Science.gov

Sample records for sumoylated nuclear receptor

  1. Alternative sumoylation sites in the Drosophila nuclear receptor Usp.

    PubMed

    Bielska, Katarzyna; Seliga, Justyna; Wieczorek, Elżbieta; Kędracka-Krok, Sylwia; Niedenthal, Rainer; Ożyhar, Andrzej

    2012-11-01

    The ultraspiracle protein (Usp), together with an ecdysone receptor (EcR) forms a heterodimeric ecdysteroid receptor complex, which controls metamorphosis in Drosophila melanogaster. Although the ecdysteroid receptor is considered to be a source of elements for ecdysteroid inducible gene switches in mammals, nothing is known about posttranslational modifications of the receptor constituents in mammalian cells. Up until now there has been no study about Usp sumoylation. Using Ubc9 fusion-directed sumoylation system, we identified Usp as a new target of SUMO1 and SUMO3 modification. Mutagenesis studies on the fragments of Usp indicated that sumoylation can occur alternatively on several defined Lys residues, i.e. three (Lys16, Lys20, Lys37) in A/B region, one (Lys424) in E region and one (Lys506) in F region. However, sumoylation of one Lys residue within A/B region prevents modification of other residues in this region. This was also observed for Lys residues in carboxyl-terminal fragment of Usp, i.e. comprising E and F regions. Mass spectrometry analysis of the full-length Usp indicated that the main SUMO attachment site is at Lys20. EcR, the heterodimerization partner of Usp, and muristerone A, the EcR ligand, do not influence sumoylation patterns of Usp. Another heterodimerization partner of Usp - HR38 fused with Ubc9 interacts with Usp in HEK293 cells and allows sumoylation of Usp independent of the direct fusion to Ubc9. Taken together, we propose that sumoylation of DmUsp can be an important factor in modulating its activity by changing molecular interactions. PMID:22676916

  2. Multidomain sumoylation of the ecdysone receptor (EcR) from Drosophila melanogaster.

    PubMed

    Seliga, Justyna; Bielska, Katarzyna; Wieczorek, Elżbieta; Orłowski, Marek; Niedenthal, Rainer; Ożyhar, Andrzej

    2013-11-01

    The 20-hydroxyecdysone receptor (EcR) is a transcription factor belonging to the nuclear receptor superfamily. Together with the ultraspiracle nuclear receptor (Usp) it coordinates critical biological processes in insects such as development and reproduction. EcR and its ligands are used in commercially available ecdysone-inducible expression systems and are considered to be artificial gene switches with potential therapeutic applications. However, the regulation of EcR action is still unclear, especially in mammals and as far as posttranslational modifications are concerned. Up until now, there has been no study on EcR sumoylation. Using bioinformatic predictors, a Ubc9 fusion-directed sumoylation system and mutagenesis experiments, we present EcR as a new target of SUMO1 and SUMO3 modification. Our research revealed that EcR undergoes isoform-specific multisumoylation. The pattern of modification remains unchanged in the presence of the ligand and the dimerization partner. The SUMO acceptor sites are located in the DNA-binding domain and the ligand-binding domain that both exhibit structural plasticity. We also demonstrated the existence of a sumoylation site in the F region and EcRA-A/B region, both revealing characteristics of intrinsically disordered regions. The consequences of modification and the resulting impact on conformation and function may be especially crucial for the disordered sequences in these two areas. The isoform-specificity of sumoylation may explain the differences in the transcriptional activity of EcR isoforms. PMID:23727127

  3. Potentiation of glucocorticoid receptor transcriptional activity by sumoylation.

    PubMed

    Le Drean, Yves; Mincheneau, Nathalie; Le Goff, Pascale; Michel, Denis

    2002-09-01

    The glucocorticoid receptor (GR) is a transcription factor, subject to several types of posttranslational modifications including phosphorylation and ubiquitination. We showed that the GR is covalently modified by the small ubiquitin-related modifier-1 (SUMO-1) peptide in mammalian cells. We demonstrated that GR sumoylation is not dependent on the presence of the ligand and regulates the stability of the protein as well as its transcriptional activity. SUMO-1 overexpression induces dramatic GR degradation, abolished by proteasome inhibition. We also found that SUMO-1 stimulates the transactivation capacity of GRs to an extent largely exceeding those observed so far for other sumoylated transcription factors. Overexpression of SUMO-1 specifically enhances the ligand-induced transactivation of GR up to 8-fold. However, this hyperactivation occurs only in the context of a synergy between multiple molecules of GRs. It requires more than one receptor DNA-binding site in promoter and becomes more prominent as the number of sites increases. Interestingly, these observations may be related to the transcriptional properties of the synergy control region of GRs, which precisely contains two evolutionary conserved sumoylation sites. We propose a model in which SUMO-1 regulates the synergy control function of GR and serves as a unique signal for activation and destruction. PMID:12193561

  4. Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1.

    PubMed

    Chauchereau, Anne; Amazit, Larbi; Quesne, Monique; Guiochon-Mantel, Anne; Milgrom, Edwin

    2003-04-01

    SUMO-1 (small ubiquitin-like modifier) conjugation regulates the subcellular localization, stability, and activity of a variety of proteins. We show here that SUMO-1 overexpression markedly enhances progesterone receptor (PR)-mediated gene transcription. PR undergoes a sumoylation at lysine 388 located in its N-terminal domain. However, sumoylation of the receptor is not responsible for enhanced transcription because substitution of its target lysine did not abolish the effect of SUMO-1 and even converted the receptor into a slightly more active transactivator. Furthermore estrogen receptor alpha (ERalpha)-driven transcription is also enhanced by SUMO-1 overexpression contrasting with the absence of sumoylation of this receptor. We thus analyzed SUMO-1 conjugation to the steroid receptor coactivator SRC-1. We showed that this protein contains two major sites of conjugation at Lys-732 and Lys-774. Sumoylation was shown to increase PR-SRC-1 interaction and to prolong SRC-1 retention in the nucleus. It did not prevent SRC-1 ubiquitinylation and did not exert a clear effect on the stability of the protein. Overexpression of SUMO-1 enhanced PR-mediated gene transcription even in the presence of non-sumoylated mutants of SRC-1. This observation suggests that among the many protein partners involved in steroid hormone-mediated gene regulation several are probably targets of SUMO-1 modification. PMID:12529333

  5. Histone Deacetylase 7 Promotes PML Sumoylation and Is Essential for PML Nuclear Body Formation▿ †

    PubMed Central

    Gao, Chengzhuo; Ho, Chun-Chen; Reineke, Erin; Lam, Minh; Cheng, Xiwen; Stanya, Kristopher J.; Liu, Yu; Chakraborty, Sharmistha; Shih, Hsiu-Ming; Kao, Hung-Ying

    2008-01-01

    Promyelocytic leukemia protein (PML) sumoylation has been proposed to control the formation of PML nuclear bodies (NBs) and is crucial for PML-dependent cellular processes, including apoptosis and transcriptional regulation. However, the regulatory mechanisms of PML sumoylation and its specific roles in the formation of PML NBs remain largely unknown. Here, we show that histone deacetylase 7 (HDAC7) knockdown reduces the size and the number of the PML NBs in human umbilical vein endothelial cells (HUVECs). HDAC7 coexpression stimulates PML sumoylation independent of its HDAC activity. Furthermore, HDAC7 associates with the E2 SUMO ligase, Ubc9, and stimulates PML sumoylation in vitro, suggesting that it possesses a SUMO E3 ligase-like activity to promote PML sumoylation. Importantly, HDAC7 knockdown inhibits tumor necrosis factor alpha-induced PML sumoylation and the formation of PML NBs in HUVECs. These results demonstrate a novel function of HDAC7 and provide a regulatory mechanism of PML sumoylation. PMID:18625722

  6. PML nuclear bodies: assembly and oxidative stress-sensitive sumoylation.

    PubMed

    Sahin, Umut; de Thé, Hugues; Lallemand-Breitenbach, Valérie

    2014-01-01

    PML Nuclear Bodies (NBs) have fascinated cell biologists due to their exquisitely dynamic nature and their involvement in human diseases, notably acute promyelocytic leukemia. NBs, as well as their master organizer--the PML protein--exhibit multiple connections with stress responses. Initially viewed as a tumor suppressor, PML recently re-emerged as a multifaceted protein, capable of controlling numerous aspects of cellular homeostasis. NBs recruit many functionally diverse proteins and function as stress-regulated sumoylation factories. SUMO-initiated partner retention can subsequently facilitate a variety of other post-translational modifications, as well as partner degradation. With this newly elucidated central role of stress-enhanced sumoylation, it should now be possible to build a working model for the different NB-regulated cellular activities. Moreover, pharmacological manipulation of NB formation by interferons or oxidants holds the promise of clearing many undesirable proteins for clinical management of malignant, viral or neurodegenerative diseases. PMID:25482067

  7. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation.

    PubMed

    Sun, Hao; Lu, Li; Zuo, Yong; Wang, Yan; Jiao, Yingfu; Zeng, Wei-Zheng; Huang, Chao; Zhu, Michael X; Zamponi, Gerald W; Zhou, Tong; Xu, Tian-Le; Cheng, Jinke; Li, Yong

    2014-01-01

    Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner, leading to reduced GlyR-mediated synaptic activity in cultured spinal cord neurons and the superficial dorsal horn of rat spinal cord slices. This effect requires SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of PKC, indicating that the crosstalk between KARs and GlyRs relies on the SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is involved in the kainate-induced GlyR endocytosis and thus plays an important role in the anti-homeostatic regulation between excitatory and inhibitory ligand-gated ion channels. Altogether, we have identified a SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may have important physiological implications for proper neuronal excitability. PMID:25236484

  8. Thyroid Hormone Receptor Sumoylation Is Required for Preadipocyte Differentiation and Proliferation*

    PubMed Central

    Liu, Yan-Yun; Ayers, Stephen; Milanesi, Anna; Teng, Xiaochun; Rabi, Sina; Akiba, Ysutada; Brent, Gregory A.

    2015-01-01

    Thyroid hormone and thyroid hormone receptor (TR) play an essential role in metabolic regulation. However, the role of TR in adipogenesis has not been established. We reported previously that TR sumoylation is essential for TR-mediated gene regulation and that mutation of either of the two sites in TRα or any of the three sites in TRβ reduces TR sumoylation. Here, we transfected TR sumoylation site mutants into human primary preadiocytes and the mouse 3T3L1 preadipocyte cell line to determine the role of TR sumoylation in adipogenesis. Reduced sumoylation of TRα or TRβ resulted in fewer and smaller lipid droplets and reduced proliferation of preadipocytes. TR sumoylation mutations, compared with wild-type TR, results in reduced C/EBP expression and reduced PPARγ2 mRNA and protein levels. TR sumoylation mutants recruited NCoR and disrupted PPARγ-mediated perilipin1 (Plin1) gene expression, associated with impaired lipid droplet formation. Expression of NCoRΔID, a mutant NCoR lacking the TR interaction domain, partially “rescued” the delayed adipogenesis and restored Plin1 gene expression and adipogenesis. TR sumoylation site mutants impaired Wnt/β-catenin signaling pathways and the proliferation of primary human preadipocytes. Expression of the TRβ K146Q sumoylation site mutant down-regulated the essential genes required for canonical Wnt signal-mediated proliferation, including Wnt ligands, Fzds, β-catenin, LEF1, and CCND1. Additionally, the TRβ K146Q mutant enhanced the canonical Wnt signaling inhibitor Dickkopf-related protein 1 (DKK1). Our data demonstrate that TR sumoylation is required for activation of the Wnt canonical signaling pathway during preadipocyte proliferation and enhances the PPARγ signaling that promotes differentiation. PMID:25572392

  9. Thyroid hormone receptor sumoylation is required for preadipocyte differentiation and proliferation.

    PubMed

    Liu, Yan-Yun; Ayers, Stephen; Milanesi, Anna; Teng, Xiaochun; Rabi, Sina; Akiba, Ysutada; Brent, Gregory A

    2015-03-20

    Thyroid hormone and thyroid hormone receptor (TR) play an essential role in metabolic regulation. However, the role of TR in adipogenesis has not been established. We reported previously that TR sumoylation is essential for TR-mediated gene regulation and that mutation of either of the two sites in TRα or any of the three sites in TRβ reduces TR sumoylation. Here, we transfected TR sumoylation site mutants into human primary preadiocytes and the mouse 3T3L1 preadipocyte cell line to determine the role of TR sumoylation in adipogenesis. Reduced sumoylation of TRα or TRβ resulted in fewer and smaller lipid droplets and reduced proliferation of preadipocytes. TR sumoylation mutations, compared with wild-type TR, results in reduced C/EBP expression and reduced PPARγ2 mRNA and protein levels. TR sumoylation mutants recruited NCoR and disrupted PPARγ-mediated perilipin1 (Plin1) gene expression, associated with impaired lipid droplet formation. Expression of NCoRΔID, a mutant NCoR lacking the TR interaction domain, partially "rescued" the delayed adipogenesis and restored Plin1 gene expression and adipogenesis. TR sumoylation site mutants impaired Wnt/β-catenin signaling pathways and the proliferation of primary human preadipocytes. Expression of the TRβ K146Q sumoylation site mutant down-regulated the essential genes required for canonical Wnt signal-mediated proliferation, including Wnt ligands, Fzds, β-catenin, LEF1, and CCND1. Additionally, the TRβ K146Q mutant enhanced the canonical Wnt signaling inhibitor Dickkopf-related protein 1 (DKK1). Our data demonstrate that TR sumoylation is required for activation of the Wnt canonical signaling pathway during preadipocyte proliferation and enhances the PPARγ signaling that promotes differentiation. PMID:25572392

  10. Small heterodimer partner SHP mediates liver X receptor (LXR)-dependent suppression of inflammatory signaling by promoting LXR SUMOylation specifically in astrocytes.

    PubMed

    Lee, Jee Hoon; Kim, Hyunmi; Park, Soo Jung; Woo, Joo Hong; Joe, Eun-Hye; Jou, Ilo

    2016-01-01

    Liver X receptors (LXRs) suppress the expression of inflammatory genes in a context-specific manner. In astrocytes, SUMOylation of LXRs promotes their anti-inflammatory effects. We found that small heterodimer partner (SHP), also known as NR0B2 (nuclear receptor subfamily 0, group B, member 2), facilitates the anti-inflammatory actions of LXRs by promoting their SUMOylation. Knockdown of SHP abrogated SUMOylation of LXRs, preventing their anti-inflammatory effects, in primary rat astrocytes but not macrophages. The underlying mechanisms differed according to LXR isoform. SHP promoted SUMO2 and SUMO3 attachment to LXRα by interacting directly with the histone deacetylase and E3 SUMO ligase HDAC4. In contrast, SHP promoted SUMO1 attachment to LXRβ by stabilizing the E3 SUMO ligase PIAS1. SHP bound PIAS1 and disrupted its interaction with the E3 ubiquitin ligase SIAH1. Knocking down SIAH1 rescued LXRβ SUMOylation in SHP-deficient astrocytes. Our data collectively suggested that SHP mediates the anti-inflammatory actions of LXRs through differential regulation of receptor SUMOylation specifically in astrocytes, thereby revealing potential avenues for therapeutic development in diseases associated with brain inflammation. PMID:27485016

  11. SUMOylation and phosphorylation of GluK2 regulate kainate receptor trafficking and synaptic plasticity

    PubMed Central

    Chamberlain, Sophie E L; González-González, Inmaculada M; Wilkinson, Kevin A; Konopacki, Filip A; Kantamneni, Sriharsha; Henley, Jeremy M; Mellor, Jack R

    2012-01-01

    Summary Phosphorylation or SUMOylation of the kainate receptor (KAR) subunit GluK2 have both individually been shown to regulate KAR surface expression. However, it is unknown if phosphorylation and SUMOylation of GluK2 are important for activity-dependent KAR synaptic plasticity. Here, we show that PKC-mediated phosphorylation of GluK2 at serine 868 promotes GluK2 SUMOylation at lysine 886 and that both these events are necessary for the internalization of GluK2 containing KARs that occurs during long-term depression of KAR-mediated synaptic transmission at rat hippocampal mossy fiber synapses. Conversely, phosphorylation of GluK2 at serine 868 in the absence of SUMOylation leads to an increase in KAR surface expression by facilitating receptor recycling between endosomal compartments and the plasma membrane. Thus, we describe a role for the dynamic control of synaptic SUMOylation in the regulation of KAR synaptic transmission and plasticity. PMID:22522402

  12. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins.

    PubMed

    Sahin, Umut; Ferhi, Omar; Jeanne, Marion; Benhenda, Shirine; Berthier, Caroline; Jollivet, Florence; Niwa-Kawakita, Michiko; Faklaris, Orestis; Setterblad, Niclas; de Thé, Hugues; Lallemand-Breitenbach, Valérie

    2014-03-17

    The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO-SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss. PMID:24637324

  13. Control of nuclear activities by substrate-selective and protein-group SUMOylation.

    PubMed

    Jentsch, Stefan; Psakhye, Ivan

    2013-01-01

    Reversible modification of proteins by SUMO (small ubiquitin-like modifier) affects a large number of cellular processes. In striking contrast to the related ubiquitin pathway, only a few enzymes participate in the SUMO system, although this pathway has numerous substrates as well. Emerging evidence suggests that SUMOylation frequently targets entire groups of physically interacting proteins rather than individual proteins. Protein-group SUMOylation appears to be triggered by recruitment of SUMO ligases to preassembled protein complexes. Because SUMOylation typically affects groups of proteins that bear SUMO-interaction motifs (SIMs), protein-group SUMOylation may foster physical interactions between proteins through multiple SUMO-SIM interactions. Individual SUMO modifications may act redundantly or additively, yet they may mediate dedicated functions as well. In this review, we focus on the unorthodox principles of this pathway and give examples for SUMO-controlled nuclear activities. We propose that collective SUMOylation is typical for nuclear assemblies and argue that SUMO serves as a distinguishing mark for functionally engaged protein fractions. PMID:24016193

  14. Nuclear localization of Rad52 is pre-requisite for its sumoylation

    SciTech Connect

    Ohuchi, Takashi; Seki, Masayuki Enomoto, Takemi

    2008-07-18

    In Saccharomyces cerevisiae, Rad52 plays major roles in several types of homologous recombination. Here, we found that rad52-K200R mutation greatly reduced sumoylation of Rad52. The rad52-K200R mutant exhibited defects in various types of recombination, such as intrachromosomal recombination and mating-type switching. The K200 residue of Rad52 is part of the nuclear localization signal (NLS), which is important for transport into the nucleus. Indeed, the addition of a SV40 NLS to Rad52-K200R suppressed the sumoylation defect of Rad52-K200R. These findings indicate that nuclear localization of Rad52 is pre-requisite for its sumoylation.

  15. Phosphorylation-dependent sumoylation regulates estrogen-related receptor-alpha and -gamma transcriptional activity through a synergy control motif.

    PubMed

    Tremblay, Annie M; Wilson, Brian J; Yang, Xiang-Jiao; Giguère, Vincent

    2008-03-01

    Interplay between different posttranslational modifications of transcription factors is an important mechanism to achieve an integrated regulation of gene expression. For the estrogen-related receptors (ERRs) alpha and gamma, regulation by posttranslational modifications is still poorly documented. Here we show that transcriptional repression associated with the ERR amino-terminal domains is mediated through sumoylation at a conserved phospho-sumoyl switch, psiKxEPxSP, that exists within a larger synergy control motif. Arginine substitution of the sumoylatable lysine residue or alanine substitution of a nearby phosphorylatable serine residue (serine 19 in ERRalpha) increased the transcriptional activity of both ERRalpha and -gamma. In addition, phospho-mimetic substitution of the serine residue with aspartate restored the sumoylation and transcriptional repression activity. The increased transcriptional activity of the sumoylation-deficient mutants was more pronounced in the presence of multiple adjacent ERR response elements. We also identified protein inhibitor of activated signal transducer and activator of transcription y as an interacting partner and a small ubiquitin-related modifier E3 ligase for ERRalpha. Importantly, analysis with a phospho-specific antibody revealed that sumoylation of ERRalpha in mouse liver requires phosphorylation of serine 19. Taken together, these results show that the interplay of phosphorylation and sumoylation in the amino-terminal domain provides an additional mechanism to regulate the transcriptional activity of ERRalpha and -gamma. PMID:18063693

  16. In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies

    SciTech Connect

    Saitoh, Noriko . E-mail: hisa@gpo.kumamoto-u.ac.jp; Uchimura, Yasuhiro; Tachibana, Taro; Sugahara, Satoko; Saitoh, Hisato; Nakao, Mitsuyoshi . E-mail: mnakao@gpo.kumamoto-u.ac.jp

    2006-05-01

    SUMO modification plays a critical role in a number of cellular functions including nucleocytoplasmic transport, gene expression, cell cycle and formation of subnuclear structures such as promyelocytic leukemia (PML) bodies. In order to identify the sites where SUMOylation takes place in the cell, we developed an in situ SUMOylation assay using a semi-intact cell system and subsequently combined it with siRNA-based knockdown of nucleoporin RanBP2, also known as Nup358, which is one of the known SUMO E3 proteins. With the in situ SUMOylation assay, we found that both nuclear rim and PML bodies, besides mitotic apparatuses, are major targets for active SUMOylation. The ability to analyze possible SUMO conjugation sites would be a valuable tool to investigate where SUMO E3-like activities and/or SUMO substrates exist in the cell. Specific knockdown of RanBP2 completely abolished SUMOylation along the nuclear rim and dislocated RanGAP1 from the nuclear pore complexes. Interestingly, the loss of RanBP2 markedly reduced the number of PML bodies, in contrast to other, normal-appearing nuclear compartments including the nuclear lamina, nucleolus and chromatin, suggesting a novel link between RanBP2 and PML bodies. SUMOylation facilitated by RanBP2 at the nuclear rim may be a key step for the formation of a particular subnuclear organization. Our data imply that SUMO E3 proteins like RanBP2 facilitate spatio-temporal SUMOylation for certain nuclear structure and function.

  17. Fbxw5 suppresses nuclear c-Myb activity via DDB1-Cul4-Rbx1 ligase-mediated sumoylation

    SciTech Connect

    Kanei-Ishii, Chie; Nomura, Teruaki; Egoh, Ayako; Ishii, Shunsuke

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Fbxw5 enhances sumoylation of c-Myb. Black-Right-Pointing-Pointer The DDB1-Cul4A-Rbx1 complex mediates c-Myb sumoylation. Black-Right-Pointing-Pointer The Fbxw5-DDB1-Cul4A-Rdx1 complex is a dual SUMO/ubiquitin ligase. Black-Right-Pointing-Pointer Fbxw5 suppresses the c-Myb trans-activating capacity. -- Abstract: The c-myb proto-oncogene product (c-Myb) is degraded in response to Wnt-1 signaling. In this process, Fbxw7{alpha}, the F-box protein of the SCF complex, binds to c-Myb via its C-terminal WD40 domain, and induces the ubiquitination of c-Myb. Here, we report that Fbxw5, another F-box protein, enhances sumoylation of nuclear c-Myb. Fbxw5 enhanced c-Myb sumoylation via the DDB1-Cul4A-Rbx1 complex. Since the Fbxw5-DDB1-Cul4A-Rbx1 complex was shown to act as a ubiquitin ligase for tumor suppressor TSC2, our results suggest that this complex can function as a dual SUMO/ubiquitin ligase. Fbxw5, which is localized to both nucleus and cytosol, enhanced sumoylation of nuclear c-Myb and induced the localization of c-Myb to nuclear dot-like domains. Co-expression of Fbxw5 suppressed the trans-activation of c-myc promoter by wild-type c-Myb, but not by v-Myb, which lacks the sumoylation sites. These results suggest that multiple E3 ligases suppress c-Myb activity through sumoylation or ubiquitination, and that v-Myb is no longer subject to these negative regulations.

  18. Transcription regulation of nuclear receptor PXR: Role of SUMO-1 modification and NDSM in receptor function.

    PubMed

    Priyanka; Kotiya, Deepak; Rana, Manjul; Subbarao, N; Puri, Niti; Tyagi, Rakesh K

    2016-01-15

    Pregnane & Xenobiotic Receptor (PXR) is one of the 48 members of the nuclear receptor superfamily of ligand-modulated transcription factors. PXR plays an important role in metabolism and elimination of diverse noxious endobiotics and xenobiotics. Like in case of some nuclear receptors its function may also be differentially altered, positively or negatively, by various post-translational modifications. In this context, regulation of PXR function by SUMOylation is the subject of present investigation. Here, we report that human PXR is modified by SUMO-1 resulting in its enhanced transcriptional activity. RT-PCR analysis showed that PXR SUMOylation in presence of rifampicin also enhances the endogenous expression levels of key PXR-regulated genes like CYP3A4, CYP2C9, MDR1 and UGT1A1. In addition, mammalian two-hybrid assay exhibited enhanced interaction between PXR and co-activator SRC-1. EMSA results revealed that SUMOylation has no influence on the DNA binding ability of PXR. In silico analysis suggested that PXR protein contains four putative SUMOylation sites, centered at K108, K129, K160 and K170. In addition to this, we identified the presence of NDSM (Negative charge amino acid Dependent SUMOylation Motif) in PXR. Substitution of all its four putative lysine residues along with NDSM abolished the effect of SUMO-1-mediated transactivation function of PXR. Furthermore, we show that interaction between PXR and E2-conjugation enzyme UBCh9, an important step for implementation of SUMOylation event, was reduced in case of NDSM mutant PXRD115A. Overall, our results suggest that SUMOylation at specific sites on PXR protein are involved in enhancement of transcription function of this receptor. PMID:26549688

  19. Endogenous TRIM5α Function Is Regulated by SUMOylation and Nuclear Sequestration for Efficient Innate Sensing in Dendritic Cells.

    PubMed

    Portilho, Débora M; Fernandez, Juliette; Ringeard, Mathieu; Machado, Anthony K; Boulay, Aude; Mayer, Martha; Müller-Trutwin, Michaela; Beignon, Anne-Sophie; Kirchhoff, Frank; Nisole, Sébastien; Arhel, Nathalie J

    2016-01-12

    During retroviral infection, viral capsids are subject to restriction by the cellular factor TRIM5α. Here, we show that dendritic cells (DCs) derived from human and non-human primate species lack efficient TRIM5α-mediated retroviral restriction. In DCs, endogenous TRIM5α accumulates in nuclear bodies (NB) that partly co-localize with Cajal bodies in a SUMOylation-dependent manner. Nuclear sequestration of TRIM5α allowed potent induction of type I interferon (IFN) responses during infection, mediated by sensing of reverse transcribed DNA by cGAS. Overexpression of TRIM5α or treatment with the SUMOylation inhibitor ginkgolic acid (GA) resulted in enforced cytoplasmic TRIM5α expression and restored efficient viral restriction but abrogated type I IFN production following infection. Our results suggest that there is an evolutionary trade-off specific to DCs in which restriction is minimized to maximize sensing. TRIM5α regulation via SUMOylation-dependent nuclear sequestration adds to our understanding of how restriction factors are regulated. PMID:26748714

  20. Endogenous TRIM5α Function Is Regulated by SUMOylation and Nuclear Sequestration for Efficient Innate Sensing in Dendritic Cells

    PubMed Central

    Portilho, Débora M.; Fernandez, Juliette; Ringeard, Mathieu; Machado, Anthony K.; Boulay, Aude; Mayer, Martha; Müller-Trutwin, Michaela; Beignon, Anne-Sophie; Kirchhoff, Frank; Nisole, Sébastien; Arhel, Nathalie J.

    2015-01-01

    Summary During retroviral infection, viral capsids are subject to restriction by the cellular factor TRIM5α. Here, we show that dendritic cells (DCs) derived from human and non-human primate species lack efficient TRIM5α-mediated retroviral restriction. In DCs, endogenous TRIM5α accumulates in nuclear bodies (NB) that partly co-localize with Cajal bodies in a SUMOylation-dependent manner. Nuclear sequestration of TRIM5α allowed potent induction of type I interferon (IFN) responses during infection, mediated by sensing of reverse transcribed DNA by cGAS. Overexpression of TRIM5α or treatment with the SUMOylation inhibitor ginkgolic acid (GA) resulted in enforced cytoplasmic TRIM5α expression and restored efficient viral restriction but abrogated type I IFN production following infection. Our results suggest that there is an evolutionary trade-off specific to DCs in which restriction is minimized to maximize sensing. TRIM5α regulation via SUMOylation-dependent nuclear sequestration adds to our understanding of how restriction factors are regulated. PMID:26748714

  1. Co-repressor activity of scaffold attachment factor B1 requires sumoylation

    SciTech Connect

    Garee, Jason P.; Meyer, Rene; Systems Biology of Signal Transduction, German Cancer Research Center , INF 280, 69120 Heidelberg ; Oesterreich, Steffi

    2011-05-20

    Highlights: {yields} SAFB1 is sumoylated to two lysine residues K231 and K294. {yields} SAFB1 sumoylation is regulated by PIAS1 and SENP1. {yields} Sumoylation of SAFB1 regulates its transcriptional repressor activity. {yields} Mutation of sumoylation sites leads to decreased SAFB1 binding to HDAC3. -- Abstract: Sumoylation is an emerging modification associated with a variety of cellular processes including the regulation of transcriptional activities of nuclear receptors and their coregulators. As SUMO modifications are often associated with transcriptional repression, we examined if sumoylation was involved in modulation of the transcriptional repressive activity of scaffold attachment factor B1. Here we show that SAFB1 is modified by both the SUMO1 and SUMO2/3 family of proteins, on lysine's K231 and K294. Further, we demonstrate that SAFB1 can interact with PIAS1, a SUMO E3 ligase which mediates SAFB1 sumoylation. Additionally, SENP1 was identified as the enzyme desumoylating SAFB1. Mutation of the SAFB1 sumoylation sites lead to a loss of transcriptional repression, at least in part due to decreased interaction with HDAC3, a known transcriptional repressor and SAFB1 binding partner. In summary, the transcriptional repressor SAFB1 is modified by both SUMO1 and SUMO2/3, and this modification is necessary for its full repressive activity.

  2. Sumoylation of Smad3 stimulates its nuclear export during PIASy-mediated suppression of TGF-{beta} signaling

    SciTech Connect

    Imoto, Seiyu; Ohbayashi, Norihiko; Ikeda, Osamu; Kamitani, Shinya; Muromoto, Ryuta; Sekine, Yuichi; Matsuda, Tadashi

    2008-05-30

    Sma- and MAD-related protein 3 (Smad3) plays crucial roles in the transforming growth factor-{beta} (TGF-{beta})-mediated signaling pathway, which produce a variety of cellular responses, including cell proliferation and differentiation. In our previous study, we demonstrated that protein inhibitor of activated STATy (PIASy) suppresses TGF-{beta} signaling by interacting with and sumoylating Smad3. In the present study, we examined the molecular mechanisms of Smad3 sumoylation during PIASy-mediated suppression of TGF-{beta} signaling. We found that small-interfering RNA-mediated reduction of endogenous PIASy expression enhanced TGF-{beta}-induced gene expression. Importantly, coexpression of Smad3 with PIASy and SUMO1 affected the DNA-binding activity of Smad3. Furthermore, coexpression of Smad3 with PIASy and SUMO1 stimulated the nuclear export of Smad3. Finally, fluorescence resonance energy transfer analyses revealed that Smad3 interacted with SUMO1 in the cytoplasm. These results suggest that PIASy regulates TGF-{beta}/Smad3-mediated signaling by stimulating sumoylation and nuclear export of Smad3.

  3. SUMOylation regulates nuclear localization and stability of TRAIP/RNF206.

    PubMed

    Park, I Seul; Han, Ye gi; Chung, Hee Jin; Jung, Yong Woo; Kim, Yonghwan; Kim, Hongtae

    2016-02-19

    TRAIP/RNF206 plays diverse roles in cell cycle progression, DNA damage response, and DNA repair pathways. Physiological importance of TRAIP is highlighted by the identification of pathogenic mutations of TRAIP gene in patients diagnosed with primordial dwarfism. Although the diverse functions of TRAIP in the nucleus have been well characterized, molecular mechanism of TRAIP retention in the nucleus has not been determined. Here, we discovered that TRAIP is post-translationally modified by the small ubiquitin-like protein (SUMO). In addition, we identified five SUMOylation sites in TRAIP, and successfully generated SUMOylation deficient mutant of TRAIP. In an attempt to define the functional roles of TRAIP SUMOylation, we discovered that SUMOylation deficient TRAIP is not retained in the nucleus. In addition, protein stability of SUMOylation deficient TRAIP is lower than wild type TRAIP, demonstrating that SUMOylation is critical for both proper subcellular localization and protein stability of TRAIP. Taken together, these findings improve the understanding clinical implication of TRAIP in various diseases including primordial dwarfism and cancers. PMID:26820530

  4. SUMOylation regulates the nuclear mobility of CREB binding protein and its association with nuclear bodies in live cells

    SciTech Connect

    Ryan, Colm M.; Kindle, Karin B.; Collins, Hilary M.; Heery, David M.

    2010-01-01

    The lysine acetyltransferase CREB binding protein (CBP) is required for chromatin modification and transcription at many gene promoters. In fixed cells, a large proportion of CBP colocalises to PML or nuclear bodies. Using live cell imaging, we show here that YFP-tagged CBP expressed in HEK293 cells undergoes gradual accumulation in nuclear bodies, some of which are mobile and migrate towards the nuclear envelope. Deletion of a short lysine-rich domain that contains the major SUMO acceptor sites of CBP abrogated its ability to be SUMO modified, and prevented its association with endogenous SUMO-1/PML speckles in vivo. This SUMO-defective CBP showed enhanced ability to co-activate AML1-mediated transcription. Deletion mapping revealed that the SUMO-modified region was not sufficient for targeting CBP to PML bodies, as C-terminally truncated mutants containing this domain showed a strong reduction in accumulation at PML bodies. Fluorescence recovery after photo-bleaching (FRAP) experiments revealed that YFP-CBP{Delta}998-1087 had a retarded recovery time in the nucleus, as compared to YFP-CBP. These results indicate that SUMOylation regulates CBP function by influencing its shuttling between nuclear bodies and chromatin microenvironments.

  5. Post-translational modifications of nuclear receptors and human disease

    PubMed Central

    Anbalagan, Muralidharan; Huderson, Brandy; Murphy, Leigh; Rowan, Brian G.

    2012-01-01

    Nuclear receptors (NR) impact a myriad of physiological processes including homeostasis, reproduction, development, and metabolism. NRs are regulated by post-translational modifications (PTM) that markedly impact receptor function. Recent studies have identified NR PTMs that are involved in the onset and progression of human diseases, including cancer. The majority of evidence linking NR PTMs with disease has been demonstrated for phosphorylation, acetylation and sumoylation of androgen receptor (AR), estrogen receptor α (ERα), glucocorticoid receptor (GR) and peroxisome proliferator activated receptor γ (PPARγ). Phosphorylation of AR has been associated with hormone refractory prostate cancer and decreased disease-specific survival. AR acetylation and sumoylation increased growth of prostate cancer tumor models. AR phosphorylation reduced the toxicity of the expanded polyglutamine AR in Kennedy’s Disease as a consequence of reduced ligand binding. A comprehensive evaluation of ERα phosphorylation in breast cancer revealed several sites associated with better clinical outcome to tamoxifen therapy, whereas other phosphorylation sites were associated with poorer clinical outcome. ERα acetylation and sumoylation may also have predictive value for breast cancer. GR phosphorylation and acetylation impact GR responsiveness to glucocorticoids that are used as anti-inflammatory drugs. PPARγ phosphorylation can regulate the balance between growth and differentiation in adipose tissue that is linked to obesity and insulin resistance. Sumoylation of PPARγ is linked to repression of inflammatory genes important in patients with inflammatory diseases. NR PTMs provide an additional measure of NR function that can be used as both biomarkers of disease progression, and predictive markers for patient response to NR-directed treatments. PMID:22438791

  6. The E3 SUMO ligase Nse2 regulates sumoylation and nuclear-to-cytoplasmic translocation of skNAC-Smyd1 in myogenesis.

    PubMed

    Berkholz, Janine; Michalick, Laura; Munz, Barbara

    2014-09-01

    Skeletal and heart muscle-specific variant of the α subunit of nascent polypeptide associated complex (skNAC; encoded by NACA) is exclusively found in striated muscle cells. Its function, however, is largely unknown. Previous reports have demonstrated that skNAC binds to m-Bop/Smyd1, a multi-functional protein that regulates myogenesis both through the control of transcription and the modulation of sarcomerogenesis, and that both proteins undergo nuclear-to-cytoplasmic translocation at the later stages of myogenic differentiation. Here, we show that skNAC binds to the E3 SUMO ligase mammalian Mms21/Nse2 and that knockdown of Nse2 expression inhibits specific aspects of myogenic differentiation, accompanied by a partial blockade of the nuclear-to-cytoplasmic translocation of the skNAC-Smyd1 complex, retention of the complex in promyelocytic leukemia (PML)-like nuclear bodies and disturbed sarcomerogenesis. In addition, we show that the skNAC interaction partner Smyd1 contains a putative sumoylation motif and is sumoylated in muscle cells, with depletion of Mms21/Nse2 leading to reduced concentrations of sumoylated Smyd1. Taken together, our data suggest that the function, specifically the balance between the nuclear and cytosolic roles, of the skNAC-Smyd1 complex might be regulated by sumoylation. PMID:25002400

  7. Sumoylated NHR-25/NR5A Regulates Cell Fate during C. elegans Vulval Development

    PubMed Central

    Bernal, Teresita; Ashrafi, Kaveh; Asahina, Masako; Yamamoto, Keith R.

    2013-01-01

    Individual metazoan transcription factors (TFs) regulate distinct sets of genes depending on cell type and developmental or physiological context. The precise mechanisms by which regulatory information from ligands, genomic sequence elements, co-factors, and post-translational modifications are integrated by TFs remain challenging questions. Here, we examine how a single regulatory input, sumoylation, differentially modulates the activity of a conserved C. elegans nuclear hormone receptor, NHR-25, in different cell types. Through a combination of yeast two-hybrid analysis and in vitro biochemistry we identified the single C. elegans SUMO (SMO-1) as an NHR-25 interacting protein, and showed that NHR-25 is sumoylated on at least four lysines. Some of the sumoylation acceptor sites are in common with those of the NHR-25 mammalian orthologs SF-1 and LRH-1, demonstrating that sumoylation has been strongly conserved within the NR5A family. We showed that NHR-25 bound canonical SF-1 binding sequences to regulate transcription, and that NHR-25 activity was enhanced in vivo upon loss of sumoylation. Knockdown of smo-1 mimicked NHR-25 overexpression with respect to maintenance of the 3° cell fate in vulval precursor cells (VPCs) during development. Importantly, however, overexpression of unsumoylatable alleles of NHR-25 revealed that NHR-25 sumoylation is critical for maintaining 3° cell fate. Moreover, SUMO also conferred formation of a developmental time-dependent NHR-25 concentration gradient across the VPCs. That is, accumulation of GFP-tagged NHR-25 was uniform across VPCs at the beginning of development, but as cells began dividing, a smo-1-dependent NHR-25 gradient formed with highest levels in 1° fated VPCs, intermediate levels in 2° fated VPCs, and low levels in 3° fated VPCs. We conclude that sumoylation operates at multiple levels to affect NHR-25 activity in a highly coordinated spatial and temporal manner. PMID:24348269

  8. [Nuclear receptors PPARalpha].

    PubMed

    Soska, V

    2006-06-01

    Mechanism of the fibrates action is mediated by nuclear PPARalpha receptors (Peroxisome Proliferator-Activated Receptor). These receptors regulate a number of genes that are involved both in lipids and lipoproteins metabolism and other mediators (e.g. inflammatory mediatores). Due to PPARalpha activation by fibrates, triglycerides and small dense LDL concentration is decreased, HDL cholesterol is increased and both inflammation and prothrombotic status are reduced. These effects are very important in patients with metabolic syndrom. PMID:16871768

  9. Regulation of pokemon 1 activity by sumoylation.

    PubMed

    Roh, Hee-Eun; Lee, Min-Nyung; Jeon, Bu-Nam; Choi, Won-Il; Kim, Yoo-Jin; Yu, Mi-Young; Hur, Man-Wook

    2007-01-01

    Pokemon 1 is a proto-oncogenic transcriptional regulator that contains a POZ domain at the N-terminus and four Kruppel-like zinc fingers at the C-terminus. Pokemon 1 plays an important role in adipogenesis, osteogenesis, oncogenesis, and transcription of NF-kB responsive genes. Recent reports have shown that biological activities of transcription factors are regulated by sumolylation. We investigated whether Pokemon 1 is post-translationally modified by sumoylation and whether the modification affects Pokemon 1's transcriptional properties. We found that Pokemon 1 is sumoylated in vitro and in vivo. Upon careful analysis of the amino acid sequence of Pokemon 1, we found ten potential sumoylation sites located at lysines 61, 354, 371, 379, 383, 396, 486, 487, 536 and 539. We mutated each of these amino acids into arginine and tested whether the mutation could affect the transcriptional properties of Pokemon 1 on the Pokemon 1 responsive genes, such as ADH5/FDH and pG5-FRE-Luc. Wild-type Pokemon 1 potently represses transcription of ADH5/FDH. Most of the mutants, however, were weaker transcription repressors and repressed transcription 1.3-3.3 fold less effective. Although potential sumoylation sites were located close to the DNA binding domain or the nuclear localization sequence, the mutations did not alter nuclear localization or DNA binding activity. In addition, on the pG5-FRE-Luc test promoter construct, ectopic SUMO-1 repressed transcription in the presence of Pokemon 1. The sumoylation target lysine residue at amino acid 61, which is located in the middle of the POZ-domain, is important because K61R mutation resulted in a much weaker molecular interaction with corepressors. Our data suggest that Pokemon 1's activity as a transcription factor may involve sumoylation, and that sumoylation might be important in the regulation of transcription by Pokemon 1. PMID:17595526

  10. Historical overview of nuclear receptors.

    PubMed

    Gustafsson, Jan-Ake

    2016-03-01

    This review summarizes the birth of the field of nuclear receptors, from Jensen's discovery of estrogen receptor alpha, Gustafsson's discovery of the three-domain structure of the glucocorticoid receptor, the discovery of the glucocorticoid response element and the first partial cloning of the glucocorticoid receptor. Furthermore the discovery of the novel receptors called orphan receptors is described. PMID:25797032

  11. A gene-expression screen identifies a non-toxic sumoylation inhibitor that mimics SUMO-less human LRH-1 in liver

    PubMed Central

    Suzawa, Miyuki; Miranda, Diego A; Ramos, Karmela A; Ang, Kenny K-H; Faivre, Emily J; Wilson, Christopher G; Caboni, Laura; Arkin, Michelle R; Kim, Yeong-Sang; Fletterick, Robert J; Diaz, Aaron; Schneekloth, John S; Ingraham, Holly A

    2015-01-01

    SUMO-modification of nuclear proteins has profound effects on gene expression. However, non-toxic chemical tools that modulate sumoylation in cells are lacking. Here, to identify small molecule sumoylation inhibitors we developed a cell-based screen that focused on the well-sumoylated substrate, human Liver Receptor Homolog-1 (hLRH-1, NR5A2). Our primary gene-expression screen assayed two SUMO-sensitive transcripts, APOC3 and MUC1, that are upregulated by SUMO-less hLRH-1 or by siUBC9 knockdown, respectively. A polyphenol, tannic acid (TA) emerged as a potent sumoylation inhibitor in vitro (IC50 = 12.8 µM) and in cells. TA also increased hLRH-1 occupancy on SUMO-sensitive transcripts. Most significantly, when tested in humanized mouse primary hepatocytes, TA inhibits hLRH-1 sumoylation and induces SUMO-sensitive genes, thereby recapitulating the effects of expressing SUMO-less hLRH-1 in mouse liver. Our findings underscore the benefits of phenotypic screening for targeting post-translational modifications, and illustrate the potential utility of TA for probing the cellular consequences of sumoylation. DOI: http://dx.doi.org/10.7554/eLife.09003.001 PMID:26653140

  12. Mapping the SUMOylated landscape.

    PubMed

    Eifler, Karolin; Vertegaal, Alfred C O

    2015-10-01

    SUMOylation is a post-translational modification that regulates a multitude of cellular processes, including replication, cell-cycle progression, protein transport and the DNA damage response. Similar to ubiquitin, SUMO (small ubiquitin-like modifier) is covalently attached to target proteins in a reversible process via an enzymatic cascade. SUMOylation is essential for nearly all eukaryotic organisms, and deregulation of the SUMO system is associated with human diseases such as cancer and neurodegenerative diseases. Therefore, it is of great interest to understand the regulation and dynamics of this post-translational modification. Within the last decade, mass spectrometry analyses of SUMO proteomes have overcome several obstacles, greatly expanding the number of known SUMO target proteins. In this review, we briefly outline the basic concepts of the SUMO system, and discuss the potential of proteomic approaches to decipher SUMOylation patterns in order to understand the role of SUMO in health and disease. PMID:26185901

  13. Mapping the SUMOylated landscape

    PubMed Central

    Eifler, Karolin; Vertegaal, Alfred C.O.

    2016-01-01

    SUMOylation is a posttranslational modification regulating a multitude of cellular processes, including replication, cell cycle progression, protein transport and the DNA damage response. Similar to ubiquitin, the Small Ubiquitin-like Modifier (SUMO) is covalently attached to target proteins in a reversible process via an enzymatic cascade. SUMOylation is essential for nearly all eukaryotic organisms and deregulation of the SUMO system is associated with human diseases such as cancer and neurodegenerative diseases. Therefore it is of great interest to understand the regulation and dynamics of this posttranslational modification. Within the last decade, mass spectrometry analyses of SUMO proteomes has overcome several obstacles, greatly expanding the number of known SUMO target proteins. In this review we will briefly outline the basic concepts of the SUMO system and critically discuss the potential of proteomic approaches to decipher SUMOylation patterns in order to understand the role of SUMO in health and disease. PMID:26185901

  14. Transcriptional activation of nuclear estrogen receptor and progesterone receptor and its regulation.

    PubMed

    Xin, Qi-Liang; Qiu, Jing-Tao; Cui, Sheng; Xia, Guo-Liang; Wang, Hai-Bin

    2016-08-25

    Estrogen receptor (ER) and progesterone receptor (PR) are two important members of steroid receptors family, an evolutionarily conserved family of transcription factors. Upon binding to their ligands, ER and PR enter cell nucleus to interact with specific DNA element in the context of chromatin to initiate the transcription of diverse target genes, which largely depends on the timely recruitment of a wide range of cofactors. Moreover, the interactions between steroid hormones and their respective receptors also trigger post-translational modifications on these receptors to fine-tune their transcriptional activities. Besides the well-known phosphorylation modifications on tyrosine and serine/threonine residues, recent studies have identified several other covalent modifications, such as ubiquitylation and sumoylation. These post-translational modifications of steroid receptors affect its stability, subcellular localization, and/or cofactor recruitment; eventually influence the duration and extent of transcriptional activation. This review is to focus on the recent research progress on the transcriptional activation of nuclear ER and PR as well as their physiological functions in early pregnancy, which may help us to better understand related female reproductive diseases. PMID:27546504

  15. Nuclear Receptors and Inflammatory Diseases

    PubMed Central

    Wang, Kun; Wan, Yu-Jui Yvonne

    2014-01-01

    It is well known that the steroid hormone glucocorticoid and its nuclear receptor regulate the inflammatory process, a crucial component in the pathophysiological process related to human diseases that include atherosclerosis, obesity and type II diabetes, inflammatory bowel disease, Alzheimer’s disease, multiple sclerosis, and liver tumors. Growing evidence demonstrates that orphan and adopted orphan nuclear receptors, such as peroxisome proliferator-activated receptors, liver × receptors, the farnesoid × receptor, NR4As, retinoid × receptors, and the pregnane × receptor, regulate the inflammatory and metabolic profiles in a ligand-dependent or -independent manner in human and animal models. This review summarizes the regulatory roles of these nuclear receptors in the inflammatory process and the underlying mechanisms. PMID:18375823

  16. Identification of sumoylated proteins in the silkworm Bombyx mori.

    PubMed

    Tang, Xudong; Fu, Xuliang; Hao, Bifang; Zhu, Feng; Xiao, Shengyan; Xu, Li; Shen, Zhongyuan

    2014-01-01

    Small ubiquitin-like modifier (SUMO) modification (SUMOylation) is an important and widely used reversible modification system in eukaryotic cells. It regulates various cell processes, including protein targeting, transcriptional regulation, signal transduction, and cell division. To understand its role in the model lepidoptera insect Bombyx mori, a recombinant baculovirus was constructed to express an enhanced green fluorescent protein (eGFP)-SUMO fusion protein along with ubiquitin carrier protein 9 of Bombyx mori (BmUBC9). SUMOylation substrates from Bombyx mori cells infected with this baculovirus were isolated by immunoprecipitation and identified by LC-ESI-MS/MS. A total of 68 candidate SUMOylated proteins were identified, of which 59 proteins were functionally categorized to gene ontology (GO) terms. Analysis of kyoto encyclopedia of genes and genomes (KEGG) pathways showed that 46 of the identified proteins were involved in 76 pathways that mainly play a role in metabolism, spliceosome and ribosome functions, and in RNA transport. Furthermore, SUMOylation of four candidates (polyubiquitin-C-like isoform X1, 3-hydroxyacyl-CoA dehydrogenase, cyclin-related protein FAM58A-like and GTP-binding nuclear protein Ran) were verified by co-immunoprecipitation in Drosophila schneide 2 cells. In addition, 74% of the identified proteins were predicted to have at least one SUMOylation site. The data presented here shed light on the crucial process of protein sumoylation in Bombyx mori. PMID:25470021

  17. Steroid receptor coupling becomes nuclear.

    PubMed

    Galigniana, Mario D

    2012-06-22

    In this issue of Chemistry & Biology, Grossman et al. report a study on aldosterone-dependent nuclear translocation of the mineralocorticoid receptor (MR). They analyze the dependency of MR retrotransport, DNA-binding, and transcriptional activity on Hsp90 and demonstrate that MR dimerization is a nuclear event. PMID:22726677

  18. Global Reprogramming of Host SUMOylation during Influenza Virus Infection

    PubMed Central

    Domingues, Patricia; Golebiowski, Filip; Tatham, Michael H.; Lopes, Antonio M.; Taggart, Aislynn; Hay, Ronald T.; Hale, Benjamin G.

    2015-01-01

    Summary Dynamic nuclear SUMO modifications play essential roles in orchestrating cellular responses to proteotoxic stress, DNA damage, and DNA virus infection. Here, we describe a non-canonical host SUMOylation response to the nuclear-replicating RNA pathogen, influenza virus, and identify viral RNA polymerase activity as a major contributor to SUMO proteome remodeling. Using quantitative proteomics to compare stress-induced SUMOylation responses, we reveal that influenza virus infection triggers unique re-targeting of SUMO to 63 host proteins involved in transcription, mRNA processing, RNA quality control, and DNA damage repair. This is paralleled by widespread host deSUMOylation. Depletion screening identified ten virus-induced SUMO targets as potential antiviral factors, including C18orf25 and the SMC5/6 and PAF1 complexes. Mechanistic studies further uncovered a role for SUMOylation of the PAF1 complex component, parafibromin (CDC73), in potentiating antiviral gene expression. Our global characterization of influenza virus-triggered SUMO redistribution provides a proteomic resource to understand host nuclear SUMOylation responses to infection. PMID:26549460

  19. Aspects of the regulatory mechanisms of PPAR functions: analysis of a bidirectional response element and regulation by sumoylation.

    PubMed

    Shimizu, Makoto; Yamashita, Daisuke; Yamaguchi, Tomohiro; Hirose, Fumiko; Osumi, Takashi

    2006-06-01

    Peroxisome proliferator-activated receptors (PPARs) constitute a subfamily of nuclear receptor superfamily. A wide variety of compounds including hypolipidemic agents, antidiabetic drugs, and long-chain fatty acids are the potential ligands of PPARs. To approach the regulatory mechanisms of PPARs, we studied on two subjects in this work. First, we identified a functional PPAR-binding site in the spacer region between the PEX11alpha and perilipin genes, which are arranged in tandem on the mouse genome. By gene reporter assays and in vivo as well as in vitro binding assays, we show that these genes are regulated tissue-selectively through this common binding site: The PEX11alpha gene is activated by PPARalpha in the liver, whereas the perilipin gene by PPARgamma in the adipose tissue. As the second subject, we found that PPARgamma2 is conjugated with small ubiquitin-related modifier (SUMO) at a specific lysine residue in the amino-terminal region. By site-directed mutagenesis combined with gene reporter assays and sumoylation analyses, we show that sumoylation represses the ligand-independent transactivating function carried by this region, and hence negatively regulates the whole transactivating competence of PPARgamma2. In addition, phosphorylation at a specific site in the amino-terminal region represses the transactivation by PPARgamma2 possibly through enhancing sumoylation. PMID:16534556

  20. SUMOylation regulates ciliary localization of olfactory signaling proteins

    PubMed Central

    McIntyre, Jeremy C.; Joiner, Ariell M.; Zhang, Lian; Iñiguez-Lluhí, Jorge; Martens, Jeffrey R.

    2015-01-01

    ABSTRACT Cilia are evolutionarily conserved organelles found on many mammalian cell types, including neuronal populations. Although neuronal cilia, including those on olfactory sensory neurons (OSNs), are often delineated by localization of adenylyl cyclase 3 (AC3, also known as ADCY3), the mechanisms responsible for targeting integral membrane proteins are largely unknown. Post-translational modification by small ubiquitin-like modifier (SUMO) proteins plays an important role in protein localization processes such as nuclear–cytosolic transport. Here, we identified through bioinformatic analysis that adenylyl cyclases harbor conserved SUMOylation motifs, and show that AC3 is a substrate for SUMO modification. Functionally, overexpression of the SUMO protease SENP2 prevented ciliary localization of AC3, without affecting ciliation or cilia maintenance. Furthermore, AC3-SUMO mutants did not localize to cilia. To test whether SUMOylation is sufficient for cilia entry, we compared localization of ANO2, which possesses a SUMO motif, and ANO1, which lacks SUMOylation sites and does not localize to cilia. Introduction of SUMOylation sites into ANO1 was not sufficient for ciliary entry. These data suggest that SUMOylation is necessary but not sufficient for ciliary trafficking of select constituents, further establishing the link between ciliary and nuclear import. PMID:25908845

  1. SUMOylation Regulates the Transcriptional Repression Activity of FOG-2 and Its Association with GATA-4

    PubMed Central

    Perdomo, José; Jiang, Xing-Mai; Carter, Daniel R.; Khachigian, Levon M.; Chong, Beng H.

    2012-01-01

    Friend of GATA 2 (FOG-2), a co-factor of several GATA transcription factors (GATA-4, -5 and 6), is a critical regulator of coronary vessel formation and heart morphogenesis. Here we demonstrate that FOG-2 is SUMOylated and that this modification modulates its transcriptional activity. FOG-2 SUMOylation occurs at four lysine residues (K312, 471, 915, 955). Three of these residues are part of the characteristic SUMO consensus site (ψKXE), while K955 is found in the less frequent TKXE motif. Absence of SUMOylation did not affect FOG-2′s nuclear localization. However, mutation of the FOG-2 SUMOylation sites, or de-SUMOylation, with SENP-1 or SENP-8 resulted in stronger transcriptional repression activity in both heterologous cells and cardiomyocytes. Conversely, increased FOG-2 SUMOylation by overexpression of SUMO-1 or expression of a SUMO-1-FOG-2 fusion protein rendered FOG-2 incapable of repressing GATA-4-mediated activation of the B-type natriuretic peptide (BNP) promoter. Moreover, we demonstrate both increased interaction between a FOG-2 SUMO mutant and GATA-4 and enhanced SUMOylation of wild-type FOG-2 by co-expression of GATA-4. These data suggest a new dynamics in which GATA-4 may alter the activity of FOG-2 by influencing its SUMOylation status. PMID:23226341

  2. Nuclear Receptors, RXR, and the Big Bang.

    PubMed

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. PMID:24679540

  3. Nuclear Receptors, RXR & the Big Bang

    PubMed Central

    Evans, Ronald M.; Mangelsdorf, David J.

    2014-01-01

    Summary Isolation of genes encoding the receptors for steroids, retinoids, vitamin D and thyroid hormone, and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors, and in particular of the retinoid X receptor (RXR), positioned nuclear receptors at the epicenter of the “Big Bang” of molecular endocrinology. This review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multi-cellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. PMID:24679540

  4. RAP80 interacts with the SUMO-conjugating enzyme UBC9 and is a novel target for sumoylation

    SciTech Connect

    Yan Jun; Yang Xiaoping; Kim, Yong-Sik; Joo, Joung Hyuck; Jetten, Anton M.

    2007-10-12

    RAP80, a nuclear protein with two functional ubiquitin-interaction motifs (UIMs) at its N-terminus, plays a critical role in the regulation of estrogen receptor alpha and DNA damage response signaling. A yeast two-hybrid screen identified the SUMO-conjugating enzyme UBC9 as a protein interacting with RAP80. The interaction of RAP80 with UBC9 was confirmed by co-immunoprecipitation and GST pull-down analyses. The region between aa 122-204 was critical for the interaction of RAP80 with UBC9. In addition, we demonstrate that RAP80 is a target for SUMO-1 modification in intact cells. Expression of UBC9 enhanced RAP80 mono-sumoylation and also induced multi-sumoylation of RAP80. In addition to SUMO-1, RAP80 was efficiently conjugated to SUMO-3 but was only a weak substrate for SUMO-2 conjugation. These findings suggest that sumoylation plays a role in the regulation of RAP80 functions.

  5. Targeting Nuclear Receptors with Marine Natural Products

    PubMed Central

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-01

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators. PMID:24473166

  6. SUMOylation of GPS2 protein regulates its transcription-suppressing function

    PubMed Central

    Bi, Hailian; Li, Shujing; Wang, Miao; Jia, Zhaojun; Chang, Alan K.; Pang, Pengsha; Wu, Huijian

    2014-01-01

    G-protein pathway suppressor 2 (GPS2) is a human suppressor of G protein–activated mitogen-activated protein kinase signaling. It is involved in many physiological processes, including DNA repair, cell proliferation, apoptosis, and brain development. In this study, we show that GPS2 can be modified by the small ubiquitin-like modifier (SUMO) SUMO-1 but not SUMO-2 or -3. Two SUMOylation sites (K45 and K71) are identified in the N-terminal coiled-coil domain of GPS2. Substitution of K45 with arginine reduces SUMOylation, whereas substitution of K71 or both K45 and K71 with arginine abolishes SUMOylation, with more of the double mutant GPS2 appearing in the cytosol than in the nucleus compared with wild type and the two-single-mutant GPS2. SUMOylation stabilizes GPS2 protein by promoting its interaction with TBL1 and reducing its ubiquitination. SUMOylation also enhances the ability of GPS2 to suppress transcription and promotes its ability to inhibit estrogen receptor α–mediated transcription by increasing its association with SMRT, as demonstrated in MCF-7 and T47D cells. Moreover, SUMOylation of GPS2 also represses the proliferation of MCF-7 and T47D cells. These findings suggest that posttranslational modification of GPS2 by SUMOylation may serve as a key factor that regulates the function of GPS2 in vivo. PMID:24943844

  7. Interplay between sumoylation and phosphorylation for protection against α-synuclein inclusions.

    PubMed

    Shahpasandzadeh, Hedieh; Popova, Blagovesta; Kleinknecht, Alexandra; Fraser, Paul E; Outeiro, Tiago F; Braus, Gerhard H

    2014-11-01

    Parkinson disease is associated with the progressive loss of dopaminergic neurons from the substantia nigra. The pathological hallmark of the disease is the accumulation of intracytoplasmic inclusions known as Lewy bodies that consist mainly of post-translationally modified forms of α-synuclein. Whereas phosphorylation is one of the major modifications of α-synuclein in Lewy bodies, sumoylation has recently been described. The interplay between α-synuclein phosphorylation and sumoylation is poorly understood. Here, we examined the interplay between these modifications as well as their impact on cell growth and inclusion formation in yeast. We found that α-synuclein is sumoylated in vivo at the same sites in yeast as in human cells. Impaired sumoylation resulted in reduced yeast growth combined with an increased number of cells with inclusions, suggesting that this modification plays a protective role. In addition, inhibition of sumoylation prevented autophagy-mediated aggregate clearance. A defect in α-synuclein sumoylation could be suppressed by serine 129 phosphorylation by the human G protein-coupled receptor kinase 5 (GRK5) in yeast. Phosphorylation reduced foci formation, alleviated yeast growth inhibition, and partially rescued autophagic α-synuclein degradation along with the promotion of proteasomal degradation, resulting in aggregate clearance in the absence of a small ubiquitin-like modifier. These findings suggest a complex interplay between sumoylation and phosphorylation in α-synuclein aggregate clearance, which may open new horizons for the development of therapeutic strategies for Parkinson disease. PMID:25231978

  8. Interplay between Sumoylation and Phosphorylation for Protection against α-Synuclein Inclusions*

    PubMed Central

    Shahpasandzadeh, Hedieh; Popova, Blagovesta; Kleinknecht, Alexandra; Fraser, Paul E.; Outeiro, Tiago F.; Braus, Gerhard H.

    2014-01-01

    Parkinson disease is associated with the progressive loss of dopaminergic neurons from the substantia nigra. The pathological hallmark of the disease is the accumulation of intracytoplasmic inclusions known as Lewy bodies that consist mainly of post-translationally modified forms of α-synuclein. Whereas phosphorylation is one of the major modifications of α-synuclein in Lewy bodies, sumoylation has recently been described. The interplay between α-synuclein phosphorylation and sumoylation is poorly understood. Here, we examined the interplay between these modifications as well as their impact on cell growth and inclusion formation in yeast. We found that α-synuclein is sumoylated in vivo at the same sites in yeast as in human cells. Impaired sumoylation resulted in reduced yeast growth combined with an increased number of cells with inclusions, suggesting that this modification plays a protective role. In addition, inhibition of sumoylation prevented autophagy-mediated aggregate clearance. A defect in α-synuclein sumoylation could be suppressed by serine 129 phosphorylation by the human G protein-coupled receptor kinase 5 (GRK5) in yeast. Phosphorylation reduced foci formation, alleviated yeast growth inhibition, and partially rescued autophagic α-synuclein degradation along with the promotion of proteasomal degradation, resulting in aggregate clearance in the absence of a small ubiquitin-like modifier. These findings suggest a complex interplay between sumoylation and phosphorylation in α-synuclein aggregate clearance, which may open new horizons for the development of therapeutic strategies for Parkinson disease. PMID:25231978

  9. Nuclear receptors and nonalcoholic fatty liver disease.

    PubMed

    Cave, Matthew C; Clair, Heather B; Hardesty, Josiah E; Falkner, K Cameron; Feng, Wenke; Clark, Barbara J; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A; McClain, Craig J; Prough, Russell A

    2016-09-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  10. What are Nuclear Receptor Ligands?

    PubMed Central

    Sladek, Frances M.

