atmosphere while low-level horizontal flux convergence and upper-level horizontal divergence also occur. Spatial fields of the energy budget terms show that the storm environment is a major center of energy activity for the entire area.

  16. Great magnetic storms

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Lee, Yen T.; Gonzalez, Walter D.; Tang, Frances

    1992-01-01

    The five largest magnetic storms that occurred between 1971 to 1986 are studied to determine their solar and interplanetary causes. All of the events are found to be associated with high speed solar wind streams led by collisionless shocks. The high speed streams are clearly related to identifiable solar flares. It is found that: (1) it is the extreme values of the southward interplanetary magnetic fields rather than solar wind speeds that are the primary causes of great magnetic storms, (2) shocked and draped sheath fields preceding the driver gas (magnetic cloud) are at least as effective in causing the onset of great magnetic storms (3 of 5 events) as the strong fields within the driver gas itself, and (3) precursor southward fields ahead of the high speed streams allow the shock compression mechanism (item 2) to be particularly geoeffective.

  17. Summer Doldrums.

    ERIC Educational Resources Information Center

    Muchnick, Bruce

    2002-01-01

    For camp staff, factors that contribute to the summer doldrums are weather, level of general fatigue, unsatisfied expectations, sensory overload, accumulation of negative "self-talk," and an underlying sense of hurry. Strategies for overcoming summer doldrums involve novelty and stress management, and include promoting health, challenging…

  18. Summer Astronomy

    ERIC Educational Resources Information Center

    Riddle, Bob

    2004-01-01

    This brief article describes what can be expected of the skies in the summer of 2004 with quite a few celestial thrills to anticipate. In addition to the planet viewing opportunities, there is a very rare Venus transit of the Sun and the annual Perseid meteor shower. The 2004 summer also marks both an end and beginning for the Cassini/Huygens…

  19. TWINS Geomagnetic Storm Catalog

    NASA Astrophysics Data System (ADS)

    Perez, J. D.; Buzulukova, N.; Fok, M. C. H.; Goldstein, J.; McComas, D. J.; Valek, P. W.; Wood, K. D.

    2014-12-01

    Results from TWINS 1 & 2 observations and CIMI simulations have been cataloged for geomagnetic storms with Dst or SYM/H below -100 nT in the years 2008-2013. TWINS (Two Wide-angle Imaging Neutral-atom Spectrometers) provides ENA (Energetic Neutral Atom) images on a nearly continuous basis over a broad energy range (1-100 keV/amu). CIMI (Comprehensive Inner-Magnetosphere Ionosphere) model combines the ability to simulate ringcurrent dynamics solving for particle distributions and corresponding ENA fluxes with the ability to calculate radiation belt particle fluxes and inner plasma sheet electron precipitation. For each storm, the TWINS Storm Catalog provides 1-hour-samples ENA images, corresponding deconvolved 2D equatorial ion number flux and pitch angle anisotropy, and the energy spectrum and pitch angle distribution at the position of the peak of the number flux. Also included for direct comparison are results from CIMI simulations for the same quantities. The catalog is available to all interested parties. It will be shown how users of the Catalog will have the opportunity to perform a number of studies related to the dynamics of the ring current during geomagnetic storms. For example, the storms cataloged to date show trends in changes of the energy spectrum from high energy tails deficient in ions as compared to a Maxwellian, to a high energy tail and finally approaching a Maxwellian. Likewise, pitch angle distributions are shown to evolve from having more perpendicular than parallel ions to a nearly isotropic distribution. It is also possible to investigate differences in ring current behavior for CIR and ICME driven storms.It is to be noted that in this context, opportunities for results from the measurements and simulations on a finer time scale, for spectra as a function of equatorial position, and similarly for pitch angle distributions are available by request.

  20. Diurnal cycle of convection during the CAIPEEX 2011 experiment

    NASA Astrophysics Data System (ADS)

    Resmi, EA; Malap, Neelam; Kulkarni, Gayatri; Murugavel, P.; Nair, Sathy; Burger, Roelof; Prabha, Thara V.

    2015-08-01

    The diurnal cycle of convective storm events is investigated in the study with the help of C-band radar reflectivity data during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX 2011) in combination with other ground-based observations. A threshold reflectivity of 25 dBZ is used to identify the initiation of storms. Observations from collocated sensors such as a microwave radiometer profiler, water vapor measurement from eddy covariance system, and wind lidar measurements are used to investigate the characteristic features and diurnal cycle of convectively initiated storms from 21st September to 5th November 2011. The maximum reflectivity follows a normal distribution with a mean value of 40 dBZ. The cloud depth over the domain varied between 5 and 15 km corresponding to a range of reflectivity of 30-50 dBZ values. In the diurnal cycle, double maximum in the precipitation flux is noted—one during the afternoon hours associated with the diurnal heating and the other in the nocturnal periods. The nocturnal precipitation maximum is attributed to initiation of several single-cell storms (of congestus type) with a duration that is larger than the storms initiated during the daytime. The convective available potential energy (CAPE) showed a diurnal variation and was directly linked with the surface level water vapor content. The high CAPE favored single storms with a reflectivity >40 dBZ and higher echo top heights. In the evening or late night hours, a nocturnal low-level jet present over the location together with the reduced stability above the cloud base favored enhancement of low-level moisture, CAPE, and further initiation of new convection. The study illustrated how collocated observations could be used to study storm initiation and associated thermodynamic features.

  1. Storm Warning Service

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A Huntsville meteorologist of Baron Services, Inc. has formed a commercial weather advisory service. Weather information is based on data from Marshall Space Flight Center (MSFC) collected from antennas in Alabama and Tennessee. Bob Baron refines and enhances MSFC's real time display software. Computer data is changed to audio data for radio transmission, received by clients through an antenna and decoded by computer for display. Using his service, clients can monitor the approach of significant storms and schedule operations accordingly. Utilities and emergency management officials are able to plot a storm's path. A recent agreement with two other companies will promote continued development and marketing.

  2. Relationships between lightning and properties of convective cloud Joanna M. Futyan1,2

    E-print Network

    Relationships between lightning and properties of convective cloud clusters Joanna M. Futyan1 August 2007. [1] Satellite observations of convective system properties and lightning flash rate are used of the maritime continent. As found in previous studies, the radar storm height is tightly correlated

  3. Characteristics of warm season precipitating storms in the Arkansas–Red River basin

    E-print Network

    Tucker, Donna F.; Li, Xingong

    2009-07-16

    intensity, the precipitation amounts from individual storms or small groups of storms have been of secondary importance. This situation has occurred because of the difficulty in determining precipitation amounts. Studies examining precipitation [e.g., Kane... not resolve many details of the precipitation field. Estimates of precipitation amounts from radar alone are not consistently accurate. [3] Kane et al. [1987] examined the precipitation from individual mesoscale convective complexes (MCCs) and other large...

  4. Tracking Severe Storms using a Pseudo Storm Concept Yong Zhang,

    E-print Network

    Barron, John

    , Merging and Splitting Storms, Pseudo Storm, Doppler Radar I. INTRODUCTION Doppler radar [1 data is one of its principal modern applications. Our research has focused on enhancing Doppler radar the Detroit and Cleveland Doppler radars (see Figure 1). II. STORM DETECTION AND REPRESENTATION A NEXRAD

  5. A portable CW/FM-CW Doppler radar for local investigation of severe storms

    SciTech Connect

    Unruh, W.P.; Wolf, M.A.; Bluestein, H.B.

    1988-01-01

    During the 1987 spring storm season we used a portable 1-W X-band CW Doppler radar to probe a tornado, a funnel cloud, and a wall cloud in Oklahoma and Texas. This same device was used during the spring storm season in 1988 to probe a wall cloud in Texas. The radar was battery powered and highly portable, and thus convenient to deploy from our chase vehicle. The device separated the receding and approaching Doppler velocities in real time and, while the radar was being used, it allowed convenient stereo data recording for later spectral analysis and operator monitoring of the Doppler signals in stereo headphones. This aural monitoring, coupled with the ease with which an operator can be trained to recognize the nature of the signals heard, made the radar very easy to operate reliably and significantly enhanced the quality of the data being recorded. At the end of the 1988 spring season, the radar was modified to include FM-CW ranging and processing. These modifications were based on a unique combination of video recording and FM chirp generation, which incorporated a video camera and recorder as an integral part of the radar. After modification, the radar retains its convenient portability and the operational advantage of being able to listen to the Doppler signals directly. The original mechanical design was unaffected by these additions. During the summer of 1988, this modified device was used at the Langmuir Laboratory at Socorro, New Mexico in an attempt to measure vertical convective flow in a thunderstorm. 2 refs., 2 figs.

  6. Dynamics of Saturn’s great storm of 2010-2011 from Cassini ISS and RPWS

    NASA Astrophysics Data System (ADS)

    Sayanagi, Kunio M.; Dyudina, Ulyana A.; Ewald, Shawn P.; Fischer, Georg; Ingersoll, Andrew P.; Kurth, William S.; Muro, Gabriel D.; Porco, Carolyn C.; West, Robert A.

    2013-03-01

    Saturn’s quasi-periodic planet-encircling storms are the largest convecting cumulus outbursts in the Solar System. The last eruption was in 1990 (Sánchez-Lavega, A. [1994]. Chaos 4, 341-353). A new eruption started in December 2010 and presented the first-ever opportunity to observe such episodic storms from a spacecraft in orbit around Saturn (Fischer, G. et al. [2011]. Nature 475, 75-77; Sánchez-Lavega, A. et al. [2011]. Nature 475, 71-74; Fletcher, L.N. et al. [2011]. Science 332, 1413). Here, we analyze images acquired with the Cassini Imaging Science Subsystem (ISS), which captured the storm’s birth, evolution, and demise. In studying the end of the convective activity, we also analyze the Saturn Electrostatic Discharge (SED) signals detected by the Radio and Plasma Wave Science (RPWS) instrument. The storm’s initial position coincided with that of a previously known feature called the String of Pearls (SoPs) at 33°N planetocentric latitude. Intense cumulus convection at the westernmost point of the storm formed a particularly bright “head” that drifted at -26.9 ± 0.8 m s-1 (negative denotes westward motion). On January 11, 2011, the size of the head was 9200 km and up to 34,000 km in the north-south and east-west dimensions, respectively. RPWS measurements show that the longitudinal extent of the lightning source expanded with the storm’s growth. The storm spawned the largest tropospheric vortex ever seen on Saturn. On January 11, 2011, the anticyclone was sized 11,000 km by 12,000 km in the north-south and east-west directions, respectively. Between January and September 2011, the vortex drifted at an average speed of -8.4 m s-1. We detect anticyclonic circulation in the new vortex. The vortex’s size gradually decreased after its formation, and its central latitude shifted to the north. The storm’s head moved westward and encountered the new anticyclone from the east in June 2011. After the head-vortex collision, the RPWS instrument detected that the SED activities became intermittent and declined over ?40 days until the signals became undetectable in early August. In late August, the SED radio signals resurged for 9 days. The storm left a vast dark area between 32°N and 38°N latitudes, surrounded by a highly disturbed region that resembles the mid-latitudes of Jupiter. Using ISS images, we also made cloud-tracking wind measurements that reveal differences in the cloud-level zonal wind profiles before and after the storm.

  7. Overwash induced by storm conditions 

    E-print Network

    Park, Young Hyun

    2009-05-15

    of Study Area ...................................................................24 3.3. Hurricane and Tropical Storm Impact ........................................................29 3.3.1. Hurricane Ivan...)...................................................5 1.2 The study area was damaged by tropical storm Ivan in 2004. ...............................5 2.1 Types of erosional and depositional features produced by extreme storms.abcdef abcd(Morton and Sallenger...

  8. Desert Storm environmental effects

    NASA Astrophysics Data System (ADS)

    Kimball, E. W.

    It is noted that after more than six months of operation of the Patriot launch station in the Saudi Arabian desert no problems that were attributed to high temperature occurred. The environmental anomalies that did occur were cosmetic in nature and related to dust and salt fog. It was concluded that the Desert Storm environmental effects were typical of worldwide hot, dry climates.

  9. Recovery from major storms

    SciTech Connect

    Holeman, J.S.

    1980-01-01

    Public Service Company of Oklahoma's transmission and distribution system is in tornado alley, and it seems the number of tornados hitting some part of the system is increasing each year. In the past 30 years, Tulsa his been hit 7 times, and experienced 3 very wide and destructive tornado storm systems between 1971 and 1975.

  10. STORM INLET FILTRATION DEVICE

    EPA Science Inventory

    Five field tests were conducted to evaluate the effectiveness of the Storm and Groundwater Enhancement Systems (SAGES) device for removing contaminants from stormwater. The SAGES device is a three-stage filtering system that could be used as a best management practices (BMP) retr...

  11. Magnetic Storms in Brazil

    NASA Astrophysics Data System (ADS)

    Pinheiro, K.; Siqueira, F.

    2013-05-01

    Magnetic storms result from atypical processes generated in the Sun, the interaction between the solar wind and the Earth's magnetosphere and the energization of particles in the magnetosphere. As consequence, magnetic storms may cause problems on radio communication, in satellites, GPS imprecision and induce geomagnetic induced currents that my cause saturation and damage of transformers. Magnetic storms are measured in magnetic observatories, where it is possible to observe large variations in the horizontal magnetic field. These variations are most visible in equatorial or low-latitude magnetograms. In this work, we use low latitude dataset from three magnetic observatories in Brazil: Vassouras (Rio de Janeiro) that presents data since 1915, Tatuoca (Pará) since 1957 and data from a new magnetic observatory that was installed in Pantanal (Brazil) on the 22nd October 2012. Vassouras and Pantanal observatories are in the region of the South Atlantic Magnetic Anomaly. External magnetic field interactions in this region are poorly known due to the lack of magnetic data. Tatuoca observatory is located in another important geomagnetic region: the equatorial electrojet. In this work we present the data processing of the recent geomagnetic time series in Pantanal Observatory and its comparison with Vassouras and Tatuoca observatories in Brazil. We analyse the main characteristics of magnetic storms in these observatories, as the sudden commencement and their duration.

  12. Stories from the Storm

    ERIC Educational Resources Information Center

    Smoczynski, Carol

    2007-01-01

    For four months, St. Paul's Episcopal School in the Lakeview neighborhood of New Orleans, Louisiana remained closed after Hurricane Katrina ravaged the entire city in August 2005. The storm left St. Paul's campus under nine feet of water for two weeks, destroying many buildings and the entire first floor of the campus. As the only remaining art…

  13. California's Perfect Storm

    ERIC Educational Resources Information Center

    Bacon, David

    2010-01-01

    The United States today faces an economic crisis worse than any since the Great Depression of the 1930s. Nowhere is it sharper than in the nation's schools. Last year, California saw a perfect storm of protest in virtually every part of its education system. K-12 teachers built coalitions with parents and students to fight for their jobs and their…

  14. An Update to the Warm-Season Convective Wind Climatology of KSC/CCAFS

    NASA Technical Reports Server (NTRS)

    Lupo, Kevin

    2012-01-01

    Total of 1100 convective events in the 17-year warm-season climatology at KSC/CCAFS. July and August typically are the peak of convective events, May being the minimum. Warning and non-warning level convective winds are more likely to occur in the late afternoon (1900-2000Z). Southwesterly flow regimes and wind directions produce the strongest winds. Storms moving from southwesterly direction tend to produce more warning level winds than those moving from the northerly and easterly directions.

  15. Evolution of cloud-to-ground lightning characteristics within the convective region of a midlatitude squall line 

    E-print Network

    Billingsley, David Brian

    1994-01-01

    has been examined over a period of 49 minutes. Lightning data from the National Severe Storms Laboratory lightning detection network combined with seven dual-Doppler analyses provided a unique dataset in which to study this Mesoscale Convective System...

  16. Pilot Convective Weather Decision Making in En Route Airspace

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Chieh; Gooding, Cary L.; Shelley, Alexandra E.; Duong, Constance G.; Johnson, Walter W.

    2012-01-01

    The present research investigates characteristics exhibited in pilot convective weather decision making in en route airspace. In a part-task study, pilots performed weather avoidance under various encounter scenarios. Results showed that the margins of safety that pilots maintain from storms are as fluid as deviation decisions themselves.

  17. Severe storm identification with satellite microwave radiometry - An initial investigation with Nimbus-7 SMMR data

    NASA Technical Reports Server (NTRS)

    Howland, Michael R.; Santek, David A.; Spencer, Roy W.

    1987-01-01

    The use of satellite passive microwave observations for the detection of severe thunderstorms is investigated. Nimbus 7 SMMR data obtained from 1979 to 1980 over the U.S. east of 105 deg W are analyzed. The relative temperature brightnesses of the severe storms are examined; it is observed that temperature brightness decreases as the storm severity increases. The temperature brightness data were transformed into a quantitative measure of storm detection ability using the critical success index of Donaldson et al. (1975). Critical success indices of 0.32, 0.48, and 0.38 were obtained for the low-brightness-temperature thresholding of severe versus nonsevere storms during 1979, 1980, and 1979 and 1980 combined, respectively. The data reveal that the geostationary passive microwave imaging capability at 37 GHz is applicable to the detection and monitoring of severe convective storms.

  18. The soundproof dynamical core for COSMO model: representation of convective flows.

    NASA Astrophysics Data System (ADS)

    Wójcik, Damian; Piotrowski, Zbigniew; Rosa, Bogdan; Ziemia?ski, Micha?

    2014-05-01

    Research conducted at Polish Institute of Meteorology and Water Management, National Research Institute, in collaboration with Consortium for Small Scale Modeling (COSMO) are aimed at developing new conservative dynamical core for next generation operational weather prediction model. As the result, a new prototype model was developed with dynamical core based on anelastic set of equation and numerics adopted from the EULAG model. An employment of EULAG allowed to profit from its desirable conservative properties and numerical robustness confirmed in number of benchmark tests and widely documented in scientific literature. The hybrid model consists of EULAG dynamical core implemented into the software environment of the operational COSMO model and basic COSMO physical parameterizations involving turbulence, friction, radiation, moist processes and surface fluxes (COSMO-EULAG). The tool is capable to compute weather forecast in mountainous area for the horizontal resolution of 0.28 km and with slopes reaching 60 degrees of inclination. The presentation is focused on two current research topics. First, the model and especially its dynamics-physics coupling is examined within idealized framework for representation of convective flows. The study is based on two complementary convection benchmarks of Weisman and Klemp (Mon. Wea. Rev. 110:504, 1982) and Grabowski et al. (Q. J. R. Meteorol. Soc. 132:317, 2006). While the first experiment can be used to examine a life cycle of a single convective storm structure in COSMO-EULAG model, the second experiment allows to evaluate the model representation of statistical properties of daytime convective development over land, involving convection initiation as well as is transition into a deep phase. The study involves also the comparison of COSMO-EULAG results with results of standard compressible COSMO-Runge-Kutta model to test the suitability of the anelastic dynamical core for operational mesoscale high-resolution NWP. Next, the results of a realistic case study of Alpine summer convection simulated by COSMO-EULAG with very high horizontal resolutions ranging from 2.2 to 0.28km are presented. While the simulations, even with highest resolution, do not require any artificial orography smoothing, the influence of such smoothing on simulation results is investigated. The study shows e.g. a comparison of flow, cloud and precipitation structure, and spectral analyses of horizontal wind fields. The Cosmo-Eulag forecast is also compared with available meteorological information.

  19. Summer Triangle

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A conspicuous asterism which dominates the northern sky during summer, comprising the bright stars Vega (? Lyrae, apparent magnitude 0.03), Deneb (? Cygni, apparent magnitude 1.25) and Altair (? Aquilae, apparent magnitude 0.76). Vega, by far the most brilliant star in the northern summer sky, is also the brightest to pass overhead (within 13° of the zenith), with the exception of Capella (? Auri...

  20. Dust Storm over the Red Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In the summer months in the Northern Hemisphere, dust storms originating in the deserts around the Arabian Peninsula have a significant impact on the amount of solar radiation that reaches the surface. Winds sweep desert sands into the air and transport them eastward toward India and Asia with the seasonal monsoon. These airborne particles absorb and deflect incoming radiation and can produce a cooling effect as far away as North America. According to calculations performed by the NASA Goddard Institute for Space Studies (GISS), the terrain surrounding the southern portions of the Red Sea is one of the areas most dramatically cooled by the presence of summertime dust storms. That region is shown experiencing a dust storm in this true-color image from the Moderate Resolution Imaging Spectroradiometer (MODIS) acquired on July 11, 2002. The GISS model simulations indicate that between June and August, the temperatures would be as much as 2 degrees Celsius warmer than they are if it weren't for the dust in the air-a cooling equivalent to the passage of a rain cloud overhead. The image shows the African countries of Sudan (top left), Ethiopia (bottom left), with Eritrea nestled between them along the western coast of the Red Sea. Toward the right side of the image are Saudi Arabia (top) and Yemen (bottom) on the Arabian Peninsula. Overlooking the Red Sea, a long escarpment runs along the western edge of the Arabian Peninsula, and in this image appears to be blocking the full eastward expansion of the dust storm. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  1. Wind Shear May Produce Long-Lived Storms and Squall Lines on Titan

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot C. R.; Barth, Erika

    2015-11-01

    The impact of CAPE and wind shear on storms in a Titan-like environment are explored through numerical simulation. Numerical modeling indicates that both large-scale shear and CAPE environment control the dynamics of the clouds. This response to the large-scale environment is analogous to the behavior of deep convective clouds on Earth. The balance between shear and CAPE, as expressed through the bulk Richardson Number (NR), is a good indicator of the response of a storm to its environment. Large NR results in short-lived single cell storms (Figure 1). As shear increases for a given CAPE, and NR decreases, the storms transition to a multicellular regime. Multicellular storms are longer-lived and are characterized by a downdraft generated cold pool that interacts with the background shear vorticity to initiate cells along the leading edge of the storm gust front (Figure 2). Very long-lived storms (>24 hours) propagating for 1000 km or more might be possible. The most intense multicellular systems simulated in this study behave similar to terrestrial squall lines, and very long-lived storms (>24 hours) propagating for 1000 km or more might be possible. Cloud outbursts and linear cloud features observed from ground and Cassini may be the result of these organized storm systems. Varying amounts of shear in the Titan environment might explain the variety of convective cloud expressions identified in Cassini orbiter and ground-based observations. The resulting distribution and magnitude of precipitation as well as surface winds associated with storms have implications on the formation of fluvial and aeolian features, including dunes, and on the exchange of methane with the surface and lakes.

  2. Convective Bursts and Hot Towers Observed During CAMEX-3 and CAMEX-4

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald

    2002-01-01

    The role of convective bursts in the inner core regions of tropical storms has been if interest for many years with respect to their role in intensification. The structure of these convective bursts is best observed in satellite observations, but their structure has also been observed in some of the airborne radar studies over the past decade. Recently, a convective burst was documented during Hurricane Bonnie during NASA's Convection and Moisure Experiment-3 (CAMEX-3, 1998) conducted jointly with NOAA's Hurricane Field Program (Heymsfield et al., 2001). CAMEX-3 involved the NASA ER-2 high-altitude and DC-8 medium altitude aircraft instrumented with a variety of remote sensing instruments. The Bonnie convective burst was suggested to contribute intensification if ots warm core vased on radar measurements provided by the ER-2 Doppler Radar (EDOP). During the 2001 hurricane season, data sets form additional storms were collected during CAMEX-4. This paper documents the internal structure of convective bursts observed by EDOP and supporting measurements during foour storms (Bonnie, 1998; Georges, 1998; Chantal, 2001; Humberto, 2001) with respect to draft intensities, height profiles of reflectivity, location with respect to the storm center, occurence relative to the sotrm evolutjion, and upper level outlflows associated with the burst. These cases will be presented in the poster and will be compared with Bonnie's convective burst whic was associated with a strong subsiding current which appeared to contribute to the storm intensification. For one of the sotrms (Chantal), a very intense convective burst was nearly 100 km east of the low level circulation center and thus was infavorably located for intensifying the storm.

  3. Concentration of Cloud Condensation Nuclei Before and After Convective Storms

    E-print Network

    Delene, David J.

    ;Surface Measurements: Grand Forks, ND 30 min CCN, 1 hr Rain Fall 0.6 % Ambient Supersaturation Rain Gauge the magnitude of changes that in CCN after a rain event. View of Rain on July 12, 2012View of Rain from Aircraft

  4. METEOR - an artificial intelligence system for convective storm forecasting

    SciTech Connect

    Elio, R.; De haan, J.; Strong, G.S.

    1987-03-01

    An AI system called METEOR, which uses the meteorologist's heuristics, strategies, and statistical tools to forecast severe hailstorms in Alberta, is described, emphasizing the information and knowledge that METEOR uses to mimic the forecasting procedure of an expert meteorologist. METEOR is then discussed as an AI system, emphasizing the ways in which it is qualitatively different from algorithmic or statistical approaches to prediction. Some features of METEOR's design and the AI techniques for representing meteorological knowledge and for reasoning and inference are presented. Finally, some observations on designing and implementing intelligent consultants for meteorological applications are made. 7 references.

  5. Dust Storm, Aral Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Aral Sea has shrunk to less than half its size since 1985. The Aral Sea receives little water (sometimes no water) from the two major rivers that empty into it-the Syr Darya and Amu Darya. Instead, the river water is diverted to support irrigation for the region's extensive cotton fields. Recently, water scarcity has increased due to a prolonged drought in Central Asia. As the Aral Sea recedes, its former sea bed is exposed. The Aral's sea bed is composed of fine sediments-including fertilizers and other agricultural chemicals-that are easily picked up by the region's strong winds, creating thick dust storms. The International Space Station crew observed and recorded a large dust storm blowing eastward from the Aral Sea in late June 2001. This image illustrates the strong coupling between human activities (water diversions and irrigation), and rapidly changing land, sea and atmospheric processes-the winds blow across the

  6. Severe storm electricity

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Macgorman, D. R.

    1985-01-01

    During FY-85, Researchers conducted a field program and analyzed data. The field program incorporated coordinated measurements made with a NASA U2. Results include the following: (1) ground truth measurements of lightning for comparison with those obtained by the U2; (2) analysis of dual-Doppler radar and dual-VHF lightning mapping data from a supercell storm; (3) analysis of synoptic conditions during three simultaneous storm systems on 13 May 1983 when unusually large numbers of positive cloud-to-ground (+CG) flashes occurred; (4) analysis of extremely low frequency (ELF) wave forms; and (5) an assessment of a cloud -ground strike location system using a combination of mobile laboratory and fixed-base TV video data.

  7. Severe storm electricity

    NASA Technical Reports Server (NTRS)

    Arnold, R. T.; Rust, W. D.

    1984-01-01

    Successful ground truth support of U-2 overflights was been accomplished. Data have been reduced for 4 June 1984 and some of the results have been integrated into some of MSFC's efforts. Staccato lightning (multiply branched, single stroke flash with no continuing current) is prevalent within the rainfree region around the main storm updraft and this is believed to be important, i.e., staccato flashes might be an important indicator of severe storm electrification. Results from data analysis from two stations appear to indicate that charge center heights can be estimated from a combination of intercept data with data from the fixed laboratory at NSSL. An excellent data base has been provided for determining the sight errors and efficiency of NSSL's LLP system. Cloud structures, observable in a low radar reflectivity region and on a scale smaller than is currently resolved by radar, which appear to be related to electrical activity are studied.

  8. Effects of cumulus convection on the simulated monsoon circulation in a general circulation model

    SciTech Connect

    Zhang, Guang Jun )

    1994-09-01

    The effect of cumulus convection on the Asian summer monsoon circulation is investigated, using a general circulation model. Two simulations for the summer months (June, July, and August) are performed, one parameterizing convection using a mass flux scheme and the other without convective parameterization. The results show that convection has significant effects on the monsoon circulation and its associated precipitation. In the simulation with the mass flux convective parameterization, precipitation in the western Pacific is decreased, together with a decrease in surface evaporation and wind speed. In the indian monsoon region it is almost the opposite. Comparison with a simulation using moist convective adjustment to parameterize convection shows that the monsoon circulation and precipitation distribution in the no-convection simulation are very similar to those in the simulation with moist convective adjustment. The difference in the large-scale circulation with and without convective parameterization is interpreted in terms of convective stabilization of the atmosphere by convection, using dry and moist static energy budgets. It is shown that weakening of the low-level convergence in the western Pacific in the simulation with convection is closely associated with the stabilization of the atmosphere by convection, mostly through drying of the lower troposphere; changes in low-level convergence lead to changes in precipitation. The precipitation increase in the Indian monsoon can be explained similarly. 29 refs., 12 figs.

  9. Oxidant enhancement in martian dust devils and storms: storm electric fields and electron dissociative attachment.

    PubMed

    Delory, Gregory T; Farrell, William M; Atreya, Sushil K; Renno, Nilton O; Wong, Ah-San; Cummer, Steven A; Sentman, Davis D; Marshall, John R; Rafkin, Scot C R; Catling, David C

    2006-06-01

    Laboratory studies, numerical simulations, and desert field tests indicate that aeolian dust transport can generate atmospheric electricity via contact electrification or "triboelectricity." In convective structures such as dust devils and dust storms, grain stratification leads to macroscopic charge separations and gives rise to an overall electric dipole moment in the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous numerical simulations indicate that these storm electric fields on Mars can approach the ambient breakdown field strength of approximately 25 kV/m. In terrestrial dust phenomena, potentials ranging from approximately 20 to 160 kV/m have been directly measured. The large electrostatic fields predicted in martian dust devils and storms can energize electrons in the low pressure martian atmosphere to values exceeding the electron dissociative attachment energy of both CO2 and H2O, which results in the formation of the new chemical products CO/O- and OH/H-, respectively. Using a collisional plasma physics model, we present calculations of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with the ambient electric field, with substantial production of dissociative products when fields approach the breakdown value of approximately 25 kV/m. The dissociation of H2O into OH/H- provides a key ingredient for the generation of oxidants; thus electrically charged dust may significantly impact the habitability of Mars. PMID:16805701

  10. Observations of contemporaneous lightning storms in Saturn's atmosphere

    NASA Astrophysics Data System (ADS)

    Fischer, G.; Dyudina, U. A.; Delcroix, M.; Pagaran, J. A.

    2013-09-01

    In contrast to Jupiter, where multiple lightning storms take place at various latitudes at the same time [1], the situation at Saturn seems more restricted. First, so far Saturnian lightning storms have only been observed at the equator, and at the planetocentric latitudes of 35° and 50° in both hemispheres. Second, the typical situation at Saturn is that there is only one months-long lightning storm at one time since their occurrence probability is lower than at Jupiter. However, in this presentation we will show the details of three situations where multiple storms were also present at Saturn. The most recent one was in early 2011, when a 2000-km sized storm at 50° north was initially overlooked due to the spectacular presence of the 2010/2011 Great White Spot around 35° north [2]. The second case was in spring 2008, when a single lightning storm at 35° south split into two distinct thunderstorm cells that resided at the same latitude but separated by about 30° in longitude. The third case can be inferred from the irregular occurrence of SEDs (Saturn Electrostatic Discharges, radio emissions from Saturn lightning) during the Voyager 2 encounter in 1981 [3]. The almost permanent presence of SEDs during the whole flyby suggests the contemporaneous existence of multiple storms, most likely located at 35° north and/or the equator. In general, the giant Great White Spots raging at Saturn usually only once per Saturn year [4], must consist of multiple thunderstorm cells at adjacent latitudes. It is likely that the presence of a strong thunderstorm cell can trigger the development of others around the same latitude on Saturn. Similar to observations at Earth, the triggering mechanism could be the propagation of convectively generated atmospheric gravity waves [5].

  11. Ice Storm Supercomputer

    SciTech Connect

    2009-01-01

    "A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed 'Ice Storm,' this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen." For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  12. Ice Storm Supercomputer

    ScienceCinema

    None

    2013-05-28

    "A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed 'Ice Storm,' this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen." For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  13. Convective heater

    DOEpatents

    Thorogood, R.M.

    1983-12-27

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.

  14. Convective heater

    DOEpatents

    Thorogood, Robert M. (Macungie, PA)

    1986-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  15. Convective heater

    DOEpatents

    Thorogood, Robert M. (Macungie, PA)

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  16. Defining Coastal Storm and Quantifying Storms Applying Coastal Storm Impulse Parameter

    NASA Astrophysics Data System (ADS)

    Mahmoudpour, Nader

    2014-05-01

    What defines a storm condition and what would initiate a "storm" has not been uniquely defined among scientists and engineers. Parameters that have been used to define a storm condition can be mentioned as wind speed, beach erosion and storm hydrodynamics parameters such as wave height and water levels. Some of the parameters are storm consequential such as beach erosion and some are not directly related to the storm hydrodynamics such as wind speed. For the purpose of the presentation, the different storm conditions based on wave height, water levels, wind speed and beach erosion will be discussed and assessed. However, it sounds more scientifically to have the storm definition based on the hydrodynamic parameters such as wave height, water level and storm duration. Once the storm condition is defined and storm has initiated, the severity of the storm would be a question to forecast and evaluate the hazard and analyze the risk in order to determine the appropriate responses. The correlation of storm damages to the meteorological and hydrodynamics parameters can be defined as a storm scale, storm index or storm parameter and it is needed to simplify the complexity of variation involved developing the scale for risk analysis and response management. A newly introduced Coastal Storm Impulse (COSI) parameter quantifies storms into one number for a specific location and storm event. The COSI parameter is based on the conservation of linear, horizontal momentum to combine storm surge, wave dynamics, and currents over the storm duration. The COSI parameter applies the principle of conservation of momentum to physically combine the hydrodynamic variables per unit width of shoreline. This total momentum is then integrated over the duration of the storm to determine the storm's impulse to the coast. The COSI parameter employs the mean, time-averaged nonlinear (Fourier) wave momentum flux, over the wave period added to the horizontal storm surge momentum above the Mean High Water (MHW) integrated over the storm duration. The COSI parameter methodology has been applied to a 10-year data set from 1994 to 2003 at US Army Corps of Engineers, Field Research Facility (FRF) located on the Atlantic Ocean in Duck, North Carolina. The storm duration was taken as the length of time (hours) that the spectral significant wave heights were equal or greater than 1.6 meters for at least a 12 hour, continuous period. Wave heights were measured in 8 meters water depth and water levels measured at the NOAA/NOS tide gauge at the end of the FRF pier. The 10-year data set were analyzed applying the aforementioned storm criteria and produced 148 coastal events including Hurricanes and Northeasters. The results of this analysis and application of the COSI parameter to determine "Extra Ordinary" storms in Federal Projects for the Gulf of Mexico, 2012 hurricane season will be discussed at the time of presentation.

  17. THE NOAA HAZARDOUS WEATHER TESTBED: COLLABORATIVE TESTING OF ENSEMBLE AND CONVECTION-ALLOWING WRF MODELS AND SUBSEQUENT

    E-print Network

    Xue, Ming

    THE NOAA HAZARDOUS WEATHER TESTBED: COLLABORATIVE TESTING OF ENSEMBLE AND CONVECTION-ALLOWING WRF NOAA's Hazardous Weather Testbed (HWT) is a joint facility managed by the National Severe Storms Laboratory (NSSL), the Storm Prediction Center (SPC), and the NWS Oklahoma City/Norman Weather Forecast

  18. Use of the Aerosonde Unihabited Aerial Vehicle (UAV) in the Fourth Convection and Moisture Experiment (CAMEX 4)

    NASA Technical Reports Server (NTRS)

    Hipskind, R. Stephen; Curry, Judy; Holland, Greg

    2001-01-01

    The Fourth Convection and Moisture Experiment (CAMEX 4) was a scientific field experiment based in Florida in summer 2001 focused on the study of hurricanes off the east coast of the United States. Sponsored by the National Aeronautics and Space Administration's Office of Earth Science, and conducted in collaboration with the National Oceanic and Atmospheric Administration's annual hurricane research program, CAMEX 4 utilized aircraft, ground-based and satellite instrumentation to obtain unprecedented, three dimensional characterizations of these important storms. The Aerosonde UAV was selected by NASA to participate in CAMEX 4 because it provided a unique capability to obtain measurements in the atmospheric boundary layer in and around the storms, unattainable by other platforms or measurement capabilities. This talk focuses on the NASA review process that was followed to coordinate the UAV activity with the conventional aircraft operations, as well as with the other participating agencies and the FAA. We will discuss how Aerosonde addressed the issues of safety, coordination and communication and summarize the lessons learned.

  19. Convective cell development and propagation in a mesoscale convective complex

    NASA Technical Reports Server (NTRS)

    Ahn, Yoo-Shin; Brundidge, Kenneth C.

    1987-01-01

    A case study was made of the mesoscale convective complex (MCC) which occurred over southern Oklahoma and northern Texas on 27 May 1981. This storm moved in an eastsoutheasterly direction and during much of its lifetime was observable by radars at Oklahoma City, Ok. and Stephenville, Tx. It was found that the direction of cell (VIP level 3 or more reflectivity) propagation was somewhat erratic but approximately the same as the system (VIP level 1 reflectivity) movement and the ambient wind. New cells developed along and behind the gust front make it appear that once the MCC is initiated, a synergistic relationship exists between the gust front and the MCC. The relationship between rainfall patterns and amounts and the infrared (IR) temperature field in the satellite imagery were examined. The 210 K isotherm of GOES IR imagery was found to encompass the rain area of the storm. The heaviest rainfall was in the vicinity of the VIP level 3 cells and mostly contained within the 205 K isotherm of GOES IR imagery.

  20. Lightning location relative to storm structure in a supercell storm and a multicell storm

    NASA Technical Reports Server (NTRS)

    Ray, Peter S.; Macgorman, Donald R.; Rust, W. David; Taylor, William L.; Rasmussen, Lisa Walters

    1987-01-01

    Relationships between lightning location and storm structure are examined for one radar volume scan in each of two mature, severe storms. One of these storms had characteristics of a supercell storm, and the other was a multicell storm. Data were analyzed from dual-Doppler radar and dual-VHF lightning-mapping systems. The distributions of VHF impulse sources were compared with radar reflectivity, vertical air velocity, and their respective gradients. In the supercell storm, lightning tended to occur along streamlines above and down-shear of the updraft and reflectivity cores; VHF impulse sources were most concentrated in reflectivities between 30 and 40 dBZ and were distributed uniformly with respect to updraft speed. In the multicell storm, on the other hand, lightning tended to coincide with the vertical reflectivity and updraft core and with the diverging streamlines near the top of the storm. The results suggest that the location of lightning in these severe storms were most directly associated with the wind field structure relative to updraft and reflectivity cores. Since the magnitude and vertical shear of the environmental wind are fundamental in determining the reflectivity and wind field structure of a storm, it is suggested that these environmental parameters are also fundamental in determining lightning location.

  1. On the Contribution of Plasma Sheet Bubbles to the Storm-Time Ring Current Injection

    NASA Astrophysics Data System (ADS)

    Yang, J.; Toffoletto, F.; Wolf, R.; Sazykin, S. Y.

    2014-12-01

    Plasma sheet transport is bimodal, consisting of both large-scale adiabatic convection and bursty flows. The bursty flows are associated with plasma sheet bubbles, containing lower entropy parameter PV5/3 than their neighbors. Although bubbles are major contributors to plasma sheet transport, it is still unclear whether they play a critical role in the formation of the storm-time ring current, since bubbles are much more frequently observed tailward of 10 Re in the magnetotail than inside geosynchronous orbit. In this paper, we use RCM-E, which combines the Rice Convection Model (RCM) with the magnetic field in force balance with particle pressure, to simulate an idealized geomagnetic storm. In the simulation, random bubble injections through the high latitude boundary are superimposed on a background of large-scale enhanced convection. We use the RCM-E solutions with the test particle approach to determine the relative roles of the three mechanisms of formation of the storm-time ring current: (1) energization of particles already trapped on closed drift trajectories; (2) localized injection of plasma sheet particles in flow channels associated with bubbles; (3) large-scale cross-tail particle transport from the tail into the inner magnetosphere under enhanced convection. We will discuss the fractional contribution of each of the three sources to the storm-time ring current and provide a picture of how each mechanism works.