    2010-01-01

    Nuclear receptors (NRs) are a family of highly conserved transcription factors that regulate transcription in response to small lipophilic compounds. They play a role in every aspect of development, physiology and disease in humans. They are also ubiquitous in and unique to the animal kingdom suggesting that they may have played an important role in their evolution. In contrast to the classical endocrine receptors that originally defined the family, recent studies suggest that the first NRs might have been sensors of their environment, binding ligands that were external to the host organism. The purpose of this review is to provide a broad perspective on NR ligands and address the issue of exactly what constitutes a NR ligand from historical, biological and evolutionary perspectives. This discussion will lay the foundation for subsequent reviews in this issue as well as pose new questions for future investigation. PMID:20615454

  11. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9

    SciTech Connect

    Deng, Hua; Lin, Yingbo; Badin, Margherita; Vasilcanu, Daiana; Stroemberg, Thomas; Jernberg-Wiklund, Helena; Sehat, Bita; Larsson, Olle

    2011-01-14

    Research highlights: {yields} SUMOylation mediates nuclear translocation of IGF-1R which activates transcription. {yields} Here we show that nuclear IGF-1R over-accumulates in tumor cells. {yields} This requires overexpression of the receptor that is a common feature in tumor cells. {yields} An increased expression of the SUMO ligase Ubc9 seems to be an involved mechanism too. -- Abstract: The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclear IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the {beta}-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to over

  12. Nuclear receptors: the evolution of diversity.

    PubMed

    Schwabe, John W R; Teichmann, Sarah A

    2004-01-27

    Nuclear receptors are an ancient family of transcription factors. Some receptors are regulated by small lipophilic ligands, whereas others are constitutive transcriptional activators or repressors. The evolution of this diversity is poorly understood, and it remains an open question as to whether or not the ancestral receptor was ligand-regulated. The recent cloning, from a snail, of an estrogen receptor that does not bind estrogen not only suggests that the steroid receptors are much more ancient than previous thought, but also points toward a mechanism through which nuclear receptors can lose the ability to be ligand regulated. PMID:14747695

  13. Sumoylation Modulates the Activity of Spalt-like Proteins during Wing Development in Drosophila*

    PubMed Central

    Sánchez, Jonatan; Talamillo, Ana; Lopitz-Otsoa, Fernando; Pérez, Coralia; Hjerpe, Roland; Sutherland, James D.; Herboso, Leire; Rodríguez, Manuel S.; Barrio, Rosa

    2010-01-01

    The Spalt-like family of zinc finger transcription factors is conserved throughout evolution and is involved in fundamental processes during development and during embryonic stem cell maintenance. Although human SALL1 is modified by SUMO-1 in vitro, it is not known whether this post-translational modification plays a role in regulating the activity of this family of transcription factors. Here, we show that the Drosophila Spalt transcription factors are modified by sumoylation. This modification influences their nuclear localization and capacity to induce vein formation through the regulation of target genes during wing development. Furthermore, spalt genes interact genetically with the sumoylation machinery to repress vein formation in intervein regions and to attain the wing final size. Our results suggest a new level of regulation of Sall activity in vivo during animal development through post-translational modification by sumoylation. The evolutionary conservation of this family of transcription factors suggests a functional role for sumoylation in vertebrate Sall members. PMID:20562097

  14. ALT telomeres get together with nuclear receptors.

    PubMed

    Aeby, Eric; Lingner, Joachim

    2015-02-26

    Nuclear receptors bind chromosome ends in "alternative lengthening of telomeres" (ALT) cancer cells that maintain their ends by homologous recombination instead of telomerase. Marzec et al. now demonstrate that, in ALT cells, nuclear receptors not only trigger distal chromatin associations to mediate telomere-telomere recombination events, but also drive chromosome-internal targeted telomere insertions (TTI). PMID:25723159

  15. Nuclear receptors in bile acid metabolism

    PubMed Central

    Li, Tiangang; Chiang, John Y. L.

    2013-01-01

    Bile acids are signaling molecules that activate nuclear receptors, such as farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, and vitamin D receptor, and play a critical role in the regulation of lipid, glucose, energy, and drug metabolism. These xenobiotic/endobiotic-sensing nuclear receptors regulate phase I oxidation, phase II conjugation, and phase III transport in bile acid and drug metabolism in the digestive system. Integration of bile acid metabolism with drug metabolism controls absorption, transport, and metabolism of nutrients and drugs to maintain metabolic homeostasis and also protects against liver injury, inflammation, and related metabolic diseases, such as nonalcoholic fatty liver disease, diabetes, and obesity. Bile-acid–based drugs targeting nuclear receptors are in clinical trials for treating cholestatic liver diseases and fatty liver disease. PMID:23330546

  16. Critical role of RanBP2-mediated SUMOylation of Small Heterodimer Partner in maintaining bile acid homeostasis.

    PubMed

    Kim, Dong-Hyun; Kwon, Sanghoon; Byun, Sangwon; Xiao, Zhen; Park, Sean; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Kemper, Byron; Kemper, Jongsook Kim

    2016-01-01

    Bile acids (BAs) are recently recognized signalling molecules that profoundly affect metabolism. Because of detergent-like toxicity, BA levels must be tightly regulated. An orphan nuclear receptor, Small Heterodimer Partner (SHP), plays a key role in this regulation, but how SHP senses the BA signal for feedback transcriptional responses is not clearly understood. We show an unexpected function of a nucleoporin, RanBP2, in maintaining BA homoeostasis through SUMOylation of SHP. Upon BA signalling, RanBP2 co-localizes with SHP at the nuclear envelope region and mediates SUMO2 modification at K68, which facilitates nuclear transport of SHP and its interaction with repressive histone modifiers to inhibit BA synthetic genes. Mice expressing a SUMO-defective K68R SHP mutant have increased liver BA levels, and upon BA- or drug-induced biliary insults, these mice exhibit exacerbated cholestatic pathologies. These results demonstrate a function of RanBP2-mediated SUMOylation of SHP in maintaining BA homoeostasis and protecting from the BA hepatotoxicity. PMID:27412403

  17. Critical role of RanBP2-mediated SUMOylation of Small Heterodimer Partner in maintaining bile acid homeostasis

    PubMed Central

    Kim, Dong-Hyun; Kwon, Sanghoon; Byun, Sangwon; Xiao, Zhen; Park, Sean; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Kemper, Byron; Kemper, Jongsook Kim

    2016-01-01

    Bile acids (BAs) are recently recognized signalling molecules that profoundly affect metabolism. Because of detergent-like toxicity, BA levels must be tightly regulated. An orphan nuclear receptor, Small Heterodimer Partner (SHP), plays a key role in this regulation, but how SHP senses the BA signal for feedback transcriptional responses is not clearly understood. We show an unexpected function of a nucleoporin, RanBP2, in maintaining BA homoeostasis through SUMOylation of SHP. Upon BA signalling, RanBP2 co-localizes with SHP at the nuclear envelope region and mediates SUMO2 modification at K68, which facilitates nuclear transport of SHP and its interaction with repressive histone modifiers to inhibit BA synthetic genes. Mice expressing a SUMO-defective K68R SHP mutant have increased liver BA levels, and upon BA- or drug-induced biliary insults, these mice exhibit exacerbated cholestatic pathologies. These results demonstrate a function of RanBP2-mediated SUMOylation of SHP in maintaining BA homoeostasis and protecting from the BA hepatotoxicity. PMID:27412403

  18. Inhibition of CDK1 activity by sumoylation.

    PubMed

    Xiao, Yuxuan; Lucas, Benjamin; Molcho, Elana; Schiff, Tania; Vigodner, Margarita

    2016-09-16

    Sumoylation (a covalent modification by Small Ubiquitin-like Modifiers or SUMO proteins) has been implicated in the regulation of various cellular events including cell cycle progression. We have recently identified CDK1, a master regulator of mitosis and meiosis, as a SUMO target both in vivo and in vitro, supporting growing evidence concerning a close cross talk between sumoylation and phosphorylation during cell cycle progression. However, any data regarding the effect of sumoylation upon CDK1 activity have been missing. In this study, we performed a series of in vitro experiments to inhibit sumoylation by three different means (ginkgolic acid, physiological levels of oxidative stress, and using an siRNA approach) and assessed the changes in CDK1 activity using specific antibodies and a kinase assay. We have also tested for an interaction between SUMO and active and/or inactive CDK1 isoforms in addition to having assessed the status of CDK1-interacting sumoylated proteins upon inhibition of sumoylation. Our data suggest that inhibition of sumoylation increases the activity of CDK1 probably through changes in sumoylated status and/or the ability of specific proteins to bind CDK1 and inhibit its activity. PMID:27520372

  19. miR-200c-SUMOylated KLF4 feedback loop acts as a switch in transcriptional programs that control VSMC proliferation.

    PubMed

    Zheng, Bin; Bernier, Michel; Zhang, Xin-hua; Suzuki, Toru; Nie, Chan-quan; Li, Yong Hui; Zhang, Yong; Song, Li-Li; Shi, Hui-jing; Liu, Yan; Zheng, Cui-ying; Wen, Jin-kun

    2015-05-01

    The regulation of vascular smooth muscle cell (VSMC) proliferation is an important issue because it has major implications for the prevention of pathological vascular conditions. Using microRNA array screen, we found the expression levels of 200 unique miRNAs in hyperplasic tissues. Among them, miR-200c expression substantially was down-regulated. The objective of this work was to assess the function of miR-200c and SUMOylated Krϋppel-like transcription factor 4 (KLF4) in the regulation of VSMC proliferation in both cultured cells and animal models of balloon injury. Under basal conditions, we found that miR-200c inhibited the expression of KLF4 and the SUMO-conjugating enzyme Ubc9. Upon PDGF-BB treatment, Ubc9 interacted with and promoted the SUMOylation of KLF4, which allowed the recruitment of transcriptional corepressors (e.g., nuclear receptor corepressor (NCoR) and HDAC2) to the miR-200c promoter. The reduction in miR-200c levels led to increased target gene expression (e.g., Ubc9 and KLF4), which further repressed miR-200c levels and accelerated VSMC proliferation. These results demonstrate that induction of a miR-200c-SUMOylated KLF4 feedback loop is a significant aspect of the PDGF-BB proliferative response in VSMCs and that targeting Ubc9 represents a novel approach for the prevention of restenosis. PMID:25791170

  20. A sumoylation-dependent pathway mediating transrepression of inflammatory response genes by PPARγ

    PubMed Central

    Pascual, Gabriel; Fong, Amy L.; Ogawa, Sumito; Gamliel, Amir; Li, Andrew C.; Perissi, Valentina; Rose, David W.; Willson, Timothy; Rosenfeld, Michael G.; Glass, Christopher K.

    2005-01-01

    The peroxisome proliferator-activated receptor γ (PPARγ) plays essential roles in adipogenesis and glucose homeostasis and is a molecular target of insulin-sensitizing drugs1–3. Although the ability of PPARγ agonists to antagonize inflammatory responses by transrepression of nuclear factor kappaB (NF-κB) target genes is linked to anti-diabetic4 and antiatherogenic actions5, the mechanisms remain poorly understood. Here we report the identification of a molecular pathway by which PPARγ represses transcriptional activation of inflammatory response genes in macrophages. The initial step of this pathway involves ligand-dependent sumoylation of the PPARγ ligand-binding domain, which targets PPARγ to nuclear receptor co-repressor (NCoR)/histone deacetylase-3 (HDAC3) complexes on inflammatory gene promoters. This in turn prevents recruitment of the ubiquitylation/19S proteosome machinery that normally mediates the signal-dependent removal of corepressor complexes required for gene activation. As a result, NCoR complexes are not cleared from the promoter and target genes are maintained in a repressed state. This mechanism provides an explanation for how an agonist-bound nuclear receptor can be converted from an activator of transcription to a promoter-specific repressor of NF-κB target genes that regulate immunity and homeostasis. PMID:16127449

  1. Sumoylation of Sir2 differentially regulates transcriptional silencing in yeast

    PubMed Central

    Hannan, Abdul; Abraham, Neethu Maria; Goyal, Siddharth; Jamir, Imlitoshi; Priyakumar, U. Deva; Mishra, Krishnaveni

    2015-01-01

    Silent information regulator 2 (Sir2), the founding member of the conserved sirtuin family of NAD+-dependent histone deacetylase, regulates several physiological processes including genome stability, gene silencing, metabolism and life span in yeast. Within the nucleus, Sir2 is associated with telomere clusters in the nuclear periphery and rDNA in the nucleolus and regulates gene silencing at these genomic sites. How distribution of Sir2 between telomere and rDNA is regulated is not known. Here we show that Sir2 is sumoylated and this modification modulates the intra-nuclear distribution of Sir2. We identify Siz2 as the key SUMO ligase and show that multiple lysines in Sir2 are subject to this sumoylation activity. Mutating K215 alone counteracts the inhibitory effect of Siz2 on telomeric silencing. SUMO modification of Sir2 impairs interaction with Sir4 but not Net1 and, furthermore, SUMO modified Sir2 shows predominant nucleolar localization. Our findings demonstrate that sumoylation of Sir2 modulates distribution between telomeres and rDNA and this is likely to have implications for Sir2 function in other loci as well. PMID:26319015

  2. SUMOylation-mediated regulation of cell cycle progression and cancer

    PubMed Central

    Eifler, Karolin; Vertegaal, Alfred C.O.

    2016-01-01

    SUMOylation plays critical roles during cell cycle progression. Many important cell cycle regulators, including many oncogenes and tumor suppressors, are functionally regulated via SUMOylation. The dynamic SUMOylation pattern observed throughout the cell cycle is ensured via distinct spatial and temporal regulation of the SUMO machinery. Additionally, SUMOylation cooperates with other post-translational modifications to mediate cell cycle progression. Deregulation of these SUMOylation and deSUMOylation enzymes causes severe defects in cell proliferation and genome stability. Different types of cancers were recently shown to be dependent on a functioning SUMOylation system, a finding that could potentially be exploited in anti-cancer therapies. PMID:26601932

  3. Molecular Circuitry of the SUMO (Small Ubiquitin-like Modifier) Pathway in Controlling Sumoylation Homeostasis and Suppressing Genome Rearrangements.

    PubMed

    de Albuquerque, Claudio Ponte; Liang, Jason; Gaut, Nathaniel James; Zhou, Huilin

    2016-04-15

    Small ubiquitin-like modifier (SUMO) E3 ligases are known to have a major role in preventing gross chromosomal rearrangements (GCRs); however, relatively little is known about the role of SUMO isopeptidases in genome maintenance and their role in controlling intracellular sumoylation homeostasis. Here we show the SUMO isopeptidase Ulp2 in Saccharomyces cerevisiae does not prevent the accumulation of GCRs, and interestingly, its loss causes subunit-specific changes of sumoylated minichromosome maintenance (MCM) helicase in addition to drastic accumulation of sumoylated nucleolar RENT and inner kinetochore complexes. In contrast, loss of Ulp1 or its mis-localization from the nuclear periphery causes substantial accumulations of GCRs and elevated sumoylation of most proteins except for Ulp2 targets. Interestingly, the E3 ligase Mms21, which has a major role in genome maintenance, preferentially controls the sumoylation of Mcm3 during DNA replication. These findings reveal distinct roles for Ulp1 and Ulp2 in controlling homeostasis of intracellular sumoylation and show that sumoylation of MCM is controlled in a subunit-specific and cell cycle dependent manner. PMID:26921322

  4. A Novel Proteomics Approach to Identify SUMOylated Proteins and Their Modification Sites in Human Cells*

    PubMed Central

    Galisson, Frederic; Mahrouche, Louiza; Courcelles, Mathieu; Bonneil, Eric; Meloche, Sylvain; Chelbi-Alix, Mounira K.; Thibault, Pierre

    2011-01-01

    The small ubiquitin-related modifier (SUMO) is a small group of proteins that are reversibly attached to protein substrates to modify their functions. The large scale identification of protein SUMOylation and their modification sites in mammalian cells represents a significant challenge because of the relatively small number of in vivo substrates and the dynamic nature of this modification. We report here a novel proteomics approach to selectively enrich and identify SUMO conjugates from human cells. We stably expressed different SUMO paralogs in HEK293 cells, each containing a His6 tag and a strategically located tryptic cleavage site at the C terminus to facilitate the recovery and identification of SUMOylated peptides by affinity enrichment and mass spectrometry. Tryptic peptides with short SUMO remnants offer significant advantages in large scale SUMOylome experiments including the generation of paralog-specific fragment ions following CID and ETD activation, and the identification of modified peptides using conventional database search engines such as Mascot. We identified 205 unique protein substrates together with 17 precise SUMOylation sites present in 12 SUMO protein conjugates including three new sites (Lys-380, Lys-400, and Lys-497) on the protein promyelocytic leukemia. Label-free quantitative proteomics analyses on purified nuclear extracts from untreated and arsenic trioxide-treated cells revealed that all identified SUMOylated sites of promyelocytic leukemia were differentially SUMOylated upon stimulation. PMID:21098080

  5. Shigella Infection Interferes with SUMOylation and Increases PML-NB Number

    PubMed Central

    Dellaire, Graham; Rohde, John R.

    2015-01-01

    Shigellosis is a severe diarrheal disease that affects hundreds of thousands of individuals resulting in significant morbidity and mortality worldwide. Shigellosis is caused by Shigella spp., a gram-negative bacterium that uses a Type 3 Secretion System (T3SS) to deliver effector proteins into the cytosol of infected human cells. Shigella infection triggers multiple signaling programs that result in a robust host transcriptional response that includes the induction of multiple proinflammatory cytokines. PML nuclear bodies (PML-NBs) are dynamic subnuclear structures that coordinate immune signaling programs and have a demonstrated role in controlling viral infection. We show that PML-NB number increases upon Shigella infection. We examined the effects of Shigella infection on SUMOylation and found that upon Shigella infection the localization of SUMOylated proteins is altered and the level of SUMOylated proteins decreases. Although Shigella infection does not alter the abundance of SUMO activating enzymes SAE1 or SAE2, it dramatically decreases the level of the SUMO conjugating enzyme Ubc9. All Shigella-induced alterations to the SUMOylation system are dependent upon a T3SS. Thus, we demonstrate that Shigella uses one or more T3SS effectors to influence both PML-NB number and the SUMOylation machinery in human cells. PMID:25848798

  6. Cytoplasmic and nuclear cytokine receptor complexes.

    PubMed

    Mertani, H C; Morel, G; Lobie, P E

    1999-01-01

    Much of our understanding on how hormones and cytokines transmit their message into the cell is based on the receptor activation at the plasma membrane. Many experimental in vitro models have established the paradigm for cytokine action based upon such activation of their cell surface receptor. The signaling from the plasma membrane activated cytokine receptor is driven to the nucleus by a rapid ricochet of protein phosphorylation, ultimately integrated as a differentiative, proliferative, or transcriptional message. The Janus kinase (JAK)--signal transducers and activators of transcription (STAT) pathway that was first thought to be cytokine receptor specific now appears to be activated by other noncytokine receptors. Also, evidence is accumulating showing that cytokines modulate the signal transduction machinery of the tyrosine kinase receptors and that of the heterotrimeric guanosine triphosphate (GTP)-binding protein-coupled receptors. Thus cytokine receptor signaling has become much more complex than originally hypothesized, challenging the established model of specificity of the action of a given cytokine. This review is focused on another level of complexity emerging within cytokine receptor superfamily signaling. Over the past 10 years, data from different laboratories have shown that cytokines and their receptors localize to intracellular compartments including the nucleus, and, in some cases, biological responses have been correlated with this unexpected location, raising the possibility that cytokines act as their own messenger through inter-actions with nuclear proteins. Thus, the interplay between cytokine receptor engagement and cellular signaling turns out to be more dynamic than originally suspected. The mechanisms and regulations of intracellular translocation of the cytokines, their receptors, and their signaling proteins are discussed in the context that such compartmentalization provides some of the specificity of the responses mediated by each

  7. TCR-induced sumoylation of the kinase PKC-θ controls T cell synapse organization and T cell activation.

    PubMed

    Wang, Xu-Dong; Gong, Yu; Chen, Zhi-Long; Gong, Bei-Ni; Xie, Ji-Ji; Zhong, Chuan-Qi; Wang, Qi-Long; Diao, Liang-Hui; Xu, Anlong; Han, Jiahuai; Altman, Amnon; Li, Yingqiu

    2015-11-01

    Sumoylation regulates many cellular processes, but its role in signaling via the T cell antigen receptor (TCR) remains unknown. We found that the kinase PKC-θ was sumoylated upon costimulation with antigen or via the TCR plus the coreceptor CD28, with Lys325 and Lys506 being the main sumoylation sites. We identified the SUMO E3 ligase PIASxβ as a ligase for PKC-θ. Analysis of primary mouse and human T cells revealed that sumoylation of PKC-θ was essential for T cell activation. Desumoylation did not affect the catalytic activity of PKC-θ but inhibited the association of CD28 with PKC-θ and filamin A and impaired the assembly of a mature immunological synapse and central co-accumulation of PKC-θ and CD28. Our findings demonstrate that sumoylation controls TCR-proximal signaling and that sumoylation of PKC-θ is essential for the formation of a mature immunological synapse and T cell activation. PMID:26390157

  8. Nuclear receptors and pathogenesis of pancreatic cancer.

    PubMed

    Polvani, Simone; Tarocchi, Mirko; Tempesti, Sara; Galli, Andrea

    2014-09-14

    Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease. PMID:25232244

  9. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    EPA Science Inventory

    Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic an...

  10. Nuclear receptors, mitochondria and lipid metabolism.

    PubMed

    Alaynick, William A

    2008-09-01

    Lipid metabolism is a continuum from emulsification and uptake of lipids in the intestine to cellular uptake and transport to compartments such as mitochondria. Whether fats are shuttled into lipid droplets in adipose tissue or oxidized in mitochondria and peroxisomes depends on metabolic substrate availability, energy balance and endocrine signaling of the organism. Several members of the nuclear hormone receptor superfamily are lipid-sensing factors that affect all aspects of lipid metabolism. The physiologic actions of glandular hormones (e.g. thyroid, mineralocorticoid and glucocorticoid), vitamins (e.g. vitamins A and D) and reproductive hormones (e.g. progesterone, estrogen and testosterone) and their cognate receptors are well established. The peroxisome-proliferator activated receptors (PPARs) and liver X receptors (LXRs), acting in concert with PPARgamma Coactivator 1alpha (PGC-1alpha), have been shown to regulate insulin sensitivity and lipid handling. These receptors are the focus of intense pharmacologic studies to expand the armamentarium of small molecule ligands to treat diabetes and the metabolic syndrome (hypertension, insulin resistance, hyperglycemia, dyslipidemia and obesity). Recently, additional partners of PGC-1alpha have moved to the forefront of metabolic research, the estrogen-related receptors (ERRs). Although no endogenous ligands for these receptors have been identified, phenotypic analyses of knockout mouse models demonstrate an important role for these molecules in substrate sensing and handling as well as mitochondrial function. PMID:18375192

  11. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    PubMed Central

    Shah, Imran; Houck, Keith; Judson, Richard S.; Kavlock, Robert J.; Martin, Matthew T.; Reif, David M.; Wambaugh, John; Dix, David J.

    2011-01-01

    Background Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic analysis of new in vitro human NR activity data on 309 environmental chemicals in relationship to their liver cancer-related chronic outcomes in rodents. Results The effects of 309 environmental chemicals on human constitutive androstane receptors (CAR/NR1I3), pregnane X receptor (PXR/NR1I2), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptors (PPAR/NR1C), liver X receptors (LXR/NR1H), retinoic X receptors (RXR/NR2B) and steroid receptors (SR/NR3) were determined using in vitro data. Hepatic histopathology, observed in rodents after two years of chronic treatment for 171 of the 309 chemicals, was summarized by a cancer lesion progression grade. Chemicals that caused proliferative liver lesions in both rat and mouse were generally more active for the human receptors, relative to the compounds that only affected one rodent species, and these changes were significant for PPAR (p0.001), PXR (p0.01) and CAR (p0.05). Though most chemicals exhibited receptor promiscuity, multivariate analysis clustered them into relatively few NR activity combinations. The human NR activity pattern of chemicals weakly associated with the severity of rodent liver cancer lesion progression (p0.05). Conclusions The rodent carcinogens had higher in vitro potency for human NR relative to non-carcinogens. Structurally diverse chemicals with similar NR promiscuity patterns weakly associated with the severity of rodent liver cancer progression. While these results do not prove the role of NR activation in human liver cancer, they do have implications for nuclear receptor chemical biology and provide insights into putative toxicity pathways. More importantly, these findings suggest the

  12. Sumoylation in Synaptic Function and Dysfunction

    PubMed Central

    Schorova, Lenka; Martin, Stéphane

    2016-01-01

    Sumoylation has recently emerged as a key post-translational modification involved in many, if not all, biological processes. Small Ubiquitin-like Modifier (SUMO) polypeptides are covalently attached to specific lysine residues of target proteins through a dedicated enzymatic pathway. Disruption of the SUMO enzymatic pathway in the developing brain leads to lethality indicating that this process exerts a central role during embryonic and post-natal development. However, little is still known regarding how this highly dynamic protein modification is regulated in the mammalian brain despite an increasing number of data implicating sumoylated substrates in synapse formation, synaptic communication and plasticity. The aim of this review is therefore to briefly describe the enzymatic SUMO pathway and to give an overview of our current knowledge on the function and dysfunction of protein sumoylation at the mammalian synapse. PMID:27199730

  13. Calreticulin Is a Receptor for Nuclear Export

    PubMed Central

    Holaska, James M.; Black, Ben E.; Love, Dona C.; Hanover, John A.; Leszyk, John; Paschal, Bryce M.

    2001-01-01

    In previous work, we used a permeabilized cell assay that reconstitutes nuclear export of protein kinase inhibitor (PKI) to show that cytosol contains an export activity that is distinct from Crm1 (Holaska, J.M., and B.M. Paschal. 1995. Proc. Natl. Acad. Sci. USA. 95: 14739–14744). Here, we describe the purification and characterization of the activity as calreticulin (CRT), a protein previously ascribed to functions in the lumen of the ER. We show that cells contain both ER and cytosolic pools of CRT. The mechanism of CRT-dependent export of PKI requires a functional nuclear export signal (NES) in PKI and involves formation of an export complex that contains RanGTP. Previous studies linking CRT to downregulation of steroid hormone receptor function led us to examine its potential role in nuclear export of the glucocorticoid receptor (GR). We found that CRT mediates nuclear export of GR in permeabilized cell, microinjection, and transfection assays. GR export is insensitive to the Crm1 inhibitor leptomycin B in vivo, and it does not rely on a leucine-rich NES. Rather, GR export is facilitated by its DNA-binding domain, which is shown to function as an NES when transplanted to a green fluorescent protein reporter. CRT defines a new export pathway that may regulate the transcriptional activity of steroid hormone receptors. PMID:11149926

  14. Calreticulin Is a receptor for nuclear export.

    PubMed

    Holaska, J M; Black, B E; Love, D C; Hanover, J A; Leszyk, J; Paschal, B M

    2001-01-01

    In previous work, we used a permeabilized cell assay that reconstitutes nuclear export of protein kinase inhibitor (PKI) to show that cytosol contains an export activity that is distinct from Crm1 (Holaska, J.M., and B.M. Paschal. 1995. Proc. Natl. Acad. Sci. USA. 95: 14739-14744). Here, we describe the purification and characterization of the activity as calreticulin (CRT), a protein previously ascribed to functions in the lumen of the ER. We show that cells contain both ER and cytosolic pools of CRT. The mechanism of CRT-dependent export of PKI requires a functional nuclear export signal (NES) in PKI and involves formation of an export complex that contains RanGTP. Previous studies linking CRT to downregulation of steroid hormone receptor function led us to examine its potential role in nuclear export of the glucocorticoid receptor (GR). We found that CRT mediates nuclear export of GR in permeabilized cell, microinjection, and transfection assays. GR export is insensitive to the Crm1 inhibitor leptomycin B in vivo, and it does not rely on a leucine-rich NES. Rather, GR export is facilitated by its DNA-binding domain, which is shown to function as an NES when transplanted to a green fluorescent protein reporter. CRT defines a new export pathway that may regulate the transcriptional activity of steroid hormone receptors. PMID:11149926

  15. Emerging roles of orphan nuclear receptors in cancer.

    PubMed

    Baek, Sung Hee; Kim, Keun Il

    2014-01-01

    A growing body of evidence suggests that a subset of orphan nuclear receptors are amplified and prognostic for some human cancers. However, the specific roles of these orphan nuclear receptors in tumor progression and their utility as drug targets are not fully understood. In this review, we summarize recent progress in elucidating the direct and indirect involvement of orphan nuclear receptors in cancer as well as their therapeutic potential in a variety of human cancers. Furthermore, we contrast the role of orphan nuclear receptors in cancer with the known roles of estrogen receptor and androgen receptor in hormone-dependent cancers. PMID:24215441

  16. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    SciTech Connect

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  17. Nuclear Receptors in Bone Physiology and Diseases

    PubMed Central

    Youn, Min-Young; Inoue, Kazuki; Takada, Ichiro; Kouzmenko, Alexander; Kato, Shigeaki

    2013-01-01

    During the last decade, our view on the skeleton as a mere solid physical support structure has been transformed, as bone emerged as a dynamic, constantly remodeling tissue with systemic regulatory functions including those of an endocrine organ. Reflecting this remarkable functional complexity, distinct classes of humoral and intracellular regulatory factors have been shown to control vital processes in the bone. Among these regulators, nuclear receptors (NRs) play fundamental roles in bone development, growth, and maintenance. NRs are DNA-binding transcription factors that act as intracellular transducers of the respective ligand signaling pathways through modulation of expression of specific sets of cognate target genes. Aberrant NR signaling caused by receptor or ligand deficiency may profoundly affect bone health and compromise skeletal functions. Ligand dependency of NR action underlies a major strategy of therapeutic intervention to correct aberrant NR signaling, and significant efforts have been made to design novel synthetic NR ligands with enhanced beneficial properties and reduced potential negative side effects. As an example, estrogen deficiency causes bone loss and leads to development of osteoporosis, the most prevalent skeletal disorder in postmenopausal women. Since administration of natural estrogens for the treatment of osteoporosis often associates with undesirable side effects, several synthetic estrogen receptor ligands have been developed with higher therapeutic efficacy and specificity. This review presents current progress in our understanding of the roles of various nuclear receptor-mediated signaling pathways in bone physiology and disease, and in development of advanced NR ligands for treatment of common skeletal disorders. PMID:23589826

  18. Is Transthyretin a Regulator of Ubc9 SUMOylation?

    PubMed Central

    Kędracka–Krok, Sylwia; Sołtys, Katarzyna; Jankowska, Urszula; Hołubowicz, Rafał; Seliga, Justyna; Ożyhar, Andrzej

    2016-01-01

    Ageing and mutations of transthyretin (TTR), the thyroid hormones and retinol transporting protein lead to amyloidosis by destabilizing the structure of TTR. Because protein structure is regulated through posttranslational modifications, we investigated the Small Ubiquitin-like Modifier (SUMO)ylation of TTR. We chose the widely used Ubc9 fusion-directed SUMOylation system, which is based on a fusion of the SUMOylation substrate of interest with Ubc9, a sole SUMO conjugating enzyme. Surprisingly, despite our presumptions, we found that Ubc9 fused to TTR was SUMOylated at a unique set of lysine residues. Three unknown SUMOylation sites of Ubc9—K154, K18 and K65—were revealed by mass spectrometry (MS). The previously reported SUMOylation at K49 of Ubc9 was also observed. SUMOylation of the lysine residues of TTR fused to Ubc9 was hardly detectable. However, non-fused TTR was SUMOylated via trans-SUMOylation by Ubc9 fused to TTR. Interestingly, mutating the catalytic residue of Ubc9 fused to TTR did not result in complete loss of the SUMOylation signal, suggesting that Ubc9 linked to TTR is directly cross-SUMOylated by the SUMO-activating enzyme E1. Ubc9, TTR or fusion proteins composed of TTR and Ubc9 specifically affected the global SUMOylation of cellular proteins. TTR or Ubc9 alone increased global SUMOylation, whereas concomitant presence of TTR and Ubc9 did not further increase the amount of high-molecular weight (HMW) SUMO conjugates. Our data suggest that TTR may influence the SUMOylation of Ubc9, thereby altering signalling pathways in the cell. PMID:27501389

  19. IRTKS negatively regulates antiviral immunity through PCBP2 sumoylation-mediated MAVS degradation

    PubMed Central

    Xia, Pengyan; Wang, Shuo; Xiong, Zhen; Ye, Buqing; Huang, Li-Yu; Han, Ze-Guang; Fan, Zusen

    2015-01-01

    RNA virus infection is recognized by the RIG-I family of receptors that activate the mitochondrial adaptor MAVS, leading to the clearance of viruses. Antiviral signalling activation requires strict modulation to avoid damage to the host from exacerbated inflammation. Insulin receptor tyrosine kinase substrate (IRTKS) participates in actin bundling and insulin signalling and its deficiency causes insulin resistance. However, whether IRTKS is involved in the regulation of innate immunity remains elusive. Here we show that IRTKS deficiency causes enhanced innate immune responses against RNA viruses. IRTKS-mediated suppression of antiviral responses depends on the RIG-I-MAVS signalling pathway. IRTKS recruits the E2 ligase Ubc9 to sumoylate PCBP2 in the nucleus, which causes its cytoplasmic translocation during viral infection. The sumoylated PCBP2 associates with MAVS to initiate its degradation, leading to downregulation of antiviral responses. Thus, IRTKS functions as a negative modulator of excessive inflammation. PMID:26348439

  20. NMR metabolomic profiling reveals new roles of SUMOylation in DNA damage response.

    PubMed

    Cano, Kristin E; Li, Yi-Jia; Chen, Yuan

    2010-10-01

    Post-translational modifications by the Small Ubiquitin-like Modifier (SUMO) family of proteins have been established as critical events in the cellular response to a wide range of DNA damaging reagents and radiation; however, the detailed mechanism of SUMOylation in DNA damage response is not well understood. In this study, we used a nuclear magnetic resonance (NMR) spectroscopy-based metabolomics approach to examine the effect of an inhibitor of SUMO-mediated protein-protein interactions on MCF7 breast cancer cell response to radiation. Metabolomics is sensitive to changes in cellular functions and thus provides complementary information to other biological studies. The peptide inhibitor (SUMO interaction motif mimic, SIM) and a control peptide were stably expressed in MCF-7 cell line. Metabolite profiles of the cell lines before and after radiation were analyzed using solution NMR methods. Various statistical methods were used to isolate significant changes. Differences in the amounts of glutamine, aspartate, malate, alanine, glutamate and NADH between the SIM-expressing and control cells suggest a role for SUMOylation in regulating mitochondrial function. This is also further verified following the metabolism of (13)C-labeled glutamine. The inability of the cells expressing the SIM peptide to increase production of the antioxidants carnosine and glutathione after radiation damage suggests an important role of SUMOylation in regulating the levels of antioxidants that protect cells from free radicals and reactive oxygen species generated by radiation. This study reveals previously unknown roles of SUMOylation in DNA damage response. PMID:20695451

  1. Sumoylation of the Epstein-Barr Virus BZLF1 Protein Inhibits Its Transcriptional Activity and Is Regulated by the Virus-Encoded Protein Kinase▿

    PubMed Central

    Hagemeier, Stacy R.; Dickerson, Sarah J.; Meng, Qiao; Yu, Xianming; Mertz, Janet E.; Kenney, Shannon C.

    2010-01-01

    The Epstein-Barr virus (EBV) immediate-early protein BZLF1 (Z) mediates the switch between latent and lytic EBV infection. Z not only activates early lytic viral gene transcription but also plays a direct role in lytic viral genome replication. Although a small fraction of Z is known to be sumoylated, the effects of this posttranslational modification on various different Z functions have not been well defined. In this report, we show that only the lysine at amino acid residue 12 is required for the sumoylation of Z, and that Z can be sumoylated by SUMO isoforms 1, 2, and 3. We also demonstrate that the sumo-defective Z mutants ZK12A and ZK12R have enhanced transcriptional activity. The sumoylated and nonsumoylated forms of Z were found to have a similar cellular location, both being localized primarily within the nuclear matrix. The Z sumo-defective mutants were, however, partially defective for disrupting promyelocytic leukemia (PML) bodies compared to the ability of wild-type Z. In addition, we show that lytic viral genome replication does not require the sumoylation of Z, although a Z mutant altered at both amino acids 12 and 13 is replication defective. Furthermore, we show that the sumoylation of Z is greatly increased (from less than 1 to about 11%) in lytically induced 293 cells infected with an EBV mutant virus deleted for the EBV-encoded protein kinase (EBV-PK) compared to that of 293 cells infected with wild-type EBV, and that the overexpression of EBV-PK leads to the reduced sumoylation of Z in EBV-negative cells. Our results suggest that the sumoylation of Z helps to promote viral latency, and that EBV-PK inhibits Z sumoylation during viral reactivation. PMID:20181712

  2. Non-canonical modulators of nuclear receptors.

    PubMed

    Tice, Colin M; Zheng, Ya-Jun

    2016-09-01

    Like G protein-coupled receptors (GPCRs) and protein kinases, nuclear receptors (NRs) are a rich source of pharmaceutical targets. Over 80 NR-targeting drugs have been approved for 18 NRs. The focus of drug discovery in NRs has hitherto been on identifying ligands that bind to the canonical ligand binding pockets of the C-terminal ligand binding domains (LBDs). Due to the development of drug resistance and selectivity concerns, there has been considerable interest in exploring other, non-canonical ligand binding sites. Unfortunately, the potencies of compounds binding at other sites have generally not been sufficient for clinical development. However, the situation has changed dramatically over the last 3years, as compounds with sufficient potency have been reported for several NR targets. Here we review recent developments in this area from a medicinal chemistry point of view in the hope of stimulating further interest in this area of research. PMID:27503683

  3. Prediction of nuclear hormone receptor response elements.

    PubMed

    Sandelin, Albin; Wasserman, Wyeth W

    2005-03-01

    The nuclear receptor (NR) class of transcription factors controls critical regulatory events in key developmental processes, homeostasis maintenance, and medically important diseases and conditions. Identification of the members of a regulon controlled by a NR could provide an accelerated understanding of development and disease. New bioinformatics methods for the analysis of regulatory sequences are required to address the complex properties associated with known regulatory elements targeted by the receptors because the standard methods for binding site prediction fail to reflect the diverse target site configurations. We have constructed a flexible Hidden Markov Model framework capable of predicting NHR binding sites. The model allows for variable spacing and orientation of half-sites. In a genome-scale analysis enabled by the model, we show that NRs in Fugu rubripes have a significant cross-regulatory potential. The model is implemented in a web interface, freely available for academic researchers, available at http://mordor.cgb.ki.se/NHR-scan. PMID:15563547

  4. Intestinal nuclear receptors in HDL cholesterol metabolism

    PubMed Central

    Degirolamo, Chiara; Sabbà, Carlo; Moschetta, Antonio

    2015-01-01

    The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy. PMID:25070952

  5. Intestinal nuclear receptors in HDL cholesterol metabolism.

    PubMed

    Degirolamo, Chiara; Sabbà, Carlo; Moschetta, Antonio

    2015-07-01

    The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy. PMID:25070952

  6. Sumoylation Inhibits the Growth Suppressive Properties of Ikaros

    PubMed Central

    Goepp, Marie; Kirstetter, Peggy; Marchal, Patricia; Ittel, Antoine; Mauvieux, Laurent; Chan, Susan; Kastner, Philippe

    2016-01-01

    The Ikaros transcription factor is a tumor suppressor that is also important for lymphocyte development. How post-translational modifications influence Ikaros function remains partially understood. We show that Ikaros undergoes sumoylation in developing T cells that correspond to mono-, bi- or poly-sumoylation by SUMO1 and/or SUMO2/3 on three lysine residues (K58, K240 and K425). Sumoylation occurs in the nucleus and requires DNA binding by Ikaros. Sumoylated Ikaros is less effective than unsumoylated forms at inhibiting the expansion of murine leukemic cells, and Ikaros sumoylation is abundant in human B-cell acute lymphoblastic leukemic cells, but not in healthy peripheral blood leukocytes. Our results suggest that sumoylation may be important in modulating the tumor suppressor function of Ikaros. PMID:27315244

  7. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  8. Identification of cell-specific targets of sumoylation during mouse spermatogenesis

    PubMed Central

    Xiao, Yuxuan; Pollack, Daniel; Andrusier, Miriam; Levy, Avi; Callaway, Myrasol; Nieves, Edward; Reddi, Prabhakara; Vigodner, Margarita

    2015-01-01

    Recent findings suggest diverse and potentially multiple roles of SUMO in testicular function and spermatogenesis. However, SUMO targets remain uncharacterized in the testis due to the complex multicellular nature of testicular tissue, the inability to maintain and manipulate spermatogenesis in vitro, and the technical challenges involved in identifying low-abundance endogenous SUMO targets. In this study, we performed cell-specific identification of sumoylated proteins using concentrated cell lysates prepared with de-sumoylation inhibitors from freshly purified spermatocytes and spermatids. One-hundred and twenty proteins were uniquely identified in the spermatocyte and/or spermatid fractions. The identified proteins are involved in the regulation of transcription, stress response, microRNA biogenesis, regulation of major enzymatic pathways, nuclear-cytoplasmic transport, cell cycle control, acrosome biogenesis, and other processes. Several proteins with important roles during spermatogenesis were chosen for further characterization by co-immunoprecipitation, co-localization and in-vitro sumoylation studies. GPS-SUMO software was used to identify consensus and non-consensus sumoylation sites within the amino acid sequences of the proteins. The analyses confirmed the cell-specific sumoylation and/or SUMO interaction of several novel, previously uncharacterized SUMO targets such as CDK1, RNAP II, CDC5, MILI, DDX4, TDP-43 and STK31. Furthermore, several proteins that were previously identified as SUMO targets in somatic cells (e.g., KAP1, MDC1) were identified as SUMO targets in germ cells. Many of these proteins have a unique role in spermatogenesis and during meiotic progression. This research opens a novel avenue for further studies of SUMO at the level of individual targets. PMID:26701181

  9. Ubiquitylation of Nuclear Receptors: New Linkages and Therapeutic Implications

    PubMed Central

    Helzer, Kyle T.; Hooper, Christopher; Miyamoto, Shigeki; Alarid, Elaine T.

    2015-01-01

    The nuclear receptor superfamily is a group of transcriptional regulators that control multiple aspects of both physiology and pathology, and are broadly recognized as viable therapeutic targets. While receptor-modulating drugs have been successful in many cases, the discovery of new drug targets is still an active area of research, because resistance to nuclear receptor-targeting therapies remains a significant clinical challenge. Many successful targeted therapies have harnessed the control of receptor activity by targeting events within the nuclear receptor signaling pathway. In this review, we explore the role of nuclear receptor ubiquitylation and discuss how the expanding roles of ubiquitin might be leveraged to identify additional entry points to control receptor function for future therapeutic development. PMID:25943391

  10. PIAS-1 Is a Checkpoint Regulator Which Affects Exit from G1 and G2 by Sumoylation of p73

    PubMed Central

    Munarriz, Eliana; Barcaroli, Daniela; Stephanou, Anastasis; Townsend, Paul A.; Maisse, Carine; Terrinoni, Alessandro; Neale, Michael H.; Martin, Seamus J.; Latchman, David S.; Knight, Richard A.; Melino, Gerry; De Laurenzi, Vincenzo

    2004-01-01

    p73 is a recently described member of the p53 family, and, like p53, it undergoes a number of posttranslational modifications. Here we show, by yeast two-hybrid screening, pull-down assays, and coimmunoprecipitation, that p73α, -β, and -γ bind to the protein inhibitor of activated STAT-1 (PIAS-1) and that this binding stabilizes p73. PIAS-1 also sumoylates p73α, although not the C-terminally truncated isoforms p73β and -γ, and this requires the RING finger domain of PIAS-1. The ΔNp73α isoform can also bind, and be sumoylated by, PIAS-1. PIAS-1-mediated sumoylation decreases p73 transcriptional activity on several target promoters, such as Bax. p73 is colocalized in the nucleus with PIAS-1, and sumoylated p73 is located exclusively in the nuclear matrix. PIAS-1 is expressed predominantly during S phase, and PIAS-1 overexpression reduces p73-mediated transcription of p21, with a reduction of cells in G1 and cell cycle reentry. Inhibition of endogenous PIAS-1 by RNA interference reduces the proportion of cells in S phase and induces G2 arrest. These data suggest that PIAS-1, acting partly through binding and sumoylation of p73, is an important component of the cell cycle machinery. PMID:15572666

  11. Nuclear hormone receptors put immunity on sterols.

    PubMed

    Santori, Fabio R

    2015-10-01

    Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and nonclassic (all others) NHRs; 17 nonclassic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and nonsterol intermediates and derivatives, is a source of ligands for many classic and nonclassic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review, we summarize the roles of nonclassic NHRs and their potential ligands in the immune system. PMID:26222181

  12. Redox-sensitive TP53INP1 SUMOylation as an oxidative stress sensor to activate TP53

    PubMed Central

    Bonacci, Thomas; Peuget, Sylvain; Soubeyran, Philippe; Iovanna, Juan; Dusetti, Nelson J

    2014-01-01

    Oxidative stress-induced sumoylation of TP53INP1 (tumor protein p53-induced nuclear protein 1) is essential to enhance the TP53 response. Sumoylation of TP53INP1 on the K113 residue, which is mediated by protein inhibitor of activated STAT 3 (PIAS3) and chromobox homolog 4 (CBX4) and removed by SUMO1/sentrin specific peptidase (SENP1, 2 and 6), favors its interaction with TP53 in the nucleus and enhances TP53-induced gene expression. PMID:27308354

  13. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (also known as NR5A2) regulates bile acid biosynthesis. Structural studies have identified phospholipids as potential LRH-1 ligands, but their functional relevance is unclear. Here we show that an unu...

  14. REV-ERB and ROR nuclear receptors as drug targets

    PubMed Central

    Kojetin, Douglas J.; Burris, Thomas P.

    2016-01-01

    The nuclear receptors REV-ERB (consisting of REV-ERBα and REV-ERBβ) and retinoic acid receptor-related orphan receptors (RORs; consisting of RORα, RORβ and RORγ) are involved in many physiological processes, including regulation of metabolism, development and immunity as well as the circadian rhythm. The recent characterization of endogenous ligands for these former orphan nuclear receptors has stimulated the development of synthetic ligands and opened up the possibility of targeting these receptors to treat several diseases, including diabetes, atherosclerosis, autoimmunity and cancer. This Review focuses on the latest developments in ROR and REV-ERB pharmacology indicating that these nuclear receptors are druggable targets and that ligands targeting these receptors may be useful in the treatment of several disorders. PMID:24577401

  15. Research Resources for Nuclear Receptor Signaling Pathways.

    PubMed

    McKenna, Neil J

    2016-08-01

    Nuclear receptor (NR) signaling pathways impact cellular function in a broad variety of tissues in both normal physiology and disease states. The complex tissue-specific biology of these pathways is an enduring impediment to the development of clinical NR small-molecule modulators that combine therapeutically desirable effects in specific target tissues with suppression of off-target effects in other tissues. Supporting the important primary research in this area is a variety of web-based resources that assist researchers in gaining an appreciation of the molecular determinants of the pharmacology of a NR pathway in a given tissue. In this study, selected representative examples of these tools are reviewed, along with discussions on how current and future generations of tools might optimally adapt to the future of NR signaling research. PMID:27216565

  16. Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing.

    PubMed

    Decque, Adrien; Joffre, Olivier; Magalhaes, Joao G; Cossec, Jack-Christophe; Blecher-Gonen, Ronnie; Lapaquette, Pierre; Silvin, Aymeric; Manel, Nicolas; Joubert, Pierre-Emmanuel; Seeler, Jacob-Sebastian; Albert, Matthew L; Amit, Ido; Amigorena, Sebastian; Dejean, Anne

    2016-02-01

    Innate sensing of pathogens initiates inflammatory cytokine responses that need to be tightly controlled. We found here that after engagement of Toll-like receptors (TLRs) in myeloid cells, deficient sumoylation caused increased secretion of transcription factor NF-κB-dependent inflammatory cytokines and a massive type I interferon signature. In mice, diminished sumoylation conferred susceptibility to endotoxin shock and resistance to viral infection. Overproduction of several NF-κB-dependent inflammatory cytokines required expression of the type I interferon receptor, which identified type I interferon as a central sumoylation-controlled hub for inflammation. Mechanistically, the small ubiquitin-like modifier SUMO operated from a distal enhancer of the gene encoding interferon-β (Ifnb1) to silence both basal and stimulus-induced activity of the Ifnb1 promoter. Therefore, sumoylation restrained inflammation by silencing Ifnb1 expression and by strictly suppressing an unanticipated priming by type I interferons of the TLR-induced production of inflammatory cytokines. PMID:26657003

  17. Orphan nuclear receptors in breast cancer pathogenesis and therapeutic response.

    PubMed

    Riggins, Rebecca B; Mazzotta, Mary M; Maniya, Omar Z; Clarke, Robert

    2010-09-01

    Nuclear receptors comprise a large family of highly conserved transcription factors that regulate many key processes in normal and neoplastic tissues. Most nuclear receptors share a common, highly conserved domain structure that includes a carboxy-terminal ligand-binding domain. However, a subgroup of this gene family is known as the orphan nuclear receptors because to date there are no known natural ligands that regulate their activity. Many of the 25 nuclear receptors classified as orphan play critical roles in embryonic development, metabolism, and the regulation of circadian rhythm. Here, we review the emerging role(s) of orphan nuclear receptors in breast cancer, with a particular focus on two of the estrogen-related receptors (ERRalpha and ERRgamma) and several others implicated in clinical outcome and response or resistance to cytotoxic or endocrine therapies, including the chicken ovalbumin upstream promoter transcription factors, nerve growth factor-induced B, DAX-1, liver receptor homolog-1, and retinoic acid-related orphan receptor alpha. We also propose that a clearer understanding of the function of orphan nuclear receptors in mammary gland development and normal mammary tissues could significantly improve our ability to diagnose, treat, and prevent breast cancer. PMID:20576803

  18. Targeting the sumoylation pathway in cancer stem cells

    PubMed Central

    Bogachek, Maria V; De Andrade, James P; Weigel, Ronald J

    2014-01-01

    Cancer stem cells (CSCs) represent a subset of tumor cells with tumor-initiating potential. We recently demonstrated that inhibition of the sumoylation pathway cleared the CSC population and repressed the outgrowth of basal breast cancer xenografts. Targeting the sumoylation pathway offers a novel treatment strategy for basal breast cancer. PMID:27308355

  19. Glucocorticoid-induced tethered transrepression requires SUMOylation of GR and formation of a SUMO-SMRT/NCoR1-HDAC3 repressing complex.

    PubMed

    Hua, Guoqiang; Ganti, Krishna Priya; Chambon, Pierre

    2016-02-01

    Upon binding of a glucocorticoid (GC), the GC receptor (GR) can exert one of three transcriptional regulatory functions. We recently reported that SUMOylation of the GR at position K293 in humans (K310 in mice) within the N-terminal domain is indispensable for GC-induced evolutionary conserved inverted repeated negative GC response element (IR nGRE)-mediated direct transrepression. We now demonstrate that the integrity of this GR SUMOylation site is mandatory for the formation of a GR-small ubiquitin-related modifiers (SUMOs)-SMRT/NCoR1-HDAC3 repressing complex, which is indispensable for NF-κB/AP1-mediated GC-induced tethered indirect transrepression in vitro. Using GR K310R mutant mice or mice containing the N-terminal truncated GR isoform GRα-D3 lacking the K310 SUMOylation site, revealed a more severe skin inflammation than in WT mice. Importantly, cotreatment with dexamethasone (Dex) could not efficiently suppress a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in these mutant mice, whereas it was clearly decreased in WT mice. In addition, in mice selectively ablated in skin keratinocytes for either nuclear receptor corepressor 1 (NCoR1)/silencing mediator for retinoid or thyroid-hormone receptors (SMRT) corepressors or histone deacetylase 3 (HDAC3), Dex-induced tethered transrepression and the formation of a repressing complex on DNA-bound NF-κB/AP1 were impaired. We previously suggested that GR ligands that would lack both (+)GRE-mediated transactivation and IR nGRE-mediated direct transrepression activities of GCs may preferentially exert the therapeutically beneficial GC antiinflammatory properties. Interestingly, we now identified a nonsteroidal antiinflammatory selective GR agonist (SEGRA) that selectively lacks both Dex-induced (+)GRE-mediated transactivation and IR nGRE-mediated direct transrepression functions, while still exerting a tethered indirect transrepression activity and could therefore be clinically lesser

  20. SUMOylated IRF-1 shows oncogenic potential by mimicking IRF-2

    SciTech Connect

    Park, Sun-Mi; Chae, Myounghee; Kim, Bo-Kyoung; Seo, Taegun; Jang, Ik-Soon; Choi, Jong-Soon; Kim, Il-Chul; Lee, Je-Ho; Park, Junsoo

    2010-01-01

    Interferon regulatory factor-1 (IRF-1) is an interferon-induced transcriptional activator that suppresses tumors by impeding cell proliferation. Recently, we demonstrated that the level of SUMOylated IRF-1 is elevated in tumor cells, and that SUMOylation of IRF-1 attenuates its tumor-suppressive function. Here we report that SUMOylated IRF-1 mimics IRF-2, an antagonistic repressor, and shows oncogenic potential. To demonstrate the role of SUMOylated IRF-1 in tumorigenesis, we used SUMO-IRF-1 recombinant protein. Stable expression of SUMO-IRF-1 in NIH3T3 cells resulted in focus formation and anchorage-independent growth in soft agar. Inoculation of SUMO-IRF-1-transfected cells into athymic nude mice resulted in tumor formation and infiltration of adipose tissues. Finally, we demonstrated that SUMO-IRF-1 transforms NIH3T3 cells in a dose-dependent manner suggesting that SUMOylated IRF-1 may act as an oncogenic protein in tumor cells.

  1. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  2. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury

    PubMed Central

    Stedman, Catherine A. M.; Liddle, Christopher; Coulter, Sally A.; Sonoda, Junichiro; Alvarez, Jacqueline G. A.; Moore, David D.; Evans, Ronald M.; Downes, Michael

    2005-01-01

    Cholestasis is associated with accumulation of bile acids and lipids, and liver injury. The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic nuclear receptors that coordinate protective hepatic responses to potentially toxic stimuli, including bile acids. We investigated the role of these receptors in the regulation of bile acid and lipid metabolism in a bile duct ligation (BDL) model of cholestasis applied to receptor knockout mice. Hepatic damage from bile acid accumulation was increased in both CAR knockout (CARKO) and PXR knockout mice, but bile acid concentrations were lower in CARKO mice. High-density lipoprotein (HDL) cholesterol was elevated in CARKO mice, and serum total cholesterol increased less in CARKO or PXR knockout mice than WT mice after BDL. Gene expression analysis of the BDL knockout animals demonstrated that, in response to cholestasis, PXR and CAR both repressed and induced the specific hepatic membrane transporters Oatp-c (organic anion transporting polypeptide C) and Oatp2 (Na+-dependent organic anion transporter 2), respectively. Induction of the xenobiotic transporter multidrug resistance protein 1 in cholestasis was independent of either PXR or CAR, in contrast to the known pattern of induction of multidrug resistance protein 1 by xenobiotics. These results demonstrate that CAR and PXR influence cholesterol metabolism and bile acid synthesis, as well as multiple detoxification pathways, and suggest their potential role as therapeutic targets for the treatment of cholestasis and lipid disorders. PMID:15684063

  3. Defining the SUMO System in Maize: SUMOylation Is Up-Regulated during Endosperm Development and Rapidly Induced by Stress.

    PubMed

    Augustine, Robert C; York, Samuel L; Rytz, Thérèse C; Vierstra, Richard D

    2016-07-01

    In response to abiotic and biotic challenges, plants rapidly attach small ubiquitin-related modifier (SUMO) to a large collection of nuclear proteins, with studies in Arabidopsis (Arabidopsis thaliana) linking SUMOylation to stress tolerance via its modification of factors involved in chromatin and RNA dynamics. Despite this importance, little is known about SUMOylation in crop species. Here, we describe the plant SUMO system at the phylogenetic, biochemical, and transcriptional levels with a focus on maize (Zea mays). In addition to canonical SUMOs, land plants encode a loosely constrained noncanonical isoform and a variant containing a long extension upstream of the signature β-grasp fold, with cereals also expressing a novel diSUMO polypeptide bearing two SUMO β-grasp domains in tandem. Maize and other cereals also synthesize a unique SUMO-conjugating enzyme variant with more restricted expression patterns that is enzymatically active despite a distinct electrostatic surface. Maize SUMOylation primarily impacts nuclear substrates, is strongly induced by high temperatures, and displays a memory that suppresses subsequent conjugation. Both in-depth transcript and conjugate profiles in various maize organs point to tissue/cell-specific functions for SUMOylation, with potentially significant roles during embryo and endosperm maturation. Collectively, these studies define the organization of the maize SUMO system and imply important functions during seed development and stress defense. PMID:27208252

  4. The Orphan Nuclear Receptors at Their 25th Year Reunion

    PubMed Central

    Mullican, Shannon E.; DiSpirito, Joanna R.; Lazar, Mitchell A.

    2013-01-01

    The Nuclear Receptor superfamily includes many receptors identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology and the molecular pathology of disease. Here we provide a compendium of these so-called Orphan Receptors, and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise. PMID:24096517

  5. Nuclear receptor variants in liver disease.

    PubMed

    Zimmer, Vincent; Liebe, Roman; Lammert, Frank

    2015-01-01

    This snapshot reviews the current state of knowledge on genetic variants of nuclear receptors (NRs) involved in regulating various aspects of liver metabolism. Interindividual differences in responses to diet and other 'in-' and environmental stressors can be caused by variants in components of the NR regulatory gene network. We recapitulate recent evidence for the application of NRs in genetic diagnosis of monogenic liver disease. Genetic analysis of multifactorial liver diseases, such as nonalcoholic fatty liver disease and diabetes mellitus, pinpoints key players in disease predisposition and progression. In particular, NR1H4 variants have been associated with intrahepatic cholestasis of pregnancy and gallstone disease. Other examples include studies of NR1I2 and NR1I3 polymorphisms in patients with drug-induced liver injury and NR5A2 variation in cholangiocarcinoma. Associations of NR gene variants have been identified in patients with dyslipidemia and other metabolic syndrome-associated traits by genome-wide studies. Evidence from these analyses confirms a role for NR variation in common diseases, linking regulatory networks to complex and variable phenotypes. These new insights into the impact of NR variants offer perspectives for their future use in diagnosis and treatment of common diseases. PMID:26045277

  6. Sumoylation inhibits α-synuclein aggregation and toxicity

    PubMed Central

    Krumova, Petranka; Meulmeester, Erik; Garrido, Manuel; Tirard, Marilyn; Hsiao, He-Hsuan; Bossis, Guillaume; Urlaub, Henning; Zweckstetter, Markus; Kügler, Sebastian; Bähr, Mathias

    2011-01-01

    Posttranslational modification of proteins by attachment of small ubiquitin-related modifier (SUMO) contributes to numerous cellular phenomena. Sumoylation sometimes creates and abolishes binding interfaces, but increasing evidence points to another role for sumoylation in promoting the solubility of aggregation-prone proteins. Using purified α-synuclein, an aggregation-prone protein implicated in Parkinson’s disease that was previously reported to be sumoylated upon overexpression, we compared the aggregation kinetics of unmodified and modified α-synuclein. Whereas unmodified α-synuclein formed fibrils, modified α-synuclein remained soluble. The presence of as little as 10% sumoylated α-synuclein was sufficient to delay aggregation significantly in vitro. We mapped SUMO acceptor sites in α-synuclein and showed that simultaneous mutation of lysines 96 and 102 to arginine significantly impaired α-synuclein sumoylation in vitro and in cells. Importantly, this double mutant showed increased propensity for aggregation and cytotoxicity in a cell-based assay and increased cytotoxicity in dopaminergic neurons of the substantia nigra in vivo. These findings strongly support the model that sumoylation promotes protein solubility and suggest that defects in sumoylation may contribute to aggregation-induced diseases. PMID:21746851

  7. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    PubMed

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field. PMID:26325041

  8. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways

    PubMed Central

    Becnel, Lauren B.; Darlington, Yolanda F.; Ochsner, Scott A.; Easton-Marks, Jeremy R.; Watkins, Christopher M.; McOwiti, Apollo; Kankanamge, Wasula H.; Wise, Michael W.; DeHart, Michael; Margolis, Ronald N.; McKenna, Neil J.

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse ‘omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy “Web 2.0” technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA’s Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field. PMID:26325041

  9. Flavonoids as dietary regulators of nuclear receptor activity

    PubMed Central

    Avior, Yishai; Bomze, David; Ramon, Ory

    2013-01-01

    Metabolic diseases such as obesity, type II diabetes, and dyslipidemia are a rising cause of mortality worldwide. The progression of many metabolic diseases is fundamentally regulated on the transcriptional level by a family of ligand-activated transcription factors, called nuclear receptors, which detect and respond to metabolic changes. Their role in maintaining metabolic homeostasis makes nuclear receptors an important pharmaceutical and dietary target. This review will present the growing evidence that flavonoids, natural secondary plant metabolites, are important regulators of nuclear receptor activity. Structural similarities between flavonoids and cholesterol derivatives combined with the promiscuous nature of most nuclear receptors provide a wealth of possibilities for pharmaceutical and dietary modulation of metabolism. While the challenges of bringing flavonoid-derived therapeutics to the market are significant, we consider this rapidly growing field to be an essential aspect of the functional food initiative and an important mine for pharmaceutical compounds. PMID:23598551

  10. Hairless is a nuclear receptor corepressor essential for skin function

    PubMed Central

    Thompson, Catherine C.

    2009-01-01

    The activity of nuclear receptors is modulated by numerous coregulatory factors. Corepressors can either mediate the ability of nuclear receptors to repress transcription, or can inhibit transactivation by nuclear receptors. As we learn more about the mechanisms of transcriptional repression, the importance of repression by nuclear receptors in development and disease has become clear. The protein encoded by the mammalian Hairless (Hr) gene was shown to be a corepressor by virtue of its functional similarity to the well-established corepressors N-CoR and SMRT. Mutation of the Hr gene results in congenital hair loss in both mice and men. Investigation of Hairless function both in vitro and in mouse models in vivo has revealed a critical role in maintaining skin and hair by regulating the differentiation of epithelial stem cells, as well as a putative role in regulating gene expression via chromatin remodeling. PMID:20087431

  11. The SUMOylation Pathway Restricts Gene Transduction by Adeno-Associated Viruses

    PubMed Central

    Henrich, Katharina; Chen, Qingxin; Beneke, Jürgen; Matula, Petr; Rohr, Karl; Kaderali, Lars; Beil, Nina; Erfle, Holger; Kleinschmidt, Jürgen A.; Müller, Martin

    2015-01-01

    Adeno-associated viruses are members of the genus dependoviruses of the parvoviridae family. AAV vectors are considered promising vectors for gene therapy and genetic vaccination as they can be easily produced, are highly stable and non-pathogenic. Nevertheless, transduction of cells in vitro and in vivo by AAV in the absence of a helper virus is comparatively inefficient requiring high multiplicity of infection. Several bottlenecks for AAV transduction have previously been described, including release from endosomes, nuclear transport and conversion of the single stranded DNA into a double stranded molecule. We hypothesized that the bottlenecks in AAV transduction are, in part, due to the presence of host cell restriction factors acting directly or indirectly on the AAV-mediated gene transduction. In order to identify such factors we performed a whole genome siRNA screen which identified a number of putative genes interfering with AAV gene transduction. A number of factors, yielding the highest scores, were identified as members of the SUMOylation pathway. We identified Ubc9, the E2 conjugating enzyme as well as Sae1 and Sae2, enzymes responsible for activating E1, as factors involved in restricting AAV. The restriction effect, mediated by these factors, was validated and reproduced independently. Our data indicate that SUMOylation targets entry of AAV capsids and not downstream processes of uncoating, including DNA single strand conversion or DNA damage signaling. We suggest that transiently targeting SUMOylation will enhance application of AAV in vitro and in vivo. PMID:26625259

  12. Cooling-induced SUMOylation of EXOSC10 down-regulates ribosome biogenesis.

    PubMed

    Knight, John R P; Bastide, Amandine; Peretti, Diego; Roobol, Anne; Roobol, Jo; Mallucci, Giovanna R; Smales, C Mark; Willis, Anne E

    2016-04-01

    The RNA exosome is essential for 3' processing of functional RNA species and degradation of aberrant RNAs in eukaryotic cells. Recent reports have defined the substrates of the exosome catalytic domains and solved the multimeric structure of the exosome complex. However, regulation of exosome activity remains poorly characterized, especially in response to physiological stress. Following the observation that cooling of mammalian cells results in a reduction in 40S:60S ribosomal subunit ratio, we uncover regulation of the nuclear exosome as a result of reduced temperature. Using human cells and an in vivo model system allowing whole-body cooling, we observe reduced EXOSC10 (hRrp6, Pm/Scl-100) expression in the cold. In parallel, both models of cooling increase global SUMOylation, leading to the identification of specific conjugation of SUMO1 to EXOSC10, a process that is increased by cooling. Furthermore, we define the major SUMOylation sites in EXOSC10 by mutagenesis and show that overexpression of SUMO1 alone is sufficient to suppress EXOSC10 abundance. Reducing EXOSC10 expression by RNAi in human cells correlates with the 3' preribosomal RNA processing defects seen in the cold as well as reducing the 40S:60S ratio, a previously uncharacterized consequence of EXOSC10 suppression. Together, this work illustrates that EXOSC10 can be modified by SUMOylation and identifies a physiological stress where this regulation is prevalent both in vitro and in vivo. PMID:26857222

  13. Cooling-induced SUMOylation of EXOSC10 down-regulates ribosome biogenesis

    PubMed Central

    Bastide, Amandine; Peretti, Diego; Roobol, Anne; Roobol, Jo; Mallucci, Giovanna R.; Smales, C. Mark; Willis, Anne E.

    2016-01-01

    The RNA exosome is essential for 3′ processing of functional RNA species and degradation of aberrant RNAs in eukaryotic cells. Recent reports have defined the substrates of the exosome catalytic domains and solved the multimeric structure of the exosome complex. However, regulation of exosome activity remains poorly characterized, especially in response to physiological stress. Following the observation that cooling of mammalian cells results in a reduction in 40S:60S ribosomal subunit ratio, we uncover regulation of the nuclear exosome as a result of reduced temperature. Using human cells and an in vivo model system allowing whole-body cooling, we observe reduced EXOSC10 (hRrp6, Pm/Scl-100) expression in the cold. In parallel, both models of cooling increase global SUMOylation, leading to the identification of specific conjugation of SUMO1 to EXOSC10, a process that is increased by cooling. Furthermore, we define the major SUMOylation sites in EXOSC10 by mutagenesis and show that overexpression of SUMO1 alone is sufficient to suppress EXOSC10 abundance. Reducing EXOSC10 expression by RNAi in human cells correlates with the 3′ preribosomal RNA processing defects seen in the cold as well as reducing the 40S:60S ratio, a previously uncharacterized consequence of EXOSC10 suppression. Together, this work illustrates that EXOSC10 can be modified by SUMOylation and identifies a physiological stress where this regulation is prevalent both in vitro and in vivo. PMID:26857222

  14. Differential effect of glucocorticoid receptor antagonists on glucocorticoid receptor nuclear translocation and DNA binding

    PubMed Central

    Spiga, Francesca; Knight, David M; Droste, Susanne K; Conway-Campbell, Becky; Kershaw, Yvonne; MacSweeney, Cliona P; Thomson, Fiona J; Craighead, Mark; Peeters, Bernard WMM; Lightman, Stafford L

    2016-01-01

    The effects of RU486 and S-P, a more selective glucocorticoid receptor antagonist from Schering-Plough, were investigated on glucocorticoid receptor nuclear translocation and DNA binding. In the in vitro study, AtT20 cells were treated with vehicle or with RU486, S-P or corticosterone (3–300 nM) or co-treated with vehicle or glucocorticoid receptor antagonists (3–300 nM) and 30 nM corticosterone. Both glucocorticoid receptor antagonists induced glucocorticoid receptor nuclear translocation but only RU486 induced DNA binding. RU486 potentiated the effect of corticosterone on glucocorticoid receptor nuclear translocation and DNA binding, S-P inhibited corticosterone-induced glucocorticoid receptor nuclear translocation, but not glucocorticoid receptor-DNA binding. In the in vivo study, adrenalectomized rats were treated with vehicle, RU486 (20 mg/kg) and S-P (50 mg/kg) alone or in combination with corticosterone (3 mg/kg). RU486 induced glucocorticoid receptor nuclear translocation in the pituitary, hippocampus and prefrontal cortex and glucocorticoid receptor-DNA binding in the hippocampus, whereas no effect of S-P on glucocorticoid receptor nuclear translocation or DNA binding was observed in any of the areas analysed. These findings reveal differential effects of RU486 and S-P on areas involved in regulation of hypothalamic–pituitary–adrenal axis activity in vivo and they are important in light of the potential use of this class of compounds in the treatment of disorders associated with hyperactivity of the hypothalamic–pituitary–adrenal axis. PMID:20093322

  15. Rational discovery of novel nuclear hormone receptor antagonists

    NASA Astrophysics Data System (ADS)

    Schapira, Matthieu; Raaka, Bruce M.; Samuels, Herbert H.; Abagyan, Ruben

    2000-02-01

    Nuclear hormone receptors (NRs) are potential targets for therapeutic approaches to many clinical conditions, including cancer, diabetes, and neurological diseases. The crystal structure of the ligand binding domain of agonist-bound NRs enables the design of compounds with agonist activity. However, with the exception of the human estrogen receptor-, the lack of antagonist-bound "inactive" receptor structures hinders the rational design of receptor antagonists. In this study, we present a strategy for designing such antagonists. We constructed a model of the inactive conformation of human retinoic acid receptor- by using information derived from antagonist-bound estrogen receptor-α and applied a computer-based virtual screening algorithm to identify retinoic acid receptor antagonists. Thus, the currently available crystal structures of NRs may be used for the rational design of antagonists, which could lead to the development of novel drugs for a variety of diseases.

  16. ROR nuclear receptors: structures, related diseases, and drug discovery

    PubMed Central

    Zhang, Yan; Luo, Xiao-yu; Wu, Dong-hai; Xu, Yong

    2015-01-01

    Nuclear receptors (NRs) are ligand-regulated transcription factors that regulate metabolism, development and immunity. The NR superfamily is one of the major classes of drug targets for human diseases. Retinoic acid receptor-related orphan receptor (ROR) α, β and γ belong to the NR superfamily, and these receptors are still considered as 'orphan' receptors because the identification of their endogenous ligands has been controversial. Recent studies have demonstrated that these receptors are regulated by synthetic ligands, thus emerge as important drug targets for the treatment of multiple sclerosis, rheumatoid arthritis, psoriasis, etc. Studying the structural basis and ligand development of RORs will pave the way for a better understanding of the roles of these receptors in human diseases. Here, we review the structural basis, disease relevance, strategies for ligand identification, and current status of development of therapeutic ligands for RORs. PMID:25500868

  17. Oxidative stress-induced p53 activity is enhanced by a redox-sensitive TP53INP1 SUMOylation

    PubMed Central

    Peuget, S; Bonacci, T; Soubeyran, P; Iovanna, J; Dusetti, N J

    2014-01-01

    Tumor Protein p53-Induced Nuclear Protein 1 (TP53INP1) is a tumor suppressor that modulates the p53 response to stress. TP53INP1 is one of the key mediators of p53 antioxidant function by promoting the p53 transcriptional activity on its target genes. TP53INP1 expression is deregulated in many types of cancers including pancreatic ductal adenocarcinoma in which its decrease occurs early during the preneoplastic development. In this work, we report that redox-dependent induction of p53 transcriptional activity is enhanced by the oxidative stress-induced SUMOylation of TP53INP1 at lysine 113. This SUMOylation is mediated by PIAS3 and CBX4, two SUMO ligases especially related to the p53 activation upon DNA damage. Importantly, this modification is reversed by three SUMO1-specific proteases SENP1, 2 and 6. Moreover, TP53INP1 SUMOylation induces its binding to p53 in the nucleus under oxidative stress conditions. TP53INP1 mutation at lysine 113 prevents the pro-apoptotic, antiproliferative and antioxidant effects of TP53INP1 by impairing the p53 response on its target genes p21, Bax and PUMA. We conclude that TP53INP1 SUMOylation is essential for the regulation of p53 activity induced by oxidative stress. PMID:24608790

  18. Progesterone receptors in human breast cancer. Stoichiometric translocation and nuclear receptor processing.

    PubMed

    Mockus, M B; Horwitz, K B

    1983-04-25

    In a subline of T47D human breast cancer cells, progesterone receptors (PR) are synthesized at very high levels, but their synthesis is not estrogen-dependent. Despite the unusual control of synthesis, the physicochemical properties of PR are normal. These are, therefore, ideal cells to study PR regulation by progesterone, free of estrogen effects. In this paper, we show that nuclear translocation of PR is stoichiometric, and that an unusual and very rapid nuclear turnover, or processing step, characterizes receptor-DNA interactions. In intact T47D cells, PR are translocated to the nucleus only by progestins; 70-90% of cytoplasmic receptors are depleted at 37 degrees C within 5 min of progestin addition. After PR are translocated by 0.1 muM progesterone, they can be quantitatively recovered from nuclei only in the first 5 min; thereafter, a rapid nuclear processing step results in loss of 50-80% of the newly translocated sites. Rapid processing may be inherent to PR; it also occurs in PR of MCF-7 cells. The extent of receptor translocation and of nuclear receptor processing is dependent on the progesterone concentration and on the treatment time, and can be masked by endogenous hormones. Proteolytic enzyme inhibitors (leupeptin, antipain) do not prevent nuclear PR loss. G-C specific DNA intercalators that prevent nuclear estrogen receptor processing (actinomycin D, chromomycin A3) also fail to prevent PR loss, but some A-T specific DNA-binding dyes (chloroquine, primaquine, quinacrine) protect 50-75% of nuclear PR. We conclude that translocated nuclear PR can be quantitatively measured only at early time points because the nuclear receptors are rapidly processed. Furthermore, the processing step may involve an interaction of receptors with DNA since it can be partially blocked by DNA-binding agents. PMID:6833276

  19. SUMOylation in Control of Accurate Chromosome Segregation during Mitosis

    PubMed Central

    Wan, Jun; Subramonian, Divya; Zhang, Xiang-Dong

    2012-01-01

    Posttranslational protein modification by small ubiquitin-related modifier (SUMO) has emerged as an important regulatory mechanism for chromosome segregation during mitosis. This review focuses on how SUMOylation regulates the centromere and kinetochore activities to achieve accurate chromosome segregation during mitosis. Kinetochores are assembled on the specialized chromatin domains called centromeres and serve as the sites for attaching spindle microtubule to segregate sister chromatids to daughter cells. Many proteins associated with mitotic centromeres and kinetochores have been recently found to be modified by SUMO. Although we are still at the early stage of elucidating how SUMOylation controls chromosome segregation during mitosis, a substantial progress has been achieved over the past decade. Furthermore, a major theme that has emerged from the recent studies of SUMOylation in mitosis is that both SUMO conjugation and deconjugation are critical for kinetochore assembly and disassembly. Lastly, we propose a model that SUMOylation coordinates multiple centromere and kinetochore activities to ensure accurate chromosome segregation. PMID:22812528

  20. Regulation of cold signaling by sumoylation of ICE1.

    PubMed

    Miura, Kenji; Hasegawa, Paul M

    2008-01-01

    The small ubiquitin-related modifier (SUMO) E3 ligase SIZ1 is an ortholog of yeast and animal SIZ (SAP and Miz)/PIAS (protein inhibition of activated STAT) proteins, which function as transcriptional coregulators either by facilitating SUMO conjugation to substrate proteins (sumoylation) or through other mechanisms that are sumoylation independent. SIZ/PIAS-type E3 ligases function in numerous eukaryotic biological processes, including regulation of organismal responses to environmental changes. This addendum summarizes our recent paper in which it is established that the Arabidopsis E3 ligase SIZ1 mediates sumoylation of ICE1. SUMO conjugation to ICE1 facilitates ICE1 activity and stability that positively regulates CBF3/DREB1A-dependent cold signaling and freezing tolerance. Furthermore, sumoylated ICE1 represses MYB15, which is a negative regulator of CBF3/DREB1A and freezing tolerance. PMID:19704769

  1. Ligands for the Nuclear Peroxisome Proliferator-Activated Receptor Gamma.

    PubMed

    Sauer, Sascha

    2015-10-01

    Nuclear receptors are ligand-activated transcription factors, which represent a primary class of drug targets. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a key player in various biological processes. PPARγ is widely known as the target protein of the thiazolidinediones for treating type 2 diabetes. Moreover, PPARγ ligands can induce anti-inflammatory and potentially additional beneficial effects. Recent mechanistic insights of PPARγ modulation give hope the next generation of efficient PPARγ-based drugs with fewer side effects can be developed. Furthermore, chemical approaches that make use of synergistic action of combinatorial ligands are promising alternatives for providing tailored medicine. Lessons learned from fine-tuning the action of PPARγ can provide avenues for efficient molecular intervention via many other nuclear receptors to combat common diseases. PMID:26435213

  2. Nuclear Receptors as Drug Targets for Metabolic Disease

    PubMed Central

    2010-01-01

    Nuclear hormone receptors comprise a superfamily of ligand-activated transcription factors that control development, differentiation, and homeostasis. Over the last 15 years a growing number of nuclear receptors have been identified that coordinate genetic networks regulating lipid metabolism and energy utilization. Several of these receptors directly sample the levels of metabolic intermediates including fatty acids and cholesterol derivatives and use this information to regulate the synthesis, transport, and breakdown of the metabolite of interest. In contrast, other family members sense metabolic activity via the presence or absence of interacting proteins. The ability of these nuclear receptors to impact metabolism will be discussed and the challenges facing drug discovery efforts for this class of targets will be highlighted. PMID:20655343

  3. SUMOylation regulates the SNF1 protein kinase

    PubMed Central

    Simpson-Lavy, Kobi J.; Johnston, Mark

    2013-01-01

    The AMP-activated protein kinase (AMPK) is a major stress sensor of mammalian cells. AMPK’s homolog in the yeast Saccharomyces cerevisiae, the SNF1 protein kinase, is a central regulator of carbon metabolism that inhibits the Snf3/Rgt2-Rgt1 glucose sensing pathway and activates genes involved in respiration. We present evidence that glucose induces modification of the Snf1 catalytic subunt of SNF1 with the small ubiquitin-like modifier protein SUMO, catalyzed by the SUMO (E3) ligase Mms21. Our results suggest that SUMOylation of Snf1 inhibits its function in two ways: by interaction of SUMO attached to lysine 549 with a SUMO-interacting sequence motif located near the active site of Snf1, and by targeting Snf1 for destruction via the Slx5-Slx8 (SUMO-directed) ubiquitin ligase. These findings reveal another way SNF1 function is regulated in response to carbon source. PMID:24108357

  4. SUMOylation inhibits FOXM1 activity and delays mitotic transition.

    PubMed

    Myatt, S S; Kongsema, M; Man, C W-Y; Kelly, D J; Gomes, A R; Khongkow, P; Karunarathna, U; Zona, S; Langer, J K; Dunsby, C W; Coombes, R C; French, P M; Brosens, J J; Lam, E W-F

    2014-08-21

    The forkhead box transcription factor FOXM1 is an essential effector of G2/M-phase transition, mitosis and the DNA damage response. As such, it is frequently deregulated during tumorigenesis. Here we report that FOXM1 is dynamically modified by SUMO1 but not by SUMO2/3 at multiple sites. We show that FOXM1 SUMOylation is enhanced in MCF-7 breast cancer cells in response to treatment with epirubicin and mitotic inhibitors. Mutation of five consensus conjugation motifs yielded a SUMOylation-deficient mutant FOXM1. Conversely, fusion of the E2 ligase Ubc9 to FOXM1 generated an auto-SUMOylating mutant (FOXM1-Ubc9). Analysis of wild-type FOXM1 and mutants revealed that SUMOylation inhibits FOXM1 activity, promotes translocation to the cytoplasm and enhances APC/Cdh1-mediated ubiquitination and degradation. Further, expression of the SUMOylation-deficient mutant enhanced cell proliferation compared with wild-type FOXM1, whereas the FOXM1-Ubc9 fusion protein resulted in persistent cyclin B1 expression and slowed the time from mitotic entry to exit. In summary, our findings suggest that SUMOylation attenuates FOXM1 activity and causes mitotic delay in cytotoxic drug response. PMID:24362530

  5. Pan-cancer analyses of the nuclear receptor superfamily

    PubMed Central

    Long, Mark D.; Campbell, Moray J.

    2016-01-01

    Nuclear receptors (NR) act as an integrated conduit for environmental and hormonal signals to govern genomic responses, which relate to cell fate decisions. We review how their integrated actions with each other, shared co-factors and other transcription factors are disrupted in cancer. Steroid hormone nuclear receptors are oncogenic drivers in breast and prostate cancer and blockade of signaling is a major therapeutic goal. By contrast to blockade of receptors, in other cancers enhanced receptor function is attractive, as illustrated initially with targeting of retinoic acid receptors in leukemia. In the post-genomic era large consortia, such as The Cancer Genome Atlas, have developed a remarkable volume of genomic data with which to examine multiple aspects of nuclear receptor status in a pan-cancer manner. Therefore to extend the review of NR function we have also undertaken bioinformatics analyses of NR expression in over 3000 tumors, spread across six different tumor types (bladder, breast, colon, head and neck, liver and prostate). Specifically, to ask how the NR expression was distorted (altered expression, mutation and CNV) we have applied bootstrapping approaches to simulate data for comparison, and also compared these NR findings to 12 other transcription factor families. Nuclear receptors were uniquely and uniformly downregulated across all six tumor types, more than predicted by chance. These approaches also revealed that each tumor type had a specific NR expression profile but these were most similar between breast and prostate cancer. Some NRs were down-regulated in at least five tumor types (e.g. NR3C2/MR and NR5A2/LRH-1)) whereas others were uniquely down-regulated in one tumor (e.g. NR1B3/RARG). The downregulation was not driven by copy number variation or mutation and epigenetic mechanisms maybe responsible for the altered nuclear receptor expression. PMID:27200367

  6. Sumoylation of Forkhead L2 by Ubc9 is required for its activity as a transcriptional repressor of the Steroidogenic Acute Regulatory Gene

    PubMed Central

    Kuo, Fang-Ting; Bentsi-Barnes, Ikuko K.; Barlow, Gillian M.; Bae, Jeehyeon; Pisarska, Margareta D.

    2010-01-01

    Forkhead L2 (FOXL2) is a member of the forkhead/hepatocyte nuclear factor 3 (FKH/HNF3) gene family of transcription factors and acts as a transcriptional repressor of the Steroidogenic Acute Regulatory (StAR) gene, a marker of granulosa cell differentiation. FOXL2 may play a role in ovarian follicle maturation and prevent premature follicle depletion leading to premature ovarian failure. In this study, we found that FOXL2 interacts with Ubc9, an E2-conjugating enzyme that mediates sumoylation, a key mechanism in transcriptional regulation. FOXL2 and Ubc9 are co-expressed in granulosa cells of small and medium ovarian follicles. FOXL2 is sumoylated by Ubc9, and this Ubc9-mediated sumoylation is essential to transcription activity of FOXL2 on the StAR promoter. As FOXL2 is endogenous to granulosa cells, we generated a stable cell line expressing FOXL2 and found that activity of the StAR promoter in this cell line is greatly decreased in the presence of Ubc9. The sumoylation site was identified at lysine 25 of FOXL2. Mutation of lysine 25 to arginine leads to loss of transcriptional repressor activity of FOXL2. Taken together, we propose that Ubc9-mediated sumoylation at lysine 25 of FOXL2 is required for transcriptional repression of the StAR gene and may be responsible for controlling the development of ovarian follicles. PMID:19744555

  7. Sumoylation of CCAAT/enhancer-binding protein α is implicated in hematopoietic stem/progenitor cell development through regulating runx1 in zebrafish.

    PubMed

    Yuan, Hao; Zhang, Tao; Liu, Xiaohui; Deng, Min; Zhang, Wenqing; Wen, Zilong; Chen, Saijuan; Chen, Zhu; de The, Hugues; Zhou, Jun; Zhu, Jun

    2015-01-01

    The small ubiquitin-related modifier (SUMO) participates in various cellular processes, including maintenance of genome integrity, nuclear transport, transcription and signal transduction. However, the biological function of sumoylation in hematopoiesis has not been fully explored. We show here that definitive hematopoietic stem/progenitor cells (HSPCs) are depleted in SUMO-deficient zebrafish embryos. Impairment of sumoylation attenuates HSPC generation and proliferation. The hyposumoylation triggered HSPC defects are CCAAT/enhancer-binding protein α (C/ebpα) dependent. Critically, a SUMO-C/ebpα fusion rescues the defective hematopoiesis in SUMO-deficient embryos, at least in part through restored runx1 expression. While C/ebpα-dependent transcription is involved in myeloid differentiation, our studies here reveal that C/ebpα sumoylation is essential for HSPC development during definitive hematopoiesis. PMID:25757417

  8. Structural mechanism for signal transduction in RXR nuclear receptor heterodimers

    PubMed Central

    Kojetin, Douglas J.; Matta-Camacho, Edna; Hughes, Travis S.; Srinivasan, Sathish; Nwachukwu, Jerome C.; Cavett, Valerie; Nowak, Jason; Chalmers, Michael J.; Marciano, David P.; Kamenecka, Theodore M.; Shulman, Andrew I.; Rance, Mark; Griffin, Patrick R.; Bruning, John B.; Nettles, Kendall W.

    2015-01-01

    A subset of nuclear receptors (NRs) function as obligate heterodimers with retinoid X receptor (RXR), allowing integration of ligand-dependent signals across the dimer interface via an unknown structural mechanism. Using nuclear magnetic resonance (NMR) spectroscopy, x-ray crystallography and hydrogen/deuterium exchange (HDX) mass spectrometry, here we show an allosteric mechanism through which RXR co-operates with a permissive dimer partner, peroxisome proliferator-activated receptor (PPAR)-γ, while rendered generally unresponsive by a non-permissive dimer partner, thyroid hormone (TR) receptor. Amino acid residues that mediate this allosteric mechanism comprise an evolutionarily conserved network discovered by statistical coupling analysis (SCA). This SCA network acts as a signalling rheostat to integrate signals between dimer partners, ligands and coregulator-binding sites, thereby affecting signal transmission in RXR heterodimers. These findings define rules guiding how NRs integrate two ligand-dependent signalling pathways into RXR heterodimer-specific responses. PMID:26289479

  9. Recent progress on nuclear receptor RORγ modulators.

    PubMed

    Cyr, Patrick; Bronner, Sarah M; Crawford, James J

    2016-09-15

    The retinoic acid receptor-related orphan receptor RORγ plays key roles in the development and differentiation of TH17 cells, and thus in IL-17 expression, thymocyte development and regulation of metabolism. With the recent progression into phase 2 clinical trials of both oral and topically administered inverse agonists, and with others close behind, there is significant interest in the discovery of RORγ modulators. This digest covers key developments around RORγ agonists, antagonists and inverse agonists; orthosteric and allosteric binders; and aims to summarize the available information concerning the potential utility of RORγ modulators. PMID:27542308

  10. ERAP140, a conserved tissue-specific nuclear receptor coactivator.

    PubMed

    Shao, Wenlin; Halachmi, Shlomit; Brown, Myles

    2002-05-01

    We report here the identification and characterization of a novel nuclear receptor coactivator, ERAP140. ERAP140 was isolated in a screen for ER alpha-interacting proteins using the ER alpha ligand binding domain as a probe. The ERAP140 protein shares no sequence and has little structural homology with other nuclear receptor cofactors. However, homologues of ERAP140 have been identified in mouse, Drosophila, and Caenorhabditis elegans. The expression of ERAP140 is cell and tissue type specific and is most abundant in the brain, where its expression is restricted to neurons. In addition to interacting with ER alpha, ERAP140 also binds ER beta, TR beta, PPAR gamma, and RAR alpha. ERAP140 interacts with ER alpha via a noncanonical interaction motif. The ER alpha-ERAP140 association can be competed by coactivator NR boxes, indicating ERAP140 binds ER alpha on a surface similar to that of other coactivators. ERAP140 can enhance the transcriptional activities of nuclear receptors with which it interacts. In vivo, ERAP140 is recruited by estrogen-bound ER alpha to the promoter region of endogenous ER alpha target genes. Furthermore, the E(2)-induced recruitment of ERAP140 to the promoter follows a cyclic pattern similar to that of other coactivators. Our results suggest that ERAP140 represents a distinct class of nuclear receptor coactivators that mediates receptor signaling in specific target tissues. PMID:11971969

  11. Regulation of the cytosolic sulfotransferases by nuclear receptors

    PubMed Central

    Runge-Morris, Melissa; Kocarek, Thomas A.; Falany, Charles N.

    2013-01-01

    The cytosolic sulfotransferases (SULTs) are a multigene family of enzymes that catalyze the transfer of a sulfonate group from the physiologic sulfate donor, 3′-phosphoadenosine-5′-phosphosulfate, to a nucleophilic substrate to generate a polar product that is more amenable to elimination from the body. As catalysts of both xenobiotic and endogenous metabolism, the SULTs are major points of contact between the external and physiological environments, and modulation of SULT-catalyzed metabolism can not only affect xenobiotic disposition, but it can also alter endogenous metabolic processes. Therefore, it is not surprising that SULT expression is regulated by numerous members of the nuclear receptor (NR) superfamily that function as sensors of xenobiotics as well as endogenous molecules, such as fatty acids, bile acids, and oxysterols. These NRs include the peroxisome proliferator-activated receptors, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, liver X receptors, farnesoid X receptor, retinoid-related orphan receptors, and estrogen-related receptors. This review summarizes current information about NR regulation of SULT expression. Because species differences in SULT subfamily composition and tissue-, sex-, development-, and inducer-dependent regulation are prominent, these differences will be emphasized throughout the review. In addition, because of the central role of the SULTs in cellular physiology, the effect of NR-mediated SULT regulation on physiological and pathophysiological processes will be discussed. Gaps in current knowledge that require further investigation are also highlighted. PMID:23330539

  12. The Bcl-2/Bcl-xL inhibitor BH3I-2' affects the dynamics and subcellular localization of sumoylated proteins.

    PubMed

    Plourde, Mélodie B; Morchid, Aïda; Iranezereza, Lolita; Berthoux, Lionel

    2013-04-01

    Sumoylation modulates many proteins implicated in apoptosis such as Fas, TNFR1, Daxx, p53 and its regulator MDM2. Some of these proteins, such as DRP-1, are involved in the intrinsic apoptosis pathway. The intrinsic pathway is regulated at the mitochondrial level by the Bcl-2 family of proteins. The small-molecule inhibitor BH3I-2' binds to the hydrophobic groove of the BH3 domain of anti-apoptotic proteins Bcl-xL and Bcl-2. Following treatment with this inhibitor in various experimental conditions, we observed decreased levels of detergent-soluble SUMO-1, an increase in the relative levels of detergent-insoluble sumoylated proteins, or both. Accordingly, immunofluorescence microscopy revealed that the relative numbers and intensities of endogenously or exogenously expressed SUMO-1 foci in the nucleus were increased following BH3I-2' treatment. MG132 caused a large increase in steady-state levels of SUMO-1 and of sumoylated proteins, and this was especially true for detergent-insoluble proteins. The conjugation-incompetent GG-to-AA SUMO-1 mutant, which did not form nuclear foci, was only present in the detergent-soluble lysate fraction and was insensitive to BH3I-2', implying that BH3I-2' specifically affects SUMO in its conjugated form. Finally, BH3I-2' had similar effects on SUMO-2 and SUMO-3 as it had on SUMO-1. In conclusion, BH3I-2' causes an intracellular redistribution of sumoylated proteins, more specifically their targeting to PML and non-PML nuclear bodies in which they may be degraded by the proteasome. Interestingly, knocking down Bcl-2 also altered levels of sumoylated proteins and their presence in detergent-insoluble compartments, confirming the role of Bcl-2 as a modulator of the sumoylation pathway. PMID:23375957

  13. Nuclear receptor SHP inhibition of Dnmt1 expression via ERRγ.

    PubMed

    Zhang, Yuxia; Wang, Li

    2011-05-01

    We describe a transcriptional mechanism regulating the expression of Dnmt1 by nuclear receptors. We show that ERRγ functions as a transcriptional activator of mouse and human Dnmt1 expression by direct binding to its response elements (ERE1/ERE2) in the dnmt1/DNMT1 promoters. The induction of Dnmt1 by ERRγ is repressed by SHP through SHP inhibition of ERRγ transactivity, diminishing ERRγ recruitment to the Dnmt1 promoter, and altering the conformation of local chromatin from an active mode by ERRγ to an inactive mode. Our study provides the first evidence for nuclear receptor mediated regulation of Dnmt1 expression through ERRγ and SHP crosstalk. PMID:21459093

  14. Nuclear receptor SHP inhibition of Dnmt1 expression via ERRγ

    PubMed Central

    Zhang, Yuxia; Wang, Li

    2011-01-01

    We describe a transcriptional mechanism regulating the expression of Dnmt1 by nuclear receptors. We show that ERRγ functions as a transcriptional activator of mouse and human Dnmt1 expression by direct binding to its response elements (ERE1/ERE2) in the dnmt1/DNMT1 promoters. The induction of Dnmt1 by ERRγ is repressed by SHP through SHP inhibition of ERRγ transactivity, diminishing ERRγ recruitment to the Dnmt1 promoter, and altering the conformation of local chromatin from an active mode by ERRγ to an inactive mode. Our study provides the first evidence for nuclear receptor mediated regulation of Dnmt1 expression through ERRγ and SHP crosstalk. PMID:21459093

  15. Orphan Nuclear Receptors as Targets for Drug Development

    PubMed Central

    Mukherjee, Subhajit

    2012-01-01

    Orphan nuclear receptors regulate diverse biological processes. These important molecules are ligand-activated transcription factors that act as natural sensors for a wide range of steroid hormones and xenobiotic ligands. Because of their importance in regulating various novel signaling pathways, recent research has focused on identifying xenobiotics targeting these receptors for the treatment of multiple human diseases. In this review, we will highlight these receptors in several physiologic and pathophysiologic actions and demonstrate how their functions can be exploited for the successful development of newer drugs. PMID:20372994

  16. Female breast carcinomas: nuclear and cytoplasmic proteins versus steroid receptors.

    PubMed

    Bryś, M; Romanowicz-Makowska, H; Nawrocka, A; Krajewska, W M

    2000-01-01

    Nuclear and cytoplasmic proteins of human female breast cancer were analysed by one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Oestrogen receptor and progesterone receptor expression was determined by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) method. The electropherograms were developed by silver nitrate staining and quantitative analysis was carried out by video densitometer using the software Gel-Pro Analyzer. Nuclear and cytoplasmic proteins of breast carcinomas and normal tissue differed both qualitatively and quantitatively. Nuclear polypeptides of 108, 53 and 48 kD as well as the 36 kD cytoplasmic polypeptide were specific for tumour samples, while the 51 kD nuclear polypeptide was detected only in normal tissue. Quantitative differences in band density were noted in the 32 kD nuclear polypeptide. This polypeptide was expressed in greatest concentration in infiltrating ductal carcinomas which also indicated the greatest oestrogen receptor gene expression. This relationship appeared to be statistically significant (p < 0.005). No correlations were evident between the 32 kD protein expression and the progesterone receptor gene expression in any of the tissue types examined, nor between the 32 kD protein and the patient's age or tumour grade. PMID:10756981

  17. Structures and regulation of non-X orphan nuclear receptors: A retinoid hypothesis.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; Melcher, Karsten; Xu, H Eric

    2016-03-01

    Nuclear receptors are defined as a family of ligand regulated transcription factors [1-6]. While this definition reflects that ligand binding is a key property of nuclear receptors, it is still a heated subject of debate if all the nuclear receptors (48 human members) can bind ligands (ligands referred here to both physiological and synthetic ligands). Recent studies in nuclear receptor structure biology and pharmacology have undoubtedly increased our knowledge of nuclear receptor functions and their regulation. As a result, they point to new avenues for the discovery and development of nuclear receptor regulators, including nuclear receptor ligands. Here we review the recent literature on orphan nuclear receptor structural analysis and ligand identification, particularly on the orphan nuclear receptors that do not heterodimerize with retinoid X receptors, which we term as non-X orphan receptors. We also propose a speculative "retinoid hypothesis" for a subset of non-X orphan nuclear receptors, which we hope to help shed light on orphan nuclear receptor biology and drug discovery. This article is part of a Special Issue entitled 'Orphan Nuclear Receptors'. PMID:26159912

  18. Identification of enzymes involved in SUMOylation in Trypanosoma brucei.

    PubMed

    Ye, Kaiqin; Zhang, Xuecheng; Ni, Jun; Liao, Shanhui; Tu, Xiaoming

    2015-01-01

    Small ubiquitin-like modifier (SUMO), a reversible post-translational protein modifier, plays important roles in diverse cellular mechanisms. Three enzymes, E1 (activating enzyme), E2 (conjugating enzyme) and E3 (ligase), are involved in SUMO modification. SUMOylation system and process in higher eukaryotes have been well studied. However, in protozoa, such as Trypanosoma brucei (T. brucei), these remain poorly understood. Herein, we identified the E1 (TbAos1/TbUba2) and E2 (TbUbc9) enzymes of SUMOylation pathway in T. brucei by sequence analysis and GST pull-down assay. Furthermore, we successfully reconstructed the SUMOylation system in vitro with recombinant enzymes. Using this system, the active site of TbUba2 and TbUbc9 was revealed to be located at Cys343 and Cys132, respectively, and a centrin homologue (TbCentrin3) was identified to be a target of SUMOylation in T. brucei. Altogether, our results demonstrate that TbAos1/TbUba2 and TbUbc9 are the bona fide E1 and E2 enzymes of the SUMOylation system in T. brucei. PMID:25959766

  19. FLC-mediated flowering repression is positively regulated by sumoylation

    PubMed Central

    Seo, Hak Soo

    2014-01-01

    Flowering locus C (FLC), a floral repressor, is a critical factor for the transition from the vegetative to the reproductive phase. Here, the mechanisms regulating the activity and stability of the FLC protein were investigated. Bimolecular fluorescence complementation and in vitro pull-down analyses showed that FLC interacts with the E3 small ubiquitin-like modifier (SUMO) ligase AtSIZ1, suggesting that AtSIZ1 is an E3 SUMO ligase for FLC. In vitro sumoylation assays showed that FLC is modified by SUMO in the presence of SUMO-activating enzyme E1 and conjugating enzyme E2, but its sumoylation is inhibited by AtSIZ1. In transgenic plants, inducible AtSIZ1 overexpression led to an increase in the concentration of FLC and delayed the post-translational decay of FLC, indicating that AtSIZ1 stabilizes FLC through direct binding. Also, the flowering time in mutant FLC (K154R, a mutation of the sumoylation site)-overexpressing plants was comparable with that in the wild type, whereas flowering was considerably delayed in FLC-overexpressing plants, supporting the notion that sumoylation is an important mechanism for FLC function. The data indicate that the sumoylation of FLC is critical for its role in the control of flowering time and that AtSIZ1 positively regulates FLC-mediated floral suppression. PMID:24218331

  20. Sumoylation regulates EXO1 stability and processing of DNA damage

    PubMed Central

    Bologna, Serena; Altmannova, Veronika; Valtorta, Emanuele; Koenig, Christiane; Liberali, Prisca; Gentili, Christian; Anrather, Dorothea; Ammerer, Gustav; Pelkmans, Lucas; Krejci, Lumir; Ferrari, Stefano

    2015-01-01

    DNA double-strand break repair by the error-free pathway of homologous recombination (HR) requires the concerted action of several factors. Among these, EXO1 and DNA2/BLM are responsible for the extensive resection of DNA ends to produce 3′-overhangs, which are essential intermediates for downstream steps of HR. Here we show that EXO1 is a SUMO target and that sumoylation affects EXO1 ubiquitylation and protein stability. We identify an UBC9-PIAS1/PIAS4-dependent mechanism controlling human EXO1 sumoylation in vivo and demonstrate conservation of this mechanism in yeast by the Ubc9-Siz1/Siz2 using an in vitro reconstituted system. Furthermore, we show physical interaction between EXO1 and the de-sumoylating enzyme SENP6 both in vitro and in vivo, promoting EXO1 stability. Finally, we identify the major sites of sumoylation in EXO1 and show that ectopic expression of a sumoylation-deficient form of EXO1 rescues the DNA damage-induced chromosomal aberrations observed upon wt-EXO1 expression. Thus, our study identifies a novel layer of regulation of EXO1, making the pathways that regulate its function an ideal target for therapeutic intervention. PMID:26083678

  1. The HR97 (NR1L) group of nuclear receptors: a new group of nuclear receptors discovered in Daphnia species.

    PubMed

    Li, Yangchun; Ginjupalli, Gautam K; Baldwin, William S

    2014-09-15

    The recently sequenced Daphnia pulex genome revealed the NR1L nuclear receptor group consisting of three novel receptors. Phylogenetic studies show that this group is related to the NR1I group (CAR/PXR/VDR) and the NR1J group (HR96), and were subsequently named HR97a/b/g. Each of the HR97 paralogs from Daphnia magna, a commonly used crustacean in toxicity testing, was cloned, sequenced, and partially characterized. Phylogenetic analysis indicates that the HR97 receptors are present in primitive arthropods such as the chelicerates but lost in insects. qPCR and immunohistochemistry demonstrate that each of the receptors is expressed near or at reproductive maturity, and that HR97g, the most ancient of the HR97 receptors, is primarily expressed in the gastrointestinal tract, mandibular region, and ovaries, consistent with a role in reproduction. Transactivation assays using an HR97a/b/g-GAL4 chimera indicate that unlike Daphnia HR96 that is promiscuous with respect to ligand recognition, the HR97 receptors do not respond to many of the ligands that activate CAR/PXR/HR96 nuclear receptors. Only three putative ligands of HR97 receptors were identified in this study: pyriproxyfen, methyl farnesoate, and arachidonic acid. Only arachidonic acid, which acts as an inverse agonist, alters HR97g activity at concentrations that would be considered within physiologically relevant ranges. Overall, this study demonstrates that, although closely related to the promiscuous receptors in the NR1I and NR1J groups, the HR97 receptors are mostly likely not multi-xenobiotic sensors, but rather may perform physiological functions, potentially in reproduction, unique to crustaceans and other non-insect arthropod groups. PMID:25092536

  2. Nuclear Receptor Activity and Liver Cancer Lesion Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that control diverse cellular processes. Chronic stimulation of some NRs is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. We explored this question using human CAR, PXR, PPARα,...

  3. Comparison between different forms of estrogen cytosol receptor and the nuclear receptor extracted by micrococcal nuclease.

    PubMed

    Rochefort, H; André, J

    1978-11-01

    As an approach to the mechanism of the nuclear translocation of estrogen receptor, the estradiol nuclear receptor (RN) of lamb endometrium was extracted with micrococcal nuclease at 2--4 degrees and compared to the "native" 8S and to the Ca2+-transformed cytosol receptors. After extensive digestion of chromatin, giving up to 10% perchloric acid-soluble DNA and a majority of nucleosome monomers, up to 80% of the RN was extracted and under low ionic strength. This RN was found to be completely different from the partially proteolyzed Ca2+-transformed cytosol receptor. It migrated with a sedimentation constant of 4 and 6 S. The Stokes radius of the predominant form as determined by ACA 34 chromatography was 5.3 nm. The calculated apparent molecular weights were 130,000 and 90,000, respectively. The RN was able to bind DNA and was eluted from a diethylaminoethyl cellulose column at 0.23 and 0.30 M KCl. We conclude that the mechanism proposed by Puca et al., according to which the Ca2+-transformed cytosol receptor is split by a Ca2+ receptor-transforming factor into a smaller form able to cross the nuclear membrane, is very unlikely. PMID:698961

  4. Nuclear receptor coregulators as a new paradigm for therapeutic targeting

    PubMed Central

    Hsia, Elaine Y.; Goodson, Michael L.; Zou, June X.; Privalsky, Martin L.; Chen, Hong-Wu

    2012-01-01

    The complex function and regulation of nuclear receptors cannot be fully understood without a thorough knowledge of the receptor-associated coregulators that either enhance (coactivators) or inhibit (corepressors) transcription. While nuclear receptors themselves have garnered much attention as therapeutic targets, the clinical and etiological relevance of the coregulators to human diseases is increasingly recognized. Aberrant expression or function of coactivators and corepressors has been associated with malignant and metabolic disease development. Many of them are key epigenetic regulators and utilize enzymatic activities to modify chromatin through histone acetylation/deacetylation, histone methylation/demethylation or chromatin remodeling. In this review, we showcase and evaluate coregulators with the most promising therapeutic potential based on their physiological roles and involvement in various diseases that are revealed thus far. We also describe the structural features of the coactivator and corepressor functional domains and highlight areas that can be further explored for molecular targeting. PMID:20933027

  5. Nuclear bile acid signaling through the farnesoid X receptor.

    PubMed

    Mazuy, Claire; Helleboid, Audrey; Staels, Bart; Lefebvre, Philippe

    2015-05-01

    Bile acids (BAs) are amphipathic molecules produced from cholesterol by the liver. Expelled from the gallbladder upon meal ingestion, BAs serve as fat solubilizers in the intestine. BAs are reabsorbed in the ileum and return via the portal vein to the liver where, together with nutrients, they provide signals to coordinate metabolic responses. BAs act on energy and metabolic homeostasis through the activation of membrane and nuclear receptors, among which the nuclear receptor farnesoid X receptor (FXR) is an important regulator of several metabolic pathways. Highly expressed in the liver and the small intestine, FXR contributes to BA effects on metabolism, inflammation and cell cycle control. The pharmacological modulation of its activity has emerged as a potential therapeutic strategy for liver and metabolic diseases. This review highlights recent advances regarding the mechanisms by which the BA sensor FXR contributes to global signaling effects of BAs, and how FXR activity may be regulated by nutrient-sensitive signaling pathways. PMID:25511198

  6. System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability*

    PubMed Central

    Xiao, Zhenyu; Chang, Jer-Gung; Hendriks, Ivo A.; Sigurðsson, Jón Otti; Olsen, Jesper V.; Vertegaal, Alfred C.O.

    2015-01-01

    Genotoxic agents can cause replication fork stalling in dividing cells because of DNA lesions, eventually leading to replication fork collapse when the damage is not repaired. Small Ubiquitin-like Modifiers (SUMOs) are known to counteract replication stress, nevertheless, only a small number of relevant SUMO target proteins are known. To address this, we have purified and identified SUMO-2 target proteins regulated by replication stress in human cells. The developed methodology enabled single step purification of His10-SUMO-2 conjugates under denaturing conditions with high yield and high purity. Following statistical analysis on five biological replicates, a total of 566 SUMO-2 targets were identified. After 2 h of hydroxyurea treatment, 10 proteins were up-regulated for SUMOylation and two proteins were down-regulated for SUMOylation, whereas after 24 h, 35 proteins were up-regulated for SUMOylation, and 13 proteins were down-regulated for SUMOylation. A site-specific approach was used to map over 1000 SUMO-2 acceptor lysines in target proteins. The methodology is generic and is widely applicable in the ubiquitin field. A large subset of these identified proteins function in one network that consists of interacting replication factors, transcriptional regulators, DNA damage response factors including MDC1, ATR-interacting protein ATRIP, the Bloom syndrome protein and the BLM-binding partner RMI1, the crossover junction endonuclease EME1, BRCA1, and CHAF1A. Furthermore, centromeric proteins and signal transducers were dynamically regulated by SUMOylation upon replication stress. Our results uncover a comprehensive network of SUMO target proteins dealing with replication damage and provide a framework for detailed understanding of the role of SUMOylation to counteract replication stress. Ultimately, our study reveals how a post-translational modification is able to orchestrate a large variety of different proteins to integrate different nuclear processes with the

  7. SUMOylation of Syntaxin1A regulates presynaptic endocytosis

    PubMed Central

    Craig, Tim J.; Anderson, Dina; Evans, Ashley J.; Girach, Fatima; Henley, Jeremy M.

    2015-01-01

    Neurotransmitter release from the presynaptic terminal is under very precise spatial and temporal control. Following neurotransmitter release, synaptic vesicles are recycled by endocytosis and refilled with neurotransmitter. During the exocytosis event leading to release, SNARE proteins provide most of the mechanical force for membrane fusion. Here, we show one of these proteins, Syntaxin1A, is SUMOylated near its C-terminal transmembrane domain in an activity-dependent manner. Preventing SUMOylation of Syntaxin1A reduces its interaction with other SNARE proteins and disrupts the balance of synaptic vesicle endo/exocytosis, resulting in an increase in endocytosis. These results indicate that SUMOylation regulates the emerging role of Syntaxin1A in vesicle endocytosis, which in turn, modulates neurotransmitter release and synaptic function. PMID:26635000

  8. Re-adopting classical nuclear receptors by cholesterol metabolites.

    PubMed

    Umetani, Michihisa

    2016-03-01

    Since the first cloning of the human estrogen receptor (ER) α in 1986 and the subsequent cloning of human ERβ, there has been extensive investigation of the role of estrogen/ER. Estrogens/ER play important roles not only in sexual development and reproduction but also in a variety of other functions in multiple tissues. Selective Estrogen Receptor Modulators (SERMs) are ER lignds that act as agonists or antagonists depending on the target genes and tissues, and until recently, only synthetic SERMs have been recognized. However, the discovery of the first endogenous SERM, 27-hydroxycholesterol (27HC), opened a new dimension of ER action in health and disease. In addition to the identification of 27HC as a SERM, oxysterols have been recently demonstrated as indirect modulators of ER through interaction with the nuclear receptor Liver X Receptor (LXR) β. In this review, the recent progress on these novel roles of oxysterols in ER modulation is summarized. PMID:26563834

  9. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein.

    PubMed

    Vishwamitra, Deeksha; Curry, Choladda V; Shi, Ping; Alkan, Serhan; Amin, Hesham M

    2015-09-01

    Nucleophosmin-anaplastic lymphoma kinase-expressing (NPM-ALK+) T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5)(p23;q35) that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs) with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm. PMID:26476082

  10. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells.

    PubMed

    Barrios-García, Tonatiuh; Gómez-Romero, Vania; Tecalco-Cruz, Ángeles; Valadéz-Graham, Viviana; León-Del-Río, Alfonso

    2016-06-01

    Tristetraprolin (TTP) is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα), which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR), glucocorticoid receptor (GR) and androgen receptor (AR). In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors. PMID:27114912

  11. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells

    PubMed Central

    Barrios-García, Tonatiuh; Gómez-Romero, Vania; Tecalco-Cruz, Ángeles; Valadéz-Graham, Viviana; León-Del-Río, Alfonso

    2016-01-01

    Tristetraprolin (TTP) is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα), which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR), glucocorticoid receptor (GR) and androgen receptor (AR). In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors. PMID:27114912

  12. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  13. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects.

    PubMed

    di Masi, Alessandra; De Marinis, Elisabetta; Ascenzi, Paolo; Marino, Maria

    2009-10-01

    Nuclear receptors (NRs) are ligand-activated transcription factors sharing a common evolutionary history and having similar sequence features at the protein level. Selective ligand(s) for some NRs is not known, therefore these NRs have been named "orphan receptors". Whenever ligands have been recognized for any of the orphan receptor, it has been categorized and grouped as "adopted" orphan receptor. This group includes the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR). They function as sensors of toxic byproducts derived from endogenous metabolites and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. The broad response profile has established that CAR and PXR are xenobiotic sensors that coordinately regulate xenobiotic clearance in the liver and intestine via induction of genes involved in drug and xenobiotic metabolism. In the past few years, research has revealed new and mostly unsuspected roles for CAR and PXR in modulating hormone, lipid, and energy homeostasis as well as cancer and liver steatosis. The purpose of this review is to highlight the structural and molecular bases of CAR and PXR impact on human health, providing information on mechanisms through which diet, chemical exposure, and environment ultimately impact health and disease. PMID:19427329

  14. Nuclear Receptor Coactivators Are Coexpressed with Steroid Receptors and Regulated by Estradiol in Mouse Brain

    PubMed Central

    Tognoni, Christina M.; Chadwick, Joseph G.; Ackeifi, Courtney A.; Tetel, Marc J.

    2011-01-01

    Background/Aims The steroid hormones, including estradiol (E) and progesterone, act in the brain to regulate female reproductive behavior and physiology. These hormones mediate many of their biological effects by binding to their respective intracellular receptors. The receptors for estrogens (ER) and progestins (PR) interact with nuclear receptor coactivators to initiate transcription of steroid-responsive genes. Work from our laboratory and others reveals that nuclear receptor coactivators, including steroid receptor coactivator-1 (SRC-1) and SRC-2, function in brain to modulate ER-mediated induction of the PR gene and hormone-dependent behaviors. In order for steroid receptors and coactivators to function together, both must be expressed in the same cells. Methods Triple-label immunofluorescence was used to determine if E-induced PR cells also express SRC-1 or SRC-2 in reproductively relevant brain regions of the female mouse. Results The majority of E-induced PR cells in the medial preoptic area (61%), ventromedial nucleus of the hypothalamus (63%) and arcuate nucleus (76%) coexpressed both SRC-1 and SRC-2. A smaller proportion of PR cells expressed either SRC-1 or SRC-2, while a few PR cells expressed neither coactivator. In addition, compared to control animals, 17β-estradiol benzoate (EB) treatment increased SRC-1 levels in the arcuate nucleus, but not the medial preoptic area or the ventromedial nucleus of the hypothalamus. EB did not alter SRC-2 expression in any of the three brain regions analyzed. Conclusions Taken together, the present findings identify a population of cells in which steroid receptors and nuclear receptor coactivators may interact to modulate steroid sensitivity in brain and regulate hormone-dependent behaviors in female mice. Given that cell culture studies reveal that SRC-1 and SRC-2 can mediate distinct steroid-signaling pathways, the present findings suggest that steroids can produce a variety of complex responses in these

  15. SUMOylation regulates polo-like kinase 1-interacting checkpoint helicase (PICH) during mitosis.

    PubMed

    Sridharan, Vinidhra; Park, Hyewon; Ryu, Hyunju; Azuma, Yoshiaki

    2015-02-01

    Mitotic SUMOylation has an essential role in faithful chromosome segregation in eukaryotes, although its molecular consequences are not yet fully understood. In Xenopus egg extract assays, we showed that poly(ADP-ribose) polymerase 1 (PARP1) is modified by SUMO2/3 at mitotic centromeres and that its enzymatic activity could be regulated by SUMOylation. To determine the molecular consequence of mitotic SUMOylation, we analyzed SUMOylated PARP1-specific binding proteins. We identified Polo-like kinase 1-interacting checkpoint helicase (PICH) as an interaction partner of SUMOylated PARP1 in Xenopus egg extract. Interestingly, PICH also bound to SUMOylated topoisomerase IIα (TopoIIα), a major centromeric small ubiquitin-like modifier (SUMO) substrate. Purified recombinant human PICH interacted with SUMOylated substrates, indicating that PICH directly interacts with SUMO, and this interaction is conserved among species. Further analysis of mitotic chromosomes revealed that PICH localized to the centromere independent of mitotic SUMOylation. Additionally, we found that PICH is modified by SUMO2/3 on mitotic chromosomes and in vitro. PICH SUMOylation is highly dependent on protein inhibitor of activated STAT, PIASy, consistent with other mitotic chromosomal SUMO substrates. Finally, the SUMOylation of PICH significantly reduced its DNA binding capability, indicating that SUMOylation might regulate its DNA-dependent ATPase activity. Collectively, our findings suggest a novel SUMO-mediated regulation of the function of PICH at mitotic centromeres. PMID:25564610

  16. Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases.

    PubMed

    Chen, Mei-Kuang; Hung, Mien-Chie

    2015-10-01

    Intracellular localization has been reported for over three-quarters of receptor tyrosine kinase (RTK) families in response to environmental stimuli. Internalized RTK may bind to non-canonical substrates and affect various cellular processes. Many of the intracellular RTKs exist as fragmented forms that are generated by γ-secretase cleavage of the full-length receptor, shedding, alternative splicing, or alternative translation initiation. Soluble RTK fragments are stabilized and intracellularly transported into subcellular compartments, such as the nucleus, by binding to chaperone or transcription factors, while membrane-bound RTKs (full-length or truncated) are transported from the plasma membrane to the ER through the well-established Rab- or clathrin adaptor protein-coated vesicle retrograde trafficking pathways. Subsequent nuclear transport of membrane-bound RTK may occur via two pathways, INFS or INTERNET, with the former characterized by release of receptors from the ER into the cytosol and the latter characterized by release of membrane-bound receptor from the ER into the nucleoplasm through the inner nuclear membrane. Although most non-canonical intracellular RTK signaling is related to transcriptional regulation, there may be other functions that have yet to be discovered. In this review, we summarize the proteolytic processing, intracellular trafficking and nuclear functions of RTKs, and discuss how they promote cancer progression, and their clinical implications. PMID:26096795

  17. Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid-Activated Receptor

    SciTech Connect

    Kruse, Schoen W; Suino-Powell, Kelly; Zhou, X Edward; Kretschman, Jennifer E; Reynolds, Ross; Vonrhein, Clemens; Xu, Yong; Wang, Liliang; Tsai, Sophia Y; Tsai, Ming-Jer; Xu, H Eric

    2010-01-12

    The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 {angstrom} crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix {alpha}10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.

  18. Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation

    PubMed Central

    Wong, Madeline M; Guo, Chun; Zhang, Jinsong

    2014-01-01

    Nuclear receptor corepressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) function as corepressors for diverse transcription factors including nuclear receptors such as estrogen receptors and androgen receptors. Deregulated functions of NCoR and SMRT have been observed in many types of cancers and leukemias. NCoR and SMRT directly bind to transcription factors and nucleate the formation of stable complexes that include histone deacetylase 3, transducin b-like protein 1/TBL1-related protein 1, and G-protein pathway suppressor 2. These NCoR/SMRT-interacting proteins also show deregulated functions in cancers. In this review, we summarize the literature on the mechanism, regulation, and function of the core components of NCoR/SMRT complexes in the context of their involvement in cancers and leukemias. While the current studies support the view that the corepressors are promising targets for cancer treatment, elucidation of the mechanisms of corepressors involved in individual types of cancers is likely required for effective therapy. PMID:25374920

  19. Solubility shift and SUMOylaltion of promyelocytic leukemia (PML) protein in response to arsenic(III) and fate of the SUMOylated PML

    SciTech Connect

    Hirano, Seishiro; Tadano, Mihoko; Kobayashi, Yayoi; Udagawa, Osamu; Kato, Ayaka

    2015-09-15

    Promyelocytic leukemia (PML), which is a tumor suppressor protein that nevertheless plays an important role in the maintenance of leukemia initiating cells, is known to be biochemically modified by As{sup 3+}. We recently developed a simple method to evaluate the modification of PML by As{sup 3+} resulting in a change in solubility and the covalent binding of small ubiquitin-like modifier (SUMO). Here we semi-quantitatively investigated the SUMOylation of PML using HEK293 cells which were stably transfected with PML-VI (HEK-PML). Western blot analyses indicated that PML became insoluble in cold RadioImmunoPrecipitation Assay (RIPA) lysis buffer and was SUMOylated by both SUMO2/3 and SUMO1 by As{sup 3+}. Surprisingly SUMO1 monomers were completely utilized for the SUMOylation of PML. Antimony (Sb{sup 3+}) but not bismuth (Bi{sup 3+}), Cu{sup 2+}, or Cd{sup 2+} biochemically modified PML similarly. SUMOylated PML decreased after removal of As{sup 3+} from the culture medium. However, unSUMOylated PML was still recovered in the RIPA-insoluble fraction, suggesting that SUMOylation is not requisite for changing the RIPA-soluble PML into the RIPA-insoluble form. Immunofluorescence staining of As{sup 3+}-exposed cells indicated that SUMO2/3 was co-localized with PML in the nuclear bodies. However, some PML protein was present in peri-nuclear regions without SUMO2/3. Functional Really Interesting New Gene (RING)-deleted mutant PML neither formed PML nuclear bodies nor was biochemically modified by As{sup 3+}. Conjugation with intracellular glutathione may explain the accessibility of As{sup 3+} and Sb{sup 3+} to PML in the nuclear region evading chelation and entrapping by cytoplasmic proteins such as metallothioneins. - Highlights: • As{sup 3+} is a carcinogen and also a therapeutic agent for leukemia. • PML becomes insoluble in RIPA and SUMOylated by As{sup 3+}. • Sb{sup 3+} modifies PML similar to As{sup 3+}. • Functional RING motif is necessary for As{sup 3

  20. Defining the SUMO System in Maize: SUMOylation Is Up-Regulated during Endosperm Development and Rapidly Induced by Stress1[OPEN

    PubMed Central

    Augustine, Robert C.; Rytz, Thérèse C.

    2016-01-01

    In response to abiotic and biotic challenges, plants rapidly attach small ubiquitin-related modifier (SUMO) to a large collection of nuclear proteins, with studies in Arabidopsis (Arabidopsis thaliana) linking SUMOylation to stress tolerance via its modification of factors involved in chromatin and RNA dynamics. Despite this importance, little is known about SUMOylation in crop species. Here, we describe the plant SUMO system at the phylogenetic, biochemical, and transcriptional levels with a focus on maize (Zea mays). In addition to canonical SUMOs, land plants encode a loosely constrained noncanonical isoform and a variant containing a long extension upstream of the signature β-grasp fold, with cereals also expressing a novel diSUMO polypeptide bearing two SUMO β-grasp domains in tandem. Maize and other cereals also synthesize a unique SUMO-conjugating enzyme variant with more restricted expression patterns that is enzymatically active despite a distinct electrostatic surface. Maize SUMOylation primarily impacts nuclear substrates, is strongly induced by high temperatures, and displays a memory that suppresses subsequent conjugation. Both in-depth transcript and conjugate profiles in various maize organs point to tissue/cell-specific functions for SUMOylation, with potentially significant roles during embryo and endosperm maturation. Collectively, these studies define the organization of the maize SUMO system and imply important functions during seed development and stress defense. PMID:27208252

  1. Novel roles of nuclear angiotensin receptors and signaling mechanisms.

    PubMed

    Gwathmey, TanYa M; Alzayadneh, Ebaa M; Pendergrass, Karl D; Chappell, Mark C

    2012-03-01

    The renin-angiotensin system (RAS) constitutes an important hormonal system in the physiological regulation of blood pressure. The dysregulation of the RAS is considered a major influence in the development and progression of cardiovascular disease and other pathologies. Indeed, experimental and clinical evidence indicates that blockade of this system with angiotensin-converting enzyme (ACE) inhibitors or angiotensin type 1 receptor (AT1R) antagonists is an effective therapy to attenuate hypertension and diabetic renal injury, and to improve heart failure. Originally defined as a circulating system, multiple tissues express a complete RAS, and compelling evidence now favors an intracellular system involved in cell signaling and function. Within the kidney, intracellular expression of the three predominant ANG receptor subtypes is evident in the nuclear compartment. The ANG type 1 receptor (AT1R) is coupled to the generation of reactive oxygen species (ROS) through the activation of phosphoinositol-3 kinase (PI3K) and PKC. In contrast, both ANG type 2 (AT2R) and ANG-(1-7) (AT7R) receptors stimulate nitric oxide (NO) formation, which may involve nuclear endothelial NO synthase (eNOS). Moreover, blockade of either ACE2-the enzyme that converts ANG II to ANG-(1-7)-or the AT7 receptor exacerbates the ANG II-ROS response on renal nuclei. Finally, in a model of fetal programmed hypertension, the nuclear ROS response to ANG II is enhanced, while both AT2 and AT7 stimulation of NO is attenuated, suggesting that an imbalance in the intracellular RAS may contribute to the development of programming events. We conclude that a functional intracellular or nuclear RAS may have important implications in the therapeutic approaches to cardiovascular disease. PMID:22170620

  2. Ubiquitination and sumoylation of the HTLV-2 Tax-2B protein regulate its NF-κB activity: a comparative study with the HTLV-1 Tax-1 protein

    PubMed Central

    2012-01-01

    Background Retroviruses HTLV-1 and HTLV-2 have homologous genomic structures but differ significantly in pathogenicity. HTLV-1 is associated with Adult T cell Leukemia (ATL), whereas infection by HTLV-2 has no association with neoplasia. Transformation of T lymphocytes by HTLV-1 is linked to the capacity of its oncoprotein Tax-1 to alter cell survival and cell cycle control mechanisms. Among these functions, Tax-1-mediated activation of cellular gene expression via the NF-κB pathway depends on Tax-1 post-translational modifications by ubiquitination and sumoylation. The Tax-2 protein of HTLV-2B (Tax-2B) is also modified by ubiquitination and sumoylation and activates the NF-κB pathway to a level similar to that of Tax-1. The present study aims to understand whether ubiquitination and sumoylation modifications are involved in Tax-2B-mediated activation of the NF-κB pathway. Results The comparison of Tax-1 and Tax-2B lysine to arginine substitution mutants revealed conserved patterns and levels of ubiquitination with notable difference in the lysine usage for sumoylation. Neither Tax-1 nor Tax-2B ubiquitination and sumoylation deficient mutants could activate the NF-κB pathway and fusion of ubiquitin or SUMO-1 to the C-terminus of the ubiquitination and sumoylation deficient Tax-2B mutant strikingly restored transcriptional activity. In addition, ubiquitinated forms of Tax-2B colocalized with RelA and IKKγ in prominent cytoplasmic structures associated with the Golgi apparatus, whereas colocalization of Tax-2B with the RelA subunit of NF-κB and the transcriptional coactivator p300 in punctate nuclear structures was dependent on Tax-2B sumoylation, as previously observed for Tax-1. Conclusions Both Tax-1 and Tax-2 activate the NF-κB pathway via similar mechanisms involving ubiquitination and sumoylation. Therefore, the different transforming potential of HTLV-1 and HTLV-2 is unlikely to be related to different modes of activation of the canonical NF-κB pathway

  3. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    SciTech Connect

    Barbarin, Alice; Séité, Paule; Godet, Julie; Bensalma, Souheyla; Muller, Jean-Marc; Chadéneau, Corinne

    2014-11-28

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  4. Prediction of sumoylation sites in proteins using linear discriminant analysis.