  2. Empirical STORM-E Model. [I. Theoretical and Observational Basis

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III

    2013-01-01

    Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented

  3. Storm Tracks Across Eastern Canada

    NASA Astrophysics Data System (ADS)

    Plante, Mathieu; Son, Seok-Woo; Gyakum, John; Kevin, Grise

    2013-04-01

    The global storm tracks patterns across the Northern Hemisphere are well documented, but their regional impact on populations has yet to be characterized, as very few studies took a local perspective on storm tracks. In this study, a Lagrangian tracking algorithm is applied to the 850 hPa relative vorticity field to characterize extratropical storm tracks that pass through major cities in Canada. Storm tracks are first classified in reference to the metropolitan cities that they impact, such as Toronto, Montreal, Halifax and St-John's. They are then subjected to several analyses, including but not limited to the identification of main development regions, typical tracks, mean growth rate, intensity and typical regions of decay. We found that the preferential development regions are the lee of the Rockies, the Great Lakes and the Western Atlantic. The collection of storm tracks across each city is composed of storms developing not from a single development region, but from several. Results show that the storm track variability at a city is dominated by the storm track variability of its predominant development region. Among others, we found that the ensembles of storms crossing East coast cities (Halifax, St-John's) are dominated by Atlantic storms that are most frequent during the winter. Storms passing through Montreal and Toronto travel primarily from the Great Lakes and the mid-latitude Rockies. In eastern Canada, storms from the southernmost part of the Rockies are much less frequent, but this development region is the main source of extreme storms, and is thus important in terms of impacts on metropolitan areas. The relationship between storm tracks and modes of atmospheric variability are also examined with an emphasis on the El Nino Southern Oscillation (ENSO) and Northern Annular Mode (NAM). We found that teleconnection shifts storm tracks differently in different development regions. The anomalous storm track densities are presented, as well as their direct impact on specific metropolitan areas. Results show that the combination of these shifts impact cities differently according to their geographic location.

  4. Storm impact for barrier islands

    USGS Publications Warehouse

    Sallenger,, Asbury H., Jr.

    2000-01-01

    A new scale is proposed that categorizes impacts to natural barrier islands resulting from tropical and extra-tropical storms. The proposed scale is fundamentally different than existing storm-related scales in that the coupling between forcing processes and the geometry of the coast is explicitly included. Four regimes, representing different levels of impact, are defined. Within each regime, patterns and relative magnitudes of net erosion and accretion are argued to be unique. The borders between regimes represent thresholds defining where processes and magnitudes of impacts change dramatically. Impact level 1 is the 'swash' regime describing a storm where runup is confined to the foreshore. The foreshore typically erodes during the storm and recovers following the storm; hence, there is no net change. Impact level 2 is the 'collision' regime describing a storm where the wave runup exceeds the threshold of the base of the foredune ridge. Swash impacts the dune forcing net erosion. Impact level 3 is the 'overwash' regime describing a storm where wave runup overtops the berm or, if present, the foredune ridge. The associated net landward sand transport contributes to net migration of the barrier landward. Impact level 4 is the 'inundation' regime describing a storm where the storm surge is sufficient to completely and continuously submerge the barrier island. Sand undergoes net landward transport over the barrier island; limited evidence suggests the quantities and distance of transport are much greater than what occurs during the 'overwash' regime.

  5. Summer Camp.

    ERIC Educational Resources Information Center

    Pfisterer, Bill

    About 50 participants and 8 supervisors attended the Summer Camp. Visitors were encouraged and parents often came to see what their kids were doing. Before arriving at camp, the students learned how important balancing the supplies was when loading the boats. On the way to camp, students studied the: (1) landmarks so that they could find their way…

  6. Summer Camp.

    ERIC Educational Resources Information Center

    Burns, Maxine; And Others

    Government regulation of children's summer camps, particularly involving health and safety standards, is discussed in a series of brief interviews with camp directors and representatives of camp associations. Transcribed from the National Public Radio weekly broadcast, "Options in Education," the program includes a lengthy montage of children's…

  7. Summer Opportunities.

    ERIC Educational Resources Information Center

    Winds of Change, 2002

    2002-01-01

    This directory describes 24 summer internships and cooperative education programs for college students, especially in the science, engineering, and technology fields. A few programs are specifically for American Indians, minority groups, or college-bound high school students. Program entries include a brief description, skills and background…

  8. Summer Journal.

    ERIC Educational Resources Information Center

    Evansville-Vanderburgh School Corp., IN.

    This student activity book is intended for junior high or high school students. Originally written to be used in a summer television course, the material can be adapted to a regular class situation. The wide variety of materials are relevant to courses in reading, literature, composition, speech, psychology, and social studies. The book includes…

  9. Summer Skies

    ERIC Educational Resources Information Center

    Science Scope, 2005

    2005-01-01

    During the evening hours of the summer of 2005, there will be numerous opportunities to observe several of the brighter planets as they move along their respective orbits, overtaking and passing one another, performing a planetary dance with the choreography set to orbital speeds. With the exception of Mars, the visible planets will all be in the…

  10. Role of wetlands in attenuation of storm surges using coastal circulation model (ADCIRC), Chesapeake Bay region

    NASA Astrophysics Data System (ADS)

    Deb, Mithun; Ferreira, Celso; Lawler, Seth

    2014-05-01

    The Chesapeake Bay, Virginia is subject to storm surge from extreme weather events nearly year-round; from tropical storms and hurricanes during the summer and fall, (e.g., hurricanes Isabel [2003] and Sandy [2012]), and from nor'easters during the winter (e.g., winter storms Nemo and Saturn [2013]). Coastal wetlands can deliver acute fortification against incoming hurricane storm surges. Coastal wetlands and vegetation shape the hydrodynamics of storm surge events by retaining water and slowing the propagation of storm surge, acting as a natural barrier to flooding. Consequently, a precise scheme to quantify the effect of wetlands on coastal surge levels was also prerequisite. Two wetland sites were chosen in the Chesapeake Bay region for detailed cataloging of vegetation characteristics, including: height, stem diameter, and density. A framework was developed combining these wetlands characterizations with numerical simulations. Storms surges were calculated using Coastal circulation model (ADCIRC) coupled to a wave model (SWAN) forced by an asymmetric hurricane vortex model using an unstructured mesh (comprised of 1.8 million nodes) under a High Performance Computing environment. The Hurricane Boundary Layer (HBL) model was used to compute wind and pressure fields for historical tropical storms and for all of the synthetic storms. Wetlands were characterized in the coupled numerical models by bathymetric and frictional resistance. Multiple model simulations were performed using historical hurricane data and hypothetical storms to compare the predicted storm surge inundation resulting from various levels of wetlands expansion or reduction. The results of these simulations demonstrate the efficacy of wetlands in storm surge attenuation and also the outcome will scientifically support planning of wetlands restoration projects with multi-objective benefits for society.

  11. The Deep Convective Clouds and Chemistry (DC3) Field Experiment

    NASA Astrophysics Data System (ADS)

    Barth, M. C.; Brune, W. H.; Cantrell, C. A.; Rutledge, S. A.; Crawford, J. H.; Huntrieser, H.; Homeyer, C. R.; Nault, B.; Cohen, R. C.; Pan, L.; Ziemba, L. D.

    2014-12-01

    The Deep Convective Clouds and Chemistry (DC3) field experiment took place in the central U.S. in May and June 2012 and had the objectives of characterizing the effect of thunderstorms on the chemical composition of the lower atmosphere and determining the chemical aging of upper troposphere (UT) convective outflow plumes. DC3 employed ground-based radars, lightning mapping arrays, and weather balloon soundings in conjunction with aircraft measurements sampling the composition of the inflow and outflow of a variety of thunderstorms in northeast Colorado, West Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the UT convective plume. The DC3 data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, and chemistry in the UT that is affected by the convection. In this presentation, we give an overview of the DC3 field campaign and highlight results from the campaign that are relevant to the upper troposphere and lower stratosphere region. These highlights include stratosphere-troposphere exchange in connection with thunderstorms, the 0-12 hour chemical aging and new particle formation in the UT outflow of a dissipating mesoscale convective system observed on June 21, 2012, and UT chemical aging in convective outflow as sampled the day after convection occurred and modeled in the Weather Research and Forecasting coupled with Chemistry model.

  12. Changes of seasonal storm properties in California and Nevada from an ensemble of climate projections

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Jiang, Peng; Gautam, Mahesh R.; Zhang, Yong; Acharya, Kumud

    2015-04-01

    Precipitation characteristics, such as intensity, frequency, duration, and event pattern, are changing due to the increases in greenhouse gases, transition of ocean oscillation phases, etc. In this paper, we evaluate the ability of 11 realizations from multiple regional climate model (RCM)/global climate model pairs in the North American Regional Climate Change Assessment Program (NARCCAP) to simulate the seasonal variability and magnitude of storm properties, including storm duration, interstorm period, and storm intensity. The results indicate that NARCCAP RCMs simulate the seasonal variability better in the Greater Sacramento and San Joaquin than in Las Vegas, which may be due to the RCMs' inability to simulate local convective precipitation associated with the North American Monsoon. We also investigate the impacts of climate change on these storm characteristics by comparing the percentage change and absolute change of storm properties determined from NARCCAP historical runs and future runs. We find that individual RCMs exhibit great uncertainty in the percentage changes in storm duration, interstorm period, and average storm intensity. The ensemble means of storm properties across 11 future NARCCAP RCM projections show different responses to climate change in different locations. Our analyses provide guidelines for selecting the appropriate RCMs for hydrologic studies related to storm properties and provide forecasters and water managers with detailed information of future changes in storm properties so that they can sustainably manage water resources. Our results may also contribute to the nonstationary precipitation scenario development by incorporating the percentage changes of storm properties caused by human-induced warming into the stochastic precipitation model.

  13. A study of severe storm electricity via storm intercept

    NASA Technical Reports Server (NTRS)

    Arnold, Roy T.; Horsburgh, Steven D.; Rust, W. David; Burgess, Don

    1985-01-01

    Storm electricity data, radar data, and visual observations were used both to present a case study for a supercell thunderstorm that occurred in the Texas Panhandle on 19 June 1980 and to search for insight into how lightning to ground might be related to storm dynamics in the updraft/downdraft couplet in supercell storms. It was observed that two-thirds of the lightning ground-strike points in the developing and maturing stages of a supercell thunderstorm occurred within the region surrounding the wall cloud (a cloud feature often characteristic of a supercell updraft) and on the southern flank of the precipitation. Electrical activity in the 19 June 1980 storm was atypical in that it was a right-mover. Lightning to ground reached a peak rate of 18/min and intracloud flashes were as frequent as 176/min in the final stages of the storm's life.

  14. Evaluating and Understanding Parameterized Convective Processes and their Role in the Development of Mesoscale Precipitation Systems

    NASA Technical Reports Server (NTRS)

    Fritsch, J. Michael; Kain, John S.

    1997-01-01

    Research efforts during the second year have centered on improving the manner in which convective stabilization is achieved in the Penn State/NCAR mesoscale model MM5. Ways of improving this stabilization have been investigated by (1) refining the partitioning between the Kain-Fritsch convective parameterization scheme and the grid scale by introducing a form of moist convective adjustment; (2) using radar data to define locations of subgrid-scale convection during a dynamic initialization period; and (3) parameterizing deep-convective feedbacks as subgrid-scale sources and sinks of mass. These investigations were conducted by simulating a long-lived convectively-generated mesoscale vortex that occurred during 14-18 Jul. 1982 and the 10-11 Jun. 1985 squall line that occurred over the Kansas-Oklahoma region during the PRE-STORM experiment. The long-lived vortex tracked across the central Plains states and was responsible for multiple convective outbreaks during its lifetime.

  15. Severe storm electricity

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Macgorman, D. R.; Taylor, W.; Arnold, R. T.

    1984-01-01

    Severe storms and lightning were measured with a NASA U2 and ground based facilities, both fixed base and mobile. Aspects of this program are reported. The following results are presented: (1) ground truth measurements of lightning for comparison with those obtained by the U2. These measurements include flash type identification, electric field changes, optical waveforms, and ground strike location; (2) simultaneous extremely low frequency (ELF) waveforms for cloud to ground (CG) flashes; (3) the CG strike location system (LLP) using a combination of mobile laboratory and television video data are assessed; (4) continued development of analog-to-digital conversion techniques for processing lightning data from the U2, mobile laboratory, and NSSL sensors; (5) completion of an all azimuth TV system for CG ground truth; (6) a preliminary analysis of both IC and CG lightning in a mesocyclone; and (7) the finding of a bimodal peak in altitude lightning activity in some storms in the Great Plains and on the east coast. In the forms on the Great Plains, there was a distinct class of flash what forms the upper mode of the distribution. These flashes are smaller horizontal extent, but occur more frequently than flashes in the lower mode of the distribution.

  16. Outreach Plans for Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation 10,500 ft. SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a full kitchen and two bunk rooms with sleeping space for nine persons. We plan to create a unique summer undergraduate education experiences for students of diversity at Storm Peak Laboratory. As stressed by the College Pathways to Science Education Standards [Siebert and McIntosh, 2001], to support changes in K-12 science education transformations must first be made at the college level, including inquiry-oriented opportunities to engage in meaningful research. These workshops will be designed to allow students to experience the excitement of science, increasing their likelihood of pursing careers within the fields of scientific education or research.

  17. Ionospheric redistribution during geomagnetic storms

    PubMed Central

    Immel, T J; Mannucci, A J

    2013-01-01

    [1]The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active (Dststorm strength that corresponds closely to the TEC variation but follows it by 3–6h. For this and other reasons detailed in this report, we conclude that the UT-dependent peak in storm time TEC is likely not related to the magnitude of external storm time forcing but more likely attributable to phenomena such as the low magnetic field in the South American region. The large Dst variation suggests a possible system-level effect of the observed variation in ionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow. PMID:26167429

  18. Mars Atmospheric Chemistry in Electrified Dust Devils and Storms

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.; Wong, A.-S.; Renno, N. O.; Sentmann, D. D.; Marshall, J. G.; Cummer, S. A.; Rafkin, S.; Catling, D.

    2005-01-01

    Laboratory studies, simulations and desert field tests all indicate that aeolian mixing dust can generate electricity via contact electrification or "triboelectricity". In convective structures like dust devils or storms, grain stratification (or charge separation) occurs giving rise to an overall electric dipole moment to the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous simulation studies [1] indicate that this storm electric field on Mars can approach atmospheric breakdown field strength of 20 kV/m. In terrestrial dust devils, coherent dipolar electric fields exceeding 20 kV/m have been measured directly via electric field instrumentation. Given the expected electrostatic fields in Martian dust devils and storms, electrons in the low pressure CO2 gas can be energized via the electric field to values exceeding the electron dissociative attachment energy of both CO2 and H2O, resulting in the formation of new chemical products CO and O- and OH and H- within the storm. Using a collisional plasma physics model we present a calculation of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with ambient electric field, with substantial production of dissociative products when fields approach breakdown levels of 20-30 kV/m.

  19. Record-breaking Storm Activity on Uranus in 2014

    E-print Network

    de Pater, Imke; Fry, P M; Hammel, Heidi B; Baranec, Christoph; Sayanagi, Kunio

    2015-01-01

    In spite of an expected decline in convective activity following the 2007 equinox of Uranus, eight sizable storms were detected on the planet with the near-infrared camera NIRC2, coupled to the adaptive optics system, on the 10-m W. M. Keck telescope on UT 5 and 6 August 2014. All storms were on Uranus's northern hemisphere, including the brightest storm ever seen in this planet at 2.2 $\\mu$m, reflecting 30% as much light as the rest of the planet at this wavelength. The storm was at a planetocentric latitude of $\\sim$15$^{\\circ}$N and reached altitudes of $\\sim$330 mbar, well above the regular uppermost cloud layer (methane-ice) in the atmosphere. A cloud feature at a latitude of 32$^{\\circ}$N, that was deeper in the atmosphere (near $\\sim$2 bar), was later seen by amateur astronomers. We also present images returned from our HST ToO program, that shows both of these cloud features. We further report the first detection of a long-awaited haze over the north polar region.

  20. Record-breaking storm activity on Uranus in 2014

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Sromovsky, L. A.; Fry, P. M.; Hammel, Heidi B.; Baranec, Christoph; Sayanagi, Kunio M.

    2015-05-01

    In spite of an expected decline in convective activity following the 2007 equinox of Uranus, eight sizable storms were detected on the planet with the near-infrared camera NIRC2, coupled to the adaptive optics system, on the 10-m W.M. Keck telescope on UT 5 and 6 August 2014. All storms were on Uranus' northern hemisphere, including the brightest storm ever seen in this planet at 2.2 ?m, reflecting 30% as much light as the rest of the planet at this wavelength. The storm was at a planetocentric latitude of ?15°N and reached altitudes of ?330 mbar, well above the regular uppermost cloud layer (methane-ice) in the atmosphere. A cloud feature at a latitude of 32°N, that was deeper in the atmosphere (near ?2 bar), was later seen by amateur astronomers. We also present images returned from our HST ToO program, that shows both of these cloud features. We further report the first detection of a long-awaited haze over the north polar region.

  1. Methane storms as a driver of Titan's dune orientation

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Barth, Erika; Rafkin, Scot; Narteau, Clément; Lebonnois, Sébastien; Rodriguez, Sébastien; Courrech Du Pont, Sylvain; Lucas, Antoine

    2015-05-01

    The equatorial regions of Saturn's moon Titan are covered by linear dunes that propagate eastwards. Global climate models (GCMs), however, predict westward mean surface winds at low latitudes on Titan, similar to the trade winds on Earth. This apparent contradiction has been attributed to Saturn's gravitational tides, large-scale topography and wind statistics, but none of these hypotheses fully explains the global eastward propagation of dunes in Titan's equatorial band. However, above altitudes of about 5 km, Titan's atmosphere is in eastward super-rotation, suggesting that this momentum may be delivered to the surface. Here we assess the influence of equatorial tropical methane storms--which develop at high altitudes during the equinox--on Titan's dune orientation, using mesoscale simulations of convective methane clouds with a GCM wind profile that includes super-rotation. We find that these storms produce fast eastward gust fronts above the surface that exceed the normal westward surface winds. These episodic gusts generated by tropical storms are expected to dominate aeolian transport, leading to eastward propagation of dunes. We therefore suggest a coupling between super-rotation, tropical methane storms and dune formation on Titan. This framework, applied to GCM predictions and analogies to some terrestrial dune fields, explains the linear shape, eastward propagation and poleward divergence of Titan's dunes, and implies an equatorial origin of dune sand.

  2. Dynamics of severe storms through the study of thermospheric-tropospheric coupling

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1979-01-01

    Atmospheric acoustic-gravity waves associated with severe local thunderstorms, tornadoes, and hurricanes can be studied through the coupling between the thermosphere and the troposphere. Reverse group ray tracing computations of acoustic-gravity waves, observed by an ionospheric Doppler sounder array, show that the wave sources are in the neighborhood of storm systems and the waves are excited prior to the storms. It is suggested that the overshooting and ensuing collapse of convective turrets may be responsible for generating the acoustic-gravity waves observed. The results of this study also show that the study of wave-wave resonant interactions may be a potential tool for investigating the dynamical behavior of severe storm systems using ionospheric observations of atmospheric acoustic-gravity waves associated with severe storms.

  3. Extreme Lightning Flash Rates as an Early Indicator of Severe Storms

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Arnold, James E. (Technical Monitor)

    2002-01-01

    Extreme lightning flash rates are proving to be an early indicator of intensifying storms capable of producing tornadoes, damaging winds and hail. Most of this lightning is in the cloud, where the naked eye can not see it. Recent global observations of thunderstorms from space indicate that giant electrical storms (supercells and convective complexes) with flash rates on the order of 1 flash per second are most common over the land masses of the America sub-tropics and equatorial Congo Basin. Within the United States, the average tornado warning lead time on a national basis is about 11 min. The real-time observation of extreme flash rates and the rapid increase in the in-cloud flash rate, signalling the intensification of the storm updraft, may provide as much as a 50% increase in severe storm warning lead time.

  4. Methane storms as a driver of Titan's dune orientation

    E-print Network

    Charnay, Benjamin; Rafkin, Scot; Narteau, Clément; Lebonnois, Sébastien; Rodriguez, Sébastien; Pont, Sylvain Courrech du; Lucas, Antoine

    2015-01-01

    Titan's equatorial regions are covered by eastward propagating linear dunes. This direction is opposite to mean surface winds simulated by Global Climate Models (GCMs), which are oriented westward at these latitudes, similar to trade winds on Earth. Different hypotheses have been proposed to address this apparent contradiction, involving Saturn's gravitational tides, large scale topography or wind statistics, but none of them can explain a global eastward dune propagation in the equatorial band. Here we analyse the impact of equinoctial tropical methane storms developing in the superrotating atmosphere (i.e. the eastward winds at high altitude) on Titan's dune orientation. Using mesoscale simulations of convective methane clouds with a GCM wind profile featuring superrotation, we show that Titan's storms should produce fast eastward gust fronts above the surface. Such gusts dominate the aeolian transport, allowing dunes to extend eastward. This analysis therefore suggests a coupling between superrotation, tro...

  5. Solar System dynamics and global-scale dust storms on Mars

    NASA Astrophysics Data System (ADS)

    Shirley, James H.

    2015-05-01

    Global-scale dust storms occur during the southern summer season on Mars in some Mars years but not in others. We present an updated catalog of Mars years including such storms (n = 9) and Mars years without global-scale storms (n = 11) through the year 2013. A remarkable relationship links the occurrence and non-occurrence of global-scale dust storms on Mars with changes in the orbital angular momentum of Mars with respect to the Solar System barycenter (LMars). All of the global-scale dust storms became planet-encircling in both latitude and longitude during periods when LMars was increasing or near maxima. Statistical significance at the 1% level is obtained for the clustering tendency of LMars phases for the 5 mid-season storms with Ls ranging from 208° to 262° (1956, 1971, 1982, 1994, and 2007). The 11 Mars years without global-scale dust storms exhibit mainly decreasing and minimum values of LMars during the first half of the dust storm season; this tendency is statistically significant at the 5% level. A systematic progression is present in the phasing of the solar irradiance and LMars waveforms for the global-scale storm years. LMars phases for the early season global-scale storms of 1977 and 2001 are advanced in phase with respect to those of the mid-season storms, while the phase for the late season storm of 1973 is delayed with respect to those of the mid-season storms cluster. Factors internal to the Mars climate system, such as a spatial redistribution of surface dust from year to year, must be invoked to account for the non-occurrence of global-scale dust storms in five years (1986, 2003, 2005, 2009, and 2013) when the LMars phase was otherwise favorable. Our results suggest that the occurrence of increasing or peak values of LMars immediately prior to and during the Mars dust storm season may be a necessary-but-not-sufficient condition for the initiation of global-scale dust storms on Mars.

  6. Energy analysis of convectively induced wind perturbations

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.; Buechler, Dennis E.

    1989-01-01

    Budgets of divergent and rotational components of kinetic energy (KD and KR) are examined for four upper level wind speed maxima that develop during the fourth Atmospheric Variability Experiment (AVE IV) and the first AVE-Severe Environmental Storms and Mesoscale Experiment (AVE-SESAME I). A similar budget analysis is performed for a low-level jet stream during AVE-SESAME I. The energetics of the four upper level speed maxima is found to have several similarities. The dominant source of KD is cross-contour flow by the divergent wind, and KD provides a major source of KR via a conversion process. Conversion from available potential energy provides an additional source of KR in three of the cases. Horizontal maps reveal that the conversions involving KD are maximized in regions poleward of the convection. Low-level jet development during AVE-SESAME I appears to be assisted by convective activity to the west.

  7. Temporal Evolution of Saturn's Great White Spot Storm 2010-2011

    NASA Astrophysics Data System (ADS)

    Sayanagi, K. M.; Ewald, S. P.; Dyudina, U. A.; Ingersoll, A. P.; Porco, C.; Muro, G. S.

    2011-12-01

    We report on the temporal evolution of a large cumulus storm that erupted on Saturn in early December of 2010. The new event marks the latest occurrence of the 30-year quasi-periodic giant storms on Saturn known as the Great White Spots (GWS), which last erupted in 1990. Cassini ISS camera first captured the storm on December 5th, 2010, and has since monitored the storm at a semi-regular interval. The current storm erupted at 33 degree N planetocentric latitude, and our measurements indicate that the storm's initial longitude coincided that of a feature called the String of Pearls (SoPs) first found using Cassini VIMS (Momary et al. 2006 DPS/AAS, Choi et al. 2009 Icarus 10.1029/2008JE003254), suggesting that the new GWS and SoPs may be causally related. Our ISS images between December 2010 and June 2011 show that the storm had a very bright leading edge, which drifted westward relative to the Voyager longitude system at 2.79 degree per Earth day, similar to that measured by Sanchez-Lavega et al (2011, Nature 10.1038/nature10203). Our new methane filter images (MT2 and MT3) show that a substantial amount of cloud material is lifted at the leading edge up to the stratosphere, which indicates highly energetic cumulus convective activities consistent with Fischer et al (2011, Nature 10.1038/nature10205)'s detection of lightning discharges in the radio frequencies. Our images also reveal vertical shear in the local wind fields around the storm. During the early phase of the storm a large dark oval formed near the leading edge of the storm and drifted westward at 0.85 degree per day on average between December 2010 and June 2011, which was also noted in CIRS observation (Fletcher et al. 2011, Science 10.1126/science.1204774). Our measurements show that the oval has an anticyclonic vorticity. The anticyclonic oval defined the eastern end of the storm activities. By late June 2011, the storm's leading edge collided with the anticyclonic oval after encircling the entire latitudinal band. After impacting the oval, the cumulus activities in the storm decreased, and the bright clouds that used to characterize leading edge are no longer present. We also compare the wind field before and after the storm, and examine the effects of the latest storm in the context of Saturn's global meteorology.

  8. ELECTRICAL DISCHARGES IN THE MARTIAN DUST DEVILS AND DUST STORMS. N. O. Renno, A. S. Wong, and S. K. Atreya, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan,

    E-print Network

    Atreya, Sushil

    hurricanes [5]. Sometimes regional dust storms grow and become global in extent. Enhanced dust devil activity]. The theoretical frame- work applicable to convective vortices such as dust devils, waterspouts and hurricanes

  9. Storm on Saturn

    NASA Technical Reports Server (NTRS)

    Larson, Stephen M.

    1991-01-01

    In September 1990, a white spot appeared on Saturn's atmosphere, which later spread over the entire equatorial region. The accompanying images were obtained as part of an effort to refine techniques for obtaining high resolution groundbased charge coupled device (CCD) images of the planets, and show the turbulent disturbance in Saturn's atmosphere. These broad red-band CCD images were obtained in November 1990 with the Catalina 1.5 m telescope. The planet was low in the sky at sunset, but the viewing was good enough to show detail in the equatorial region over all longitudes. Visibility of the features is enhanced by digital spatial filtering techniques. A storm of this magnitude has not been seen on Saturn since 1933.

  10. Dust Storm in Syria

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-366, 20 May 2003

    A dust storm rages in Syria Planum, south of the Labyrinthus Noctis troughs (at lower center) in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) composite of daily global images taken during the recent southern winter. In this view, water ice clouds are present over each of the five largest Tharsis volcanoes, Olympus Mons (right center), Alba Patera (upper center), Ascraeus Mons (near center), Pavonis Mons (toward lower left), and Arsia Mons (lower left). The summertime north polar residual water ice cap can be seen at the top of this picture. Sunlight illuminates the planet from the left.

  11. Characteristics of convective cells over the coastal regions of southeast Texas 

    E-print Network

    Robinson, Michael

    1998-01-01

    Vertical profiles of radar reflectivity and cloud-to-ground lightning characteristics associated with convective cells were analyzed for mesoscate systems occurring over the coastal regions of southeast Texas during the spring and summer months...

  12. Detection of Infrasonic Energy From Tornado-Producing Storms

    NASA Astrophysics Data System (ADS)

    Talmadge, C. L.; Waxler, R.; Kleinert, D. E.; Carter, G. E.; Godbold, G.; Harris, D. R.; Williams, C.

    2011-12-01

    There are numerous reports in the literature on the observation of infrasound emitted from tornadic thunderstorms. Most of these observations have been made from sensors that are several hundreds of kilometers from the location of the storm, and "ground truth" about the tornadic activity is not well established. We report here on a campaign carried out during the summer of 2011 in which 50 infrasound microphones (whose approximate frequency response is 0.01-500 Hz) developed at the University of Mississippi were deployed by members of Hyperion Technology Group and their associates as part of an ongoing multi-university program on hazard detection and alert funded by the National Oceanic and Atmospheric Administration (NOAA). In this campaign, our deployment teams were able to deploy sensors along the paths of developing tornadic storms, including sensors that were located between twin F5 tornados near Oklahoma City on May 24, 2011. For this particular deployment we had sensors located a few kilometers from the northern most F5 tornado, and a second array, composed of three linear element arrays, that was optimally northeast of the storm. (A total of 7 tornados touched down in this area during this particular severe weather outbreak.) Substantial meteorological information, including ground truth about tornados (intensity and size as a function of time), and the relative close proximity of the sensors to the storms, provides us with a level of detail not available in previous storms. We will report on our infrasound measurements and analysis (source strength, frequency content as a function of tornadic intensity) from this outbreak as well as data from two other interceptions of tornadic storms, which occurred on the dates of May 30 and June 19, 2001.

  13. Microphysics, Meteorology, Microwave and Modeling of Mediterranean Storms: The M(sup 5) Problem

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Fiorino, Steven; Mugnai, Alberto; Panegrossi, Giulia; Tripoli, Gregory; Starr, David (Technical Monitor)

    2001-01-01

    Comprehensive understanding of the microphysical nature of Mediterranean storms requires a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, particularly from synoptic scale down to mesoscale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. Insofar as hazardous Mediterranean storms, highlighted by the September 25-28/1992 Genova flood event, the October 5-7/1998 Friuli flood event, and the October 13-15/2000 Piemonte flood event (all taking place in northern Italy), developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within the storm domains. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting proc esses. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size distributions, and fall rates of the various modes of hydrometeors found within the storm environments. This paper presents detailed 4-dimensional analyses of the microphysical elements of the three severe Mediterranean storms identified above, investigated with the aid of SSM/I and TRMM satellite measurements (and other remote sensing measurements). The analyses are guided by nonhydrostatic mesoscale model simulations at high resolution of the intense rain producing portions of the storm environments. The results emphasize how meteorological controls taking place at the large scale, coupled with localized terrain controls, ultimately determine the most salient features of the bulk microphysical properties of the storms. These results have bearing on precipitation remote sensing from space, and the role of modeling in designing precipitation retrieval algorithms.

  14. On the contribution of plasma sheet bubbles to the storm time ring current

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Toffoletto, Frank R.; Wolf, Richard A.; Sazykin, Stanislav

    2015-09-01

    Particle injections occur frequently inside 10 Re during geomagnetic storms. They are commonly associated with bursty bulk flows or plasma sheet bubbles transported from the tail to the inner magnetosphere. Although observations and theoretical arguments have suggested that they may have an important role in storm time dynamics, this assertion has not been addressed quantitatively. In this paper, we investigate which process is dominant for the storm time ring current buildup: large-scale enhanced convection or localized bubble injections. We use the Rice Convection Model-Equilibrium (RCM-E) to model a series of idealized storm main phases. The boundary conditions at 14-15 Re on the nightside are adjusted to randomly inject bubbles to a degree roughly consistent with observed statistical properties. A test particle tracing technique is then used to identify the source of the ring current plasma. We find that the contribution of plasma sheet bubbles to the ring current energy increases from ~20% for weak storms to ~50% for moderate storms and levels off at ~61% for intense storms, while the contribution of trapped particles decreases from ~60% for weak storms to ~30% for moderate and ~21% for intense storms. The contribution of nonbubble plasma sheet flux tubes remains ~20% on average regardless of the storm intensity. Consistent with previous RCM and RCM-E simulations, our results show that the mechanisms for plasma sheet bubbles enhancing the ring current energy are (1) the deep penetration of bubbles and (2) the bulk plasma pushed ahead of bubbles. Both the bubbles and the plasma pushed ahead typically contain larger distribution functions than those in the inner magnetosphere at quiet times. An integrated effect of those individual bubble injections is the gradual enhancement of the storm time ring current. We also make two predictions testable against observations. First, fluctuations over a time scale of 5-20 min in the plasma distributions and electric field can be seen in the central ring current region for the storm main phase. We find that the plasma pressure and the electric field EY there vary over about 10%-30% and 50%-300% of the background values, respectively. Second, the maximum plasma pressure and magnetic field depression in the central ring current region during the main phase are well correlated with the Dst index.

  15. Extreme Helicity and Intense Convective Towers in Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Molinari, John; Vollaro, David

    2008-01-01

    Helicity was calculated in Hurricane Bonnie (1998) using tropospheric-deep dropsonde soundings from the NASA Convection and Moisture Experiment. Large helicity existed downshear of the storm center with respect to the ambient vertical wind shear. It was associated with veering, semicircular hodographs created by strong, vortex-scale, radial-vertical flow induced by the shear. The most extreme values of helicity, among the largest ever reported in the literature, occurred in the vicinity of deep convective cells in the downshear-left quadrant. These cells reached as high as 17.5 km and displayed the temporal and spatial scales of supercells. Convective available potential energy (CAPE) averaged 861 J/kg downshear, but only about one-third as large upshear. The soundings nearest the deep cells were evaluated using two empirical supercell parameters that make use of CAPE, helicity, and/or shear. These parameters supported the possible existence of supercells as a consequence of the exceptional helicity combined with moderate but sufficient CAPE. Ambient vertical wind shear exceeded 12 m/s for 30 h, yet the hurricane maintained 50 m/s maximum winds. It is hypothesized that the long-lived convective cells enabled the storm to resist the negative impact of the shear. Supercells in large-helicity, curved-hodograph environments appear to provide a useful conceptual model for intense convection in the hurricane core. Helicity calculations might also give some insight into the behavior of vortical hot towers, which share some characteristics with supercells.

  16. Spatiotemporal variability of summer precipitation in southeastern Arizona

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Walnut Gulch Experimental Watershed (WGEW) in Southeastern Arizona covers ~150 km2 and receives the majority of its annual precipitation from highly variable and intermittent summer storms during the North American Monsoon. In this study the patterns of precipitation in the United States Departm...

  17. Centralized Storm Information System (CSIS)

    NASA Technical Reports Server (NTRS)

    Norton, C. C.

    1985-01-01

    A final progress report is presented on the Centralized Storm Information System (CSIS). The primary purpose of the CSIS is to demonstrate and evaluate real time interactive computerized data collection, interpretation and display techniques as applied to severe weather forecasting. CSIS objectives pertaining to improved severe storm forecasting and warning systems are outlined. The positive impact that CSIS has had on the National Severe Storms Forecast Center (NSSFC) is discussed. The benefits of interactive processing systems on the forecasting ability of the NSSFC are described.

  18. LIGHTNING: Did you know? Lightning is one of the top three storm-related

    E-print Network

    Sibille, Etienne

    LIGHTNING: Did you know? Lightning is one of the top three storm-related killers in the United States. 10% of those struck by light- ning die. Your chances of being struck by lightning are 1 in 500,000. Most lightning strikes occur in the summer months, particularly in July, during the afternoon

  19. Climatic regimes of tropical convection and rainfall

    SciTech Connect

    Wang, Bin )

    1994-07-01

    Annual distribution and phase propagation of tropical convection are delineated using harmonic and amplitude-phase characteristics analysis of climatological pentad mean outgoing longwave radiation and monthly frequencies of highly reflective cloud. An annual eastward propagation of peak rainy season along the equator from the central Indian Ocean (60[degrees]E) to Arafura Sea (130[degrees]E) is revealed. This indicates a transition from the withdrawal of the Indian summer monsoon to the onset of the Australian summer monsoon. Significant bimodal variations are found around major summer monsoon regions. These variations originate from the interference of two adjacent regimes. The convergence zones over the eastern North Pacific, the South Pacific, and the southwest Indian Ocean are identified as a marine monsoon regime that is characterized by a unimodal variation with a concentrated summer rainfall associated with the development of surface westerlies equatorward of a monsoon trough. Conversely, the central North Pacific and North Atlantic convergence zones between persistent northeast and southeast trades are classified as trade-wind convergence zones; which differ from the marine monsoon regime by their persistent rainy season and characteristic bimodal variation with peak rainy seasons occurring in late spring and fall. The roles of the annual march of sea surface temperature in the phase propagation and formation of various climatic regimes of tropical convection are also discussed. 34 refs., 8 figs., 1 tab.

  20. Mosquito Problems after a Storm 

    E-print Network

    Johnsen, Mark

    2008-08-05

    Areas flooded after a severe storm are prone to mosquito problems. Several mosquito species are a danger to humans because of the diseases they transmit. This publication explains the symptoms of dengue fever, West Nile virus and St. Louis...

  1. Toward an integrated storm surge application: ESA Storm Surge project

    NASA Astrophysics Data System (ADS)

    Lee, Boram; Donlon, Craig; Arino, Olivier

    2010-05-01

    Storm surges and their associated coastal inundation are major coastal marine hazards, both in tropical and extra-tropical areas. As sea level rises due to climate change, the impact of storm surges and associated extreme flooding may increase in low-lying countries and harbour cities. Of the 33 world cities predicted to have at least 8 million people by 2015, at least 21 of them are coastal including 8 of the 10 largest. They are highly vulnerable to coastal hazards including storm surges. Coastal inundation forecasting and warning systems depend on the crosscutting cooperation of different scientific disciplines and user communities. An integrated approach to storm surge, wave, sea-level and flood forecasting offers an optimal strategy for building improved operational forecasts and warnings capability for coastal inundation. The Earth Observation (EO) information from satellites has demonstrated high potential to enhanced coastal hazard monitoring, analysis, and forecasting; the GOCE geoid data can help calculating accurate positions of tide gauge stations within the GLOSS network. ASAR images has demonstrated usefulness in analysing hydrological situation in coastal zones with timely manner, when hazardous events occur. Wind speed and direction, which is the key parameters for storm surge forecasting and hindcasting, can be derived by using scatterometer data. The current issue is, although great deal of useful EO information and application tools exist, that sufficient user information on EO data availability is missing and that easy access supported by user applications and documentation is highly required. Clear documentation on the user requirements in support of improved storm surge forecasting and risk assessment is also needed at the present. The paper primarily addresses the requirements for data, models/technologies, and operational skills, based on the results from the recent Scientific and Technical Symposium on Storm Surges (www.surgesymposium.org, organized by the WMO-IOC Joint technical Commission for Oceanography and Marine Meteorology, JCOMM) and following activities, that have been supported by the Intergovernmental Oceanographic Commission (IOC) of UNESCO through JCOMM. The paper also reviews the capabilities of storm surge models, and current status in using Earth Observation (EO) information for advancing storm surge application tools, and further, for improving operational forecasts and warning capability for coastal inundation. In this context, the plans and expected results of the ESA Storm Surge Project (2010-2011) will be introduced.

  2. Magnetic Storms and Induction Hazards

    NASA Astrophysics Data System (ADS)

    Love, Jeffrey J.; Joshua Rigler, E.; Pulkkinen, Antti; Balch, Christopher C.

    2014-12-01

    Magnetic storms are potentially hazardous to the activities and technological infrastructure of modern civilization. This reality was dramatically demonstrated during the great magnetic storm of March 1989, when surface geoelectric fields, produced by the interaction of the time-varying geomagnetic field with the Earth's electrically conducting interior, coupled onto the overlying Hydro-Québec electric power grid in Canada. Protective relays were tripped, the grid collapsed, and about 9 million people were temporarily left without electricity [Bolduc, 2002].