    PubMed

    Xu, Yan; Ding, Ya-Xin; Deng, Nai-Yang; Liu, Li-Ming

    2016-01-15

    Sumoylation is a multifunctional post-translation modification (PTM) in proteins by the small ubiquitin-related modifiers (SUMOs), which have relations to ubiquitin in molecular structure. Sumoylation has been found to be involved in some cellular processes. It is very significant to identify the exact sumoylation sites in proteins for not only basic researches but also drug developments. Comparing with time exhausting experiment methods, it is highly desired to develop computational methods for prediction of sumoylation sites as a complement to experiment in the post-genomic age. In this work, three feature constructions (AAIndex, position-specific amino acid propensity and modification of composition of k-space amino acid pairs) and five different combinations of them were used to construct features. At last, 178 features were selected as the optimal features according to the Mathew's correlation coefficient values in 10-fold cross validation based on linear discriminant analysis. In 10-fold cross-validation on the benchmark dataset, the accuracy and Mathew's correlation coefficient were 86.92% and 0.6845. Comparing with those existing predictors, SUMO_LDA showed its better performance. PMID:26432000

  5. MafG Sumoylation Is Required for Active Transcriptional Repression

    PubMed Central

    Motohashi, Hozumi; Katsuoka, Fumiki; Miyoshi, Chika; Uchimura, Yasuhiro; Saitoh, Hisato; Francastel, Claire; Engel, James Douglas; Yamamoto, Masayuki

    2006-01-01

    A straightforward mechanism for eliciting transcriptional repression would be to simply block the DNA binding site for activators. Such passive repression is often mediated by transcription factors that lack an intrinsic repressor activity. MafG is a bidirectional regulator of transcription, a repressor in its homodimeric state but an activator when heterodimerized with p45. Here, we report that MafG is conjugated to SUMO-2/3 in vivo. To clarify the possible physiological role(s) for sumoylation in regulating MafG activity, we evaluated mutant and wild-type MafG in transgenic mice and cultured cells. Whereas sumoylation-deficient MafG activated p45-dependent transcription normally and did not affect heterodimer activity, repression by the sumoylation-deficient MafG mutant was severely compromised in vivo. Furthermore, the SUMO-dependent repression activity of MafG was sensitive to histone deacetylase inhibition. Thus, repression by MafG is not achieved through simple passive repression by competing for the activator binding site but requires sumoylation, which then mediates transcriptional repression through recruitment of a repressor complex containing histone deacetylase activity. PMID:16738329

  6. Shp2 SUMOylation promotes ERK activation and hepatocellular carcinoma development

    PubMed Central

    Deng, Rong; Zhao, Xian; Qu, YingYing; Chen, Cheng; Zhu, Changhong; Zhang, Hailong; Yuan, Haihua; Jin, Hui; Liu, Xin; Wang, Yanli; Chen, Qin; Huang, Jian; Yu, Jianxiu

    2015-01-01

    Shp2, an ubiquitously expressed protein tyrosine phosphatase, is essential for regulation of Ras/ERK signaling pathway and tumorigenesis. Here we report that Shp2 is modified by SUMO1 at lysine residue 590 (K590) in its C-terminus, which is reduced by SUMO1-specific protease SENP1. Analysis of wild-type Shp2 and SUMOylation-defective Shp2K590R mutant reveals that SUMOylation of Shp2 promotes EGF-stimulated ERK signaling pathway and increases anchorage-independent cell growth and xenografted tumor growth of hepatocellular carcinoma (HCC) cell lines. Furthermore, we find that mutant Shp2K590R reduces its binding with the scaffolding protein Gab1, and consistent with this, knockdown of SENP1 increased the interaction between Shp2 and Gab1. More surprisingly, we show that human Shp2 (hShp2) and mouse Shp2 (mShp2) have differential effects on ERK activation as a result of different SUMOylation level, which is due to the event of K590 at hShp2 substituted by R594 at mShp2. In summary, our data demonstrate that SUMOylation of Shp2 promotes ERK activation via facilitating the formation of Shp2-Gab1 complex and thereby accelerates HCC cell and tumor growth, which presents a novel regulatory mechanism underlying Shp2 in regulation of HCC development. PMID:25823821

  7. The yeast nuclear import receptor is required for mitosis.

    PubMed Central

    Loeb, J D; Schlenstedt, G; Pellman, D; Kornitzer, D; Silver, P A; Fink, G R

    1995-01-01

    The nuclear import system is highly conserved among eukaryotes. Here we report the effects of a conditional mutation in SRP1, which encodes a Saccharomyces cerevisiae homolog of the vertebrate nuclear import receptor importin. Importin was isolated as a factor required for the initial targeting step of a nuclear import substrate to the nuclear envelope in a mammalian in vitro assay. We show that yeast Srp1 is similarly required for protein import. In addition, Srp1 is also required for the execution of mitosis: we demonstrate that cells containing a conditional mutation of SRP1 arrest with a G2/M phenotype in a manner analogous to classic cdc mutants. This defect may be due to the failure of the mutant to degrade the mitotic cyclin Clb2 and other proteins required for mitosis. The requirement of a nuclear import receptor for cell cycle-regulated proteolysis implies that import of cell cycle regulators into the nucleus is critical for cell cycle progression. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7644471

  8. Nuclear receptors linking circadian rhythms and cardiometabolic control

    PubMed Central

    Duez, Hélène; Staels, Bart

    2010-01-01

    Many behavioral and physiological processes, including locomotor activity, blood pressure, body temperature, sleep(fasting)/wake(feeding) cycles as well as metabolic regulation display diurnal rhythms. The biological clock ensures proper metabolic alignment of energy substrate availability and processing. Studies in animals and humans highlight a strong link between circadian disorders and altered metabolic responses and cardiovascular events. Shiftwork, for instance, increases the risk to develop metabolic abnormalities resembling the Metabolic Syndrome. Nuclear receptors have long been known as metabolic regulators. Several of them (ie. Rev-erbα, RORα, PPARs) are subjected to circadian variations and are integral components of the molecular clock machinery. In turn, these nuclear receptors regulate downstream target genes in a circadian manner, acting to properly gate metabolic events to the appropriate circadian time window. PMID:20631353

  9. An evolving understanding of nuclear receptor coregulator proteins

    PubMed Central

    Millard, Christopher J.; Watson, Peter J.; Fairall, Louise; Schwabe, John W.R.

    2014-01-01

    Nuclear receptors are transcription factors that regulate gene expression through the ligand-controlled recruitment of a diverse group of proteins known as coregulators. Most nuclear receptor coregulators function in large multi-protein complexes that modify chromatin and thereby regulate the transcription of target genes. Structural and functional studies are beginning to reveal how these complexes are assembled bringing together multiple functionalities that mediate: recruitment to specific genomic loci through interaction with transcription factors; recruitment of enzymatic activities that either modify or remodel chromatin; and targeting the complexes to their chromatin substrate. These activities are regulated by post-translational modifications, alternative splicing and small signalling molecules. This review focuses on our current understanding of coregulator complexes and aims to highlight the common principles that are beginning to emerge. PMID:24203923

  10. The DHR96 nuclear receptor controls triacylglycerol homeostasis in Drosophila.

    PubMed

    Sieber, Matthew H; Thummel, Carl S

    2009-12-01

    Triacylglycerol (TAG) homeostasis is an integral part of normal physiology and essential for proper energy metabolism. Here we show that the single Drosophila ortholog of the PXR and CAR nuclear receptors, DHR96, plays an essential role in TAG homeostasis. DHR96 mutants are sensitive to starvation, have reduced levels of TAG in the fat body and midgut, and are resistant to diet-induced obesity, while DHR96 overexpression leads to starvation resistance and increased TAG levels. We show that DHR96 function is required in the midgut for the breakdown of dietary fat and that it exerts this effect through the CG5932 gastric lipase, which is essential for TAG homeostasis. This study provides insights into the regulation of dietary fat metabolism in Drosophila and demonstrates that the regulation of lipid metabolism is an ancestral function of the PXR/CAR/DHR96 nuclear receptor subfamily. PMID:19945405

  11. Nuclear shuttling precedes dimerization in mineralocorticoid receptor signaling.

    PubMed

    Grossmann, Claudia; Ruhs, Stefanie; Langenbruch, Lisa; Mildenberger, Sigrid; Strätz, Nicole; Schumann, Katja; Gekle, Michael

    2012-06-22

    The mineralocorticoid receptor (MR), a member of the steroid receptor superfamily, regulates water-electrolyte balance and mediates pathophysiological effects in the renocardiovascular system. Previously, it was assumed that after binding aldosterone, the MR dissociates from HSP90, forms homodimers, and then translocates into the nucleus where it acts as a transcription factor (Guiochon-Mantel et al., 1989; Robertson et al., 1993; Savory et al., 2001). We found that, during aldosterone-induced nuclear translocation, MR is bound to HSP90 both in the cytosol and the nucleus. Homodimerization measured by eBRET and FRET takes place when the MR is already predominantly nuclear. In vitro binding of MR to DNA was independent of ligand but could be partially inhibited by geldanamycin. Overall, here we provide insights into classical MR signaling necessary for elucidating the mechanisms of pathophysiological MR effects and MR specificity. PMID:22726688

  12. A comprehensive nuclear receptor network for breast cancer cells.

    PubMed

    Kittler, Ralf; Zhou, Jie; Hua, Sujun; Ma, Lijia; Liu, Yuwen; Pendleton, Elisha; Cheng, Chao; Gerstein, Mark; White, Kevin P

    2013-02-21

    In breast cancer, nuclear receptors (NRs) play a prominent role in governing gene expression, have prognostic utility, and are therapeutic targets. We built a regulatory map for 24 NRs, six chromatin state markers, and 14 breast-cancer-associated transcription factors (TFs) that are expressed in the breast cancer cell line MCF-7. The resulting network reveals a highly interconnected regulatory matrix where extensive crosstalk occurs among NRs and other breast -cancer-associated TFs. We show that large numbers of factors are coordinately bound to highly occupied target regions throughout the genome, and these regions are associated with active chromatin state and hormone-responsive gene expression. This network also provides a framework for stratifying and predicting patient outcomes, and we use it to show that the peroxisome proliferator-activated receptor delta binds to a set of genes also regulated by the retinoic acid receptors and whose expression is associated with poor prognosis in breast cancer. PMID:23375374

  13. Improving the classification of nuclear receptors with feature selection.

    PubMed

    Gao, Qing-Bin; Jin, Zhi-Chao; Ye, Xiao-Fei; Wu, Cheng; Lu, Jian; He, Jia

    2009-01-01

    Nuclear receptors are involved in multiple cellular signaling pathways that affect and regulate processes. Because of their physiology and pathophysiology significance, classification of nuclear receptors is essential for the proper understanding of their functions. Bhasin and Raghava have shown that the subfamilies of nuclear receptors are closely correlated with their amino acid composition and dipeptide composition [29]. They characterized each protein by a 400 dimensional feature vector. However, using high dimensional feature vectors for characterization of protein sequences will increase the computational cost as well as the risk of overfitting. Therefore, using only those features that are most relevant to the present task might improve the prediction system, and might also provide us with some biologically useful knowledge. In this paper a feature selection approach was proposed to identify relevant features and a prediction engine of support vector machines was developed to estimate the prediction accuracy of classification using the selected features. A reduced subset containing 30 features was accepted to characterize the protein sequences in view of its good discriminative power towards the classes, in which 18 are of amino acid composition and 12 are of dipeptide composition. This reduced feature subset resulted in an overall accuracy of 98.9% in a 5-fold cross-validation test, higher than 88.7% of amino acid composition based method and almost as high as 99.3% of dipeptide composition based method. Moreover, an overall accuracy of 93.7% was reached when it was evaluated on a blind data set of 63 nuclear receptors. On the other hand, an overall accuracy of 96.1% and 95.2% based on the reduced 12 dipeptide compositions was observed simultaneously in the 5-fold cross-validation test and the blind data set test, respectively. These results demonstrate the effectiveness of the present method. PMID:19601913

  14. Pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors as emerging players in cancer precision medicine.

    PubMed

    De Mattia, Elena; Cecchin, Erika; Roncato, Rossana; Toffoli, Giuseppe

    2016-09-01

    Great research effort has been focused on elucidating the contribution of host genetic variability on pharmacological outcomes in cancer. Nuclear receptors have emerged as mediators between environmental stimuli and drug pharmacokinetics and pharmacodynamics. The pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors have been reported to regulate transcription of genes that encode drug metabolizing enzymes and transporters. Altered nuclear receptor expression has been shown to affect the metabolism and pharmacological profile of traditional chemotherapeutics and targeted agents. Accordingly, polymorphic variants in these genes have been studied as pharmacogenetic markers of outcome variability. This review summarizes the state of knowledge about the roles played by pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factor expression and genetics as predictive markers of anticancer drug toxicity and efficacy, which can improve cancer precision medicine. PMID:27561454

  15. Nuclear receptor coactivators: Essential players in steroid hormone action in brain and behavior

    PubMed Central

    Tetel, Marc J.

    2009-01-01

    Steroid hormones act in brain and throughout the body to influence behavior and physiology. Many of these effects of steroid hormones are elicited by transcriptional events mediated by their respective receptors. A variety of cell culture studies reveal that nuclear receptor coactivators are critical in modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coactivators are essential for steroid-dependent transactivation of genes. This review will discuss the mounting evidence that nuclear receptor coactivators are critical in modulating steroid hormone action in brain and the regulation of behavior. PMID:19207820

  16. Harnessing the nuclear receptor PPARγ to inhibit the growth of lung adenocarcinoma by rewiring metabolic circuitries

    PubMed Central

    Yenerall, Paul; Kittler, Ralf

    2015-01-01

    Altered metabolism and nuclear receptor activity have been reported in various cancer types. Here, we discuss our recent finding that the metabolic state of lung adenocarcinoma cells expressing the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) can be modulated by thiazolidinediones, culminating in accumulation of reactive oxygen species and decreased proliferation. PMID:27308443

  17. Harnessing the nuclear receptor PPARγ to inhibit the growth of lung adenocarcinoma by rewiring metabolic circuitries.

    PubMed

    Yenerall, Paul; Kittler, Ralf

    2015-01-01

    Altered metabolism and nuclear receptor activity have been reported in various cancer types. Here, we discuss our recent finding that the metabolic state of lung adenocarcinoma cells expressing the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) can be modulated by thiazolidinediones, culminating in accumulation of reactive oxygen species and decreased proliferation. PMID:27308443

  18. Nuclear receptors and their relevance to diseases related to lipid metabolism.

    PubMed

    Berkenstam, Anders; Gustafsson, Jan-Ake

    2005-04-01

    Drugs that target the nuclear hormone receptor family constitute one of the largest and most potent groups of pharmaceuticals currently in use. However, although many of these human nuclear receptors have been clearly demonstrated to be key sensors and regulators of lipid metabolism, the full pharmacological potential of this drug target class has not been fully explored. There are two main reasons for this. First, a rationale approach is needed to identify pharmacologically selective drug candidates to nuclear receptors that have a large therapeutic window between the beneficial effects and the unwanted side effects. This appears to apply to all ligand-regulated nuclear receptors, including those nuclear receptors more recently proposed as novel targets for diseases related to lipid metabolism such as the peroxisome proliferator-activated receptors, liver X receptors and farnesoid X-activated receptor. The second reason is that any sub-group of nuclear receptors important for the regulation of lipid metabolism might be pharmacologically inaccessible by conventional low molecular weight compounds, owing to the lack of a classical ligand-binding-pocket, as recently revealed by X-ray crystallography. Accordingly, targeting of classical nuclear receptor family members with better characterized endocrinology and roles in lipid metabolism, such as the thyroid and steroid hormone receptors, could become of renewed pharmacological interest, as these targets provide well-characterized alternatives to the more recently discovered nuclear receptors. PMID:15780827

  19. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    PubMed

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  20. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor

    PubMed Central

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick

    2016-01-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)–forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  1. Regulation of hepatic energy metabolism by the nuclear receptor PXR.

    PubMed

    Hakkola, Jukka; Rysä, Jaana; Hukkanen, Janne

    2016-09-01

    The pregnane X receptor (PXR) is a nuclear receptor that is traditionally thought to be specialized for sensing xenobiotic exposure. In concurrence with this feature PXR was originally identified to regulate drug-metabolizing enzymes and transporters. During the last ten years it has become clear that PXR harbors broader functions. Evidence obtained both in experimental animals and humans indicate that ligand-activated PXR regulates hepatic glucose and lipid metabolism and affects whole body metabolic homeostasis. Currently, the consequences of PXR activation on overall metabolic health are not yet fully understood and varying results on the effect of PXR activation or knockout on metabolic disorders and weight gain have been published in mouse models. Rifampicin and St. John's wort, the prototypical human PXR agonists, impair glucose tolerance in healthy volunteers. Chronic exposure to PXR agonists could potentially represent a risk factor for diabetes and metabolic syndrome. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:27041449

  2. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    PubMed

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. PMID:27048878

  3. Modulation of steroid action in the central and peripheral nervous systems by nuclear receptor coactivators

    PubMed Central

    Tetel, Marc J.

    2009-01-01

    Steroid hormones act in the central and peripheral nervous systems to regulate a variety of functions, including development, cell proliferation, cognition and behavior. Many of these effects of steroid hormones are mediated by their respective receptors, which are members of the nuclear receptor superfamily of transcriptional activators. A variety of cell culture studies reveal that nuclear receptor coactivators are recruited to the steroid receptor complex and are critical in modulating steroid-dependent transcription. Thus, in addition to the availability of the hormone and its receptor, the expression of nuclear receptor coactivators is essential for modulating steroid receptor mediated transcription. This review will discuss the significance of nuclear receptor coactivators in modulating steroid-dependent gene expression in the central and peripheral nervous systems and the regulation of behavior. PMID:19541426

  4. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex

    NASA Astrophysics Data System (ADS)

    Ricci, Clarisse G.; Silveira, Rodrigo L.; Rivalta, Ivan; Batista, Victor S.; Skaf, Munir S.

    2016-01-01

    Understanding the nature of allostery in DNA-nuclear receptor (NR) complexes is of fundamental importance for drug development since NRs regulate the transcription of a myriad of genes in humans and other metazoans. Here, we investigate allostery in the peroxisome proliferator-activated/retinoid X receptor heterodimer. This important NR complex is a target for antidiabetic drugs since it binds to DNA and functions as a transcription factor essential for insulin sensitization and lipid metabolism. We find evidence of interdependent motions of Ω-loops and PPARγ-DNA binding domain with contacts susceptible to conformational changes and mutations, critical for regulating transcriptional functions in response to sequence-dependent DNA dynamics. Statistical network analysis of the correlated motions, observed in molecular dynamics simulations, shows preferential allosteric pathways with convergence centers comprised of polar amino acid residues. These findings are particularly relevant for the design of allosteric modulators of ligand-dependent transcription factors.

  5. Bile acid nuclear receptor FXR and digestive system diseases

    PubMed Central

    Ding, Lili; Yang, Li; Wang, Zhengtao; Huang, Wendong

    2015-01-01

    Bile acids (BAs) are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases. PMID:26579439

  6. Human Xenobiotic Nuclear Receptor PXR Augments Mycobacterium tuberculosis Survival.

    PubMed

    Bhagyaraj, Ella; Nanduri, Ravikanth; Saini, Ankita; Dkhar, Hedwin Kitdorlang; Ahuja, Nancy; Chandra, Vemika; Mahajan, Sahil; Kalra, Rashi; Tiwari, Drishti; Sharma, Charu; Janmeja, Ashok Kumar; Gupta, Pawan

    2016-07-01

    Mycobacterium tuberculosis can evade host defense processes, thereby ensuring its survival and pathogenesis. In this study, we investigated the role of nuclear receptor, pregnane X receptor (PXR), in M. tuberculosis infection in human monocyte-derived macrophages. In this study, we demonstrate that PXR augments M. tuberculosis survival inside the host macrophages by promoting the foamy macrophage formation and abrogating phagolysosomal fusion, inflammation, and apoptosis. Additionally, M. tuberculosis cell wall lipids, particularly mycolic acids, crosstalk with human PXR (hPXR) by interacting with its promiscuous ligand binding domain. To confirm our in vitro findings and to avoid the reported species barrier in PXR function, we adopted an in vivo mouse model expressing hPXR, wherein expression of hPXR in mice promotes M. tuberculosis survival. Therefore, pharmacological intervention and designing antagonists to hPXR may prove to be a promising adjunct therapy for tuberculosis. PMID:27233963

  7. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex

    PubMed Central

    Ricci, Clarisse G.; Silveira, Rodrigo L.; Rivalta, Ivan; Batista, Victor S.; Skaf, Munir S.

    2016-01-01

    Understanding the nature of allostery in DNA-nuclear receptor (NR) complexes is of fundamental importance for drug development since NRs regulate the transcription of a myriad of genes in humans and other metazoans. Here, we investigate allostery in the peroxisome proliferator-activated/retinoid X receptor heterodimer. This important NR complex is a target for antidiabetic drugs since it binds to DNA and functions as a transcription factor essential for insulin sensitization and lipid metabolism. We find evidence of interdependent motions of Ω-loops and PPARγ-DNA binding domain with contacts susceptible to conformational changes and mutations, critical for regulating transcriptional functions in response to sequence-dependent DNA dynamics. Statistical network analysis of the correlated motions, observed in molecular dynamics simulations, shows preferential allosteric pathways with convergence centers comprised of polar amino acid residues. These findings are particularly relevant for the design of allosteric modulators of ligand-dependent transcription factors. PMID:26823026

  8. Bile acid nuclear receptor FXR and digestive system diseases.

    PubMed

    Ding, Lili; Yang, Li; Wang, Zhengtao; Huang, Wendong

    2015-03-01

    Bile acids (BAs) are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases. PMID:26579439

  9. High glucose induces activation of NF-κB inflammatory signaling through IκBα sumoylation in rat mesangial cells

    SciTech Connect

    Huang, Wei; Xu, Ling; Zhou, Xueqin; Gao, Chenlin; Yang, Maojun; Chen, Guo; Zhu, Jianhua; Jiang, Lan; Gan, Huakui; Gou, Fang; Feng, Hong; Peng, Juan; Xu, Yong

    2013-08-30

    Highlights: •The expression of SUMO1, SUMO2/3 under high glucose was obviously enhanced. •High glucose induced degradation of IκBα and activation of NF-κB pathway. •Sumoylation of IκBα in high glucose were significantly decreased. •The proteasome inhibitor MG132 could partially revert the degradation of IκBα. -- Abstract: The posttranslational modification of proteins by small ubiquitin-like modifiers (SUMOs) has emerged as an important regulatory mechanism for the alteration of protein activity, stability, and cellular localization. The latest research demonstrates that sumoylation is extensively involved in the regulation of the nuclear factor κB (NF-κB) pathway, which plays a critical role in the regulation of inflammation and contributes to fibrosis in diabetic nephropathy (DN). However, the role of sumoylation in the regulation of NF-κB signaling in DN is still unclear. In the present study, we cultured rat glomerular mesangial cells (GMCs) stimulated by high glucose and divided GMCs into six groups: normal glucose group (5.6 mmol/L), high glucose groups (10, 20, and 30 mmol/L), mannitol group (i.e., osmotic control group), and MG132 intervention group (30 mmol/L glucose with MG132, a proteasome inhibitor). The expression of SUMO1, SUMO2/3, IκBα, NF-κBp65, and monocyte chemotactic protein 1 (MCP-1) was measured by Western blot, reverse-transcription polymerase chain reaction, and indirect immunofluorescence laser scanning confocal microscopy. The interaction between SUMO1, SUMO2/3, and IκBα was observed by co-immunoprecipitation. The results showed that the expression of SUMO1 and SUMO2/3 was dose- and time-dependently enhanced by high glucose (p < 0.05). However, the expression of IκBα sumoylation in high glucose was significantly decreased compared with the normal glucose group (p < 0.05). The expression of IκBα was dose- and time-dependently decreased, and NF-κBp65 and MCP-1 were increased under high glucose conditions, which

  10. The Key Regulator for Language and Speech Development, FOXP2, is a Novel Substrate for SUMOylation.

    PubMed

    Meredith, Leslie J; Wang, Chiung-Min; Nascimento, Leticia; Liu, Runhua; Wang, Lizhong; Yang, Wei-Hsiung

    2016-02-01

    Transcription factor forkhead box protein P2 (FOXP2) plays an essential role in the development of language and speech. However, the transcriptional activity of FOXP2 regulated by the post-translational modifications remains unknown. Here, we demonstrated that FOXP2 is clearly defined as a SUMO target protein at the cellular levels as FOXP2 is covalently modified by both SUMO1 and SUMO3. Furthermore, SUMOylation of FOXP2 was significantly decreased by SENP2 (a specific SUMOylation protease). We further showed that FOXP2 is selectively SUMOylated in vivo on a phylogenetically conserved lysine 674 but the SUMOylation does not alter subcellular localization and stability of FOXP2. Interestingly, we observed that human etiological FOXP2 R553H mutation robustly reduces its SUMOylation potential as compared to wild-type FOXP2. In addition, the acidic residues downstream the core SUMO motif on FOXP2 are required for its full SUMOylation capacity. Finally, our functional analysis using reporter gene assays showed that SUMOylation may modulate transcriptional activity of FOXP2 in regulating downstream target genes (DISC1, SRPX2, and MiR200c). Altogether, we provide the first evidence that FOXP2 is a substrate for SUMOylation and SUMOylation of FOXP2 plays a functional role in regulating its transcriptional activity. PMID:26212494

  11. Characterization of DNA complexes formed by the nuclear receptor constitutive androstane receptor.

    PubMed

    Frank, Christian; Gonzalez, Manuel Macias; Oinonen, Carita; Dunlop, Thomas W; Carlberg, Carsten

    2003-10-31

    The nuclear receptor constitutive androstane receptor (CAR) acts as a xenobiotic sensor and regulates the expression of enzymes, such as several cytochromes P450s and the UDP-glucuronosyltransferase (UGT) type 1A1. CAR binds as a heterodimer with the retinoid X receptor (RXR) to specific DNA sites, called response elements (REs). Clusters of CAR REs, referred to as phenobarbital response enhancer modules (PBREMs), have been identified in several CAR target genes. In this study we confirm that REs formed by direct repeats of two AGTTCA hexamers with 4 spacing nucleotides are optimal for the binding of CAR-RXR heterodimers. In addition, we found that the heterodimers also form complexes on everted repeat-type arrangements with 8 spacing nucleotides. We also observed that CAR is able to bind DNA as a monomer and to interact in this form with different coregulators even in the presence of RXR. Systematic variation of the nucleotides 5'-flanking to both AGTTCA hexamers showed that the dinucleotide sequence modulates the DNA complex formation of CAR monomers and CAR-RXR heterodimer by a factor of up to 20. The highest preference was found for the sequence AG and lowest for CC. The increased DNA affinity of CAR is mediated by the positively charged arginines 90 and 91 located in the carboxyl-terminal extension of the DNA-binding domain of the receptor. Furthermore, we show that one of the three CAR REs of the human UGT1A1 PBREM is exclusively bound by CAR monomers and this is regulated by ligands that bind to this nuclear receptor. This points to a physiological role for CAR monomers. Therefore, both CAR-RXR heterodimers and CAR monomers can contribute to the gene activating function of PBREMs in CAR target genes. PMID:12896978

  12. Mode of Action and Human Relevance Analysis for Nuclear Receptor-Mediated Liver Toxicity: A Case Study with Phenobarbital as a Model Constitutive Androstane Receptor (CAR) Activator

    EPA Science Inventory

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are key nuclear receptors involved in the regulation of cellular responses. to exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non­ genotoxic i...

  13. Minireview: Nuclear Receptor and Coregulator Proteomics—2012 and Beyond

    PubMed Central

    Malovannaya, Anna; Qin, Jun

    2012-01-01

    The focus of our decade-long National Institutes of Health-sponsored NURSA Proteomics Atlas was to catalog and understand the composition of the steady-state interactome for all nuclear receptor coregulator complexes in a human cell. In this Perspective, we present a summary of the proteomics of coregulator complexes with examples of how one might use the NURSA data for future exploitation. The application of this information to the identification of the coregulator proteins that contribute to the molecular basis of polygenic diseases is emphasized. PMID:22745194

  14. Nuclear localization signal receptor importin alpha associates with the cytoskeleton.

    PubMed Central

    Smith, H M; Raikhel, N V

    1998-01-01

    Importin alpha is the nuclear localization signal (NLS) receptor that is involved in the nuclear import of proteins containing basic NLSs. Using importin alpha as a tool, we were interested in determining whether the cytoskeleton could function in the transport of NLS-containing proteins from the cytoplasm to the nucleus. Double-labeling immunofluorescence studies showed that most of the cytoplasmic importin alpha coaligned with microtubules and microfilaments in tobacco protoplasts. Treatment of tobacco protoplasts with microtubule- or microfilament-depolymerizing agents disrupted the strands of importin alpha in the cytoplasm, whereas a microtubule-stabilizing agent had no effect. Biochemical analysis showed that importin alpha associated with microtubules and microfilaments in vitro in an NLS-dependent manner. The interaction of importin alpha with the cytoskeleton could be an essential element of protein transport from the cytoplasm to the nucleus in vivo. PMID:9811789

  15. SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis

    PubMed Central

    Chao, Hsu-Wen; Hong, Chen-Jei; Huang, Tzyy-Nan; Lin, Yi-Ling; Hsueh, Yi-Ping

    2008-01-01

    Membrane-associated guanylate kinase (MAGUK) proteins interact with several synaptogenesis-triggering adhesion molecules. However, direct evidence for the involvement of MAGUK proteins in synapse formation is lacking. In this study, we investigate the function of calcium/calmodulin-dependent serine protein kinase (CASK), a MAGUK protein, in dendritic spine formation by RNA interference. Knockdown of CASK in cultured hippocampal neurons reduces spine density and shrinks dendritic spines. Our analysis of the time course of RNA interference and CASK overexpression experiments further suggests that CASK stabilizes or maintains spine morphology. Experiments using only the CASK PDZ domain or a mutant lacking the protein 4.1–binding site indicate an involvement of CASK in linking transmembrane adhesion molecules and the actin cytoskeleton. We also find that CASK is SUMOylated. Conjugation of small ubiquitin-like modifier 1 (SUMO1) to CASK reduces the interaction between CASK and protein 4.1. Overexpression of a CASK–SUMO1 fusion construct, which mimicks CASK SUMOylation, impairs spine formation. Our study suggests that CASK contributes to spinogenesis and that this is controlled by SUMOylation. PMID:18606847

  16. SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis.

    PubMed

    Chao, Hsu-Wen; Hong, Chen-Jei; Huang, Tzyy-Nan; Lin, Yi-Ling; Hsueh, Yi-Ping

    2008-07-14

    Membrane-associated guanylate kinase (MAGUK) proteins interact with several synaptogenesis-triggering adhesion molecules. However, direct evidence for the involvement of MAGUK proteins in synapse formation is lacking. In this study, we investigate the function of calcium/calmodulin-dependent serine protein kinase (CASK), a MAGUK protein, in dendritic spine formation by RNA interference. Knockdown of CASK in cultured hippocampal neurons reduces spine density and shrinks dendritic spines. Our analysis of the time course of RNA interference and CASK overexpression experiments further suggests that CASK stabilizes or maintains spine morphology. Experiments using only the CASK PDZ domain or a mutant lacking the protein 4.1-binding site indicate an involvement of CASK in linking transmembrane adhesion molecules and the actin cytoskeleton. We also find that CASK is SUMOylated. Conjugation of small ubiquitin-like modifier 1 (SUMO1) to CASK reduces the interaction between CASK and protein 4.1. Overexpression of a CASK-SUMO1 fusion construct, which mimicks CASK SUMOylation, impairs spine formation. Our study suggests that CASK contributes to spinogenesis and that this is controlled by SUMOylation. PMID:18606847

  17. Dynamic correlation networks in human peroxisome proliferator-activated receptornuclear receptor protein.

    PubMed

    Fidelak, Jeremy; Ferrer, Silvia; Oberlin, Michael; Moras, Dino; Dejaegere, Annick; Stote, Roland H

    2010-10-01

    Peroxisome proliferator-activated receptornuclear receptor (PPAR-γ) belongs to the superfamily of nuclear receptor proteins that function as ligand-dependent transcription factors and plays a specific physiological role as a regulator of lipid metabolism. A number of experimental studies have suggested that allostery plays an important role in the functioning of PPAR-γ. Here we use normal-mode analysis of PPAR-γ to characterize a network of dynamically coupled amino acids that link physiologically relevant binding surfaces such as the ligand-dependent activation domain AF-2 with the ligand binding site and the heterodimer interface. Multiple calculations were done in both the presence and absence of the agonist rosiglitazone, and the differences in dynamics were characterized. The global dynamics of the ligand binding domain were affected by the ligand, and in particular, changes to the network of dynamically correlated amino acids were observed with only small changes in conformation. These results suggest that changes in dynamic couplings can be functionally significant with respect to the transmission of allosteric signals. PMID:20496064

  18. Functional interaction of nuclear receptor coactivator 4 with aryl hydrocarbon receptor

    SciTech Connect

    Kollara, Alexandra; Brown, Theodore J. . E-mail: brown@mshri.on.ca

    2006-07-28

    Aryl hydrocarbon receptor (AhR) transcriptional activity is enhanced by interaction with p160 coactivators. We demonstrate here that NcoA4, a nuclear receptor coactivator, interacts with and amplifies AhR action. NcoA4-AhR and NcoA4-ARNT interactions were demonstrated by immunoprecipitation in T47D breast cancer and COS cells and was independent of ligand. Overexpression of NcoA4 enhanced AhR transcriptional activity 3.2-fold in the presence of dioxin, whereas overexpression of a splice variant, NcoA4{beta}, as well as a variant lacking the C-terminal region enhanced AhR transcriptional activity by only 1.6-fold. Enhanced AhR signaling by NcoA4 was independent of the LXXLL and FXXLF motifs or of the activation domain. NcoA4 protein localized to cytoplasm in the absence of dioxin and in both the cytoplasm and nucleus following dioxin treatment. NcoA4-facilitation of AhR activity was abolished by overexpression of androgen receptor, suggesting a potential competition of AhR and androgen receptor for NcoA4. These findings thus demonstrate a functional interaction between NcoA4 and AhR that may alter AhR activity to affect disease development and progression.

  19. The Promiscuity of Allosteric Regulation of Nuclear Receptors by Retinoid X Receptor.

    PubMed

    Clark, Alexander K; Wilder, J Heath; Grayson, Aaron W; Johnson, Quentin R; Lindsay, Richard J; Nellas, Ricky B; Fernandez, Elias J; Shen, Tongye

    2016-08-25

    The promiscuous protein retinoid X receptor (RXR) displays essential allosteric regulation of several members in the nuclear hormone receptor superfamily via heterodimerization and (anti)cooperative binding of cognate ligands. Here, the structural basis of the positive allostery of RXR and constitutive androstane receptor (CAR) is revealed. In contrast, a similar computational approach had previously revealed the mechanism for negative allostery in the complex of RXR and thyroid receptor (TR). By comparing the positive and negative allostery of RXR complexed with CAR and TR respectively, we reported the promiscuous allosteric control involving RXR. We characterize the allosteric mechanism by expressing the correlated dynamics of selected residue-residue contacts which was extracted from atomistic molecular dynamics simulation and statistical analysis. While the same set of residues in the binding pocket of RXR may initiate the residue-residue interaction network, RXR uses largely different sets of contacts (only about one-third identical) and allosteric modes to regulate TR and CAR. The promiscuity of RXR control may originate from multiple factors, including (1) the frustrated fit of cognate ligand 9c to the RXR binding pocket and (2) the different ligand-binding features of TR (loose) versus CAR (tight) to their corresponding cognate ligands. PMID:27110634

  20. Who’s in charge? Nuclear receptor coactivator and corepressor function in brain and behavior

    PubMed Central

    Tetel, Marc J.; Auger, Anthony P.; Charlier, Thierry D.

    2009-01-01

    Steroid hormones act in brain and throughout the body to regulate a variety of functions, including development, reproduction, stress and behavior. Many of these effects of steroid hormones are mediated by their respective receptors, which are members of the steroid/nuclear receptor superfamily of transcriptional activators. A variety of studies in cell lines reveal that nuclear receptor coregulators are critical in modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coregulators are essential for efficient steroid-dependent transactivation of genes. This review will highlight the importance of nuclear receptor coregulators in modulating steroid-dependent gene expression in brain and the regulation of behavior. PMID:19401208

  1. Nuclear Receptor Regulation of Aquaporin-2 in the Kidney.

    PubMed

    Zhang, Xiao-Yan; Wang, Bing; Guan, You-Fei

    2016-01-01

    Aquaporin-2 (AQP2) is a vasopressin-regulated water channel responsible for regulating water reabsorption through the apical plasma membrane of the principal cells of renal collecting ducts. It has been found that dysregulation and dysfunction of AQP2 cause many disorders related to water balance in people and animals, including polyuria and dilutional hyponatremia. Classically, AQP2 mRNA and protein expression and its membrane translocation are regulated by systemic vasopressin involving short-term regulation of AQP2 trafficking to and from the apical plasma membrane and long-term regulation of the total amount of the AQP2 protein in the cell. Recently, increasing evidence has demonstrated that collecting duct AQP2 expression and membrane translocation are also under the control of many other local factors, especially nuclear receptors. Here, we briefly review the progress of studies in this area and discuss the role of nuclear receptors in the regulation of water reabsorption via affecting AQP2 expression and function. PMID:27409611

  2. Role of nuclear receptors in breast cancer stem cells.

    PubMed

    Papi, Alessio; Orlandi, Marina

    2016-03-26

    The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells, capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells (CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs (BCSCs) are likely to sustain the growth of the primary tumour mass, as well as to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and pro-inflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the anti-inflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse. PMID:27022437

  3. Nuclear Receptor Regulation of Aquaporin-2 in the Kidney

    PubMed Central

    Zhang, Xiao-Yan; Wang, Bing; Guan, You-Fei

    2016-01-01

    Aquaporin-2 (AQP2) is a vasopressin-regulated water channel responsible for regulating water reabsorption through the apical plasma membrane of the principal cells of renal collecting ducts. It has been found that dysregulation and dysfunction of AQP2 cause many disorders related to water balance in people and animals, including polyuria and dilutional hyponatremia. Classically, AQP2 mRNA and protein expression and its membrane translocation are regulated by systemic vasopressin involving short-term regulation of AQP2 trafficking to and from the apical plasma membrane and long-term regulation of the total amount of the AQP2 protein in the cell. Recently, increasing evidence has demonstrated that collecting duct AQP2 expression and membrane translocation are also under the control of many other local factors, especially nuclear receptors. Here, we briefly review the progress of studies in this area and discuss the role of nuclear receptors in the regulation of water reabsorption via affecting AQP2 expression and function. PMID:27409611

  4. The role of nuclear hormone receptors in cutaneous wound repair

    PubMed Central

    Rieger, Sandra; Zhao, Hengguang; Martin, Paige; Abe, Koichiro; Lisse, Thomas S.

    2015-01-01

    The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non-healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross-talk of various nuclear receptors upon injury towards functional tissue restoration. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25529612

  5. Role of nuclear receptors in breast cancer stem cells

    PubMed Central

    Papi, Alessio; Orlandi, Marina

    2016-01-01

    The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells, capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells (CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs (BCSCs) are likely to sustain the growth of the primary tumour mass, as well as to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and pro-inflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the anti-inflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse. PMID:27022437

  6. Deciphering the nuclear bile acid receptor FXR paradigm

    PubMed Central

    Modica, Salvatore; Gadaleta, Raffaella M.; Moschetta, Antonio

    2010-01-01

    Originally called retinoid X receptor interacting protein 14 (RIP14), the farnesoid X receptor (FXR) was renamed after the ability of its rat form to bind supra-physiological concentrations of farnesol. In 1999 FXR was de-orphanized since primary bile acids were identified as natural ligands. Strongly expressed in the liver and intestine, FXR has been shown to be the master transcriptional regulator of several entero-hepatic metabolic pathways with relevance to the pathophysiology of conditions such as cholestasis, fatty liver disease, cholesterol gallstone disease, intestinal inflammation and tumors. Furthermore, given the importance of FXR in the gut-liver axis feedbacks regulating lipid and glucose homeostasis, FXR modulation appears to have great input in diseases such as metabolic syndrome and diabetes. Exciting results from several cellular and animal models have provided the impetus to develop synthetic FXR ligands as novel pharmacological agents. Fourteen years from its discovery, FXR has gone from bench to bedside; a novel nuclear receptor ligand is going into clinical use. PMID:21383957

  7. Immunological quantitation of nuclear steroid receptors to optimize the biological classification of breast tumors.

    PubMed

    Díez-Gibert, O; Huguet, J; Rosel, P; Bonnín, M R; Navarro, M A

    1998-01-01

    We used immunological methods to determine cytosolic and nuclear steroid receptors to evaluate the advantages of nuclear receptor measurement in the selection of breast cancer patients for treatment. Around 75% of tumors showed coincidence between nuclear and cytosolic receptors (+/+ or -/-) for estrogen receptor (ER) and for progesterone receptor (PgR). Only cytosolic receptors were detected in around 20% of tumors. Distributed in the ER/PgR phenotypes according to the nuclear or cytosolic receptors, 64% of tumors remained in the same subgroup, whereas 16% of tumors were classified as hormone dependent according to cytosolic and independent according to nuclear receptors, which could be considered as 'false-positive' results. 6% of tumors would be classified as negative according to cytosolic receptors but positive according to nuclear receptors and would correspond to 'false-negative' results by conventional methods. Cytosolic receptor results may overrate the hormone dependence and cause some 'misclassifications' of patients. This could partially explain the lack of response to therapy in some cases. PMID:9679731

  8. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    SciTech Connect

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-05-09

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.

  9. Identification of two functional nuclear localization signals mediating nuclear import of liver receptor homologue-1.

    PubMed

    Yang, Feng-Ming; Lin, Yu-Chi; Hu, Meng-Chun

    2011-04-01

    Liver receptor homologue-1 (LRH-1) is a member of the nuclear receptor superfamily. We characterized two functional nuclear localization signals (NLSs) in LRH-1. NLS1 (residues 117-168) overlaps the second zinc finger in the DNA binding domain. Mutagenesis showed that the zinc finger structure and two basic clusters on either side of the zinc finger loop are critical for nuclear import of NLS1. NLS2 (residues 169-204) is located in the Ftz-F1 box that contains a bipartite signal. In full-length LRH-1, mutation of either NLS1 or NLS2 had no effect on nuclear localization, but disruption of both NLS1 and NLS2 resulted in the cytoplasmic accumulation of LRH-1. Either NLS1 or NLS2 alone was sufficient to target LRH-1 to the nucleus. Both NLS1 and NLS2 mediate nuclear transport by a mechanism involving importin α/β. Finally, we showed that three crucial basic clusters in the NLSs are involved in the DNA binding and transcriptional activities of LRH-1. PMID:20853131

  10. Bmal1 is a direct transcriptional target of the orphan nuclear receptor, NR2F1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orphan nuclear receptor NR2F1 (also known as COUP-TFI, Chicken Ovalbumin Upstream Promoter Transcription Factor I) is a highly conserved member of the nuclear receptor superfamily. NR2F1 plays a critical role during embryonic development, particularly in the central and peripheral nervous systems a...

  11. Nuclear hormone receptor functions in keratinocyte and melanocyte homeostasis, epidermal carcinogenesis and melanomagenesis

    PubMed Central

    Hyter, Stephen; Indra, Arup K

    2013-01-01

    Skin homeostasis is maintained, in part, through regulation of gene expression orchestrated by type II nuclear hormone receptors in a cell and context specific manner. This group of transcriptional regulators is implicated in various cellular processes including epidermal proliferation, differentiation, permeability barrier formation, follicular cycling and inflammatory responses. Endogenous ligands for the receptors regulate actions during skin development and maintenance of tissue homeostasis. Type II nuclear receptor signaling is also important for cellular crosstalk between multiple cell types in the skin. Overall, these nuclear receptors are critical players in keratinocyte and melanocyte biology and present targets for cutaneous disease management. PMID:23395795

  12. Identification of Farnesoid X Receptor β as a Novel Mammalian Nuclear Receptor Sensing Lanosterol

    PubMed Central

    Otte, Kerstin; Kranz, Harald; Kober, Ingo; Thompson, Paul; Hoefer, Michael; Haubold, Bernhard; Remmel, Bettina; Voss, Hartmut; Kaiser, Carmen; Albers, Michael; Cheruvallath, Zaccharias; Jackson, David; Casari, Georg; Koegl, Manfred; Pääbo, Svante; Mous, Jan; Kremoser, Claus; Deuschle, Ulrich

    2003-01-01

    Nuclear receptors are ligand-modulated transcription factors. On the basis of the completed human genome sequence, this family was thought to contain 48 functional members. However, by mining human and mouse genomic sequences, we identified FXRβ as a novel family member. It is a functional receptor in mice, rats, rabbits, and dogs but constitutes a pseudogene in humans and primates. Murine FXRβ is widely coexpressed with FXR in embryonic and adult tissues. It heterodimerizes with RXRα and stimulates transcription through specific DNA response elements upon addition of 9-cis-retinoic acid. Finally, we identified lanosterol as a candidate endogenous ligand that induces coactivator recruitment and transcriptional activation by mFXRβ. Lanosterol is an intermediate of cholesterol biosynthesis, which suggests a direct role in the control of cholesterol biosynthesis in nonprimates. The identification of FXRβ as a novel functional receptor in nonprimate animals sheds new light on the species differences in cholesterol metabolism and has strong implications for the interpretation of genetic and pharmacological studies of FXR-directed physiologies and drug discovery programs. PMID:12529392

  13. The orphan nuclear receptor estrogen receptor-related receptor gamma negatively regulates BMP2-induced osteoblast differentiation and bone formation.

    PubMed

    Jeong, Byung-Chul; Lee, Yong-Soo; Park, Yun-Yong; Bae, In-Ho; Kim, Don-Kyu; Koo, Seung-Hoi; Choi, Hong-Ran; Kim, Sun-Hun; Franceschi, Renny T; Koh, Jeong-Tae; Choi, Hueng-Sik

    2009-05-22

    Estrogen receptor-related receptor gamma (ERRgamma/ERR3/NR3B3) is a member of the orphan nuclear receptor with important functions in development and homeostasis. Recently it has been reported that ERRalpha is involved in osteoblast differentiation and bone formation. In the present study we examined the role of ERRgamma in osteoblast differentiation. Here, we showed that ERRgamma is expressed in osteoblast progenitors and primary osteoblasts, and its expression is increased temporarily by BMP2. Overexpression of ERRgamma reduced BMP2-induced alkaline phosphatase activity and osteocalcin production as well as calcified nodule formation, whereas inhibition of ERRgamma expression significantly enhanced BMP2-induced osteogenic differentiation and mineralization, suggesting that endogenous ERRgamma plays an important role in osteoblast differentiation. In addition, ERRgamma significantly repressed Runx2 transactivity on osteocalcin and bone sialoprotein promoters. We also observed that ERRgamma physically interacts with Runx2 in vitro and in vivo and competes with p300 to repress Runx2 transactivity. Notably, intramuscular injection of ERRgamma strongly inhibited BMP2-induced ectopic bone formation in a dose-dependent manner. Taken together, these results suggest that ERRgamma is a novel negative regulator of osteoblast differentiation and bone formation via its regulation of Runx2 transactivity. PMID:19324883

  14. The Orphan Nuclear Receptor Estrogen Receptor-related Receptor γ Negatively Regulates BMP2-induced Osteoblast Differentiation and Bone Formation*

    PubMed Central

    Jeong, Byung-Chul; Lee, Yong-Soo; Park, Yun-Yong; Bae, In-Ho; Kim, Don-Kyu; Koo, Seung-Hoi; Choi, Hong-Ran; Kim, Sun-Hun; Franceschi, Renny T.; Koh, Jeong-Tae; Choi, Hueng-Sik

    2009-01-01

    Estrogen receptor-related receptor γ (ERRγ/ERR3/NR3B3) is a member of the orphan nuclear receptor with important functions in development and homeostasis. Recently it has been reported that ERRα is involved in osteoblast differentiation and bone formation. In the present study we examined the role of ERRγ in osteoblast differentiation. Here, we showed that ERRγ is expressed in osteoblast progenitors and primary osteoblasts, and its expression is increased temporarily by BMP2. Overexpression of ERRγ reduced BMP2-induced alkaline phosphatase activity and osteocalcin production as well as calcified nodule formation, whereas inhibition of ERRγ expression significantly enhanced BMP2-induced osteogenic differentiation and mineralization, suggesting that endogenous ERRγ plays an important role in osteoblast differentiation. In addition, ERRγ significantly repressed Runx2 transactivity on osteocalcin and bone sialoprotein promoters. We also observed that ERRγ physically interacts with Runx2 in vitro and in vivo and competes with p300 to repress Runx2 transactivity. Notably, intramuscular injection of ERRγ strongly inhibited BMP2-induced ectopic bone formation in a dose-dependent manner. Taken together, these results suggest that ERRγ is a novel negative regulator of osteoblast differentiation and bone formation via its regulation of Runx2 transactivity. PMID:19324883

  15. The Arabidopsis Nuclear Pore and Nuclear Envelope

    PubMed Central

    Meier, Iris; Brkljacic, Jelena

    2010-01-01

    The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and—through the nuclear envelope lumen—the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research—predominantly focusing on Arabidopsis as a model—is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration. PMID:22303264

  16. Nuclear receptors and metabolism: from feast to famine.

    PubMed

    Hong, Suk-Hyun; Ahmadian, Maryam; Yu, Ruth T; Atkins, Annette R; Downes, Michael; Evans, Ronald M

    2014-05-01

    The ability to adapt to cycles of feast and famine is critical for survival. Communication between multiple metabolic organs must be integrated to properly metabolise nutrients. By controlling networks of genes in major metabolic organs, nuclear hormone receptors (NHRs) play central roles in regulating metabolism in a tissue-specific manner. NHRs also establish daily rhythmicity by controlling the expression of core clock genes both centrally and peripherally. Recent findings show that many of the metabolic effects of NHRs are mediated through certain members of the fibroblast growth factor (FGF) family. This review focuses on the roles of NHRs in critical metabolic organs, including adipose tissue, liver and muscle, during the fed and fasted states, as well as their roles in circadian metabolism and downstream regulation of FGFs. PMID:24619218

  17. Nuclear receptors and AMPK: can exercise mimetics cure diabetes?

    PubMed

    Wall, Christopher E; Yu, Ruth T; Atkins, Anne R; Downes, Michael; Evans, Ronald M

    2016-07-01

    Endurance exercise can lead to systemic improvements in insulin sensitivity and metabolic homeostasis, and is an effective approach to combat metabolic diseases. Pharmacological compounds that recapitulate the beneficial effects of exercise, also known as 'exercise mimetics', have the potential to improve disease symptoms of metabolic syndrome. These drugs, which can increase energy expenditure, suppress hepatic gluconeogenesis, and induce insulin sensitization, have accordingly been highly scrutinized for their utility in treating metabolic diseases including diabetes. Nevertheless, the identity of an efficacious exercise mimetic still remains elusive. In this review, we highlight several nuclear receptors and cofactors that are putative molecular targets for exercise mimetics, and review recent studies that provide advancements in our mechanistic understanding of how exercise mimetics exert their beneficial effects. We also discuss evidence from clinical trials using these compounds in human subjects to evaluate their efficacy in treating diabetes. PMID:27106806

  18. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions

    PubMed Central

    Prakash, Chandra; Zuniga, Baltazar; Song, Chung Seog; Jiang, Shoulei; Cropper, Jodie; Park, Sulgi; Chatterjee, Bandana

    2016-01-01

    Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug’s impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and

  19. GR SUMOylation and formation of an SUMO-SMRT/NCoR1-HDAC3 repressing complex is mandatory for GC-induced IR nGRE-mediated transrepression.

    PubMed

    Hua, Guoqiang; Paulen, Laetitia; Chambon, Pierre

    2016-02-01

    Unique among the nuclear receptor superfamily, the glucocorticoid (GC) receptor (GR) can exert three distinct transcriptional regulatory functions on binding of a single natural (cortisol in human and corticosterone in mice) and synthetic [e.g., dexamethasone (Dex)] hormone. The molecular mechanisms underlying GC-induced positive GC response element [(+)GRE]-mediated activation of transcription are partially understood. In contrast, these mechanisms remain elusive for GC-induced evolutionary conserved inverted repeated negative GC response element (IR nGRE)-mediated direct transrepression and for tethered indirect transrepression that is mediated by DNA-bound NF-κB/activator protein 1 (AP1)/STAT3 activators and instrumental in GC-induced anti-inflammatory activity. We demonstrate here that SUMOylation of lysine K293 (mouse K310) located within an evolutionary conserved sequence in the human GR N-terminal domain allows the formation of a GR-small ubiquitin-related modifiers (SUMOs)-NCoR1/SMRT-HDAC3 repressing complex mandatory for GC-induced IR nGRE-mediated direct repression in vitro, but does not affect transactivation. Importantly, these results were validated in vivo: in K310R mutant mice and in mice ablated selectively for nuclear receptor corepressor 1 (NCoR1)/silencing mediator for retinoid or thyroid-hormone receptors (SMRT) corepressors in skin keratinocytes, Dex-induced direct repression and the formation of repressing complexes on IR nGREs were impaired, whereas transactivation was unaffected. In mice selectively ablated for histone deacetylase 3 (HDAC3) in skin keratinocytes, GC-induced direct repression, but not bindings of GR and of corepressors NCoR1/SMRT, was abolished, indicating that HDAC3 is instrumental in IR nGRE-mediated repression. Moreover, we demonstrate that the binding of HDAC3 to IR nGREs in vivo is mediated through interaction with SMRT/NCoR1. We also show that the GR ligand binding domain (LBD) is not required for SMRT

  20. Scavenger receptors mediate the role of SUMO and Ftz-f1 in Drosophila steroidogenesis.

    PubMed

    Talamillo, Ana; Herboso, Leire; Pirone, Lucia; Pérez, Coralia; González, Monika; Sánchez, Jonatan; Mayor, Ugo; Lopitz-Otsoa, Fernando; Rodriguez, Manuel S; Sutherland, James D; Barrio, Rosa

    2013-04-01

    SUMOylation participates in ecdysteroid biosynthesis at the onset of metamorphosis in Drosophila melanogaster. Silencing the Drosophila SUMO homologue smt3 in the prothoracic gland leads to reduced lipid content, low ecdysone titers, and a block in the larval-pupal transition. Here we show that the SR-BI family of Scavenger Receptors mediates SUMO functions. Reduced levels of Snmp1 compromise lipid uptake in the prothoracic gland. In addition, overexpression of Snmp1 is able to recover lipid droplet levels in the smt3 knockdown prothoracic gland cells. Snmp1 expression depends on Ftz-f1 (an NR5A-type orphan nuclear receptor), the expression of which, in turn, depends on SUMO. Furthermore, we show by in vitro and in vivo experiments that Ftz-f1 is SUMOylated. RNAi-mediated knockdown of ftz-f1 phenocopies that of smt3 at the larval to pupal transition, thus Ftz-f1 is an interesting candidate to mediate some of the functions of SUMO at the onset of metamorphosis. Additionally, we demonstrate that the role of SUMOylation, Ftz-f1, and the Scavenger Receptors in lipid capture and mobilization is conserved in other steroidogenic tissues such as the follicle cells of the ovary. smt3 knockdown, as well as ftz-f1 or Scavenger knockdown, depleted the lipid content of the follicle cells, which could be rescued by Snmp1 overexpression. Therefore, our data provide new insights into the regulation of metamorphosis via lipid homeostasis, showing that Drosophila Smt3, Ftz-f1, and SR-BIs are part of a general mechanism for uptake of lipids such as cholesterol, required during development in steroidogenic tissues. PMID:23637637

  1. Scavenger Receptors Mediate the Role of SUMO and Ftz-f1 in Drosophila Steroidogenesis

    PubMed Central

    Talamillo, Ana; Herboso, Leire; Pirone, Lucia; Pérez, Coralia; González, Monika; Sánchez, Jonatan; Mayor, Ugo; Lopitz-Otsoa, Fernando; Rodriguez, Manuel S.; Sutherland, James D.; Barrio, Rosa

    2013-01-01

    SUMOylation participates in ecdysteroid biosynthesis at the onset of metamorphosis in Drosophila melanogaster. Silencing the Drosophila SUMO homologue smt3 in the prothoracic gland leads to reduced lipid content, low ecdysone titers, and a block in the larval–pupal transition. Here we show that the SR-BI family of Scavenger Receptors mediates SUMO functions. Reduced levels of Snmp1 compromise lipid uptake in the prothoracic gland. In addition, overexpression of Snmp1 is able to recover lipid droplet levels in the smt3 knockdown prothoracic gland cells. Snmp1 expression depends on Ftz-f1 (an NR5A-type orphan nuclear receptor), the expression of which, in turn, depends on SUMO. Furthermore, we show by in vitro and in vivo experiments that Ftz-f1 is SUMOylated. RNAi–mediated knockdown of ftz-f1 phenocopies that of smt3 at the larval to pupal transition, thus Ftz-f1 is an interesting candidate to mediate some of the functions of SUMO at the onset of metamorphosis. Additionally, we demonstrate that the role of SUMOylation, Ftz-f1, and the Scavenger Receptors in lipid capture and mobilization is conserved in other steroidogenic tissues such as the follicle cells of the ovary. smt3 knockdown, as well as ftz-f1 or Scavenger knockdown, depleted the lipid content of the follicle cells, which could be rescued by Snmp1 overexpression. Therefore, our data provide new insights into the regulation of metamorphosis via lipid homeostasis, showing that Drosophila Smt3, Ftz-f1, and SR-BIs are part of a general mechanism for uptake of lipids such as cholesterol, required during development in steroidogenic tissues. PMID:23637637

  2. In silico modelling of prostacyclin and other lipid mediators to nuclear receptors reveal novel thyroid hormone receptor antagonist properties.

    PubMed

    Perez Diaz, Noelia; Zloh, Mire; Patel, Pryank; Mackenzie, Louise S

    2016-01-01

    Prostacyclin (PGI2) is a key mediator involved in cardiovascular homeostasis, acting predominantly on two receptor types; cell surface IP receptor and cytosolic peroxisome proliferator activated receptor (PPAR) β/δ. Having a very short half-life, direct methods to determine its long term effects on cells is difficult, and little is known of its interactions with nuclear receptors. Here we used computational chemistry methods to investigate the potential for PGI2, beraprost (IP receptor agonist), and GW0742 (PPARβ/δ agonist), to bind to nuclear receptors, confirmed with pharmacological methods. In silico screening predicted that PGI2, beraprost, and GW0742 have the potential to bind to different nuclear receptors, in particular thyroid hormone β receptor (TRβ) and thyroid hormone α receptor (TRα). Docking analysis predicts a binding profile to residues thought to have allosteric control on the TR ligand binding site. Luciferase reporter assays confirmed that beraprost and GW0742 display TRβ and TRα antagonistic properties; beraprost IC50 6.3×10(-5)mol/L and GW0742 IC50 4.9×10(-6)mol/L. Changes to triiodothyronine (T3) induced vasodilation of rat mesenteric arteries measured on the wire myograph were measured in the presence of the TR antagonist MLS000389544 (10(-5)mol/L), beraprost (10(-5)mol/L) and GW0742 (10(-5)mol/L); all significantly inhibited T3 induced vasodilation compared to controls. We have shown that both beraprost and GW0742 exhibit TRβ and TRα antagonist behaviour, and suggests that PGI2 has the ability to affect the long term function of cells through binding to and inactivating thyroid hormone receptors. PMID:26686607

  3. Elevated NCOR1 disrupts a network of dietary-sensing nuclear receptors in bladder cancer cells

    PubMed Central

    Abedin, S. Asad; Thorne, James L.; Battaglia, Sebastiano; Maguire, Orla; Hornung, Laura B.; Doherty, Alan P.; Mills, Ian G.; Campbell, Moray J.

    2009-01-01

    Increasingly invasive bladder cancer cells lines displayed insensitivity toward a panel of dietary-derived ligands for members of the nuclear receptor superfamily. Insensitivity was defined through altered gene regulatory actions and cell proliferation and reflected both reduced receptor expression and elevated nuclear receptor corepressor 1 (NCOR1) expression. Stable overexpression of NCOR1 in sensitive cells (RT4) resulted in a panel of clones that recapitulated the resistant phenotype in terms of gene regulatory actions and proliferative responses toward ligand. Similarly, silencing RNA approaches to NCOR1 in resistant cells (EJ28) enhanced ligand gene regulatory and proliferation responses, including those mediated by peroxisome proliferator-activated receptor (PPAR) γ and vitamin D receptor (VDR) receptors. Elevated NCOR1 levels generate an epigenetic lesion to target in resistant cells using the histone deacetylase inhibitor vorinostat, in combination with nuclear receptor ligands. Such treatments revealed strong-additive interactions toward the PPARγ, VDR and Farnesoid X-activated receptors. Genome-wide microarray and microfluidic quantitative real-time, reverse transcription–polymerase chain reaction approaches, following the targeting of NCOR1 activity and expression, revealed the selective capacity of this corepressor to govern common transcriptional events of underlying networks. Combined these findings suggest that NCOR1 is a selective regulator of nuclear receptors, notably PPARγ and VDR, and contributes to their loss of sensitivity. Combinations of epigenetic therapies that target NCOR1 may prove effective, even when receptor expression is reduced. PMID:19126649

  4. Current in vitro high throughput screening approaches to assess nuclear receptor activation.

    PubMed

    Raucy, Judy L; Lasker, Jerome M

    2010-11-01

    The screening of new drug candidates for nuclear receptor activation can identify agents with the potential to produce drug-drug interactions or elicit adverse drug effects. The nuclear receptors of interest are those that control the expression of drug metabolizing enzymes and drug transporters, and include the constitutive androstane receptor (CAR, NR1I3), the pregnane X receptor (PXR, NR1I2) and the aryl hydrocarbon receptor (AhR). This review will focus on the methods currently used to assess activation of these receptors. Assessment of nuclear receptor activation can be accomplished using direct or indirect approaches. Indirect methods quantify specific gene products that result from nuclear receptor activation while direct approaches measure either the binding of ligands to the receptors or the transcriptional events produced by ligand binding. Assays that directly quantify nuclear receptor activation are growing in popularity and, importantly, are amenable to high throughput screening (HTS). Several ligand binding assays are currently being utilized, including radioligand competition binding, where compounds compete with radiolabelled ligand for binding to PXR or CAR, such as the scintillation proximity binding assay that measures the reaction of ligands with receptor-coated beads. A fluorescence resonance energy transfer assay has also been developed, where the fluorescent signal is generated via the ligand-dependent interaction between the fluorescently-labeled ligand binding domain of a nuclear receptor and co-activator proteins. Other in vitro activation assays include transient- and stably-transfected cell lines incorporating an expression vector for PXR, CAR or AhR plus a reporter gene vector containing response elements. The methods focused on in this review will be limited to the more direct in vitro approaches that are amenable to high throughput screening. PMID:21189134

  5. SUMOylation of DEC1 Protein Regulates Its Transcriptional Activity and Enhances Its Stability

    PubMed Central

    Li, Shujing; Bi, Hailian; Yang, Chunhua; Zhao, Feng; Liu, Ying; Ao, Xiang; Chang, Alan K.; Wu, Huijian

    2011-01-01

    Differentiated embryo-chondrocyte expressed gene 1 (DEC1, also known as sharp2, stra13, or BHLHB2) is a mammalian basic helix-loop-helix protein that is involved in many aspects of gene regulation through acting as a transcription factor. Changes in DEC1 expression levels have been implicated in the development of cancers. Using COS-7 cell, we showed that DEC1 can be modified by the small ubiquitin-like modifiers, SUMO1, 2 and 3. Two major SUMOylation sites (K159 and K279) were identified in the C-terminal domain of DEC1. Substitution of either K159 or K279 with arginine reduced DEC1 SUMOylation, but substitution of both K159 and K279 abolished SUMOylation, and more protein appeared to be retained in the cytoplasm compared to wild-type DEC1. The expression of DEC1 was up-regulated after serum starvation as previously reported, but at the same time, serum starvation also led to more SUMOylation of DEC1. In MCF-7 cells SUMOylation also stabilized DEC1 through inhibiting its ubiquitination. Moreover, SUMOylation of DEC1 promoted its repression of CLOCK/BMAL1-mediated transcriptional activity through recruitment of histone deacetylase1. These findings suggested that posttranslational modification of DEC1 in the form of SUMOylation may serve as a key factor that regulates the function of DEC1 in vivo. PMID:21829689

  6. SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination.

    PubMed

    Luo, Hong-Bin; Xia, Yi-Yuan; Shu, Xi-Ji; Liu, Zan-Chao; Feng, Ye; Liu, Xing-Hua; Yu, Guang; Yin, Gang; Xiong, Yan-Si; Zeng, Kuan; Jiang, Jun; Ye, Keqiang; Wang, Xiao-Chuan; Wang, Jian-Zhi

    2014-11-18

    Intracellular accumulation of the abnormally modified tau is hallmark pathology of Alzheimer's disease (AD), but the mechanism leading to tau aggregation is not fully characterized. Here, we studied the effects of tau SUMOylation on its phosphorylation, ubiquitination, and degradation. We show that tau SUMOylation induces tau hyperphosphorylation at multiple AD-associated sites, whereas site-specific mutagenesis of tau at K340R (the SUMOylation site) or simultaneous inhibition of tau SUMOylation by ginkgolic acid abolishes the effect of small ubiquitin-like modifier protein 1 (SUMO-1). Conversely, tau hyperphosphorylation promotes its SUMOylation; the latter in turn inhibits tau degradation with reduction of solubility and ubiquitination of tau proteins. Furthermore, the enhanced SUMO-immunoreactivity, costained with the hyperphosphorylated tau, is detected in cerebral cortex of the AD brains, and β-amyloid exposure of rat primary hippocampal neurons induces a dose-dependent SUMOylation of the hyperphosphorylated tau. Our findings suggest that tau SUMOylation reciprocally stimulates its phosphorylation and inhibits the ubiquitination-mediated tau degradation, which provides a new insight into the AD-like tau accumulation. PMID:25378699

  7. SUMOylation of DLX3 by SUMO1 promotes its transcriptional activity

    PubMed Central

    Duverger, O.; Chen, S.X.; Lee, D.; Li, T.; Chock, P.B.; Morasso, M.I.

    2011-01-01

    Small Ubiquitin-Like Modifiers (SUMO) are posttranslational modifiers that regulate target protein activity in diverse ways. The most common group of SUMO substrates is transcription factors, whose transcriptional activity can be altered positively or negatively as a result of SUMOylation. DLX3 is a homeodomain transcription factor involved in placental development, in the differentiation of structures involving epithelial-mesenchymal interactions, such as hair, teeth and nails, and in bone mineralization. We identified two potential SUMOylation sites in the N-terminal domain of DLX3 at positions K83 and K112. Among the six members of the Distal-less family, DLX3 is the only member containing these sites, which are highly conserved among vertebrates. Co-expression experiments demonstrated that DLX3 can be SUMOylated by SUMO1. Site-directed mutagenesis of lysines 83 and 112 to arginines (K83R and K112R) demonstrated that only K112 is involved in SUMOylation. Immunocytochemical analysis showed that SUMOylation does not affect DLX3 subcellular localization. Moreover, using electrophoresis mobility shift assay, we found that DLX3 is still able to bind DNA when SUMOylated. Using luciferase reporter assays, we showed that DLX3K112R exhibits a significantly lower transcriptional activity compared to DLX3WT, suggesting that SUMOylation has a positive effect on DLX3 activity. We identified a new level of regulation in the activity of DLX3 that may play a crucial role in the regulation of hair, teeth and bone development. PMID:21268066

  8. Orphan nuclear receptor estrogen-related receptor γ (ERRγ) is key regulator of hepatic gluconeogenesis.

    PubMed

    Kim, Don-Kyu; Ryu, Dongryeol; Koh, Minseob; Lee, Min-Woo; Lim, Donghyun; Kim, Min-Jung; Kim, Yong-Hoon; Cho, Won-Jea; Lee, Chul-Ho; Park, Seung Bum; Koo, Seung-Hoi; Choi, Hueng-Sik

    2012-06-22

    Glucose homeostasis is tightly controlled by hormonal regulation of hepatic glucose production. Dysregulation of this system is often associated with insulin resistance and diabetes, resulting in hyperglycemia in mammals. Here, we show that the orphan nuclear receptor estrogen-related receptor γ (ERRγ) is a novel downstream mediator of glucagon action in hepatic gluconeogenesis and demonstrate a beneficial impact of the inverse agonist GSK5182. Hepatic ERRγ expression was increased by fasting-dependent activation of the cAMP-response element-binding protein-CRTC2 pathway. Overexpression of ERRγ induced Pck1 and G6PC gene expression and glucose production in primary hepatocytes, whereas abolition of ERRγ gene expression attenuated forskolin-mediated induction of gluconeogenic gene expression. Deletion and mutation analyses of the Pck1 promoter showed that ERRγ directly regulates the Pck1 gene transcription via ERR response elements of the Pck1 promoter as confirmed by ChIP assay and in vivo imaging analysis. We also demonstrate that GSK5182, an inverse agonist of ERRγ, specifically inhibits the transcriptional activity of ERRγ in a PGC-1α dependent manner. Finally, the ERRγ inverse agonist ameliorated hyperglycemia through inhibition of hepatic gluconeogenesis in db/db mice. Control of hepatic glucose production by an ERRγ-specific inverse agonist is a new potential therapeutic approach for the treatment of type 2 diabetes. PMID:22549789

  9. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration

    PubMed Central

    Li, Guodong; L. Guo, Grace

    2015-01-01

    The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy (PH) model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids (BAs) are ligands of farnesoid X receptor (FXR), a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potential use of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration. PMID:26579433

  10. Orphan Nuclear Receptor Estrogen-Related Receptor γ (ERRγ) Is Key Regulator of Hepatic Gluconeogenesis*

    PubMed Central

    Kim, Don-Kyu; Ryu, Dongryeol; Koh, Minseob; Lee, Min-Woo; Lim, Donghyun; Kim, Min-Jung; Kim, Yong-Hoon; Cho, Won-Jea; Lee, Chul-Ho; Park, Seung Bum; Koo, Seung-Hoi; Choi, Hueng-Sik

    2012-01-01

    Glucose homeostasis is tightly controlled by hormonal regulation of hepatic glucose production. Dysregulation of this system is often associated with insulin resistance and diabetes, resulting in hyperglycemia in mammals. Here, we show that the orphan nuclear receptor estrogen-related receptor γ (ERRγ) is a novel downstream mediator of glucagon action in hepatic gluconeogenesis and demonstrate a beneficial impact of the inverse agonist GSK5182. Hepatic ERRγ expression was increased by fasting-dependent activation of the cAMP-response element-binding protein-CRTC2 pathway. Overexpression of ERRγ induced Pck1 and G6PC gene expression and glucose production in primary hepatocytes, whereas abolition of ERRγ gene expression attenuated forskolin-mediated induction of gluconeogenic gene expression. Deletion and mutation analyses of the Pck1 promoter showed that ERRγ directly regulates the Pck1 gene transcription via ERR response elements of the Pck1 promoter as confirmed by ChIP assay and in vivo imaging analysis. We also demonstrate that GSK5182, an inverse agonist of ERRγ, specifically inhibits the transcriptional activity of ERRγ in a PGC-1α dependent manner. Finally, the ERRγ inverse agonist ameliorated hyperglycemia through inhibition of hepatic gluconeogenesis in db/db mice. Control of hepatic glucose production by an ERRγ-specific inverse agonist is a new potential therapeutic approach for the treatment of type 2 diabetes. PMID:22549789

  11. Nitric oxide destabilizes Pias3 and regulates sumoylation.

    PubMed

    Qu, Jing; Liu, Guang-Hui; Wu, Kaiyuan; Han, Peiwei; Wang, Peng; Li, Jiangmei; Zhang, Xu; Chen, Chang

    2007-01-01

    Small ubiquitin-related protein modifiers (SUMO) modification is an important mechanism for posttranslational regulation of protein function. However, it is largely unknown how the sumoylation pathway is regulated. Here, we report that nitric oxide (NO) causes global hyposumoylation in mammalian cells. Both SUMO E2 conjugating enzyme Ubc9 and E3 ligase protein inhibitor of activated STAT3 (Pias3) were targets for S-nitrosation. S-nitrosation did not interfere with the SUMO conjugating activity of Ubc9, but promoted Pias3 degradation by facilitating its interaction with tripartite motif-containing 32 (Trim32), a ubiquitin E3 ligase. On the one hand, NO promoted Trim32-mediated Pias3 ubiquitination. On the other hand, NO enhanced the stimulatory effect of Pias3 on Trim32 autoubiquitination. The residue Cys459 of Pias3 was identified as a target site for S-nitrosation. Mutation of Cys459 abolished the stimulatory effect of NO on the Pias3-Trim32 interaction, indicating a requirement of S-nitrosation at Cys459 for positive regulation of the Pias3-Trim32 interplay. This study reveals a novel crosstalk between S-nitrosation, ubiquitination, and sumoylation, which may be crucial for NO-related physiological and pathological processes. PMID:17987106

  12. Xenobiotic-sensing nuclear receptors involved in drug metabolism: a structural perspective

    PubMed Central

    Wallace, Bret D.; Redinbo, Matthew R.

    2016-01-01

    Xenobiotic compounds undergo a critical range of biotransformations performed by the phase I, II, and III drug-metabolizing enzymes. The oxidation, conjugation, and transportation of potentially harmful xenobiotic and endobiotic compounds achieved by these catalytic systems are significantly regulated, at the gene expression level, by members of the nuclear receptor (NR) family of ligand-modulated transcription factors. Activation of NRs by a variety of endo- and exogenous chemicals are elemental to induction and repression of drug-metabolism pathways. The master xenobiotic sensing NRs, the promiscuous pregnane X receptor and less-promiscuous constitutive androstane receptor are crucial to initial ligand recognition, jump-starting the metabolic process. Other receptors, including farnesoid X receptor, vitamin D receptor, hepatocyte nuclear factor 4 alpha, peroxisome proliferator activated receptor, glucocorticoid receptor, liver X receptor, and RAR-related orphan receptor, are not directly linked to promiscuous xenobiotic binding, but clearly play important roles in the modulation of metabolic gene expression. Crystallographic studies of the ligand-binding domains of nine NRs involved in drug metabolism provide key insights into ligand-based and constitutive activity, coregulator recruitment, and gene regulation. Structures of other, noncanonical transcription factors also shed light on secondary, but important, pathways of control. Pharmacological targeting of some of these nuclear and atypical receptors has been instituted as a means to treat metabolic and developmental disorders and provides a future avenue to be explored for other members of the xenobiotic-sensing NRs. PMID:23210723

  13. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR

    PubMed Central

    2013-01-01

    Nuclear receptors are integrators of hormonal and nutritional signals, mediating changes to metabolic pathways within the body. Given that modulation of lipid and glucose metabolism has been linked to diseases including type 2 diabetes, obesity and atherosclerosis, a greater understanding of pathways that regulate metabolism in physiology and disease is crucial. The liver X receptors (LXRs) and the farnesoid X receptors (FXRs) are activated by oxysterols and bile acids, respectively. Mounting evidence indicates that these nuclear receptors have essential roles, not only in the regulation of cholesterol and bile acid metabolism but also in the integration of sterol, fatty acid and glucose metabolism. PMID:22414897

  14. Analysis of the Heat Shock Response in Mouse Liver Reveals Transcriptional Dependence on the Nuclear Receptor Peroxisome Proliferator-Activated Receptor alpha (PPARα)

    EPA Science Inventory

    BACKGROUND: The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by h...

  15. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  16. The adenovirus E4-ORF3 protein functions as a SUMO E3 ligase for TIF-1γ sumoylation and poly-SUMO chain elongation.

    PubMed

    Sohn, Sook-Young; Hearing, Patrick

    2016-06-14

    The adenovirus (Ad) early region 4 (E4)-ORF3 protein regulates diverse cellular processes to optimize the host environment for the establishment of Ad replication. E4-ORF3 self-assembles into multimers to form a nuclear scaffold in infected cells and creates distinct binding interfaces for different cellular target proteins. Previous studies have shown that the Ad5 E4-ORF3 protein induces sumoylation of multiple cellular proteins and subsequent proteasomal degradation of some of them, but the detailed mechanism of E4-ORF3 function remained unknown. Here, we investigate the role of E4-ORF3 in the sumoylation process by using transcription intermediary factor (TIF)-1γ as a substrate. Remarkably, we discovered that purified E4-ORF3 protein stimulates TIF-1γ sumoylation in vitro, demonstrating that E4-ORF3 acts as a small ubiquitin-like modifier (SUMO) E3 ligase. Furthermore, E4-ORF3 significantly increases poly-SUMO3 chain formation in vitro in the absence of substrate, showing that E4-ORF3 has SUMO E4 elongase activity. An E4-ORF3 mutant, which is defective in protein multimerization, exhibited severely decreased activity, demonstrating that E4-ORF3 self-assembly is required for these activities. Using a SUMO3 mutant, K11R, we found that E4-ORF3 facilitates the initial acceptor SUMO3 conjugation to TIF-1γ as well as poly-SUMO chain elongation. The E4-ORF3 protein displays no SUMO-targeted ubiquitin ligase activity in our assay system. These studies reveal the mechanism by which E4-ORF3 targets specific cellular proteins for sumoylation and proteasomal degradation and provide significant insight into how a small viral protein can play a role as a SUMO E3 ligase and E4-like SUMO elongase to impact a variety of cellular responses. PMID:27247387

  17. ATP-dependent release of glucocorticoid receptors from the nuclear matrix.

    PubMed Central

    Tang, Y; DeFranco, D B

    1996-01-01

    Glucocorticoid receptors (GRs) have the capacity to shuttle between the nuclear and cytoplasmic compartments, sharing that trait with other steroid receptors and unrelated nuclear proteins of diverse function. Although nuclear import of steroid receptors, like that of nearly all other karyophilic proteins examined to date, requires ATP, there appear to be different energetic requirements for export of proteins, including steroid receptors, from nuclei. In an attempt to reveal which steps, if any, in the nuclear export pathway utilized by steroid receptors require ATP, we have used indirect immunofluorescence to visualize GRs within cells subjected to a reversible ATP depletion. Under conditions which lead to >95% depletion of cellular ATP levels within 90 min, GRs remain localized within nuclei and do not efflux into the cytoplasm. Under analogous conditions of ATP depletion, transfected progesterone receptors are also retained within nuclei. Importantly, GRs which accumulate within nuclei of ATP-depleted cells are distinguished from nuclear receptors in metabolically active cells by their resistance to in situ extraction with a hypotonic, detergent-containing buffer. GRs in ATP-depleted cells are not permanently trapped in this nuclear compartment, as nuclear receptors rapidly regain their capacity to be extracted upon restoration of cellular ATP, even in the absence of de novo protein synthesis. More extensive extraction of cells with high salt and detergent, coupled with DNase I digestion, established that a significant fraction of GRs in ATP-depleted cells are associated with an RNA-containing nuclear matrix. Quantitative Western blot (immunoblot) analysis confirmed the dramatic increase in GR binding to the nuclear matrix of ATP-depleted cells, while confocal microscopy revealed that GRs are bound to the matrix throughout all planes of the nucleus. ATP depletion does not lead to wholesale collapse of nuclear proteins onto the matrix, as the interaction of a

  18. Nuclear Receptors and Endocrine Disruptors in Fetal and Neonatal Testes: A Gapped Landscape

    PubMed Central

    Rouiller-Fabre, Virginie; Guerquin, Marie Justine; N’Tumba-Byn, Thierry; Muczynski, Vincent; Moison, Delphine; Tourpin, Sophie; Messiaen, Sébastien; Habert, René; Livera, Gabriel

    2015-01-01

    During the last decades, many studies reported that male reproductive disorders are increasing among humans. It is currently acknowledged that these abnormalities can result from fetal exposure to environmental chemicals that are progressively becoming more concentrated and widespread in our environment. Among the chemicals present in the environment (air, water, food, and many consumer products), several can act as endocrine disrupting compounds (EDCs), thus interfering with the endocrine system. Phthalates, bisphenol A (BPA), and diethylstilbestrol (DES) have been largely incriminated, particularly during the fetal and neonatal period, due to their estrogenic and/or anti-androgenic properties. Indeed, many epidemiological and experimental studies have highlighted their deleterious impact on fetal and neonatal testis development. As EDCs can affect many different genomic and non-genomic pathways, the mechanisms underlying the adverse effects of EDC exposure are difficult to elucidate. Using literature data and results from our laboratory, in the present review, we discuss the role of classical nuclear receptors (genomic pathway) in the fetal and neonatal testis response to EDC exposure, particularly to phthalates, BPA, and DES. Among the nuclear receptors, we focused on some of the most likely candidates, such as peroxisome-proliferator activated receptor (PPAR), androgen receptor (AR), estrogen receptors (ERα and β), liver X receptors (LXR), and small heterodimer partner (SHP). First, we describe the expression and potential functions (based on data from studies using receptor agonists and mouse knockout models) of these nuclear receptors in the developing testis. Then, for each EDC studied, we summarize the main evidences indicating that the reprotoxic effect of each EDC under study is mediated through a specific nuclear receptor(s). We also point-out the involvement of other receptors and nuclear receptor-independent pathways. PMID:25999913

  19. New Insights into Orphan Nuclear Receptor SHP in Liver Cancer

    PubMed Central

    Zou, An; Lehn, Sarah; Magee, Nancy; Zhang, Yuxia

    2015-01-01

    Small heterodimer partner (SHP; NR0B2) is a unique orphan nuclear receptor (NR) that contains a putative ligand-binding domain but lacks a DNA-binding domain. SHP is a transcriptional corepressor affecting diverse metabolic processes including bile acid synthesis, cholesterol and lipid metabolism, glucose and energy homeostasis, and reproductive biology via interaction with multiple NRs and transcriptional factors (TFs). Hepatocellular carcinoma (HCC) is one of the most deadly human cancers worldwide with few therapeutic options and poor prognosis. Recently, it is becoming clear that SHP plays an antitumor role in the development of liver cancer. In this review, we summarize the most recent findings regarding the new SHP interaction partners, new structural insights into SHP’s gene repressing activity, and SHP protein posttranslational modifications by bile acids. We also discuss the pleiotropic role of SHP in regulating cell proliferation, apoptosis, DNA methylation, and inflammation that are related to antitumor role of SHP in HCC. Improving our understanding of SHP’s antitumor role in the development of liver cancer will provide new insights into developing novel treatments or prevention strategies. Future research will focus on developing more efficacious and specific synthetic SHP ligands for pharmaceutical applications in liver cancer and several metabolic diseases such as hypercholesterolemia, obesity, diabetes, and fatty liver disease. PMID:26504773

  20. Road to Exercise Mimetics: Targeting Nuclear Receptors in Skeletal Muscle

    PubMed Central

    Fan, Weiwei; Atkins, Annette R; Yu, Ruth T.; Downes, Michael; Evans, Ronald M.

    2014-01-01

    Skeletal muscle comprises the largest organ in the human body and is the major site for energy expenditure. It exhibits remarkable plasticity in response to physiological stimuli such as exercise. Physical exercise remodels skeletal muscle and enhances its capability to burn calories, which has been shown to be beneficial for many clinical conditions including metabolic syndrome and cancer. Nuclear receptors (NRs) comprise a class of transcription factors found only in metazoans that regulate major biological processes such as reproduction, development, and metabolism. Recent studies have demonstrated crucial roles for NRs and their co-regulators in regulating skeletal muscle energy metabolism and exercise-induced muscle remodeling. While nothing can fully replace exercise, development of exercise mimetics that enhance or even substitute for the beneficial effects of physical exercise would be of great benefit. The unique property of NRs that allows modulation by endogenous or synthetic ligands makes them bona fide therapeutic targets. In this review, we present an overview of the current understanding of NRs and their co-regulators in skeletal muscle oxidative metabolism and summarize recent progress in the development of exercise mimetics that target NRs and their co-regulators. PMID:24280961

  1. Nuclear receptor coregulators: modulators of pathology and therapeutic targets

    PubMed Central

    Lonard, David M.; O’Malley, Bert W.

    2013-01-01

    The nuclear receptor superfamily includes transcription factors that transduce steroid, thyroid and retinoid hormones and other ligands in conjunction with coregulators. To date, over 350 coregulators have been reported in the literature, and advances in proteomic analyses of coregulator protein complexes have revealed that a far greater number of coregulator-interacting proteins also exist. Coregulator dysfunction has been implicated in diverse pathological states, genetic syndromes and cancer. A hallmark of disease related to the disruption of normal coregulator function is the pleiotropic effect on animal physiology, which is frequently manifested as the dysregulation of metabolic and neurological systems. Coregulators have broad physiological and pathological functions that make them promising new drug targets for diseases such as hormone-dependent cancers. Advances in proteomics, genomics and transcriptomics have provided novel insights into the biology of coregulators at a system-wide level and will lead the way to a new understanding of how coregulators can be evaluated in the context of complex and multifaceted genetic factors, hormones, diet, the environment and stress. Ultimately, better knowledge of the associations that exist between coregulator function and human diseases is expected to expand the indications for the use of future coregulator-targeted drugs. PMID:22733267

  2. Binding of type II nuclear receptors and estrogen receptor to full and half-site estrogen response elements in vitro.

    PubMed Central

    Klinge, C M; Bodenner, D L; Desai, D; Niles, R M; Traish, A M

    1997-01-01

    The mechanism by which retinoids, thyroid hormone (T3) and estrogens modulate the growth of breast cancer cells is unclear. Since nuclear type II nuclear receptors, including retinoic acid receptor (RAR), retinoid X receptor (RXR) and thyroid hormone receptor (TR), bind direct repeats (DR) of the estrogen response elements (ERE) half-site (5'-AGGTCA-3'), we examined the ability of estrogen receptor (ER) versus type II nuclear receptors, i.e. RARalpha, beta and gamma, RXRbeta, TRalpha and TRbeta, to bind various EREs in vitro . ER bound a consensus ERE, containing a perfectly palindromic 17 bp inverted repeat (IR), as a homodimer. In contrast, ER did not bind to a single ERE half-site. Likewise, ER did not bind two tandem (38 bp apart) half-sites, but low ER binding was detected to three tandem copies of the same half-site. RARalpha,beta or gamma bound both ERE and half-site constructs as a homodimer. RXRbeta did not bind full or half-site EREs, nor did RXRbeta enhance RARalpha binding to a full ERE. However, RARalpha and RXRbeta bound a half-site ERE cooperatively forming a dimeric complex. The RARalpha-RXRbeta heterodimer bound the Xenopus vitellogenin B1 estrogen responsive unit, with two non-consensus EREs, with higher affinity than one or two copies of the full or half-site ERE. Both TRalpha and TRbeta bound the full and the half-site ERE as monomers and homodimers and cooperatively as heterodimers with RXRbeta. We suggest that the cellular concentrations of nuclear receptors and their ligands, and the nature of the ERE or half-site sequence and those of its flanking sequences determine the occupation of EREs in estrogen-regulated genes in vivo . PMID:9115356

  3. SUMOylation of the C-terminal domain of DNA topoisomerase IIα regulates the centromeric localization of Claspin

    PubMed Central

    Ryu, Hyunju; Yoshida, Makoto M; Sridharan, Vinidhra; Kumagai, Akiko; Dunphy, William G; Dasso, Mary; Azuma, Yoshiaki

    2015-01-01

    DNA topoisomerase II (TopoII) regulates DNA topology by its strand passaging reaction, which is required for genome maintenance by resolving tangled genomic DNA. In addition, TopoII contributes to the structural integrity of mitotic chromosomes and to the activation of cell cycle checkpoints in mitosis. Post-translational modification of TopoII is one of the key mechanisms by which its broad functions are regulated during mitosis. SUMOylation of TopoII is conserved in eukaryotes and plays a critical role in chromosome segregation. Using Xenopus laevis egg extract, we demonstrated previously that TopoIIα is modified by SUMO on mitotic chromosomes and that its activity is modulated via SUMOylation of its lysine at 660. However, both biochemical and genetic analyses indicated that TopoII has multiple SUMOylation sites in addition to Lys660, and the functions of the other SUMOylation sites were not clearly determined. In this study, we identified the SUMOylation sites on the C-terminal domain (CTD) of TopoIIα. CTD SUMOylation did not affect TopoIIα activity, indicating that its function is distinct from that of Lys660 SUMOylation. We found that CTD SUMOylation promotes protein binding and that Claspin, a well-established cell cycle checkpoint mediator, is one of the SUMOylation-dependent binding proteins. Claspin harbors 2 SUMO-interacting motifs (SIMs), and its robust association to mitotic chromosomes requires both the SIMs and TopoIIα-CTD SUMOylation. Claspin localizes to the mitotic centromeres depending on mitotic SUMOylation, suggesting that TopoIIα-CTD SUMOylation regulates the centromeric localization of Claspin. Our findings provide a novel mechanistic insight regarding how TopoIIα-CTD SUMOylation contributes to mitotic centromere activity. PMID:26131587

  4. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    PubMed Central

    Smith, Robert A; Lea, Rod A; Curran, Joanne E; Weinstein, Stephen R; Griffiths, Lyn R

    2003-01-01

    Background Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. Methods RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Results Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Conclusion Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue. PMID:12559052

  5. A Boolean Network Model of Nuclear Receptor Mediated Cell Cycle Progression (S)

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad range of cellular processes. Hormones, lipids and xenobiotics have been shown to activate NRs with a range of consequences on development, metabolism, oxidative stress, apoptosis, and prolif...

  6. A Boolean Network Model of Nuclear Receptor Mediated Cell Cycle Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad range of cellular processes. Hormones, lipids and xenobiotics have been shown to activate NRs with a range of consequences on development, metabolism, oxidative stress, apoptosis, and prolif...

  7. LASSO-ing Potential Nuclear Receptor Agonists and Antagonists: A New Computational Method for Database Screening

    EPA Science Inventory

    Nuclear receptors (NRs) are important biological macromolecular transcription factors that are implicated in multiple biological pathways and may interact with other xenobiotics that are endocrine disruptors present in the environment. Examples of important NRs include the androg...

  8. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors

    EPA Science Inventory

    The bacteriostat triclosan (2,4,40-trichloro-20-hydroxydiphenylether) (TCS) decreases rat serum thyroxine via putative nuclear receptor (NR) interaction(s) and subsequent transcriptional up-regulation of hepatic catabolism and clearance. However, due to the evolutionary divergenc...

  9. SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers.

    PubMed Central

    Chen, J D; Umesono, K; Evans, R M

    1996-01-01

    Transcriptional repression represents an important component in the regulation of cell differentiation and oncogenesis mediated by nuclear hormone receptors. Hormones act to relieve repression, thus allowing receptors to function as transcriptional activators. The transcriptional corepressor SMRT was identified as a silencing mediator for retinoid and thyroid hormone receptors. SMRT is highly related to another corepressor, N-CoR, suggesting the existence of a new family of receptor-interacting proteins. We demonstrate that SMRT is a ubiquitous nuclear protein that interacts with unliganded receptor heterodimers in mammalian cells. Furthermore, expression of the receptor-interacting domain of SMRT acts as an antirepressor, suggesting the potential importance of splicing variants as modulators of thyroid hormone and retinoic acid signaling. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:8755515

  10. Nuclear receptors of the honey bee: annotation and expression in the adult brain

    PubMed Central

    Velarde, Rodrigo A; Robinson, Gene E; Fahrbach, Susan E

    2006-01-01

    The Drosophila genome encodes 18 canonical nuclear receptors. All of the Drosophila nuclear receptors are here shown to be present in the genome of the honey bee (Apis mellifera). Given that the time since divergence of the Drosophila and Apis lineages is measured in hundreds of millions of years, the identification of matched orthologous nuclear receptors in the two genomes reveals the fundamental set of nuclear receptors required to ‘make’ an endopterygote insect. The single novelty is the presence in the A. mellifera genome of a third insect gene similar to vertebrate photoreceptor-specific nuclear receptor (PNR). Phylogenetic analysis indicates that this novel gene, which we have named AmPNR-like, is a new member of the NR2 subfamily not found in the Drosophila or human genomes. This gene is expressed in the developing compound eye of the honey bee. Like their vertebrate counterparts, arthropod nuclear receptors play key roles in embryonic and postembryonic development. Studies in Drosophila have focused primarily on the role of these transcription factors in embryogenesis and metamorphosis. Examination of an expressed sequence tag library developed from the adult bee brain and analysis of transcript expression in brain using in situ hybridization and quantitative RT-PCR revealed that several members of the nuclear receptor family (AmSVP, AmUSP, AmERR, AmHr46, AmFtz-F1, and AmHnf-4) are expressed in the brain of the adult bee. Further analysis of the expression of AmUSP and AmSVP in the mushroom bodies, the major insect brain centre for learning and memory, revealed changes in transcript abundance and, in the case of AmUSP, changes in transcript localization, during the development of foraging behaviour in the adult. Study of the honey bee therefore provides a model for understanding nuclear receptor function in the adult brain. PMID:17069634

  11. The HR97 (NR1L) Group of Nuclear Receptors: A New Group up of Nuclear Receptors Discovered in Daphnia species

    PubMed Central

    Li, Yangchun; Ginjupalli, Gautam K.; Baldwin, William S.

    2014-01-01

    The recently sequenced Daphnia pulex genome revealed the NR1L nuclear receptor group consisting of three novel receptors. Phylogenetic studies show that this group is related to the NR1I group (CAR/PXR/VDR) and the NR1J group (HR96), and were subsequently named HR97a/b/g. Each of the HR97 paralogs from Daphnia magna, a commonly used crustacean in toxicity testing, was cloned, sequenced, and partially characterized. Phylogenetic analysis indicates that the HR97 receptors are present in primitive arthropods such as the chelicerates but lost in insects. qPCR and immunohistochemistry demonstrate that each of the receptors is expressed near or at reproductive maturity, and that HR97g, the most ancient of the HR97 receptors, is primarily expressed in the gastrointestinal tract, mandibular region, and ovaries, consistent with a role in reproduction. Transactivation assays using an HR97a/b/g-GAL4 chimera indicate that unlike Daphnia HR96 that is promiscuous with respect to ligand recognition, the HR97 receptors do not respond to many of the ligands that activate CAR/PXR/HR96 nuclear receptors. Only three putative ligands of HR97 receptors were identified in this study: pyriproxyfen, methyl farnesoate, and arachidonic acid. Only arachidonic acid, which acts as an inverse agonist, alters HR97g activity at concentrations that would be considered within physiologically relevant ranges. Overall, this study demonstrates that, although closely related to the promiscuous receptors in the NR1I and NR1J groups, the HR97 receptors are mostly likely not multi-xenobiotic sensors, but rather may perform physiological functions, potentially in reproduction, unique to crustaceans and other non-insect arthropod groups. PMID:25092536

  12. Protein SUMOylation Is Required for Regulatory T Cell Expansion and Function.

    PubMed

    Ding, Xiao; Wang, Aibo; Ma, Xiaopeng; Demarque, Maud; Jin, Wei; Xin, Huawei; Dejean, Anne; Dong, Chen

    2016-07-26

    Foxp3-expressing regulatory T (Treg) cells are essential for immune tolerance; however, the molecular mechanisms underlying Treg cell expansion and function are still not well understood. SUMOylation is a protein post-translational modification characterized by covalent attachment of SUMO moieties to lysines. UBC9 is the only E2 conjugating enzyme involved in this process, and loss of UBC9 completely abolishes the SUMOylation pathway. Here, we report that selective deletion of Ubc9 within the Treg lineage results in fatal early-onset autoimmunity similar to Foxp3 mutant mice. Ubc9-deficient Treg cells exhibit severe defects in TCR-driven homeostatic proliferation, accompanied by impaired activation and compromised suppressor function. Importantly, TCR ligation enhanced SUMOylation of IRF4, a critical regulator of Treg cell function downstream of TCR signals, which regulates its stability in Treg cells. Our data thus have demonstrated an essential role of SUMOylation in the expansion and function of Treg cells. PMID:27425617

  13. The xenobiotic-sensing nuclear receptors pregnane X receptor, constitutive androstane receptor, and orphan nuclear receptor hepatocyte nuclear factor 4alpha in the regulation of human steroid-/bile acid-sulfotransferase.

    PubMed

    Echchgadda, Ibtissam; Song, Chung S; Oh, Taesung; Ahmed, Mohamed; De La Cruz, Isidro John; Chatterjee, Bandana

    2007-09-01

    The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are the primary transcription factors coordinating induced expression of the enzymes and proteins directing oxidative, conjugative, and transport phases of endobiotic and xenobiotic metabolism, whereas hepatocyte nuclear factor 4alpha (HNF4alpha), a regulator of hepatic lipid homeostasis, can modify the PXR/CAR response. Steroid- and bile acid-sulfotransferase (SULT2A1) promotes phase II metabolism through its sulfonating action on certain endobiotics, including steroids and bile acids, and on diverse xenobiotics, including therapeutic drugs. This study describes characterization of a PXR- and CAR-inducible composite element in the human SULT2A1 promoter and its synergistic interaction with HNF4alpha. Inverted and direct repeats of AG(G/T)TCA (IR2 and DR4), both binding to PXR and CAR, define the composite element. Differential recognition of the composite element by PXR and CAR is evident because single-site mutation at either IR2 or DR4 in the natural gene abolished the PXR response, whereas mutations at both repeats were necessary to abrogate completely the CAR response. The composite element conferred xenobiotic response to a heterologous promoter, and the cognate ligands induced PXR and CAR recruitment to the chromatin-associated response region. An HNF4alpha element adjacent to the -30 position enhanced basal promoter activity. Although functioning as a synergizer, the HNF4alpha element was not essential for the PXR/CAR response. An emerging role of SULT2A1 in lipid and caloric homeostasis suggests that illumination on the regulatory interactions driving human SULT2A1 expression may reveal new avenues to control certain metabolic disorders. PMID:17595319

  14. Minireview: Pathophysiological roles of the TR4 nuclear receptor: lessons learned from mice lacking TR4.

    PubMed

    Lin, Shin-Jen; Zhang, Yanqing; Liu, Ning-Chun; Yang, Dong-Rong; Li, Gonghui; Chang, Chawnshang

    2014-06-01

    Testicular nuclear receptor 4 (TR4), also known as NR2C2, belongs to the nuclear receptor superfamily and shares high homology with the testicular nuclear receptor 2. The natural ligands of TR4 remained unclear until the recent discoveries of several energy/lipid sensors including the polyunsaturated fatty acid metabolites, 13-hydroxyoctadecadienoic acid and 15-hydroxyeicosatetraenoic acid, and their synthetic ligands, thiazolidinediones, used for treatment of diabetes. TR4 is widely expressed throughout the body and particularly concentrated in the testis, prostate, cerebellum, and hippocampus. It has been shown to play important roles in cerebellar development, forebrain myelination, folliculogenesis, gluconeogenesis, lipogenesis, muscle development, bone development, and prostate cancer progression. Here we provide a comprehensive summary of TR4 signaling including its upstream ligands/activators/suppressors, transcriptional coactivators/repressors, downstream targets, and their in vivo functions with potential impacts on TR4-related diseases. Importantly, TR4 shares similar ligands/activators with another key nuclear receptor, peroxisome proliferator-activated receptor γ, which raised several interesting questions about how these 2 nuclear receptors may collaborate with or counteract each other's function in their related diseases. Clear dissection of such molecular mechanisms and their differential roles in various diseases may help researchers to design new potential drugs with better efficacy and fewer side effects to battle TR4 and peroxisome proliferator-activated receptor γ involved diseases. PMID:24702179

  15. Mechanisms of progesterone receptor export from nuclei: role of nuclear localization signal, nuclear export signal, and ran guanosine triphosphate.

    PubMed

    Tyagi, R K; Amazit, L; Lescop, P; Milgrom, E; Guiochon-Mantel, A

    1998-11-01

    Steroid hormone receptors are, in most cases, mainly nuclear proteins that undergo a continuous nucleocytoplasmic shuttling. The mechanism of the nuclear export of these proteins remains largely unknown. To approach this problem experimentally in vivo, we have prepared cell lines permanently coexpressing the wild-type nuclear progesterone receptor (PR) and a cytoplasmic receptor mutant deleted of its nuclear localization signal (NLS) [(deltaNLS)PR]. Each receptor species was deleted from the epitope recognized by a specific monoclonal antibody, thus allowing separated observation of the two receptor forms in the same cells. Administration of hormone provoked formation of heterodimers during nucleocytoplasmic shuttling and import of (deltaNLS)PR into the nucleus. Washing out of the hormone allowed us to follow the export of (deltaNLS)PR into the cytoplasm. Microinjection of BSA coupled to a NLS inhibited the export of (deltaNLS)PR. On the contrary, microinjection of BSA coupled to a nuclear export signal (NES) was without effect. Moreover, leptomycin B, which inhibits NES-mediated export, was also without effect. tsBN2 cells contain a thermosensitive RCC1 protein (Ran GTP exchange protein). At the nonpermissive temperature, the nuclear export of (deltaNLS)PR could be observed, whereas the export of NES-BSA was suppressed. Microinjection of GTPgammaS confirmed that the export of (deltaNLS)PR was not dependent on GTP hydrolysis. These experiments show that the nuclear export of PR is not NES mediated but probably involves the NLS. It does not involve Ran GTP, and it is not dependent on the hydrolysis of GTP. The nucleocytoplasmic shuttling of steroid hormone receptors thus appears to utilize mechanisms different from those previously described for some viral, regulatory, and heterogeneous ribonuclear proteins. PMID:9817595

  16. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    PubMed

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. PMID:23180608

  17. How does oxygen rise drive evolution? Clues from oxygen-dependent biosynthesis of nuclear receptor ligands

    SciTech Connect

    Jiang, Ying-Ying; Kong, De-Xin; Qin, Tao; Zhang, Hong-Yu

    2010-01-08

    It is well known that oxygen rise greatly facilitated biological evolution. However, the underlying mechanisms remain elusive. Recently, Raymond and Segre revealed that molecular oxygen allows 1000 more metabolic reactions than can occur in anoxic conditions. From the novel metabolites produced in aerobic metabolism, we serendipitously found that some of the metabolites are signaling molecules that target nuclear receptors. Since nuclear signaling systems are indispensable to superior organisms, we speculated that aerobic metabolism may facilitate biological evolution through promoting the establishment of nuclear signaling systems. This hypothesis is validated by the observation that most (97.5%) nuclear receptor ligands are produced by aerobic metabolism, which is further explained in terms of the chemical criteria (appropriate volume and rather high hydrophobicity) of nuclear receptor ligands that aerobic metabolites are more ready than anaerobic counterparts to satisfy these criteria.

  18. Transcriptomine, a web resource for nuclear receptor signaling transcriptomes.

    PubMed

    Ochsner, Scott A; Watkins, Christopher M; McOwiti, Apollo; Xu, Xueping; Darlington, Yolanda F; Dehart, Michael D; Cooney, Austin J; Steffen, David L; Becnel, Lauren B; McKenna, Neil J

    2012-09-01

    The nuclear receptor (NR) superfamily of ligand-regulated transcription factors directs ligand- and tissue-specific transcriptomes in myriad developmental, metabolic, immunological, and reproductive processes. The NR signaling field has generated a wealth of genome-wide expression data points, but due to deficits in their accessibility, annotation, and integration, the full potential of these studies has not yet been realized. We searched public gene expression databases and MEDLINE for global transcriptomic datasets relevant to NRs, their ligands, and coregulators. We carried out extensive, deep reannotation of the datasets using controlled vocabularies for RNA Source and regulating molecule and resolved disparate gene identifiers to official gene symbols to facilitate comparison of fold changes and their significance across multiple datasets. We assembled these data points into a database, Transcriptomine (http://www.nursa.org/transcriptomine), that allows for multiple, menu-driven querying strategies of this transcriptomic "superdataset," including single and multiple genes, Gene Ontology terms, disease terms, and uploaded custom gene lists. Experimental variables such as regulating molecule, RNA Source, as well as fold-change and P value cutoff values can be modified, and full data records can be either browsed or downloaded for downstream analysis. We demonstrate the utility of Transcriptomine as a hypothesis generation and validation tool using in silico and experimental use cases. Our resource empowers users to instantly and routinely mine the collective biology of millions of previously disparate transcriptomic data points. By incorporating future transcriptome-wide datasets in the NR signaling field, we anticipate Transcriptomine developing into a powerful resource for the NR- and other signal transduction research communities. PMID:22786849

  19. The nuclear receptor NR2E1/TLX controls senescence

    PubMed Central

    Krusche, Benjamin; Pemberton, Helen; Alonso, Marta M.; Chandler, Hollie; Brookes, Sharon; Parrinello, Simona; Peters, Gordon; Gil, Jesús

    2014-01-01

    The nuclear receptor NR2E1 (also known as TLX or tailless) controls the self-renewal of neural stem cells (NSCs) and has been implied as an oncogene which initiates brain tumours including glioblastomas. Despite NR2E1 regulating targets like p21CIP1 or PTEN we still lack a full explanation for its role in NSC self-renewal and tumorigenesis. We know that Polycomb repressive complexes (PRC) also control stem cell self-renewal and tumorigenesis, but so far, no formal connection has been established between NR2E1 and PRCs. In a screen for transcription factors regulating the expression of the Polycomb protein CBX7, we identified NR2E1 as one of its more prominent regulators. NR2E1 binds at the CBX7 promoter, inducing its expression. Notably CBX7 represses NR2E1 as part of a regulatory loop. Ectopic NR2E1 expression inhibits cellular senescence, extending cellular lifespan in fibroblasts via CBX7-mediated regulation of p16INK4a and direct repression of p21CIP1. In addition NR2E1 expression also counteracts oncogene-induced senescence (OIS). The importance of NR2E1 to restrain senescence is highlighted through the process of knocking down its expression, which causes premature senescence in human fibroblasts and epithelial cells. We also confirmed that NR2E1 regulates CBX7 and restrains senescence in NSCs. Finally, we observed that the expression of NR2E1 directly correlates with that of CBX7 in human glioblastoma multiforme. Overall we identified control of senescence and regulation of Polycomb action as two possible mechanisms that can join those so far invoked to explain the role of NR2E1 in control of NSC self-renewal and cancer. PMID:25328137

  20. Role of Nuclear Receptor SHP in Metabolism and Cancer

    PubMed Central

    Zhang, Yuxia; Hagedorn, Curt H.; Wang, Li

    2010-01-01

    Small heterodimer partner (SHP, NR0B2) is a unique member of the nuclear receptor (NR) superfamily that contains the dimerization and ligand-binding domain found in other family members, but lacks the conserved DNA binding domain. The ability of SHP to bind directly to multiple NRs is crucial for its physiological function as a transcriptional inhibitor of gene expression. A wide variety of interacting partners for SHP have been identified, indicating the potential for SHP to regulate an array of genes in different biological pathways. In this review, we summarize studies concerning the structure and target genes of SHP and discuss recent progress in understanding the function of SHP in bile acid, cholesterol, triglyceride, glucose, and drug metabolism. In addition, we review the regulatory role of SHP in microRNA (miRNA) regulation, liver fibrosis and cancer progression. The fact that SHP controls a complex set of genes in multiple metabolic pathways suggests the intriguing possibility of developing new therapeutics for metabolic diseases, including fatty liver, dyslipidemia and obesity, by regulating SHP with small molecules. To achieve this goal, more progress regarding SHP ligands and protein structure will be required. Besides its metabolic regulatory function, studies by us and other groups provide strong evidence that SHP plays a critical role in the development of cancer, particularly liver and breast cancer. An increased understanding of the fundamental mechanisms by which SHP regulates the development of cancers will be critical in applying knowledge of SHP in diagnostic, therapeutic or preventive strategies for specific cancers. PMID:20970497

  1. Dynamic Sumoylation of a Conserved Transcription Corepressor Prevents Persistent Inclusion Formation during Hyperosmotic Stress

    PubMed Central

    Oeser, Michelle L.; Amen, Triana; Nadel, Cory M.; Bradley, Amanda I.; Reed, Benjamin J.; Jones, Ramon D.; Gopalan, Janani; Kaganovich, Daniel; Gardner, Richard G.

    2016-01-01

    Cells are often exposed to physical or chemical stresses that can damage the structures of essential biomolecules. Stress-induced cellular damage can become deleterious if not managed appropriately. Rapid and adaptive responses to stresses are therefore crucial for cell survival. In eukaryotic cells, different stresses trigger post-translational modification of proteins with the small ubiquitin-like modifier SUMO. However, the specific regulatory roles of sumoylation in each stress response are not well understood. Here, we examined the sumoylation events that occur in budding yeast after exposure to hyperosmotic stress. We discovered by proteomic and biochemical analyses that hyperosmotic stress incurs the rapid and transient sumoylation of Cyc8 and Tup1, which together form a conserved transcription corepressor complex that regulates hundreds of genes. Gene expression and cell biological analyses revealed that sumoylation of each protein directs distinct outcomes. In particular, we discovered that Cyc8 sumoylation prevents the persistence of hyperosmotic stress-induced Cyc8-Tup1 inclusions, which involves a glutamine-rich prion domain in Cyc8. We propose that sumoylation protects against persistent inclusion formation during hyperosmotic stress, allowing optimal transcriptional function of the Cyc8-Tup1 complex. PMID:26800527

  2. Myc-induced SUMOylation is a therapeutic vulnerability for B-cell lymphoma

    PubMed Central

    Hoellein, Alexander; Fallahi, Mohammad; Schoeffmann, Stephanie; Steidle, Sabine; Schaub, Franz X.; Rudelius, Martina; Laitinen, Iina; Nilsson, Lisa; Goga, Andrei; Peschel, Christian; Nilsson, Jonas A.; Cleveland, John L.

    2014-01-01

    Myc oncogenic transcription factors (c-Myc, N-Myc, and L-Myc) coordinate the control of cell growth, division, and metabolism. In cancer, Myc overexpression is often associated with aggressive disease, which is in part due to the destruction of select targets by the ubiquitin-proteasome system (eg, SCFSkp2-directed destruction of the Cdk inhibitor p27Kip1). We reasoned that Myc would also regulate SUMOylation, a related means of posttranslational modification of proteins, and that this circuit would play essential roles in Myc-dependent tumorigenesis. Here, we report marked increases in the expression of genes that encode regulators and components of the SUMOylation machinery in mouse and human Myc-driven lymphomas, resulting in hyper-SUMOylation in these tumors. Further, inhibition of SUMOylation by genetic means disables Myc-induced proliferation, triggering G2/M cell-cycle arrest, polyploidy, and apoptosis. Using genetically defined cell models and conditional expression systems, this response was shown to be Myc specific. Finally, in vivo loss-of-function and pharmacologic studies demonstrated that inhibition of SUMOylation provokes rapid regression of Myc-driven lymphoma. Thus, targeting SUMOylation represents an attractive therapeutic option for lymphomas with MYC involvement. PMID:25143484

  3. Sumoylation Influences DNA Break Repair Partly by Increasing the Solubility of a Conserved End Resection Protein

    PubMed Central

    Sarangi, Prabha; Steinacher, Roland; Altmannova, Veronika; Fu, Qiong; Paull, Tanya T.; Krejci, Lumir; Whitby, Matthew C.; Zhao, Xiaolan

    2015-01-01

    Protein modifications regulate both DNA repair levels and pathway choice. How each modification achieves regulatory effects and how different modifications collaborate with each other are important questions to be answered. Here, we show that sumoylation regulates double-strand break repair partly by modifying the end resection factor Sae2. This modification is conserved from yeast to humans, and is induced by DNA damage. We mapped the sumoylation site of Sae2 to a single lysine in its self-association domain. Abolishing Sae2 sumoylation by mutating this lysine to arginine impaired Sae2 function in the processing and repair of multiple types of DNA breaks. We found that Sae2 sumoylation occurs independently of its phosphorylation, and the two modifications act in synergy to increase soluble forms of Sae2. We also provide evidence that sumoylation of the Sae2-binding nuclease, the Mre11-Rad50-Xrs2 complex, further increases end resection. These findings reveal a novel role for sumoylation in DNA repair by regulating the solubility of an end resection factor. They also show that collaboration between different modifications and among multiple substrates leads to a stronger biological effect. PMID:25569253

  4. Sumoylation of eIF4A2 affects stress granule formation

    PubMed Central

    Jongjitwimol, Jirapas; Baldock, Robert A.; Morley, Simon J.

    2016-01-01

    ABSTRACT Regulation of protein synthesis is crucial for cells to maintain viability and to prevent unscheduled proliferation that could lead to tumorigenesis. Exposure to stress results in stalling of translation, with many translation initiation factors, ribosomal subunits and mRNAs being sequestered into stress granules or P bodies. This allows the re-programming of the translation machinery. Many aspects of translation are regulated by post-translational modification. Several proteomic screens have identified translation initiation factors as targets for sumoylation, although in many cases the role of this modification has not been determined. We show here that eIF4A2 is modified by SUMO, with sumoylation occurring on a single residue (K226). We demonstrate that sumoylation of eIF4A2 is modestly increased in response to arsenite and ionising radiation, but decreases in response to heat shock or hippuristanol. In arsenite-treated cells, but not in hippuristanol-treated cells, eIF4A2 is recruited to stress granules, suggesting sumoylation of eIF4A2 correlates with its recruitment to stress granules. Furthermore, we demonstrate that the inability to sumoylate eIF4A2 results in impaired stress granule formation, indicating a new role for sumoylation in the stress response. PMID:27160682

  5. Sumoylation of eIF4A2 affects stress granule formation.

    PubMed

    Jongjitwimol, Jirapas; Baldock, Robert A; Morley, Simon J; Watts, Felicity Z

    2016-06-15

    Regulation of protein synthesis is crucial for cells to maintain viability and to prevent unscheduled proliferation that could lead to tumorigenesis. Exposure to stress results in stalling of translation, with many translation initiation factors, ribosomal subunits and mRNAs being sequestered into stress granules or P bodies. This allows the re-programming of the translation machinery. Many aspects of translation are regulated by post-translational modification. Several proteomic screens have identified translation initiation factors as targets for sumoylation, although in many cases the role of this modification has not been determined. We show here that eIF4A2 is modified by SUMO, with sumoylation occurring on a single residue (K226). We demonstrate that sumoylation of eIF4A2 is modestly increased in response to arsenite and ionising radiation, but decreases in response to heat shock or hippuristanol. In arsenite-treated cells, but not in hippuristanol-treated cells, eIF4A2 is recruited to stress granules, suggesting sumoylation of eIF4A2 correlates with its recruitment to stress granules. Furthermore, we demonstrate that the inability to sumoylate eIF4A2 results in impaired stress granule formation, indicating a new role for sumoylation in the stress response. PMID:27160682

  6. Origin and evolution of the ligand-binding ability of nuclear receptors.

    PubMed

    Markov, Gabriel V; Laudet, Vincent

    2011-03-01

    The origin of the ligand-binding ability of nuclear receptors is still a matter of discussion. Current opposing models are the early evolution of an ancestral receptor that would bind a specific ligand with high affinity and the early evolution of an ancestral orphan that was a constitutive transcription factor. Here we review the arguments in favour or against these two hypotheses, and we discuss an alternative possibility that the ancestor was a ligand sensor, which would be able to explain the apparently contradictory data generated in previous models for the evolution of ligand binding in nuclear receptors. PMID:21055443

  7. Role of SUMO in RNF4-mediated promyelocytic leukemia protein (PML) degradation: sumoylation of PML and phospho-switch control of its SUMO binding domain dissected in living cells.

    PubMed

    Percherancier, Yann; Germain-Desprez, Delphine; Galisson, Frédéric; Mascle, Xavier H; Dianoux, Laurent; Estephan, Patricia; Chelbi-Alix, Mounira K; Aubry, Muriel

    2009-06-12

    Promyelocytic leukemia protein (PML) is a tumor suppressor acting as the organizer of subnuclear structures called PML nuclear bodies (NBs). Both covalent modification of PML by the small ubiquitin-like modifier (SUMO) and non-covalent binding of SUMO to the PML SUMO binding domain (SBD) are necessary for PML NB formation and maturation. PML sumoylation and proteasome-dependent degradation induced by the E3 ubiquitin ligase, RNF4, are enhanced by the acute promyelocytic leukemia therapeutic agent, arsenic trioxide (As2O3). Here, we established a novel bioluminescence resonance energy transfer (BRET) assay to dissect and monitor PML/SUMO interactions dynamically in living cells upon addition of therapeutic agents. Using this sensitive and quantitative SUMO BRET assay that distinguishes PML sumoylation from SBD-mediated PML/SUMO non-covalent interactions, we probed the respective roles of covalent and non-covalent PML/SUMO interactions in PML degradation and interaction with RNF4. We found that, although dispensable for As2O3-enhanced PML sumoylation and RNF4 interaction, PML SBD core sequence was required for As2O3- and RNF4-induced PML degradation. As confirmed with a phosphomimetic mutant, phosphorylation of a stretch of serine residues, contained within PML SBD was needed for PML interaction with SUMO-modified protein partners and thus for NB maturation. However, mutation of these serine residues did not impair As2O3- and RNF4-induced PML degradation, contrasting with the known role of these phosphoserine residues for casein kinase 2-promoted PML degradation. Altogether, these data suggest a model whereby sumoylation- and SBD-dependent PML oligomerization within NBs is sufficient for RNF4-mediated PML degradation and does not require the phosphorylation-dependent association of PML with other sumoylated partners. PMID:19380586

  8. Dietary regulation of adiponectin by direct and indirect lipid activators of nuclear hormone receptors.

    PubMed

    Rühl, R; Landrier, J F

    2016-01-01

    Adiponectin is an adipokine mainly secreted by adipocytes that presents antidiabetic, anti-inflammatory, and antiatherogenic functions. Therefore, modulation of adiponectin expression represents a promising target for prevention or treatment of several diseases including insulin resistance and type II diabetes. Pharmacological agents such as the nuclear hormone receptor synthetic agonists like peroxisome proliferator activated receptor γ agonists are of particular interest in therapeutic strategies due to their ability to increase the plasma adiponectin concentration. Nutritional approaches are also of particular interest, especially in primary prevention, since some active compounds of our diet (notably vitamins, carotenoids, or other essential nutrients) are direct or indirect lipid-activators of nuclear hormone receptors and are modifiers of adiponectin expression and secretion. The aim of the present review is to summarize current knowledge about the nutritional regulation of adiponectin by derivatives of active compounds naturally present in the diet acting as indirect or direct activators of nuclear hormone receptors. PMID:26610729

  9. Nuclear Receptor Cofactors in PPARγ-Mediated Adipogenesis and Adipocyte Energy Metabolism

    PubMed Central

    Powell, Emily; Kuhn, Peter; Xu, Wei

    2007-01-01

    Transcriptional cofactors are integral to the proper function and regulation of nuclear receptors. Members of the peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors are involved in the regulation of lipid and carbohydrate metabolism. They modulate gene transcription in response to a wide variety of ligands, a process that is mediated by transcriptional coactivators and corepressors. The mechanisms by which these cofactors mediate transcriptional regulation of nuclear receptor function are still being elucidated. The rapidly increasing array of cofactors has brought into focus the need for a clear understanding of how these cofactors interact in ligand- and cell-specific manners. This review highlights the differential effects of the assorted cofactors regulating the transcriptional action of PPARγ and summarizes the recent advances in understanding the physiological functions of corepressors and coactivators. PMID:17389765

  10. Minireview: The Role of Nuclear Receptors in Photoreceptor Differentiation and Disease

    PubMed Central

    Swaroop, Anand

    2012-01-01

    Rod and cone photoreceptors are specialized sensory cells that mediate vision. Transcriptional controls are critical for the development and long-term survival of photoreceptors; when these controls become ineffective, retinal dysfunction or degenerative disease may result. This review discusses the role of nuclear receptors, a class of ligand-regulated transcription factors, at key stages of photoreceptor life in the mammalian retina. Nuclear receptors with known ligands, such as retinoids or thyroid hormone, together with several orphan receptors without identified physiological ligands, complement other classes of transcription factors in directing the differentiation and functional maintenance of photoreceptors. The potential of nuclear receptors to respond to ligands introduces versatility into the control of photoreceptor development and function and may suggest new opportunities for treatments of photoreceptor disease. PMID:22556342

  11. Molecular Mechanisms Underlying the Link between Nuclear Receptor Function and Cholesterol Gallstone Formation

    PubMed Central

    Vázquez, Mary Carmen; Rigotti, Attilio; Zanlungo, Silvana

    2012-01-01

    Cholesterol gallstone disease is highly prevalent in western countries, particularly in women and some specific ethnic groups. The formation of water-insoluble cholesterol crystals is due to a misbalance between the three major lipids present in the bile: cholesterol, bile salts, and phospholipids. Many proteins implicated in biliary lipid secretion in the liver are regulated by several transcription factors, including nuclear receptors LXR and FXR. Human and murine genetic, physiological, pathophysiological, and pharmacological evidence is consistent with the relevance of these nuclear receptors in gallstone formation. In addition, there is emerging data that also suggests a role for estrogen receptor ESR1 in abnormal cholesterol metabolism leading to gallstone disease. A better comprehension of the role of nuclear receptor function in gallstone formation may help to design new and more effective therapeutic strategies for this highly prevalent disease condition. PMID:22132343

  12. Nuclear receptor coactivators: Regulators of steroid action in brain and behavior

    PubMed Central

    Tetel, Marc J.; Acharya, Kalpana D.

    2013-01-01

    Steroid hormones act in specific regions of the brain to alter behavior and physiology. While it has been well established that the bioavailability of the steroid and the expression of its receptor is critical to understanding steroid action in brain, the importance of nuclear receptor coactivators in brain is becoming more apparent. This review will focus on the function of the p160 family of coactivators, which includes steroid receptor coactivator-1 (SRC-1), SRC-2 and SRC-3, in steroid receptor action in brain. The expression, regulation and function of these coactivators in steroid-dependent gene expression in brain and behavior will be discussed. PMID:23795583

  13. Nuclear receptor function in skin health and disease: therapeutic opportunities in the orphan and adopted receptor classes.

    PubMed

    Yin, Kelvin; Smith, Aaron G

    2016-10-01

    The skin forms a vital barrier between an organism's external environment, providing protection from pathogens and numerous physical and chemical threats. Moreover, the intact barrier is essential to prevent water and electrolyte loss without which terrestrial life could not be maintained. Accordingly, acute disruption of the skin through physical or chemical trauma needs to be repaired timely and efficiently as sustained skin pathologies ranging from mild irritations and inflammation through to malignancy impact considerably on morbidity and mortality. The Nuclear Hormone Receptor Family of transcriptional regulators has proven to be highly valuable targets for addressing a range of pathologies, including metabolic syndrome and cancer. Indeed members of the classic endocrine sub-group, such as the glucocorticoid, retinoid, and Vitamin D receptors, represent mainstay treatment strategies for numerous inflammatory skin disorders, though side effects from prolonged use are common. Emerging evidence has now highlighted important functional roles for nuclear receptors belonging to the adopted and orphan subgroups in skin physiology and patho-physiology. This review will focus on these subgroups and explore the current evidence that suggests these nuclear receptor hold great promise as future stand-alone or complementary drug targets in treating common skin diseases and maintaining skin homeostasis. PMID:27544210

  14. Hepatocyte nuclear factor-4α, a multifunctional nuclear receptor associated with cardiovascular disease and cholesterol catabolism.

    PubMed

    Tavares-Sanchez, Olga Lidia; Rodriguez, Carmen; Gortares-Moroyoqui, Pablo; Estrada, Maria Isabel

    2015-01-01

    Cardiovascular diseases (CVDs), the leading cause of death worldwide, are associated with high plasma cholesterol levels. The conversion of cholesterol to bile acids (BAs) accounts for about 50% of total cholesterol elimination from the body. This phenomenon occurs in the liver and is regulated by nuclear receptors such as hepatocyte nuclear factor-4α (HNF-4α). Therefore, special emphasis is given to HNF-4α properties and its multifunctional role, particularly in the conversion of cholesterol to BAs. HNF-4α is a highly conserved transcription factor that has the potential capacity to transactivate a vast number of genes, including CYP7 which codes for cholesterol 7α-hydroxylase (CYP7A1; EC 1.14.13.17), the rate-limiting enzyme of BA biosynthesis. The fact that HNF-4α transactivation potential can be modulated via phosporylation is of particular interest. Additional findings on structural and functional characteristics of HNF-4α may eventually present alternatives to control the levels of cholesterol in the body and consequently reduce the risk of CVDs. PMID:24848804

  15. HTLV-2B Tax oncoprotein is modified by ubiquitination and sumoylation and displays intracellular localization similar to its homologue HTLV-1 Tax

    SciTech Connect

    Turci, Marco; Lodewick, Julie; Righi, Paola; Polania, Angela; Romanelli, Maria Grazia; Bex, Francoise; Bertazzoni, Umberto

    2009-03-30

    HTLV-1 is more pathogenic than HTLV-2B. The difference is generally attributed to the properties of their individual transactivating Tax proteins. By using internal Flag-6His tagged Tax-1 and Tax-2B, which display transcriptional activities comparable to the untagged proteins and can be recognized by a single anti-Flag antibody, we demonstrate that Tax-2B is modified by ubiquitination and sumoylation. In addition, Tax2B is distributed in punctuate nuclear structures that include the RelA subunit of NF-{kappa}B, as has been previously demonstrated for Tax-1.

  16. Structural Overview of the Nuclear Receptor Superfamily: Insights into Physiology and Therapeutics

    PubMed Central

    Huang, Pengxiang; Chandra, Vikas; Rastinejad, Fraydoon

    2013-01-01

    As ligand-regulated transcription factors, the nuclear hormone receptors are nearly ideal drug targets, with internal pockets that bind to hydrophobic, drug-like molecules and well-characterized ligand-induced conformational changes that recruit transcriptional coregulators to promoter elements. Yet, due to the multitude of genes under the control of a single receptor, the major challenge has been the identification of ligands with gene-selective actions, impacting disease outcomes through a narrow subset of target genes and not across their entire gene-regulatory repertoire. Here, we summarize the concepts and work to date underlying the development of steroidal and nonsteroidal receptor ligands, including the use of crystal structures, high-throughput screens, and rational design approaches for finding useful therapeutic molecules. Difficulties in finding selective receptor modulators require a more complete understanding of receptor interdomain communications, posttranslational modifications, and receptor-protein interactions that could be exploited for target gene selectivity. PMID:20148675

  17. SUMOylation of DLX3 by SUMO1 promotes its transcriptional activity.

    PubMed

    Duverger, Olivier; Chen, Susie X; Lee, Delia; Li, Tianwei; Chock, P Boon; Morasso, Maria I

    2011-02-01

    Small ubiquitin-like modifiers (SUMO) are post-translational modifiers that regulate target protein activity in diverse ways. The most common group of SUMO substrates is transcription factors, whose transcriptional activity can be altered positively or negatively as a result of SUMOylation. DLX3 is a homeodomain transcription factor involved in placental development, in the differentiation of structures involving epithelial-mesenchymal interactions, such as hair, teeth and nails, and in bone mineralization. We identified two potential SUMOylation sites in the N-terminal domain of DLX3 at positions K83 and K112. Among the six members of the Distal-less family, DLX3 is the only member containing these sites, which are highly conserved among vertebrates. Co-expression experiments demonstrated that DLX3 can be SUMOylated by SUMO1. Site-directed mutagenesis of lysines 83 and 112 to arginines (K83R and K112R) demonstrated that only K112 is involved in SUMOylation. Immunocytochemical analysis determined that SUMOylation does not affect DLX3 translocation to the nucleus and favors perinuclear localization. Moreover, using electrophoresis mobility shift assay (EMSA), we found that DLX3 is still able to bind DNA when SUMOylated. Using luciferase reporter assays, we showed that DLX3(K112R) exhibits a significantly lower transcriptional activity compared to DLX3(WT), suggesting that SUMOylation has a positive effect on DLX3 activity. We identified a new level of regulation in the activity of DLX3 that may play a crucial role in the regulation of hair, teeth, and bone development. PMID:21268066

  18. Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1.