  3. Assessment of the Pseudo Geostationary Lightning Mapper Products at the Spring Program and Summer Experiment

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Calhoun, Kristin K.; Terborg, Amanda M.

    2014-01-01

    Since 2010, the de facto Geostationary Lightning Mapper (GLM) demonstration product has been the Pseudo-Geostationary Lightning Mapper (PGLM) product suite. Originally prepared for the Hazardous Weather Testbed's Spring Program (specifically the Experimental Warning Program) when only four ground-based lightning mapping arrays were available, the effort now spans collaborations with several institutions and eight collaborative networks. For 2013, NASA's Short-term Prediction Research and Transition (SPoRT) Center and NOAA's National Severe Storms Laboratory have worked to collaborate with each network to obtain data in real-time. This has gone into producing the SPoRT variant of the PGLM that was demonstrated in AWIPS II for the 2013 Spring Program. Alongside the PGLM products, the SPoRT / Meteorological Development Laboratory's total lightning tracking tool also was evaluated to assess not just another visualization of future GLM data but how to best extract more information while in the operational environment. Specifically, this tool addressed the leading request by forecasters during evaluations; provide a time series trend of total lightning in real-time. In addition to the Spring Program, SPoRT is providing the PGLM "mosaic" to the Aviation Weather Center (AWC) and Storm Prediction Center. This is the same as what is used at the Hazardous Weather Testbed, but combines all available networks into one display for use at the national centers. This year, the mosaic was evaluated during the AWC's Summer Experiment. An important distinction between this and the Spring Program is that the Summer Experiment focuses on the national center perspective and not at the local forecast office level. Specifically, the Summer Experiment focuses on aviation needs and concerns and brings together operational forecaster, developers, and FAA representatives. This presentation will focus on the evaluation of SPoRT's pseudo-GLM products in these separate test beds. The emphasis will be on how future GLM observations can support operations at both the local and national scale and how the PGLM was used in combination with other lightning data sets. Evaluations for the PGLM were quite favorable with forecasters appreciating the high temporal resolution, the ability to look for rapid increases in lightning activity ahead of severe weather, as well as situational awareness for where convection is firing and for flight routing.

  4. Balanced dynamics and convection in the tropical troposphere

    NASA Astrophysics Data System (ADS)

    Raymond, David; Fuchs, Željka; Gjorgjievska, Saška; Sessions, Sharon

    2015-09-01

    This paper presents a conceptual picture of balanced tropical tropospheric dynamics inspired by recent observations. The most important factor differentiating the tropics from middle and higher latitudes is the absence of baroclinic instability; upward motion occurs primarily via deep convective processes. Thus, convection forms an integral part of large-scale tropical motions. Since convection itself is small-scale and chaotic in detail, predictability lies in uncovering the hidden hands that guide the average behavior of convection. Two appear, balanced dynamics and thermodynamic constraints. Contrary to conventional expectations, balanced dynamics plays a crucial role in the tropical atmosphere. However, due to the smallness of the Coriolis parameter there, nonlinear balance is more important in the tropics than at higher latitudes. Three thermodynamic constraints appear to play an important role in governing the average behavior of convection outside of the cores of tropical storms. First, convection is subject to control via a lower tropospheric buoyancy quasi-equilibrium process, wherein destabilization of the lower troposphere by nonconvective processes is balanced by convective stabilization. Second, the production of precipitation is extraordinarily sensitive to the saturation fraction of the troposphere. Third, "moisture quasi-equilibrium" governs the saturation fraction, with moister atmospheres being associated with smaller moist convective instability. The moist convective instability is governed by the balanced thermodynamic response to the pattern of potential vorticity, which in turn is slowly modified by convective and radiative heating. The intricate dance between these dynamic and thermodynamic processes leads to complex behavior of the tropical atmosphere in ways that we are just beginning to understand.

  5. An Evaluation of Lightning Flash Rate Parameterizations Based on Observations of Colorado Storms during DC3

    NASA Astrophysics Data System (ADS)

    Basarab, B.; Fuchs, B.; Rutledge, S. A.

    2013-12-01

    Predicting lightning activity in thunderstorms is important in order to accurately quantify the production of nitrogen oxides (NOx = NO + NO2) by lightning (LNOx). Lightning is an important global source of NOx, and since NOx is a chemical precursor to ozone, the climatological impacts of LNOx could be significant. Many cloud-resolving models rely on parameterizations to predict lightning and LNOx since the processes leading to charge separation and lightning discharge are not yet fully understood. This study evaluates predicted flash rates based on existing lightning parameterizations against flash rates observed for Colorado storms during the Deep Convective Clouds and Chemistry Experiment (DC3). Evaluating lightning parameterizations against storm observations is a useful way to possibly improve the prediction of flash rates and LNOx in models. Additionally, since convective storms that form in the eastern plains of Colorado can be different thermodynamically and electrically from storms in other regions, it is useful to test existing parameterizations against observations from these storms. We present an analysis of the dynamics, microphysics, and lightning characteristics of two case studies, severe storms that developed on 6 and 7 June 2012. This analysis includes dual-Doppler derived horizontal and vertical velocities, a hydrometeor identification based on polarimetric radar variables using the CSU-CHILL radar, and insight into the charge structure using observations from the northern Colorado Lightning Mapping Array (LMA). Flash rates were inferred from the LMA data using a flash counting algorithm. We have calculated various microphysical and dynamical parameters for these storms that have been used in empirical flash rate parameterizations. In particular, maximum vertical velocity has been used to predict flash rates in some cloud-resolving chemistry simulations. We diagnose flash rates for the 6 and 7 June storms using this parameterization and compare to observed flash rates. For the 6 June storm, a preliminary analysis of aircraft observations of storm inflow and outflow is presented in order to place flash rates (and other lightning statistics) in the context of storm chemistry. An approach to a possibly improved LNOx parameterization scheme using different lightning metrics such as flash area will be discussed.

  6. The Influence of Land Surface Heterogeneities on Heavy Convective Rainfall in the Baltimore-Washington Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Ryu, Young-Hee; Smith, James; Baeck, Mary Lynn; Bou-Zeid, Elie

    2015-04-01

    We perform numerical experiments using the Weather Research and Forecasting model to examine the influence of land surface heterogeneities on heavy convective rainfall in the Baltimore-Washington Metropolitan Area. Numerical experiments are carried out for a storm system (1-2 June 2012) in which heavy rainfall and severe weather were organized in the warm sector ahead of a rapidly moving cold front. As shown in previous studies, the environment is typical of flash flood producing storm systems for urban areas of the eastern US. The storm system produced rainfall accumulations exceeding 80 mm and major flash flooding in Baltimore watersheds. The study region is adjacent to the Chesapeake Bay and includes the second largest urban agglomeration in the eastern US. Numerical experiments examine urban impacts on rainfall using the Princeton Urban Canopy Model and the Noah Land Surface Model. We also examine the role of "Bay Breeze" circulations from the Chesapeake Bay for convective evolution. Rainfall distribution and amount are better represented for experiments using the more realistic urban canopy model. The Bay Breeze plays a central role in formation of convergence lines that are major determinants of convective evolution with the approaching line of convection. The Bay Breeze also interacts with heterogeneous surface fluxes from urban landscapes to determine moisture transport to evolving storm systems. The low-level convergence lines and water vapor transport that are induced and modified by land surface heterogeneities are crucial for the preferred locations of strong convective storms and heavy rainfall over the Baltimore Washington metropolitan area.

  7. Coalescence Enhancement in large Multicell Storms Caused by the Emissions from a Kraft Paper Mill.

    NASA Astrophysics Data System (ADS)

    Mather, Graeme K.

    1991-08-01

    While conducting a randomized seeding experiment, a storm was selected whose microphysical characteristics were so far from what was expected, given the existing thermodynamic environment, that some explanation was needed to account for the apparent errant behavior of this storm. More than a decade of sampling at 10°C using the project Lear jet has led to a simple classification technique, based on cloud-base temperature and buoyancy, which predicts the absence or presence, and to some extent the degree of coalescence (coalescence-freezing) precipitation growth in local convective storms. The unusual nature of this storm was recognized against this extensive microphysical database. The probable cause is attributed to emissions from a Kraft paper mill 10 km south of the storm's position. The mill had recently undergone an expansion program that had quadrupled its output of paper products.Using the radar characteristics of this unusual storm as a guide, a search of one season of radar data revealed the existence of five other similar storms, all within about 30 km of the paper win. These records indicated that the storms apparently modified by the paper mill tended to last longer, grow taller, and rain harder than any other storms recorded on that day.The new awareness of this apparent inadvertent weather modification by the paper mill led to launching missions to intercept clouds growing in the vicinity of the mill. Storms, apparently altered by the mill, were sampled and compared to other nearby storms. The most singular feature of the modified storms was the appearance of lame (>4 mm) drops at the most common sampling level (10°C), indicating an accelerated or enhanced coalescence precipitation formation process.Measurements in a field of cumuli indicated a broadening of the cloud-base droplet spectra in clouds affected by the emission of the mill. It is the addition of this `long tail' to the cloud-base droplet spectra that is apparently turning on or at least enhancing coalescence in affected storms.

  8. 1 Copyright 2012 by ASME Proceedings of the ASME 2012 Summer Heat Transfer Conference

    E-print Network

    Bahrami, Majid

    , #12;2 Copyright © 2012 by ASME is convective heat transfer coefficient and is thermal conductivity1 Copyright © 2012 by ASME Proceedings of the ASME 2012 Summer Heat Transfer Conference HT2012 July CONVECTIVE HEAT TRANSFER FROM VERTICALLY-MOUNTED RECTANGULAR INTERRUPTED FINS Golnoosh Mostafavi MASc

  9. Indian Summer

    SciTech Connect

    Galindo, E.

    1997-08-01

    This paper focuses on preserving and strengthening two resources culturally and socially important to the Shoshone-Bannock Indian Tribe on the Fort Hall Reservation in Idaho; their young people and the Pacific-Northwest Salmon. After learning that salmon were not returning in significant numbers to ancestral fishing waters at headwater spawning sites, tribal youth wanted to know why. As a result, the Indian Summer project was conceived to give Shoshone-Bannock High School students the opportunity to develop hands-on, workable solutions to improve future Indian fishing and help make the river healthy again. The project goals were to increase the number of fry introduced into the streams, teach the Shoshone-Bannock students how to use scientific methodologies, and get students, parents, community members, and Indian and non-Indian mentors excited about learning. The students chose an egg incubation experiment to help increase self-sustaining, natural production of steelhead trout, and formulated and carried out a three step plan to increase the hatch-rate of steelhead trout in Idaho waters. With the help of local companies, governmental agencies, scientists, and mentors students have been able to meet their project goals, and at the same time, have learned how to use scientific methods to solve real life problems, how to return what they have used to the water and land, and how to have fun and enjoy life while learning.

  10. Storm tracks near marginal stability

    NASA Astrophysics Data System (ADS)

    Ambaum, Maarten; Novak, Lenka

    2015-04-01

    The variance of atmospheric storm tracks is characterised by intermittent bursts of activity interspersed with relatively quiescent periods. Most of the poleward heat transport by storm tracks is due to a limited number of strong heat flux events, which occur in a quasi-periodic fashion. This behaviour is in contradiction with the usual conceptual model of the storm tracks, which relies on high growth rate background flows which then spawn weather systems that grow in an exponential or non-normal fashion. Here we present a different conceptual model of the atmospheric storm tracks which is built on the observation that, when including diabatic and other dissipative effects, the storm track region is in fact most of the time marginally stable. The ensuing model is a nonlinear oscillator, very similar to Volterra-Lotka predator-prey models. We demonstrate the extensions of this model to a stochastically driven nonlinear oscillator. The model produces quasi-periodic behaviour dominated by intermittent heat flux events. Perhaps most surprisingly, we will show strong evidence from re-analysis data for our conceptual model: the re-analysis data produces a phase-space plot that is very similar indeed to the phase-space plot for our nonlinear oscillator model.

  11. Is Titan's Dune Orientation Controlled by Tropical Methane Storms?

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Barth, Erika; Rafkin, Scot; Narteau, Clément; Lebonnois, Sébastien; Rodriguez, Sébastien; Courrech du Pont, Sylvain; Lucas, Antoine

    2014-11-01

    Titan’s equatorial regions are covered by eastward oriented linear dunes. This direction is opposite to mean surface winds simulated by Global Climate Models (GCMs) at these latitudes, oriented westward as trade winds on Earth [1, 2].Here, we propose that Titan’s dune orientation is actually determined by equinoctial tropical methane storms producing a coupling with superrotation and dune formation. Using meso-scale simulations of convective methane clouds [3, 4] with a GCM wind profile featuring the superrotation [5, 6], we show that Titan’s storms should produce fast eastward gust fronts above the surface. Such gusts dominate the aeolian transport. Using GCM wind roses and analogies with terrestrial dune fields [7], we show that Titan's dune growth occurs eastward under these conditions. Finally, this scenario combining global circulation winds and methane storms can explain other major features of Titan's dunes (i.e. divergence from the equator, size and spacing).References:[1] Lorenz et al.: The Sand Seas of Titan: Cassini RADAR Observations of Longitudinal Dunes, Science (2006)[2] Lorenz & Radebaugh: Global pattern of Titan’s dunes: Radar survey from the Cassini prime mission, Geophysical Research Letter (2009)[3] Barth & Rafkin.: TRAMS: A new dynamic cloud model for Titan’s methane clouds, Geophysical Research Letter (2007)[4] Barth & Rafkin.: Convective cloud heights as a diagnostic for methane environment on Titan, Icarus (2010)[5] Charnay & Lebonnois: Two boundary layers in Titan's lower troposphere inferred from a climate model, Nature Geoscience (2012)[6] Lebonnois et al.: Titan global climate model: A new 3-dimensional version of the IPSL Titan GCM, Icarus (2012)[7] Courrech du Pont, Narteau & Gao: Two modes for dune orientation, Geology (2014)

  12. The Tropical Convective Spectrum. Part 1; Archetypal Vertical Structures

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Petersen, Walter A.; Cecil, Daniel J.

    2005-01-01

    A taxonomy of tropical convective and stratiform vertical structures is constructed through cluster analysis of 3 yr of Tropical Rainfall Measuring Mission (TRMM) "warm-season" (surface temperature greater than 10 C) precipitation radar (PR) vertical profiles, their surface rainfall, and associated radar-based classifiers (convective/ stratiform and brightband existence). Twenty-five archetypal profile types are identified, including nine convective types, eight stratiform types, two mixed types, and six anvil/fragment types (nonprecipitating anvils and sheared deep convective profiles). These profile types are then hierarchically clustered into 10 similar families, which can be further combined, providing an objective and physical reduction of the highly multivariate PR data space that retains vertical structure information. The taxonomy allows for description of any storm or local convective spectrum by the profile types or families. The analysis provides a quasi-independent corroboration of the TRMM 2A23 convective/ stratiform classification. The global frequency of occurrence and contribution to rainfall for the profile types are presented, demonstrating primary rainfall contribution by midlevel glaciated convection (27%) and similar depth decaying/stratiform stages (28%-31%). Profiles of these types exhibit similar 37- and 85-GHz passive microwave brightness temperatures but differ greatly in their frequency of occurrence and mean rain rates, underscoring the importance to passive microwave rain retrieval of convective/stratiform discrimination by other means, such as polarization or texture techniques, or incorporation of lightning observations. Close correspondence is found between deep convective profile frequency and annualized lightning production, and pixel-level lightning occurrence likelihood directly tracks the estimated mean ice water path within profile types.

  13. A kinetic energy study of the meso beta-scale storm environment during AVE-SESAME 5 (20-21 May 1979)

    NASA Technical Reports Server (NTRS)

    Printy, M. F.; Fuelberg, H. E.

    1984-01-01

    Kinetic energy of the near storm environment was analyzed by meso beta scale data. It was found that horizontal winds in the 400 to 150 mb layer strengthen rapidly north of the developing convection. Peak values then decrease such that the maximum disappears 6 h later. Southeast of the storms, wind speeds above 300 mb decrease nearly 50% during the 3 h period of most intense thunderstorm activity. When the convection dissipates, wind patterns return to prestorm conditions. The mesoscale storm environment of AVE-SESAME 5 is characterized by large values of cross contour generation of kinetic energy, transfers of energy to nonresolvable scales of motion, and horizontal flux divergence. These processes are maximized within the upper troposphere and are greatest during times of strongest convection. It is shown that patterns agree with observed weather features. The southeast area of the network is examined to determine causes for vertical wind variations.

  14. A kinetic energy analysis of the meso beta-scale severe storm environment

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Printy, M. F.

    1984-01-01

    Analyses are performed of the meso beta-scale (20-200 km wavelengths and several hours to one-day periods) severe storm kinetic energy balance on the fifth day of the AVE SESAME campaign of May 1979. A 24-hr interval covering the antecedent, active and post-convective outbreak activity over Oklahoma are considered. Use is made of the kinetic energy budget equation (KEBE) for a finite volume in an isobaric coordinate system. Rawindsonde data with 75 km resolution were treated. The KEBE model covered changes in kinetic energy due to the cross contour flows, horizontal and vertical components of flux divergence, and volumic mass changes on synoptic and subsynoptic scales. The greatest variability was concentrated above 400 mb height and over the most intense storm activity. Energy was generated at the highest rates in divergence and decreased the most in convection. The meso beta-scale lacked sufficient resolution for analyzing mesoscale activity.

  15. Electrification in winter storms and the analysis of thunderstorm overflight data

    NASA Technical Reports Server (NTRS)

    Brook, Marx

    1993-01-01

    We have been focusing our study of electrification in winter storms on the lightning initiation process, making inferences about the magnitude of the electric fields from the initial pulses associated with breakdown, i.e., with the formation of the initial streamers. The essence of the most significant finding is as follows: (1) initial breakdown radiation pulses from stepped leaders prior to the first return stroke are very large, reaching values of 20-30 Volts/meter, comparable to return stroke radiation; and (2) the duration of the stepped leader, from the initial detectable radiation pulse to the return stroke onset, is very-short-ranging from a minimum 1.5 ms to a maximum of 4.5 ms. This past summer (June-August of 1991) we participated in the CAPE program at the Kennedy Space Center in order to acquire data on stepped leaders in summer storms with the same equipment used to get the winter storm data. We discovered that the vigorous leaders seen in winter so frequently were present in summer storms, although not as large in amplitude and certainly not as frequent.

  16. Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Rashki, A.; Houssos, E. E.; Mofidi, A.; Goto, D.; Bartzokas, A.; Francois, P.; Legrand, M.

    2015-07-01

    Dust storms are considered natural hazards that seriously affect atmospheric conditions, ecosystems and human health. A key requirement for investigating the dust life cycle is the analysis of the meteorological (synoptic and dynamic) processes that control dust emission, uplift and transport. The present work focuses on examining the synoptic and dynamic meteorological conditions associated with dust-storms in the Sistan region, southeastern Iran during the summer season (June-September) of the years 2001-2012. The dust-storm days (total number of 356) are related to visibility records below 1 km at Zabol meteorological station, located near to the dust source. RegCM4 model simulations indicate that the intense northern Levar wind, the high surface heating and the valley-like characteristics of the region strongly affect the meteorological dynamics and the formation of a low-level jet that are strongly linked with dust exposures. The intra-annual evolution of the dust storms does not seem to be significantly associated with El-Nino Southern Oscillation, despite the fact that most of the dust-storms are related to positive values of Oceanic Nino Index. National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis suggests that the dust storms are associated with low sea-level pressure conditions over the whole south Asia, while at 700 hPa level a trough of low geopotential heights over India along with a ridge over Arabia and central Iran is the common scenario. A significant finding is that the dust storms over Sistan are found to be associated with a pronounced increase of the anticyclone over the Caspian Sea, enhancing the west-to-east pressure gradient and, therefore, the blowing of Levar. Infrared Difference Dust Index values highlight the intensity of the Sistan dust storms, while the SPRINTARS model simulates the dust loading and concentration reasonably well, since the dust storms are usually associated with peaks in model simulations.

  17. Springtime North Polar Dust Storms

    NASA Technical Reports Server (NTRS)

    2002-01-01

    MGS MOC Release No. MOC2-321, 12 December 2002

    As on the Earth, many severe storms brew in the martian polar regions. Here, temperature contrasts between the cold carbon dioxide ('dry ice') seasonal frost cap and the warm ground adjacent to it--combined with a flow of cool polar air evaporating off the cap--sweeps up dust and funnels it into swirling dust storms along the cap edge. The dust storms shown here were observed during the recent northern spring by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) in May 2002. The picture is a mosaic of daily global images from the MOC wide angle cameras. The north polar cap is the bright, frosty surface at the top.

  18. The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Pessano, H.; Hierro, R.; Santos, J. R.; Llamedo, P.; Alexander, P.

    2015-04-01

    On the basis of 180 storms which took place between 2004 and 2011 over the province of Mendoza (Argentina) near to the Andes Range at southern mid-latitudes, we consider those registered in the northern and central crop areas (oases). The regions affected by these storms are currently protected by an operational hail mitigation project. Differences with previously reported storms detected in the southern oasis are highlighted. Mendoza is a semiarid region situated roughly between 32S and 37S at the east of the highest Andes top. It forms a natural laboratory where different sources of gravity waves, mainly mountain waves, occur. In this work, we analyze the effects of flow over topography generating mountain waves and favoring deep convection. The joint occurrence of storms with hail production and mountain waves is determined from mesoscale numerical simulations, radar and radiosounding data. In particular, two case studies that properly represent diverse structures observed in the region are considered in detail. A continuous wavelet transform is applied to each variable and profile to detect the main oscillation modes present. Simulated temperature profiles are validated and compared with radiosounding data. Each first radar echo, time and location are determined. The necessary energy to lift a parcel to its level of free convection is tested from the Convective Available Potential Energy and Convection Inhibition. This last parameter is compared against the mountain waves' vertical kinetic energy. The time evolution and vertical structure of vertical velocity and equivalent potential temperature suggest in both cases that the detected mountain wave amplitudes are able to provide the necessary energy to lift the air parcel and trigger convection. A simple conceptual scheme linking the dynamical factors taking place before and during storm development is proposed.

  19. SYNOPTIC ENVIRONMENTS AND CONVECTIVE MODES ASSOCIATED WITH SIGNIFICANT TORNADOES IN THE CONTIGUOUS UNITED STATES

    E-print Network

    1 SYNOPTIC ENVIRONMENTS AND CONVECTIVE MODES ASSOCIATED WITH SIGNIFICANT TORNADOES. Prentice Iowa State University Ames, IA 1. INTRODUCTION Tornado forecasting has evolved considerably since the formation of the Severe Local Storms (SELS) Center of the United States Weather Bureau in the early 1950s

  20. Convective Modes for Significant Severe Thunderstorms in the Contiguous United States. Part III: Tropical Cyclone Tornadoes

    E-print Network

    : Tropical Cyclone Tornadoes ROGER EDWARDS, ANDREW R. DEAN, RICHARD L. THOMPSON, AND BRYAN T. SMITH NWS Storm of the SPC tropical cyclone (TC) tornado records. Distributions of environmental convective parameters, derived from SPC hourly mesoanalysis fields that have been related to supercells and tornadoes

  1. An assessment of the potential of earth observation data to detect and monitor storm cells associated with natural hazards - an application to an extreme weather event in southeastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Mavrakou, T.; Cartalis, C.

    2015-04-01

    Storm cells that evolve in Mesoscale Convective Systems (MCSs) can be recognised with the use of satellite images. In this study, Meteosat images are used for the early detection and monitoring of the evolution of storm cells associated with MCSs. The developed methodology is based on the estimation of the "Airmass" and "Convective storm" composites, at fifteen minutes intervals. The methodology was applied on a selected four-day case study in February 2013, when a depression was developed over Africa and moved across the Mediterranean resulting in deep convection along its trajectory and in an extreme weather event (heavy rainfall associated with severe flooding) at the wider urban agglomeration of Athens. The produced composites detect potential vorticity (PV) anomaly related to cyclogenesis and increase the potential to detect and monitor storm cells associated with natural hazards.

  2. Storm type effects on super Clausius-Clapeyron scaling of intense rainstorm properties with air temperature

    NASA Astrophysics Data System (ADS)

    Molnar, P.; Fatichi, S.; Gaál, L.; Szolgay, J.; Burlando, P.

    2015-04-01

    Extreme precipitation is thought to increase with warming at rates similar to or greater than the water vapour holding capacity of the air at ~ 7% °C-1, the so-called Clausius-Clapeyron (CC) rate. We present an empirical study of the variability in the rates of increase in precipitation intensity with air temperature using 30 years of 10 min and 1 h data from 59 stations in Switzerland. The analysis is conducted on storm events rather than fixed interval data, and divided into storm type subsets based on the presence of lightning which is expected to indicate convection. The average rates of increase in extremes (95th percentile) of mean event intensity computed from 10 min data are 6.5% °C-1 (no-lightning events), 8.9% °C-1 (lightning events) and 10.7% °C-1 (all events combined). For peak 10 min intensities during an event the rates are 6.9% °C-1 (no-lightning events), 9.3% °C-1 (lightning events) and 13.0% °C-1 (all events combined). Mixing of the two storm types exaggerates the relations to air temperature. Doubled CC rates reported by other studies are an exception in our data set, even in convective rain. The large spatial variability in scaling rates across Switzerland suggests that both local (orographic) and regional effects limit moisture supply and availability in Alpine environments, especially in mountain valleys. The estimated number of convective events has increased across Switzerland in the last 30 years, with 30% of the stations showing statistically significant changes. The changes in intense convective storms with higher temperatures may be relevant for hydrological risk connected with those events in the future.

  3. A summary of research on mesoscale energetics of severe storm environments

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.

    1985-01-01

    The goals of this research were to better understand interactions between areas of intense convection and their surrounding mesoscale environments by using diagnostic budgets of kinetic (KE) and available potential energy (APE). Three cases of intense convection were examined in detail. 1) Atmospheric Variability Experiments (AVE) carried out on 24 to 25 April 1975 were studied. Synoptic scale data at 3 to 6 hour intervals, contained two mesoscale convective complexes (MCCs). Analyses included total KE budgets and budgets of divergent and rotational components of KE. 2) AVE-Severe Environmental Storms and Mesoscale Experiments (SESAME)-4 carried out on 10 to 11 April 1979 were studied. Synotpic and meso alpha-scale data (250 km spacing, 3 hour intervals), contained the Red River Valley tornado outbreak. Analyses included total KE budgets (separate synoptic and mesoscale version), budgets for the divergent and rotational components, and the generation of APE by diabatic processes. 3) AVE-SESAME 5 studies were carried out on 20 to 31 May 1979. Synoptic and meso beta-scale data (75 km spacing, 1 1/2 to 3 hour intervals), contained a small MCC. Analyses include separate KE budgets for the synotic and meso beta-scales and a water vapor budget. Major findings of these investigations are: (1) The synoptic scale storm environment contains energy conversions and transports that are comparable to those of mature midlatitude cyclones. (2) Energetic in the mesoscale storm environment are often an order of magnitude larger than those in an undisturbed region. (3) Mesoscale wind maxima form in the upper troposphere on the poleward sides of convective areas, whereas speeds decrease south of storm regions.

  4. National Severe Storms Forecast Center

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The principal mission of the National Severe Storms Forecast Center (NSSFC) is to maintain a continuous watch of weather developments that are capable of producing severe local storms, including tornadoes, and to prepare and issue messages designated as either Weather Outlooks or Tornado or Severe Thunderstorm Watches for dissemination to the public and aviation services. In addition to its assigned responsibility at the national level, the NSSFC is involved in a number of programs at the regional and local levels. Subsequent subsections and paragraphs describe the NSSFC, its users, inputs, outputs, interfaces, capabilities, workload, problem areas, and future plans in more detail.

  5. A coordinated study of a storm system over the South American continent. I. Weather information and quasi-dc stratospheric electric field data

    SciTech Connect

    Pinto, O. Jr.; Pinto, I.R.C.A.; Gin, R.B.B.; Mendes, O. Jr. )

    1992-11-01

    A coordinated campaign conducted in Brazil on 13 December 1989, to study the electrical signals associated with a large storm system over the South American continent is presented. Within the storm, large convective cells developed extending up to the tropopause, as observed from meteorological balloon soundings. The analysis of IR imagery supports the general tendency for lightning strikes to be close to but not exactly beneath the coldest cloud tops. 35 refs.

  6. A long-lived mesoscale convective complex. II - Evolution and structure of the mature complex

    NASA Technical Reports Server (NTRS)

    Wetzel, P. J.; Cotton, W. R.; Mcanelly, R. L.

    1983-01-01

    The present investigation is concerned with an eight-day episode, during which a series of mesoscale convective complexes (MCC) developed and moved across the country, producing heavy rain and some flooding over an extensive region. An overview of the considered period from August 3 to August 10, 1977 is presented, and the evolution of the August 4 storm is examined. The structure of the mature MCC is discussed, taking into account the August 4-5 storm, a comparative case involving the August 3-4 storm, and an evaluation of the observed phenomena. It is concluded that MCCs are basically tropical in nature and that their dynamics are dominated by buoyant accelerations. It was found that the MCCs developed a warm-core, divergent anticyclonic flow pattern in the upper troposphere which was not present prior to the development of convection. A similar structure is observed in tropical cloud clusters.

  7. Stochastic Convection Parameterizations

    NASA Technical Reports Server (NTRS)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  8. Interacting Convection Zones

    E-print Network

    L. J. Silvers; M. R. E. Proctor

    2007-08-28

    We present results from simulations to examine how the separation between two convectively unstable layers affect their interaction. We show that two convectively unstable layers remain connected via the overshooting plumes even when they are separated by several pressure scale heights.

  9. Effects of explicit atmospheric convection at high CO2

    PubMed Central

    Arnold, Nathan P.; Branson, Mark; Burt, Melissa A.; Abbot, Dorian S.; Kuang, Zhiming; Randall, David A.; Tziperman, Eli

    2014-01-01

    The effect of clouds on climate remains the largest uncertainty in climate change predictions, due to the inability of global climate models (GCMs) to resolve essential small-scale cloud and convection processes. We compare preindustrial and quadrupled CO2 simulations between a conventional GCM in which convection is parameterized and a “superparameterized” model in which convection is explicitly simulated with a cloud-permitting model in each grid cell. We find that the global responses of the two models to increased CO2 are broadly similar: both simulate ice-free Arctic summers, wintertime Arctic convection, and enhanced Madden–Julian oscillation (MJO) activity. Superparameterization produces significant differences at both CO2 levels, including greater Arctic cloud cover, further reduced sea ice area at high CO2, and a stronger increase with CO2 of the MJO. PMID:25024204

  10. Effects of explicit atmospheric convection at high CO2.

    PubMed

    Arnold, Nathan P; Branson, Mark; Burt, Melissa A; Abbot, Dorian S; Kuang, Zhiming; Randall, David A; Tziperman, Eli

    2014-07-29

    The effect of clouds on climate remains the largest uncertainty in climate change predictions, due to the inability of global climate models (GCMs) to resolve essential small-scale cloud and convection processes. We compare preindustrial and quadrupled CO2 simulations between a conventional GCM in which convection is parameterized and a "superparameterized" model in which convection is explicitly simulated with a cloud-permitting model in each grid cell. We find that the global responses of the two models to increased CO2 are broadly similar: both simulate ice-free Arctic summers, wintertime Arctic convection, and enhanced Madden-Julian oscillation (MJO) activity. Superparameterization produces significant differences at both CO2 levels, including greater Arctic cloud cover, further reduced sea ice area at high CO2, and a stronger increase with CO2 of the MJO. PMID:25024204

  11. Thermodynamic Bias in the Multimodel Mean Boreal Summer Monsoon* WILLIAM R. BOOS AND JOHN V. HURLEY

    E-print Network

    Thermodynamic Bias in the Multimodel Mean Boreal Summer Monsoon* WILLIAM R. BOOS AND JOHN V. HURLEY of boreal summer monsoons. The strongest bias lies over South Asia, where the upper-tropospheric temperature the monsoon thermal maximum, suppressing moist convection and cooling the upper troposphere. In a climate

  12. Severe storm initiation and development from satellite infrared imagery and Rawinsonde data

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.; West, G. S.

    1984-01-01

    The geographical distribution of potential temperatures, mixing ratio, and streamlines of flow patterns at 850, 700, and 500 mb heights are used to understand the prestorm convection and the horizontal convergence of moisture. From the analysis of 21 tornadoes the following conclusions are reached: (1) Strong horizontal convergence of moisture appeared at the 850, 700, and 500 mb levels in the area 12 hours before the storm formation; (2) An abundantly moist atmosphere below 3 km (700 mb) becomes convectively unstable during the time period between 12 and 24 hours before the initiation of the severe storms; (3) Strong winds veering with height with direction parallel to the movement of a dryline, surface fronts, etc; (4) During a 36-hour period, a tropopause height in the areas of interest is lowest at the time of tornadic cloud formation; (5) A train of gravity waves is detected before and during the cloud formation period. Rapid-scan infrared imagery provides near real-time information on the life cycle of the storm which can be summarized as follows: (1) Enhanced convection produced an overshooting cloud top penetrating above the tropopause, making the mass density of the overshooting cloud much greater than the mass density of the surrounding air; (2) The overshooting cloud top collapsed at the end of the mature stage of the cloud development; (3) The tornado touchdown followed the collapse of the overshooting cloud top.

  13. Radar reflectivities and satellite imagery of severe storms 20 May 1977

    NASA Technical Reports Server (NTRS)

    Wexler, R.; Blackmer, R. H., Jr.

    1982-01-01

    Storms on 20 May 1977 generated a vast cirrus deck. Disturbed areas at storm top had equivalent black-body temperatures (T sub BB) much lower than the tropopause temperature, indicative of overshooting tops. The area of T sub BB not greater than -71 C represents the area of convective activity penetrating 2 km above the tropopause. This area was relatively large after cloud tops and radar reflectivities reached their maximum heights. It became much smaller during tornadoes when reflectivities were decreasing. T sub BB was at a minimum at the time of mesocyclone formation. The Del City storm had two periods of growth, as indicated both by reflectivities and the T sub BB areas. The mesocyclone was first detected during the second less intense period of growth; the tornado occurred during decreasing reflectivities. The maintenance of large areas of relatively low T sub BB after tornado dissipation is ascribed to continued convection on the flanks of the storm and to residual updrafts in a thick anvil cloud.

  14. Electron acceleration in solar noise storms

    E-print Network

    Prasad Subramanian

    2007-01-23

    We present an up-to-date review of the physics of electron acceleration in solar noi se storms. We describe the observed characteristics of noise storm emission, emphasi zing recent advances in imaging observations. We briefly describe the general method ology of treating particle acceleration problems and apply it to the specific proble m of electron acceleration in noise storms. We dwell on the issue of the efficiency of the overall noise storm emission process and outline open problems in this area.

  15. Global lightning and severe storm monitoring from GPS orbit

    SciTech Connect

    Suszcynsky, D. M.; Jacobson, A. R.; Linford, J; Pongratz, M. B.; Light, T.; Shao, X.

    2004-01-01

    Over the last few decades, there has been a growing interest to develop and deploy an automated and continuously operating satellite-based global lightning mapper [e.g. Christian et al., 1989; Weber et al., 1998; Suszcynsky et al., 2000]. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. Satellite-based lightning mappers are designed to exploit this relationship by using lightning detection as a proxy for remotely identifying, locating and characterizing strong convective activity on a global basis. Global lightning and convection mapping promises to provide users with (1) an enhanced global severe weather monitoring and early warning capability [e.g. Weber et al., 1998] (2) improved ability to optimize aviation flight paths around convective cells, particularly over oceanic and remote regions that are not sufficiently serviced by existing weather radar [e.g. Weber et al., 1998], and (3) access to regional and global proxy data sets that can be used for scientific studies and as input into meteorological forecast and global climatology models. The physical foundation for satellite-based remote sensing of convection by way of lightning detection is provided by the basic interplay between the electrical and convective states of a thundercloud. It is widely believed that convection is a driving mechanism behind the hydrometeor charging and transport that produces charge separation and lightning discharges within thunderclouds [e.g. see chapter 3 in MacGorman and Rust, 1998]. Although cloud electrification and discharge processes are a complex function of the convective dynamics and microphysics of the cloud, the fundamental relationship between convection and electrification is easy to observe. For example, studies have shown that the strength of the convective process within a thundercell can be loosely parameterized (with large variance) by the intensity of the electrical activity within that cell as measured by the lightning flash rate. Williams [2001] has provided a review of experimental work that shows correlations between the total lightning flash rate and the fifth power of the radar cloud-top height (i.e. convective strength) of individual thunder cells. More recently, Ushio et al., [2001] used a large statistical sampling of optical data from the Lightning Imaging Sensor (LIS) in conjunction with data provided by the Precipitation Radar (PR) aboard the Tropical Rainfall Monitoring Mission (TRMM) satellite to conclude that the total lightning flash rate increases exponentially with storm height. Lightning activity levels have also been correlated to cloud ice content, a basic product of the convective process. For example, Blyth et al. [2001] used the Thermal Microwave Imager (TMI) aboard the TRMM satellite to observe a decrease in the 37 and 85 GHz brightness temperatures of upwelling terrestrial radiation during increased lightning activity. This reduction in brightness temperature is believed to be the result of increased ice scattering in the mixed phase region of the cloud. Toracinta and Zipser [2001] have found similar relationships using the Optical Transient Detector (OTD) satellite instrument and the Special Sensor Microwave Imager (SSM/I) aboard the DMSP satellites.

  16. Author's personal copy Heavy air pollution suppresses summer thunderstorms

    E-print Network

    Zeng, Ning

    Author's personal copy Heavy air pollution suppresses summer thunderstorms in central China Xin China, for assessing the impact of the increasing air pollution on convective precipitation. Adding resulted in less vertical exchanges of air, which caused reduction in the lowland (Xian) surface winds

  17. 46 CFR 169.329 - Storm rails.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must...

  18. 46 CFR 169.329 - Storm rails.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must...

  19. 46 CFR 169.329 - Storm rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must...

  20. 46 CFR 169.329 - Storm rails.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must...

  1. 46 CFR 169.329 - Storm rails.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must...

  2. 46 CFR 108.221 - Storm rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the following locations: (a) On each deckhouse...

  3. Preliminary Report HURRICANE KATRINA storm tide summary

    E-print Network

    Preliminary Report HURRICANE KATRINA storm tide summary *For the purpose of timely release, data the highest observed water levels, referred to as the storm tide, which is the sum of the storm surge and the astronomic tide. It also provides the difference between observed water levels and predicted astronomic tides

  4. Characterizing Times Between Storms in Mountainous Areas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An exploratory investigation was conducted on how two parameters that characterize dry times between storms (average time between storms, ATBS, and minimum dry time between storms, MTBS) vary with elevation, and how these two parameters may be estimated for areas without data. 16 rain gauges with h...

  5. Rain from Tropical Storm Noel

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Though not the most powerful storm of the 2007 Atlantic Hurricane season, Tropical Storm Noel was among the most deadly. Only Category 5 Hurricane Felix and its associated flooding had a higher toll. The slow-moving Tropical Storm Noel inundated the Dominican Republic, Haiti, Jamaica, Cuba, and the Bahamas with heavy rain between October 28 and November 1, 2007. The resulting floods and mudslides left at least 115 dead and thousands homeless throughout the Caribbean, reported the Associated Press on November 2, 2007. This image shows the distribution of the rainfall that made Noel a deadly storm. The image shows rainfall totals as measured by the Multi-satellite Precipitation Analysis (MPA) at NASA Goddard Space Flight Center from October 26 through November 1, 2007. The analysis is based on measurements taken by the Tropical Rainfall Measuring Mission (TRMM) satellite. The heaviest rainfall fell in the Dominican Republic and the Bahamas, northeast of Noel's center. Areas of dark red show that rainfall totals over the south-central Dominican Republic and parts of the Bahamas were over 551 millimeters (21 inches). Much of eastern Hispaniola, including both the Dominican Republic and Haiti received at least 200 mm (about 8 inches) of rain, shown in yellow. Rainfall totals over Haiti and Cuba were less, with a range of at least 50 mm (2 inches) to over 200 mm (8 inches).