    PubMed

    Lo, Hui-Wen; Ali-Seyed, Mohamed; Wu, Yadi; Bartholomeusz, Geoffrey; Hsu, Sheng-Chieh; Hung, Mien-Chie

    2006-08-15

    Many receptor tyrosine kinases (RTKs) can be detected in the cell nucleus, such as EGFR, HER-2, HER-3, HER-4, and fibroblast growth factor receptor. EGFR, HER-2 and HER-4 contain transactivational activity and function as transcription co-factors to activate gene promoters. High EGFR in tumor nuclei correlates with increased tumor proliferation and poor survival in cancer patients. However, the mechanism by which cell-surface EGFR translocates into the cell nucleus remains largely unknown. Here, we found that EGFR co-localizes and interacts with importins alpha1/beta1, carriers that are critical for macromolecules nuclear import. EGFR variant mutated at the nuclear localization signal (NLS) is defective in associating with importins and in entering the nuclei indicating that EGFR's NLS is critical for EGFR/importins interaction and EGFR nuclear import. Moreover, disruption of receptor internalization process using chemicals and forced expression of dominant-negative Dynamin II mutant suppressed nuclear entry of EGFR. Additional evidences suggest an involvement of endosomal sorting machinery in EGFR nuclear translocalization. Finally, we found that nuclear export of EGFR may involve CRM1 exportin as we detected EGFR/CRM1 interaction and markedly increased nuclear EGFR following exposure to leptomycin B, a CRM1 inhibitor. Collectively, these data suggest the importance of receptor endocytosis, endosomal sorting machinery, interaction with importins alpha1/beta1, and exportin CRM1 in EGFR nuclear-cytoplasmic trafficking. Together, our work sheds light into the nature and regulation of the nuclear EGFR pathway and provides a plausible mechanism by which cells shuttle cell-surface EGFR and potentially other RTKs through the nuclear pore complex and into the nuclear compartment. PMID:16552725

  19. Molecular cloning and characterization of a nuclear androgen receptor activated by 11-ketotestosterone

    PubMed Central

    Olsson, Per-Erik; Berg, A Håkan; von Hofsten, Jonas; Grahn, Birgitta; Hellqvist, Anna; Larsson, Anders; Karlsson, Johnny; Modig, Carina; Borg, Bertil; Thomas, Peter

    2005-01-01

    Although 11-ketotestosterone is a potent androgen and induces male secondary sex characteristics in many teleosts, androgen receptors with high binding affinity for 11-ketotestosterone or preferential activation by 11-ketotestosterone have not been identified. So, the mechanism by which 11-ketotestosterone exhibits such high potency remains unclear. Recently we cloned the cDNA of an 11-ketotestosterone regulated protein, spiggin, from three-spined stickleback renal tissue. As spiggin is the only identified gene product regulated by 11-ketotestosterone, the stickleback kidney is ideal for determination of the mechanism of 11-ketotestosterone gene regulation. A single androgen receptor gene with two splicing variants, belonging to the androgen receptor-β subfamily was cloned from stickleback kidney. A high affinity, saturable, single class of androgen specific binding sites, with the characteristics of an androgen receptor, was identified in renal cytosolic and nuclear fractions. Measurement of ligand binding moieties in the cytosolic and nuclear fractions as well as to the recombinant receptor revealed lower affinity for 11-ketotestosterone than for dihydrotestosterone. Treatment with different androgens did not up-regulate androgen receptor mRNA level or increase receptor abundance, suggesting that auto-regulation is not involved in differential ligand activation. However, comparison of the trans-activation potential of the stickleback androgen receptor with the human androgen receptor, in both human HepG2 cells and zebrafish ZFL cells, revealed preferential activation by 11-ketotestosterone of the stickleback receptor, but not of the human receptor. These findings demonstrate the presence of a receptor preferentially activated by 11-ketotestosterone in the three-spined stickleback, so far the only one known in any animal. PMID:16107211

  20. Transcriptional Regulation via Nuclear Receptor Crosstalk Required for the Drosophila Circadian Clock

    PubMed Central

    Jaumouillé, Edouard; Machado Almeida, Pedro; Stähli, Patrick; Koch, Rafael; Nagoshi, Emi

    2015-01-01

    Summary Circadian clocks in large part rely on transcriptional feedback loops. At the core of the clock machinery, the transcriptional activators CLOCK/BMAL1 (in mammals) and CLOCK/CYCLE (CLK/CYC) (in Drosophila) drive the expression of the period (per) family genes. The PER-containing complexes inhibit the activity of CLOCK/BMAL1 or CLK/CYC, thereby forming a negative feedback loop [1]. In mammals, the ROR and REV-ERB family nuclear receptors add positive and negative transcriptional regulation to this core negative feedback loop to ensure the generation of robust circadian molecular oscillation [2]. Despite the overall similarities between mammalian and Drosophila clocks, whether comparable mechanisms via nuclear receptors are required for the Drosophila clock remains unknown. We show here that the nuclear receptor E75, the fly homolog of REV-ERB α and REV-ERB β, and the NR2E3 subfamily nuclear receptor UNF are components of the molecular clocks in the Drosophila pacemaker neurons. In vivo assays in conjunction with the in vitro experiments demonstrate that E75 and UNF bind to per regulatory sequences and act together to enhance the CLK/CYC-mediated transcription of the per gene, thereby completing the core transcriptional feedback loop necessary for the free-running clockwork. Our results identify a missing link in the Drosophila clock and highlight the significance of the transcriptional regulation via nuclear receptors in metazoan circadian clocks. PMID:26004759

  1. Transcriptional regulation via nuclear receptor crosstalk required for the Drosophila circadian clock.

    PubMed

    Jaumouillé, Edouard; Machado Almeida, Pedro; Stähli, Patrick; Koch, Rafael; Nagoshi, Emi

    2015-06-01

    Circadian clocks in large part rely on transcriptional feedback loops. At the core of the clock machinery, the transcriptional activators CLOCK/BMAL1 (in mammals) and CLOCK/CYCLE (CLK/CYC) (in Drosophila) drive the expression of the period (per) family genes. The PER-containing complexes inhibit the activity of CLOCK/BMAL1 or CLK/CYC, thereby forming a negative feedback loop [1]. In mammals, the ROR and REV-ERB family nuclear receptors add positive and negative transcriptional regulation to this core negative feedback loop to ensure the generation of robust circadian molecular oscillation [2]. Despite the overall similarities between mammalian and Drosophila clocks, whether comparable mechanisms via nuclear receptors are required for the Drosophila clock remains unknown. We show here that the nuclear receptor E75, the fly homolog of REV-ERB α and REV-ERB β, and the NR2E3 subfamily nuclear receptor UNF are components of the molecular clocks in the Drosophila pacemaker neurons. In vivo assays in conjunction with the in vitro experiments demonstrate that E75 and UNF bind to per regulatory sequences and act together to enhance the CLK/CYC-mediated transcription of the per gene, thereby completing the core transcriptional feedback loop necessary for the free-running clockwork. Our results identify a missing link in the Drosophila clock and highlight the significance of the transcriptional regulation via nuclear receptors in metazoan circadian clocks. PMID:26004759

  2. Nuclear localization of Formyl-Peptide Receptor 2 in human cancer cells.

    PubMed

    Cattaneo, Fabio; Parisi, Melania; Fioretti, Tiziana; Sarnataro, Daniela; Esposito, Gabriella; Ammendola, Rosario

    2016-08-01

    Current models of G protein-coupled receptors (GPCRs) signaling describe binding of external agonists to cell surface receptors which, in turn, trigger several biological responses. New paradigms indicate that GPCRs localize to and signal at the nucleus, thus regulating distinct signaling cascades. The formyl-peptide receptor FPR2 belongs to the GPCR super-family and is coupled to PTX-sensitive Gi proteins. We show by western blot analysis, immunofluorescence experiments and radioligand binding assays that FPR2 is expressed at nuclear level in CaLu-6 and AGS cells. Nuclear FPR2 is a functional receptor, since it participates in intra-nuclear signaling, as assessed by decreased G protein-FPR2 association and enhanced ERK2, c-Jun and c-Myc phosphorylation upon stimulation of intact nuclei with the FPR2 agonist, WKYMVm. We analyzed FPR2 sequence for the search of a nuclear localization sequence (NLS) and we found a stretch of basic aminoacids (227-KIHKK-231) in the third cytoplasmic loop of the receptor. We performed single (K230A) and multiple (H229A/K230A/K231A) mutagenesis of NLS. The constructs were individually overexpressed in HEK293 cells and immunofluorescence and western blot analysis showed that nuclear localization or translocation of FPR2 depends on the integrity of the H(229) and K(231) residues within the NLS. PMID:27177968

  3. Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers.

    PubMed

    Roshan-Moniri, Mani; Hsing, Michael; Butler, Miriam S; Cherkasov, Artem; Rennie, Paul S

    2014-12-01

    Nuclear receptors (NRs), a family of 48 transcriptional factors, have been studied intensively for their roles in cancer development and progression. The presence of distinctive ligand binding sites capable of interacting with small molecules has made NRs attractive targets for developing cancer therapeutics. In particular, a number of drugs have been developed over the years to target human androgen- and estrogen receptors for the treatment of prostate cancer and breast cancer. In contrast, orphan nuclear receptors (ONRs), which in many cases lack known biological functions or ligands, are still largely under investigated. This review is a summary on ONRs that have been implicated in prostate and breast cancers, specifically retinoic acid-receptor-related orphan receptors (RORs), liver X receptors (LXRs), chicken ovalbumin upstream promoter transcription factors (COUP-TFs), estrogen related receptors (ERRs), nerve growth factor 1B-like receptors, and ‘‘dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1’’ (DAX1). Discovery and development of small molecules that can bind at various functional sites on these ONRs will help determine their biological functions. In addition, these molecules have the potential to act as prototypes for future drug development. Ultimately, the therapeutic value of targeting the ONRs may go well beyond prostate and breast cancers. PMID:25455729

  4. Nuclear Receptor Modulation for the Treatment of Nonalcoholic Fatty Liver Disease.

    PubMed

    Fuchs, Claudia D; Traussnigg, Stefan A; Trauner, Michael

    2016-02-01

    Nuclear receptors (NRs) are ligand-activated transcriptional regulators of several key metabolic processes including hepatic lipid and glucose metabolism, bile acid homeostasis, and energy expenditure as well as inflammation, fibrosis, and cellular proliferation in the liver. Dysregulation of these processes contributes to the pathogenesis and progression of nonalcoholic fatty liver disease (NAFLD). This places NRs at the forefront of novel therapeutic approaches for NAFLD. Some NRs are already pharmacologically targeted in metabolic disorders such as hyperlipidemia (peroxisomal proliferator-activated receptor α [PPARα], fibrates) and diabetes (PPARγ, glitazones) with potential applications for NAFLD. Other NRs with potential therapeutic implications are the vitamin D receptor (VDR) and xenobiotic sensors such as constitutive androstane receptor (CAR) and pregnane X receptor (PXR). Further new perspectives include combined ligands for NR isoforms such as PPARα/δ ligands. Other novel key players represent the nuclear bile acid receptor farnesoid X receptor (FXR; targeted by synthetic FXR ligands such as obeticholic acid) and RAR-related orphan receptor gamma two (RORγt). In this review the authors provide an overview of the preclinical and clinical evidence of current and future treatment strategies targeting NRs in metabolism, inflammation, and fibrogenesis of NAFLD. PMID:26870934

  5. The G Protein-Coupled Estrogen Receptor Agonist G-1 Inhibits Nuclear Estrogen Receptor Activity and Stimulates Novel Phosphoproteomic Signatures.

    PubMed

    Smith, L Cody; Ralston-Hooper, Kimberly J; Ferguson, P Lee; Sabo-Attwood, Tara

    2016-06-01

    Estrogen exerts cellular effects through both nuclear (ESR1 and ESR2) and membrane-bound estrogen receptors (G-protein coupled estrogen receptor, GPER); however, it is unclear if they act independently or engage in crosstalk to influence hormonal responses. To investigate each receptor's role in proliferation, transcriptional activation, and protein phosphorylation in breast cancer cells (MCF-7), we employed selective agonists for ESR1 propyl-pyrazole-triol (PPT), ESR2 diarylpropionitrile (DPN), and GPER (G-1) and also determined the impact of xenoestrogens bisphenol-A (BPA) and genistein on these effects. As anticipated, 17β-estradiol (E2), PPT, DPN, BPA, and genistein each enhanced proliferation and activation of an ERE-driven reporter gene whereas G-1 had no significant impact. However, G-1 significantly reduced E2-, PPT-, DPN-, BPA-, and genistein-induced proliferation and ERE activation at doses greater than 500 nM indicating that G-1 mediated inhibition is not ESR isotype specific. As membrane receptors initiate cascades of phosphorylation events, we performed a global phosphoproteomic analysis on cells exposed to E2 or G-1 to identify potential targets of receptor crosstalk via downstream protein phosphorylation targets. Of the 211 phosphorylated proteins identified, 40 and 13 phosphoproteins were specifically modified by E2 and G-1, respectively. Subnetwork enrichment analysis revealed several processes related to cell cycle were specifically enriched by G-1 compared with E2. Further there existed a number of newly identified proteins that were specifically phosphorylated by G-1. These phosphorylation networks highlight specific proteins that may modulate the inhibitory effects of G-1 and suggest a novel role for interference with nuclear receptor activity driven by E2 and xenoestrogens. PMID:27026707

  6. Sulfotransferase genes: Regulation by nuclear receptors in response to xeno/endo-biotics

    PubMed Central

    Kodama, Susumu; Negishi, Masahiko

    2014-01-01

    Pregnane X receptor (PXR) and constitutive active/androstane receptor (CAR), members of the nuclear receptor superfamily, are two major xeno-sensing transcription factors. They can be activated by a broad range of lipophilic xenobiotics including therapeutics drugs. In addition to xenobiotics, endogenous compounds such as steroid hormones and bile acids can also activate PXR and/or CAR. These nuclear receptors regulate genes that encode enzymes and transporters that metabolize and excrete both xenobiotics and endobiotics. Sulfotransferases (SULTs) are a group of these enzymes and sulfate xenobiotics for detoxification. In general, inactivation by sulfation constitutes the mechanism to maintain homeostasis of endobiotics. Thus, deciphering the molecular mechanism by which PXR and CAR regulate SULT genes is critical for understanding the roles of SULTs in the alterations of physiological and pathophysiological processes caused by drug treatment or environmental exposures. PMID:24025090

  7. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration.

    PubMed

    Huang, Wendong; Ma, Ke; Zhang, Jun; Qatanani, Mohammed; Cuvillier, James; Liu, Jun; Dong, Bingning; Huang, Xiongfei; Moore, David D

    2006-04-14

    Liver mass depends on one or more unidentified humoral signals that drive regeneration when liver functional capacity is diminished. Bile acids are important liver products, and their levels are tightly regulated. Here, we identify a role for nuclear receptor-dependent bile acid signaling in normal liver regeneration. Elevated bile acid levels accelerate regeneration, and decreased levels inhibit liver regrowth, as does the absence of the primary nuclear bile acid receptor FXR. We propose that FXR activation by increased bile acid flux is a signal of decreased functional capacity of the liver. FXR, and possibly other nuclear receptors, may promote homeostasis not only by regulating expression of appropriate metabolic target genes but also by driving homeotrophic liver growth. PMID:16614213

  8. SUMOylation Blocks the Ubiquitin-Mediated Degradation of the Nephronophthisis Gene Product Glis2/NPHP7

    PubMed Central

    Ramachandran, Haribaskar; Herfurth, Konstantin; Grosschedl, Rudolf; Schäfer, Tobias; Walz, Gerd

    2015-01-01

    Glis2/NPHP7 is a transcriptional regulator mutated in type 7 nephronophthisis, an autosomal recessive ciliopathy associated with cystic and fibrotic kidney disease as well as characteristic extrarenal manifestations. While most ciliopathy-associated molecules are found in the cilium, Glis2/NPHP7 presumably localizes to the nucleus. However, the detection of endogenous Glis2/NPHP7 has remained unsuccessful, potentially due to its ubiquitylation-dependent rapid degradation. We report now that Glis2/NPHP7 is also SUMOylated, preferentially by PIAS4, which conjugates Glis2/NPHP7 to SUMO3. SUMOylation interferes with ubiquitylation and degradation of Glis2/NPHP7, suggesting that Glis2/NPHP7 protein levels are regulated by competing ubiquitylation/ SUMOylation. SUMOylation also alters the transcriptional activity of Glis2/NPHP7. While Glis2/NPHP7 activates the mouse insulin-2-promotor (mIns2), SUMOylated Glis2/NPHP7 lacks this property, and seems to act as a repressor. Taken together, our data reveal that Glis2/NPHP7 is extensively modified by post-translational modifications, suggesting that a tight control of this transcriptional regulator is required for normal development and tissue homeostasis. PMID:26083374

  9. SUMOylation of AMPKα1 by PIAS4 specifically regulates mTORC1 signalling

    PubMed Central

    Yan, Yan; Ollila, Saara; Wong, Iris P. L.; Vallenius, Tea; Palvimo, Jorma J.; Vaahtomeri, Kari; Mäkelä, Tomi P.

    2015-01-01

    AMP-activated protein kinase (AMPK) inhibits several anabolic pathways such as fatty acid and protein synthesis, and identification of AMPK substrate specificity would be useful to understand its role in particular cellular processes and develop strategies to modulate AMPK activity in a substrate-specific manner. Here we show that SUMOylation of AMPKα1 attenuates AMPK activation specifically towards mTORC1 signalling. SUMOylation is also important for rapid inactivation of AMPK, to allow prompt restoration of mTORC1 signalling. PIAS4 and its SUMO E3 ligase activity are specifically required for the AMPKα1 SUMOylation and the inhibition of AMPKα1 activity towards mTORC1 signalling. The activity of a SUMOylation-deficient AMPKα1 mutant is higher than the wild type towards mTORC1 signalling when reconstituted in AMPKα-deficient cells. PIAS4 depletion reduced growth of breast cancer cells, specifically when combined with direct AMPK activator A769662, suggesting that inhibiting AMPKα1 SUMOylation can be explored to modulate AMPK activation and thereby suppress cancer cell growth. PMID:26616021

  10. The sumoylation pathway is dysregulated in multiple myeloma and is associated with adverse patient outcome.

    PubMed

    Driscoll, James J; Pelluru, Dheeraj; Lefkimmiatis, Konstantinos; Fulciniti, Mariateresa; Prabhala, Rao H; Greipp, Philip R; Barlogie, Bart; Tai, Yu-Tzu; Anderson, Kenneth C; Shaughnessy, John D; Annunziata, Christina M; Munshi, Nikhil C

    2010-04-01

    Multiple myeloma (MM) is a plasma cell neoplasm that proceeds through a premalignant state of monoclonal gammopathy of unknown significance; however, the molecular events responsible for myelomagenesis remain uncharacterized. To identify cellular pathways deregulated in MM, we addressed that sumoylation is homologous to ubiquitination and results in the attachment of the ubiquitin-like protein Sumo onto target proteins. Sumoylation was markedly enhanced in MM patient lysates compared with normal plasma cells and expression profiling indicated a relative induction of sumoylation pathway genes. The Sumo-conjugating enzyme Ube2I, the Sumo-ligase PIAS1, and the Sumo-inducer ARF were elevated in MM patient samples and cell lines. Survival correlated with expression because 80% of patients with low UBE2I and PIAS1 were living 6 years after transplantation, whereas only 45% of patients with high expression survived 6 years. UBE2I encodes the sole Sumo-conjugating enzyme in mammalian cells and cells transfected with a dominant-negative sumoylation-deficient UBE2I mutant exhibited decreased survival after radiation exposure, impaired adhesion to bone marrow stroma cell and decreased bone marrow stroma cell-induced proliferation. UBE2I confers cells with multiple advantages to promote tumorigenesis and predicts decreased survival when combined with PIAS1. The sumoylation pathway is a novel therapeutic target with implications for existing proteasomal-based treatment strategies. PMID:19965618

  11. Overexpression of SKI Oncoprotein Leads to p53 Degradation through Regulation of MDM2 Protein Sumoylation*

    PubMed Central

    Ding, Boxiao; Sun, Yin; Huang, Jiaoti

    2012-01-01

    Protooncogene Ski was identified based on its ability to transform avian fibroblasts in vitro. In support of its oncogenic activity, SKI was found to be overexpressed in a variety of human cancers, although the exact molecular mechanism(s) responsible for its oncogenic activity is not fully understood. We found that SKI can negatively regulate p53 by decreasing its level through up-regulation of MDM2 activity, which is mediated by the ability of SKI to enhance sumoylation of MDM2. This stimulation of MDM2 sumoylation is accomplished through a direct interaction of SKI with SUMO-conjugating enzyme E2, Ubc9, resulting in enhanced thioester bond formation and mono-sumoylation of Ubc9. A mutant SKI defective in transformation fails to increase p53 ubiquitination and is unable to increase MDM2 levels and to increase mono-sumoylation of Ubc9, suggesting that the ability of SKI to enhance Ubc9 activity is essential for its transforming function. These results established a detailed molecular mechanism that underlies the ability of SKI to cause cellular transformation while unraveling a novel connection between sumoylation and tumorigenesis, providing potential new therapeutic targets for cancer. PMID:22411991

  12. SUMOylation negatively modulates target gene occupancy of the KDM5B, a histone lysine demethylase.

    PubMed

    Bueno, Murilo T D; Richard, Stéphane

    2013-11-01

    The histone lysine demethylase KDM5B plays key roles in gene repression by demethylating trimethylated lysine 4 of histone H3 (H3K4me3), a modification commonly found at the promoter region of actively transcribed genes. KDM5B is known to regulate the expression of genes involved in cell cycle progression; however, little is known about the post-translational modifications that regulate KDM5B. Herein, we report that KDM5B is SUMOylated at lysine residues 242 and 278 and that the ectopic expression of the hPC2 SUMO E3 ligase enhances this SUMOylation. Interestingly, the levels of KDM5B and its SUMOylated forms are regulated during the cell cycle. KDM5B is modulated by RNF4, an E3 ubiquitin ligase that targets SUMO-modified proteins to proteasomal degradation. Digital gene expression analyses showed that cells expressing the SUMOylation-deficient KDM5B harbor repressed mRNA expression profiles of cell cycle and DNA repair genes. Chromatin immunoprecipitations confirmed some of these genes as KDM5B targets, as they displayed reduced H3K4me3 levels in cells ectopically expressing KDM5B. We propose that SUMOylation by hPC2 regulates the activity of KDM5B. PMID:23970103

  13. SUMOylation of synapsin Ia maintains synaptic vesicle availability and is reduced in an autism mutation

    PubMed Central

    Tang, Leo T. -H.; Craig, Tim J.; Henley, Jeremy M.

    2015-01-01

    Synapsins are key components of the presynaptic neurotransmitter release machinery. Their main role is to cluster synaptic vesicles (SVs) to each other and anchor them to the actin cytoskeleton to establish the reserve vesicle pool, and then release them in response to appropriate membrane depolarization. Here we demonstrate that SUMOylation of synapsin Ia (SynIa) at K687 is necessary for SynIa function. Replacement of endogenous SynIa with a non-SUMOylatable mutant decreases the size of the releasable vesicle pool and impairs stimulated SV exocytosis. SUMOylation enhances SynIa association with SVs to promote the efficient reclustering of SynIa following neuronal stimulation and maintain its presynaptic localization. The A548T mutation in SynIa is strongly associated with autism and epilepsy and we show that it leads to defective SynIa SUMOylation. These results identify SUMOylation as a fundamental regulator of SynIa function and reveal a novel link between reduced SUMOylation of SynIa and neurological disorders. PMID:26173895

  14. SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin.

    PubMed

    Chalkiadaki, Angeliki; Talianidis, Iannis

    2005-06-01

    Posttranslational modification by SUMO elicits a repressive effect on many transcription factors. In principle, sumoylation may either influence transcription factor activity on promoters, or it may act indirectly by targeting the modified factors to specific cellular compartments. To provide direct experimental evidence for the above, not necessarily mutually exclusive models, we analyzed the role of SUMO modification on the localization and the activity of the orphan nuclear receptor LRH-1. We demonstrate, by using fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching (FRAP) assays, that sumoylated LRH-1 is exclusively localized in promyelocytic leukemia protein (PML) nuclear bodies and that this association is a dynamic process. Release of LRH-1 from nuclear bodies correlated with its desumoylation, pointing to the pivotal role of SUMO conjugation in keeping LRH-1 in these locations. SUMO-dependent shuttling of LRH-1 into PML bodies defines two spatially separated pools of the protein, of which only the soluble, unmodified one is associated with actively transcribed target genes. The results suggest that SUMO-PML nuclear bodies may primarily function as dynamic molecular reservoirs, controlling the availability of certain transcription factors to active chromatin domains. PMID:15923626

  15. Importin {beta}-type nuclear transport receptors have distinct binding affinities for Ran-GTP

    SciTech Connect

    Hahn, Silvia; Schlenstedt, Gabriel

    2011-03-18

    Highlights: {yields} Determination of binding properties of nuclear transport receptor/Ran-GTP complexes. {yields} Biosensor measurements provide constants for dissociation, on-rates, and off-rates. {yields} The affinity of receptors for Ran-GTP is widely divergent. {yields} Dissociation constants differ for three orders of magnitude. {yields} The cellular concentration of yeast Ran is not limiting. -- Abstract: Cargos destined to enter or leave the cell nucleus are typically transported by receptors of the importin {beta} family to pass the nuclear pore complex. The yeast Saccharomyces cerevisiae comprises 14 members of this protein family, which can be divided in importins and exportins. The Ran GTPase regulates the association and dissociation of receptors and cargos as well as the transport direction through the nuclear pore. All receptors bind to Ran exclusively in its GTP-bound state and this event is restricted to the nuclear compartment. We determined the Ran-GTP binding properties of all yeast transport receptors by biosensor measurements and observed that the affinity of importins for Ran-GTP differs significantly. The dissociation constants range from 230 pM to 270 nM, which is mostly based on a variability of the off-rate constants. The divergent affinity of importins for Ran-GTP suggests the existence of a novel mode of nucleocytoplasmic transport regulation. Furthermore, the cellular concentration of {beta}-receptors and of other Ran-binding proteins was determined. We found that the number of {beta}-receptors altogether about equals the amounts of yeast Ran, but Ran-GTP is not limiting in the nucleus. The implications of our results for nucleocytoplasmic transport mechanisms are discussed.

  16. A novel method for visualizing nuclear hormone receptor networks relevant to drug metabolism.

    PubMed

    Ekins, Sean; Kirillov, Eugene; Rakhmatulin, Eugene A; Nikolskaya, Tatiana

    2005-03-01

    The increasing generation of biological data represents a challenge to understanding the complexity of systems, resulting in scientists increasingly focused on a relatively narrow area of study, thereby limiting insight that can be gained from a broader perspective. In the field of drug metabolism and toxicology we are witnessing the characterization of many proteins. Most of the key enzymes and transporters are recognized as transcriptionally regulated by the nuclear hormone receptors such as pregnane X receptor, constitutive androstane receptor, vitamin D receptor, glucocorticoid receptor, and others. There is apparent cross talk in regulation, since multiple receptors may modulate expression of a single enzyme or transporter, representing one of many areas of active research interest. We have used published data on nuclear hormone receptors, enzymes, ligands, and other biological information to manually annotate an Oracle database, forming the basis of a platform for querying (MetaDrug). Using algorithms, we have demonstrated how nuclear hormone receptors alone can form a network of direct interactions, and when expanded, this network increases in complexity to describe the interactions with target genes as well as small molecules known to bind a receptor, enzyme, or transporter. We have also described how the database can be used for visualizing high-throughput microarray data derived from a published study of MCF-7 cells treated with 4-hydroxytamoxifen, to highlight potential downstream effects of molecule treatment. The database represents a novel knowledge mining and analytical tool that, to be relevant, requires continual updating to evolve alongside other key storage systems and sources of biological knowledge. PMID:15608136

  17. Xenobiotic-sensing nuclear receptors CAR and PXR as drug targets in cholestatic liver disease.

    PubMed

    Kakizaki, Satoru; Takizawa, Daichi; Tojima, Hiroki; Yamazaki, Yuichi; Mori, Masatomo

    2009-11-01

    Cholestasis results in the intrahepatic retention of cytotoxic bile acid and it can thus lead to liver injury and/or liver fibrosis. Cholestatic liver damage is counteracted by a variety of intrinsic hepatoprotective mechanisms including a complex network of drug metabolizing enzymes and transporters. During the last decade, much progress has been made in dissecting the mechanisms which regulate the hepatic xeno- and endobiotic metabolism by nuclear receptors. The xenobiotic receptors CAR and PXR are two important members of the NR1I nuclear receptor family. They function as sensors of toxic byproducts derived from the endogenous metabolism and of exogenous chemicals, in order to enhance their elimination. Ligands for both receptors, including phenobarbital, have already been used to treat cholestatic liver diseases before the mechanisms of these receptors were revealed. Furthermore, Yin Zhi Huang, a traditional Chinese herbal medicine, which has been used to prevent and treat neonatal jaundice, was identified to be a CAR ligand which also accelerates bilirubin clearance. Therefore, CAR and PXR have a protective effect on cholestasis by activating both detoxification enzymes and transporters. As a result, novel compounds targeting CAR and PXR with specific effects and fewer side effects will therefore be useful for the treatment of cholestatic liver diseases. This article will review the current knowledge on xenobiotic-sensing nuclear receptors CAR and PXR, while also discussing their potential role in the treatment of cholestatic liver diseases. PMID:19925451

  18. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    PubMed

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure. PMID:23676496

  19. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism

    PubMed Central

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C.; Lai, Ling; Leone, Teresa C.; Vega, Rick B.; Xie, Hui; Conley, Kevin E.; Auwerx, Johan; Smith, Steven R.; Olson, Eric N.; Kralli, Anastasia; Kelly, Daniel P.

    2013-01-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure. PMID:23676496

  20. Elevated copper impairs hepatic nuclear receptor function in Wilson’s disease

    PubMed Central

    Wooton-Kee, Clavia Ruth; Jain, Ajay K.; Wagner, Martin; Grusak, Michael A.; Finegold, Milton J.; Lutsenko, Svetlana; Moore, David D.

    2015-01-01

    Wilson’s disease (WD) is an autosomal recessive disorder that results in accumulation of copper in the liver as a consequence of mutations in the gene encoding the copper-transporting P-type ATPase (ATP7B). WD is a chronic liver disorder, and individuals with the disease present with a variety of complications, including steatosis, cholestasis, cirrhosis, and liver failure. Similar to patients with WD, Atp7b–/– mice have markedly elevated levels of hepatic copper and liver pathology. Previous studies have demonstrated that replacement of zinc in the DNA-binding domain of the estrogen receptor (ER) with copper disrupts specific binding to DNA response elements. Here, we found decreased binding of the nuclear receptors FXR, RXR, HNF4α, and LRH-1 to promoter response elements and decreased mRNA expression of nuclear receptor target genes in Atp7b–/– mice, as well as in adult and pediatric WD patients. Excessive hepatic copper has been described in progressive familial cholestasis (PFIC), and we found that similar to individuals with WD, patients with PFIC2 or PFIC3 who have clinically elevated hepatic copper levels exhibit impaired nuclear receptor activity. Together, these data demonstrate that copper-mediated nuclear receptor dysfunction disrupts liver function in WD and potentially in other disorders associated with increased hepatic copper levels. PMID:26241054

  1. Oncogenic conversion of a novel orphan nuclear receptor by chromosome translocation.

    PubMed

    Labelle, Y; Zucman, J; Stenman, G; Kindblom, L G; Knight, J; Turc-Carel, C; Dockhorn-Dworniczak, B; Mandahl, N; Desmaze, C; Peter, M

    1995-12-01

    A recurrent t(9;22) (q22;q12) chromosome translocation has been described in extraskeletal myxoid chondrosarcoma (EMC). Fluorescent in situ hybridization experiments performed on one EMC tumour indicated that the chromosome 22 breakpoint occurred in the EWS gene. Northern blot analysis revealed an aberrant EWS transcript which is cloned by a modified RT-PCR procedure. This transcript consists of an in-frame fusion of the 5' end of EWS to a previously unidentified gene, which was named TEC. This fusion transcript was detected in six of eight EMC studied, and three different junction types between the two genes were found. In all junction types, the putative translation product contained the amino-terminal transactivation domain of EWS linked to the entire TEC protein. Homology analysis showed that the predicted TEC protein contains a DNA-binding domain characteristic of nuclear receptors. The highest identity scores were observed with the NURR1 family of orphan nuclear receptors. These receptors are involved in the control of cell proliferation and differentiation by modulating the response to growth factors and retinoic acid. This work provides, after the PML/RAR alpha gene fusion, the second example of the oncogenic conversion of a nuclear receptor and the first example involving the orphan subfamily. Analysis of the disturbance induced by the EWS/TEc protein in the nuclear receptor network and their target genes may lead to new approaches for EMC treatment. PMID:8634690

  2. The pERK of being a target: Kinase regulation of the orphan nuclear receptor ERRγ

    PubMed Central

    Riggins, Rebecca B.

    2015-01-01

    Estrogen-related receptors (ERRs) are orphan members of the nuclear receptor superfamily that are important regulators of mitochondrial metabolism with emerging roles in cancer. In the absence of an endogenous ligand, ERRs are reliant upon other regulatory mechanisms that include protein/protein interactions and post-translational modification, though the cellular and clinical significance of this latter mechanism is unclear. We recently published a study in which we establish estrogen-related receptor gamma (ERRγ) as a target for extracellular signal-regulated kinase (ERK), and show that regulation of ERRγ by ERK has important consequences for the function of this receptor in cellular models of estrogen receptor-positive (ER+) breast cancer. In this Research Highlight, we discuss the implications of these findings from a molecular and clinical perspective. PMID:26005698

  3. Development of a peptide-based inducer of nuclear receptors degradation.

    PubMed

    Demizu, Yosuke; Ohoka, Nobumichi; Nagakubo, Takaya; Yamashita, Hiroko; Misawa, Takashi; Okuhira, Keiichiro; Naito, Mikihiko; Kurihara, Masaaki

    2016-06-01

    A peptide-based protein knockdown system for inducing nuclear receptors degradation via the ubiquitin-proteasome system was developed. Specifically, the designed molecules were composed of two biologically active scaffolds: a peptide that binds to the estrogen receptor α (ERα) surface and an MV1 molecule that binds to cellular inhibitors of apoptosis proteins (IAP: cIAP1/cIAP2/XIAP) to induce ubiquitylation of the ERα. The hybrid peptides induced IAP-mediated ubiquitylation followed by proteasomal degradation of the ERα. Those peptides were also applicable for inducing androgen receptor (AR) degradation. PMID:27086122

  4. Importin alpha: a multipurpose nuclear-transport receptor.

    PubMed

    Goldfarb, David S; Corbett, Anita H; Mason, D Adam; Harreman, Michelle T; Adam, Stephen A

    2004-09-01

    The importin alpha/beta heterodimer targets hundreds of proteins to the nuclear-pore complex (NPC) and facilitates their translocation across the nuclear envelope. Importin alpha binds to classical nuclear localization signal (cNLS)-containing proteins and links them to importin beta, the karyopherin that ferries the ternary complex through the NPC. A second karyopherin, the exportin CAS, recycles importin alpha back to the cytoplasm. In this article, we discuss control mechanisms that importin alpha exerts over the assembly and disassembly of the ternary complex and we describe how new groups of importin alpha genes arose during the evolution of metazoan animals to function in development and differentiation. We also describe activities of importin alpha that seem to be distinct from its housekeeping functions in nuclear transport. PMID:15350979

  5. FSCB phosphorylation regulates mouse spermatozoa capacitation through suppressing SUMOylation of ROPN1/ROPN1L

    PubMed Central

    Zhang, Xinqi; Chen, Mingrui; Yu, Renyi; Liu, Benli; Tian, Zhiqiang; Liu, Shunli

    2016-01-01

    Fibrous sheath CABYR binding protein (FSCB) is regulated by protein kinase A (PKA)-mediated tyrosine phosphorylation in the spermatozoa capacitation. Recently, we showed that FSCB phosphorylation activated spermatozoa motility. Nevertheless, the underlying mechanisms have not been completely elucidated. Here, we showed that FSCB phosphorylation inhibited SUMOylation of two crucial proteins ROPN1/ROPN1L that are associated with PKA/A kinase activity and spermatozoa motility. Suppression of SUMOylation of ROPN1/ROPN1L mimicked the effects of FSCB phosphorylation on spermatozoa motility. Immunoprecipitation assay showed that phosphorylated FSCB had a significantly higher affinity to ROPN1/ROPN1L than non-phosphorylated FSCB. Together, our data suggest that FSCB phosphorylation may regulate mouse spermatozoa capacitation through suppressing SUMOylation of ROPN1/ROPN1L, which sheds new light on creating a therapeutic strategy targeting FSCB phosphorylation in the study of infertility.

  6. SUMOylation of Rad52-Rad59 synergistically change the outcome of mitotic recombination.

    PubMed

    Silva, Sonia; Altmannova, Veronika; Eckert-Boulet, Nadine; Kolesar, Peter; Gallina, Irene; Hang, Lisa; Chung, Inn; Arneric, Milica; Zhao, Xiaolan; Buron, Line Due; Mortensen, Uffe H; Krejci, Lumir; Lisby, Michael

    2016-06-01

    Homologous recombination (HR) is essential for maintenance of genome stability through double-strand break (DSB) repair, but at the same time HR can lead to loss of heterozygosity and uncontrolled recombination can be genotoxic. The post-translational modification by SUMO (small ubiquitin-like modifier) has been shown to modulate recombination, but the exact mechanism of this regulation remains unclear. Here we show that SUMOylation stabilizes the interaction between the recombination mediator Rad52 and its paralogue Rad59 in Saccharomyces cerevisiae. Although Rad59 SUMOylation is not required for survival after genotoxic stress, it affects the outcome of recombination to promote conservative DNA repair. In some genetic assays, Rad52 and Rad59 SUMOylation act synergistically. Collectively, our data indicate that the described SUMO modifications affect the balance between conservative and non-conservative mechanisms of HR. PMID:27130983

  7. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    SciTech Connect

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J.; Bridges, Lance C.

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  8. The Nuclear Receptors of Biomphalaria glabrata and Lottia gigantea: Implications for Developing New Model Organisms

    PubMed Central

    Kaur, Satwant; Jobling, Susan; Jones, Catherine S.; Noble, Leslie R.; Routledge, Edwin J.; Lockyer, Anne E.

    2015-01-01

    Nuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different. PMID:25849443

  9. Discrimination between NL1- and NL2-Mediated Nuclear Localization of the Glucocorticoid Receptor

    PubMed Central

    Savory, Joanne G. A.; Hsu, Brian; Laquian, Ian R.; Giffin, Ward; Reich, Terry; Haché, Robert J. G.; Lefebvre, Yvonne A.

    1999-01-01

    Glucocorticoid receptor (GR) cycles between a free liganded form that is localized to the nucleus and a heat shock protein (hsp)-immunophilin-complexed, unliganded form that is usually localized to the cytoplasm but that can also be nuclear. In addition, rapid nucleocytoplasmic exchange or shuttling of the receptor underlies its localization. Nuclear import of liganded GR is mediated through a well-characterized sequence, NL1, adjacent to the receptor DNA binding domain and a second, uncharacterized motif, NL2, that overlaps with the ligand binding domain. In this study we report that rapid nuclear import (half-life [t1/2] of 4 to 6 min) of agonist- and antagonist-treated GR and the localization of unliganded, hsp-associated GRs to the nucleus in G0 are mediated through NL1 and correlate with the binding of GR to pendulin/importin α. By contrast, NL2-mediated nuclear transfer of GR occurred more slowly (t1/2 = 45 min to 1 h), was agonist specific, and appeared to be independent of binding to importin α. Together, these results suggest that NL2 mediates the nuclear import of GR through an alternative nuclear import pathway. Nuclear export of GR was inhibited by leptomycin B, suggesting that the transfer of GR to the cytoplasm is mediated through the CRM1-dependent pathway. Inhibition of GR nuclear export by leptomycin B enhanced the nuclear localization of both unliganded, wild-type GR and hormone-treated NL1− GR. These results highlight that the subcellular localization of both liganded and unliganded GRs is determined, at least in part, by a flexible equilibrium between the rates of nuclear import and export. PMID:9891038

  10. SUMOylation of phytochrome-B negatively regulates light-induced signaling in Arabidopsis thaliana

    PubMed Central

    Sadanandom, Ari; Ádám, Éva; Orosa, Beatriz; Viczián, András; Klose, Cornelia; Zhang, Cunjin; Josse, Eve-Marie; Kozma-Bognár, László; Nagy, Ferenc

    2015-01-01

    The red/far red light absorbing photoreceptor phytochrome-B (phyB) cycles between the biologically inactive (Pr, λmax, 660 nm) and active (Pfr; λmax, 730 nm) forms and functions as a light quality and quantity controlled switch to regulate photomorphogenesis in Arabidopsis. At the molecular level, phyB interacts in a conformation-dependent fashion with a battery of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR transcription factors, and by modulating their activity/abundance, it alters expression patterns of genes underlying photomorphogenesis. Here we report that the small ubiquitin-like modifier (SUMO) is conjugated (SUMOylation) to the C terminus of phyB; the accumulation of SUMOylated phyB is enhanced by red light and displays a diurnal pattern in plants grown under light/dark cycles. Our data demonstrate that (i) transgenic plants expressing the mutant phyBLys996Arg-YFP photoreceptor are hypersensitive to red light, (ii) light-induced SUMOylation of the mutant phyB is drastically decreased compared with phyB-YFP, and (iii) SUMOylation of phyB inhibits binding of PHYTOCHROME INTERACTING FACTOR 5 to phyB Pfr. In addition, we show that OVERLY TOLERANT TO SALT 1 (OTS1) de-SUMOylates phyB in vitro, it interacts with phyB in vivo, and the ots1/ots2 mutant is hyposensitive to red light. Taken together, we conclude that SUMOylation of phyB negatively regulates light signaling and it is mediated, at least partly, by the action of OTS SUMO proteases. PMID:26283376

  11. An electrophoretic mobility shift assay identifies a mechanistically unique inhibitor of protein sumoylation.

    PubMed

    Kim, Yeong Sang; Nagy, Katelyn; Keyser, Samantha; Schneekloth, John S

    2013-04-18

    The dynamic, posttranslational modification of proteins with a small ubiquitin-like modifier (SUMO) tag has been recognized as an important cellular regulatory mechanism relevant to a number of cancers as well as normal embryonic development. As part of a program aimed toward the identification of inhibitors of SUMO-conjugating enzymes, we developed a microfluidic electrophoretic mobility shift assay to monitor sumoylation events in real time. We disclose herein the use of this assay to identify a cell-permeable compound capable of blocking the transfer of SUMO-1 from the E2 enzyme Ubc9 to the substrate. We screened a small collection of compounds and identified an oxygenated flavonoid derivative that inhibits sumoylation in vitro. Next, we carried out an in-depth mechanistic analysis that ruled out many common false-positive mechanisms such as aggregation or alkylation. Furthermore, we report that this flavonoid inhibits a single step in the sumoylation cascade: the transfer of SUMO from the E2 enzyme (Ubc9) thioester conjugate to the substrate. In addition to having a unique mechanism of action, this inhibitor has a discrete structure-activity relationship uncharacteristic of a promiscuous inhibitor. Cell-based studies showed that the flavonoid inhibits the sumoylation of topoisomerase-I in response to camptothecin treatment in two different breast cancer cell lines, while isomeric analogs are inactive. Importantly, this compound blocks sumoylation while not affecting ubiquitylation in cells. This work identifies a point of entry for pharmacologic inhibition of the sumoylation cascade and may serve as the basis for continued study of additional pharmacophores that modulate SUMO-conjugating enzymes such as Ubc9. PMID:23601649

  12. The C-terminal Region and SUMOylation of Cockayne Syndrome Group B Protein Play Critical Roles in Transcription-coupled Nucleotide Excision Repair.

    PubMed

    Sin, Yooksil; Tanaka, Kiyoji; Saijo, Masafumi

    2016-01-15

    Cockayne syndrome (CS) is a recessive disorder that results in deficiencies in transcription-coupled nucleotide excision repair (TC-NER), a subpathway of nucleotide excision repair, and cells from CS patients exhibit hypersensitivity to UV light. CS group B protein (CSB), which is the gene product of one of the genes responsible for CS, belongs to the SWI2/SNF2 DNA-dependent ATPase family and has an ATPase domain and an ubiquitin-binding domain (UBD) in the central region and the C-terminal region, respectively. The C-terminal region containing the UBD is essential for the functions of CSB. In this study, we generated several CSB deletion mutants and analyzed the functions of the C-terminal region of CSB in TC-NER. Not only the UBD but also the C-terminal 30-amino acid residues were required for UV light resistance and TC-NER. This region was needed for the interaction of CSB with RNA polymerase II, the translocation of CS group A protein to the nuclear matrix, and the association of CSB with chromatin after UV irradiation. CSB was modified by small ubiquitin-like modifier 2/3 in a UV light-dependent manner. This modification was abolished in a CSB mutant lacking the C-terminal 30 amino acid residues. However, the substitution of lysine residues in this region with arginine did not affect SUMOylation or TC-NER. By contrast, substitution of a lysine residue in the N-terminal region with arginine decreased SUMOylation and resulted in cells with defects in TC-NER. These results indicate that both the most C-terminal region and SUMOylation are important for the functions of CSB in TC-NER. PMID:26620705

  13. Effects of aging and dietary restriction on ubiquitination, sumoylation, and the proteasome in the spleen

    PubMed Central

    Zhang, Le; Li, Feng; Dimayuga, Edgardo; Craddock, Jeffrey; Keller, Jeffrey N.

    2015-01-01

    In the present study we demonstrate for the first time that aging increases the levels of ubiquitinated protein in the spleen, and that dietary restriction (DR) significantly reduces these age-related increases in ubiquitinated protein. Sumoylated protein, proteasome subunits, and a protein essential for proteasome biogenesis (POMP1) were also increased with age in the spleen but were not significantly affected by DR. Chymotrypsin-like proteasome activity was elevated in the aged spleen, and was not significantly altered by DR. Together, these data demonstrate for the first time the multiple effects of aging and DR on ubiquitination, sumoylation, and the proteasome in the spleen. PMID:17991438

  14. Modification by SUMOylation Controls Both the Transcriptional Activity and the Stability of Delta-Lactoferrin

    PubMed Central

    Escobar-Ramirez, Adelma; Vercoutter-Edouart, Anne-Sophie; Mortuaire, Marlène; Huvent, Isabelle; Hardivillé, Stephan; Hoedt, Esthelle; Lefebvre, Tony; Pierce, Annick

    2015-01-01

    Delta-lactoferrin is a transcription factor, the expression of which is downregulated or silenced in case of breast cancer. It possesses antitumoral activities and when it is re-introduced in mammary epithelial cancer cell lines, provokes antiproliferative effects. It is posttranslationally modified and our earlier investigations showed that the O-GlcNAcylation/phosphorylation interplay plays a major role in the regulation of both its stability and transcriptional activity. Here, we report the covalent modification of delta-lactoferrin with the small ubiquitin-like modifier SUMO-1. Mutational and reporter gene analyses identified five different lysine residues at K13, K308, K361, K379 and K391 as SUMO acceptor sites. The SUMOylation deficient M5S mutant displayed enhanced transactivation capacity on a delta-lactoferrin responsive promoter, suggesting that SUMO-1 negatively regulates the transactivation function of delta-lactoferrin. K13, K308 and K379 are the main SUMO sites and among them, K308, which is located in a SUMOylation consensus motif of the NDSM-like type, is a key SUMO site involved in repression of delta-lactoferrin transcriptional activity. K13 and K379 are both targeted by other posttranslational modifications. We demonstrated that K13 is the main acetylation site and that favoring acetylation at K13 reduced SUMOylation and increased delta-lactoferrin transcriptional activity. K379, which is either ubiquitinated or SUMOylated, is a pivotal site for the control of delta-lactoferrin stability. We showed that SUMOylation competes with ubiquitination and protects delta-lactoferrin from degradation by positively regulating its stability. Collectively, our results indicate that multi-SUMOylation occurs on delta-lactoferrin to repress its transcriptional activity. Reciprocal occupancy of K13 by either SUMO-1 or an acetyl group may contribute to the establishment of finely regulated mechanisms to control delta-lactoferrin transcriptional activity. Moreover

  15. The role of nuclear receptors in regulation of Th17/Treg biology and its implications for diseases

    PubMed Central

    Park, Benjamin V.; Pan, Fan

    2015-01-01

    Nuclear receptors play an essential role in cellular environmental sensing, differentiation, development, homeostasis, and metabolism and are thus highly conserved across multiple species. The anti-inflammatory role of nuclear receptors in immune cells has recently gained recognition. Nuclear receptors play critical roles in both myeloid and lymphoid cells, particularly in helper CD4+ T-cell type 17 (Th17) and regulatory T cells (Treg). Th17 and Treg have a major impact on cellular fate through their interactions with cytokine signaling pathways. Recent studies have emphasized the interactions between nuclear receptors and the known cytokine signals and how these interactions affect the expression and function of master transcription factors in Th17 and Treg subsets. This review will focus on the most recent discoveries concerning the roles of nuclear receptors in regulating the Th17/Treg cell-fate determination. PMID:25958843

  16. G protein-coupled receptor signalling in the cardiac nuclear membrane: evidence and possible roles in physiological and pathophysiological function

    PubMed Central

    Tadevosyan, Artavazd; Vaniotis, George; Allen, Bruce G; Hébert, Terence E; Nattel, Stanley

    2012-01-01

    G protein-coupled receptors (GPCRs) play key physiological roles in numerous tissues, including the heart, and their dysfunction influences a wide range of cardiovascular diseases. Recently, the notion of nuclear localization and action of GPCRs has become more widely accepted. Nuclear-localized receptors may regulate distinct signalling pathways, suggesting that the biological responses mediated by GPCRs are not solely initiated at the cell surface but may result from the integration of extracellular and intracellular signalling pathways. Many of the observed nuclear effects are not prevented by classical inhibitors that exclusively target cell surface receptors, presumably because of their structures, lipophilic properties, or affinity for nuclear receptors. In this topical review, we discuss specifically how angiotensin-II, endothelin, β-adrenergic and opioid receptors located on the nuclear envelope activate signalling pathways, which convert intracrine stimuli into acute responses such as generation of second messengers and direct genomic effects, and thereby participate in the development of cardiovascular disorders. PMID:22183719

  17. Mechanisms and significance of nuclear receptor auto- and cross-regulation

    PubMed Central

    Bagamasbad, Pia; Denver, Robert J.

    2010-01-01

    The number of functional hormone receptors expressed by a cell in large part determines its responsiveness to the hormonal signal. The regulation of hormone receptor gene expression is therefore a central component of hormone action. Vertebrate steroid and thyroid hormones act by binding to nuclear receptors (NR) that function as ligand-activated transcription factors. Nuclear receptor genes are regulated by diverse and interacting intracellular signaling pathways. Nuclear receptor ligands can regulate the expression of the gene for the NR that mediates the hormone's action (autoregulation), thus influencing how a cell responds to the hormone. Autoregulation can be either positive or negative, the hormone increasing or decreasing, respectively, the expression of its own NR. Positive autoregulation (autoinduction) is often observed during postembryoninc development, and during the ovarian cycle, where it enhances cellular sensitivity to the hormonal signal to drive the developmental process. By contrast, negative autoregulation (autorepression) may become important in the juvenile and adult for homeostatic negative feedback responses. In addition to autoregulation, a NR can influence the expression other types of NRs (cross-regulation), thus modifying how a cell responds to a different hormone. Cross-regulation by NRs is an important means to temporally coordinate cell responses to a subsequent (different) hormonal signal, or to allow for crosstalk between hormone signaling pathways. PMID:20338175

  18. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression.

    PubMed

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-Il; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y L; Choi, Hueng-Sik

    2015-09-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907

  19. Sumoylation differentially regulates Sp1 to control cell differentiation

    PubMed Central

    Gong, Lili; Ji, Wei-Ke; Hu, Xiao-Hui; Hu, Wen-Feng; Tang, Xiang-Cheng; Huang, Zhao-Xia; Li, Ling; Liu, Mugen; Xiang, Shi-Hua; Wu, Erxi; Woodward, Zachary; Liu, Yi-Zhi; Nguyen, Quan Dong; Li, David Wan-Cheng

    2014-01-01

    The mammalian small ubiquitin-like modifiers (SUMOs) are actively involved in regulating differentiation of different cell types. However, the functional differences between SUMO isoforms and their mechanisms of action remain largely unknown. Using the ocular lens as a model system, we demonstrate that different SUMOs display distinct functions in regulating differentiation of epithelial cells into fiber cells. During lens differentiation, SUMO1 and SUMO2/3 displayed different expression, localization, and targets, suggesting differential functions. Indeed, overexpression of SUMO2/3, but not SUMO1, inhibited basic (b) FGF-induced cell differentiation. In contrast, knockdown of SUMO1, but not SUMO2/3, also inhibited bFGF action. Mechanistically, specificity protein 1 (Sp1), a major transcription factor that controls expression of lens-specific genes such as β-crystallins, was positively regulated by SUMO1 but negatively regulated by SUMO2. SUMO2 was found to inhibit Sp1 functions through several mechanisms: sumoylating it at K683 to attenuate DNA binding, and at K16 to increase its turnover. SUMO2 also interfered with the interaction between Sp1 and the coactivator, p300, and recruited a repressor, Sp3 to β-crystallin gene promoters, to negatively regulate their expression. Thus, stable SUMO1, but diminishing SUMO2/3, during lens development is necessary for normal lens differentiation. In support of this conclusion, SUMO1 and Sp1 formed complexes during early and later stages of lens development. In contrast, an interaction between SUMO2/3 and Sp1 was detected only during the initial lens vesicle stage. Together, our results establish distinct roles of different SUMO isoforms and demonstrate for the first time, to our knowledge, that Sp1 acts as a major transcription factor target for SUMO control of cell differentiation. PMID:24706897

  20. Application of an in silico liver model to determine nuclear receptor mediated pathways in liver cancer

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that control diverse cellular processes. Chronic stimulation of some NRs in rodents can result in increased incidence of liver tumors. These are generally thought to develop through a non-genotoxic mechanism with...

  1. Discovery-driven research and bioinformatics in nuclear receptor and coregulator signaling.

    PubMed

    McKenna, Neil J

    2011-08-01

    Nuclear receptors (NRs) are a superfamily of ligand-regulated transcription factors that interact with coregulators and other transcription factors to direct tissue-specific programs of gene expression. Recent years have witnessed a rapid acceleration of the output of high-content data platforms in this field, generating discovery-driven datasets that have collectively described: the organization of the NR superfamily (phylogenomics); the expression patterns of NRs, coregulators and their target genes (transcriptomics); ligand- and tissue-specific functional NR and coregulator sites in DNA (cistromics); the organization of nuclear receptors and coregulators into higher order complexes (proteomics); and their downstream effects on homeostasis and metabolism (metabolomics). Significant bioinformatics challenges lie ahead both in the integration of this information into meaningful models of NR and coregulator biology, as well as in the archiving and communication of datasets to the global nuclear receptor signaling community. While holding great promise for the field, the ascendancy of discovery-driven research in this field brings with it a collective responsibility for researchers, publishers and funding agencies alike to ensure the effective archiving and management of these data. This review will discuss factors lying behind the increasing impact of discovery-driven research, examples of high-content datasets and their bioinformatic analysis, as well as a summary of currently curated web resources in this field. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease. PMID:21029773

  2. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases.

    PubMed

    Olivares, Ana Maria; Moreno-Ramos, Oscar Andrés; Haider, Neena B

    2015-01-01

    The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration. PMID:27168725

  3. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases

    PubMed Central

    Olivares, Ana Maria; Moreno-Ramos, Oscar Andrés; Haider, Neena B.

    2015-01-01

    The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration. PMID:27168725

  4. The orphan nuclear receptor DAX-1 functions as a potent corepressor of the constitutive androstane receptor (NR1I3).

    PubMed

    Laurenzana, Elizabeth M; Chen, Tao; Kannuswamy, Malavika; Sell, Brian E; Strom, Stephen C; Li, Yong; Omiecinski, Curtis J

    2012-11-01

    Regulation of gene transcription is controlled in part by nuclear receptors that function coordinately with coregulator proteins. The human constitutive androstane receptor (CAR; NR1I3) is expressed primarily in liver and regulates the expression of genes involved in xenobiotic metabolism as well as hormone, energy, and lipid homeostasis. In this report, DAX-1, a nuclear receptor family member with corepressor properties, was identified as a potent CAR regulator. Results of transaction and mutational studies demonstrated that both DAX-1's downstream LXXLL and its PCFQVLP motifs were critical contributors to DAX-1's corepression activities, although two other LXXM/LL motifs located nearer the N terminus had no impact on the CAR functional interaction. Deletion of DAX-1's C-terminal transcription silencing domain restored CAR1 transactivation activity in reporter assays to approximately 90% of control, demonstrating its critical function in mediating the CAR repression activities. Furthermore, results obtained from mammalian two-hybrid experiments assessing various domain configurations of the respective receptors showed that full-length DAX-1 inhibited the CAR-SRC1 interaction by approximately 50%, whereas the same interaction was restored to 90% of control when the DAX-1 transcription silencing domain was deleted. Direct interaction between CAR and DAX-1 was demonstrated with both alpha-screen and coimmunoprecipitation experiments, and this interaction was enhanced in the presence of the CAR activator 6-(4-chlorophenyl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO). Results obtained in primary human hepatocytes further demonstrated DAX-1 inhibition of CAR-mediated CITCO induction of the CYP2B6 target gene. The results of this investigation identify DAX-1 as a novel and potent CAR corepressor and suggest that DAX-1 functions as a coordinate hepatic regulator of CAR's biological function. PMID:22896671

  5. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    SciTech Connect

    Istrate, Monica A.; Nussler, Andreas K.; Eichelbaum, Michel; Burk, Oliver

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  6. Regulation of cardiac nitric oxide signaling by nuclear β-adrenergic and endothelin receptors*

    PubMed Central

    Vaniotis, George; Glazkova, Irina; Merlen, Clémence; Smith, Carter; Villeneuve, Louis R.; Chatenet, David; Therien, Michel; Fournier, Alain; Tadevosyan, Artavazd; Trieu, Phan; Nattel, Stanley; Hébert, Terence E.; Allen, Bruce G.

    2013-01-01

    At the cell surface, βARs and endothelin receptors can regulate nitric oxide (NO) production. β-adrenergic receptors (βARs) and type B endothelin receptors (ETB) are present in cardiac nuclear membranes and regulate transcription. The present study investigated the role of the NO pathway in the regulation of gene transcription by these nuclear G protein-coupled receptors. Nitric oxide production and transcription initiation were measured in nuclei isolated from adult rat heart. The cell-permeable fluorescent dye 4,5-diaminofluorescein diacetate (DAF2 DA) was used to provide a direct assessment of nitric oxide release. Both isoproterenol and endothelin increased NO production in isolated nuclei. Furthermore, a β3AR-selective agonist, BRL 37344, increased NO synthesis whereas the β1AR-selective agonist xamoterol did not. Isoproterenol increased, whereas ET-1 reduced, de novo transcription. The NO synthase inhibitor L-NAME prevented isoproterenol from increasing either NO production or de novo transcription. L-NAME also blocked ET-1-induced NO-production but did not alter the suppression of transcription initiation by ET-1. Inhibition of the cGMP-dependent protein kinase (PKG) using KT5823 also blocked the ability of isoproterenol to increase transcription initiation. Furthermore, immunoblotting revealed eNOS, but not nNOS, in isolated nuclei. Finally, caged, cell-permeable isoproterenol and endothelin-1 analogs were used to selectively activate intracellular β-adrenergic and endothelin receptors in intact adult cardiomyocytes. Intracellular release of caged ET-1 or isoproterenol analogs increased NO production in intact adult cardiomyocytes. Hence, activation of the NO synthase/guanylyl cyclase/PKG pathway is necessary for nuclear β3ARs to increase de novo transcription. Furthermore, we have demonstrated the potential utility of caged receptor ligands in selectively modulating signaling via endogenous intracellular G protein-coupled receptors. PMID:23684854

  7. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4.

    PubMed

    González-Prieto, Román; Cuijpers, Sabine Ag; Kumar, Ramesh; Hendriks, Ivo A; Vertegaal, Alfred Co

    2015-01-01

    c-Myc is the most frequently overexpressed oncogene in tumors, including breast cancer, colon cancer and lung cancer. Post-translational modifications comprising phosphorylation, acetylation and ubiquitylation regulate the activity of c-Myc. Recently, it was shown that c-Myc-driven tumors are strongly dependent on the SUMO pathway. Currently, the relevant SUMO target proteins in this pathway are unknown. Here we show that c-Myc is a target protein for SUMOylation, and that SUMOylated c-Myc is subsequently ubiquitylated and degraded by the proteasome. SUMO chains appeared to be dispensable for this process, polymerization-deficient SUMO mutants supported proteolysis of SUMOylated c-Myc. These results indicate that multiple SUMO monomers conjugated to c-Myc could be sufficient to direct SUMOylated c-Myc to the ubiquitin-proteasome pathway. Knocking down the SUMO-targeted ubiquitin ligase RNF4 enhanced the levels of SUMOylated c-Myc, indicating that RNF4 could recognize a multi-SUMOylated protein as a substrate in addition to poly-SUMOylated proteins. Knocking down the SUMO E3 ligase PIAS1 resulted in reduced c-Myc SUMOylation and increased c-Myc transcriptional activity, indicating that PIAS1 mediates c-Myc SUMOylation. Increased SUMOylation of c-Myc was noted upon knockdown of the SUMO protease SENP7, indicating that it also could regulate a multi-SUMOylated protein in addition to poly-SUMOylated proteins. C-Myc lacks KxE-type SUMOylation consensus motifs. We used mass spectrometry to identify 10 SUMO acceptor lysines: K52, K148, K157, K317, K323, K326, K389, K392, K398 and K430. Intriguingly, mutating all 10 SUMO acceptor lysines did not reduce c-Myc SUMOylation, suggesting that SUMO acceptor lysines in c-Myc act promiscuously. Our results provide novel insight into the complexity of c-Myc post-translational regulation. PMID:25895136

  8. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2

    PubMed Central

    Fresia, Chiara; Vigliarolo, Tiziana; Guida, Lucrezia; Booz, Valeria; Bruzzone, Santina; Sturla, Laura; Di Bona, Melody; Pesce, Mattia; Usai, Cesare; De Flora, Antonio; Zocchi, Elena

    2016-01-01

    Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the α subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation. PMID:27222287

  9. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2.