  6. Cement Creek Following Storm Event

    USGS Multimedia Gallery

    Cement Creek following storm event in July, 2004. Note the orange discoloration of the stream derived from weathering of bedrocks and from mined areas. This type of event happens frequently in the Animas Watershed near Silverton, Colorado. View is to the south, with Kendall Mountain in the distance....

  7. Global Warming* The Perfect Storm

    E-print Network

    Hansen, James E.

    opinion #12;Perfect Storm, Perfect Disaster 1. Great Inertia of Systems - Ocean: Half of Warming still "In Ocean Acidification 300-350 Initial Target CO2 = 350* ppm *assumes CH4, O3, Black Soot decrease #12 #12;Basic Conflict Fossil Fuel Special Interests vs Young People & Nature (Animals) Fossil Interests

  8. Dynamics of a Cytokine Storm

    E-print Network

    Singh, Jaswinder Pal

    -self" molecules, tumors, and toxins" Dean, 2001! Toxins" Avian Influenza" Osterholm, 2005! = Cytokine Storm" #12 Syndrome (SIRS)" ! Spanish Flu of 1918 (~500M, 10% mortality, WW)" ! Severe Acute Respiratory Syndrome (SARS, 10% mortality, WW)" ! Seasonal influenza (40,000 deaths/yr, US)" ! Systemic sepsis (750,000/yr

  9. Winter Storms For More Information

    E-print Network

    of these threats. · A major winter storm can last for several days and be accompanied by high winds, freezing rain on the ground picked up by the wind. SNOW SQUALLS: Brief, intense snow showers accompanied by strong, gusty that year. Photos courtesy of Mt. Baker Ski Area. 3 NWS #12;Rain Freezing Rain Sleet Snow Frozen

  10. Vertical structure of Saturn lightning storms and storm-related dark ovals

    NASA Astrophysics Data System (ADS)

    Sromovsky, Lawrence A.; Baines, Kevin H.; Fry, Patrick M.

    2014-11-01

    In Cassini ISS images of Saturn during 2004-2006 Dyudina et al. (2007, Icarus 190, 545-555) identified four cases in which bright cloud features near 35o S were correlated with thunderstorm activity, inferred from SED events detected by the Radio and Plasma Wave Science instrument. The bright features left behind remnant dark ovals that reached full contrast within about a week. Baines et al. (2009, Plan. & Space Sci. 57, 1650-1658) investigated similar radio-correlated storms, using 2008 VIMS spectra. Noting that the dark ovals were about 20% less reflective than surrounding clouds over a wide spectral range, they suggested that the cloud particles might contain a broadband absorber that was produced by lightning-induced chemistry at the 10-20 bar water cloud level and convected up to the visible cloud level. Another possibility is that lower optical depths cause the ovals to be less reflective than the surrounding clouds. We carried out quantitative radiative transfer calculations to evaluate these alternatives, and also derived cloud models for the active region that is the presumed source of lightning. The main result for the dark ovals is that we can obtain good fits with typical condensates in vertically thin cloud layers, but can also obtain good fits with deep clouds of composite particles containing a sooty core within a shell of n=1.4+0i material. However, unlike Saturn's Great Storm of 2010-2011 (Sromovsky et al. 2013, Icarus), neither the bright clouds nor the dark ovals show the significant 3-micron absorption that would be expected if NH3, NH4SH, or H20 were lofted to upper cloud level. This missing absorption tends to favor models in which the upper cloud layer (near 250 mbar) is comprised of conservative (non-absorbing) particles and physically thin, in which case the dark oval spectra can be explained by a reduced upper cloud opacity (by ~50%) relative to surrounding clouds, and raises the possibility that the upper cloud features might be generated by waves rather than by convection all the way up to the visible cloud level.This research was supported by grant NNX11AM58G from NASA's Outer Planets Research Program.

  11. The Effects of Explicit Atmospheric Convection at High CO2

    NASA Astrophysics Data System (ADS)

    Tziperman, E.; Arnold, N.; Branson, M.; Burt, M. A.; Abbot, D. S.; Kuang, Z.; Randall, D. A.

    2014-12-01

    The effect of clouds on climate remains the largest uncertainty in climate change predictions, due to the inability of global climate models (GCMs) to resolve essential small-scale cloud and convection processes. We compare pre-industrial and quadrupled CO2 simulations between a conventional GCM in which convection is parameterized and a ``super-parameterized'' model in which convection is explicitly simulated with a cloud permitting model in each grid cell. We find that the global responses of the two models to increased CO2 are broadly similar: both simulate ice-free Arctic summers, winter-time Arctic convection, and enhanced MJO activity. Super-parameterization produces significant differences at both CO2 levels, including greater Arctic cloud cover, further reduced sea ice area at high CO2, and a stronger increase with CO2 of the Madden-Julian oscillation. The representation of clouds and convection has an enormous impact on simulation of the climate system. This study addresses concerns that conventional parameterizations may bias the response of climate models to increased greenhouse gases. The broadly similar response of two models with parameterized and non-parameterized convection and clouds suggests that state-of-the-art predictions, based on parameterized climate models, may not necessarily be strongly biased in either direction (too strong or too weak warming). At the same time, large differences in simulated tropical variability and Arctic sea ice area suggest that improvement in convection and cloud representations remain essential.

  12. Large charge moment change lightning on 31 May to 1 June 2013, including the El Reno tornadic storm

    NASA Astrophysics Data System (ADS)

    Lang, Timothy J.; Cummer, Steven A.; Petersen, Danyal; Flores-Rivera, Lizxandra; Lyons, Walter A.; MacGorman, Donald; Beasley, William

    2015-04-01

    On 31 May 2013, a line of severe tornadic thunderstorms (the El Reno event) developed during the local afternoon in central Oklahoma, USA. Within range of the Oklahoma Lightning Mapping Array, the evolution of the event can be separated into three distinct periods: an Early period (before 02:00 UTC on 1 June) when the storm consisted of discrete supercells, a Middle period (02:00-05:00 UTC) when the convection began merging into a linear feature and stratiform precipitation developed, and a Late period (after 05:00 UTC) featuring a mature mesoscale convective system (MCS). Each of these periods demonstrated distinct patterns in the large (>100 C km) charge moment change (CMC) lightning that was produced. During the Early period, large-CMC positive cloud-to-ground (+CG) lightning was produced in the convective cores of supercells. These flashes were small in area (typically <500 km2) and were commonly associated with a sloping midlevel positive charge region in the echo overhang on the storm's forward flank. The Middle period featured a population of larger +CMCs (>500 km2, >300 C km) in the developing stratiform, similar to typical sprite-parent lightning in MCSs. During the Late period, convective large CMC +CGs ceased and instead large-CMC negative CGs were produced in and near the MCS convection. These flashes neutralized charge both in convection as well as in adjacent stratiform and anvil precipitation. The results suggest that the CMC metric has potential applications for studying tropospheric weather.

  13. Characteristics of one sprite-producing summer thunderstorm

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Qie, Xiushu; Feng, Guili

    2013-06-01

    Twenty-nine sprites were observed during four years from 2007 to 2010 with one most sprite-productive storm on 1-2 August 2007 which produced 16 sprites. In this paper, the most sprite-productive storm is analyzed by using data from lightning detection network, Doppler radar, MTSAT (Multi-Function Transport Satellite) satellite, TRMM (Tropical Rainfall Measuring Mission), NCEP. The results show that most sprites appeared in groups and in shape of carrot. Most sprites occurred frequently when the cloud top brightness temperature is getting warm and radar reflectivity is becoming weak with characteristics of sharp decrease of negative CGs and slight increase of positive CGs. The parent cloud-to-ground lightning flashes (CGs) were positive and located in region with cloud top brightness temperature of - 40 to - 60 °C and radar reflectivity of 15-35 dBZ. The sprite-producing storm was fortunately scanned by TRMM during sprite time period. One orbit data could be used for PR (Precipitation Radar, 2A25) and two orbit data for TMI (TRMM Microwave Imager, 2A12 and 1B11). Results based on TRMM indicated that storm reflectivity with 30 dBZ was at about 12 km in the convective region and 4 km in stratiform region. The precipitation ice mostly located in 6-8 km with the largest value of 2.1 g/m3, but most cloud ice located between 10 and 14 km with no cloud ice below 6 km and very few at 6.0-8.0 km. The cloud water content located mostly between 4 and 6 km. Characteristics of vertical cross sections of radar reflectivity, precipitation ice and cloud ice agree well. Vertical cross sections along convective and stratiform regions show that contents of precipitation ice and cloud ice in convective region were larger than that in stratiform region. But cloud water in stratiform region was larger than that in convective region. The storm evolution could be seen clearly from characteristics of precipitation ice, cloud ice, cloud water and polarization corrected temperature at two different times. The CG distribution agrees well with low values of polarization corrected temperature region, indicating that lightning flashes have close relationship with ice particles. Although this paper is a case study of sprite-producing thunderstorm based on TRMM data, the results provided detailed information of microphysical structure of this sprite-producing storm.

  14. Large Geomagnetic Storms: Introduction to Special Section

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2010-01-01

    Solar cycle 23 witnessed the accumulation of rich data sets that reveal various aspects of geomagnetic storms in unprecedented detail both at the Sun where the storm causing disturbances originate and in geospace where the effects of the storms are directly felt. During two recent coordinated data analysis workshops (CDAWs) the large geomagnetic storms (Dst < or = -100 nT) of solar cycle 23 were studied in order to understand their solar, interplanetary, and geospace connections. This special section grew out of these CDAWs with additional contributions relevant to these storms. Here I provide a brief summary of the results presented in the special section.

  15. The Evolution of Saturn’s Storm-Perturbed Latitudinal Band Determined from Cassini/VIMS Daytime and Nighttime Spectra

    NASA Astrophysics Data System (ADS)

    Baines, K. H.; Sromovsky, Larry A.; Fry, Patrick M.; Moimary, Thomas W.; Badman, Sarah; Brown, Robert H.; Buratti, Bonnie J.; Clark, Roger N.; Nicholson, Philip D.; Sotin, Christophe

    2015-11-01

    Saturn’s Great Storm of 2010-2011 was one of the most powerful convective events ever witnessed, as indicated, for example, by its ability to deliver spectrally-identifiable water ice to the top of its convective tower ~200 km above the water vapor condensation level near 20 bar (Sromovsky, L. A., et al., Icarus 226, 402-418. 2013), and by its ability over ~ 6 months to encircle the planet with apparently anvil-like ammonia clouds sheared away from the top of its convective tower(s). Within a half-year after the storm subsided in mid-2011, these globe-encircling anvil-like clouds appeared to have largely disappeared, replaced by a 5-micron-bright band encircling the planet over nearly the same latitude region the storm generated clouds had been, indicating a dramatic decrease in the opacity of aerosols sensitive to 5-micron radiation (heat) emanating from the warm depths of the planet. Here we present quantitative results on the 5-year evolution of this storm-affected, 5-micron-bright region, from its initial appearance associated with a large anti-cyclone that formed in the Spring of 2011 through May 26-27, 2015, using both daytime and nighttime Cassini/VIMS spectral maps. Compared to the “normal”, unperturbed regional cloud structure upstream of the storm as observed on Feb 24, 2011, we find that the initial 5-micron-bright region on May 11, 2011 had lost ~60% of its upper-cloud (100-500 mbar) opacity (i. e., nominally, 2.7 opacity post-storm at 2-microns vs 7.1 pre-storm) and that the pressure of an opaque, putatively NH4SH, optically-thick “sheet” cloud dropped in altitude from a pre-storm level of 2.9 bar to the 3.2-bar level post-storm. Subsequently over the next 4 years, the upper-cloud region recovered half of its lost opacity, reaching ~5.6 on March 21, 2014 (and nearly recovered, to ~ 7 in our tentative May 26-27, 2015 data), corresponding to an e-folding time back to pre-storm opacity of 2.7 years, but the lower cloud has dropped down to the 3.3-bar level (rising to ~ 3.0 bar in our tentative analysis of the May 2015 data). Throughout, the region has remained 5-micron-bright, predominantly due to the deeper, warmer level of the opaque putative NH4SH cloud.

  16. Predicting Airspace Capacity Impacts Using the Consolidated Storm Prediction for Aviation

    NASA Technical Reports Server (NTRS)

    Russell, Carl

    2010-01-01

    Convective weather is currently the largest contributor to air traffic delays in the United States. In order to make effective traffic flow management decisions to mitigate these delays, weather forecasts must be made as early and as accurately as possible. A forecast product that could be used to mitigate convective weather impacts is the Consolidated Storm Prediction for Aviation. This product provides forecasts of cloud water content and convective top heights at 0- to 8-hour look-ahead times. The objective of this study was to examine a method of predicting the impact of convective weather on air traffic sector capacities using these forecasts. Polygons representing forecast convective weather were overlaid at multiple flight levels on a sector map to calculate the fraction of each sector covered by weather. The fractional volume coverage was used as the primary metric to determine convection s impact on sectors. Results reveal that the forecasts can be used to predict the probability and magnitude of weather impacts on sector capacity up to eight hours in advance.

  17. Statistical storm time examination of MLT-dependent plasmapause location derived from IMAGE EUV

    NASA Astrophysics Data System (ADS)

    Katus, R. M.; Gallagher, D. L.; Liemohn, M. W.; Keesee, A. M.; Sarno-Smith, L. K.

    2015-07-01

    The location of the outer edge of the plasmasphere (the plasmapause) as a function of geomagnetic storm time is identified and investigated statistically in regard to the solar wind driver. Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) extreme ultraviolet (EUV) data are used to create an automated method that locates and extracts the plasmapause. The plasmapause extraction technique searches a set range of possible plasmasphere densities for a maximum gradient. The magnetic local time (MLT)-dependent plasmapause results are compared to manual extraction results. The plasmapause results from 39 intense storms are examined along a normalized epoch storm timeline to determine the average plasmapause L shell as a function of MLT and storm time. The average extracted plasmapause L shell follows the expected storm time plasmapause behavior. The results show that during the main phase, the plasmapause moves earthward and a plasmaspheric drainage plume forms near dusk and across the dayside during strong convection. During the recovery phase, the plume rejoins the corotationally driven plasma while the average plasmapause location moves farther from the Earth. The results are also examined in terms of the solar wind driver. We find evidence that shows that the different categories of solar wind drivers result in different plasmaspheric configurations. During magnetic cloud-driven events the plasmaspheric drainage plume appears at the start of the main phase. During sheath-driven events the plume forms later but typically extends further in MLT.

  18. Observational analysis of the interaction between a baroclinic boundary and supercell storms on 27 April 2011

    NASA Astrophysics Data System (ADS)

    Sherrer, Adam Thomas

    A thermal boundary developed during the morning to early afternoon hours on 27 April as a result of rainfall evaporation and shading from reoccurring deep convection. This boundary propagated to the north during the late afternoon to evening hours. The presence of the boundary produced an area more conducive for the formation of strong violent tornadoes through several processes. These processes included the production of horizontally generated baroclinic vorticity, increased values in storm-relative helicity, and decreasing lifting condensation level heights. Five supercell storms formed near and/or propagated alongside this boundary. Supercells that interacted with this boundary typically produced significant tornadic damage over long distances. Two of these supercells formed to the south (warm) side of the boundary and produced a tornado prior to crossing to the north (cool) side of the boundary. These two storms exhibited changes in appearance, intensity, and structure. Two other supercells formed well south of the boundary. These two storms remained relatively weak until they interacted with the boundary. These storms then rapidly intensified and produced tornadoes. Supercells that formed well into the cool side of the boundary either did not produce tornadoes or the tornadoes were determined to be weak in nature.

  19. Environmental controls on storm intensity and charge structure in multiple regions of the continental United States

    NASA Astrophysics Data System (ADS)

    Fuchs, Brody R.; Rutledge, Steven A.; Bruning, Eric C.; Pierce, Jeffrey R.; Kodros, John K.; Lang, Timothy J.; MacGorman, Donald R.; Krehbiel, Paul R.; Rison, William

    2015-07-01

    A database consisting of approximately 4000 storm observations has been objectively analyzed to determine environmental characteristics that produce high radar reflectivities above the freezing level, large total lightning flash rates on the order of 10 flashes per minute, and anomalous vertical charge structures (most notably, dominant midlevel positive charge). The storm database is drawn from four regions of the United States featuring distinct environments, each with coinciding Lightning Mapping Array (LMA) network data. LMAs are able to infer total lightning flash rates using flash clustering algorithms, such as the one implemented in this study. Results show that anomalous charge structures inferred from LMA data, significant lightning flash rates, and increased radar reflectivities above the freezing level tend to be associated with environments that have high cloud base heights (approximately 3 km above ground level) and large atmospheric instability, quantified by normalized convective available potential energy (NCAPE) near 0.2 m s-2. Additionally, we infer that aerosols may affect storm intensity. Maximum flash rates were observed in storms with attributed aerosol concentrations near 1000 cm-3, while total flash rates decrease when aerosol concentrations exceed 1500 cm-3, consistent with previous studies. However, this effect is more pronounced in regions where the NCAPE and cloud base height are low. The dearth of storms with estimated aerosol concentrations less than 700 cm-3 (approximately 1% of total sample) does not provide a complete depiction of aerosol invigoration.

  20. Direct Measurements of the Convective Recycling of the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Bertram, Timothy H.; Perring, Anne E.; Wooldridge, Paul J.; Crounse, John D.; Kwan, Alan J.; Wennberg, Paul O.; Scheuer, Eric; Dibb, Jack; Avery, Melody; Sachse, Glen; Vay, Stephanie A.; Crawford, James H.; McNaughton, Cameron S.; Clarke, Antony; Pickering, Kenneth E.; Fuelberg, Henry; Huey, Greg; Blake, Donald R.; Singh, Hanwant B.; Hall, Samuel R.; Shetter, Richard E.; Fried, Alan; Heikes, Brian G.; Cohen, Ronald C.

    2007-01-01

    We present a statistical representation of the aggregate effects of deep convection on the chemistry and dynamics of the Upper Troposphere (UT) based on direct aircraft observations of the chemical composition of the UT over the Eastern United States and Canada during summer. These measurements provide new and unique observational constraints on the chemistry occurring downwind of convection and the rate at which air in the UT is recycled, previously only the province of model analyses. These results provide quantitative measures that can be used to evaluate global climate and chemistry models.

  1. Sustainable Development Summer Intern Report 2010 Sustainable Development Summer Intern

    E-print Network

    Sustainable Development Summer Intern Report 2010 1 Sustainable Development Summer Intern Final of Bishop's University. The role of the Sustainable Development Summer Intern (SDSI) is to coordinate and organize sustainable development information and activities during the summer months. Ensuring

  2. Dust storm off Western Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The impacts of Saharan dust storms reach far beyond Africa. Wind-swept deserts spill airborne dust particles out over the Atlantic Ocean where they can enter trade winds bound for Central and North America and the Caribbean. This Moderate Resolution Imaging Spectroradiometer (MODIS) image shows a dust storm casting an opaque cloud of cloud across the Canary Islands and the Atlantic Ocean west of Africa on June 30, 2002. In general it takes between 5 and 7 days for such an event to cross the Atlantic. The dust has been shown to introduce foreign bacteria and fungi that have damaged reef ecosystems and have even been hypothesized as a cause of increasing occurrences of respiratory complaints in places like Florida, where the amount of Saharan dust reaching the state has been increasing over the past 25 years.

  3. Observations of ionospheric convection from the Wallops SuperDARN radar at middle latitudes

    NASA Astrophysics Data System (ADS)

    Baker, J. B. H.; Greenwald, R. A.; Ruohoniemi, J. M.; Oksavik, K.; Gjerloev, J. W.; Paxton, L. J.; Hairston, M. R.

    2007-01-01

    During geomagnetic storms the ability of the Super Dual Auroral Radar Network (SuperDARN) to measure ionospheric convection becomes limited when the radars suffer from absorption and the auroral disturbance expands equatorward of the radar sites. To overcome these shortcomings, it was decided to construct a SuperDARN radar at middle latitudes on the grounds of the NASA Wallops Flight Facility. This paper presents the first comprehensive analysis of Doppler measurements from the Wallops radar, which commenced operations in May 2005. Wallops measurements are compared with the Goose Bay radar during the onset of a geomagnetic storm on 31 August 2005: Goose Bay measured the onset of geomagnetic activity at high latitude while Wallops monitored the expansion of convection to middle latitudes. Average convection patterns binned by the Kp geomagnetic index are also presented. During weak-moderate geomagnetic activity (Kp ? 3) the Wallops radar observes ionospheric irregularities between 50° and 60° magnetic latitude drifting westward across much of the nightside. When these measurements are incorporated into the calculation of an average SuperDARN convection pattern, the streamlines of polar cap outflow on the nightside become kinked in a manner reminiscent of the Harang discontinuity. This morphology arises quite naturally when the two-cell convection at high latitudes merges with the prevailing westward convection at middle latitudes. During increased geomagnetic activity (Kp ? 3), Wallops is able to measure the expansion of auroral electric fields to middle latitudes and the average SuperDARN cross-polar cap potential is increased by 25%.

  4. Severe storms observing satellite study

    NASA Technical Reports Server (NTRS)

    Iwens, R. P.; Stern, D. A.

    1976-01-01

    Payload distribution and the attitude control system for the multi-mission modular spacecraft/StormSat configuration are discussed. The design of the advanced atmospheric sounder and imaging radiometer (AASIR) gimbal drive and its servomechanism is described. Onboard data handling, data downlink communications, and ground data handling systems are developed. Additional topics covered include: magnetic unloading at synchronous altitude, north-south stationkeeping, and the feasibility and impact of flying the microwave atmospheric sounding radiometer (MASR) as an additional payload.

  5. Dust storm monitoring: effects on the environment, human health, and potential security conflicts

    NASA Astrophysics Data System (ADS)

    Davara, Fernando; de la Cruz, Antonio

    2004-10-01

    Monitoring dust storms with recently available medium and moderate resolution satellites (Meris, Modis and SeaWiFS) is providing new global information regarding the sources, transportation tracks and affected areas. Saharan dust plumes reach the SE region of the United States and the Caribbean region in summer and the Amazon basin in winter. Generally these Saharan plumes branch off in dust tracks along the North Atlantic reaching Western Europe as far north as the Scandinavian countries. Furthermore, dust storms originating in the Eastern Sahara and Northern African deserts form dust plumes propagated by the Sirocco winds that, after crossing the Mediterranean Sea, affect Southern and Central Europe particularly during spring and summer. Dust storms originating in the Gobi and Taklamakan deserts blow in an easterly direction propagating dust plumes affecting Korea, Japan and reach the United States after crossing the Pacific Ocean. The large amount of cyclic deposition generated by dust storms produces an environmental impact that causes the decay of coral reefs in the Caribbean, the origin and distribution of red tides and the disappearance of sea grasses. The relationship of dust plumes with the increasing number of asthma and allergy cases in the Caribbean correlates well with the appearance of similar cases in Europe and elsewhere during the mid 1980s. The recurrence presence of insecticides in regions where these products were banned long ago, or where they were never used, may be partly due to Saharan dust plumes. The loss of agricultural soil, literally blown away by dust storms in the source areas, creates hardship, hunger and forced-migration. Dust storms should be considered as an important security issue.

  6. Dust Storm in Southern California

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Along historic Route 66, just southeast of the little town of Amboy, California, lies a dried-up lake. Dry lakebeds are good sources of two things: salt and dust. In this image, the now-parched Bristol Lake offers up both. On April 12, 2007, dust storms menaced the area around Amboy. To the northwest, near Newberry Springs, California, dust hampered visibility and led to a multi-car collision on Interstate 40, killing two people and injuring several others. The same day, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of a dust storm in the dry remains of Bristol Lake. Many small dust clouds boil up from the ground surface, casting their shadows to the northwest. A bright white cloud floating over the dust also throws its shadow onto the ground below. East of the dust storm are salt works that stand out from the surrounding landscape thanks to their straight lines and sharp angles. Dark ground surfaces alternate with mined white salt in a network of stripes. When lakes evaporate, chemicals that had been dissolved in the water stay behind, making dry lake beds an ideal place to find heavy concentrations of minerals, including salt. Besides the salt works, something else appears in stark contrast to this arid place. Lush green fields of irrigated crops appear in the east. Besides their color, their orderly arrangement reveals their human-made origin.

  7. Summer Correspondence Program.

    ERIC Educational Resources Information Center

    Sulphur Springs Union Elementary School District, Canyon Country, CA.

    THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT: The goals of the Summer Correspondence Program have been to help students maintain their basic skills and avoid summer fall-out, as well as to promote parent involvement and positive community relations. After Proposition 13 left no funds for continuation of summer school programs, Sulphur Springs…

  8. Weekly Cycle of Lightning: Evidence of Storm Invigoration by Pollution

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong

    2009-01-01

    We have examined summertime 1998 2009 U.S. lightning data from the National Lightning Detection Network (NLDN) to look for weekly cycles in lightning activity. As was found by Bell et al. (2008) for rain over the southeast U.S., there is a significant weekly cycle in afternoon lightning activity that peaks in the middle of the week there. The weekly cycle appears to be reduced over population centers. Lightning activity peaks on weekends over waters near the SE U.S. The statistical significance of weekly cycles over the western half of the country is generally small. We found no evidence of a weekly cycle of synoptic-scale forcing that might explain these patterns. The lightning behavior is entirely consistent with the explanation suggested by Bell et al. (2008) for the cycles in rainfall and other atmospheric data from the SE U.S., that aerosols can cause storms to intensify in humid, convectively unstable environments.

  9. Effects of spatial variations of soil moisture and vegetation on the initiation of a local severe storm

    NASA Technical Reports Server (NTRS)

    Chang, Jy-Tai; Wetzel, Peter J.

    1988-01-01

    The role of evapotranspiration in a prestorm environment and the way in which a local severe storm initiates under the influence of spatial variations of soil moisture and vegetation coverage are examined. The Goddard Mesoscale Atmospheric Simulation System (Kaplan et al., 1982) is used to study the case of an isolated but intense convective storm associated with the Grand Island, Nebraska, tornado on June 3-4, 1980. It is found that spatial variations of vegetation and soil moisture increase the surface temperature gradient, enhance the thermally direct ageostrophic circulation, intensify the surface pressure gradient, and enhance the geostrophic low-level southerly flow.

  10. Development of a severe local storm prediction system: A 60-day test of a mesoscale primitive equation model

    NASA Technical Reports Server (NTRS)

    Paine, D. A.; Zack, J. W.; Kaplan, M. L.

    1979-01-01

    The progress and problems associated with the dynamical forecast system which was developed to predict severe storms are examined. The meteorological problem of severe convective storm forecasting is reviewed. The cascade hypothesis which forms the theoretical core of the nested grid dynamical numerical modelling system is described. The dynamical and numerical structure of the model used during the 1978 test period is presented and a preliminary description of a proposed multigrid system for future experiments and tests is provided. Six cases from the spring of 1978 are discussed to illustrate the model's performance and its problems. Potential solutions to the problems are examined.

  11. Overview of the Convection and Moisture Experiment (CAMEX)

    NASA Technical Reports Server (NTRS)

    Kakar, Ramesh; Goodman, Michael; Hood, robbie; Guillory, Anthony

    2006-01-01

    This paper presents an overview of the Convection and Moisture Experiment (CAMEX), including the field operations, aircraft platforms and missions, instrumentation, and data acquired during 1998 and 2001 field campaigns. A total of eight tropical storms and hurricanes were investigated during the CAMEX field campaigns including Bonnie, Danielle, Earl, and Georges during 1998 and Chantal, Erin, Gabrielle, and Humberto during 2001. Most of these storms were sampled with aircraft over the open ocean, but Hurricanes Bonnie (1998), Georges (1998), and Gabrielle (2001) also provided opportunities to monitor landfalling impacts. A few of the storms were sampled on multiple occasions during a course of several days. Most notable of these was Hurricane Humberto, which was sampled on three consecutive days during a cycle of both increasing and decreasing intensity change. Information collected for each of the eight CAMEX tropical storms as well as the Tropical Rainfall Measuring Mission validation activities are accessible via the CAMEX Web site and archived at the National Aeronautics and Space Administration Marshall Space Flight Center.

  12. Observation of moist convection in Jupiter's atmosphere. Galileo Imaging Team

    PubMed

    Gierasch; Ingersoll; Banfield; Ewald; Helfenstein; Simon-Miller; Vasavada; Breneman; Senske

    2000-02-10

    The energy source driving Jupiter's active meteorology is not understood. There are two main candidates: a poorly understood internal heat source and sunlight. Here we report observations of an active storm system possessing both lightning and condensation of water. The storm has a vertical extent of at least 50 km and a length of about 4,000 km. Previous observations of lightning on Jupiter have revealed both its frequency of occurrence and its spatial distribution, but they did not permit analysis of the detailed cloud structure and its dynamics. The present observations reveal the storm (on the day side of the planet) at the same location and within just a few hours of a lightning detection (on the night side). We estimate that the total vertical transport of heat by storms like the one observed here is of the same order as the planet's internal heat source. We therefore conclude that moist convection-similar to large clusters of thunderstorm cells on the Earth-is a dominant factor in converting heat flow into kinetic energy in the jovian atmosphere. PMID:10688191

  13. Statistical analysis of the ionospheric response during geomagnetic storm conditions over South Africa using ionosonde and GPS data

    NASA Astrophysics Data System (ADS)

    Matamba, Tshimangadzo Merline; Habarulema, John Bosco; McKinnell, Lee-Anne

    2015-09-01

    This paper presents a statistical analysis of ionospheric response over ionosonde stations Grahamstown (33.3°S, 26.5°E, geographic) and Madimbo (22.4°S, 30.9°E, geographic), South Africa, during geomagnetic storm conditions which occurred during the period 1996-2011. Such a climatological study is important in establishing local ionospheric behavior trend which later forms a basis for accurate modeling and forecasting electron density and critical frequency of the F2 layer (foF2) useful for high-frequency communication. The analysis was done using foF2 and total electron content (TEC), and to identify the geomagnetically disturbed conditions, the Dst index with a storm criterion of Dst ? nT was used. Results show a strong solar cycle dependence with negative ionospheric storm effects following the solar cycle and positive ionospheric storm effects occurring most frequently during solar minimum. Seasonally, negative and positive ionospheric storm effects occurred most in summer (63.24%) and in winter (53.62%), respectively. An important finding is that only negative ionospheric storms were observed during great geomagnetic storm activity (Dst ? nT). For periods when both foF2 and TEC data (from colocated ionosonde and GPS receiver stations) were available, a similar response in terms of variational trend was observed. Hence, GPS data can be used to effectively identify the ionospheric response in the absence of ionosonde data.

  14. The North Alabama Lightning Mapping Array: Recent Severe Storm Observations and Future Prospects

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Blakeslee, R.; Christian, H.; Koshak, W.; Bailey, J.; Hall, J.; McCaul, E.; Buechler, D.; Darden, C.; Burks, J.

    2004-01-01

    The North Alabama Lightning Mapping Array became operational in November 2001 as a principal component of a severe weather test bed to infuse new science and technology into the short-term forecasting of severe and hazardous weather, principally within nearby National Weather Service forecast offices. Since the installation of the LMA, it has measured the total lightning activity of a large number of severe weather events, including three supercell tornado outbreaks, two supercell hailstorm events, and numerous microburst-producing storms and ordinary non-severe thunderstorms. The key components of evolving storm morphology examined are the time rate-of-change (temporal trending) of storm convective and precipitation characteristics that can be diagnosed in real-time using NEXRAD WSR-88D Doppler radar (echo growth and decay, precipitation structures and velocity features, outflow boundaries), LMA (total lightning flash rate and its trend) and National Lightning Detection Network (cloud-to- ground lightning, its polarity and trends). For example, in a transitional season supercell tornado outbreak, peak total flash rates for typical supercells in Tennessee reached 70-100/min, and increases in the total flash rate occurred during storm intensification as much as 20-25 min prior to at least some of the tornadoes. The most intense total flash rate measured during this outbreak (over 800 flashes/min) occurred in a storm in Alabama. In the case of a severe summertime pulse thunderstorm in North Alabama, the peak total flash rate reached 300/min, with a strong increase in total lightning evident some 9 min before damaging winds were observed at the surface. In this paper we provide a sampling of LMA observations and products during severe weather events to illustrate the capability of the system, and discuss the prospects for improving the short-term forecasting of convective weather using total lightning data.

  15. Positive and negative ionospheric storms occurring during the 15 May 2005 geomagnetic superstorm

    NASA Astrophysics Data System (ADS)

    Horvath, Ildiko; Lovell, Brian C.

    2015-09-01

    This study focuses on the 15 May 2005 geomagnetic superstorm and aims to investigate the global variation of positive and negative storm phases and their development. Observations are provided by a series of global total electron content maps and multi-instrument line plots. Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe) simulations are also employed. Results reveal some sunward streaming plumes of storm-enhanced density (SED) over Asia and a well-developed midlatitude trough over North America forming isolated positive and negative storms, respectively. The simultaneous development of positive and negative storms over North America is also shown. Then, some enhanced auroral ionizations maintained by strong equatorward neutral winds appeared in the depleted nighttime ionosphere. Meanwhile, the northern nighttime polar region became significantly depleted as the SED plume plasma could not progress further than the dayside cusp. Oppositely, a polar tongue of ionization (TOI) developed in the daytime southern polar region. According to CTIP simulations, solar heating locally maximized (minimized) over the southern (northern) magnetic pole. Furthermore, strong upward surges of molecular-rich air created O/N2 decreases both in the auroral zone and in the trough region, while some SED-related downward surges produced O/N2 increases. From these results we conclude for the time period studied that (1) composition changes contributed to the formation of positive and negative storms, (2) strengthening polar convection and increasing solar heating of the polar cap supported polar TOI development, and (3) a weaker polar convection and minimized solar heating of the polar cap aided the depletion of polar plasma.

  16. Numerical Simulations of the Ring Current During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Lemon, C.; Guild, T. B.; Schulz, M.; Roeder, J. L.; Lui, A.; Keesee, A. M.; Goldstein, J.; Le, G.; Rodriguez, J. V.

    2012-12-01

    Recent progress in ring current modeling has shown the importance of a self-consistent treatment of particle transport along with magnetic and electric fields in the inner magnetosphere. The ring current intensity and spatial distribution are significantly affected by variations in the plasma sheet (the major source to the ring current), the cross polar cap potential, and compressions and expansions of the magnetosphere. We simulate the ion and electron ring current and plasma sheet by using the magnetically and electrically self-consistent Rice Convection Model-Equilibrium [Lemon et al., JGR, 2004] with a time-varying magnetopause driven by upstream solar wind and interplanetary magnetic (IMF) conditions and with time-varying plasma sheet distributions as boundary conditions. Examples of detailed comparisons of simulated storm events with in-situ magnetic intensities (e. g., GOES, Polar/MPA, or THEMIS) and proton flux spectra (e. g., LANL/MPA and SOPA, Polar/CAMMICE, or THEMIS) and energetic neutral atom (ENA) fluxes (e. g., TWINS) will be shown. We will also present comparisons of observed electron flux spectra with simulations based on a few simple electron loss models. These data-model comparisons test the ability of our model to characterize the ring current environment and the storm-time inner magnetospheric magnetic field.

  17. The role of conditional symmetric instability in Sting Jet storms

    NASA Astrophysics Data System (ADS)

    Baker, L. H.; Martinez-Alvarado, O.; Gray, S. L.; Clark, P. A.

    2009-04-01

    The aim of this project is to determine the mechanisms that lead to sting jets in extreme windstorms and develop diagnostics for predicting their formation and development. Extratropical cyclones often produce strong surface winds, mostly associated with low-level jets along the warm and cold fronts. Some severe extratropical cyclones have been found to produce an additional area of localised strong, and potentially very damaging, surface winds during a certain part of their development. These strong winds are associated with air that originates within the cloud head, exiting at the tip of the cloud head and descending rapidly from there to the surface. This rapidly descending air associated with the strong surface winds is known as a sting jet. One significant feature of sting jet storms is mesoscale slantwise circulations in the cloud head, which have been speculated to be due to the release of conditional symmetric instability (CSI). Analyses of two very different proposed sting jet storms will be presented. In both cases, a sting jet feature has been identified and examined using two diagnostics for CSI: SCAPE (slantwise convective available potential energy) and moist potential vorticity (MPV). SCAPE and negative MPV exist near the tip of the cloud heads and SCAPE decreases during the time of the descent of the sting jets, indicating that CSI may be being released.

  18. The Gravity Wave Response Above Deep Convection in a Squall Line Simulation

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Holton, J. R.; Durran, D. R.

    1995-01-01

    High-frequency gravity waves generated by convective storms likely play an important role in the general circulation of the middle atmosphere. Yet little is known about waves from this source. This work utilizes a fully compressible, nonlinear, numerical, two-dimensional simulation of a midlatitude squall line to study vertically propagating waves generated by deep convection. The model includes a deep stratosphere layer with high enough resolution to characterize the wave motions at these altitudes. A spectral analysis of the stratospheric waves provides an understanding of the necessary characteristics of the spectrum for future studies of their effects on the middle atmosphere in realistic mean wind scenarios. The wave spectrum also displays specific characteristics that point to the physical mechanisms within the storm responsible for their forcing. Understanding these forcing mechanisms and the properties of the storm and atmosphere that control them are crucial first steps toward developing a parameterization of waves from this source. The simulation also provides a description of some observable signatures of convectively generated waves, which may promote observational verification of these results and help tie any such observations to their convective source.

  19. 3B.1 CAPS REALTIME STORM-SCALE ENSEMBLE AND HIGH-RESOLUTION FORECASTS AS PART OF THE NOAA HAZARDOUS WEATHER TESTBED 2007 SPRING EXPERIMENT

    E-print Network

    Xue, Ming

    high-resolution ensemble and deterministic forecasts for convective- scale hazardous weather and Forecasting and 18th Conf. on Numerical Weather Prediction Amer. Meteor. Soc., Park City, UT, 25-29 June 20071 3B.1 CAPS REALTIME STORM-SCALE ENSEMBLE AND HIGH-RESOLUTION FORECASTS AS PART OF THE NOAA

  20. Supergranulation, a convective phenomenon

    NASA Astrophysics Data System (ADS)

    Udayashankar, Paniveni

    2015-08-01

    Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection ,Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni , U., Krishan, V., Singh, J., Srikanth, R., 2004, MNRAS, 347, 1279-12814) Paniveni , U., Krishan, V., Singh, J., Srikanth, R., 2005, Solar Physics, 231, 1-105) Paniveni , U., Krishan, V., Singh, J., Srikanth, R., 2010, MNRAS, 402, Issue 1, 424-428

  1. Anomalously Weak Solar Convection

    NASA Technical Reports Server (NTRS)

    Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l < 60, convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l < 60, with Rossby numbers smaller than approximately 10(exp -2) at r/R-solar = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.

  2. Anomalously weak solar convection

    PubMed Central

    Hanasoge, Shravan M.; Duvall, Thomas L.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ?. Within the wavenumber band ? < 60, convective velocities are 20–100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ? < 60, with Rossby numbers smaller than approximately 10-2 at r/R? = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient. PMID:22665774

  3. Convective quasi-equilibrium

    NASA Astrophysics Data System (ADS)

    Yano, J.-I.; Plant, R. S.

    2012-12-01

    The concept of convective quasi-equilibrium (CQE) is a key ingredient in order to understand the role of deep moist convection in the atmosphere. It has been used as a guiding principle to develop almost all convective parameterizations and provides a basic theoretical framework for large-scale tropical dynamics. The CQE concept as originally proposed by Arakawa and Schubert (1974) is systematically reviewed from wider perspectives. Various interpretations and extensions of Arakawa and Schubert's CQE are considered both in terms of a thermodynamic analogy and as a dynamical balance. The thermodynamic interpretations can be more emphatically embraced as a homeostasis. The dynamic balance interpretations can be best understood by analogy with the slow manifold. Various criticisms of CQE can be avoided by taking the dynamic balance interpretation. Possible limits of CQE are also discussed, including the importance of triggering in many convective situations, as well as the possible self-organized criticality of tropical convection. However, the most intriguing aspect of the CQE concept is that in spite of many observational tests supporting and interpreting it in many different senses, it has never been established in a robust manner based on a systematic analysis of the cloud work function budget by observations as was originally defined.

  4. Storm-Related Carbon Monoxide Poisoning: An Investigation of Target Audience Knowledge and Risk Behaviors

    PubMed Central

    Damon, Scott A.; Poehlman, Jon A.; Rupert, Douglas J.; Williams, Peyton N.

    2015-01-01

    Carbon monoxide (CO) poisonings in the United States consistently occur when residents improperly use portable gasoline-powered generators and other tools following severe storms and power outages. However, protective behaviors—such as installing CO alarms and placing generators more than 20 feet away from indoor structures—can prevent these poisonings. This study identified knowledge, attitudes, and beliefs that lead consumers to adopt risk and protective behaviors for storm-related CO poisoning and post-storm generator use. Four focus groups (32 participants in total) were conducted with generator owners in winter and summer storm-prone areas to explore home safety, portable generator use, CO poisoning knowledge, and generator safety messages. Discussions were transcribed, and findings analyzed using an ordered meta-matrix approach. Although most generator owners were aware of CO poisoning, many were unsure what constitutes a safe location for generator operation and incorrectly stated that enclosed areas outside the home—such as attached garages, sheds, and covered porches—were safe. Convenience and access to appliances often dictated generator placement. Participants were receptive to installing CO alarms in their homes but were unsure where to place them. These findings suggest a deficit in understanding how to operate portable generators safely and a need to correct misconceptions around safe placement. In terms of behavioral price, the simple installation and maintenance of inexpensive CO alarms may be the most important strategy for ultimately protecting homes from both storm-related and other CO exposures. PMID:26345640

  5. Compound intensity/duration/frequency-relationships of extreme precipitation for two seasons and two storm types

    NASA Astrophysics Data System (ADS)

    Willems, P.

    2000-06-01

    Intensity/duration/frequency (IDF)-relationships of extreme precipitation are widely used for design of stormwater facilities. As the properties of extreme precipitation may be very different for different storm types and different seasons, IDF-relationships which permit decomposition into different components are established. The different components refer to different storm types or to different seasons, depending on the type of decomposition. The present study is based on the long raingauge record of 10-min precipitation depths at Uccle/Ukkel (Belgium) for the period 1967-1993. Storms of two different types (type a: airmass thunderstorms, and type b: cyclonic/frontal storms) are separated based on their distribution of peak-over-threshold intensity. This is done for each duration (aggregation-level) in the range 10 min-15 days, using a two-component exponential distribution. The exponential decay parameters and the mixing parameter for the two components are estimated as functions of the aggregation-level. Those functions show scaling properties for the parameters. Different mixtures of storms of types a and b are also estimated for summer and winter conditions. It brings new elements in our current understanding of what determines the IDF curves and their scaling properties.

  6. Characterizing storm-event nitrate fluxes in a fifth order suburbanizing watershed using in situ sensors.

    PubMed

    Carey, Richard O; Wollheim, Wilfred M; Mulukutla, Gopal K; Mineau, Madeleine M

    2014-07-15

    Land use influences the distribution of nonpoint nitrogen (N) sources in urbanizing watersheds and storm events interact with these heterogeneous sources to expedite N transport to aquatic systems. In situ sensors provide high frequency and continuous measurements that may reflect storm-event N variability more accurately compared to grab samples. We deployed sensors from April to December 2011 in a suburbanizing watershed (479 km2) to characterize storm-event nitrate-N (NO3-N) and conductivity variability. NO3-N concentrations exhibited complex patterns both within and across storms and shifted from overall dilution (source limitation) before summer baseflows to subsequent periods of flushing (transport limitation). In contrast, conductivity generally diluted with increasing runoff. Despite diluted NO3-N concentrations, NO3-N fluxes consistently increased with flow. Sensor flux estimates for the entire deployment period were similar to estimates derived from weekly and monthly grab samples. However, significant differences in flux occurred at monthly time scales, which may have important implications for understanding impacts to temporally sensitive receiving waters. Evidence of both supply (nutrient-poor) and transport (nutrient-rich) limitation patterns during storms is consistent with watersheds undergoing land use transitions. Tracking shifts in these patterns could indicate N accumulation in developing watersheds and help identify mitigation opportunities prior to N impairment. PMID:24945442

  7. The storm-time equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Burrows, K.; Sastry, T. S. G.; Sampath, S.; Stolarik, J. D.; Usher, M. J.

    1976-01-01

    A Petrel rocket carrying a double cell rubidium magnetometer was launched from the Thumba Equatorial Rocket Launching Station during the early main phase of a magnetic storm. No ionospheric currents associated with the storm were observed and the large field depression, at the flight time, must therefore be attributed to currents at higher altitudes. The equatorial enhancement of ionospheric magnetic storm currents, predicted on the basis of theory and earlier ground data, was not observed.

  8. The storm-time equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Burrows, K.; Sastry, T. S. G.; Sampath, S.; Stolarik, J. D.; Usher, M. J.

    1977-01-01

    A Petrel rocket carrying a double cell rubidium magnetometer was launched from the Thumba Equatorial Rocket Launching Station during the early main phase of a magnetic storm. No ionospheric currents associated with the storm were observed, and the large field depression at the flight time must therefore be attributed to currents at higher altitudes. The equatorial enhancement of ionospheric magnetic storm currents, predicted on the basis of theory and earlier ground data, was not observed.

  9. M. Bahrami ENSC 388 (F09) Natural Convection 1 Natural Convection

    E-print Network

    Bahrami, Majid

    Convection 1 Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient encountered in natural convection is also low. Mechanisms

  10. Physics of multiscale convection in Earth's mantle: Onset of sublithospheric convection

    E-print Network

    Physics of multiscale convection in Earth's mantle: Onset of sublithospheric convection Jun. [1] We investigate the physics of multiscale convection in Earth's mantle, characterized convection. In this study, conditions for the existence of small- scale convection beneath oceanic

  11. Storm impact scale for barrier islands

    USGS Publications Warehouse

    Sallenger, A.H., Jr.

    2000-01-01

    A new scale is proposed that categorizes impacts to natural barrier islands resulting from tropical and extra-tropical storms. The proposed scale is fundamentally different than existing storm-related scales in that the coupling between forcing processes and the geometry of the coast is explicitly included. Four regimes, representing different levels of impact, are defined. Within each regime, patterns and relative magnitudes of net erosion and accretion are argued to be unique. The borders between regimes represent thresholds defining where processes and magnitudes of impacts change dramatically. Impact level 1 is the 'swash' regime describing a storm where runup is confined to the foreshore. The foreshore typically erodes during the storm and recovers following the storm; hence, there is no net change. Impact level 2 is the 'collision' regime describing a storm where the wave runup exceeds the threshold of the base of the foredune ridge. Swash impacts the dune forcing net erosion. Impact level 3 is the 'overwash' regime describing a storm where wave runup overtops the berm or, if present, the foredune ridge. The associated net landward sand transport contributes to net migration of the barrier landward. Impact level 4 is the 'inundation' regime describing a storm where the storm surge is sufficient to completely and continuously submerge the barrier island. Sand undergoes net landward transport over the barrier island; limited evidence suggests the quantities and distance of transport are much greater than what occurs during the 'overwash' regime.

  12. In the Eye of the Storm: A Participatory Course on Coastal Storms

    ERIC Educational Resources Information Center

    Curtis, Scott

    2013-01-01

    Storm disasters are amplified in the coastal environment due to population pressures and the power of the sea. The upper-division/graduate university course "Coastal Storms" was designed to equip future practitioners with the skills necessary to understand, respond to, and mitigate for these natural disasters. To accomplish this, "Coastal Storms"…

  13. Convective rainfall estimation from digital GOES-1 infrared data

    NASA Technical Reports Server (NTRS)

    Sickler, G. L.; Thompson, A. H.

    1979-01-01

    An investigation was conducted to determine the feasibility of developing and objective technique for estimating convective rainfall from digital GOES-1 infrared data. The study area was a 240 km by 240 km box centered on College Station, Texas (Texas A and M University). The Scofield and Oliver (1977) rainfall estimation scheme was adapted and used with the digital geostationary satellite data. The concept of enhancement curves with respect to rainfall approximation is discussed. Raingage rainfall analyses and satellite-derived rainfall estimation analyses were compared. The correlation for the station data pairs (observed versus estimated rainfall amounts) for the convective portion of the storm was 0.92. It was demonstrated that a fairly accurate objective rainfall technique using digital geostationary infrared satellite data is feasible. The rawinsonde and some synoptic data that were used in this investigation came from NASA's Atmospheric Variability Experiment, AVE 7.

  14. Evidence for the Convective Transport of Dust Aerosol During DC-3

    NASA Astrophysics Data System (ADS)

    Corr, C.; Ziemba, L. D.; Beyersdorf, A. J.; Moore, R.; Winstead, E.; Thornhill, K. L., II; Shook, M.; Anderson, B. E.; Lawson, P.; Froyd, K. D.; Ryerson, T. B.; Peischl, J.; Pollack, I. B.; Scheuer, E. M.; Dibb, J. E.

    2014-12-01

    Bulk aerosol composition and aerosol volume size distributions measured aboard the NASA DC-8 during the NCAR DC-3 (Deep Convective Clouds and Chemistry Experiment) mission in May/June 2012 were used to investigate the transport of mineral dust through twelve storms encountered over Colorado and Oklahoma. Measurements made at low altitudes (< 5 km) in the storm inflow region were compared to those made in the outflow in and around storm cirrus anvils (altitude > 9 km). Total coarse (1 ?m < diameter < 5 ?m) aerosol volume (Vc) and Ca2+ measured in both storm inflow and outflow were highly correlated, thus dust was assumed to dominate the aerosol coarse volume. Mean outflow Ca2+ concentrations were comparable to mean inflow values as demonstrated by average outflow/inflow Ca2+ ratios near unity. Vc outflow/inflow ratios were also high (>> 0.5) for most storms, suggesting coarse mode dust was efficiently transported through the CO and OK storms. Comparisons between inflow aerosol number concentration (Nc) calculated over a size range characteristic of dust ice nuclei (0.5 ?m < diameter < 5 ?m) and ice particle concentrations in storm anvils further suggested interstitial coarse mode dust was present in these cirrus anvils. For over half the storms, mean inflow Nc exceeded mean anvil ice particle concentrations implying ice nucleation mechanisms may be sensitive to complex dust characteristics beyond size. Possible artifacts associated with shattered ice crystals were examined via 1) closure calculations for observations from different instrumentation and independent aircraft inlets, and 2) assessment of relationships with cloud microphysical observations. Initial results indicate minimal influence of ice shatter on aerosol measurements, but effects vary for individual storms with different cloud microphysical characteristics.

  15. Analysis of Summertime Convective Initiation in Central Alabama Using the Land Information System

    NASA Technical Reports Server (NTRS)

    James, Robert S.; Case, Jonathan L.; Molthan, Andrew L.; Jedlovec, Gary J.

    2011-01-01

    During the summer months in the southeastern United States, convective initiation presents a frequent challenge to operational forecasters. Thunderstorm development has traditionally been referred to as random due to their disorganized, sporadic appearance and lack of atmospheric forcing. Horizontal variations in land surface characteristics such as soil moisture, soil type, land and vegetation cover could possibly be a focus mechanism for afternoon convection during the summer months. The NASA Land Information System (LIS) provides a stand-alone land surface modeling framework that incorporates these varying soil and vegetation properties, antecedent precipitation, and atmospheric forcing to represent the soil state at high resolution. The use of LIS as a diagnostic tool may help forecasters to identify boundaries in land surface characteristics that could correlate to favored regions of convection initiation. The NASA Shortterm Prediction Research and Transition (SPoRT) team has been collaborating with the National Weather Service Office in Birmingham, AL to help incorporate LIS products into their operational forecasting methods. This paper highlights selected convective case dates from summer 2009 when synoptic forcing was weak, and identifies any boundaries in land surface characteristics that may have contributed to convective initiation. The LIS output depicts the effects of increased sensible heat flux from urban areas on the development of convection, as well as convection along gradients in land surface characteristics and surface sensible and latent heat fluxes. These features may promote mesoscale circulations and/or feedback processes that can either enhance or inhibit convection. With this output previously unavailable to operational forecasters, LIS provides a new tool to forecasters in order to help eliminate the randomness of summertime convective initiation.

  16. Alaskan Ice Core Shows Relationship Between Asian Dust Storm And The Stratosphere Troposphere Exchange

    NASA Astrophysics Data System (ADS)

    Yasunari, T. J.; Shiraiwa, T.; Kanamori, S.; Fujii, Y.; Igarashi, M.; Yamazaki, K.; Benson, C. S.; Hondoh, T.

    2005-12-01

    Atmospheric dust absorbs and scatters solar radiation, and affects global radiative balance. Dust storm in arid and semi-arid regions in East Asia is main dust source in the northern hemisphere. Asian dust has large effect on radiative balance in the northern hemisphere and its long range transport to Alaskan region frequently occurs in springtime. On the other hand, the stratosphere-troposphere exchange (STE) is a important phenomenon for material exchange among the spheres. Some parameters such as tritium, ozone and beryllium can be transferred from the stratosphere into the troposphere under some conditions such as tropopause folding outbreaks, cut-off low developing and cyclonic activities. STE has a seasonal exchange with maximum in springtime. In June 2003, a 50m ice core was drilled at the summit of Mount Wrangell volcano (60N, 144W, 4100 m), Alaska. Dust particle concentration, tritium content and ratio of stable hydrogen isotope were analyzed. Tritium is the stratospheric tracer recently because the effect of nuclear tests in 1960s has faded these days, and its concentration is highest north of 30th parallel. Therefore, the ice core drilled here is ideal to assess both the Asian dust transport and STE. The core covers 1992-2002 with divided four seasons (winter, spring, late-spring and summer). Fine dust less than one micro meter generally represents long range transport increased in springtime every year. The drastic fine and coarse dust flux increases after 2000 correspond to recent increase of Asian Dust outbreaks. These indicate that Asian dust storm largely affects Mount Wrangell every year. Here we show the fact that highest positive correlation between tritium and fine dust fluxes was seen in the term from late-spring to summer (also high correlation between tritium and coarse dust fluxes in this term), suggesting that the stratosphere-troposphere exchange was most intensified by Asian dust storms in this transient season from spring to summer. Asian dust and STE are dominant in springtime. However, our results showed that these activities related each other the most from late-spring to summer. Asian dust storm and STE are not active in summer. Hence, our results are assumed to mainly reflect late-spring relationship between Asian dust storm and STE. Asian dust outbreaks with severe weather would impact on vertical and horizontal material circulation from the stratosphere to the troposphere. Further studies for Asian dust and STE especially focused on late-spring may lead to elucidate the mechanism of material circulation and assess the radiative forcing of Asian dust in springtime.

  17. Violent storms within the Sea: dense water formation episodes in the NW Mediterranean

    NASA Astrophysics Data System (ADS)

    Salat, J.; Puig, P.; Latasa, M.

    2010-07-01

    Heat and water exchanges in the ocean occur almost exclusively at the surface. As water compressibility is very low, stratification of the fluid is expected and horizontal motion is predominant in the sea interior. Among the few processes that may introduce a vertical component in the water motion are those that increase surface water density by freezing, cooling or evaporation. Those processes triggering convective motion are enhanced by cold surface air, dry wind and low solar radiation. Therefore, convective cells are more likely to occur when the temperature of the air at the sea surface is lower than sea surface temperature. Conversely, rain, river runoff, solar heating, calm and condensation at surface enhance stratification. Convective motion at sea has several scales ranging from few meters at the upper ocean, causing the surface mixed layer, to the entire water column, in what is known as deep convection. Only few places in the world ocean are suitable for deep convection, and only under particular weather conditions. In this paper, a brief review of the response to these particular conditions in the NW Mediterranean is presented in what is known as dense water formation. The violent sinking and spreading of water parcels that reach the deep sea floor in few hours is described. These are "hidden" mediterranean storms, occurring under the sea surface, "on the other side of the mirror".

  18. Impacts of a Fire Smoke Plume on Deep Convective Clouds Observed during DC3

    NASA Astrophysics Data System (ADS)

    Takeishi, A.; Storelvmo, T.; Zagar, M.

    2014-12-01

    While the ability of aerosols to act as cloud condensation nuclei (CCN) and ice nuclei (IN) is well recognized, the effects of changing aerosol number concentrations on convective clouds have only been studied extensively in recent years. As deep convective clouds can produce heavy precipitation and may sometimes bring severe damages, especially in the tropics, we need to understand the changes in the convective systems that could stem from aerosol perturbations. By perturbing convective clouds, it has also been proposed that aerosols can affect large-scale climate. According to the convective invigoration mechanism, an increase in the aerosol concentration could lead to a larger amount of rainfall and higher vertical velocities in convective clouds, due to an increase in the latent heat release aloft. With some of the satellite observations supporting this mechanism, it is necessary to understand how sensitive the model simulations actually are to aerosol perturbations. This study uses the Weather Research and Forecasting (WRF) model as a cloud-resolving model to reproduce deep convective clouds observed during the Deep Convective Clouds and Chemistry (DC3) field campaign. The convective cloud of our interest was observed in northeastern Colorado on June 22nd in 2012, with a plume of forest fire smoke flowing into its core. Compared to other convective cells observed in the same area on different days, our aircraft data analysis shows that the convective cloud in question included more organic aerosols and more CCN. These indicate the influence of the biomass burning. We compare the results from simulations with different microphysics schemes and different cloud or ice number concentrations. These sensitivity tests tell us how different the amount and the pattern of precipitation would have been if the aerosol concentration had been higher or lower on that day. Both the sensitivity to aerosol perturbation and the reproducibility of the storm are shown to highly depend on the choice of the microphysics scheme.

  19. Alabama Ground Operations during the Deep Convective Clouds and Chemistry Experiment

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Blakeslee, Richard; Koshak, William; Bain, Lamont; Rogers, Ryan; Kozlowski, Danielle; Sherrer, Adam; Saari, Matt; Bigelbach, Brandon; Scott, Mariana; Schultz, Elise; Schultz, Chris; Gatlin, Patrick; Wingo, Matt; Phillips, Dustin; Phillips, Chris; Peterson, Harold; Bailey, Jeff; Frederickson, Terryn; Hall, John; Bart, Nicole; Becker, Melissa; Pinkney, Kurtis; Rowe, Scott; Starzec, Mariusz

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) field campaign investigates the impact of deep, midlatitude convective clouds, including their dynamical, physical and lighting processes, on upper tropospheric composition and chemistry. DC3 science operations took place from 14 May to 30 June 2012. The DC3 field campaign utilized instrumented aircraft and ground ]based observations. The NCAR Gulfstream ]V (GV) observed a variety of gas ]phase species, radiation and cloud particle characteristics in the high ]altitude outflow of storms while the NASA DC ]8 characterized the convective inflow. Groundbased radar networks were used to document the kinematic and microphysical characteristics of storms. In order to study the impact of lightning on convective outflow composition, VHF ]based lightning mapping arrays (LMAs) provided detailed three ]dimensional measurements of flashes. Mobile soundings were utilized to characterize the meteorological environment of the convection. Radar, sounding and lightning observations were also used in real ]time to provide forecasting and mission guidance to the aircraft operations. Combined aircraft and ground ]based observations were conducted at three locations, 1) northeastern Colorado, 2) Oklahoma/Texas and 3) northern Alabama, to study different modes of deep convection in a variety of meteorological and chemical environments. The objective of this paper is to summarize the Alabama ground operations and provide a preliminary assessment of the ground ]based observations collected over northern Alabama during DC3. The multi ] Doppler, dual ]polarization radar network consisted of the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR), the UAHuntsville Mobile Alabama X ]band (MAX) radar and the Hytop (KHTX) Weather Surveillance Radar 88 Doppler (WSR ]88D). Lightning frequency and structure were observed in near real ]time by the NASA MSFC Northern Alabama LMA (NALMA). Pre ]storm and inflow proximity soundings were obtained with the UAHuntsville mobile sounding unit and the Redstone Arsenal (QAG) morning sounding.

  20. Violent storms within the sea: Dense water formation episodes in the Mediterranean.

    NASA Astrophysics Data System (ADS)

    Salat, J.

    2009-09-01

    The Mediterranean is a semi enclosed basin which receives surface water from the Atlantic Ocean. Most of this water is returned into the Ocean with higher density, spreading at more than 1000 m depth (the rest is transported by the atmosphere and the rivers to the Ocean surface). In terms of water budget, the Mediterranean is considered an evaporation basin, but the loss of water is neither the only process that increases the water density nor it is a steady or uniform process. The factors affecting the water density, temperature and salinity, are driven by mass and heat exchanges with the atmosphere. Those exchanges may be by direct contact or mediated by the land. Therefore, changes in water density depend on the water circulation and local weather conditions, both with seasonal and geographical constraints. As the compressibility of water is very low, stratification is expected and horizontal motion is the predominant in the sea interior. Among the few processes that may introduce a vertical component in the water motion are surface heat loss or evaporation that increase the surface water density triggering convective cells. Such processes will be enhanced by surface cooling or by dry continental winds, and counterbalanced by rain, river runoff, solar heating and condensation. Therefore dense water formation are more likely to occur when sea surface temperature is higher than the surface air temperature. There are several scales of convective motions in the ocean, starting from the formation of the surface mixed layer during summer, by night cooling, breezes, and occasional wind storms. During autumn and winter, the vertical scale of the mixing is increasing by steps, through wind storms and progressive cooling, to easily reach the bottom over the continental shelves, typically not deeper than 150 m. However, as the Gibraltar sill is relatively shallow (~350 m) in relation to the average Mediterranean basin (2000-3000 m), the stratification of the deeper layers is weak. Therefore, where and when the surface layer becomes well mixed, typically in winter, in the northern regions, conditions are given (pre-conditioning phase) to the occurrence of dense water formation episodes. Those episodes require the participation of strong cold and dry winds which force an intense evaporation. In the NW Mediterranean, such forcing may act over the continental shelves, like that of the Gulf of Lions, or over deep open seas, typically the central part east of Catalonia and south of Provence. Over the shelf, surface water is expected to be fresher because of the runoff (e.g. the Rhône). Along the continental margin the water circulation, geostrophically adapted, is cyclonic and the stratification in the centre is lower, then density reached may be higher in the central part than on the shelf. However, cooling will be more effective over the shelf as the heat content of the water column is lower because it is much shorter. Once density over the shelf is high enough, the bottom water overflows and violently sinks along the slope in relatively narrow areas through what has been called a cascading event. In the central part, dense water formed sinks almost vertically in funnels not larger than a few kilometres in diameter, and is accompanied by a compensating rise of water from great depth on all sides. In such open sea winter convection events, the dense water can sink some 800 m within a matter of hours and may reach the bottom level, >2500 m deep, within a couple of days. Such short and violent episodes, cascading or open sea convection, of a few days' duration supply enough water to feed the lower layer to compensate the outflow through the Strait of Gibraltar for several weeks. The repeated events in some few points across the Mediterranean, like those above mentioned, are maintaining the Mediterranean circulation and the water exchanges with the Ocean. The overall amount of dense water formed however is highly variable from one year to another according to the forcings involved and perturbations of the water circulation.

  1. Structure of the Highly Sheared Tropical Storm Chantal During CAMEX-4

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Tropical Storm Chantal during August 2001 was a storm that failed to intensify over the few days prior to making landfall on the Yucatan Peninsula. An observational study of Tropical Storm Chantal is presented using a diverse data set including remote and in situ measurements from the NASA ER-2 and DC-8 and the NOAA WP-3D N42RF aircraft and satellite data. The authors discuss the storm structure from the larger scale environment down to the convective scale. Large vertical shear (850-200 hPa shear magnitude range 8-15 m/s) plays a very important role in preventing Chantal from intensifying. The storm had a poorly defined vortex that only extended up to 5-6 km altitude, and an adjacent intense convective region that comprised an MCS. The entire low-level circulation center was in the rain-free western side of the storm, about 80 km to the west-southwest of the MCS. The MCS appears to have been primarily the result of intense convergence between large-scale, low-level easterly flow with embedded downdrafts, and the cyclonic vortex flow. The individual cells in the MCS such as Cell 2 during the period of the observations, were extremely intense with reflectivity core diameters of 10 km and peak updrafts exceeding 20 m/s. Associated with this MCS were two broad subsidence (warm) regions both of which had portions over the vortex. The first layer near 700 hPa was directly above the vortex and covered most of it. The second layer near 500 hPa was along the forward and right flanks of Cell 2 and undercut the anvil divergence region above. There was not much resemblance of these subsidence layers to typical upper level warm cores in hurricanes that are necessary to support strong surface winds and a low central pressure. The observations are compared to previous studies of weakly sheared storms and modeling studies of shear effects and intensification. Additional information is included in the original extended abstract.

  2. Coastal storm monitoring in Virginia

    USGS Publications Warehouse

    Wicklein, Shaun M.; Bennett, Mark

    2014-01-01

    Coastal communities in Virginia are prone to flooding, particularly during hurricanes, nor’easters, and other coastal low-pressure systems. These weather systems affect public safety, personal and public property, and valuable infrastructure, such as transportation, water and sewer, and electric-supply networks. Local emergency managers, utility operators, and the public are tasked with making difficult decisions regarding evacuations, road closures, and post-storm recovery efforts as a result of coastal flooding. In coastal Virginia these decisions often are made on the basis of anecdotal knowledge from past events or predictions based on data from monitoring sites located far away from the affected area that may not reflect local conditions. Preventing flood hazards, such as hurricane-induced storm surge, from becoming human disasters requires an understanding of the relative risks that flooding poses to specific communities. The risk to life and property can be very high if decisions about evacuations and road closures are made too late or not at all.

  3. Spring Dust Storm Smothers Beijing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A few days earlier than usual, a large, dense plume of dust blew southward and eastward from the desert plains of Mongolia-quite smothering to the residents of Beijing. Citizens of northeastern China call this annual event the 'shachenbao,' or 'dust cloud tempest.' However, the tempest normally occurs during the spring time. The dust storm hit Beijing on Friday night, March 15, and began coating everything with a fine, pale brown layer of grit. The region is quite dry; a problem some believe has been exacerbated by decades of deforestation. According to Chinese government estimates, roughly 1 million tons of desert dust and sand blow into Beijing each year. This true-color image was made using two adjacent swaths (click to see the full image) of data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, on March 17, 2002. The massive dust storm (brownish pixels) can easily be distinguished from clouds (bright white pixels) as it blows across northern Japan and eastward toward the open Pacific Ocean. The black regions are gaps between SeaWiFS' viewing swaths and represent areas where no data were collected. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  4. Convective Cloud Lifecycles Lunchtime seminar

    E-print Network

    Plant, Robert

    Convective Cloud Lifecycles Lunchtime seminar 19th May 2009 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations Why Conclusions Convective Cloud Lifecycles ­ p.1/3 #12;Why bother? Convective Cloud Lifecycles ­ p.2/3 #12;Some

  5. WRF forecast skill of the Great Plains low level jet and its correlation to forecast skill of mesoscale convective system precipitation

    NASA Astrophysics Data System (ADS)

    Squitieri, Brian Joseph

    One of the primary mechanisms for supporting summer nocturnal precipitation across the central United States is the Great Plains low-level Jet (LLJ). Mesoscale Convective Systems (MCSs) are organized storm complexes that can be supported from the upward vertical motion supplied at the terminus of the LLJ, which bring beneficial rains to farmers. As such, a need for forecasting these storm complexes exists. Correlating forecast skills of the LLJ and MCS precipitation in high spatial resolution modeling was the main goal of this research. STAGE IV data was used as observations for MCS precipitation and the 00-hr 13 km RUC analysis was employed for evaluation of the LLJ. The 4 km WRF was used for high resolution forecast simulations, with 2 microphysics and 3 planetary boundary layer schemes selected for a sensitivity study to see which model run best simulated reality. It was found that the forecast skill of the potential temperature and directional components of the geostrophic and ageostrophic winds within the LLJ correlated well with MCS precipitation, especially early during LLJ evolution. Since the 20 real cases sampled consisted of three LLJ types (synoptic, inertial oscillation and transition), forecast skill in other parameters such as deep layer and low level shear, convergence, frontogenesis and stability parameters were compared to MCS forecast skill to see if consistent signals outside of the LLJ influenced MCS evolution in forecasts. No correlations were found among these additional parameters. Given the variety of synoptic setups present, the lack of forecast skill correlations between several variables and MCSs resulted as different synoptic or mesoscale mechanisms played varying roles if importance in different cases.

  6. Numerical simulations of extratropical tropopause-penetrating convection: Sensitivities to grid resolution

    NASA Astrophysics Data System (ADS)

    Homeyer, Cameron R.

    2015-07-01

    Deep extratropical convection that penetrates and overshoots the altitude of the tropopause has important implications both for chemistry-climate interactions through stratosphere-troposphere exchange and for hazardous weather at the Earth's surface. In this study, the sensitivity of tropopause structure and cross-tropopause transport to the choice of numerical model resolution in simulations with explicitly resolved convection (i.e., no convective parameterization) is examined. For an observed case of overshooting convection, the Advanced Research Weather Research and Forecasting (ARW-WRF) model is run for all possible combinations of three horizontal (3 km, 1 km, and 333.33 m) and vertical (600 m, 300 m, and 150 m) grid resolutions. Although ARW-WRF is successful in producing tropopause-penetrating convection in each case, the depth of overshooting and cross-tropopause transport are found to increase with refinement in the horizontal dimension and decrease with refinement in the vertical dimension. These results are related to changes in storm intensity and the sharpness of the tropopause, where the former is found to increase with refinement in the horizontal dimension and the latter is found to increase with refinement in the vertical dimension. Comparisons of simulated storm altitudes with those observed from ground-based radar reveal large positive biases in simulations where the horizontal resolution is fine and the vertical resolution is coarse.

  7. Saturn’s visible lightning, its radio emissions, and the structure of the 2009-2011 lightning storms

    NASA Astrophysics Data System (ADS)

    Dyudina, Ulyana A.; Ingersoll, Andrew P.; Ewald, Shawn P.; Porco, Carolyn C.; Fischer, Georg; Yair, Yoav

    2013-09-01

    Visible lightning on Saturn was first detected by the Cassini camera in 2009 at ?35° South latitude. We report more lightning observations at ?35° South later in 2009, and lightning in the 2010-2011 giant lightning storm at ?35° North. The 2009 lightning is detected on the night side of Saturn in a broadband clear filter. The 2011 lightning is detected on the day side in blue wavelengths only. In other wavelengths the 2011 images lacked sensitivity to detect lightning, which leaves the lightning spectrum unknown. The prominent clouds at the west edge, or the “head” of the 2010-2011 storm periodically spawn large anticyclones, which drift off to the east with a longitude spacing of 10-15° (?10,000 km). The wavy boundary of the storm’s envelope drifts with the anticyclones. The relative vorticity of the anticyclones ranges up to -f/3, where f is the planetary vorticity. The lightning occurs in the diagonal gaps between the large anticyclones. The vorticity of the gaps is cyclonic, and the atmosphere there is clear down to level of the deep clouds. In these respects, the diagonal gaps resemble the jovian belts, which are the principal sites of jovian lightning. The size of the flash-illuminated cloud tops is similar to previous detections, with diameter ?200 km. This suggests that all lightning on Saturn is generated at similar depths, ?125-250 km below the cloud tops, probably in the water clouds. Optical energies of individual flashes for both southern storms and the giant storm range up to 8 × 109 J, which is larger than the previous 2009 equinox estimate of 1.7 × 109 J. Cassini radio measurements at 1-16 MHz suggest that, assuming lightning radio emissions range up to 10 GHz, lightning radio energies are of the same order of magnitude as the optical energies. Southern storms flash at a rate ?1-2 per minute. The 2011 storm flashes hundreds of times more often, ?5 times per second, and produces ?1010 W of optical power. Based on this power, the storm’s total convective power is of the order 1017 W, which is uncertain by at least an order of magnitude, and probably is underestimated. This power is similar to Saturn’s global internal power radiated to space. It suggests that storms like the 2010-2011 giant storm are important players in Saturn’s cooling and thermal evolution.

  8. EXCESS INFALL BLOCKS CONVECTION.

    E-print Network

    Kurucz, Robert L.

    #12;#12;#12;#12;#12;#12;#12;1 JET HOT SPOT #12;2 3 #12;4 HEAT HEAT EXCESS INFALL BLOCKS CONVECTION PUFFS UP. INFALL 5 #12;ENVELOPE AND ATMOSPHERE MATERIAL FLOW OUTWARD. SOME INFALL IS DRAGGED ALONG XXXXXXXX 25 #12;POPCORN STICKY CRUSHABLE INSULATING RADIOACTIVELY SELF-HEATING WARMED AND ANNEALED BY STAR

  9. Storm Surge Sensor During Hurricane Irene

    USGS Multimedia Gallery

    During hurricanes the USGS deploys storm-surge monitoring instruments along the coasts, sounds, and bays in impacted areas to gauge how high hurricanes push water in rivers, bays and other areas. The sensors are crucial for forecasting future storms and assessing hurricane damage. They are strapped ...

  10. Service Assessment Intense Space Weather Storms

    E-print Network

    Schrijver, Karel

    Service Assessment Intense Space Weather Storms October 19 ­ November 07, 2003 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service Silver Spring, Maryland image. #12;Service Assessment Intense Space Weather Storms October 19 ­ November 07, 2003 April 2004 U

  11. Observations and Simulations of the M-I Coupling of Bursty Convection

    NASA Technical Reports Server (NTRS)

    Sanchez, Ennio R.

    2001-01-01

    The ultimate aim of the project is to establish how much of the magnetotail's total potential is due to flow bursts and how much of this potential maps to the ionosphere. In order to quantify these contributions, we further developed a method to measure the total cross-polar cap potential and the total reconnection rate across the entire polar cap boundary. Then we applied the method to different solar wind-magnetosphere-ionosphere conditions that included substorm periods, storms, and steady magnetospheric convection (SMCs, also known as convection bays) periods. In the following section, we describe in more detail the activities during the second year of this grant.

  12. Evaluating and Understanding Parameterized Convective Processes and Their Role in the Development of Mesoscale Precipitation Systems

    NASA Technical Reports Server (NTRS)

    Fritsch, J. Michael; Kain, John S.

    1996-01-01

    Research efforts focused on numerical simulations of two convective systems with the Penn State/NCAR mesoscale model. The first of these systems was tropical cyclone Irma, which occurred in 1987 in Australia's Gulf of Carpentaria during the AMEX field program. Comparison simulations of this system were done with two different convective parameterization schemes (CPS's), the Kain-Fritsch (KF) and the Betts-Miller (BM) schemes. The second system was the June 10-11, 1985 squall line simulation, which occurred over the Kansas-Oklahoma region during the PRE-STORM experiment. Simulations of this system using the KF scheme were examined in detail.

  13. Evaluating and Understanding Parameterized Convective Processes and Their Role in the Development of Mesoscale Precipitation Systems

    NASA Technical Reports Server (NTRS)

    Fritsch, J. Michael (Principal Investigator); Kain, John S.

    1995-01-01

    Research efforts during the first year focused on numerical simulations of two convective systems with the Penn State/NCAR mesoscale model. The first of these systems was tropical cyclone Irma, which occurred in 1987 in Australia's Gulf of Carpentaria during the AMEX field program. Comparison simulations of this system were done with two different convective parameterization schemes (CPS's), the Kain-Fritsch (1993 - KF) and the Betts-Miller (Betts 1986- BM) schemes. The second system was the June 10-11 1985 squall line simulation, which occurred over the Kansas-Oklahoma region during the PRE-STORM experiment. Simulations of this system using the KF scheme were examined in detail.

  14. Internally heated convection and Rayleigh-B\\'enard convection

    E-print Network

    Goluskin, David

    2015-01-01

    This work reviews basic features of both internally heated (IH) convection and Rayleigh-B\\'enard (RB) convection, along with findings on IH convection from laboratory experiments and numerical simulations. In the first chapter, six canonical models of convection are described: three configurations of IH convection driven by constant and uniform volumetric heating, and three configurations of RB convection driven by the boundary conditions. The IH models are distinguished by differing pairs of thermal boundary conditions: top and bottom boundaries of equal temperature, an insulating bottom with heat flux fixed at the top, and an insulating bottom with temperature fixed at the top. The RB models also are distinguished by whether temperatures or heat fluxes are fixed at the top and bottom boundaries. Integral quantities important to heat transport are discussed, including the mean fluid temperature, the mean temperature difference between the boundaries, and the mean convective heat transport. Integral relations...

  15. [Relationship Between Core Convective Structure and Intensity Change in Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The downshear reformation of Tropical Storm Gabrielle (2001) was investigated using radar reflectivity and lightning data that were nearly continuous in time, as well as frequent aircraft reconnaissance fights. Initially the storm was a marginal tropical storm in an environment with strong 850-200 hPa vertical wind shear of 12-13 m/s and an approaching upper tropospheric trough. Both the observed outflow and an adiabatic balance model calculation showed that the radial-vertical circulation increased with time as the trough approached. Convection was highly asymmetric, with almost all radar return located in one quadrant left of downshear in the storm. Reconnaissance data show that an intense mesovortex formed downshear of the original center. This vortex was located just south of: rather than within, a strong downshear left lightning outbreak, consistent with tilting of the horizontal vorticity associated with the vertical wind shear. The downshear mesovortex contained a 972 hPa minimum central pressure, 20 hPa lower than minimum pressure in the original vortex just three hours earlier. The mesovortex became the new center of the storm, but weakened somewhat prior to landfall. It is argued that dry air carried around the storm from the region of upshear subsidence, as well as the direct effects of the shear, prevented the reformed vortex from continuing to intense.