    PubMed

    Fresia, Chiara; Vigliarolo, Tiziana; Guida, Lucrezia; Booz, Valeria; Bruzzone, Santina; Sturla, Laura; Di Bona, Melody; Pesce, Mattia; Usai, Cesare; De Flora, Antonio; Zocchi, Elena

    2016-01-01

    Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the α subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation. PMID:27222287

  10. Clustering Nuclear Receptors in Liver Regeneration Identifies Candidate Modulators of Hepatocyte Proliferation and Hepatocarcinoma

    PubMed Central

    Graziano, Giusi; D'Orazio, Andria; Cariello, Marica; Massafra, Vittoria; Salvatore, Lorena; Martelli, Nicola; Murzilli, Stefania; Sasso, Giuseppe Lo; Mariani-Costantini, Renato; Moschetta, Antonio

    2014-01-01

    Background & Aims Liver regeneration (LR) is a valuable model for studying mechanisms modulating hepatocyte proliferation. Nuclear receptors (NRs) are key players in the control of cellular functions, being ideal modulators of hepatic proliferation and carcinogenesis. Methods & Results We used a previously validated RT-qPCR platform to profile modifications in the expression of all 49 members of the NR superfamily in mouse liver during LR. Twenty-nine NR transcripts were significantly modified in their expression during LR, including fatty acid (peroxisome proliferator-activated receptors, PPARs) and oxysterol (liver X receptors, Lxrs) sensors, circadian masters RevErbα and RevErbβ, glucocorticoid receptor (Gr) and constitutive androxane receptor (Car). In order to detect the NRs that better characterize proliferative status vs. proliferating liver, we used the novel Random Forest (RF) analysis to selected a trio of down-regulated NRs (thyroid receptor alpha, Trα; farsenoid X receptor beta, Fxrβ; Pparδ) as best discriminators of the proliferating status. To validate our approach, we further studied PPARδ role in modulating hepatic proliferation. We first confirmed the suppression of PPARδ both in LR and human hepatocellular carcinoma at protein level, and then demonstrated that PPARδ agonist GW501516 reduces the proliferative potential of hepatoma cells. Conclusions Our data suggest that NR transcriptome is modulated in proliferating liver and is a source of biomarkers and bona fide pharmacological targets for the management of liver disease affecting hepatocyte proliferation. PMID:25116592

  11. Characterization of nuclear corticosteroid receptors in rat adipocytes. Regional variations and modulatory effects of hormones.

    PubMed

    Pedersen, S B; Børglum, J D; Møller-Pedersen, T; Richelsen, B

    1992-04-01

    The corticosteroid receptor was investigated in isolated rat adipocytes with a new technique which characterizes the corticosteroid receptors that can be activated and tightly bound to the nucleus. The binding reaction with [3H]triamcinolone was performed with intact isolated adipocytes and the radioactivity associated with nucleus was subsequently determined after cell lysis. Scatchard analysis revealed a homogeneous class of nuclear corticosteroid receptors in rat epididymal adipocytes with an apparent Kd of 4.93 +/- 1.5 nM and a Bmax of 21.8 +/- 6.6 fmol/10(6) cells corresponding to about 13,000 receptors per nucleus. The corticosteroid binding exhibited regional variations in isolated adipocytes. The highest receptor number was found in epididymal adipocytes (Bmax 25.8 +/- 3.9 fmol/10(6) cells) whereas there were significantly lower nuclear binding sites in perirenal adipocytes (16.5 +/- 5.5 fmol/10(6) cells) (P less than 0.05) and subcutaneous adipocytes (4.8 +/- 1.5 fmol/10(6) cells) (P less than 0.01). The apparent affinity in the three fat depots were similar with Kd values about 4 nM. The nuclear corticosteroid receptor in adipocytes was steroid specific, as neither unlabelled estradiol nor testosterone were able to displace the [3H]triamcinolone binding at concentrations up to 100 microM. However, unlabelled progesterone and promegestrone (R5020) were able to compete with triamcinolone-binding (by 50-80%). In order to investigate whether the nuclear corticosteroid binding in adipocytes were under influence of other hormones we examined the effects of lipolytic and antilipolytic compounds on the binding. Preincubation with isoproterenol and dibutryl-cAMP for 1 h was able to decrease the corticosteroid binding by 30-50%. However, the antilipolytic hormone insulin had no effect in preincubations performed for up to 2 h. In conclusion, high affinity nuclear corticosteroid receptors were found in rat adipocytes. These receptors exhibited regional variations

  12. Anthranilic acid derivatives as nuclear receptor modulators--development of novel PPAR selective and dual PPAR/FXR ligands.

    PubMed

    Merk, Daniel; Lamers, Christina; Weber, Julia; Flesch, Daniel; Gabler, Matthias; Proschak, Ewgenij; Schubert-Zsilavecz, Manfred

    2015-02-01

    Nuclear receptors, especially the peroxisome proliferator activated receptors (PPARs) and the farnesoid X receptor (FXR) fulfill crucial roles in metabolic balance. Their activation offers valuable therapeutic potential which has high clinical relevance with the fibrates and glitazones as PPAR agonistic drugs. With growing knowledge about the various functions of nuclear receptors in many disorders, new selective or dual ligands of these pharmaceutical targets are however still required. Here we report the class of anthranilic acid derivatives as novel selective PPAR or dual FXR/PPAR ligands. We identified distinct molecular determinants that govern selectivity for each PPAR subtype or FXR as well as the amplitude of activation of the respective receptors. We thereby discovered several lead compounds for further optimization and developed a highly potent dual PPARα/FXR partial agonist that might have a beneficial synergistic effect on lipid homeostasis by simultaneous activation of two nuclear receptors involved in lipid metabolism. PMID:25583100

  13. In vivo functional protein-protein interaction: nuclear targeted hsp90 shifts cytoplasmic steroid receptor mutants into the nucleus.

    PubMed Central

    Kang, K I; Devin, J; Cadepond, F; Jibard, N; Guiochon-Mantel, A; Baulieu, E E; Catelli, M G

    1994-01-01

    In target tissue extracts, heat shock protein hsp90 has been found associated to all unliganded steroid receptors. Modulation of important functions of these receptors, including prevention of DNA binding and optimization of transcriptional activity, has been attributed to hsp90. However no unequivocal in vivo demonstration of interaction between receptors and hsp90 has been presented. We targeted chicken hsp90, a mainly cytoplasmic protein, with the nucleoplasmin nuclear localization signal (90NLS). After transfection into COS-7 cells, 90NLS was found in the nucleus with specific immunofluorescence and confocal microscopy techniques. A human glucocorticosteroid receptor mutant devoid of NLS sequence was also expressed in COS-7 cells and found exclusively cytoplasmic. Coexpression of 90NLS and of the cytoplasmic human glucocorticosteroid receptor mutant led to complete nuclear localization of the receptor, indicating its piggyback transport by 90NLS and thus physical and functional interaction between the two proteins in the absence of hormone. The same nuclear localization was obtained after cotransfection of 90NLS and a cytoplasmic rabbit progesterone receptor mutant. Finally, coexpression of wild-type rabbit progesterone receptor (nuclear) and wildtype hsp90 (cytoplasmic) into COS-7 cells provoked partial relocalization of hsp90 into the nucleus. These experiments lay the groundwork on which to study hsp90 as a chaperone, regulating activities of steroid receptors and possibly participating in their nuclear-cytoplasmic shuttling. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8278390

  14. SUMOylation Regulates Growth Factor Independence 1 in Transcriptional Control and Hematopoiesis.

    PubMed

    Andrade, Daniel; Velinder, Matthew; Singer, Jason; Maese, Luke; Bareyan, Diana; Nguyen, Hong; Chandrasekharan, Mahesh B; Lucente, Helena; McClellan, David; Jones, David; Sharma, Sunil; Liu, Fang; Engel, Michael E

    2016-05-15

    Cell fate specification requires precise coordination of transcription factors and their regulators to achieve fidelity and flexibility in lineage allocation. The transcriptional repressor growth factor independence 1 (GFI1) is comprised of conserved Snail/Slug/Gfi1 (SNAG) and zinc finger motifs separated by a linker region poorly conserved with GFI1B, its closest homolog. Moreover, GFI1 and GFI1B coordinate distinct developmental fates in hematopoiesis, suggesting that their functional differences may derive from structures within their linkers. We show a binding interface between the GFI1 linker and the SP-RING domain of PIAS3, an E3-SUMO (small ubiquitin-related modifier) ligase. The PIAS3 binding region in GFI1 contains a conserved type I SUMOylation consensus element, centered on lysine-239 (K239). In silico prediction algorithms identify K239 as the only high-probability site for SUMO modification. We show that GFI1 is modified by SUMO at K239. SUMOylation-resistant derivatives of GFI1 fail to complement Gfi1 depletion phenotypes in zebrafish primitive erythropoiesis and granulocytic differentiation in cultured human cells. LSD1/CoREST recruitment and MYC repression by GFI1 are profoundly impaired for SUMOylation-resistant GFI1 derivatives, while enforced expression of MYC blocks granulocytic differentiation. These findings suggest that SUMOylation within the GFI1 linker favors LSD1/CoREST recruitment and MYC repression to govern hematopoietic differentiation. PMID:26951200

  15. SUMOylation of DRIL1 Directs Its Transcriptional Activity Towards Leukocyte Lineage-Specific Genes

    PubMed Central

    van Lohuizen, Maarten; Peeper, Daniel S.

    2009-01-01

    DRIL1 is an ARID family transcription factor that can immortalize primary mouse fibroblasts, bypass RASV12-induced cellular senescence and collaborate with RASV12 or MYC in mediating oncogenic transformation. It also activates immunoglobulin heavy chain transcription and engages in heterodimer formation with E2F to stimulate E2F-dependent transcription. Little, however, is known about the regulation of DRIL1 activity. Recently, DRIL1 was found to interact with the SUMO-conjugating enzyme Ubc9, but the functional relevance of this association has not been assessed. Here, we show that DRIL1 is sumoylated both in vitro and in vivo at lysine 398. Moreover, we provide evidence that PIASy functions as a specific SUMO E3-ligase for DRIL1 and promotes its sumoylation both in vitro and in vivo. Furthermore, consistent with the subnuclear localization of PIASy in the Matrix-Associated Region (MAR), SUMO-modified DRIL1 species are found exclusively in the MAR fraction. This post-translational modification interferes neither with the subcellular localization nor the DNA-binding activity of the protein. In contrast, DRIL1 sumoylation impairs its interaction with E2F1 in vitro and modifies its transcriptional activity in vivo, driving transcription of subset of genes regulating leukocyte fate. Taken together, these results identify sumoylation as a novel post-translational modification of DRIL1 that represents an important mechanism for targeting and modulating DRIL1 transcriptional activity. PMID:19436740

  16. SUMOylation of TARBP2 regulates miRNA/siRNA efficiency

    PubMed Central

    Chen, Cheng; Zhu, Changhong; Huang, Jian; Zhao, Xian; Deng, Rong; Zhang, Hailong; Dou, Jinzhuo; Chen, Qin; Xu, Ming; Yuan, Haihua; Wang, Yanli; Yu, Jianxiu

    2015-01-01

    Small RNA-induced gene silencing is essential for post-transcriptional regulation of gene expression; however, it remains unclear how miRNA/siRNA efficiency is regulated. Here we show that TARBP2 is SUMOylated at K52, which can be enhanced by its phosphorylation. This modification can stabilize TARBP2 via repressing its K48-linked ubiquitination. We find that TARBP2 SUMOylation does not influence the overall production of mature miRNAs, but it regulates miRNA/siRNA efficiency. SUMOylated TARBP2 recruits Ago2 to constitute the RNA-induced silencing complex (RISC)-loading complex (RLC), and simultaneously promotes more pre-miRNAs to load into the RLC. Consequently, Ago2 is stabilized and miRNAs/siRNAs bound by TARBP2/Dicer is effectively transferred to Ago2. Thus, these processes lead to the formation of the effective RISC for RNA interference (RNAi). Collectively, our data suggest that SUMOylation of TARBP2 is required for regulating miRNA/siRNA efficiency, which is a general mechanism of miRNA/siRNA regulation. PMID:26582366

  17. Identification of sumoylation inhibitors targeting a predicted pocket in Ubc9.

    PubMed

    Kumar, Ashutosh; Ito, Akihiro; Hirohama, Mikako; Yoshida, Minoru; Zhang, Kam Y J

    2014-10-27

    Sumoylation is a post-translational modification that plays an important role in a wide range of cellular processes. Among the proteins involved in the sumoylation pathway, Ubc9 is the sole E2-conjugating enzyme required for sumoylation and plays a central role by interacting with almost all of the partners required for sumoylation. Ubc9 has been implicated in a variety of human malignancies. In order to exploit the therapeutic potential of Ubc9, we have identified the potential site to target for rational drug design using molecular modeling approaches. The structural information derived was then used to prioritize hits from a small-molecule library for biological assay using a virtual screening protocol that involves shape matching with a known inhibitor inhibitors and docking of a small-molecule library utilizing computational approaches that incorporate both ligand and protein flexibility. Nineteen compounds were acquired from different chemical vendors and were tested for Ubc9 inhibitory activity. Five compounds showed inhibitory activity against Ubc9, out of which one compound was selected for further optimization. A similarity search was then carried out to retrieve commercially available derivatives, which were further acquired and assayed, resulting in two compounds with acceptable potency. These two compounds can be used as starting points for the development of more potent inhibitors of Ubc9 targeting the predicted site. PMID:25191977

  18. Versatile Recombinant SUMOylation System for the Production of SUMO-Modified Protein

    PubMed Central

    Weber, Alain R.; Schuermann, David; Schär, Primo

    2014-01-01

    Posttranslational modification by small ubiquitin-like modifiers (SUMO) is being associated with a growing number of regulatory functions in diverse cellular processes. The biochemical investigation into the underlying molecular mechanisms, however, has been lagging behind due to the difficulty to generate sufficient amounts of recombinant SUMOylated proteins. Here, we present two newly designed two-component vector systems for the expression and purification of SUMO-modified target proteins in Escherichia coli. One system consists of a vector for SUMO conjugation, expressing human SUMO-activating (SAE1/SAE2) and conjugating (Ubc9) enzymes together with His6-tagged SUMO1, 2 or 3, that can be combined with commonly used expression constructs for any gene of interest. To facilitate SUMOylation of targets normally requiring a SUMO-E3 ligase for efficient modification, a second system is designed to express the target protein as a fusion with the human SUMO-conjugating enzyme Ubc9, thus compensating the absence of a potential SUMO ligase. We demonstrate the proficiency of these systems by SUMOylation of two DNA repair proteins, the thymine DNA glycosylase (TDG) and XRCC1, and describe purification schemes for SUMOylated proteins in native and active form. This SUMO toolbox facilitates “in-cell” and “in-extract” production and purification of recombinant SUMO-modified target proteins for functional and structural analysis. PMID:25007328

  19. SUMOylation of Rb enhances its binding with CDK2 and phosphorylation at early G1 phase.

    PubMed

    Meng, Fengxi; Qian, Jiang; Yue, Han; Li, Xiaofeng; Xue, Kang

    2016-07-01

    Retinoblastoma protein (Rb) is a prototypical tumor suppressor that is vital to the negative regulation of the cell cycle and tumor progression. Hypo-phosphorylated Rb is associated with G0/G1 arrest by suppressing E2F transcription factor activity, whereas Rb hyper-phosphorylation allows E2F release and cell cycle progression from G0/G1 to S phase. However, the factors that regulate cyclin-dependent protein kinase (CDK)-dependent hyper-phosphorylation of Rb during the cell cycle remain obscure. In this study, we show that throughout the cell cycle, Rb is specifically small ubiquitin-like modifier (SUMO)ylated at early G1 phase. SUMOylation of Rb stimulates its phosphorylation level by recruiting a SUMO-interaction motif (SIM)-containing kinase CDK2, leading to Rb hyper-phosphorylation and E2F-1 release. In contrast, a SUMO-deficient Rb mutant results in reduced SUMOylation and phosphorylation, weakened CDK2 binding, and attenuated E2F-1 sequestration. Furthermore, we reveal that Rb SUMOylation is required for cell proliferation. Therefore, our study describes a novel mechanism that regulates Rb phosphorylation during cell cycle progression. PMID:27163259

  20. Visualizing and quantifying protein polySUMOylation at the single-molecule level.

    PubMed

    Yang, Yong; Zhang, Chun-yang

    2014-01-21

    Protein polySUMOylation, the attachment of small ubiquitin-like modifier (SUMO) chains to the target protein, is associated with a variety of physiological processes. However, the analysis of protein polySUMOylation is often complicated by the heterogeneity of SUMO-target conjugates. Here, we develop a new strategy to visualize and quantify polySUMOylation at the single-molecule level by integrating the tetracysteine (TC) tag labeling technology and total internal reflection fluorescence (TIRF)-based single-molecule imaging. As a proof-of-concept, we employ the human SUMO-2 as the model. The addition of TC tag to SUMO-2 can specifically translate the SUMO-mediated modification into visible fluorescence signal without disturbing the function of SUMO-2. The SUMO monomers display homogeneous fluorescence spots at the single-molecule level, whereas the mixed SUMO chains exhibit nonuniform fluorescence spots with a wide range of intensities. Analysis of the number and the brightness of fluorescence spots enable quantitative measurement of the polySUMOylation degree inside the cells under different physiological conditions. Due to the frequent occurrence of posttranslational modification by polymeric chains in cells, this single-molecule strategy has the potential to be broadly applied for studying protein posttranslational modification in normal cellular physiology and disease etiology. PMID:24383460

  1. SUMOylation of TARBP2 regulates miRNA/siRNA efficiency.

    PubMed

    Chen, Cheng; Zhu, Changhong; Huang, Jian; Zhao, Xian; Deng, Rong; Zhang, Hailong; Dou, Jinzhuo; Chen, Qin; Xu, Ming; Yuan, Haihua; Wang, Yanli; Yu, Jianxiu

    2015-01-01

    Small RNA-induced gene silencing is essential for post-transcriptional regulation of gene expression; however, it remains unclear how miRNA/siRNA efficiency is regulated. Here we show that TARBP2 is SUMOylated at K52, which can be enhanced by its phosphorylation. This modification can stabilize TARBP2 via repressing its K(48)-linked ubiquitination. We find that TARBP2 SUMOylation does not influence the overall production of mature miRNAs, but it regulates miRNA/siRNA efficiency. SUMOylated TARBP2 recruits Ago2 to constitute the RNA-induced silencing complex (RISC)-loading complex (RLC), and simultaneously promotes more pre-miRNAs to load into the RLC. Consequently, Ago2 is stabilized and miRNAs/siRNAs bound by TARBP2/Dicer is effectively transferred to Ago2. Thus, these processes lead to the formation of the effective RISC for RNA interference (RNAi). Collectively, our data suggest that SUMOylation of TARBP2 is required for regulating miRNA/siRNA efficiency, which is a general mechanism of miRNA/siRNA regulation. PMID:26582366

  2. Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes.

    PubMed

    Chymkowitch, Pierre; Nguéa, Aurélie P; Aanes, Håvard; Koehler, Christian J; Thiede, Bernd; Lorenz, Susanne; Meza-Zepeda, Leonardo A; Klungland, Arne; Enserink, Jorrit M

    2015-06-01

    Transcription factors are abundant Sumo targets, yet the global distribution of Sumo along the chromatin and its physiological relevance in transcription are poorly understood. Using Saccharomyces cerevisiae, we determined the genome-wide localization of Sumo along the chromatin. We discovered that Sumo-enriched genes are almost exclusively involved in translation, such as tRNA genes and ribosomal protein genes (RPGs). Genome-wide expression analysis showed that Sumo positively regulates their transcription. We also discovered that the Sumo consensus motif at RPG promoters is identical to the DNA binding motif of the transcription factor Rap1. We demonstrate that Rap1 is a molecular target of Sumo and that sumoylation of Rap1 is important for cell viability. Furthermore, Rap1 sumoylation promotes recruitment of the basal transcription machinery, and sumoylation of Rap1 cooperates with the target of rapamycin kinase complex 1 (TORC1) pathway to promote RPG transcription. Strikingly, our data reveal that sumoylation of Rap1 functions in a homeostatic feedback loop that sustains RPG transcription during translational stress. Taken together, Sumo regulates the cellular translational capacity by promoting transcription of tRNA genes and RPGs. PMID:25800674

  3. Elg1, an alternative subunit of the RFC clamp loader, preferentially interacts with SUMOylated PCNA

    PubMed Central

    Parnas, Oren; Zipin-Roitman, Adi; Pfander, Boris; Liefshitz, Batia; Mazor, Yuval; Ben-Aroya, Shay; Jentsch, Stefan; Kupiec, Martin

    2010-01-01

    Replication-factor C (RFC) is a protein complex that loads the processivity clamp PCNA onto DNA. Elg1 is a conserved protein with homology to the largest subunit of RFC, but its function remained enigmatic. Here, we show that yeast Elg1 interacts physically and genetically with PCNA, in a manner that depends on PCNA modification, and exhibits preferential affinity for SUMOylated PCNA. This interaction is mediated by three small ubiquitin-like modifier (SUMO)-interacting motifs and a PCNA-interacting protein box close to the N-terminus of Elg1. These motifs are important for the ability of Elg1 to maintain genomic stability. SUMOylated PCNA is known to recruit the helicase Srs2, and in the absence of Elg1, Srs2 and SUMOylated PCNA accumulate on chromatin. Strains carrying mutations in both ELG1 and SRS2 exhibit a synthetic fitness defect that depends on PCNA modification. Our results underscore the importance of Elg1, Srs2 and SUMOylated PCNA in the maintenance of genomic stability. PMID:20571511

  4. SUMOylation of Rb enhances its binding with CDK2 and phosphorylation at early G1 phase

    PubMed Central

    Meng, Fengxi; Qian, Jiang; Yue, Han; Li, Xiaofeng; Xue, Kang

    2016-01-01

    ABSTRACT Retinoblastoma protein (Rb) is a prototypical tumor suppressor that is vital to the negative regulation of the cell cycle and tumor progression. Hypo-phosphorylated Rb is associated with G0/G1 arrest by suppressing E2F transcription factor activity, whereas Rb hyper-phosphorylation allows E2F release and cell cycle progression from G0/G1 to S phase. However, the factors that regulate cyclin-dependent protein kinase (CDK)-dependent hyper-phosphorylation of Rb during the cell cycle remain obscure. In this study, we show that throughout the cell cycle, Rb is specifically small ubiquitin-like modifier (SUMO)ylated at early G1 phase. SUMOylation of Rb stimulates its phosphorylation level by recruiting a SUMO-interaction motif (SIM)-containing kinase CDK2, leading to Rb hyper-phosphorylation and E2F-1 release. In contrast, a SUMO-deficient Rb mutant results in reduced SUMOylation and phosphorylation, weakened CDK2 binding, and attenuated E2F-1 sequestration. Furthermore, we reveal that Rb SUMOylation is required for cell proliferation. Therefore, our study describes a novel mechanism that regulates Rb phosphorylation during cell cycle progression. PMID:27163259

  5. Characterization and expression analysis of genes involved in SUMOylation during embryogenesis in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SUMOylation is the post-translational modification of proteins by the addition of the small ubiquitin-like modifier (SUMO), which plays an important role in various cellular processes. It has been reported that SUMO and its related proteins are important in diverse reproductive functions such as ovu...

  6. PARP-1 transcriptional activity is regulated by sumoylation upon heat shock.

    PubMed

    Martin, Nadine; Schwamborn, Klaus; Schreiber, Valérie; Werner, Andreas; Guillier, Christelle; Zhang, Xiang-Dong; Bischof, Oliver; Seeler, Jacob-S; Dejean, Anne

    2009-11-18

    Heat shock and other environmental stresses rapidly induce transcriptional responses subject to regulation by a variety of post-translational modifications. Among these, poly(ADP-ribosyl)ation and sumoylation have received growing attention. Here we show that the SUMO E3 ligase PIASy interacts with the poly(ADP-ribose) polymerase PARP-1, and that PIASy mediates heat shock-induced poly-sumoylation of PARP-1. Furthermore, PIASy, and hence sumoylation, appears indispensable for full activation of the inducible HSP70.1 gene. Chromatin immunoprecipitation experiments show that PIASy, SUMO and the SUMO-conjugating enzyme Ubc9 are rapidly recruited to the HSP70.1 promoter upon heat shock, and that they are subsequently released with kinetics similar to PARP-1. Finally, we provide evidence that the SUMO-targeted ubiquitin ligase RNF4 mediates heat-shock-inducible ubiquitination of PARP-1, regulates the stability of PARP-1, and, like PIASy, is a positive regulator of HSP70.1 gene activity. These results, thus, point to a novel mechanism for regulating PARP-1 transcription function, and suggest crosstalk between sumoylation and RNF4-mediated ubiquitination in regulating gene expression in response to heat shock. PMID:19779455

  7. PRIC295, a Nuclear Receptor Coactivator, Identified from PPARα-Interacting Cofactor Complex

    PubMed Central

    Pyper, Sean R.; Viswakarma, Navin; Jia, Yuzhi; Zhu, Yi-Jun; Fondell, Joseph D.; Reddy, Janardan K.

    2010-01-01

    The peroxisome proliferator-activated receptor-α (PPARα) plays a key role in lipid metabolism and energy combustion. Chronic activation of PPARα in rodents leads to the development of hepatocellular carcinomas. The ability of PPARα to induce expression of its target genes depends on Mediator, an evolutionarily conserved complex of cofactors and, in particular, the subunit 1 (Med1) of this complex. Here, we report the identification and characterization of PPARα-interacting cofactor (PRIC)-295 (PRIC295), a novel coactivator protein, and show that it interacts with the Med1 and Med24 subunits of the Mediator complex. PRIC295 contains 10 LXXLL signature motifs that facilitate nuclear receptor binding and interacts with PPARα and five other members of the nuclear receptor superfamily in a ligand-dependent manner. PRIC295 enhances the transactivation function of PPARα, PPARγ, and ERα. These data demonstrate that PRIC295 interacts with nuclear receptors such as PPARα and functions as a transcription coactivator under in vitro conditions and may play an important role in mediating the effects in vivo as a member of the PRIC complex with Med1 and Med24. PMID:20885938

  8. Design principles of nuclear receptor signaling: how complex networking improves signal transduction

    PubMed Central

    Kolodkin, Alexey N; Bruggeman, Frank J; Plant, Nick; Moné, Martijn J; Bakker, Barbara M; Campbell, Moray J; van Leeuwen, Johannes P T M; Carlberg, Carsten; Snoep, Jacky L; Westerhoff, Hans V

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear' receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands. PMID:21179018

  9. Nuclear receptors modulate the interaction of Sp1 and GC-rich DNA via ternary complex formation.

    PubMed Central

    Husmann, M; Dragneva, Y; Romahn, E; Jehnichen, P

    2000-01-01

    Binding sites for transcription factor Sp1 have been implicated in the transcriptional regulation of several genes by hormones or vitamins, and here we show that a GC-rich element contributes to the retinoic acid response of the interleukin 1beta promoter. To explain such observations, it has been proposed that nuclear receptors can interact with Sp1 bound to GC-rich DNA. However, evidence supporting this model has remained indirect. So far, nuclear receptors have not been detected in a complex with Sp1 and GC-rich DNA, and the expected ternary complexes in non-denaturing gels were not seen. In search for these missing links we found that nuclear receptors [retinoic acid receptor (RAR), thyroid hormone receptor (TR), vitamin D(3) receptor, peroxisome-proliferator-activated receptor and retinoic X receptor] induce an electrophoretic mobility increase of Sp1-GC-rich DNA complexes. Concomitantly, binding of Sp1 to the GC-box is enhanced. It is proposed that nuclear receptors may partially replace Sp1 in homo-oligomers at the GC-box. RARs and Sp1 can also combine into a complex with a retinoic acid-response element. The presence of RAR and Sp1 in complexes with either cognate site was revealed in supershift experiments. The C-terminus of Sp1 interacts with nuclear receptors. Both the ligand- and DNA-binding domains of the receptor are important for complex formation with Sp1 and GC-rich DNA. In spite of similar capacity to form ternary complexes, RAR but not TR up-regulated an Sp1-driven reporter in a ligand-dependent way. Thus additional factors limit the transcriptional response mediated by nuclear receptors and Sp1. PMID:11104684

  10. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    SciTech Connect

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-04-11

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism.

  11. Minireview: Regulation of Gap Junction Dynamics by Nuclear Hormone Receptors and Their Ligands

    PubMed Central

    Kapadia, Bhumika J.

    2012-01-01

    Gap junctions are plasma membrane channels comprising connexin proteins that mediate intercellular permeability and communication. The presence, composition, and function of gap junctions can be regulated by diverse sets of physiological signals. Evidence from many hormone-responsive tissues has shown that connexin expression, modification, stability, and localization can be targeted by nuclear hormone receptors and their ligands through both transcriptional and nontranscriptional mechanisms. The focus of this review is to discuss molecular, cellular, and physiological studies that directly link receptor- and ligand-triggered signaling pathways to the regulation of gap junction dynamics. PMID:22935924

  12. 0610009K11Rik, a testis-specific and germ cell nuclear receptor-interacting protein

    SciTech Connect

    Zhang Heng; Denhard, Leslie A.; Zhou Huaxin; Liu Lanhsin; Lan Zijian

    2008-02-22

    Using an in silico approach, a putative nuclear receptor-interacting protein 0610009K11Rik was identified in mouse testis. We named this gene testis-specific nuclear receptor-interacting protein-1 (Tnrip-1). Tnrip-1 was predominantly expressed in the testis of adult mouse tissues. Expression of Tnrip-1 in the testis was regulated during postnatal development, with robust expression in 14-day-old or older testes. In situ hybridization analyses showed that Tnrip-1 is highly expressed in pachytene spermatocytes and spermatids. Consistent with its mRNA expression, Tnrip-1 protein was detected in adult mouse testes. Immunohistochemical studies showed that Tnrip-1 is a nuclear protein and mainly expressed in pachytene spermatocytes and round spermatids. Moreover, co-immunoprecipitation analyses showed that endogenous Tnrip-1 protein can interact with germ cell nuclear receptor (GCNF) in adult mouse testes. Our results suggest that Tnrip-1 is a testis-specific and GCNF-interacting protein which may be involved in the modulation of GCNF-mediated gene transcription in spermatogenic cells within the testis.

  13. Ryanodine receptors are involved in nuclear calcium oscillation in primary pancreatic {beta}-cells

    SciTech Connect

    Zheng, Ji; Chen, Zheng; Yin, Wenxuan; Miao, Lin; Zhou, Zhansong; Ji, Guangju

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer We found that RyRs are expressed on the nuclear envelope in single primary pancreatic {beta}-cells and isolated nuclei. Black-Right-Pointing-Pointer We showed that the pattern of glucose-induced Ca{sup 2+} oscillation in the nucleus and cytosol was similar. Black-Right-Pointing-Pointer Our results demonstrate that ryanodine-sensitive Ca{sup 2+} stores exist and have function in the pancreatic {beta}-cell nucleus. -- Abstract: Ryanodine receptors (RyRs) are mainly located on the endoplasmic reticulum (ER) and play an important role in regulating glucose-induced cytosolic Ca{sup 2+} oscillation in pancreatic {beta}-cells. However, subcellular locations and functions of RyRs on other cell organelles such as nuclear envelope are not well understood. In order to investigate the role of RyRs in nuclear Ca{sup 2+} oscillation we designed and conducted experiments in intact primary pancreatic {beta}-cells. Immunocytochemistry was used to examine the expression of RYRs on the nuclear envelope. Confocal microscopy was used to evaluate the function of RYRs on the nuclear envelope. We found that RyRs are expressed on the nuclear envelope in single primary pancreatic {beta}-cells and isolated nuclei. Laser scanning confocal microscopy studies indicated that application of glucose to the cells co-incubated with Ca{sup 2+} indicator Fluo-4 AM and cell-permeable nuclear indicator Hoechst 33342 resulted in nuclear Ca{sup 2+} oscillation. The pattern of glucose-induced Ca{sup 2+} oscillation in the nucleus and cytosol was similar. The reduction of Ca{sup 2+} oscillation amplitude by ryanodine was much greater in the nucleus though both the cytosol and the nucleus Ca{sup 2+} amplitude decreased by ryanodine. Our results suggest that functional ryanodine receptors not only exist in endoplasmic reticulum but are also expressed in nuclear envelope of pancreatic {beta}-cells.

  14. Role of nuclear progesterone receptor isoforms in uterine pathophysiology

    PubMed Central

    Patel, Bansari; Elguero, Sonia; Thakore, Suruchi; Dahoud, Wissam; Bedaiwy, Mohamed; Mesiano, Sam

    2015-01-01

    BACKGROUND Progesterone is a key hormonal regulator of the female reproductive system. It plays a major role to prepare the uterus for implantation and in the establishment and maintenance of pregnancy. Actions of progesterone on the uterine tissues (endometrium, myometrium and cervix) are mediated by the combined effects of two progesterone receptor (PR) isoforms, designated PR-A and PR-B. Both receptors function primarily as ligand-activated transcription factors. Progesterone action on the uterine tissues is qualitatively and quantitatively determined by the relative levels and transcriptional activities of PR-A and PR-B. The transcriptional activity of the PR isoforms is affected by specific transcriptional coregulators and by PR post-translational modifications that affect gene promoter targeting. In this context, appropriate temporal and cell-specific expression and function of PR-A and PR-B are critical for normal uterine function. METHODS Relevant studies describing the role of PRs in uterine physiology and pathology (endometriosis, uterine leiomyoma, endometrial cancer, cervical cancer and recurrent pregnancy loss) were comprehensively searched using PubMed, Cochrane Library, Web of Science, and Google Scholar and critically reviewed. RESULTS Progesterone, acting through PR-A and PR-B, regulates the development and function of the endometrium and induces changes in cells essential for implantation and the establishment and maintenance of pregnancy. During pregnancy, progesterone via the PRs promotes myometrial relaxation and cervical closure. Withdrawal of PR-mediated progesterone signaling triggers menstruation and parturition. PR-mediated progesterone signaling is anti-mitogenic in endometrial epithelial cells, and as such, mitigates the tropic effects of estrogen on eutopic normal endometrium, and on ectopic implants in endometriosis. Similarly, ligand-activated PRs function as tumor suppressors in endometrial cancer cells through inhibition of key

  15. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    PubMed

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  16. Med1 Subunit of the Mediator Complex in Nuclear Receptor-Regulated Energy Metabolism, Liver Regeneration, and Hepatocarcinogenesis

    PubMed Central

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K.

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  17. Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion

    SciTech Connect

    Karvonen, Ulla; Jaenne, Olli A.; Palvimo, Jorma J. . E-mail: jorma.palvimo@uku.fi

    2006-10-01

    In addition to chromosomal proteins, histone deacetylases (HDACs) target transcription factors in transcriptional repression. Here, we show that the class II HDAC family member HDAC7 is an efficient corepressor of the androgen receptor (AR). HDAC7 resided in the cytoplasm in the absence of AR or a cognate ligand, but hormone-occupancy of AR induced nuclear transfer of HDAC7. Nuclear colocalization pattern of AR and HDAC7 was dependent on the nature of the ligand. In the presence of testosterone, a portion of HDAC7 localized to pearl-like nuclear domains, whereas AR occupied with antagonistic ligands cyproterone acetate- or casodex (bicalutamide) recruited HDAC7 from these domains to colocalize with the receptor in speckles and nucleoplasm in a more complete fashion. Ectopic expression of PML-3 relieved the repressive effect of HDAC7 on AR function by sequestering HDAC7 to PML-3 domains. AR acetylation at Lys630/632/633 was not the target of HDAC7 repression, since repression of AR function was independent of these acetylation sites. Moreover, the deacetylase activity of HDAC7 was in part dispensable in the repression of AR function. In sum, our results identify HDAC7 as a novel AR corepressor whose subcellular and subnuclear compartmentalization can be regulated in an androgen-selective manner.

  18. Importin-11, a nuclear import receptor for the ubiquitin-conjugating enzyme, UbcM2.

    PubMed

    Plafker, S M; Macara, I G

    2000-10-16

    Importins are members of a family of transport receptors (karyopherins) that mediate the nucleocytoplasmic transport of protein and RNA cargoes. We identified importin-11 as a potential new human member of this family, on the basis of limited similarity to the Saccharomyces cerevisiae protein, Lph2p, and cloned the complete open reading frame. Importin-11 interacts with the Ran GTPase, and constitutively shuttles between the nuclear and cytoplasmic compartments. A yeast dihybrid screen identified UbcM2, an E2-type ubiquitin-conjugating enzyme, as a binding partner and potential transport cargo for importin-11. Importin-11 and UbcM2 interact directly, and the complex is disassembled by Ran:GTP but not by Ran:GDP. UbcM2 is constitutively nuclear and shuttles between the nuclear and cytoplasmic compartments. Nuclear import of UbcM2 requires Ran and importin-11, and is inhibited by wheatgerm agglutinin, energy depletion or dominant interfering mutants of Ran and importin-beta. These data establish importin-11 as a new member of the karyopherin family of transport receptors, and identify UbcM2 as a nuclear member of the E2 ubiquitin-conjugating enzyme family. PMID:11032817

  19. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology.

    PubMed

    Kiss, Mate; Czimmerer, Zsolt; Nagy, Laszlo

    2013-08-01

    Nuclear receptors are ligand-activated transcription factors linking lipid signaling to the expression of the genome. There is increasing appreciation of the involvement of this receptor network in the metabolic programming of macrophages and dendritic cells (DCs), essential members of the innate immune system. In this review we focus on the role of retinoid X receptor, retinoic acid receptor, peroxisome proliferator-associated receptor γ, liver X receptor, and vitamin D receptor in shaping the immune and metabolic functions of macrophages and DCs. We also provide an overview of the contribution of macrophage- and DC-expressed nuclear receptors to various immunopathologic conditions, such as rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, asthma, and some others. We suggest that systematic analyses of the roles of these receptors and their activating lipid ligands in immunopathologies combined with complementary and focused translational and clinical research will be crucial for the development of new therapies using the many molecules available to target nuclear receptors. PMID:23905916

  20. Emerging roles for nuclear receptors in the pathogenesis of age-related macular degeneration

    PubMed Central

    Malek, Goldis; Lad, Eleonora M.

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly in the Western world. Over the last 30 years, our understanding of the pathogenesis of the disease has grown exponentially thanks to the results of countless epidemiology, genetic, histo-logical, and biochemical studies. This information, in turn, has led to the identification of multiple biologic pathways potentially involved in development and progression of AMD, including but not limited to inflammation, lipid and extracellular matrix dysregulation, and angiogenesis. Nuclear receptors are a superfamily of transcription factors that have been shown to regulate many of the pathogenic pathways linked with AMD and as such they are emerging as promising targets for therapeutic intervention. In this review, we will present the fundamental phenotypic features of AMD and discuss our current understanding of the pathobiological disease mechanisms. We will introduce the nuclear receptor superfamily and discuss the current literature on their effects on AMD-related pathophysiology. PMID:25156067

  1. Minireview: Steroid/Nuclear Receptor-Regulated Dynamics of Occluding and Anchoring Junctions

    PubMed Central

    Kapadia, Bhumika J.

    2014-01-01

    A diverse set of physiological signals control intercellular interactions by regulating the structure and function of occluding junctions (tight junctions) and anchoring junctions (adherens junctions and desmosomes). These plasma membrane junctions are comprised of multiprotein complexes of transmembrane and cytoplasmic peripheral plasma membrane proteins. Evidence from many hormone-responsive tissues has shown that expression, modification, molecular interactions, stability, and localization of junctional complex-associated proteins can be targeted by nuclear hormone receptors and their ligands through transcriptional and nontranscriptional mechanisms. The focus of this minireview is to discuss molecular, cellular, and physiological studies that directly link nuclear receptor- and ligand-triggered signaling pathways to the regulation of occluding and anchoring junction dynamics. PMID:25203673

  2. The molecular physiology of nuclear retinoic acid receptors. From health to disease.

    PubMed

    Duong, Vanessa; Rochette-Egly, Cécile

    2011-08-01

    The nuclear retinoic acid (RA) receptors (RARα, β and γ) are transcriptional transregulators, which control the expression of specific gene subsets subsequently to ligand binding and to strictly controlled phosphorylation processes. Consequently RARs maintain homeostasis through the control of cell proliferation and differentiation. Today, it is admitted that, analogous to the paradigm established by the hematopoietic system, most adult tissues depict a differentiation hierarchy starting from rare stem cells. Here we highlight that the integrity of RARs is absolutely required for homeostasis in adults. Indeed, strictly controlled levels of RARs are necessary for the correct balance between self-renewal and differentiation of tissue stem cells. In addition, loss, accumulation, mutations or aberrant modifications of a specific RAR lead to uncontrolled proliferation and/or to differentiation block and thereby to cancer. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease. PMID:20970498

  3. Botanical compounds and their regulation of nuclear receptor action: the case of traditional Chinese medicine.

    PubMed

    Li, Ling; Bonneton, François; Chen, Xiao Yong; Laudet, Vincent

    2015-02-01

    Nuclear receptors (NRs) are major pharmacological targets that allow an access to the mechanisms controlling gene regulation. As such, some NRs were identified as biological targets of active compounds contained in herbal remedies found in traditional medicines. We aim here to review this expanding literature by focusing on the informative articles regarding the mechanisms of action of traditional Chinese medicines (TCMs). We exemplified well-characterized TCM action mediated by NR such as steroid receptors (ER, GR, AR), metabolic receptors (PPAR, LXR, FXR, PXR, CAR) and RXR. We also provided, when possible, examples from other traditional medicines. From these, we draw a parallel between TCMs and phytoestrogens or endocrine disrupting chemicals also acting via NR. We define common principle of action and highlight the potential and limits of those compounds. TCMs, by finely tuning physiological reactions in positive and negative manners, could act, in a subtle but efficient way, on NR sensors and their transcriptional network. PMID:25449417

  4. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation

    SciTech Connect

    Musille, Paul M; Pathak, Manish C; Lauer, Janelle L; Hudson, William H; Griffin, Patrick R; Ortlund, Eric A

    2013-01-31

    The human nuclear receptor liver receptor homolog-1 (LRH-1) has an important role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of diabetes and hepatic diseases. LRH-1 is known to bind phospholipids, but the role of phospholipids in controlling LRH-1 activation remains highly debated. Here we describe the structure of both apo LRH-1 and LRH-1 in complex with the antidiabetic phospholipid dilauroylphosphatidylcholine (DLPC). Together with hydrogen-deuterium exchange MS and functional data, our studies show that DLPC binding is a dynamic process that alters co-regulator selectivity. We show that the lipid-free receptor undergoes previously unrecognized structural fluctuations, allowing it to interact with widely expressed co-repressors. These observations enhance our understanding of LRH-1 regulation and highlight its importance as a new therapeutic target for controlling diabetes.

  5. Multiple phosphorylation events control chicken ovalbumin upstream promoter transcription factor I orphan nuclear receptor activity.

    PubMed

    Gay, Frédérique; Baráth, Peter; Desbois-Le Péron, Christine; Métivier, Raphaël; Le Guével, Rémy; Birse, Darcy; Salbert, Gilles

    2002-06-01

    Chicken ovalbumin upstream promoter transcription factor I (COUP-TFI) is an orphan member of the nuclear hormone receptor superfamily that comprises key regulators of many biological functions, such as embryonic development, metabolism, homeostasis, and reproduction. Although COUP-TFI can both actively silence gene transcription and antagonize the functions of various other nuclear receptors, the COUP-TFI orphan receptor also acts as a transcriptional activator in certain contexts. Moreover, COUP-TFI has recently been shown to serve as an accessory factor for some ligand-bound nuclear receptors, suggesting that it may modulate, both negatively and positively, a wide range of hormonal responses. In the absence of any identified cognate ligand, the mechanisms involved in the regulation of COUP-TFI activity remain unclear. The elucidation of several putative phosphorylation sites for MAPKs, PKC, and casein kinase II within the sequence of this orphan receptor led us to investigate phosphorylation events regulating the various COUP-TFI functions. After showing that COUP-TFI is phosphorylated in vivo, we provide evidence that in vivo inhibition of either MAPK or PKC signaling pathway leads to a specific and pronounced decrease in COUP-TFI-dependent transcriptional activation of the vitronectin gene promoter. Focusing on the molecular mechanisms underlying the MAPK- and PKC-mediated regulation of COUP-TFI activity, we show that COUP-TFI can be directly targeted by PKC and MAPK. These phosphorylation events differentially modulate COUP-TFI functions: PKC-mediated phosphorylation enhances COUP-TFI affinity for DNA and MAPK-mediated phosphorylation positively regulates the transactivation function of COUP-TFI, possibly through enhancing specific coactivator recruitment. These data provide evidence that COUP-TFI is likely to integrate distinct signaling pathways and raise the possibility that multiple extracellular signals influence biological processes controlled by COUP

  6. Cyclic, nonequilibrium models of glucocorticoid antagonism: role of activation, nuclear binding and receptor recycling.

    PubMed

    Munck, A; Holbrook, N J

    1988-10-01

    Quantitative models that have been proposed to date to explain mechanisms of glucocorticoid antagonism have generally been of the equilibrium type, involving hypothetical allosteric equilibria between active and inactive states of the receptor or the steroid-receptor complex. We describe here the agonist-antagonist relationships predicted by a nonequilibrium cyclic model that we have recently devised to account for the kinetic behavior of glucocorticoid-receptor complexes in intact rat thymus cells. This model simulates quantitatively most kinetic and steady state results that have been obtained so far. It postulates the existence of only well-established receptor species, and its kinetic parameters can in principle be determined by receptor measurements with intact cells. To calculate the steady state agonist-antagonist properties it is assumed that biological activity is proportional to the total amount of nuclear-bound complex, whether formed by agonist or antagonist. The agonist activity of a steroid is determined by the steady state ratio of nuclear-bound to total complexes it forms. This ratio varies from 0 for a pure antagonist to 1 for a pure agonist. It turns out to be independent of agonist and antagonist concentrations, and a function only of the rate constants for the reactions of the complexes formed by a steroid. Analysis of the dependence of the ratio on each rate constant shows quantitatively how each reaction in the cyclic model--activation of the nonactivated complex, nuclear binding of the activated complexes, and dissociation and recycling of activated and nuclear-bound complexes--affects antagonist properties. Steady state interactions of agonists with antagonists are found to be determined by equations that are identical to those for competition in simple equilibrium systems. Predicted dose-response relations agree qualitatively with experimentally observed relations. They are similar to those predicted by two-state allosteric models, although

  7. The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1.

    PubMed

    Blind, Raymond D; Sablin, Elena P; Kuchenbecker, Kristopher M; Chiu, Hsiu-Ju; Deacon, Ashley M; Das, Debanu; Fletterick, Robert J; Ingraham, Holly A

    2014-10-21

    The signaling phosphatidylinositol lipids PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind nuclear receptor 5A family (NR5As), but their regulatory mechanisms remain unknown. Here, the crystal structures of human NR5A1 (steroidogenic factor-1, SF-1) ligand binding domain (LBD) bound to PIP2 and PIP3 show the lipid hydrophobic tails sequestered in the hormone pocket, as predicted. However, unlike classic nuclear receptor hormones, the phosphoinositide head groups are fully solvent-exposed and complete the LBD fold by organizing the receptor architecture at the hormone pocket entrance. The highest affinity phosphoinositide ligand PIP3 stabilizes the coactivator binding groove and increases coactivator peptide recruitment. This receptor-ligand topology defines a previously unidentified regulatory protein-lipid surface on SF-1 with the phosphoinositide head group at its nexus and poised to interact with other proteins. This surface on SF-1 coincides with the predicted binding site of the corepressor DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region on chromosome X), and importantly harbors missense mutations associated with human endocrine disorders. Our data provide the structural basis for this poorly understood cluster of human SF-1 mutations and demonstrates how signaling phosphoinositides function as regulatory ligands for NR5As. PMID:25288771

  8. A lophotrochozoan-specific nuclear hormone receptor is required for reproductive system development in the planarian

    PubMed Central

    Tharp, Marla E.; Collins, James J.; Newmark, Phillip A.

    2014-01-01

    Germ cells of sexually reproducing organisms receive an array of cues from somatic tissues that instruct developmental processes. Although the nature of these signals differs amongst organisms, the importance of germline-soma interactions is a common theme. Recently, peptide hormones from the nervous system have been shown to regulate germ cell development in the planarian Schmidtea mediterranea; thus, we sought to investigate a second class of hormones with a conserved role in reproduction, the lipophilic hormones. In order to study these signals, we identified a set of putative lipophilic hormone receptors, known as nuclear hormone receptors, and analyzed their functions in reproductive development. We found one gene, nhr-1, belonging to a small class of functionally uncharacterized lophotrochozoan-specific receptors, to be essential for the development of differentiated germ cells. Upon nhr-1 knockdown, germ cells in the testes and ovaries fail to mature, and remain as undifferentiated germline stem cells. Further analysis revealed that nhr-1 mRNA is expressed in the accessory reproductive organs and is required for their development, suggesting that this transcription factor functions cell non-autonomously in regulating germ cell development. Our studies identify a role for nuclear hormone receptors in planarian reproductive maturation and reinforce the significance of germline-soma interactions in sexual reproduction across metazoans. PMID:25278423

  9. Discovery-driven research and bioinformatics in nuclear receptor and coregulator signaling

    PubMed Central

    McKenna, Neil J

    2010-01-01

    Nuclear receptors (NRs) are a superfamily of ligand-regulated transcription factors that interact with coregulators and other transcription factors to direct tissue-specific programs of gene expression. Recent years have witnessed a rapid acceleration of the output of high content data platforms in this field, generating discovery-driven datasets that have collectively described: the organization of the NR superfamily (phylogenomics); the expression patterns of NRs, coregulators and their target genes (transcriptomics); ligand- and tissue-specific functional NR and coregulator sites in DNA (cistromics); the organization of nuclear receptors and coregulators into higher order complexes (proteomics); and their downstream effects on homeostasis and metabolism (metabolomics). Significant bioinformatics challenges lie ahead both in the integration of this information into meaningful models of NR and coregulator biology, as well as in the archiving and communication of datasets to the global nuclear receptor signaling community. While holding great promise for the field, the ascendancy of discovery-driven research in this field brings with it a collective responsibility for researchers, publishers and funding agencies alike to ensure the effective archiving and management of these data. This review will discuss factors lying behind the increasing impact of discovery-driven research, examples of high content datasets and their bioinformatic analysis, as well as a summary of currently curated web resources in this field. PMID:21029773

  10. Control of Energy Balance by Hypothalamic Gene Circuitry Involving Two Nuclear Receptors, Neuron-Derived Orphan Receptor 1 and Glucocorticoid Receptor

    PubMed Central

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Soo-Kyung

    2013-01-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance. PMID:23897430

  11. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    PubMed

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance. PMID:23897430

  12. Polo-like kinase 2 gene expression is regulated by the orphan nuclear receptor estrogen receptor-related receptor gamma (ERRgamma).

    PubMed

    Park, Yun-Yong; Kim, Seok-Ho; Kim, Yong Joo; Kim, Sun Yee; Lee, Tae-Hoon; Lee, In-Kyu; Park, Seung Bum; Choi, Hueng-Sik

    2007-10-12

    Estrogen receptor-related receptor gamma (ERRgamma) is a member of the nuclear receptor family of transcriptional activators. To date, the target genes and physiological functions of ERRgamma are not well understood. In the current study, we identify that Plk2 is a novel target of ERRgamma. Northern blot analysis showed that overexpression of ERRgamma induced Plk2 expression in cancer cell lines. ERRgamma activated the Plk2 gene promoter, and deletion and mutational analysis of the Plk2 promoter revealed that the ERRgamma-response region is located between nucleotides (nt) -2327 and -2229 and -441 and -432 (relative to the transcriptional start site at +1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis demonstrated that ERRgamma binds directly to the Plk2 promoter. Overexpression of ERRgamma in the presence of the mitotic inhibitor nocodazole significantly decreased apoptosis, and induced S-phase cell cycle progression through the induction of Plk2 expression. Taken together, these results demonstrated that Plk2 is a novel target of ERRgamma, and suggest that this interaction is crucial for cancer cell proliferation. PMID:17706602

  13. The role of nuclear receptors in controlling the fine balance between proliferation and differentiation of neural stem cells.

    PubMed

    Stergiopoulos, Athanasios; Politis, Panagiotis K

    2013-06-01

    In the central nervous system (CNS) of vertebrates a large variety of cell types are specified from a pool of highly plastic neural stem/progenitor cells (NSCs) via a combined action of extrinsic morphogenetic cues and intrinsic transcriptional regulatory networks. Nuclear receptors and their ligands are key regulators of fate decisions in NSCs during development and adulthood, through their ability to control transcription of downstream genes. In the last few years considerable progress has been made towards the understanding of the actions of nuclear receptors in NSCs as well as elucidating the mechanistic basis for these actions. Here we summarize recent progress in the role of nuclear receptors in the biology of NSCs. These studies highlight the importance of this family of transcriptional regulators in CNS development and function in health and disease. Furthermore, they raise the intriguing possibility of using nuclear receptors as therapeutic targets for nervous system related diseases and traumas. PMID:23044345

  14. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1).

    PubMed

    Terranova, Christopher; Narla, Sridhar T; Lee, Yu-Wei; Bard, Jonathan; Parikh, Abhirath; Stachowiak, Ewa K; Tzanakakis, Emmanuel S; Buck, Michael J; Birkaya, Barbara; Stachowiak, Michal K

    2015-01-01

    Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development. PMID:25923916

  15. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T sub 3 receptors

    SciTech Connect

    Bianco, A.C.; Silva, J.E. Harvard Medical School, Boston, MA )

    1988-10-01

    Cold exposure induces a rapid increase in uncoupling protein (UCP) concentration in the brown adipose tissue (BAT) of euthyroid, but not hypothyroid, rats. To normalize this response with exogenous 3,5,3{prime}-triiodothyronine (T{sub 3}), it is necessary to cause systemic hyperthyroidism. In contrast, the same result can be obtained with just replacement doses of thyroxine (T{sub 4}) and, in euthyroid rats, the normal response of UCP to cold occurs without hyperthyroid plasma T{sub 3} levels. Consequently, the authors explored the possibility that the cold-induced activation of the type II 5{prime}-deiodinase resulted in high levels of nuclear T{sub 3} receptor occupancy in euthyroid rats. Studies were performed with pulse injections of tracer T{sub 3} or T{sub 4} in rats exposed to 4{degree}C for different lengths of time (1 h-3 wk). Within 4 h of cold exposure, they observed a significant increase in the nuclear ({sup 125}I)T{sub 3} derived from the tracer ({sup 125}I)T{sub 4} injections (T{sub 3}(T{sub 4})) and a significant reduction in the nuclear ({sup 125}I)T{sub 3} derived from ({sup 125}I)T{sub 3} injections (T{sub 3}(T{sub 3})). The number of BAT nuclear T{sub 3} receptors did not increase for up to 3 wk of observation at 4{degree}C. The mass of nuclear-bound T{sub 3} was calculated from the nuclear tracer ({sup 125}I)T{sub 3}(T{sub 3}) and ({sup 125}I)T{sub 3}(T{sub 4}) at equilibrium and the specific activity of serum T{sub 3} and T{sub 4}, respectively. By 4 h after the initiation of the cold exposure, the receptors were >95% occupied and remained so for the 3 weeks of observation. They conclude that the simultaneous activation of the deiodinase with adrenergic BAT stimulation serves the purpose of nearly saturating the nuclear T{sub 3} receptors. This makes possible the realization of the full thermogenic potential of the tissue without causing systemic hyperthyroidism.

  16. Activation of the orphan nuclear receptor steroidogenic factor 1 by oxysterols

    PubMed Central

    Lala, Deepak S.; Syka, Peter M.; Lazarchik, Steven B.; Mangelsdorf, David J.; Parker, Keith L.; Heyman, Richard A.

    1997-01-01

    Steroidogenic factor 1 (SF-1), an orphan member of the intracellular receptor superfamily, plays an essential role in the development and function of multiple endocrine organs. It is expressed in all steroidogenic tissues where it regulates the P450 steroidogenic genes to generate physiologically active steroids. Although many of the functions of SF-1 in vivo have been defined, an unresolved question is whether a ligand modulates its transcriptional activity. Here, we show that 25-, 26-, or 27-hydroxycholesterol, known suppressors of cholesterol biosynthesis, enhance SF-1-dependent transcriptional activity. This activation is dependent upon the SF-1 activation function domain, and, is specific for SF-1 as several other receptors do not respond to these molecules. The oxysterols activate at concentrations comparable to those previously shown to inhibit cholesterol biosynthesis, and, can be derived from cholesterol by P450c27, an enzyme expressed within steroidogenic tissues. Recent studies have shown that the nuclear receptor LXR also is activated by oxysterols. We demonstrate that different oxysterols differ in their rank order potency for these two receptors, with 25-hydroxycholesterol preferentially activating SF-1 and 22(R)-hydroxycholesterol preferentially activating LXR. These results suggest that specific oxysterols may mediate transcriptional activation via different intracellular receptors. Finally, ligand-dependent transactivation of SF-1 by oxysterols may play an important role in enhancing steroidogenesis in vivo. PMID:9144161

  17. Detection of nucleic acid-nuclear hormone receptor complexes with mass spectrometry.

    PubMed

    Bich, Claudia; Bovet, Cédric; Rochel, Natacha; Peluso-Iltis, Carole; Panagiotidis, Andreas; Nazabal, Alexis; Moras, Dino; Zenobi, Renato

    2010-04-01

    Nuclear receptors, such as the retinoic acid receptor (RAR) or the 9-cis retinoic acid receptor (RXR), interact not only with their ligands but also with other types of receptors and with DNA. Here, two complementary mass spectrometry (MS) methods were used to study the interactions between retinoic receptors (RXR/RAR) and DNA: non-denaturing nano-electrospray (nanoESI MS), and high-mass matrix-assisted laser desorption ionization (MALDI MS) combined with chemical cross-linking. The RAR x RXR heterodimer was studied in the presence of a specific DNA sequence (DR5), and a specific RAR x RXR x DNA complex was detected with both MS techniques. RAR by itself showed no significant homodimerization. A complex between RAR and the double stranded DR5 was detected with nanoESI. After cross-linking, high-mass MALDI mass spectra showed that the RAR binds the single stranded DR5, and the RAR dimer binds both single and double stranded DR5. Moreover, the MALDI mass spectrum shows a larger RAR dimer signal in the presence of DNA. These results suggest that a gene-regulatory site on DNA can induce quaternary structural changes in a transcription factor such as RAR. PMID:20097575

  18. Identification of a Synthetic Agonist for the Orphan Nuclear Receptors RORα and RORγ, SR1078

    PubMed Central

    Wang, Yongjun; Kumar, Naresh; Nuhant, Philippe; Cameron, Michael D.; Istrate, Monica A.; Roush, William R.; Griffin, Patrick R.; Burris, Thomas P.

    2010-01-01

    The retinoic acid receptor-related receptors (RORs) are members of the nuclear receptor (NR) superfamily of transcription factors. Several NRs are still characterized as orphan receptors since ligands have not yet been identified for these proteins. Here, we describe the identification of a synthetic RORα/RORγ ligand, SR1078. SR1078 modulates the conformation of RORγ in a biochemical assay and activates RORα and RORγ driven transcription. Furthermore, SR1078 stimulates expression of endogenous ROR target genes in HepG2 cells that express both RORα and RORγ. Pharmacokinetic studies indicate that SR1078 displays reasonable exposure following injection into mice and consistent with SR1078 functioning as a RORα/RORγ agonist, expression of two ROR target genes, glucose-6-phosphatase and fibroblast growth factor 21, were stimulated in the liver. Thus, we have identified the first synthetic RORα/γ agonist and this compound can be utilized as a chemical tool to probe the function of these receptors both in vitro and in vivo. PMID:20735016

  19. Physical and functional interactions of human papillomavirus E2 protein with nuclear receptor coactivators

    SciTech Connect

    Wu, M.-H.; Huang, C.-J.; Liu, S.-T.; Liu, P.-Y.; Ho, C.-L. . E-mail: shihming@ndmctsgh.edu.tw

    2007-05-11

    In addition to the human papillomavirus (HPV)-induced immortalization of epithelial cells, which usually requires integration of the viral DNA into the host cell genome, steroid hormone-activated nuclear receptors (NRs) are thought to bind to specific DNA sequences within transcriptional regulatory regions on the long control region to either increase or suppress transcription of dependent genes. In this study, our data suggest that the NR coactivator function of HPV E2 proteins might be mediated through physical and functional interactions with not only NRs but also the NR coactivators GRIP1 (glucocorticoid receptor-interacting protein 1) and Zac1 (zinc-finger protein which regulates apoptosis and cell cycle arrest 1), reciprocally regulating their transactivation activities. GRIP1 and Zac1 both were able to act synergistically with HPV E2 proteins on the E2-, androgen receptor-, and estrogen receptor-dependent transcriptional activation systems. GRIP1 and Zac1 might selectively function with HPV E2 proteins on thyroid receptor- and p53-dependent transcriptional activation, respectively. Hence, the transcriptional function of E2 might be mediated through NRs and NR coactivators to regulate E2-, NR-, and p53-dependent transcriptional activations.

  20. MeCP2 SUMOylation rescues Mecp2-mutant-induced behavioural deficits in a mouse model of Rett syndrome

    PubMed Central

    Tai, Derek J. C.; Liu, Yen C.; Hsu, Wei L.; Ma, Yun L.; Cheng, Sin J.; Liu, Shau Y.; Lee, Eminy H. Y.