  16. Global Distribution of Different Forms of Convection as Seen by TRMM

    NASA Astrophysics Data System (ADS)

    Houze, Robert; Rasmussen, Kristen; Zuluaga, Manuel; Brodzik, Stella

    2015-04-01

    For 17 years the Tropical Rainfall Measuring Mission (TRMM) satellite collected data with its Ku-band Precipitation Radar (PR) over the low latitudes, where convective clouds dominate rainfall. The three-dimensional character of the radar data allows echo objects to be defined that indicate the different forms taken by convection. Analysis of these echo objects over the entire tropics indicate that the nature of convection and its lifecycles vary regionally, with respect to ocean, land, mountains, and the large-scale meteorological environment. This study is based on three types of echo objects representing extreme forms of convection: Deep convective cores (DCCs), which are three-dimensional towers of radar echo exceeding a high intensity threshold and extending high into the upper troposphere; wide convective cores (WCCs), which are three-dimensional elements defined by a high reflectivity threshold and covering horizontal area of mesoscale proportions; and broad stratiform regions (BSRs), for which a contiguous region of stratiform echo covers an especially large area. These echo objects are not isolated but rather are embedded within larger storms or mesoscale convective systems (MCSs). Embedded DCCs characterize storms in an early stage of development. The presence of WCCs indicates MCSs that are maturing, growing upscale to become MCSs. Embedded BSRs are found in robust mature MCSs in late stages of development. Some patterns that emerge from the global distribution of DCCs, WCCs, and BSRs in the 17-year TRMM dataset are that the behavior of these forms of convection varies between land and ocean. DCCs and WCCs are not as deep, wide, or intense over tropical oceans as observed over land, with the exception of Amazonia, where these forms of convection are similar to those over oceanic regions. Over tropical continents (Africa and South America) and the South Asian subcontinent, these echo objects are generally deeper and more intense. Over land regions, storms containing DCCs initiate near major mountain ranges (viz. the Himalayas and Andes). Global patterns of the forms of convection containing DCCs, WCCs, and BSRs are strongly affected by large-scale environmental and topographic conditions. Near the Andes and Himalayas, midlevel flow over mountains caps moist low-level flows until strong convection can be triggered to break through the cap. As a result, storms containing the most extreme DCCs occur close to these mountain ranges. Large-scale flow patterns are key to whether storms can grow upscale to form the most intense MCSs. This fact is illustrated most strongly over the oceans by the Madden-Julian Oscillation (MJO), wherein storms achieve maximum maturity with the largest BSRs in active phases of the MJO. Over land the influence of large-scale motion patterns is indicated by the fact that systems with embedded WCCs and BSRs are favored by African easterly wave troughs over equatorial Africa, while over subtropical South America, baroclinic waves extending into lower latitudes favor such development of MCSs initiating near the Andes.

  17. ESTIMATION OF URBAN STORM-RUNOFF LOADS.

    USGS Publications Warehouse

    Driver, Nancy E.; Lystrom, David J.

    1986-01-01

    The United States was divided into three regions, on the basis of mean annual rainfall, to decrease the variability in storm-runoff constituent loads and to improve regression relations with basin and climatic characteristics. Multiple-regression analyses, in progress, are being refined to determine the best regression models for each of the storm-runoff constituent loads in each of the three regions. These techniques, when finalized, can be used to estimate storm-runoff constituent loads for gaged and ungaged urban watersheds. The preliminary standard errors of estimate for five constituents examined to date ranged from 54 to 223 percent, and the coefficients of determination (r**2) ranged from 0. 39 to 0. 94. Total storm rainfall and total contributing drainage area appear to be the most significant independent variables in the regression models. This paper is a progress report on preliminary results of estimating storm-runoff constituent loads for ungaged watersheds.

  18. A case study of Ionospheric storm effects during long-lasting southward IMF Bz driven geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Liu, J., Sr.

    2014-12-01

    Multiple instrumental observations including GPS TEC, foF2 and hmF2 from ionosondes, vertical ion drift measurements from C/NOFS, magnetometer data and far-ultraviolet airglow measured by TIMED/GUVI are used to investigate the profound ionospheric disturbances at mid- and low-latitudes during the 14-17 July 2012 geomagnetic storm event, which was featured by prolonged southward interplanetary geomagnetic field component for about 30 hours below -10 nT. In the East Asian/Australian sector, latitudinal profile of TEC variations in the main phase were characterized by three bands of increments and separated by weak depressions in the Equatorial Ionospheric Anomaly (EIA) crest regions, which were caused by the combined effects of disturbance dynamo electric fields (DDEF) and equatorward neutral winds. In the recovery phase, strong inhibition of EIA occurred and the summer crest of EIA disappeared on 16 July due to the combined effects of intrusion of neutral composition disturbance zone as shown by the TIME/GUVI O/N2 measurements and long-lasting daytime westward DDEF inferred from the equatorial electric electrojet (EEJ) observations. The transit time of DDEF over the dip equator from westward to eastward is around 2200 LT. In the American longitude, the salient ionospheric disturbances in the summer hemisphere were characterized by daytime periodical intrusion of negative phase for three consecutive days in the recovery phase, preceded by storm enhanced density (SED) plume in the initial phase. In addition, multiple short-lived prompt penetration electric fields (PPEF) appeared during stable southward IMF Bz in the recovery phase and were responsible for enhanced the EIA and equatorial ionospheric uplift around sunset.

  19. A case study of ionospheric storm effects during long-lasting southward IMF Bz-driven geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Liu, Libo; Nakamura, Takuji; Zhao, Biqiang; Ning, Baiqi; Yoshikawa, A.

    2014-09-01

    Multiple instrumental observations including GPS total electron content (TEC), foF2 and hmF2 from ionosondes, vertical ion drift measurements from Communication/Navigation Outage Forecasting System, magnetometer data, and far ultraviolet airglow measured by Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager (TIMED/GUVI) are used to investigate the profound ionospheric disturbances at midlatitude and low latitude during the 14-17 July 2012 geomagnetic storm event, which was featured by prolonged southward interplanetary geomagnetic field component for about 30 h below -10 nT. In the East Asian/Australian sector, latitudinal profile of TEC variations in the main phase were characterized by three bands of increments and separated by weak depressions in the equatorial ionospheric anomaly (EIA) crest regions, which were caused by the combined effects of disturbance dynamo electric fields (DDEF) and equatorward neutral winds. In the recovery phase, strong inhibition of EIA occurred and the summer crest of EIA disappeared on 16 July due to the combined effects of intrusion of neutral composition disturbance zone as shown by the TIMED/GUVI O/N2 measurements and long-lasting daytime westward DDEF inferred from the equatorial electrojet observations. The transit time of DDEF over the dip equator from westward to eastward is around 2200 LT. In the American longitude, the salient ionospheric disturbances in the summer hemisphere were characterized by daytime periodical intrusion of negative phase for three consecutive days in the recovery phase, preceded by storm-enhanced density plume in the initial phase. In addition, multiple short-lived prompt penetration electric fields appeared during stable southward interplanetary magnetic field (IMF) Bz in the recovery phase and were responsible for enhanced the EIA and equatorial ionospheric uplift around sunset.

  20. Interaction Between Convection and Pulsation

    NASA Astrophysics Data System (ADS)

    Houdek, Günter; Dupret, Marc-Antoine

    2015-12-01

    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.

  1. CRYSTAL-FACE Convective Drafts

    NASA Astrophysics Data System (ADS)

    Siewert, J.; Davison, K.; Frank, W.; Verlinde, J.

    2003-12-01

    Dual-Doppler data from 4 different days of the CRYSTAL-FACE experiment were analyzed. These days represented three different regime types - maritime convection, typical Florida peninsula convection, and peninsula convection influenced by Saharan dust. These days exhibited differences in convective organization, ranging from mostly short-lived cells embedded in larger convective clusters to larger more coherent, longer-lasting mesoscale organization. We will present and contrast draft (up and down) statistics for all days. Mass and water fluxes were calculated for all cases.

  2. Analysis of severe convective events from two operational dual polarisation doppler radars

    NASA Astrophysics Data System (ADS)

    Celano, M.; Alberoni, P. P.; Levizzani, V.; Holt, A. R.

    2006-05-01

    The recent gradual increase in the use of polarimetric radars prompts for possible improvements in the estimation of precipitation and the identification of the prevailing hydrometeor type. An analysis of different convection episodes (20 May 2003, 4 and 7 May 2004) is conducted in order to explore the attenuation effects at C band and their consequences on the rainfall field estimation using two polarimetric radars in the Po Valley, Italy, located about 90 km apart. A hydrometeor classification scheme, developed at the National Severe Storms Laboratory (NSSL), is used to detect the microphysical structure of the different cloud systems. The work is focused on the reconstruction of the 3-D organisation of the convective events, highlighting how the two radar systems ''see'' the storms from different points of view. Furthermore, the two distinct observations and the temperature field are used to correct the effect of attenuation.

  3. Impact of anthropogenic aerosols on Indian summer monsoon

    SciTech Connect

    Wang, Chien; Kim, Dongchul; Ekman, Annica; Barth, Mary; Rasch, Philip J.

    2009-11-05

    Using an interactive aerosol-climate model we find that absorbing anthropogenic aerosols, whether coexisting with scattering aerosols or not, can significantly affect the Indian summer monsoon system. We also show that the influence is reflected in a perturbation to the moist static energy in the sub-cloud layer, initiated as a heating by absorbing aerosols to the planetary boundary layer. The perturbation appears mostly over land, extending from just north of the Arabian Sea to northern India along the southern slope of the Tibetan Plateau. As a result, during the summer monsoon season, modeled convective precipitation experiences a clear northward shift, coincidently in agreement with observed monsoon precipitation changes in recent decades particularly during the onset season. We demonstrate that the sub-cloud layer moist static energy is a useful quantity for determining the impact of aerosols on the northward extent and to a certain degree the strength of monsoon convection.

  4. Sustainable Development Summer Intern Report 2013 Sustainable Development Summer Intern

    E-print Network

    Sustainable Development Summer Intern Report 2013 Sustainable Development Summer Intern Final amongst university's invested in sustainable development. Our small but mighty size allows us to build through positive sustainable practices. As the Sustainable Development Summer Intern I am fortunate enough

  5. IM Summer SOFTBALL & BASKETBALL

    E-print Network

    Lee, Dongwon

    IM Summer SOFTBALL & BASKETBALL IM Sports ~ Summer Team Sports 2015 ENTER: June 29 ­ July 2 at 101 participants must abide by the IM RULES for Softball & Basketball and the IM GENERAL RULES, which govern all IM sports. ELIGIBILITY: Varsity Softball/Baseball and Basketball players are ineligible for their respective

  6. Under Summer Skies

    ERIC Educational Resources Information Center

    Texley, Juliana

    2009-01-01

    There's no better way to celebrate 2009, the International Year of Astronomy, than by curling up with a good book under summer skies. To every civilization, in every age, the skies inspired imagination and scientific inquiry. There's no better place to start your summer reading than under their influence. Here are a few selections identified by…

  7. Summer Undergraduate Research Fellowships

    E-print Network

    New Hampshire, University of

    CCOM-SURF Summer Undergraduate Research Fellowships Center for Coastal & Ocean Mapping University and for training the next generation of ocean mappers. CCOM's Summer Undergraduate Research Fellowship (SURF a fellowship will receive a stipend, on-campus room and board, and travel assistance. #12;

  8. 2015 SCIENCE SUMMER CAMPS

    E-print Network

    Thomas, Andrew

    nitrogen ice cream. Facilities Our camp takes place on the University of Maine's Orono campus, giving us to the Emera Astronomy Center, making liquid nitrogen ice cream, racing rubber band boats, building bridges2015 SCIENCE SUMMER CAMPS http://physics.umaine.edu/summer-camp/ (207)581-1039 Astronomy!! Space

  9. Your Best Summer Ever

    ERIC Educational Resources Information Center

    Cleaver, Samantha

    2012-01-01

    "It must be nice to have summers off." Only other teachers know just how short summer is, with much of August devoted to planning for the new school year. This article offers 17 fresh ideas for exploring, making money, and preparing for next year. Plus, a reading list that hits all the marks!

  10. Book Your Summer Vacation

    ERIC Educational Resources Information Center

    Texley, Juliana

    2012-01-01

    Summer's the time for teachers to travel, not only physically from the confines of the classroom to exotic places, but vicariously, through the magic of books. Summer adventures help teachers expand their experience and enrich their store of context so that they can offer their students more when school resumes in the fall. That's why each year…

  11. Celebrate Summer with Reading

    ERIC Educational Resources Information Center

    Texley, Juliana

    2007-01-01

    School is out and the summer is full of both official and unofficial holidays that prompt us to enjoy science and the profession of sharing it. As in past years, the reviewers and editors of "NSTA Recommends"--ready and willing to share their enthusiasm for reading with you--have been gathering suggestions for the summer. So along with your beach…

  12. IRBV Microscopy Summer School

    E-print Network

    IRBV Microscopy Summer School Montreal, June 11-13, 2013 Up to speed on modern optical microscopy www.geitmannlab.org 3 days theory and hands-on training #12;IRBV Microscopy Summer School Institut de microscopy, Detectors, Electron to optical correlative microscopy Zeiss LSM 700 Zeiss Axio Imager M2

  13. Convective Systems Over the South China Sea: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shie, C.-L.; Johnson, D.; Simpson, J.; Braun, S.; Johnson, R.; Ciesielski, P. E.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, ships, wind profilers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with monsoons over the South China Sea region. SCSMEX also provided rainfall estimates which allows for comparisons with those obtained from the Tropical Rainfall Measuring Mission (TRMM), a low earth orbit satellite designed to measure rainfall from space. The Goddard Cumulus Ensemble (GCE) model (with 1-km grid size) is used to understand and quantify the precipitation processes associated with the summer monsoon over the South China Sea. This is the first (loud-resolving model used to simulate precipitation processes in this particular region. The GCE-model results captured many of the observed precipitation characteristics because it used a fine grid size. For example, the temporal variation of the simulated rainfall compares quite well to the sounding-estimated rainfall variation. The time and domain-averaged temperature (heating/cooling) and water vapor (drying/ moistening) budgets are in good agreement with observations. The GCE-model-simulated rainfall amount also agrees well with TRMM rainfall data. The results show there is more evaporation from the ocean surface prior to the onset of the monsoon than after the on-et of monsoon when rainfall increases. Forcing due to net radiation (solar heating minus longwave cooling) is responsible for about 25% of the precipitation in SCSMEX The transfer of heat from the ocean into the atmosphere does not contribute significantly to the rainfall in SCSMEX. Model sensitivity tests indicated that total rain production is reduced 17-18% in runs neglecting the ice phase. The SCSMEX results are compared to other GCE-model-simulated weather systems that developed during other field campaigns (i.e., west Pacific warm pool region, eastern Atlantic region and central USA). Large-scale forcing vie temperature and water vapor tendency, is the major energy source for net condensation in the tropical cases. The effects of large-scale cooling exceed that of large-scale moistening in the west pacific warm pool region and eastern Atlantic region. For SCSMEX, however, the effects of large-scale moistening predominate. Net radiation and sensible and latent hc,it fluxes play a much more important role in the central USA.

  14. Copper disinfection ban causes storm.

    PubMed

    Lester, Alan

    2013-05-01

    Since 1 February this year, under the EU's Biocidal Products Directive, it has been illegal to sell or use water treatment systems that use elemental copper, a practice employed historically by a significant number of UK healthcare facilities to combat Legionella. Alan Lester, managing director of specialist supplier of 'environmentally-friendly' water treatment systems, Advanced Hydro, says the ban has caused 'a storm of giant proportion,' with advocates of copper ion-based treatment systems arguing that this disinfection method dates back 3,000 years to Egyptian times, making it an 'undoubtedly proven' technology. Here he explains why the ban came into force, considers why the UK's Health and Safety Executive (HSE) is seeking a derogation, looks at the ban's likely impact, and gives a personal viewpoint on the 'pros and cons' of some of the alternative treatment technologies, including a titanium dioxide-based system marketed by Advanced Hydro itself in the UK. PMID:23763088

  15. Dust Storm Hits Canary Islands

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A thick pall of sand and dust blew out from the Sahara Desert over the Atlantic Ocean yesterday (January 6, 2002), engulfing the Canary Islands in what has become one of the worst sand storms ever recorded there. In this scene, notice how the dust appears particularly thick in the downwind wake of Tenerife, the largest of the Canary Islands. Perhaps the turbulence generated by the air currents flowing past the island's volcanic peaks is churning the dust back up into the atmosphere, rather than allowing it to settle toward the surface. This true-color image was captured by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on January 7, 2002. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  16. Predicting severe winter coastal storm damage

    NASA Astrophysics Data System (ADS)

    Hondula, David M.; Dolan, Robert

    2010-07-01

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'—such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989—are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the North Carolina coast would rank amongst the all-time most costly natural disasters to have occurred in the United States, with up to 1 billion in losses in North Carolina alone.

  17. Asian Summer Monsoon Intraseasonal Variability in General Circulation Models

    SciTech Connect

    Sperber, K R; Annamalai, H

    2004-02-24

    The goals of this report are: (1) Analyze boreal summer Asian monsoon intraseasonal variability general circulation models--How well do the models represent the eastward and northward propagating components of the convection and how well do the models represent the interactive control that the western tropical Pacific rainfall exerts on the rainfall over India and vice-versa? (2) Role of air-sea interactions--prescribed vs. interactive ocean; and (3) Mean monsoon vs. variability.

  18. Winter and summer simulations with the GLAS climate model

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Straus, D.; Randall, D.; Sud, Y.; Marx, L.

    1981-01-01

    The GLAS climate model is a general circulation model based on the primitive equations in sigma coordinates on a global domain in the presence of orography. The model incorporates parameterizations of the effects of radiation, convection, large scale latent heat release, turbulent and boundary layer fluxes, and ground hydrology. Winter and summer simulations were carried out with this model, and the resulting data are compared to observations.

  19. Electric and kinematic structure of the Oklahoma mesoscale convective system of 7 June 1989

    NASA Technical Reports Server (NTRS)

    Hunter, Steven M.; Schur, Terry J.; Marshall, Thomas C.; Rust, W. D.

    1992-01-01

    Balloon soundings of electric field in Oklahoma mesoscale convective systems (MCS) were obtained by the National Severe Storms Laboratory in the spring of 1989. This study focuses on a sounding made in the rearward edge of an MCS stratiform rain area on 7 June 1989. Data from Doppler radars, a lightning ground-strike location system, satellite, and other sources is used to relate the mesoscale attributes of the MCS to the observed electric-field profile.

  20. Explosive Redistribution of Earth's Thermal Plasma Environment during Major Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Foster, J. C.; Coster, A. J.; Rideout, B.; Thayer, J.; van Eyken, T.; Greenwald, R.

    2004-05-01

    Disturbance electric fields during the major geomagnetic storms of October and November 2003 resulted in the large-scale perturbation and global redistribution of Earth's thermal plasma environment. The solar-produced plasmas of the low-latitude ionosphere and plasmasphere erupted poleward in response to storm-time penetrating electric fields, producing greatly-enhanced plasma concentrations in the outer plasmasphere. Sub-auroral electric fields associated with the storm-enhanced ring current stripped away these outer-plasmasphere regions and carried them sunward as intense plumes of storm-enhanced density (SED), or plasmasphere drainage plumes. These, in turn, were convected rapidly through the dayside cusp and back across polar latitudes forming dense tongues of ionization (TOI). We use global ground-based imagery of total electron content (TEC) derived from GPS observations to map the intensity and evolution of these features. Polar-projection snapshots and movies of TEC reveal rapid transport of the low-latitude plasma to the cusp, across the polar cap, and its deposition around the nightside auroral oval. Incoherent scatter radars at Sondrestrom and EISCAT Svalbard provide vertical profiles through the TOI at polar latitudes, while radars at Millstone Hill and EISCAT Tromso detail the plasma characteristics at its source and at midnight-sector auroral latitudes. F-region TEC (below 1000 km altitude) observed with the Sondrestrom radar was >120 TECu within the polar TOI, while TEC over the continental USA approached 300 TECu. During the November event, spatial gradients in TEC exceeded 100 TECu per degree of latitude over the northeast USA. No polar cap absorption event accompanied the Nov 2003 storm, and the SuperDARN radars provided full convection patterns over the northern polar latitudes. The continuous streams of thermal plasma TEC observed with the GPS mapping closely follow the convection streamlines simultaneously determined from the SuperDARN observations. GPS TEC observations now extend to high southern latitudes and we determine that the SED plumes and polar TOI imaged in the north appear simultaneously in the conjugate hemisphere.

  1. Development and Evaluation of Storm Surge Ensemble Forecasting for the Philippines Using JMA Storm Surge Model

    NASA Astrophysics Data System (ADS)

    Lapidez, J. P. B.; Tablazon, J. P.; Lagmay, A. M. F. A.; Suarez, J. K. B.; Santiago, J. T.

    2014-12-01

    The Philippines is one of the countries most vulnerable to storm surge. It is located in the North-western Pacific basin which is the most active basin in the planet. An average of 20 tropical cyclones enters the Philippine area of responsibility (PAR) every year. The archipelagic nature of the country with regions having gently sloping coasts and shallow bays also contribute to the formation of extreme surges. Last November 2013, storm surge brought by super typhoon Haiyan severely damaged several coastal regions in the Visayan Islands. Haiyan left more than 6 300 casualties and damages amounting to more than $ 2 billion. Extreme storm surge events such as this highlight the need to establish a storm surge early warning system for the country. This study explores the development and evaluation of storm surge ensemble forecasting for the Philippines using the Japan Meteorological Agency (JMA) storm surge model. 36-hour, 24-hour, and 12-hour tropical cyclone forecasts are used to generate an ensemble storm surge forecast to give the most probable storm surge height at a specific point brought by an incoming tropical cyclone. The result of the storm surge forecast is compared to tide gauge record to evaluate the accuracy. The total time of computation and dissemination of forecast result is also examined to assess the feasibility of using the JMA storm surge model for operational purposes.

  2. Nitrate transport and fluxes during storm-event discharge from a 12 ha tile-drained dryland agricultural field

    NASA Astrophysics Data System (ADS)

    Kelley, C. J.; Keller, C. K.; Brooks, E. S.; Smith, J. L.; Orr, C. H.; Evans, R. D.

    2012-12-01

    Tile drains shortcut natural soil hydrology and decrease the capacity of soils to buffer water and nutrient fluxes during storm events. Previous research at the Cook Agronomy Farm near Pullman, WA. found seasonal patterns for nutrient and water fluxes, larger during the winter and smaller during the summer. The objective of this study was to determine the effects storm events have on tile-drain water and nutrient fluxes from a dryland agricultural field. Our first hypothesis is that winter storm events activate shallow soil-water flow paths, resulting in rapid transport of precipitation and younger soil pore-water through the tile-drain system. These storm-event flow paths result in a decrease in tile-drain water electrical conductivity from a baseline of approximately 260 ?S/cm to as low as 20 ?S/ cm. Data suggest that storm events increase hydraulic conductivities in the upper profile as soil approaches saturation, increasing the contributions of relatively young soil water and possibly current storm-event precipitation to tile-drain discharge. Our second hypothesis is that the observed increase in discharge during storm events does not decrease nitrate concentrations in discharged water, because the storm-event flow paths also transport additional nitrate from the upper soil profile through the tile-drain system. If this hypothesis is correct, during storm events nitrate fluxes should increase, indicating rapid mobilization and potential flushing of soil nutrients through the vadose zone and tile-drain. If nitrate fluxes remain constant during storm events, then decreased tile-drain nitrate concentrations may be caused by the addition of low-nitrate or nitrate-free water. This would suggest that the nitrate leached from the system is present at the depth of the tile-drain and is not transported from near the soil surface to the tile-drain during storm-events, indicating flushing of soil nutrients from the rooting zone is not occurring at these temporal scales. Storm events in dryland agriculture are similar to irrigation events in irrigated agriculture, where increased water contents in rooting zones may increase water flows and nutrient fluxes from the rooting zone to surface and groundwater. This research will help explain how the dynamics of unsaturated flow conditions control nutrient and contaminant transport in agricultural systems.

  3. The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Petersen, Harold; Schultz, Elise; Schultz, Chris; Matthee, Retha; Bain, Lamont

    2012-01-01

    The objective of this preliminary study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOx) in thunderstorms, such as flash rate, type and extent. The mixed-phase region is where the noninductive charging (NIC) process is thought to generate most storm electrification during rebounding collisions between ice particles in the presence of supercooled water. As a result, prior radar-based studies have demonstrated that lightning flash rate is well correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume, graupel mass, or ice mass flux. There is also some evidence that lightning type is associated with the convective state. Intracloud (IC) lightning tends to dominate during the updraft accumulation of precipitation ice mass while cloud-to-ground (CG) lightning is more numerous during the downdraft-driven descent of radar echo associated with graupel and hail. More study is required to generalize these relationships, especially regarding lightning type, in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm kinematics, microphysics, morphology and three-dimensional flash extent, despite its importance for lightning NOx production. To address this conceptual gap, the NASA MSFC Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to well isolated convective cells on 3 April 2007 (single cell and multi-cell hailstorm, non-severe multicell) and 6 July 2007 (non-severe multi-cell) over Northern Alabama. The LNOM lightning characteristics are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby Doppler radar network, including the UA Huntsville Advanced Radar for Meteorological and Operational Research (ARMOR, C-band, polarimetric). The LNOM estimated SAD and lightning NOx production profiles are placed in the context of radar derived profiles of vertical motion, precipitation types and amounts. Finally, these analyses are used to determine if storm integrated flash channel extent is as well correlated to volumetric updraft and precipitation ice characteristics in the mixed phase region as flash rate for these individual convective cells.

  4. long duration dust storm sequences on Mars

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2012-12-01

    The Mars Global Surveyor (MGS) Mars Observer Camera (MOC) and Mars Reconnaissance Orbiter (MRO) Mars Color Imager (MARCI) Mars daily global maps have revealed new characteristics for long duration dust storm sequences. These dust storm sequences have long histories of more than a week, travel long distances out of their origination region, and influence large areas in different regions of the planet. During the Ls = 180 - 360 season, except for global dust storms which involve multiple remote dust lifting centers and generally expand explosively from the southern hemisphere northward, other long-lived dust storm sequences usually travel southward through the Acidalia-Chryse, Utopia-Isidis or Arcadia-Amazonis channels with subsequent dust lifting along the way. Sometimes, they penetrate remarkably deep to the southern high latitudes, producing fantastic display of dust band. During the rest of the year, long duration dust storm sequences usually originate from the Argyre/Solis, Hellas/Noachis, or Cimmeria/Sirenum area and travel northward toward the southern low latitudes. Each route exhibits its own peculiar characteristics. We will present our results about these long duration dust storm sequences summarized from the complete archive of MGS MOC daily global maps and two years of MRO MARCI daily global maps. The systematic daily nearly global coverage of these maps makes it feasible to reconstruct the history of long duration dust storm sequences with detail.

  5. Stability of subsea pipelines during large storms.

    PubMed

    Draper, Scott; An, Hongwei; Cheng, Liang; White, David J; Griffiths, Terry

    2015-01-28

    On-bottom stability design of subsea pipelines transporting hydrocarbons is important to ensure safety and reliability but is challenging to achieve in the onerous metocean (meteorological and oceanographic) conditions typical of large storms (such as tropical cyclones, hurricanes or typhoons). This challenge is increased by the fact that industry design guidelines presently give no guidance on how to incorporate the potential benefits of seabed mobility, which can lead to lowering and self-burial of the pipeline on a sandy seabed. In this paper, we demonstrate recent advances in experimental modelling of pipeline scour and present results investigating how pipeline stability can change in a large storm. An emphasis is placed on the initial development of the storm, where scour is inevitable on an erodible bed as the storm velocities build up to peak conditions. During this initial development, we compare the rate at which peak near-bed velocities increase in a large storm (typically less than 10(-3)?m?s(-2)) to the rate at which a pipeline scours and subsequently lowers (which is dependent not only on the storm velocities, but also on the mechanism of lowering and the pipeline properties). We show that the relative magnitude of these rates influences pipeline embedment during a storm and the stability of the pipeline. PMID:25512592

  6. Storm Sudden Commencements Without Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Park, Wooyeon; Lee, Jeongwoo; Yi, Yu; Ssessanga, Nicholas; Oh, Suyeon

    2015-09-01

    Storm sudden commencements (SSCs) occur due to a rapid compression of the Earth's magnetic field. This is generally believed to be caused by interplanetary (IP) shocks, but with exceptions. In this paper we explore possible causes of SSCs other than IP shocks through a statistical study of geomagnetic storms using SYM-H data provided by the World Data Center for Geomagnetism ? Kyoto and by applying a superposed epoch analysis to simultaneous solar wind parameters obtained with the Advanced Composition Explorer (ACE) satellite. We select a total of 274 geomagnetic storms with minimum SYM-H of less than ?30nT during 1998-2008 and regard them as SSCs if SYM-H increases by more than 10 nT over 10 minutes. Under this criterion, we found 103 geomagnetic storms with both SSC and IP shocks and 28 storms with SSC not associated with IP shocks. Storms in the former group share the property that the strength of the interplanetary magnetic field (IMF), proton density and proton velocity increase together with SYM-H, implying the action of IP shocks. During the storms in the latter group, only the proton density rises with SYM-H. We find that the density increase is associated with either high speed streams (HSSs) or interplanetary coronal mass ejections (ICMEs), and suggest that HSSs and ICMEs may be alternative contributors to SSCs.

  7. [Summary of Research on Relationship Between Core Convective Structure and Intensity Change in Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The downshear reformation of Tropical Storm Gabrielle (2001) was investigated using radar reflectivity and lightning data that were nearly continuous in time, as well as frequent aircraft reconnaissance flights. Initially the storm was a marginal tropical storm in an environment with strong 850-200 hPa vertical wind shear of 12-13 meters per second and an approaching upper tropospheric trough. Both the observed outflow and an adiabatic balance model calculation showed that the radial-vertical circulation increased with time as the trough approached. Convection was highly asymmetric, with almost all radar return located in one quadrant left of downshear in the storm. Reconnaissance data show that an intense mesovortex formed downshear of the original center. This vortex was located just south of, rather than within, a strong downshear left lightning outbreak, consistent with tilting of the horizontal vorticity associated with the vertical wind shear. The downshear mesovortex contained a 972 hPa minimum central pressure, 20 hPa lower than minimum pressure in the original vortex just three hours earlier. The mesovortex became the new center of the storm, but weakened somewhat prior to landfall. It is argued that dry air carried around the storm from the region of upshear subsidence, as well as the direct effects of the shear, prevented the reformed vortex from continuing to intensify. Despite the subsequent weakening of the reformed center, it reached land with greater intensity than the original center. It is argued that this intensification process was set into motion by the vertical wind shear in the presence of an environment with upward motion forced by the upper tropospheric trough. In addition, the new center formed much closer to the coast and made landfall much earlier than predicted. Such vertical shear-induced intensity and track fluctuations are important to understand, especially in storms approaching the coast. The structures of the highly sheared tropical storm Chantal During CAMEX-4 is also discussed.

  8. Has the number of Indian summer monsoon depressions decreased over the last thirty years?

    NASA Astrophysics Data System (ADS)

    Cohen, N. Y.; Boos, W. R.

    2014-12-01

    Precipitation in the summer monsoon season accounts for more than 80% of India's annual rainfall and is crucial for the region's agriculture and economy. A large fraction of this summer precipitation is produced by vortices with outer radii of about 1000 km that typically form over Bay of Bengal. Intense occurrences of these synoptic-scale storms are commonly classified as monsoon depressions. Records of monsoon depression tracks maintained by the India Meteorological Department extend from the late 19th century to the current day, and show an average of about 6 monsoon depressions forming each summer season in the Indian region. Recent analyses of these records have revealed a statistically significant decreasing trend in the number of depressions but an increase in the number of weaker storms since the mid-20th century. In particular, the years 2002, 2010, and 2012 were noted for being the first summers, in over a century, in which no depressions formed. Here satellite and reanalysis datasets are used to document the existence of multiple storms in the summers of 2002, 2010, and 2012 that meet traditional criteria for classification as monsoon depressions. This indicates that the India Meteorological Department record is missing storms, at least in those recent years. We furthermore use ocean surface wind speeds obtained from satellite scatterometers to estimate the number of extreme synoptic events occurring each summer over the Bay of Bengal, and find that this proxy for storm counts exhibits no statistically significant trend over the last three decades. Depression counts based on a reanalysis dataset also exhibit no statistically significant trend over the last three decades, but temporal changes in the observing network may render reanalysis-based storm-count trends unreliable. In summary, our results demonstrate the existence of possible errors in the dataset on which previous claims of large trends in monsoon depression activity have been based. Although multiple issues exist with storm counts based on several reanalysis and satellite datasets, we were unable to find a statistically significant downward trend in depression counts using those datasets. This indicates a need for improved monitoring of monsoon depressions and more in-depth study of possible trends in their activity.

  9. Polar vortex formation in giant-planet atmospheres due to moist convection

    NASA Astrophysics Data System (ADS)

    O'Neill, Morgan E.; Emanuel, Kerry A.; Flierl, Glenn R.

    2015-07-01

    A strong cyclonic vortex has been observed on each of Saturn’s poles, coincident with a local maximum in observed tropospheric temperature. Neptune also exhibits a relatively warm, although much more transient, region on its south pole. Whether similar features exist on Jupiter will be resolved by the 2016 Juno mission. Energetic, small-scale storm-like features that originate from the water-cloud level or lower have been observed on each of the giant planets and attributed to moist convection, suggesting that these storms play a significant role in global heat transfer from the hot interior to space. Nevertheless, the creation and maintenance of Saturn’s polar vortices, and their presence or absence on the other giant planets, are not understood. Here we use simulations with a shallow-water model to show that storm generation, driven by moist convection, can create a strong polar cyclone throughout the depth of a planet’s troposphere. We find that the type of shallow polar flow that occurs on a giant planet can be described by the size ratio of small eddies to the planetary radius and the energy density of its atmosphere due to latent heating from moist convection. We suggest that the observed difference in these parameters between Saturn and Jupiter may preclude a Jovian polar cyclone.

  10. Storm-time and Quiet-time Substorms in the Magnetotail

    NASA Astrophysics Data System (ADS)

    Petrukovich, A. A.

    Analysis of the storm-time magnetotail data reveals distinct signatures of the substorm loading-unloading sequence similar to that of quiet-time substorms, except larger amplitudes of the lobe magnetic pressure increase and the nominal solar wind electric field input. Substorm intervals are intermittent with episodes of quasi-stationary enhanced convection. The difference between these large substorms and smaller quiet-time events measured in terms of accumulated magnetic flux can reach an order of magnitude. Therefore, a substorm onset likely cannot be directly associated with some universal critical level of magnetic flux or energy input. The SYM-H index, which due to higher than Dst time resolution is capable to resolve the effect of substorm phases on the ring current, actually readily reacts to IMF changes only. Only short-living and small partial recoveries of SYM-H are observed at substorm expansions. These findings suggest primarily convective mechanism of the ring current control.

  11. Radar-based severe storm climatology for Austrian complex orography related to vertical wind shear and atmospheric instability

    NASA Astrophysics Data System (ADS)

    Kaltenboeck, Rudolf; Steinheimer, Martin

    2015-05-01

    The paper examines the temporal and spatial distribution of intense convective cores as a function of CAPE and vertical wind shear. C band weather radar data are exploited over the complex orography of Austria. Further ERA-Interim data are used for the classification of synoptic flow and instability. A 5-year period of convective seasons shows the presence of severe thunderstorms over Austria. The spatial distribution of high radar reflectivity differs from the radar derived precipitation field due to the contribution of stratiform rain, weak convective events, and radar related measurement errors. Westerly and southerly flow classes are associated with more widespread thunderstorm development. One of the key results is that the strong deep-layer shear environment leads to organized, line oriented pattern over wide areas of Austria, except the observed minima over the Alpine crest. These preferred areas for severe storm occurrence can be well used for nowcasting. Especially during low CAPE conditions the magnitude of deep-layer shear is very important for the spatial arrangement, maximum size of the convective system, and time of occurrence. For the eastern part of Austria and the Alps, high deep-layer shear tends to produce larger cell cores in terms of high radar reflectivity. For the Alps during low CAPE conditions and for the eastern part of Austria for all CAPE classifications, the strong deep-layer shear increases the frequency of severe storms and shifts the peak of occurrence from afternoon toward the evening.

  12. Simultaneous Radar and Satellite Data Storm-Scale Assimilation Using an Ensemble Kalman Filter Approach for 24 May 2011

    NASA Technical Reports Server (NTRS)

    Jones, Thomas A.; Stensrud, David; Wicker, Louis; Minnis, Patrick; Palikonda, Rabindra

    2015-01-01

    Assimilating high-resolution radar reflectivity and radial velocity into convection-permitting numerical weather prediction models has proven to be an important tool for improving forecast skill of convection. The use of satellite data for the application is much less well understood, only recently receiving significant attention. Since both radar and satellite data provide independent information, combing these two sources of data in a robust manner potentially represents the future of high-resolution data assimilation. This research combines Geostationary Operational Environmental Satellite 13 (GOES-13) cloud water path (CWP) retrievals with Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity to examine the impacts of assimilating each for a severe weather event occurring in Oklahoma on 24 May 2011. Data are assimilated into a 3-km model using an ensemble adjustment Kalman filter approach with 36 members over a 2-h assimilation window between 1800 and 2000 UTC. Forecasts are then generated for 90 min at 5-min intervals starting at 1930 and 2000 UTC. Results show that both satellite and radar data are able to initiate convection, but that assimilating both spins up a storm much faster. Assimilating CWP also performs well at suppressing spurious precipitation and cloud cover in the model as well as capturing the anvil characteristics of developed storms. Radar data are most effective at resolving the 3D characteristics of the core convection. Assimilating both satellite and radar data generally resulted in the best model analysis and most skillful forecast for this event.

  13. Reduced Baroclinicity During Martian Global Dust Storms

    NASA Astrophysics Data System (ADS)

    Battalio, Joseph; Szunyogh, Istvan; Lemmon, Mark

    2015-11-01

    The eddy kinetic energy equation is applied to the Mars Analysis Correction Data Assimilation (MACDA) dataset during the pre-winter solstice period for the northern hemisphere of Mars. Traveling waves are triggered by geopotential flux convergence, grow baroclinically, and decay barotropically. Higher optical depth increases the static stability, which reduces vertical and meridional heat fluxes. Traveling waves during a global dust storm year develop a mixed baroclinic/barotropic growth phase before decaying barotropically. Baroclinic energy conversion is reduced during the global dust storm, but eddy intensity is undiminished. Instead, the frequency of storms is reduced due to a stabilized vertical profile.

  14. Radial diffusion with outer boundary determined by geosynchronous measurements: Storm and post-storm intervals

    NASA Astrophysics Data System (ADS)

    Chu, F.; Haines, P.; Hudson, M.; Kress, B.; Freidel, R.; Kanekal, S.

    2007-12-01

    Work is underway by several groups to quantify diffusive radial transport of radiation belt electrons, including a model for pitch angle scattering losses to the atmosphere. The radial diffusion model conserves the first and second adiabatic invariants and breaks the third invariant. We have developed a radial diffusion code which uses the Crank Nicholson method with a variable outer boundary condition. For the radial diffusion coefficient, DLL, we have several choices, including the Brautigam and Albert (JGR, 2000) diffusion coefficient parameterized by Kp, which provides an ad hoc measure of the power level at ULF wave frequencies in the range of electron drift (mHz), breaking the third invariant. Other diffusion coefficient models are Kp-independent, fixed in time but explicitly dependent on the first invariant, or energy at a fixed L, such as calculated by Elkington et al. (JGR, 2003) and Perry et al. (JGR, 2006) based on ULF wave model fields. We analyzed three periods of electron flux and phase space density (PSD) enhancements inside of geosynchronous orbit: March 31 - May 31, 1991, and July 2004 and Nov 2004 storm intervals. The radial diffusion calculation is initialized with a computed phase space density profile for the 1991 interval using differential flux values from the CRRES High Energy Electron Fluxmeter instrument, covering 0.65 - 7.5 MeV. To calculate the initial phase space density, we convert Roederer L* to McIlwain's L- parameter using the ONERA-DESP program. A time averaged model developed by Vampola1 from the entire 14 month CRRES data set is applied to the July 2004 and Nov 2004 storms. The online CRESS data for specific orbits and the Vampola-model flux are both expressed in McIlwain L-shell, while conversion to L* conserves phase space density in a distorted non-dipolar magnetic field model. A Tsyganenko (T04) magnetic field model is used for conversion between L* and L. The outer boundary PSD is updated using LANL GEO satellite fluxes. After calculating the phase space density time evolution for the two storms and post-injection interval (March 31 - May 31, 1991), we compare results with SAMPEX measurements. A better match with SAMPEX measurements is obtained with a variable outer boundary, also with a Kp-dependent diffusion coefficient, and finally with an energy and L-dependent loss term (Summers et al., JGR, 2004), than with a time-independent diffusion coefficient and a simple Kp-parametrized loss rate and location of the plasmapause. Addition of a varying outer boundary which incorporates measured fluxes at geosynchronous orbit using L* has the biggest effect of the three parametrized variations studied. 1Vampola, A.L., 1996, The ESA Outer Zone Electron Model Update, Environment Modelling for Spaced-based Applications, ESA SP-392, ESTEC, Nordwijk, NL, pp. 151-158, W. Burke and T.-D. Guyenne, eds.

  15. Gravity Waves Generated by Convection: A New Idealized Model Tool and Direct Validation with Satellite Observations

    NASA Astrophysics Data System (ADS)

    Alexander, M. Joan; Stephan, Claudia

    2015-04-01

    In climate models, gravity waves remain too poorly resolved to be directly modelled. Instead, simplified parameterizations are used to include gravity wave effects on model winds. A few climate models link some of the parameterized waves to convective sources, providing a mechanism for feedback between changes in convection and gravity wave-driven changes in circulation in the tropics and above high-latitude storms. These convective wave parameterizations are based on limited case studies with cloud-resolving models, but they are poorly constrained by observational validation, and tuning parameters have large uncertainties. Our new work distills results from complex, full-physics cloud-resolving model studies to essential variables for gravity wave generation. We use the Weather Research Forecast (WRF) model to study relationships between precipitation, latent heating/cooling and other cloud properties to the spectrum of gravity wave momentum flux above midlatitude storm systems. Results show the gravity wave spectrum is surprisingly insensitive to the representation of microphysics in WRF. This is good news for use of these models for gravity wave parameterization development since microphysical properties are a key uncertainty. We further use the full-physics cloud-resolving model as a tool to directly link observed precipitation variability to gravity wave generation. We show that waves in an idealized model forced with radar-observed precipitation can quantitatively reproduce instantaneous satellite-observed features of the gravity wave field above storms, which is a powerful validation of our understanding of waves generated by convection. The idealized model directly links observations of surface precipitation to observed waves in the stratosphere, and the simplicity of the model permits deep/large-area domains for studies of wave-mean flow interactions. This unique validated model tool permits quantitative studies of gravity wave driving of regional circulation and provides a new method for future development of realistic convective gravity wave parameterizations.

  16. Has the number of Indian summer monsoon depressions decreased over the last 30 years?

    NASA Astrophysics Data System (ADS)

    Cohen, Naftali Y.; Boos, William R.

    2014-11-01

    Monsoon depressions are cyclonic atmospheric vortices with outer radii near 1000 km that form within the larger-scale monsoon circulations of India and other regions. Recent studies have reported a downward trend in recent decades in the number of Indian summer monsoon depressions. In particular, the years 2002, 2010, and 2012 were noted for having the first summers, in over a century, in which no depressions formed. Here satellite and reanalysis data are used to document the existence of multiple storms in the summers of 2002, 2010, and 2012 that meet traditional criteria for classification as monsoon depressions. Furthermore, the number of extreme synoptic events occurring each summer over the Bay of Bengal is estimated from satellite scatterometers and exhibits no statistically significant trend over the last three decades. These results raise questions about the validity of previously claimed large trends in monsoon depression activity in the Indian summer monsoon.

  17. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes

    PubMed Central

    Lehmann, Jascha; Coumou, Dim

    2015-01-01

    Changes in mid-latitude circulation can strongly affect the number and intensity of extreme weather events. In particular, high-amplitude quasi-stationary planetary waves have been linked to prolonged weather extremes at the surface. In contrast, analyses of fast-traveling synoptic-scale waves and their direct influence on heat and cold extremes are scarce though changes in such waves have been detected and are projected for the 21st century. Here we apply regression analyses of synoptic activity with surface temperature and precipitation in monthly gridded observational data. We show that over large parts of mid-latitude continental regions, summer heat extremes are associated with low storm track activity. In winter, the occurrence of cold spells is related to low storm track activity over parts of eastern North America, Europe, and central- to eastern Asia. Storm tracks thus have a moderating effect on continental temperatures. Pronounced storm track activity favors monthly rainfall extremes throughout the year, whereas dry spells are associated with a lack thereof. Trend analyses reveal significant regional changes in recent decades favoring the occurrence of cold spells in the eastern US, droughts in California and heat extremes over Eurasia. PMID:26657163

  18. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes.

    PubMed

    Lehmann, Jascha; Coumou, Dim

    2015-01-01

    Changes in mid-latitude circulation can strongly affect the number and intensity of extreme weather events. In particular, high-amplitude quasi-stationary planetary waves have been linked to prolonged weather extremes at the surface. In contrast, analyses of fast-traveling synoptic-scale waves and their direct influence on heat and cold extremes are scarce though changes in such waves have been detected and are projected for the 21st century. Here we apply regression analyses of synoptic activity with surface temperature and precipitation in monthly gridded observational data. We show that over large parts of mid-latitude continental regions, summer heat extremes are associated with low storm track activity. In winter, the occurrence of cold spells is related to low storm track activity over parts of eastern North America, Europe, and central- to eastern Asia. Storm tracks thus have a moderating effect on continental temperatures. Pronounced storm track activity favors monthly rainfall extremes throughout the year, whereas dry spells are associated with a lack thereof. Trend analyses reveal significant regional changes in recent decades favoring the occurrence of cold spells in the eastern US, droughts in California and heat extremes over Eurasia. PMID:26657163

  19. PLUME DISPERSION IN THE CONVECTIVE BOUNDARY LAYER PART I: CONDORS FIELD EXPERIMENT AND EXAMPLE MEASUREMENTS

    EPA Science Inventory

    The dispersion of plumes of passive tracers in highly convective boundary layers was measured during late summer in 1982 and 1983. he 30O-m tower of the Boulder Atmospheric Observatory supplied meteorological data and served as the platform for elevated sources. he parameters in ...

  20. Venusian Applications of 3D Convection Modeling

    NASA Technical Reports Server (NTRS)

    Bonaccorso, Timary Annie

    2011-01-01

    This study models mantle convection on Venus using the 'cubed sphere' code OEDIPUS, which models one-sixth of the planet in spherical geometry. We are attempting to balance internal heating, bottom mantle viscosity, and temperature difference across Venus' mantle, in order to create a realistic model that matches with current planetary observations. We also have begun to run both lower and upper mantle simulations to determine whether layered (as opposed to whole-mantle) convection might produce more efficient heat transfer, as well as to model coronae formation in the upper mantle. Upper mantle simulations are completed using OEDIPUS' Cartesian counterpart, JOCASTA. This summer's central question has been how to define a mantle plume. Traditionally, we have defined a hot plume the region with temperature at or above 40% of the difference between the maximum and horizontally averaged temperature, and a cold plume as the region with 40% of the difference between the minimum and average temperature. For less viscous cases (1020 Pa?s), the plumes generated by that definition lacked vigor, displaying buoyancies 1/100th of those found in previous, higher viscosity simulations (1021 Pa?s). As the mantle plumes with large buoyancy flux are most likely to produce topographic uplift and volcanism, the low viscosity cases' plumes may not produce observable deformation. In an effort to eliminate the smallest plumes, we experimented with different lower bound parameters and temperature percentages.

  1. IISME Summer Fellowship Program

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the summer of 1997, NASA-Ames scientists served as mentors to six teachers who worked as IISME (Industry Initiatives for Science and Math Education) Teacher Fellows over the summer. These six teachers were among 91 IISME Teacher Fellows working at various corporate, government agency, and university sites throughout the San Francisco Bay Area. These NASA-Ames fellowship positions are described in brief. One requirement of the IISME Summer Fellowship program is that teachers develop a personal Action Plan for classroom transfer. These Action Plans are published in abstract form in an annual catalog. I have also attached the abstracts of NASA-Ames teachers.

  2. Impacts of Saharan Dust on the Microphysical Processes in Tropical Convection

    NASA Astrophysics Data System (ADS)

    Saleeby, S. M.; van den Heever, S. C.; Twohy, C. H.

    2011-12-01

    Cloud resolving model simulations of idealized tropical convection are performed to examine the influence of Saharan dust intrusions on the microphysical structure and precipitation formation processes within varying convective environmental conditions in the tropics. Simulations are initialized with dropsonde profiles retrieved during the NAMMA field project in the eastern tropical Atlantic during the summer of 2006. A series of vertical profiles obtained on Aug 30 and Sep 1, 2006 provide south to north transects from a zone of deep tropical convection to clear sky conditions. Representative simulations, therefore, encompass a range of tropical precipitation systems from deep to shallow convection. Within the idealized modeling framework, a set of sensitivity simulations, relative to a control run, are performed in order to better understand the role that dust particles play on these convective systems. To simulate the droplet nucleating properties of the dust, its hygroscopicity is varied, thus representing varying amounts of soluble material. Higher cloud droplet concentrations resulting from the introduction of dust lead to modifications of the cloud droplet distribution and growth of precipitation sized hydrometeors. Additionally, mineral dust can act as freezing and deposition ice nuclei, thus altering the ice crystal spectra. Changes to the droplet and ice crystal distributions lead to changes in the hydrometeor condensation and evaporation rates as well as the latent heating profiles within the convective clouds. These perturbations to the initial system then generate dynamic feedbacks within the convection. A microphysical budget analysis of the dust effects on a range of convective systems will be presented.

  3. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Yasyukevich, Yu.; Maksikov, A.; Zhivetiev, I.

    2014-07-01

    Using data of GPS receivers located worldwide, we analyze the quality of GPS performance during four geomagnetic storms of different intensity: two super-storms and two intense storms. We show that during super-storms the density of GPS Losses-of-Lock (LoL) increases up to 0.25% at L1 frequency and up to 3% at L2 frequency, and up to 0.15% (at L1) and 1% (at L2) during less intense storms. Also, depending on the intensity of the storm time ionospheric disturbances, the total number of total electron content (TEC) slips can exceed from 4 to 40 times the quiet time level. Both GPS LoL and TEC slips occur during abrupt changes of SYM-H index of geomagnetic activity, i.e., during the main phase of geomagnetic storms and during development of ionospheric storms. The main contribution in the total number of GPS LoL was found to be done by GPS sites located at low and high latitudes, whereas the area of numerous TEC slips seemed to mostly correspond to the boundary of the auroral oval, i.e., region with intensive ionospheric irregularities. Our global maps of TEC slips show where the regions with intense irregularities of electron density occur during geomagnetic storms and will let us in future predict appearance of GPS errors for geomagnetically disturbed conditions.

  4. Dealing with Storm-Damaged Trees (Spanish) 

    E-print Network

    Kirk, Melanie; Taylor, Eric; Foster, C. Darwin

    2007-10-08

    Many homeowners need help caring for or removing damaged trees after a natural disaster. This publication explains what a certified arborist is and how to select one. It also cautions against burning debris downed by a storm....

  5. Quantifying Power Grid Risk from Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Homeier, N.; Wei, L. H.; Gannon, J. L.

    2012-12-01

    We are creating a statistical model of the geophysical environment that can be used to quantify the geomagnetic storm hazard to power grid infrastructure. Our model is developed using a database of surface electric fields for the continental United States during a set of historical geomagnetic storms. These electric fields are derived from the SUPERMAG compilation of worldwide magnetometer data and surface impedances from the United States Geological Survey. This electric field data can be combined with a power grid model to determine GICs per node and reactive MVARs at each minute during a storm. Using publicly available substation locations, we derive relative risk maps by location by combining magnetic latitude and ground conductivity. We also estimate the surface electric fields during the August 1972 geomagnetic storm that caused a telephone cable outage across the middle of the United States. This event produced the largest surface electric fields in the continental U.S. in at least the past 40 years.

  6. Tropical Storm Don - Duration: 31 seconds.

    NASA Video Gallery

    GOES-13 data was compiled into an animation by the NASA GOES Project at NASA Goddard that shows the development of Tropical Storm Don in the southern Gulf of Mexico, west of Cuba. The animation run...

  7. Mosquito Problems after a Storm (Spanish) 

    E-print Network

    Johnsen, Mark

    2008-08-05

    Areas flooded after a severe storm are prone to mosquito problems. Several mosquito species are a danger to humans because of the diseases they transmit. This publication explains the symptoms of dengue fever, West Nile virus and St. Louis...

  8. Pacific Northwest Storms Situation Report # 1

    SciTech Connect

    2006-12-15

    Severe wind and snow storms hit the Pacific Northwest region on December 14 – 15, 2006, following severe flooding during the past few days. The severe weather resulted in major power outages through the region. At peak there were 1.8 million customers without power which included BC Hydro in Canada. Currently, there are over 1.5 million outages in the region as a result of the Pacific Northwest Storms. This represents about 42 percent of customers in affected utility service areas in Oregon and Washington. See table below. Because the current wind and snow storms are coming on the heels of extensive flooding in the region, electric utilities are experiencing damage. Wind gusts reached close to 100 mph in some areas of the region. The storm is expected to bring its strong winds and heavy snow into Idaho, Montana and Wyoming Friday and into the weekend. There are currently no reported major impacts to the petroleum and natural gas infrastructure.

  9. Tropical Storm Dolly Develops - Duration: 32 seconds.

    NASA Video Gallery

    This animation from NOAA's GOES-East satellite from Aug. 31-Sept. 2 shows the movement of a low pressure area from the western Caribbean Sea over the Yucatan Peninsula as it becomes Tropical Storm ...

  10. Tropical Storm Faxai - Duration: 13 seconds.

    NASA Video Gallery

    NASA/JAXA's TRMM Satellite provided data of developing Tropical Storm Faxai to make this 3-D image that showed some towering thunderstorms in the area were reaching altitudes of up to 15.5km/~9.6 m...

  11. The Severe Storms Observation Satellite /SSOS/

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.; Raskin, W. H.; Flatow, F. S.; Quann, J. J.

    1975-01-01

    The objective of the Severe Storms Observation Satellite (SSOS) is to continuously observe meteorological phenomena from geosynchronous altitude and to acquire data whose analysis will lead to a better understanding, early detection, and prediction of severe storms and other significant mesoscale events such as dust storms. Details are discussed as to the Advanced Atmospheric Sounding and Imaging Radiometer designed for SSOS, the use of a special spacecraft for an R&D mission, data acquisition, and data processing and analysis. The required accurate vertical temperature and moisture profiles as well as high temporal and spatial resolution images can best be obtained by a three-axis stabilized system, which offers approximately an order of magnitude sensing improvement over a comparable spinning system due to its capability to continuously view the earth. A block diagram of the severe storm analysis system is included.

  12. Behind desert storm; The new military paradigm

    SciTech Connect

    Klare, M.T. )

    1991-05-01

    The author discusses US foreign policy in light of Operation Desert Storm. Near-future military technology is discussed, including: strategic weapons, advanced missile systems, and satellite defense communication systems.

  13. Simulation of a Flash Flooding Storm at the Steep Edge of the Himalayas

    NASA Technical Reports Server (NTRS)

    Kumar, Anil; Houze, Robert A., Jr.; Rasmussen, Kristen L.; Peters-Lidard, Christa

    2014-01-01

    A flash flood and landslide in the Leh region of the Indus Valley in the Indian state of Jammu and Kashmir on 5-6 August 2010 resulted in hundreds of deaths and great property damage. Observations have led to the hypothesis that the storm, which formed over the Tibetan Plateau, was steered over the steep edge of the plateau by 500-hPa winds and then energized by the ingestion of lower-level moist air, which was approaching from the Arabian Sea and Bay of Bengal and rose up the Himalayan barrier. A coupled land surface and atmospheric model simulation validates this hypothesized storm scenario, with the model storm taking the form of a traveling mesoscale squall line with a leading convective line, trailing stratiform region, and midlevel inflow jet. In this region, the development of a mesoscale storm over high terrain is highly unusual, especially one in the form of a propagating squall line system. This unusual storm occurrence and behavior could serve as a warning sign in flash flood prediction. The coupled atmosphere and land surface model showed that the excessive runoff leading to the flood and landslide were favored by the occurrence of this unusual meteorological event coinciding temporally and spatially with favorable hydrologic conditions. Additionally, the model simulations showed that previous rainstorms had moistened the soil during the entire season and especially over the few days leading up to the Leh flood, so the normally arid mountainsides were likely not able to rapidly absorb the additional rainfall of the sudden 5 August squall line.

  14. Field Evaluation of Low-E Storm Windows

    SciTech Connect

    Drumheller, S. Craig; Kohler, Christian; Minen, Stefanie

    2007-07-11

    A field evaluation comparing the performance of low emittance (low-e) storm windows with both standard clear storm windows and no storm windows was performed in a cold climate. Six homes with single-pane windows were monitored over the period of one heating season. The homes were monitored with no storm windows and with new storm windows. The storm windows installed on four of the six homes included a hard coat, pyrolitic, low-e coating while the storm windows for the other two homeshad traditional clear glass. Overall heating load reduction due to the storm windows was 13percent with the clear glass and 21percent with the low-e windows. Simple paybacks for the addition of the storm windows were 10 years for the clear glass and 4.5 years forthe low-e storm windows.

  15. Semester/Summer Internship Program Fall, Spring & Summer

    E-print Network

    Semester/Summer Internship Program Fall, Spring & Summer 2013 - 14 Perrotis College's Semester/Summer Internship Program (SSIP) is aimed at undergraduate students who want to spend a summer or semester doing and at the Zannas Farm, located west of Thessaloniki. Internships are also available in other AFS departments

  16. Influence of resolution on storm studies

    NASA Astrophysics Data System (ADS)

    Jokinen, Pauli; Gregow, Hilppa; Venäläinen, Ari; Laaksonen, Ari

    2014-05-01

    The risk of wind-induced damage to infrastructure as well as forests is projected to increase in western, central, and northern Europe due to anthropogenic warming of climate and concurrent increase in the frequency of strong storms. Recent studies have highlighted the importance of resolution in capturing small scale features such as tropical storms and hurricanes as well as mesoscale features embedded in larger extratropical storms. Because reanalyses are good homogeneous datasets of the current climate, they are of help when studying storms and extreme winds as well as the influence of resolution. To know more about the resolution impact on modelled storms and extreme wind speeds we have in our work concentrated on two European reanalyses: ERA-40 (1957-2002) and ERA-Interim (1979-current). We have analyzed parameterized surface wind gusts and geostrophic and ageostrophic isallobaric wind speeds to see how storm intensity and movement are captured depending on the dataset used. We have also done up-scaling of the datasets to daily resolution to find out how much information is lost when the temporal resolution given to the end-user is low. This is important, because daily temporal resolution is often used in climate research for example in ensemble studies when the focus is on defining uncertainties due to the choice of model. Our preliminary results show that with high spatial and temporal resolution, the reanalysis datasets placed the rapidly moving storms spatially more correctly than with lower resolutions. In the storm cases, the wind speeds in ERA-40 and its lower spatial resolution were, for instance, 15% smaller than those from ERA-Interims higher spatial resolution. Using a 1.125° grid instead of a 0.7° grid shifted the location of storm Anatol's maximum winds by several hundred kilometers. Additionally decreasing the temporal resolution from three hours to 24 hours reduced the estimate of the maximum storm wind speeds by 40-70% and also placed the area of maximum winds in a different location along the track. Due to such examples, we presume that projections of storms under climate change may have large uncertainties. This is due to the varying spatial resolution employed and also the temporal resolution available for the end-users. Focusing on the effects of different resolutions may help to minimize the uncertainties in the results.

  17. Tropical Storm Alberto, Seen Through New 'Eyes'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1

    NASA's new CloudSat satellite captured its first tropical storm, Alberto, as it spun over the Gulf of Mexico the morning of June 12, 2006. This image comparison shows how CloudSat 'sees' such storms differently than conventional weather satellites. The CloudSat image (top of this page and bottom of figure 1) is compared with images obtained at nearly the same time from two National Oceanic and Atmospheric Administration National Weather Service tools that are mainstays for monitoring the development and movement of tropical cyclones: the NEXRAD storm detection radar, which maps out precipitation patterns for that portion of the storm that comes into its range, and the GOES-12 (Geostationary Operational Environmental Satellite) infrared imager, which is presented here to indicate the scale of the storm and the location where CloudSat overflies it. CloudSat sees the storm outside the range of NEXRAD and provides significantly greater vertical detail compared to the GOES satellite. NEXRAD, for example, can only see out to about 402 kilometers (250 nautical miles), and so could not see the portion of the storm that CloudSat was flying over at the time. GOES-12 only sees the very top of the clouds, and cannot provide any detail about what is being seen beneath the cloud tops.

    The CloudSat data show a storm that reaches about 16 kilometers (10 miles) in height and extends perhaps 1,000 kilometers (621 miles) in scale. The green line at the bottom of the CloudSat image is the radar echo of the Earth's surface. Where this line starts to disappear (change color) under the storm is where the rainfall is heaviest. Very heavy rainfall can be seen over about 400 kilometers (249 miles) of the satellite track. Cirrus clouds can also been seen out ahead of the storm (near letter A) -- this is also evident in the GOES-12 image. A smaller thunderstorm is visible in the CloudSat image under that cirrus cloud cover near the letter A. That storm is completely hidden from view in the GOES infrared image.

  18. Numerical Simulations of Precipitation Processes, Microphysics, and Microwave Radiative Properties of flood Producing Storms in Mediterranean & Adriatic Basins

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A comprehensive understanding of the meteorological and microphysical nature of Mediterranean storms requires a combination of in situ data analysis, radar data analysis, and satellite data analysis, effectively integrated with numerical modeling studies at various scales. An important aspect of understanding microphysical controls of severe storms, is first understanding the meteorological controls under which a storm has evolved, and then using that information to help characterize the dominant microphysical processes. For hazardous Mediterranean storms, highlighted by the October 5-6, 1998 Friuli flood event in northern Italy, a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution. This involves intense convective development, Sratiform decay, orographic lifting, and sloped frontal lifting processes, as well as the associated vertical motions and thermodynamical instabilities governing physical processes that effect details of the size distributions and fall rates of the various types of hydrometeors found within the storm environment. This talk overviews the microphysical elements of a severe Mediterranean storm in such a context, investigated with the aid of TRMM satellite and other remote sensing measurements, but guided by a nonhydrostatic mesoscale model simulation of the Friuli flood event. The data analysis for this paper was conducted by my research groups at the Global Hydrology and Climate Center in Huntsville, AL and Florida State University in Tallahassee, and in collaboration with Dr. Alberto Mugnai's research group at the Institute of Atmospheric Physics in Rome. The numerical modeling was conducted by Professor Oreg Tripoli and Ms. Giulia Panegrossi at the University of Wisconsin in Madison, using Professor Tripoli's nonhydrostatic modeling system (NMS). This is a scalable, fully nested mesoscale model capable of resolving nonhydrostatic circulations from regional scale down to cloud scale and below.

  19. MS, AIP, Sternphysik, 2001 Hydrodynamical Convection Models

    E-print Network

    c MS, AIP, Sternphysik, 2001 Hydrodynamical Convection Models -- Sun and Betelgeuse -- Matthias Steffen Convection is a universal feature in astrophysics, essentially all types of stars have one or even several convection zones. The role of stellar convection is far­reaching: Convective energy transport

  20. Self-organized criticality in tropical convection?

    E-print Network

    Plant, Robert

    Self-organized criticality in tropical convection? Bob Plant Climate Thermodynamics Workshop 22nd picture of tropical convection What is self-organized criticality? Evidence for SOC in convection 1st attempt at SOC model of convection No conclusions, just open questions SOC in tropical convection? ­ p.1

  1. The Monteagle Summer School.

    ERIC Educational Resources Information Center

    Strobel, Katherine

    1979-01-01

    The Summer School of Physical Education at Monteagle, Tennessee, was probably a major influence in the development of physical education programs in public schools of the South at the turn of the century. (JMF)

  2. A Summer Camp Assessment.

    ERIC Educational Resources Information Center

    Pratte, Janice L.; DiNardi, Salvatore R.

    1979-01-01

    Reported are the results of a project assessing the impact of a revised Massachusetts sanitary code on 500 summer camps for children. The study compared camp compliances with the proposed regulations to the level of compliance with existing regulations. (BT)

  3. ELECTRONICS SUMMER CAMP

    E-print Network

    Sorin, Eric J.

    ! Students will be working on Arduino circuit boards during the Electronic Summer Camp at California State-4115 Image courtesy of http://www.arduino.cc/ OBJECTIVE Are you a middle school student with a 3.0 GPA

  4. The Purdue Summer Internship

    ERIC Educational Resources Information Center

    Hamilton, William; And Others

    1976-01-01

    Describes a program in which college agricultural education majors between their junior and senior years are placed with vocational agriculture teachers to gain experience in conducting a summer vocational agriculture program. (HD)

  5. Dust Storm, Red Sea and Saudi Arabia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Outlined against the dark blue water of the Red Sea, a prominent dust storm is making its way across the Red Sea into Saudi Arabia (22.0N, 39.0E) between the Islamic holy cities of Medinah and Mecca. Funneled through a gap in the coastal ranges of southern Sudan near the Ethiopian border, dust storms frequently will blow counter to the prevailing tropical easterly winds of the region.

  6. EVIDENCE FOR COMET STORMS IN METEORITE AGES

    SciTech Connect

    Perlmutter, S.; Muller, R.A.

    1987-10-01

    Clustering of cosmic-ray exposure ages of H chondritic meteorites occurs at 7 {+-} 3 and 30 {+-} 6 Myr ago. There is independent evidence that comet storms have occurred at the same times, based on the fossil record of family and genus extinctions, impact craters and glass, and geomagnetic reversals. We suggest that H chondrites were formed by the impact of shower comets on asteroids. The duration of the most recent comet shower was {le} 4 Myr, in agreement with storm theory.

  7. Mapping Hurricane Rita inland storm tide

    USGS Publications Warehouse

    Berenbrock, Charles; Mason, Robert R.; Blanchard, Stephen F.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.

  8. Mapping hurricane rita inland storm tide

    USGS Publications Warehouse

    Berenbrock, C.; Mason, R.R., Jr.; Blanchard, S.F.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of affected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-h intervals from midnight (00:00 hours) through noon (12:00 hours) on 24 September 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared with the extent of flood inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks. ?? 2009 Blackwell Publishing Ltd.

  9. Non-storm water discharges technical report

    SciTech Connect

    Mathews, S.

    1994-07-01

    Lawrence Livermore National Laboratory (LLNL) submitted a Notice of Intent to the California State Water Resources Control Board (hereafter State Board) to discharge storm water associated with industrial activities under the California General Industrial Activity Storm Water National Pollutant Elimination System Discharge Permit (hereafter General Permit). As required by the General Permit, LLNL provided initial notification of non-storm water discharges to the Central Valley Regional Water Quality Control Board (hereafter Regional Board) on October 2, 1992. Additional findings and progress towards corrective actions were reported in subsequent annual monitoring reports. LLNL was granted until March 27, 1995, three years from the Notice of Intent submission date, to eliminate or permit the non-storm water discharges. On May 20, 1994, the Regional Board issued Waste Discharge Requirements (WDR Board Order No. 94-131, NPDES No. CA0081396) to LLNL for discharges of non-contact cooling tower wastewater and storm water related to industrial activities. As a result of the issuance of WDR 94-131, LLNL rescinded its coverage under the General Permit. WDR 94-131 allowed continued non-storm water discharges and requested a technical report describing the discharges LLNL seeks to permit. For the described discharges, LLNL anticipates the Regional Board will either waive Waste Discharge Requirements as allowed for in The Water Quality Control Plan for the California Regional Water Quality Control Board, Central Valley Region (hereafter Basin Plan) or amend Board Order 94-131 as appropriate.

  10. Scientists Track 'Perfect Storm' on Mars

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Two dramatically different faces of our Red Planet neighbor appear in these comparison images showing how a global dust storm engulfed Mars with the onset of Martian spring in the Southern Hemisphere. When NASA's Hubble Space Telescope imaged Mars in June, the seeds of the storm were caught brewing in the giant Hellas Basin (oval at 4 o'clock position on disk) and in another storm at the northern polar cap.

    When Hubble photographed Mars in early September, the storm had already been raging across the planet for nearly two months obscuring all surface features. The fine airborne dust blocks a significant amount of sunlight from reaching the Martian surface. Because the airborne dust is absorbing this sunlight, it heats the upper atmosphere. Seasonal global Mars dust storms have been observed from telescopes for over a century, but this is the biggest storm ever seen in the past several decades.

    Mars looks gibbous in the right photograph because it is 26 million miles farther from Earth than in the left photo (though the pictures have been scaled to the same angular size), and our viewing angle has changed. The left picture was taken when Mars was near its closest approach to Earth for 2001 (an event called opposition); at that point the disk of Mars was fully illuminated as seen from Earth because Mars was exactly opposite the Sun.

    Both images are in natural color, taken with Hubble's Wide Field Planetary Camera 2.

  11. Into the eye of the cytokine storm.

    PubMed

    Tisoncik, Jennifer R; Korth, Marcus J; Simmons, Cameron P; Farrar, Jeremy; Martin, Thomas R; Katze, Michael G

    2012-03-01

    The cytokine storm has captured the attention of the public and the scientific community alike, and while the general notion of an excessive or uncontrolled release of proinflammatory cytokines is well known, the concept of a cytokine storm and the biological consequences of cytokine overproduction are not clearly defined. Cytokine storms are associated with a wide variety of infectious and noninfectious diseases. The term was popularized largely in the context of avian H5N1 influenza virus infection, bringing the term into popular media. In this review, we focus on the cytokine storm in the context of virus infection, and we highlight how high-throughput genomic methods are revealing the importance of the kinetics of cytokine gene expression and the remarkable degree of redundancy and overlap in cytokine signaling. We also address evidence for and against the role of the cytokine storm in the pathology of clinical and infectious disease and discuss why it has been so difficult to use knowledge of the cytokine storm and immunomodulatory therapies to improve the clinical outcomes for patients with severe acute infections. PMID:22390970

  12. Investigating storm-enhanced density and polar tongue of ionization development during the 22 October 1999 great storm

    NASA Astrophysics Data System (ADS)

    Horvath, Ildiko; Lovell, Brian C.

    2015-02-01

    We investigate large-scale plasma density increases occurring during the 22 October 1999 great storm and focus on storm-enhanced density (SED) and polar tongue of ionization (TOI) development. Observations include two-hourly Global Ionosphere Map series coupled with multi-instrument in situ, space-based, and ground-based data plots, with Super Dual Auroral Radar Network two-cell convection maps and with model-generated neutral wind vector maps. Results demonstrate the equatorial electrojet events occurring in the Australian and American sectors, the high-density plasma features, and their underlying plasma transportation processes. During the main phase, a series of four prompt penetration electric field (PPEF) events occurred with subauroral polarization stream E field development forming a plasmaspheric drainage plume. These E field events caused the repeated development of equatorial ionization anomaly (EIA), SED bulge, and SED plume during the local dusk-midnight hours in those sectors that covered these local times. Showing a westward movement in accordance with their local time dependence, the EIA-SED structure developed first in the American sector, later on over the Pacific, and finally in the Australian sector. The SED plume plasma found its way into the polar cap through the dayside cusp region, created in the north some large polar cap enhancements reaching up to seven times of the quiet time levels, and evolved in each hemisphere into a polar TOI. We speculate that the enhanced growth of EIA, transporting high-density solar-produced plasma to the SED bulge via strong net eastward E field effects, and the mechanical effects of equatorward neutral winds contributed to the polar TOI's increasingly better development.

  13. Tropical Storm Blas off the Pacific Coast of Mexico

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1 for PIA00436 Figure 2 for PIA00436

    Tropical Storm Blas as observed by NASA's spaceborne Atmospheric Infrared Sounder (AIRS)

    The images above show Blas in visible light, as you would perceive it from space. The movie is Blas as 'seen' in infrared light by AIRS (click on graphic below).

    [figure removed for brevity, see original site] Infrared movie in infrared light by AIRS

    The major contribution to radiation (infrared light) that AIRS channels sense comes from different levels in the atmosphere, depending upon the channel wavelength. To create the movie, a set of AIRS channels were selected which probe the atmosphere at progressively deeper levels. If there were no clouds, the color in each frame would be nearly uniform until the Earth's surface is encountered. The tropospheric air temperature warms at a rate of 6 K (about 11 F) for each kilometer of descent toward the surface. Thus the colors would gradually change from cold to warm as the movie progresses.

    Clouds block the infrared radiation. Thus wherever there are clouds we can penetrate no deeper in infrared. The color remains fixed as the movie progresses, for that area of the image is 'stuck' to the cloud top temperature. The coldest temperatures around 220 K (about -65 F) come from altitudes of about 10 miles.

    We therefore see in a 'surface channel' at the end of the movie, signals from clouds as cold as 220 K and from Earth's surface at 310 K (about 100 F). The very coldest clouds are seen in deep convection thunderstorms over land. Typical of tropical storms, the region away from Blas is clear to the surface showing the 'calm before the storm.'

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  14. A case study of the impact of boreal summer intraseasonal oscillations on Yangtze rainfall

    NASA Astrophysics Data System (ADS)

    Li, Jianying; Mao, Jiangyu; Wu, Guoxiong

    2015-05-01

    The impact on Yangtze rainfall of the boreal summer intraseasonal oscillations (BSISOs) over the entire Asian summer monsoon region during summer 1996 was investigated using the APHRODITE gridded rainfall and the NCEP-DOE reanalysis II products. Wavelet analyses suggest that the ISOs of Yangtze rainfall were regulated mainly by both 30-60- and 10-25-day oscillations, respectively linked to BSISO1 and BSISO2 activity. Phase locking of the wet phases of these two ISOs resulted in a prolonged wet episode from late June to mid-July. The circulation evolution of the BSISO1 mode showed that active convection accompanied by strong convergence of anomalous zonal winds first developed over the equatorial Indian Ocean, with suppressed convection over the South China Sea (SCS)-Philippine Sea and with active convection over the Yangtze Basin. The triple convection anomaly that aligned meridionally in the East Asian sector arose from a local meridional-vertical cell associated with a Rossby wave-like coupled circulation-convection system. The opposite flow patterns occurred during the dry phase of Yangtze rainfall. The composite BSISO2 cases demonstrated a weak convective anomaly initially appeared around the Maritime Continent, with a huge anomalous anticyclone accompanied by suppressed convection over the SCS-Philippine Sea. The low-level convergence of the anomalous southwesterlies on the northwestern side of the anticyclone and the consequent ascent led to positive rainfall anomalies over the Yangtze Basin. When the entire SCS was dominated by an anomalous cyclone resulting from interaction with upstream systems, convection over the Yangtze Basin was suppressed.

  15. Zoned mantle convection.

    PubMed

    Albarède, Francis; Van Der Hilst, Rob D

    2002-11-15

    We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced negative buoyancy and can more easily founder to the very base of the mantle. Plateau segregation remains statistical and no sharp compositional interface is expected from the multiple fate of the plates. We show that the variable depth subduction of heavily laden plates can prevent full vertical mixing and preserve a vertical concentration gradient in the mantle. In addition, it can account for the preservation of scattered remnants of primitive material in the deep mantle and therefore for the Ar and (3)He observations in ocean-island basalts. PMID:12460481

  16. Is There Evidence of Convectively Injected Water Vapor in the Lowermost Stratosphere Over Boulder, Colorado?

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Rosenlof, K. H.; Davis, S. M.; Hall, E. G.; Jordan, A. F.

    2014-12-01

    Anderson et al. (2012) reported the frequent presence of convectively injected water vapor in the lowermost stratosphere over North America during summertime, based on aircraft measurements. They asserted that enhanced catalytic ozone destruction within these wet stratospheric air parcels presents a concern for UV dosages in populated areas, especially if the frequency of deep convective events increases. Schwartz et al.(2013) analyzed 8 years of more widespread Aura Microwave Limb Sounder (MLS) measurements of lower stratospheric water vapor over North America and concluded that anomalously wet (>8 ppm) air parcels were present only 2.5% of the time during July and August. However, given the 3-km vertical resolution of MLS water vapor retrievals in the lowermost stratosphere, thin wet layers deposited by overshooting convection may be present but not readily detectable by MLS. Since 1980 the balloon-borne NOAA frost point hygrometer (FPH) has produced nearly 400 high quality water vapor profiles over Boulder, Colorado, at 5-m vertical resolution from the surface to the middle stratosphere. The 34-year record of high-resolution FPH profiles obtained over Boulder during summer months is evaluated for evidence of convectively injected water vapor in the lowermost stratosphere. A number of approaches are used to assess the contributions of deep convection to the Boulder stratospheric water vapor record. The results are compared to those based on MLS profiles over Boulder and the differences are discussed. Anderson, J. G., D. M. Wilmouth, J. B. Smith, and D. S. Sayres (2012), UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor, Science, 337(6096), 835-839, doi:10.1126/science.1222978. Schwartz, M. J., W. G. Read, M. L. Santee, N. J. Livesey, L. Froidevaux, A. Lambert, and G. L. Manney (2013), Convectively injected water vapor in the North American summer lowermost stratosphere, Geophys. Res. Lett., 40, 2316-2321, doi:10.1002/grl.50421.

  17. Stability, Convection and Resolution: Understanding Vertical Motion in Modeled Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Booth, James; Naud, Catherine; Tierney, Greg; Posselt, Derek; Willison, Jeff

    2015-04-01

    The warm sector in a developing extratropical cyclone is a region with ample vertical motion and precipitation. While most of the lifting of air masses within this region is driven by a response to baroclinic instability, convection is also active. The current analysis examines the interaction between these two types of vertical motion in numerical models in an effort to better understand general circulation model's (GCM's) projected changes in extratropical cyclones with global warming. First, cyclone-centered diagnostics are used to analyze the cloud field perpendicular to the warm front in a GCM. The analysis shows that the model's convection scheme is very active in the equatorward region of the warm sector. The convective mixing of heat acts to decrease the model relative humidity and cloud fraction, making the modeled cloud field biased low. Given this result, a proxy for warm sector convective activity is created based on the fraction of precipitation generated by the convection scheme. This cyclone-relative metric is examined in a numerical integration of an idealized extratropical cyclone, as well as a regional climate model. These models are analyzed at multiple resolutions, with the convective activity metric being compared to storm intensity and intensification rates. The analysis is then repeated using mean state temperature and moisture profiles meant to represent global warming, and the results are linked to the modeled vertical stability.

  18. Scale dependence of monsoonal convective systems over the Indian Ocean

    SciTech Connect

    Roca, R.; Ramanathan, V.

    2000-04-01

    Deep convective clouds in the Tropics have long been recognized to occur on a wide spectrum of spatial scales, ranging from the individual cumulus to the meso- and synoptic-scale cloud systems. The objective of this paper is to examine the scale dependence of the properties of clouds embedded in the Intertropical Convergence Zone. The Indian Ocean during the winter and summer monsoons offers an ideal domain to undertake this study, which uses INSAT-1B infrared imagery. The cloud systems are retrieved using the detect and spread algorithm and classified according to their top temperatures. Their spatial extension spans a continuous spectrum of individual clouds ranging from 500 km{sup 2} to 10{sup 6} km{sup 2}. The spatial distribution of these convective clouds over the Indian Ocean exhibits an increase in convective activity during boreal winter compared to summer. Despite the drastic modification of the synoptic environment over the seasonal cycle, intrinsic cloud properties in January and July are shown to be very similar. The intrinsic cloud properties that are retrieved are the convective core area relative to the total cloud area, the area colder than 240 K (corresponding roughly to stratiform precipitation), the average cloud-top temperature of the entire cloud (core and anvil), and the minimum cloud-top temperature within a cloud that is assumed to denote the temperature of the overshooting cloud tops. The analysis reveals a critical scale of about 10{sup 4} km{sup 2}, which distinguishes two separate convective regimes of scale-dependent cloud properties. Below the critical scale, the cloud mean effective temperature increases with cloud size and the relative core area decreases with the size. The overshooting cloud-top temperature is invariant to the cloud scale. For scales larger than the critical value, the scale dependence is reversed: the mean cloud temperature decreases, the fractional core area increases, and the overshooting cloud top strongly decreases as the cloud size increases. Essentially, the area of undiluted deep convective core increases with the total area of the cloud system, in turn affecting the macroscale properties such as cloud greenhouse effect and tropopause temperature, to name a few. In particular, it is the larger-scale (>10{sup 4} km{sup 2}) organized system that penetrates to the tropopause and determines the tropopause altitude, while the smaller scales (<10{sup 4} km{sup 2}) hardly reach the upper troposphere. Diurnal variations of the convective cloud are also presented with respect to the cloud size. The diurnal cycle of these systems depends significantly on their scale and exhibits complex patterns. A discussion of these cloud statistics is then offered in the context of general circulation model parameterization.

  19. How Deep Convective Overshooting Over Land Can Penetrate The Stratosphere?

    NASA Astrophysics Data System (ADS)

    Pommereau, J.; Held, G.

    2006-12-01

    The amount of water vapour and ozone depleting substances in the stratosphere depends on how tropospheric air is transported across the Tropical Tropopause Layer (TTL) into the stratosphere. Following Newell and Gould-Stewart (1982) it is generally assumed that Troposphere-Stratosphere exchange occurs where the tropopause is the coldest, the "Stratospheric Fountain" over the Maritime continent. However, if convective transport is observed to reach the TTL around 14km over oceans, there is no indication that it could cross the Tropopause around 17.5km at 360-370K. A further mechanism is required attributed to slow radiative heating. However and although thought to be infrequent, it has been shown that overshoots over land could penetrate deeper the stratosphere. Indeed and in contrast to oceanic convection, land systems are displaying a strong diurnal cycle resulting in fast afternoon uplifts. Here we investigate the impact of convection on TTL temperature over Brazil during the summer from 4 daily radiosondes in February 2004 during the HIBISCUS campaign. In the presence of deep convection, the TTL is found to be cooler above the tropopause between 16 and 19 km (maximum 8K at 17 km). About half of this is shown to be due to a systematic diurnal variation displaying an average cooling of 3-4 K at 17-18 km in the afternoon between 11:00 and 17:00 LST, during the development phase of convection. Since this cooling occurs 1-2 km above the tropopause, during daytime and within a time scale of 6h, it cannot be attributed to radiation, adiabatic lofting of the tropopause or large-scale waves, suggesting insertion of cold air parcels by overshooting followed by mixing with the warmer environment. During most intense convective days, the overshoot is shown to penetrate the stratosphere up to 440K potential temperature levels.

  20. Transient Luminous Events and the 9 May 2007 Oklahoma Mesoscale Convective System

    NASA Astrophysics Data System (ADS)

    Lang, T. J.; Rutledge, S. A.; Lyons, W.; Cummer, S.; Meyer, J.; Holzworth, R.; Macgorman, D.

    2008-12-01

    On 9 May 2007 an asymmetric mesoscale convective system (MCS) passed through the domain of the Oklahoma Lightning Mapping Array while producing 26 transient luminous events (TLEs) in a 2-hour period, which were observed at the Yucca Ridge Field Station in northeastern Colorado. During the observation period (03-05 UTC), the MCS consisted of a short NW-SE-oriented line with a stratiform region to its north. This stratiform region also contained intense embedded convection, and rotated cyclonically as a mesoscale convective vortex. The MCS was dominated by negative cloud-to-ground (CG) lightning, with 95% of the 3037 detected National Lightning Detection Network (NLDN) strokes being negative, and total flash rate sometimes exceeded 100 flashes per minute. Twenty-four of the 26 TLEs observed in this case coincided with parent positive CG strokes detected by the NLDN (the other two likely were associated with undetected positive CGs). Eighteen of these events had valid impulse charge moment change (iCMC) retrievals by the National Charge Moment Change Network. Thirteen of these had iCMC values in excess of 100 C km, roughly consistent with past studies that suggest iCMC values ~100 C km or greater are favorable for generating TLEs. Fifty-eight percent of the TLE- producing positive CG strokes also were detected by the World Wide Lightning Location Network, which suggests that this global network may have promising utility in TLE research studies. Both convective regions (southern convective line, and embedded convection in the stratiform region) produced TLE parent flashes, although most TLE producers initiated in the stratiform-embedded convection. TLE parent flashes initiated around 5.7 km MSL in the embedded convection, but slightly higher (7.5 km) in the southern convective line. Both sets of TLE parent flashes tended to propagate near 6 km MSL in the stratiform region while producing their TLEs. In general, TLE flash altitudes were lower (by ~2 km or more) and flash areas were smaller (by a factor of 2-3) than in the previously reported 20 June 2007 Oklahoma- Texas MCS. These differences were consistent with the observed differences in storm structures (radar, charge, etc.). The results suggest that, while a variety of flash scenarios can produce TLEs, some storm archetypes may be especially favorable for TLE production. In particular, a classic leading-line/trailing stratiform MCS, with advection of copious amounts of upper-level positive charge rearward from the convective line (e.g., 20 June 2007), may be a relatively good producer of TLEs compared to other MCS types.

  1. Polarimetric signatures indicative of severe storm development - the Pentecost event 2014

    NASA Astrophysics Data System (ADS)

    Troemel, Silke; Diederich, Malte; Evaristo, Raquel; Ryzhkov, Alexander; Simmer, Clemens

    2015-04-01

    The 2014 Pentecost weekend storms in Europe were a series of severe supercell storms which followed a heatwave in early June 2014, resulting from a Spanish plume synoptic weather pattern. Outbreaks of severe weather were reported from these storm developments with the worst damages occurring over the German state of North Rhine-Westphalia on 9 June, where the storm was described as one of the most violent in decades by the German weather service (DWD). During this event six fatalities, wind gusts up to 150km/h, hail and a flash flood in Düsseldorf has been reported. Monitoring and analysis of high-impact weather using weather radars of shorter wavelength (X- and C-bands) requires special methods, i.e. anomalous high attenuation and differential attenuation due to very large raindrops originating from melting large hail has to be investigated and corrected. During the Pentecost event a record breaking ZDR bias of up to -25dB has been observed. Different strategies for reliable attenuation correction and rainfall estimation for this extreme event are explored and will be presented. A national 3D composite of polarimetric moments covering Germany with 1km horizontal, 250m vertical, and 5 minutes temporal resolution has been generated. 10 C-band radars from the DWD radar network, recently upgraded to polarimetry, have been included. Meanie3D, a 3D scale space tracking algorithm, is applied to the composite to investigate the magnitudes and temporal development of the 3 fundamental steps of a storms lifecycle: 1) high values of differential reflectivity ZDR aloft first indicate a developing cell, 2) ZDR-columns (these are vertical columns of high differential reflectivity) then indicate the updraft zone of a cell in the mature state. The vertical extent of the ZDR-column is thus a measure of the strength of the updraft and for the ensuing rainfall enhancement. 3) The very first big drops reach the surface before the most intense rain begins. This is reflected by the polarimetric fingerprint for differential sedimentation. While preliminary correlation analysis of moderate storms hints at a lag-time between updraft strength and rainfall of 5-10 minutes, the case study on hand suggest increasing lead time depending on the strength of the storm. Magnitudes of ZDR enhancements associated with convective updrafts and differential sedimentation and associated lead times for the Pentecost event will be presented.

  2. Towards evaluating the intensity of convective systems by using GPS radio occultation profiles

    NASA Astrophysics Data System (ADS)

    Biondi, Riccardo; Steiner, Andrea K.; Kirchengast, Gottfried

    2015-04-01

    Deep convective systems, also more casually often just called storms, are destructive weather phenomena causing every year many deaths, injuries and damages and accounting for major economic losses in several countries. The number and intensity of such phenomena increased over the last decades in some areas of the globe, including Europe. Damages are mostly caused by strong winds and heavy rain and these parameters are strongly connected to the structure of the storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes which are still mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in-situ measurements during extreme events are too sparse or not reliable and most ongoing satellite missions do not provide suitable time/space coverage. With this study we propose a new method for detecting the convection intensity in terms of rain rate and surface wind speed by using meteorological surface measurements in combination with atmospheric profiles from Global Positioning System (GPS) radio occultation observations, which are available in essentially all weather conditions and with global coverage. The analysis of models indicated a relationship between the cloud top altitude and the intensity of a storm. We thus use GPS radio occultation bending angle profiles for detecting the storm's cloud top altitude and we correlate this value to the rain rate and wind speed measured by meteorological station networks in two different regions, the WegenerNet climate station network (South-Eastern Styria, Austria) and the Atmospheric Radiation Measurement site (ARM, Southern Great Plains, USA), respectively. The results show a good correlation between the cloud top altitude and the maximum rain rate in the monitored areas, while this is not found for maximum wind speed. We conclude from this initial study that for land convective systems the cloud top altitude is strongly connected to the rain intensity and that GPS radio occultation observations show encouraging potential to improve the intensity nowcasting and detection of such kind of severe weather phenomena.

  3. Transport across the tropical tropopause layer and convection

    NASA Astrophysics Data System (ADS)

    Tissier, A.-S.; Legras, B.

    2015-09-01

    Transit properties across the tropical tropopause layer are studied using extensive forward and backward Lagrangian trajectories between cloud tops and the reference surface 380 K. The tropical domain being subdivided into 11 sub-regions according to the distribution of land and convection, we estimate the contribution of each region to the upward mass flux across the 380 K surface, the vertical distribution of convective sources and of transit times over the period 2005-2008. The good agreement between forward and backward statistics is the basis of the results presented here. It is found that about 85 % of the tropical parcels at 380 K originate from convective sources all along the year. From November to April, the sources are dominated by the warm pool which accounts for up to 70 % of the upward flux. During summer, Asian monsoon region is the largest contributor with similar contributions from oceanic regions and Asian mainland, although the signature in vertical distribution and transit time is very different, Asian mainland displaying higher sources and smaller transit times. The Tibetan plateau, although a minor overall contributor, is found to be the region with the highest impact of convection at 380 K due to its central location beneath the Asian upper level anticyclone. We show the robustness of our main results to uncertainties in data and methods but we also find some sensitivity of the vertical distribution of sources and transit times to the representation of cloud tops and heating rates.

  4. Transport across the tropical tropopause layer and convection

    NASA Astrophysics Data System (ADS)

    Tissier, Ann-Sophie; Legras, Bernard; Tzella, Alexandra

    2015-04-01

    We investigate how air parcels detrained from convective sources enter the TTL. The approach is based on the comparison of unidimensional trajectories and Lagrangian backward and forward trajectories, using TRACZILLA and ERA-Interim. Backward trajectories are launched at 380K and run until they hit a deep convective cloud. Forward trajectories are launched at the top of high convective clouds identified by brightness temperature from CLAUS dataset. 1D trajectories are computed using Gardiner's method. Results show that the warm pool region during winter and the Bay of Bengal / Sea of China during summer are the prevalent sources as already identified in many previous studies and we quantify the respective role of the various regions. We show that the 1D model explains qualitatively and often quantitatively the 3d results. We also show that in spite of generating very high convection, Africa is quite ineffective as providing air that remains in the TTL while on the opposite the Tibetan Plateau is the most effective region in this respect although its total contribution is minor. Finally, we compare ERA-Interim, JRA-55 and MERRA reanalysis and find large similarities between the two formers.

  5. Ionospheric Storms in Equatorial Region: Digisonde Observations

    NASA Astrophysics Data System (ADS)

    Paznukhov, V.; Altadill, D.; Blanch, E.

    2011-12-01

    We present a study of the ionospheric storms observed in the low-latitude and equatorial ionosphere at several digisonde stations: Jicamarca (Geomagnetic Coordinates: 2.0 S, 355.3 E), Kwajalein Island (3.8 N, 238.2 E), Ascension Island (2.5 S, 56.8 E), Fortaleza (4.8 N, 33.7 W), and Ramey (28.6 N, 5.2 E). The strongest geomagnetic storms from years 1995-2009 have been analyzed. The main ionospheric characteristics, hmF2 and foF2 were used in the study, making it possible to investigate the changes in the ionosphere peak density and height during the storms. All digisonde data were manually processed to assure the accuracy of the measurements. Solar wind data, geomagnetic field variations, and auroral activity indices have been used to characterize the geomagnetic environment during the events. It was found in our analysis that the major drivers for the ionospheric storms, electric field and neutral wind have approximately equal importance at the low-latitude and equatorial latitudes. This is noticeably different from the behavior of the ionsphere in the middle latitudes, where the neutral wind is usually a dominant factor. It was found that the auroral index, AE is the best precursor of the ionospheric effects observed during the storms in this region. We analyze the difference between time delays of the storm effects observed at the stations located in different local time sectors. The overall statistics of the time delays of the storms as a function of the local time at the stations is also presented. Several very interesting cases of sudden very strong ionospheric uplifting and their possible relation to the equatorial super fountain effect are investigated in greater details.

  6. Global Storm Surge Forecasting and Information System

    NASA Astrophysics Data System (ADS)

    Buckman, Lorraine; Verlaan, Martin; Weerts, Albrecht

    2015-04-01

    The Global Storm Surge Forecasting and Information System is a first-of-its-kind operational forecasting system for storm surge prediction on a global scale, taking into account tidal and extra-tropical storm events in real time. The system, built and hosted by Deltares, provides predictions of water level and surge height up to 10 days in advance from numerical simulations and measurement data integrated within an operational IT environment. The Delft-FEWS software provides the operational environment in which wind forecasts and measurement data are collected and processed, and serves as a platform from which to run the numerical model. The global Delft3D model is built on a spherical, flexible mesh with a resolution around 5 km in near-shore coastal waters and an offshore resolution of 50 km to provide detailed information at the coast while limiting the computational time required. By using a spherical grid, the model requires no external boundary conditions. Numerical global wind forecasts are used as forcing for the model, with plans to incorporate regional meteorological forecasts to better capture smaller, tropical storms using the Wind Enhanced Scheme for generation of tropical winds (WES). The system will be automated to collect regional wind forecasts and storm warning bulletins which are incorporated directly into the model calculations. The forecasting system provides real-time water level and surge information in areas that currently lack local storm surge prediction capability. This information is critical for coastal communities in planning their flood strategy and during disaster response. The system is also designed to supply boundary conditions for coupling finer-scale regional models. The Global Storm Surge Forecasting and Information System is run within the Deltares iD-Lab initiative aiming at collaboration with universities, consultants and interested organizations. The results of the system will be made available via standards such as netCDF-CF, OpenDAP, WaterML2 and/or JSON REST as an interoperability experiment.

  7. Comparison of Probabilistic Coastal Inundation Maps Based on Historical Storms and Statistically Modeled Storm Ensemble

    NASA Astrophysics Data System (ADS)

    Feng, X.; Sheng, Y.; Condon, A. J.; Paramygin, V. A.; Hall, T.

    2012-12-01

    A cost effective method, JPM-OS (Joint Probability Method with Optimal Sampling), for determining storm response and inundation return frequencies was developed and applied to quantify the hazard of hurricane storm surges and inundation along the Southwest FL,US coast (Condon and Sheng 2012). The JPM-OS uses piecewise multivariate regression splines coupled with dimension adaptive sparse grids to enable the generation of a base flood elevation (BFE) map. Storms are characterized by their landfall characteristics (pressure deficit, radius to maximum winds, forward speed, heading, and landfall location) and a sparse grid algorithm determines the optimal set of storm parameter combinations so that the inundation from any other storm parameter combination can be determined. The end result is a sample of a few hundred (197 for SW FL) optimal storms which are simulated using a dynamically coupled storm surge / wave modeling system CH3D-SSMS (Sheng et al. 2010). The limited historical climatology (1940 - 2009) is explored to develop probabilistic characterizations of the five storm parameters. The probability distributions are discretized and the inundation response of all parameter combinations is determined by the interpolation in five-dimensional space of the optimal storms. The surge response and the associated joint probability of the parameter combination is used to determine the flood elevation with a 1% annual probability of occurrence. The limited historical data constrains the accuracy of the PDFs of the hurricane characteristics, which in turn affect the accuracy of the BFE maps calculated. To offset the deficiency of limited historical dataset, this study presents a different method for producing coastal inundation maps. Instead of using the historical storm data, here we adopt 33,731 tracks that can represent the storm climatology in North Atlantic basin and SW Florida coasts. This large quantity of hurricane tracks is generated from a new statistical model which had been used for Western North Pacific (WNP) tropical cyclone (TC) genesis (Hall 2011) as well as North Atlantic tropical cyclone genesis (Hall and Jewson 2007). The introduction of these tracks complements the shortage of the historical samples and allows for more reliable PDFs required for implementation of JPM-OS. Using the 33,731 tracks and JPM-OS, an optimal storm ensemble is determined. This approach results in different storms/winds for storm surge and inundation modeling, and produces different Base Flood Elevation maps for coastal regions. Coastal inundation maps produced by the two different methods will be discussed in detail in the poster paper.

  8. Saturn's visible lightning, its radio emissions, and the structure of the 2009-2011 lightning storms

    NASA Astrophysics Data System (ADS)

    Dyudina, Ulyana; Porco, Carolyn; Yair, Yoav; Ingersoll, Andrew; Ewald, Shawn; Fischer, Georg

    Visible lightning on Saturn was first detected by the Cassini camera during the August 2009 equinox at ˜35(°) South latitude. We report more lightning observations at ˜35(°) South later in November 2009, and lightning in the 2010-2011 giant lightning storm at ˜35(°) North. The 2009 lightning flashes are detected on the night side of Saturn in a broadband clear filter. The 2011 flashes are detected on the day side in blue wavelengths only. In other wavelengths the images lacked sensitivity to detect lightning, which leaves the lightning spectrum unknown. The prominent clouds at the west edge, or the "head" of the 2010-2011 storm periodically spawn large anticyclones, which drift off to the east with a longitude spacing of 10-15(°) (˜10,000 km). The wavy boundary of the storm's envelope drifts with the anticyclones. It is not a standing Rossby wave propagating with the head, and the train of anticyclones is not a classic vortex street. The relative vorticity of the anticyclones ranges up to -f/3, where f is the planetary vorticity. This is 1/3 of the theoretical maximum value of -f for an anticyclone in gradient wind balance. The lightning occurs in the diagonal gaps between the large anticyclones. The vorticity of the gaps is cyclonic, and the atmosphere there is clear down to level of the deep clouds. In these respects, the diagonal gaps resemble the jovian belts, which are the principal sites of jovian lightning. The size of the flash-illuminated cloud tops is similar to the previous detections, with diameter ˜200 km, suggesting that all lightning flashes on Saturn are generated at similar depths, which are about 125-250 km below the cloud tops, probably in water clouds. Optical energies of individual flashes for both southern storms and the giant storm range up to 8times10(9) Joules, which is larger than the published 2009 equinox estimate of 1.7times10(9) Joules. Cassini radio measurements suggest that the spectral source powers of Saturn Electrostatic Discharges (SEDs) sampled at 35 ms relate to the optical power as a factor of 8×10(-9) W Hz(-1) per Joule of optical energy. This, arguably, suggests that radio energies emitted by the lightning are 3 × the optical energies. Southern storms flash at a rate ˜1-2 per minute. The 2011 storm flashes hundreds of times more often, ˜5 times per second, and produces ˜10(10) Watts of optical power. Saturn's storm's total convective power is of the order 10(17) Watts, which is similar to Saturn's global energy output to space. This estimate is uncertain by at least an order of magnitude, and probably is underestimated. It suggests that storms like the 2010-2011 giant storm must be important players in Saturn's cooling, and need to be accounted for in the models of Saturn's thermal evolution. This study is published in Icarus [1] [1] Dyudina, U. A. et al. Saturn's visible lightning, its radio emissions, and the structure of the 2009-2011 lightning storms. 2013, Icarus 226, 1, p. 1020-1037.

  9. Dust-storm dynamics over Sistan region, Iran: Seasonality, transport characteristics and affected areas

    NASA Astrophysics Data System (ADS)

    Rashki, A.; Kaskaoutis, D. G.; Francois, P.; Kosmopoulos, P. G.; Legrand, M.

    2015-03-01

    The present work examines the seasonality, dust-plume altitudinal variation and affected areas for dust storms originated from the Sistan region, southeastern Iran during the summer (June-September) months of the period 2001-2012 synthesizing local meteorological records, satellite observations (TOMS, OMI, METEOSAT, MODIS) and HYSPLIT forward trajectories. Dust-storm days (356 in total) are associated with visibility below 1 km at Zabol, Iran meteorological station with higher frequency and intensity in June and July. Monthly-mean composite maps of TOMS and OMI AI show high (>3-3.5) values over Sistan and nearby downwind areas. HYSPLIT forward-trajectory analysis at 500 m for air masses originated from Sistan on the dust-storm days shows that they usually follow an anti-clockwise transport direction at elevations usually below 2 km, initially moving southwards and then shifting to east-northeast when they are approaching the Arabian Sea coast. This is the result of the influence of the local topography and formation of thermal low-pressure systems over the arid lands. It is found that in few cases the dust storms from Sistan affect central/south Arabian Sea and India, while they control the aerosol loading over northernmost Arabian Sea. The Infrared Difference Dust Index (IDDI) images, which represent brightness temperature reduction due to dust presence over land, are used at specific periods of persistent dust storms over Sistan, confirming the main pathways of the dust plumes and illustrating the importance of the region as one of the most active dust sources in southwest Asia.

  10. Convective distribution of tropospheric ozone and tracers in the Central American ITCZ region: Evidence from observations during TC4

    NASA Astrophysics Data System (ADS)

    Avery, Melody; Twohy, Cynthia; McCabe, David; Joiner, Joanna; Severance, Kurt; Atlas, Eliot; Blake, Donald; Bui, T. P.; Crounse, John; Dibb, Jack; Diskin, Glenn; Lawson, Paul; McGill, Matthew; Rogers, David; Sachse, Glen; Scheuer, Eric; Thompson, Anne M.; Trepte, Charles; Wennberg, Paul; Ziemke, Jerald

    2010-05-01

    During the Tropical Composition, Clouds and Climate Coupling (TC4) experiment that occurred in July and August of 2007, extensive sampling of active convection in the ITCZ region near Central America was performed from multiple aircraft and satellite sensors. As part of a sampling strategy designed to study cloud processes, the NASA ER-2, WB-57 and DC-8 flew in stacked "racetrack patterns" in convective cells. On July 24, 2007, the ER-2 and DC-8 probed an actively developing storm and the DC-8 was hit by lightning. Case studies of this flight, and of convective outflow on August 5, 2007 reveal a significant anti-correlation between ozone and condensed cloud water content. With little variability in the boundary layer and a vertical gradient, low ozone in the upper troposphere indicates convective transport. Because of the large spatial and temporal variability in surface CO and other pollutants in this region, low ozone is a better convective indicator. Lower tropospheric tracers methyl hydrogen peroxide, total organic bromine and calcium substantiate the ozone results. OMI measurements of mean upper tropospheric ozone near convection show lower ozone in convective outflow. A mass balance estimation of the amount of convective turnover below the tropical tropopause transition layer (TTL) is 50%, with an altitude of maximum convective outflow located between 10 and 11 km, 4 km below the cirrus anvil tops. It appears that convective lofting in this region of the ITCZ is either a two-stage or a rapid mixing process, because undiluted boundary layer air is never sampled in the convective outflow.

  11. Convective Distribution of Tropospheric Ozone and Tracers in the Central American ITCZ Region: Evidence from Observations During TC4

    NASA Technical Reports Server (NTRS)

    Avery, Melody; Twohy, Cynthia; MCabe, David; Joiner, Joanna; Severance, Kurt; Atlas, Eliot; Blake, Donald; Bui, T. P.; Crounse, John; Dibb, Jack; Diskin, Glenn; Lawson, Paul; McGill, Matthew; Rogers, David; Sachse, Glen; Scheuer, Eric; Thompson, Anne M.; Trepte, Charles; Wennberg, Paul; Ziemke, Jerald

    2010-01-01

    During the Tropical Composition, Clouds and Climate Coupling (TC4) experiment that occurred in July and August of 2007, extensive sampling of active convection in the ITCZ region near Central America was performed from multiple aircraft and satellite sensors. As part of a sampling strategy designed to study cloud processes, the NASA ER-2, WB-57 and DC-8 flew in stacked "racetrack patterns" in convective cells. On July 24, 2007, the ER-2 and DC-8 probed an actively developing storm and the DC-8 was hit by lightning. Case studies of this flight, and of convective outflow on August 5, 2007 reveal a significant anti-correlation between ozone and condensed cloud water content. With little variability in the boundary layer and a vertical gradient, low ozone in the upper troposphere indicates convective transport. Because of the large spatial and temporal variability in surface CO and other pollutants in this region, low ozone is a better convective indicator. Lower tropospheric tracers methyl hydrogen peroxide, total organic bromine and calcium substantiate the ozone results. OMI measurements of mean upper tropospheric ozone near convection show lower ozone in convective outflow. A mass balance estimation of the amount of convective turnover below the tropical tropopause transition layer (TTL) is 50%, with an altitude of maximum convective outflow located between 10 and 11 km, 4 km below the cirrus anvil tops. It appears that convective lofting in this region of the ITCZ is either a two-stage or a rapid mixing process, because undiluted boundary layer air is never sampled in the convective outflow.

  12. Asian summer monsoon onset barrier and its formation mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Boqi; Liu, Yimin; Wu, Guoxiong; Yan, Jinghui; He, Jinhai; Ren, Suling

    2015-08-01

    The onset process of Asian summer monsoon (ASM) is investigated based on diagnostic analysis of observations of precipitation and synoptic circulation. Results show that after the ASM commences over the eastern Bay of Bengal (BOB) around early May, the onset can propagate eastwards towards the South China Sea and western Pacific but is blocked on its westward propagation along the eastern coast of India. This blocking, termed the "monsoon onset barrier (MOB)", presents a Gill-type circulation response to the latent heating released by BOB monsoon convection. This convective condensation heating generates summertime (wintertime) vertical easterly (westerly) shear to its east (west) and facilitates air ascent (descent). The convection then propagates eastward but gets trapped on its westward path. To the east of the central BOB, the surface air temperature (SAT) cools faster than the underlying sea surface temperature (SST) due to monsoon onset. Thus more sensible heat flux supports the onset convection to propagate eastward. To the west of the central BOB, however, the land surface sensible heating over the Indian Peninsula is strengthened by the enhanced anticyclone circulation and air descent induced by the BOB monsoon heating. The strengthened upstream warm horizontal advection then produces a warm SAT center over the MOB region, which together with the in situ cooled SST reduces the surface sensible heating and atmospheric available potential energy to prevent the occurrence of free convection. Therefore, it is the change in both large-scale circulation and air-sea interaction due to BOB summer monsoon onset that contributes to the MOB formation.

  13. Large Charge Moment Change Lightning in an Oklahoma Mesoscale Convective System

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Cummer, Steven; Petersen, Danyal; Flores-Rivera, Lizxandra; Lyons, Walt; MacGorman, Donald; Beasley, William

    2014-01-01

    On 31 May 2013, a line of severe thunderstorms developed during the local afternoon in central Oklahoma, USA. One of the supercells produced the El Reno tornado, which caused significant damage and killed several people. During the 2300 UTC hour (during the mature supercell stage and just after the tornado began), the storm produced several positive cloud-to-ground (+CG) lightning strokes that featured large (> 100 C km) impulse charge moment changes (iCMCs; charge moment during the first 2 ms after the return stroke). These discharges occurred mainly in convection, in contrast to the typical pattern of large-CMC and sprite-parent +CGs occurring mainly in stratiform precipitation regions. After this time, the line of thunderstorms evolved over several hours into a large mesoscale convective system (MCS). By the 0700 UTC hour on 1 June 2013, the large-CMC pattern had changed markedly. Large-CMC negative CGs, which were absent early in the storm's lifetime, occurred frequently within convection. Meanwhile, large-CMC +CGs had switched to occurring mainly within the broad stratiform region that had developed during the intervening period. The evolution of the large-CMC lightning in this case will be examined using a mix of national mosaics of radar reflectivity, the Oklahoma Lightning Mapping Array (OKLMA), the Charge Moment Change Network (CMCN), and the National Lightning Detection Network (NLDN). A major goal of this study is understanding how storm structure and evolution affected the production of large-CMC lightning. It is anticipated that this will lead to further insight into how and why storms produce the powerful lightning that commonly causes sprites in the upper atmosphere.

  14. Large Charge Moment Change Lightning in an Oklahoma Mesoscale Convective System

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Cummer, Steven; Beasley, William; Flores-Rivera, Lizxandra; Lyons, Walt; MacGorman, Donald

    2014-01-01

    On 31 May 2013, a line of severe thunderstorms developed during the local afternoon in central Oklahoma, USA. One of the supercells produced the El Reno tornado, which caused significant damage and killed several people. During the 2300 UTC hour (during the mature supercell stage and just after the tornado began), the storm produced several positive cloud-to-ground (+CG) lightning strokes that featured large (> 75 C km) impulse charge moment changes (iCMCs - charge moment during the first 2 ms after the return stroke). These discharges occurred mainly in convection, in contrast to the typical pattern of large-CMC and sprite-parent +CGs occurring mainly in stratiform precipitation regions. After this time, the line of thunderstorms evolved over several hours into a large mesoscale convective system (MCS). By the 0700 UTC hour on 1 June 2013, the large- CMC pattern had changed markedly. Large-CMC negative CGs, which were absent early in the storm's lifetime, occurred frequently within convection. Meanwhile, large- CMC +CGs had switched to occurring mainly within the broad stratiform region that had developed during the intervening period. The evolution of the large-CMC lightning in this case will be examined using a mix of polarimetric data from individual radars, national mosaics of radar reflectivity, the Oklahoma Lightning Mapping Array (OKLMA), the Charge Moment Change Network (CMCN), and the National Lightning Detection Network (NLDN). A major goal of this study is understanding how storm structure and evolution affected the production of large-CMC lightning. It is anticipated that this will lead to further insight into how and why storms produce the powerful lightning that commonly causes sprites in the upper atmosphere.

  15. Mass movement and storms in the drainage basin of Redwood Creek, Humboldt County, California: a progress report

    USGS Publications Warehouse

    Harden, Deborah Reid; Janda, Richard J.; Nolan, K. Michael

    1978-01-01

    Numerous active landslides are clearly significant contributors to high sediment loads in the Redwood Creek basin. Field and aerial-photograph inspections indicate that large mass-movement features, such as earthflows and massive streamside debris slides, occur primarily in terrain underlain by unmetamorphosed or slightly metamorphosed sedimentary rocks. These features cannot account for stream sediment derived from schist. Observed lithologic heterogeneity of stream sediment therefore suggests that large-scale mass movement is only one part of a complex suite of processes supplying sediment to streams in this basin. Other significant sediment contributors include various forms of fluvial erosion and small-scale discrete mass failures, particularly on oversteepened hillslopes adjacent to perennial streams. Photo-interpretive studies of landslide and timber-harvest history adjacent to Redwood Creek, together with analysis of regional precipitation and runoff records for six flood-producing storms between 1953 and 1975, indicate that loci and times of significant streamside landsliding are influenced by both local storm intensity and streamside logging. Analysis of rainfall records and historic accounts indicates that the individual storms comprising a late-19th-century series of storms in northwestern California were similar in magnitude and spacing to those of the past 25 years. The recent storms apparently initiated more streamside landslides than comparable earlier storms, which occurred prior to extensive road construction and timber harvest. Field observations and repeated surveys of stake arrays at 10 sites in the basin indicate that earthflows are especially active during prolonged periods of moderate rainfall; but that during brief intense storms, fluvial processes are the dominant erosion mechanism. Stake movement occurs mostly during wet winter months. Spring and summer movement was detected at some moist streamside sites. Surveys of stake arrays in two recently logged areas did not indicate exceptionally rapid rates of movement in three years following timber harvest.

  16. What is the Relationship between the Solar Wind and Storms/Substorms?

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Burlaga, L. F.

    1999-01-01

    The interplanetary magnetic field (IMF) carried past the Earth by the solar wind has long been known to be the principal quantity that controls geomagnetic storms and substorms. Intervals of strong southward IMF with durations of at least a significant fraction of a day produce storms, while more typical, shorter intervals of less-intense southward fields produce substorms. The strong, long-duration southward fields are generally associated with coronal mass ejections and magnetic clouds or else they are produced by interplanetary dynamics initiated by fast solar wind flows that compress preexisting southward fields. Smaller, short-duration southward fields that occur on most days are related to long period waves, turbulence, or random variations in the IMF. Southward IMF enhances dayside reconnection between the IMF and the Earth's dipole with the reconnected field lines supplementing open field lines of the geomagnetic tail and producing an expanded polar cap and increased tail energy. Although the frequent storage of solar wind energy and its release during substorms is the most common mode of solar wind/magnetosphere interaction, under certain circumstances, steady southward IMF seems to produce intervals of relatively steady magnetosphere convection without substorms. During these latter times, the inner magnetosphere remains in a stressed tail-like state while the more distant magnetotail has larger northward field and more dipolar-like field lines. Recent evidence suggests that enhanced magnetosphere particle densities associated with enhanced solar wind densities allow more particles to be accelerated for the ring current, thus creating larger storms.

  17. Ionospheric response to the sustained high geomagnetic activity during the March '89 great storm

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Schunk, R. W.; Denig, W. F.

    1994-01-01

    A simulation was conducted to model the high-latitude ionospheric to the sustaied level of high geomagnetic activity for the great magnetic storm period of March 13-14, 1989. The geomagnetic and solar activity indices and the Defense Meterological Satellite Program (DMSP) F8 and F9 satellite data for particle precipitation and high-latitude convection were used as inputs to a time-dependent ionospheric model (TDIM). The results of the TDIM were compared to both DMSP plasma density data and ground-based total electron content (TEC) measurements for the great storm period as well as with earlier storm observations. The comparisons show that the overall structure of the high-latitude ionosphere was dominated by an increased convection speed within the polar cap that led to increased ion temperatures. In turn, this enhanced the NO(+) density, raised the atomic-to-molecular ion transition height to over 300 km, decreased N(sub m)F(sub 2), increased h(sub m)F(sub 2), and in places either increased n(sub e) at 800 km or slightly decreased it. The morphology of the ionosphere under these extreme conditions was considerably different than that modeled for less distributed intervals. These differences included the character of the dayside tongue of ionization that no longer extended deep into the polar cap. Instead, as a result of the ion heating and consequent reduction in N(sub m)F(sub 2), a large polar hole occupied much of the polar region. This polar hole extended beyond the auroral oval and merged with the night sector midatitude trough. The limitaions associated with the applicability of the TDIM to the geomagnetic conditions present on March 13 and 14 are discussed. The primary limitations of the TDIM derive from the limited temporal resolution of the model input parameters and the lack of suitably dynamic thermospheric specification for the great storm conditions. These limitations leads to midlatitude ionospheric storm phases that do no follow those observed.

  18. The Meteorology of Storms that Produce Narrow Bipolar Events

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; McCaul, Eugene W.; Cummer, Steven A.

    2013-01-01

    Narrow Bipolar Events (NBEs) are compact intracloud discharges that produce the most powerful lightning-related radio frequency signals that have been observed. However, their luminosity is below the threshold for detectability from current and past spaceborne optical sensors. NBEs have been loosely associated with convective intensity, but their occurrence tends to be highly localized in time and space within a thunderstorm, and there remain many questions about whether and to what extent they are significantly related to meteorological processes within thunderstorms. Using the North Alabama Lightning Mapping Array (NALMA), the National Lightning Detection Network, and available Doppler and polarimetric radar data, case studies will be presented for storm events that produced large numbers of NBEs (10s-100s) during their lifetimes. NBEs are documented via a method that identifies high peak power (>40-50 dBW) initial VHF sources within a specific altitude band in the upper levels of thunderstorms. The production of NBEs, including spatial and temporal variability, will be compared to the radar-inferred kinematic and microphysical structure and evolution of thunderstorms, as well as their NALMA- and NLDN-inferred electrical characteristics. The results should provide new insights into the relationships between NBEs and thunderstorm processes.

  19. The structure of solar radio noise storms

    NASA Astrophysics Data System (ADS)

    Mercier, C.; Subramanian, P.; Chambe, G.; Janardhan, P.

    2015-04-01

    Context. The Nançay Radioheliograph (NRH) routinely produces snapshot images of the full sun (field of view ~3 R?) at 6 or 10 frequencies between 150 and 450 MHz, with typical resolution 3 arcmin and time cadence 0.2 s. Combining visibilities from the NRH and from the Giant Meterwave Radio Telescope (GMRT) allows us to produce images of the sun at 236 or 327 MHz, with the same field as the NRH, a resolution as low as 20 arcsec, and a time cadence 2 s. Aims: We seek to investigate the structure of noise storms (the most common non-thermal solar radio emission) which is yet poorly known. We focus on the relation of position and altitude of noise storms with the observing frequency and on the lower limit of their sizes. Methods: We use an improved version of a previously used method for combining NRH and GMRT visibilities to get high-resolution composite images and to investigate the fine structure of noise storms. We also use the NRH data over several consecutive days around the common observation days to derive the altitude of storms at different frequencies. Results: We present results for noise storms on four days. Noise storms consist of an extended halo and of one or several compact cores with relative intensity changing over a few seconds. We found that core sizes can be almost stable over one hour, with a minimum in the range 31-35 arcsec (less than previously reported). The heliocentric distances of noise storms are ~1.20 and 1.35 R? at 432 and 150 MHz, respectively. Regions where storms originate are thus much denser than the ambient corona and their vertical extent is found to be less than expected from hydrostatic equilibrium. Conclusions: The smallest observed sizes impose upper limits on broadening effects due to scattering on density inhomogeneities in the low and medium corona and constrain the level of density turbulence in the solar corona. It is possible that scatter broadening has been overestimated in the past, and that the observed sizes cannot only be attributed to scattering. The vertical structure of the noise storms is difficult to reconcile with the classical columnar model.

  20. 'RCHX-1-STORM' first Slovenian meteorological rocket program

    NASA Astrophysics Data System (ADS)

    Kerstein, Aleksander; Matko, Drago; Trauner, Amalija; Britovšek, Zvone

    2004-08-01

    Astronautic and Rocket Society Celje (ARSC) formed a special working team for research and development of a small meteorological hail suppression rocket in the 70th. The hail suppression system was established in former Yugoslavia in the late 60th as an attempt to protect important agricultural regions from one of the summer's most vicious storm. In this time Slovenia was a part of Yugoslavia as one of the federal republic with relative high developed agricultural region production. The Rocket program 'RCHX-STORM' was a second attempt, for Slovenia indigenously developed in the production of meteorological hail suppression rocket. ARSC has designed a family of small sounding rocket that were based on highly promising hybrid propellant propulsion. Hybrid propulsion was selected for this family because it was offering low cost, save production and operation and simple logistics. Conventional sounding rockets use solid propellant motor for their propulsion. The introduction of hybrid motors has enabled a considerable decrease in overall cost. The transportation handling and storage procedures were greatly simplified due to the fact that a hybrid motor was not considered as explosive matter. A hybrid motor may also be designed to stand a severe environment without resorting to conditioning arrangements. The program started in the late 70th when the team ARSC was integrated in the Research and Development Institute in Celje (RDIC). The development program aimed to produce three types of meteorological rockets with diameters 76, 120 and 160 mm. Development of the RCHX-76 engine and rocket vehicle including flight certification has been undertaken by a joint team comprising of the ARCS, RDIC and the company Cestno podjetje Celje (CPC), Road building company Celje. Many new techniques and methods were used in this program such as computer simulation of external and internal ballistics, composite materials for rocket construction, intensive static testing of models and flight configuration with long flight-testing program. The main features of this project were discussed in this paper, summarizing the history of the development of the RCHX-STORM rockets family.