    2016-01-01

    The methyl-CpG-binding protein 2 (MeCP2) gene, MECP2, is an X-linked gene encoding the MeCP2 protein, and mutations of MECP2 cause Rett syndrome (RTT). However, the molecular mechanism of MECP2-mutation-caused RTT is less known. Here we find that MeCP2 could be SUMO-modified by the E3 ligase PIAS1 at Lys-412. MeCP2 phosphorylation (at Ser-421 and Thr-308) facilitates MeCP2 SUMOylation, and MeCP2 SUMOylation is induced by NMDA, IGF-1 and CRF in the rat brain. MeCP2 SUMOylation releases CREB from the repressor complex and enhances Bdnf mRNA expression. Several MECP2 mutations identified in RTT patients show decreased MeCP2 SUMOylation. Re-expression of wild-type MeCP2 or SUMO-modified MeCP2 in Mecp2-null neurons rescues the deficits of social interaction, fear memory and LTP observed in Mecp2 conditional knockout (cKO) mice. These results together reveal an important role of MeCP2 SUMOylation in social interaction, memory and synaptic plasticity, and that abnormal MeCP2 SUMOylation is implicated in RTT. PMID:26842955

  1. TRIM28 Is an E3 Ligase for ARF-Mediated NPM1/B23 SUMOylation That Represses Centrosome Amplification

    PubMed Central

    Neo, Shu Hui; Itahana, Yoko; Alagu, Jennifer; Kitagawa, Mayumi; Guo, Alvin Kunyao; Lee, Sang Hyun; Tang, Kai

    2015-01-01

    The tumor suppressor ARF enhances the SUMOylation of target proteins; however, the physiological function of ARF-mediated SUMOylation has been unclear due to the lack of a known, associated E3 SUMO ligase. Here we uncover TRIM28/KAP1 as a novel ARF-binding protein and SUMO E3 ligase for NPM1/B23. ARF and TRIM28 cooperate to SUMOylate NPM1, a nucleolar protein that regulates centrosome duplication and genomic stability. ARF-mediated SUMOylation of NPM1 was attenuated by TRIM28 depletion and enhanced by TRIM28 overexpression. Coexpression of ARF and TRIM28 promoted NPM1 centrosomal localization by enhancing its SUMOylation and suppressed centrosome amplification; these functions required the E3 ligase activity of TRIM28. Conversely, depletion of ARF or TRIM28 increased centrosome amplification. ARF also counteracted oncogenic Ras-induced centrosome amplification. Centrosome amplification is often induced by oncogenic insults, leading to genomic instability. However, the mechanisms employed by tumor suppressors to protect the genome are poorly understood. Our findings suggest a novel role for ARF in maintaining genome integrity by facilitating TRIM28-mediated SUMOylation of NPM1, thus preventing centrosome amplification. PMID:26055329

  2. MeCP2 SUMOylation rescues Mecp2-mutant-induced behavioural deficits in a mouse model of Rett syndrome.

    PubMed

    Tai, Derek J C; Liu, Yen C; Hsu, Wei L; Ma, Yun L; Cheng, Sin J; Liu, Shau Y; Lee, Eminy H Y

    2016-01-01

    The methyl-CpG-binding protein 2 (MeCP2) gene, MECP2, is an X-linked gene encoding the MeCP2 protein, and mutations of MECP2 cause Rett syndrome (RTT). However, the molecular mechanism of MECP2-mutation-caused RTT is less known. Here we find that MeCP2 could be SUMO-modified by the E3 ligase PIAS1 at Lys-412. MeCP2 phosphorylation (at Ser-421 and Thr-308) facilitates MeCP2 SUMOylation, and MeCP2 SUMOylation is induced by NMDA, IGF-1 and CRF in the rat brain. MeCP2 SUMOylation releases CREB from the repressor complex and enhances Bdnf mRNA expression. Several MECP2 mutations identified in RTT patients show decreased MeCP2 SUMOylation. Re-expression of wild-type MeCP2 or SUMO-modified MeCP2 in Mecp2-null neurons rescues the deficits of social interaction, fear memory and LTP observed in Mecp2 conditional knockout (cKO) mice. These results together reveal an important role of MeCP2 SUMOylation in social interaction, memory and synaptic plasticity, and that abnormal MeCP2 SUMOylation is implicated in RTT. PMID:26842955

  3. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    ERIC Educational Resources Information Center

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  4. Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors.

    PubMed

    Lakkaraju, Sirish Kaushik; Yu, Wenbo; Raman, E Prabhu; Hershfeld, Alena V; Fang, Lei; Deshpande, Deepak A; MacKerell, Alexander D

    2015-03-23

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-γ (PPARγ) NRs and the metabotropic glutamate (mGluR) and β2-adreneric (β2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the β2AR LBP were used in virtual screening to identify high efficacy agonists targeting β2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents. PMID:25692383

  5. Mapping Functional Group Free Energy Patterns at Protein Occluded Sites: Nuclear Receptors and G-Protein Coupled Receptors

    PubMed Central

    2015-01-01

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-γ (PPARγ) NRs and the metabotropic glutamate (mGluR) and β2-adreneric (β2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the β2AR LBP were used in virtual screening to identify high efficacy agonists targeting β2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents. PMID:25692383

  6. Binding studies using Pichia pastoris expressed human aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator proteins.

    PubMed

    Zheng, Yujuan; Xie, Jinghang; Huang, Xin; Dong, Jin; Park, Miki S; Chan, William K

    2016-06-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor which activates gene transcription by binding to its corresponding enhancer as the heterodimer, which is consisted of AHR and the aryl hydrocarbon receptor nuclear translocator (ARNT). Human AHR can be rather difficult to study, when compared among the AHR of other species, since it is relatively unstable and less sensitive to some ligands in vitro. Overexpression of human AHR has been limited to the baculovirus expression, which is costly and tedious due to the need of repetitive baculovirus production. Here we explored whether we could generate abundant amounts of human AHR and ARNT in a better overexpression system for functional study. We observed that human AHR and ARNT can be expressed in Pichia pastoris with yields that are comparable to the baculovirus system only if their cDNAs are optimized for Pichia expression. Fusion with a c-myc tag at their C-termini seems to increase the expression yield. These Pichia expressed proteins can effectively heterodimerize and form the ternary AHR/ARNT/enhancer complex in the presence of β-naphthoflavone or kynurenine. Limited proteolysis using thermolysin can be used to study the heterodimerization of these human AHR and ARNT proteins. PMID:26923060

  7. The cephalochordate amphioxus: a key to reveal the secrets of nuclear receptor evolution.

    PubMed

    Lecroisey, Claire; Laudet, Vincent; Schubert, Michael

    2012-03-01

    The members of the nuclear receptor (NR) superfamily are transcription factors characterized by a particular mode of function, which is related to the conserved nature of their molecular structure. NR proteins usually contain a DNA-binding domain (DBD) and a ligand-binding domain (LBD) allowing them to directly bind to DNA and regulate target gene expression in a ligand-dependent manner. In this review, we are summarizing our current understanding of the NR diversity in the cephalochordate amphioxus, which represents the best available proxy for the last common chordate ancestor both in terms of morphology and genome organization. The amphioxus genome encodes 33 NRs, which is more than expected based on its phylogenetic position, with at least one representative of all major NR groups, excepting NR1E and NR1I/J. This elevated number of receptor genes shows that the amphioxus NR complement has experienced some secondary modifications that are most evident in the NR1H group, which is characterized by three members in humans and ten representatives in amphioxus. By highlighting specific examples of the NR repertoire, including the receptors for retinoic acid, thyroid hormone, estrogen and steroids as well as the bile acid and oxysterol receptors of the NR1H group, we are illustrating the functional diversity of these receptors in amphioxus. We conclude that the amphioxus NRs are valuable models for assessing the evolutionary interplay between receptors and their ligands and that more integrative and comparative approaches are required for assessment of the evolutionary plasticity of receptor-ligand interactions revealed by the studies of amphioxus NRs. PMID:22441553

  8. Nuclear localization of platelet-activating factor receptor controls retinal neovascularization

    PubMed Central

    K Bhosle, Vikrant; Rivera, José Carlos; Zhou, Tianwei (Ellen); Omri, Samy; Sanchez, Melanie; Hamel, David; Zhu, Tang; Rouget, Raphael; Rabea, Areej Al; Hou, Xin; Lahaie, Isabelle; Ribeiro-da-Silva, Alfredo; Chemtob, Sylvain

    2016-01-01

    Platelet-activating factor (PAF) is a pleiotropic phospholipid with proinflammatory, procoagulant and angiogenic actions on the vasculature. We and others have reported the presence of PAF receptor (Ptafr) at intracellular sites such as the nucleus. However, mechanisms of localization and physiologic functions of intracellular Ptafr remain poorly understood. We hereby identify the importance of C-terminal motif of the receptor and uncover novel roles of Rab11a GTPase and importin-5 in nuclear translocation of Ptafr in primary human retinal microvascular endothelial cells. Nuclear localization of Ptafr is independent of exogenous PAF stimulation as well as intracellular PAF biosynthesis. Moreover, nuclear Ptafr is responsible for the upregulation of unique set of growth factors, including vascular endothelial growth factor, in vitro and ex vivo. We further corroborate the intracrine PAF signaling, resulting in angiogenesis in vivo, using Ptafr antagonists with distinct plasma membrane permeability. Collectively, our findings show that nuclear Ptafr translocates in an agonist-independent manner, and distinctive functions of Ptafr based on its cellular localization point to another dimension needed for pharmacologic selectivity of drugs. PMID:27462464

  9. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation.

    PubMed

    Faria, Jerusa A Q A; de Andrade, Carolina; Goes, Alfredo M; Rodrigues, Michele A; Gomes, Dawidson A

    2016-09-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. PMID:27462018

  10. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress

    NASA Astrophysics Data System (ADS)

    Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.

    2011-12-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.

  11. Membrane and nuclear estrogen receptor α collaborate to suppress adipogenesis but not triglyceride content.

    PubMed

    Pedram, Ali; Razandi, Mahnaz; Blumberg, Bruce; Levin, Ellis Robert

    2016-01-01

    Estrogen and estrogen receptor (ER)-α suppress visceral fat development through actions in several organs via unclear mechanisms that we sought to identify. Using mice that express only nuclear ER-α [nuclear-only ER-α (NOER) mice] or plasma membrane ER-α [membrane-only ER-α (MOER) mice], we found that 10-wk-old mice that lacked either receptor pool showed extensive abdominal visceral fat deposition and weight gain compared with wild-type (WT) mice. Differentiation of cultured bone marrow stem cells (BMSCs) into the adipocyte lineage was suppressed by 17-β-estradiol (E2) in WT female mice but not in NOER or MOER mice. This finding correlated with E2 inhibition of prominent differentiation genes in WT BMSCs. In contrast, triglyceride content in differentiated BMSCs or 3T3-L1 cells was suppressed as a result of membrane ER-α signaling through several kinases to inhibit carbohydrate response element-binding protein-α and -β. We concluded that extranuclear and nuclear ER-α collaborate to suppress adipocyte development, but inhibition of lipid synthesis in mature cells does not involve nuclear ER-α. PMID:26373802

  12. Model Inspired by Nuclear Pore Complex Suggests Possible Roles for Nuclear Transport Receptors in Determining Its Structure

    PubMed Central

    Osmanović, Dino; Ford, Ian J.; Hoogenboom, Bart W.

    2013-01-01

    Nuclear transport receptors (NTRs) mediate nucleocytoplasmic transport via their affinity for unstructured proteins (polymers) in the nuclear pore complex (NPC). Here, we have modeled the effect of NTRs on polymeric structure in the nanopore confinement of the NPC central conduit. The model explicitly takes into account inter- and intramolecular interactions, as well as the finite size of the NTRs (∼20% of the NPC channel diameter). It reproduces various proposed scenarios for the channel structure, ranging from a central polymer condensate (selective phase) to brushlike polymer arrangements localized at the channel wall (virtual gate, reduction of dimensionality), with the transport receptors lining the polymer surface. In addition, it predicts a new structure in which NTRs become an integral part of the transport barrier by forming a cross-linked network with the unstructured proteins stretching across the pore. The model provides specific and distinctive predictions for the equilibrium spatial distributions of NTRs for these different scenarios that can be experimentally verified by, e.g., superresolution fluorescence microscopy. Moreover, it suggests mechanisms by which globular macromolecules (colloidal particles) can cause polymer-coated nanopores to switch between open and closed configurations, a possible explanation of the biological function of the NPC, and suggests potential technological applications for filtration and single-molecule sensing. PMID:24359750

  13. The nuclear translocation of endostatin is mediated by its receptor nucleolin in endothelial cells.

    PubMed

    Song, Nan; Ding, Yanping; Zhuo, Wei; He, Ting; Fu, Zhiguang; Chen, Yang; Song, Xiaomin; Fu, Yan; Luo, Yongzhang

    2012-12-01

    Endostatin, the C-terminal fragment of collagen XVIII, is a potent anti-angiogenic factor that significantly modulates the gene expression pattern in endothelial cells. Upon cell surface binding, endostatin can not only function extracellularly, but also translocate to the nucleus within minutes. However, the mechanism by which this occurs is partially understood. Here we systematically investigated the nuclear translocation mechanism of endostatin. By chemical inhibition and RNA interference, we firstly observed that clathrin-mediated endocytosis, but not caveolae-dependent endocytosis or macropinocytosis, is essential for the nuclear translocation of endostatin. We then indentified that nucleolin and integrin α5β1, two widely accepted endostatin receptors, mediate this clathrin-dependent uptake process, which also involves urokinase plasminogen activator receptor (uPAR). Either mutagenesis study, fluorescence resonance energy transfer assay, or fluorescence cell imaging demonstrates that nucleolin and integrin α5β1 interact with uPAR simultaneously upon endostatin stimulation. Blockade of uPAR decreases not only the interaction between nucleolin and integrin α5β1, but also the uptake process, suggesting that the nucleolin/uPAR/integrin α5β1 complex facilitates the internalization of endostatin. After endocytosis, nucleolin further regulates the nuclear transport of endostatin. RNA interference and mutational analysis revealed that the nuclear translocation of endostatin involves the association of nucleolin with importin α1β1 via the nuclear localization sequence. Taken together, this study reveals the pathway by which endostatin translocates to the nucleus and the importance of nucleolin in this process, providing a new perspective for the functional investigation of the nuclear-translocated endostatin in endothelial cells. PMID:22711211

  14. Cytoplasmic and nuclear estradiol receptors in the hypothalamus and cerebral cortex of female rats during the neonatal period

    SciTech Connect

    Shishkina, I.V.; Babichev, V.N.; Ozol', L.Y.

    1986-07-01

    The content of estradifol receptors (E/sub 2/) in the cytoplasmic and nuclear fractions of the hypothalamus and cerebral cortex of female rats was investigated in the course of neonatal development. In the cytosol of the hypothalamus and cortex, the E/sub 2/-binding proteins, which possess high capacity, include both the true estradiol receptors and proteins identical with ..cap alpha..-fetoprotein. True receptors E/sub 2/ were detected in the nuclear fraction; in the hypothalamus their concentration was virtually unchanged, while in the cortex it decreased from the first to fifth days of postnatal development.

  15. Nuclear Receptor DHR4 Controls the Timing of Steroid Hormone Pulses During Drosophila Development

    PubMed Central

    Ou, Qiuxiang; Magico, Adam; King-Jones, Kirst

    2011-01-01

    In insects, precisely timed periodic pulses of the molting hormone ecdysone control major developmental transitions such as molts and metamorphosis. The synthesis and release of ecdysone, a steroid hormone, is itself controlled by PTTH (prothoracicotopic hormone). PTTH transcript levels oscillate with an 8 h rhythm, but its significance regarding the timing of ecdysone pulses is unclear. PTTH acts on its target tissue, the prothoracic gland (PG), by activating the Ras/Raf/ERK pathway through its receptor Torso, however direct targets of this pathway have yet to be identified. Here, we demonstrate that Drosophila Hormone Receptor 4 (DHR4), a nuclear receptor, is a key target of the PTTH pathway and establishes temporal boundaries by terminating ecdysone pulses. Specifically, we show that DHR4 oscillates between the nucleus and cytoplasm of PG cells, and that the protein is absent from PG nuclei at developmental times when low titer ecdysone pulses occur. This oscillatory behavior is blocked when PTTH or torso function is abolished, resulting in nuclear accumulation of DHR4, while hyperactivating the PTTH pathway results in cytoplasmic retention of the protein. Increasing DHR4 levels in the PG can delay or arrest development. In contrast, reducing DHR4 function in the PG triggers accelerated development, which is caused by precocious ecdysone signaling due to a failure to repress ecdysone pulses. Finally, we show that DHR4 negatively regulates the expression of a hitherto uncharacterized cytochrome P450 gene, Cyp6t3. Disruption of Cyp6t3 function causes low ecdysteroid titers and results in heterochronic phenotypes and molting defects, indicating a novel role in the ecdysone biosynthesis pathway. We propose a model whereby nuclear DHR4 controls the duration of ecdysone pulses by negatively regulating ecdysone biosynthesis through repression of Cyp6t3, and that this repressive function is temporarily overturned via the PTTH pathway by removing DHR4 from the nuclear

  16. Pc2-mediated SUMOylation of WWOX is essential for its suppression of DU145 prostate tumorigenesis.

    PubMed

    Choi, Hye-Jin; Park, Jung-Hwan; Park, Jong-Hwan; Lee, Kyung Bok; Oh, Sang-Muk

    2015-12-21

    Tumor suppressor WW domain-containing oxidoreductase (WWOX) is depleted in various cancer types. Here we report that WWOX is modified by small ubiquitin-like modifier (SUMO) proteins and represses DU145 prostate cancer tumorigenesis in a SUMOylation-dependent manner. Ectopic WWOX was shown to associate with SUMO2/3 or E2 Ubc9. Furthermore, we revealed that WWOX SUMOylation was promoted by E3 ligase polycomb2 (Pc2), and that WWOX associated with Pc2. Meanwhile, anisomycin-induced activator protein-1 (AP-1) activity was markedly diminished by co-expression of SUMO and WWOX. Also, WWOX wild type (WT), but not WWOX SUMO mutant (K176A) markedly reduced both DU145 prostate cancer cell proliferation and xenograft tumorigenesis. Collectively, our findings demonstrate that SUMO modification of WWOX is essential for its suppressive activity for DU145 prostate cancer tumorigenesis. PMID:26592150

  17. Nutritional conditions regulate transcriptional activity of SF-1 by controlling sumoylation and ubiquitination

    PubMed Central

    Lee, Jiwon; Yang, Dong Joo; Lee, Syann; Hammer, Gary D.; Kim, Ki Woo; Elmquist, Joel K.

    2016-01-01

    Steroidogenic factor 1 (SF-1) is a transcription factor expressed in the ventral medial nucleus of the hypothalamus that regulates energy homeostasis. However, the molecular mechanisms of SF-1 in the control of energy balance are largely unknown. Here, we show that nutritional conditions, such as the presence or absence of serum, affect SF-1 action. Serum starvation significantly decreased hypothalamic SF-1 levels by promoting ubiquitin-dependent degradation, and sumoylation was required for this process. SF-1 transcriptional activity was also differentially regulated by nutritional status. Under normal conditions, the transcriptional activity of hypothalamic SF-1 was activated by SUMO, but this was attenuated during starvation. Taken together, these results indicate that sumoylation and ubiquitination play crucial roles in the regulation of SF-1 function and that these effects are dependent on nutritional conditions, further supporting the importance of SF-1 in the control of energy homeostasis. PMID:26750456

  18. Detection and Analysis of SUMOylation Substrates In Vitro and In Vivo.

    PubMed

    Cedeño, Cesyen; La Monaca, Esther; Esposito, Mara; Gutierrez, Gustavo J

    2016-01-01

    SUMOylation is a widely used protein posttranslational mechanism capable of regulating substrates localization, stability, and/or activity. Identification and characterization of bona fide SUMO substrates is a laborious task but its discovery can shed light to exquisite and crucial regulatory signaling events occurring within the cell. Experiments performed in the SUMOylation field often demand a good understanding of the putative substrate's function and necessitate a solid knowledge regarding both in vitro and in vivo approaches. This contribution offers a simplified view into some of the most common experiments performed in biochemical and cell biological research of the SUMO pathway in mammalian systems. It also summarizes and updates well established protocols and tricks in order to improve the likelihood to obtain reliable and reproducible results. PMID:27613042

  19. Inverse agonist of nuclear receptor ERRγ mediates antidiabetic effect through inhibition of hepatic gluconeogenesis.

    PubMed

    Kim, Don-Kyu; Gang, Gil-Tae; Ryu, Dongryeol; Koh, Minseob; Kim, Yo-Na; Kim, Su Sung; Park, Jinyoung; Kim, Yong-Hoon; Sim, Taebo; Lee, In-Kyu; Choi, Cheol Soo; Park, Seung Bum; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2013-09-01

    Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder with diverse pathological manifestations and is often associated with abnormal regulation of hepatic glucose production. Many nuclear receptors known to control the hepatic gluconeogenic program are potential targets for the treatment of T2DM and its complications. Nevertheless, the therapeutic potential of the estrogen-related receptor γ (ERRγ) in T2DM remains unknown. In this study, we show that the nuclear receptor ERRγ is a major contributor to hyperglycemia under diabetic conditions by controlling hepatic glucose production. Hepatic ERRγ expression induced by fasting and diabetic conditions resulted in elevated levels of gluconeogenic gene expression and blood glucose in wild-type mice. Conversely, ablation of hepatic ERRγ gene expression reduced the expression of gluconeogenic genes and normalized blood glucose levels in mouse models of T2DM: db/db and diet-induced obesity (DIO) mice. In addition, a hyperinsulinemic-euglycemic clamp study and long-term studies of the antidiabetic effects of GSK5182, the ERRγ-specific inverse agonist, in db/db and DIO mice demonstrated that GSK5182 normalizes hyperglycemia mainly through inhibition of hepatic glucose production. Our findings suggest that the ability of GSK5182 to control hepatic glucose production can be used as a novel therapeutic approach for the treatment of T2DM. PMID:23775767

  20. Abnormal XPD-induced nuclear receptor transactivation in DNA repair disorders: trichothiodystrophy and xeroderma pigmentosum.

    PubMed

    Zhou, Xiaolong; Khan, Sikandar G; Tamura, Deborah; Ueda, Takahiro; Boyle, Jennifer; Compe, Emmanuel; Egly, Jean-Marc; DiGiovanna, John J; Kraemer, Kenneth H

    2013-08-01

    XPD (ERCC2) is a DNA helicase involved in nucleotide excision repair and in transcription as a structural bridge tying the transcription factor IIH (TFIIH) core with the cdk-activating kinase complex, which phosphorylates nuclear receptors. Mutations in XPD are associated with several different phenotypes, including trichothiodystrophy (TTD), with sulfur-deficient brittle hair, bone defects, and developmental abnormalities without skin cancer, xeroderma pigmentosum (XP), with pigmentary abnormalities and increased skin cancer, or XP/TTD with combined features, including skin cancer. We describe the varied clinical features and mutations in nine patients examined at the National Institutes of Health who were compound heterozygotes for XPD mutations but had different clinical phenotypes: four TTD, three XP, and two combined XP/TTD. We studied TFIIH-dependent transactivation by nuclear receptor for vitamin D (VDR) and thyroid in cells from these patients. The vitamin D stimulation ratio of CYP24 and osteopontin was associated with specific pairs of mutations (reduced in 5, elevated in 1) but not correlated with distinct clinical phenotypes. Thyroid receptor stimulation ratio for KLF9 was not significantly different from normal. XPD mutations frequently were associated with abnormal VDR stimulation in compound heterozygote patients with TTD, XP, or XP/TTD. PMID:23232694

  1. Inverse Agonist of Nuclear Receptor ERRγ Mediates Antidiabetic Effect Through Inhibition of Hepatic Gluconeogenesis

    PubMed Central

    Kim, Don-Kyu; Gang, Gil-Tae; Ryu, Dongryeol; Koh, Minseob; Kim, Yo-Na; Kim, Su Sung; Park, Jinyoung; Kim, Yong-Hoon; Sim, Taebo; Lee, In-Kyu; Choi, Cheol Soo; Park, Seung Bum; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2013-01-01

    Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder with diverse pathological manifestations and is often associated with abnormal regulation of hepatic glucose production. Many nuclear receptors known to control the hepatic gluconeogenic program are potential targets for the treatment of T2DM and its complications. Nevertheless, the therapeutic potential of the estrogen-related receptor γ (ERRγ) in T2DM remains unknown. In this study, we show that the nuclear receptor ERRγ is a major contributor to hyperglycemia under diabetic conditions by controlling hepatic glucose production. Hepatic ERRγ expression induced by fasting and diabetic conditions resulted in elevated levels of gluconeogenic gene expression and blood glucose in wild-type mice. Conversely, ablation of hepatic ERRγ gene expression reduced the expression of gluconeogenic genes and normalized blood glucose levels in mouse models of T2DM: db/db and diet-induced obesity (DIO) mice. In addition, a hyperinsulinemic-euglycemic clamp study and long-term studies of the antidiabetic effects of GSK5182, the ERRγ-specific inverse agonist, in db/db and DIO mice demonstrated that GSK5182 normalizes hyperglycemia mainly through inhibition of hepatic glucose production. Our findings suggest that the ability of GSK5182 to control hepatic glucose production can be used as a novel therapeutic approach for the treatment of T2DM. PMID:23775767

  2. Multiple functions and essential roles of nuclear receptor coactivators of bHLH-PAS family.

    PubMed

    Pecenova, L; Farkas, Robert

    2016-07-01

    Classical non-peptide hormones, such as steroids, retinoids, thyroid hormones, vitamin D3 and their derivatives including prostaglandins, benzoates, oxysterols, and bile acids, are collectively designated as small lipophilic ligands, acting via binding to the nuclear receptors (NRs). The NRs form a large superfamily of transcription factors that participate virtually in every key biological process. They control various aspects of animal development, fertility, gametogenesis, and numerous metabolic pathways, and can be misregulated in many types of cancers. Their enormous functional plasticity, as transcription factors, relates in part to NR-mediated interactions with plethora of coregulatory proteins upon ligand binding to their ligand binding domains (LBD), or following covalent modification. Here, we review some general views of a specific group of NR coregulators, so-called nuclear receptor coactivators (NRCs) or steroid receptor coactivators (SRCs) and highlight some of their unique functions/roles, which are less extensively mentioned and discussed in other reviews. We also try to pinpoint few neglected moments in the cooperative action of SRCs, which may also indicate their variable roles in the hormone-independent signaling pathways. PMID:27560800

  3. Reporter Cell Lines for the Characterization of the Interactions between Human Nuclear Receptors and Endocrine Disruptors.

    PubMed

    Grimaldi, Marina; Boulahtouf, Abdelhay; Delfosse, Vanessa; Thouennon, Erwan; Bourguet, William; Balaguer, Patrick

    2015-01-01

    Endocrine-disrupting chemicals (EDCs) are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs), which are primary targets of numerous environmental contaminants. The main NRs targeted by environmental contaminants are the estrogen (ER α, β) and the androgen (AR) receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus, and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR) is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation, and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation, and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ), the thyroid hormone (TRα, β), the retinoid X receptors (RXRα, β, γ), and peroxisome proliferator-activated (PPAR α, γ) receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife. In this review, we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants, and cosmetics. PMID:26029163

  4. Reporter Cell Lines for the Characterization of the Interactions between Human Nuclear Receptors and Endocrine Disruptors

    PubMed Central

    Grimaldi, Marina; Boulahtouf, Abdelhay; Delfosse, Vanessa; Thouennon, Erwan; Bourguet, William; Balaguer, Patrick

    2015-01-01

    Endocrine-disrupting chemicals (EDCs) are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs), which are primary targets of numerous environmental contaminants. The main NRs targeted by environmental contaminants are the estrogen (ER α, β) and the androgen (AR) receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus, and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR) is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation, and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation, and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ), the thyroid hormone (TRα, β), the retinoid X receptors (RXRα, β, γ), and peroxisome proliferator-activated (PPAR α, γ) receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife. In this review, we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants, and cosmetics. PMID:26029163

  5. Frienemies of infection: A chronic case of host nuclear receptors acting as cohorts or combatants of infection.

    PubMed

    Mahajan, Sahil; Saini, Ankita; Kalra, Rashi; Gupta, Pawan

    2016-08-01

    Macrophages and dendritic cells provide critical effector functions to efficiently resist and promptly eliminate infection. Pattern recognition receptors signaling operative in these cell types is imperative for their innate properties. However, it is now emerging that besides these conventional signaling pathways, nuclear receptors coupled gene regulation and transrepression pathways assemble immune regulatory networks. A couple of these networks associated with members of nuclear receptor superfamily decide heterogeneity in macrophages and dendritic cells population and thereby play decisive role in determining protective immunity against bacteria, viruses, fungi, protozoa and helminths. Pathogens also direct shift in the expression of nuclear receptors and their target genes and this is proclaimed to be a sui generis mechanism whereby microbes disconnect the genomic component from the peripheral immune response. Many endogenous and synthetic nuclear receptor ligands have been tested in various in vitro and in vivo infection models to study their effect on pathogen burden. Here, we discuss current advances in our understanding of the composite interactions between nuclear receptor and pathogens and their implications on the causatum infectious diseases. PMID:25358058

  6. Enhanced SUMOylation of proteins containing a SUMO-interacting motif by SUMO-Ubc9 fusion

    SciTech Connect

    Kim, Eui Tae; Kim, Kyeong Kyu; Matunis, Mike J.; Ahn, Jin-Hyun

    2009-10-09

    Identifying new targets for SUMO and understanding the function of protein SUMOylation are largely limited by low level of SUMOylation. It was found recently that Ubc9, the SUMO E2 conjugating enzyme, is covalently modified by SUMO at a lysine 14 in the N-terminal alpha helix, and that SUMO-modified Ubc9 has enhanced conjugation activity for certain target proteins containing a SUMO-interacting motif (SIM). Here, we show that, compared to intact Ubc9, the SUMO-Ubc9 fusion protein has higher conjugating activity for SIM-containing targets such as Sp100 and human cytomegalovirus IE2. Assays using an IE2 SIM mutant revealed the requirement of SIM for the enhanced IE2 SUMOylation by SUMO-Ubc9. In pull-down assays with cell extracts, the SUMO-Ubc9 fusion protein bound to more diverse cellular proteins and interacted with some SIM-containing proteins with higher affinities than Ubc9. Therefore, the devised SUMO-Ubc9 fusion will be useful for identifying SIM-containing SUMO targets and producing SUMO-modified proteins.

  7. SUMOylation can regulate the activity of ETS-like transcription factor 4.

    PubMed

    Kaikkonen, Sanna; Makkonen, Harri; Rytinki, Miia; Palvimo, Jorma J

    2010-08-01

    ETS-like transcription factor 4 (ELK4) (a.k.a. serum response factor accessory protein 1) belongs to the ternary complex factor (TCF) subfamily of E twenty-six (ETS) domain transcription factors. Compared to the other TCF subfamily members, ELK1 and ELK3 (NET), there is limited information of the mechanisms regulating the ELK4 activity. Here, we show that the ELK4 can be covalently modified (SUMOylated) by small ubiquitin-related modifier (SUMO) 1 protein, an important regulator of signaling and transcription. SUMOylation of ELK4 was reversed by SUMO-specific proteases (SENP) 1 and 2 and stimulated by SUMO E3 ligase PIAS3. Conserved lysine residue 167 that is located in the NET inhibitory domain of ELK4 was identified as the main site of SUMO-1 conjugation. Interestingly, mutation of the K167 disrupting the SUMOylation markedly enhanced the transcriptional activity of the ELK4, but weakened its repressive function on c-fos promoter. In conclusion, our results suggest that covalent modification by SUMO-1 can regulate the activity of ELK4, contributing to the transcriptional repression by the ELK4. PMID:20637912

  8. Human Oncogenic Herpesvirus and Post-translational Modifications - Phosphorylation and SUMOylation.

    PubMed

    Chang, Pei-Ching; Campbell, Mel; Robertson, Erle S

    2016-01-01

    Pathogens, especially viruses, evolve abilities to utilize cellular machineries to facilitate their survival and propagation. Post-translational modifications (PTMs), especially phosphorylation and SUMOylation, that reversibly modulate the function and interactions of target proteins are among the most important features in cell signaling pathways. PTM-dependent events also serve as one of the favorite targets for viruses. Among the seven unambiguous human oncogenic viruses, hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), human papillomavirus (HPV), Human T lymphotrophic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV), two are herpesviruses. The life cycle of herpesviruses consists of latent and lytic phases and the rapid switch between these states includes global remodeling of the viral genome from heterochromatin-to-euchromatin. The balance between lytic replication and latency is essential for herpesvirus to maintain a persistent infection through a combination of viral propagation and evasion of the host immune response, which consequently may contribute to tumorigenesis. It is no surprise that the swift reversibility of PTMs, especially SUMOylation, a modification that epigenetically regulates chromatin structure, is a major hijack target of the host for oncogenic herpesviruses. In this brief review, we summarize the varied ways in which herpesviruses engage the host immune components through PTMs, focusing on phosphorylation and SUMOylation. PMID:27379086

  9. Human Oncogenic Herpesvirus and Post-translational Modifications – Phosphorylation and SUMOylation

    PubMed Central

    Chang, Pei-Ching; Campbell, Mel; Robertson, Erle S.

    2016-01-01

    Pathogens, especially viruses, evolve abilities to utilize cellular machineries to facilitate their survival and propagation. Post-translational modifications (PTMs), especially phosphorylation and SUMOylation, that reversibly modulate the function and interactions of target proteins are among the most important features in cell signaling pathways. PTM-dependent events also serve as one of the favorite targets for viruses. Among the seven unambiguous human oncogenic viruses, hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), human papillomavirus (HPV), Human T lymphotrophic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV), two are herpesviruses. The life cycle of herpesviruses consists of latent and lytic phases and the rapid switch between these states includes global remodeling of the viral genome from heterochromatin-to-euchromatin. The balance between lytic replication and latency is essential for herpesvirus to maintain a persistent infection through a combination of viral propagation and evasion of the host immune response, which consequently may contribute to tumorigenesis. It is no surprise that the swift reversibility of PTMs, especially SUMOylation, a modification that epigenetically regulates chromatin structure, is a major hijack target of the host for oncogenic herpesviruses. In this brief review, we summarize the varied ways in which herpesviruses engage the host immune components through PTMs, focusing on phosphorylation and SUMOylation. PMID:27379086

  10. Small-molecule activation of SERCA2a SUMOylation for the treatment of heart failure

    PubMed Central

    Kho, Changwon; Lee, Ahyoung; Jeong, Dongtak; Oh, Jae Gyun; Gorski, Przemek A.; Fish, Kenneth; Sanchez, Roberto; DeVita, Robert J.; Christensen, Geir; Dahl, Russell; Hajjar, Roger J.

    2015-01-01

    Decreased activity and expression of the cardiac sarcoplasmic reticulum calcium ATPase (SERCA2a), a critical pump regulating calcium cycling in cardiomyocyte, are hallmarks of heart failure. We have previously described a role for the small ubiquitin-like modifier type 1 (SUMO-1) as a regulator of SERCA2a and have shown that gene transfer of SUMO-1 in rodents and large animal models of heart failure restores cardiac function. Here, we identify and characterize a small molecule, N106, which increases SUMOylation of SERCA2a. This compound directly activates the SUMO-activating enzyme, E1 ligase, and triggers intrinsic SUMOylation of SERCA2a. We identify a pocket on SUMO E1 likely to be responsible for N106's effect. N106 treatment increases contractile properties of cultured rat cardiomyocytes and significantly improves ventricular function in mice with heart failure. This first-in-class small-molecule activator targeting SERCA2a SUMOylation may serve as a potential therapeutic strategy for treatment of heart failure. PMID:26068603

  11. Sumoylation of MDC1 is important for proper DNA damage response.

    PubMed

    Luo, Kuntian; Zhang, Haoxing; Wang, Liewei; Yuan, Jian; Lou, Zhenkun

    2012-06-29

    In response to DNA damage, many DNA damage factors, such as MDC1 and 53BP1, redistribute to sites of DNA damage. The mechanism governing the turnover of these factors at DNA damage sites, however, remains enigmatic. Here, we show that MDC1 is sumoylated following DNA damage, and the sumoylation of MDC1 at Lys1840 is required for MDC1 degradation and removal of MDC1 and 53BP1 from sites of DNA damage. Sumoylated MDC1 is recognized and ubiquitinated by the SUMO-targeted E3 ubiquitin ligase RNF4. Mutation of the MDC1 Lys 1840 (K1840R) results in impaired CtIP, replication protein A, and Rad51 accumulation at sites of DNA damage and defective homologous recombination (HR). The HR defect caused by MDC1K1840R mutation could be rescued by 53BP1 downregulation. These results reveal the intricate dynamics governing the assembly and disassembly of DNA damage factors at sites of DNA damage for prompt response to DNA damage. PMID:22635276

  12. SUMOylation of HNF4α regulates protein stability and hepatocyte function.

    PubMed

    Zhou, Wenli; Hannoun, Zara; Jaffray, Ellis; Medine, Claire N; Black, James R; Greenhough, Sebastian; Zhu, Liang; Ross, James A; Forbes, Stuart; Wilmut, Ian; Iredale, John P; Hay, Ronald T; Hay, David C

    2012-08-01

    The coordination of signalling pathways within the cell is vital for normal human development and post-natal tissue homeostasis. Gene expression and function is therefore tightly controlled at a number of levels. We investigated the role that post-translational modifications play during human hepatocyte differentiation. In particular, we examined the role of the small ubiquitin-like modifier (SUMO) proteins in this process. We used a human embryonic stem cell (hESC)-based model of hepatocyte differentiation to follow changes in protein SUMOylation. Moreover, to confirm the results derived from our cell-based system, we performed in vitro conjugation assays to characterise SUMO modification of a key liver-enriched transcription factor, HNF4α. Our analyses indicate that SUMOylation plays an important role during hepatocellular differentiation and this is mediated, in part, through regulation of the stability of HNF4α in a ubiquitin-dependent manner. Our study provides a better understanding of SUMOylation during human hepatocyte differentiation and maturation. Moreover, we believe the results will stimulate interest in the differentiation and phenotypic regulation of other somatic cell types. PMID:22505616

  13. Contribution of SUMO-interacting motifs and SUMOylation to the antiretroviral properties of TRIM5α

    PubMed Central

    Brandariz-Nuñez, Alberto; Roa, Amanda; Valle-Casuso, Jose Carlos; Biris, Nikolaos; Ivanov, Dmitri; Diaz-Griffero, Felipe

    2012-01-01

    Recent findings suggested that the SUMO-interacting motifs (SIMs) present in the human TRIM5α (TRIM5αhu) protein play an important role in the ability of TRIM5αhu to restrict N-MLV. Here we explored the role of SIMs in the ability of rhesus TRIM5α (TRIM5αrh) to restrict HIV-1, and found that TRIM5αrh SIM mutants IL376KK (SIM1mut) and VI405KK (SIM2mut) completely lost their ability to block HIV-1 infection. Interestingly, these mutants also lost the recently described property of TRIM5αrh to shuttle into the nucleus. Analysis of these variants revealed that they are unable to interact with the HIV-1 core, which might explain the reason that these variants are not active against HIV-1. Furthermore, NMR titration experiments to assay the binding between the PRYSPRY domain of TRIM5αrh and the small ubiquitin-like modifier 1(SUMO-1) revealed no interaction. In addition, we examined the role of SUMOylation in restriction, and find out that inhibition of SUMOylation by the adenoviral protein Gam1 did not altered the retroviral restriction ability of TRIM5α. Overall, our results do not support a role for SIMs or SUMOylation in the antiviral properties of TRIM5α. PMID:23084420

  14. A nuclear pathway for alpha 1-adrenergic receptor signaling in cardiac cells.

    PubMed Central

    Ardati, A; Nemer, M

    1993-01-01

    alpha 1-Adrenergic agonists and antagonists constitute an important class of therapeutic agents commonly used for the treatment of various cardiovascular diseases like hypertension, congestive heart failure and supraventricular tachycardia. At the heart level, activation of alpha 1-adrenergic receptors is associated with marked morphological and genetic changes. These include enhancement of contractility, myocardial growth (hypertrophy) and release of the heart major secretory product, atrial natriuretic factor (ANF). However, the signal transduction pathways which link extracellular activation of the receptors to cellular and genetic changes are not well understood. Using primary cardiocyte cultures from neonate rat hearts, an alpha 1-adrenergic regulatory sequence has been identified in the 5' flanking region of the ANF gene. This sequence, which is necessary and sufficient for transcriptional activation in response to the alpha 1-specific agonist phenylephrine, interacts with novel zinc-dependent proteins which are induced by alpha 1-adrenergic stimulation. Consistent with a conserved regulatory mechanism, the alpha 1 response element is highly conserved between rodent, bovine and human ANF genes, and is also present in the promoter region of other alpha 1-responsive cardiac genes. The identification of a nuclear pathway for alpha 1-receptor signaling will be useful for elucidating the intracellular effectors of alpha 1-adrenergic receptors. Images PMID:8262057

  15. The Concise Guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors.

    PubMed

    Alexander, Stephen Ph; Cidlowski, John A; Kelly, Eamonn; Marrion, Neil; Peters, John A; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Southan, Christopher; Davies, Jamie A

    2015-12-01

    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13352/full. Nuclear hormone receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates. PMID:26650443

  16. Structure of the intact PPAR-Υ-RXR-α nuclear receptor complex on DNA

    SciTech Connect

    Chandra, Vikas; Huang, Pengxiang; Hamuro, Yoshitomo; Raghuram, Srilatha; Wang, Yongjun; Burris, Thomas P; Rastinejad, Fraydoon

    2009-01-09

    Nuclear receptors are multi-domain transcription factors that bind to DNA elements from which they regulate gene expression. The peroxisome proliferator-activated receptors (PPARs) form heterodimers with the retinoid X receptor (RXR), and PPAR-{gamma} has been intensively studied as a drug target because of its link to insulin sensitization. Previous structural studies have focused on isolated DNA or ligand-binding segments, with no demonstration of how multiple domains cooperate to modulate receptor properties. Here we present structures of intact PPAR-{gamma} and RXR-{alpha} as a heterodimer bound to DNA, ligands and coactivator peptides. PPAR-{gamma} and RXR-{alpha} form a non-symmetric complex, allowing the ligand-binding domain (LBD) of PPAR-{gamma} to contact multiple domains in both proteins. Three interfaces link PPAR-{gamma} and RXR-{alpha}, including some that are DNA dependent. The PPAR-{gamma} LBD cooperates with both DNA-binding domains (DBDs) to enhance response-element binding. The A/B segments are highly dynamic, lacking folded substructures despite their gene-activation properties.

  17. The nuclear receptors pregnane X receptor and constitutive androstane receptor contribute to the impact of fipronil on hepatic gene expression linked to thyroid hormone metabolism.

    PubMed

    Roques, Béatrice B; Leghait, Julien; Lacroix, Marlène Z; Lasserre, Frédéric; Pineau, Thierry; Viguié, Catherine; Martin, Pascal G P

    2013-10-01

    Fipronil is described as a thyroid disruptor in rat. Based on the hypothesis that this results from a perturbation of hepatic thyroid hormone metabolism, our goal was to investigate the pathways involved in fipronil-induced liver gene expression regulations. First, we performed a microarray screening in the liver of rats treated with fipronil or vehicle. Fipronil treatment led to the upregulation of several genes involved in the metabolism of xenobiotics, including the cytochrome P450 Cyp2b1, Cyp2b2 and Cyp3a1, the carboxylesterases Ces2 and Ces6, the phase II enzymes Ugt1a1, Sult1b1 and Gsta2, and the membrane transporters Abcc2, Abcc3, Abcg5, Abcg8, Slco1a1 and Slco1a4. Based on a large overlap with the target genes of constitutive androstane receptor (CAR) and pregnane X receptor (PXR), we postulated that these two nuclear receptors are involved in mediating the effects of fipronil on liver gene expression in rodents. We controlled that liver gene expression changes induced by fipronil were generally reproduced in mice, and then studied the effects of fipronil in wild-type, CAR- and PXR-deficient mice. For most of the genes studied, the gene expression modulations were abolished in the liver of PXR-deficient mice and were reduced in the liver of CAR-deficient mice. However, CAR and PXR activation in mouse liver was not associated with a marked increase of thyroid hormone clearance, as observed in rat. Nevertheless, our data clearly indicate that PXR and CAR are key modulators of the hepatic gene expression profile following fipronil treatment which, in rats, may contribute to increase thyroid hormone clearance. PMID:23962444

  18. Interaction of NS2 with AIMP2 Facilitates the Switch from Ubiquitination to SUMOylation of M1 in Influenza A Virus-Infected Cells

    PubMed Central

    Gao, Shijuan; Wu, Jiaoxiang; Liu, Ran-Yi; Li, Jiandong; Song, Liping; Teng, Yan; Sheng, Chunjie; Liu, Dong; Yao, Chen; Chen, Huiming; Jiang, Wei

    2014-01-01

    ABSTRACT Influenza A viruses (IAVs) rely on host factors to support their life cycle, as viral proteins hijack or interact with cellular proteins to execute their functions. Identification and understanding of these factors would increase our knowledge of the molecular mechanisms manipulated by the viruses. In this study, we searched for novel binding partners of the influenza A virus NS2 protein, the nuclear export protein responsible for overcoming host range restriction, by a yeast two-hybrid screening assay and glutathione S-transferase-pulldown and coimmunoprecipitation assays and identified AIMP2, a potent tumor suppressor that usually functions to regulate protein stability, as one of the major NS2-binding candidates. We found that the presence of NS2 protected AIMP2 from ubiquitin-mediated degradation in NS2-transfected cells and AIMP2 functioned as a positive regulator of IAV replication. Interestingly, AIMP2 had no significant effect on NS2 but enhanced the stability of the matrix protein M1. Further, we provide evidence that AIMP2 recruitment switches the modification of M1 from ubiquitination to SUMOylation, which occurs on the same attachment site (K242) on M1 and thereby promotes M1-mediated viral ribonucleoprotein complex nuclear export to increase viral replication. Collectively, our results reveal a new mechanism of AIMP2 mediation of influenza virus replication. IMPORTANCE Although the ubiquitination of M1 during IAV infection has been observed, the precise modification site and the molecular consequences of this modification remain obscure. Here, we demonstrate for the first time that ubiquitin and SUMO compete for the same lysine (K242) on M1 and the interaction of NS2 with AIMP2 facilitates the switch of the M1 modification from ubiquitination to SUMOylation, thus increasing viral replication. PMID:25320310

  19. The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine

    PubMed Central

    Mueller, Matthias; Cima, Igor; Noti, Mario; Fuhrer, Andrea; Jakob, Sabine; Dubuquoy, Laurent; Schoonjans, Kristina; Brunner, Thomas

    2006-01-01

    The nuclear receptor liver receptor homologue-1 (LRH-1, NR5A2) is a crucial transcriptional regulator of many metabolic pathways. In addition, LRH-1 is expressed in intestinal crypt cells where it regulates the epithelial cell renewal and contributes to tumorigenesis through the induction of cell cycle proteins. We have recently identified the intestinal epithelium as an important extra-adrenal source of immunoregulatory glucocorticoids. We show here that LRH-1 promotes the expression of the steroidogenic enzymes and the synthesis of corticosterone in murine intestinal epithelial cells in vitro. Interestingly, LRH-1 is also essential for intestinal glucocorticoid synthesis in vivo, as LRH-1 haplo-insufficiency strongly reduces the intestinal expression of steroidogenic enzymes and glucocorticoid synthesis upon immunological stress. These results demonstrate for the first time a novel role for LRH-1 in the regulation of intestinal glucocorticoid synthesis and propose LRH-1 as an important regulator of intestinal tissue integrity and immune homeostasis. PMID:16923850

  20. Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75.

    PubMed

    Cáceres, Lucía; Necakov, Aleksandar S; Schwartz, Carol; Kimber, Sandra; Roberts, Ian J H; Krause, Henry M

    2011-07-15

    Nitric oxide gas acts as a short-range signaling molecule in a vast array of important physiological processes, many of which include major changes in gene expression. How these genomic responses are induced, however, is poorly understood. Here, using genetic and chemical manipulations, we show that nitric oxide is produced in the Drosophila prothoracic gland, where it acts via the nuclear receptor ecdysone-induced protein 75 (E75), reversing its ability to interfere with its heterodimer partner, Drosophila hormone receptor 3 (DHR3). Manipulation of these interactions leads to gross alterations in feeding behavior, fat deposition, and developmental timing. These neuroendocrine interactions and consequences appear to be conserved in vertebrates. PMID:21715559

  1. A polymorphism in the nuclear receptor coactivator 7 gene and breast cancer susceptibility.

    PubMed

    Süllner, Julia; Lattrich, Claus; Häring, Julia; Görse, Regina; Ortmann, Olaf; Treeck, Oliver

    2012-01-01

    The nuclear receptor coactivator 7 (NCoA7) gene codes for an estrogen receptor-associated protein that plays a significant role in the cellular response to estrogens. Given that NCoA7 is expressed in the mammary gland, alterations in this gene may affect breast cancer risk. In this study, we compared the genotype and allele frequencies of the missense single nucleotide polymorphism (SNP) rs1567, located in the coding region of the NCoA7 gene and resulting in an amino acid exchange from asparagine to glutamine, in 305 women with sporadic breast cancer and 346 women without any malignancy. Statistical analysis of the observed frequencies did not reveal a significant difference between the cancer and control groups, nor did a comparison between histological breast cancer subgroups. In conclusion, the results of our phenotype-genotype association study indicate that NCoA7 SNP rs1567 does not affect breast cancer susceptibility. PMID:22740868

  2. A polymorphism in the nuclear receptor coactivator 7 gene and breast cancer susceptibility

    PubMed Central

    SÜLLNER, JULIA; LATTRICH, CLAUS; HÄRING, JULIA; GÖRSE, REGINA; ORTMANN, OLAF; TREECK, OLIVER

    2012-01-01

    The nuclear receptor coactivator 7 (NCoA7) gene codes for an estrogen receptor-associated protein that plays a significant role in the cellular response to estrogens. Given that NCoA7 is expressed in the mammary gland, alterations in this gene may affect breast cancer risk. In this study, we compared the genotype and allele frequencies of the missense single nucleotide polymorphism (SNP) rs1567, located in the coding region of the NCoA7 gene and resulting in an amino acid exchange from asparagine to glutamine, in 305 women with sporadic breast cancer and 346 women without any malignancy. Statistical analysis of the observed frequencies did not reveal a significant difference between the cancer and control groups, nor did a comparison between histological breast cancer subgroups. In conclusion, the results of our phenotype-genotype association study indicate that NCoA7 SNP rs1567 does not affect breast cancer susceptibility. PMID:22740868

  3. The role of the orphan nuclear receptor COUP-TFII in tumorigenesis

    PubMed Central

    Xu, Mafei; Qin, Jun; Tsai, Sophia Y; Tsai, Ming-jer

    2015-01-01

    The chicken ovalbumin upstream promoter transcription factors (COUP-TFs), members of the nuclear receptor superfamily, consist of two highly homologous subtypes, COUP-TFI (EAR-3, NR2F1) and COUP-TFII (ARP-1, NR2F2). They are referred to as orphan receptors because the COUP-TF ligands have yet to be identified. Since the discovery of COUP-TFs in 1986, extensive studies have demonstrated their crucial functions in a variety of developmental processes, such as organogenesis, angiogenesis, and metabolic homeostasis. Recently, emerging evidence has highlighted that COUP-TFs, specifically COUP-TFII, play important roles in tumorigenesis. In this review, we will discuss the critical functions of COUP-TFII in the development of the tumor microenvironment, the progression of various cancers, and its underlying mechanisms. PMID:25283503

  4. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis

    PubMed Central

    Gomez-Ospina, Natalia; Potter, Carol J.; Xiao, Rui; Manickam, Kandamurugu; Kim, Mi-Sun; Kim, Kang Ho; Shneider, Benjamin L.; Picarsic, Jennifer L.; Jacobson, Theodora A.; Zhang, Jing; He, Weimin; Liu, Pengfei; Knisely, A. S.; Finegold, Milton J.; Muzny, Donna M.; Boerwinkle, Eric; Lupski, James R.; Plon, Sharon E.; Gibbs, Richard A.; Eng, Christine M.; Yang, Yaping; Washington, Gabriel C.; Porteus, Matthew H.; Berquist, William E.; Kambham, Neeraja; Singh, Ravinder J.; Xia, Fan; Enns, Gregory M.; Moore, David D.

    2016-01-01

    Neonatal cholestasis is a potentially life-threatening condition requiring prompt diagnosis. Mutations in several different genes can cause progressive familial intrahepatic cholestasis, but known genes cannot account for all familial cases. Here we report four individuals from two unrelated families with neonatal cholestasis and mutations in NR1H4, which encodes the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor that regulates bile acid metabolism. Clinical features of severe, persistent NR1H4-related cholestasis include neonatal onset with rapid progression to end-stage liver disease, vitamin K-independent coagulopathy, low-to-normal serum gamma-glutamyl transferase activity, elevated serum alpha-fetoprotein and undetectable liver bile salt export pump (ABCB11) expression. Our findings demonstrate a pivotal function for FXR in bile acid homeostasis and liver protection. PMID:26888176

  5. The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine.

    PubMed

    Mueller, Matthias; Cima, Igor; Noti, Mario; Fuhrer, Andrea; Jakob, Sabine; Dubuquoy, Laurent; Schoonjans, Kristina; Brunner, Thomas

    2006-09-01

    The nuclear receptor liver receptor homologue-1 (LRH-1, NR5A2) is a crucial transcriptional regulator of many metabolic pathways. In addition, LRH-1 is expressed in intestinal crypt cells where it regulates the epithelial cell renewal and contributes to tumorigenesis through the induction of cell cycle proteins. We have recently identified the intestinal epithelium as an important extra-adrenal source of immunoregulatory glucocorticoids. We show here that LRH-1 promotes the expression of the steroidogenic enzymes and the synthesis of corticosterone in murine intestinal epithelial cells in vitro. Interestingly, LRH-1 is also essential for intestinal glucocorticoid synthesis in vivo, as LRH-1 haplo-insufficiency strongly reduces the intestinal expression of steroidogenic enzymes and glucocorticoid synthesis upon immunological stress. These results demonstrate for the first time a novel role for LRH-1 in the regulation of intestinal glucocorticoid synthesis and propose LRH-1 as an important regulator of intestinal tissue integrity and immune homeostasis. PMID:16923850

  6. The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA

    PubMed Central

    Booth, David S; Cheng, Yifan; Frankel, Alan D

    2014-01-01

    The HIV Rev protein routes viral RNAs containing the Rev Response Element (RRE) through the Crm1 nuclear export pathway to the cytoplasm where viral proteins are expressed and genomic RNA is delivered to assembling virions. The RRE assembles a Rev oligomer that displays nuclear export sequences (NESs) for recognition by the Crm1-RanGTP nuclear receptor complex. Here we provide the first view of an assembled HIV-host nuclear export complex using single-particle electron microscopy. Unexpectedly, Crm1 forms a dimer with an extensive interface that enhances association with Rev-RRE and poises NES binding sites to interact with a Rev oligomer. The interface between Crm1 monomers explains differences between Crm1 orthologs that alter nuclear export and determine cellular tropism for viral replication. The arrangement of the export complex identifies a novel binding surface to possibly target an HIV inhibitor and may point to a broader role for Crm1 dimerization in regulating host gene expression. DOI: http://dx.doi.org/10.7554/eLife.04121.001 PMID:25486595

  7. Deciphering the regulatory logic of an ancient, ultraconserved nuclear receptor enhancer module.

    PubMed

    Bagamasbad, Pia D; Bonett, Ronald M; Sachs, Laurent; Buisine, Nicolas; Raj, Samhitha; Knoedler, Joseph R; Kyono, Yasuhiro; Ruan, Yijun; Ruan, Xiaoan; Denver, Robert J

    2015-06-01

    Cooperative, synergistic gene regulation by nuclear hormone receptors can increase sensitivity and amplify cellular responses to hormones. We investigated thyroid hormone (TH) and glucocorticoid (GC) synergy on the Krüppel-like factor 9 (Klf9) gene, which codes for a zinc finger transcription factor involved in development and homeostasis of diverse tissues. We identified regions of the Xenopus and mouse Klf9 genes 5-6 kb upstream of the transcription start sites that supported synergistic transactivation by TH plus GC. Within these regions, we found an orthologous sequence of approximately 180 bp that is highly conserved among tetrapods, but absent in other chordates, and possesses chromatin marks characteristic of an enhancer element. The Xenopus and mouse approximately 180-bp DNA element conferred synergistic transactivation by hormones in transient transfection assays, so we designate this the Klf9 synergy module (KSM). We identified binding sites within the mouse KSM for TH receptor, GC receptor, and nuclear factor κB. TH strongly increased recruitment of liganded GC receptor and serine 5 phosphorylated (initiating) RNA polymerase II to chromatin at the KSM, suggesting a mechanism for transcriptional synergy. The KSM is transcribed to generate long noncoding RNAs, which are also synergistically induced by combined hormone treatment, and the KSM interacts with the Klf9 promoter and a far upstream region through chromosomal looping. Our findings support that the KSM plays a central role in hormone regulation of vertebrate Klf9 genes, it evolved in the tetrapod lineage, and has been maintained by strong stabilizing selection. PMID:25866873

  8. Deciphering the Regulatory Logic of an Ancient, Ultraconserved Nuclear Receptor Enhancer Module

    PubMed Central

    Bagamasbad, Pia D.; Bonett, Ronald M.; Sachs, Laurent; Buisine, Nicolas; Raj, Samhitha; Knoedler, Joseph R.; Kyono, Yasuhiro; Ruan, Yijun; Ruan, Xiaoan

    2015-01-01

    Cooperative, synergistic gene regulation by nuclear hormone receptors can increase sensitivity and amplify cellular responses to hormones. We investigated thyroid hormone (TH) and glucocorticoid (GC) synergy on the Krüppel-like factor 9 (Klf9) gene, which codes for a zinc finger transcription factor involved in development and homeostasis of diverse tissues. We identified regions of the Xenopus and mouse Klf9 genes 5–6 kb upstream of the transcription start sites that supported synergistic transactivation by TH plus GC. Within these regions, we found an orthologous sequence of approximately 180 bp that is highly conserved among tetrapods, but absent in other chordates, and possesses chromatin marks characteristic of an enhancer element. The Xenopus and mouse approximately 180-bp DNA element conferred synergistic transactivation by hormones in transient transfection assays, so we designate this the Klf9 synergy module (KSM). We identified binding sites within the mouse KSM for TH receptor, GC receptor, and nuclear factor κB. TH strongly increased recruitment of liganded GC receptor and serine 5 phosphorylated (initiating) RNA polymerase II to chromatin at the KSM, suggesting a mechanism for transcriptional synergy. The KSM is transcribed to generate long noncoding RNAs, which are also synergistically induced by combined hormone treatment, and the KSM interacts with the Klf9 promoter and a far upstream region through chromosomal looping. Our findings support that the KSM plays a central role in hormone regulation of vertebrate Klf9 genes, it evolved in the tetrapod lineage, and has been maintained by strong stabilizing selection. PMID:25866873

  9. Regulation of skeletal muscle mitochondrial function by nuclear receptors: implications for health and disease.

    PubMed

    Perez-Schindler, Joaquin; Philp, Andrew

    2015-10-01

    Skeletal muscle metabolism is highly dependent on mitochondrial function, with impaired mitochondrial biogenesis associated with the development of metabolic diseases such as insulin resistance and type 2 diabetes. Mitochondria display substantial plasticity in skeletal muscle, and are highly sensitive to levels of physical activity. It is thought that physical activity promotes mitochondrial biogenesis in skeletal muscle through increased expression of genes encoded in both the nuclear and the mitochondrial genome; however, how this process is co-ordinated at the cellular level is poorly understood. Nuclear receptors (NRs) are key signalling proteins capable of integrating environmental factors and mitochondrial function, thereby providing a potential link between exercise and mitochondrial biogenesis. The aim of this review is to highlight the function of NRs in skeletal muscle mitochondrial biogenesis and discuss the therapeutic potential of NRs for the management and treatment of chronic metabolic disease. PMID:26186742

  10. A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies.

    PubMed

    Zahn, Raphael; Osmanović, Dino; Ehret, Severin; Araya Callis, Carolina; Frey, Steffen; Stewart, Murray; You, Changjiang; Görlich, Dirk; Hoogenboom, Bart W; Richter, Ralf P

    2016-01-01

    The permeability barrier of nuclear pore complexes (NPCs) controls bulk nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs (FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar films produced with three different end-grafted FG domains, and quantitatively analyzed the binding of two different nuclear transport receptors (NTRs), NTF2 and Importin β, together with the concomitant film thickness changes. NTR binding caused only moderate changes in film thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a single master curve. This universal NTR binding behavior - a key element for the transport selectivity of the NPC - was quantitatively reproduced by a physical model that treats FG domains as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring the detailed arrangement of interaction sites along FG domains and on the NTR surface. PMID:27058170

  11. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism

    PubMed Central

    Chen, Wei; Zhang, Xiaoting; Birsoy, Kivanc; Roeder, Robert G.

    2010-01-01

    As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet–induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1–nuclear receptor interactions. PMID:20479251

  12. Tumour nuclear oestrogen receptor beta 1 correlates inversely with parathyroid tumour weight

    PubMed Central

    Haglund, Felix; Rosin, Gustaf; Nilsson, Inga-Lena; Juhlin, C Christofer; Pernow, Ylva; Norenstedt, Sophie; Dinets, Andrii; Larsson, Catharina; Hartman, Johan; Höög, Anders

    2015-01-01

    Primary hyperparathyroidism (PHPT) is a common endocrinopathy, frequently caused by a parathyroid adenoma, rarely by a parathyroid carcinoma that lacks effective oncological treatment. As the majority of cases are present in postmenopausal women, oestrogen signalling has been implicated in the tumourigenesis. Oestrogen receptor beta 1 (ERB1) and ERB2 have been recently identified in parathyroid adenomas, the former inducing genes coupled to tumour apoptosis. We applied immunohistochemistry and slide digitalisation to quantify nuclear ERB1 and ERB2 in 172 parathyroid adenomas, atypical adenomas and carcinomas, and ten normal parathyroid glands. All the normal parathyroid glands expressed ERB1 and ERB2. The majority of tumours expressed ERB1 (70.6%) at varying intensities, and ERB2 (96.5%) at strong intensities. Parathyroid carcinomas expressed ERB1 in three out of six cases and ERB2 in five out of six cases. The intensity of tumour nuclear ERB1 staining significantly correlated inversely with tumour weight (P=0.011), and patients whose tumours were classified as ERB1-negative had significantly greater tumour weight as well as higher serum calcium (P=0.002) and parathyroid hormone levels (P=0.003). Additionally, tumour nuclear ERB1 was not expressed differentially with respect to sex or age of the patient. Levels of tumour nuclear ERB2 did not correlate with clinical characteristics. In conclusion, decreased ERB1 immunoreactivity is associated with increased tumour weight in parathyroid adenomas. Given the previously reported correlation with tumour-suppressive signalling, selective oestrogen receptor modulation (SERMs) may play a role in the treatment of parathyroid carcinomas. Future studies of SERMs and oestrogen treatment in PHPT should consider tumour weight as a potential factor in pharmacological responsiveness. PMID:25648860

  13. Smc5/6 Mediated Sumoylation of the Sgs1-Top3-Rmi1 Complex Promotes Removal of Recombination Intermediates.

    PubMed

    Bonner, Jaclyn N; Choi, Koyi; Xue, Xiaoyu; Torres, Nikko P; Szakal, Barnabas; Wei, Lei; Wan, Bingbing; Arter, Meret; Matos, Joao; Sung, Patrick; Brown, Grant W; Branzei, Dana; Zhao, Xiaolan

    2016-07-12

    Timely removal of DNA recombination intermediates is critical for genome stability. The DNA helicase-topoisomerase complex, Sgs1-Top3-Rmi1 (STR), is the major pathway for processing these intermediates to generate conservative products. However, the mechanisms that promote STR-mediated functions remain to be defined. Here we show that Sgs1 binds to poly-SUMO chains and associates with the Smc5/6 SUMO E3 complex in yeast. Moreover, these interactions contribute to the sumoylation of Sgs1, Top3, and Rmi1 upon the generation of recombination structures. We show that reduced STR sumoylation leads to accumulation of recombination structures, and impaired growth in conditions when these structures arise frequently, highlighting the importance of STR sumoylation. Mechanistically, sumoylation promotes STR inter-subunit interactions and accumulation at DNA repair centers. These findings expand the roles of sumoylation and Smc5/6 in genome maintenance by demonstrating that they foster STR functions in the removal of recombination intermediates. PMID:27373152

  14. DNA damage–inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger

    PubMed Central

    Danielsen, Jannie Rendtlew; Povlsen, Lou Klitgaard; Villumsen, Bine Hare; Streicher, Werner; Nilsson, Jakob; Wikström, Mats; Bekker-Jensen, Simon

    2012-01-01

    Nonproteolytic ubiquitylation of chromatin surrounding deoxyribonucleic acid (DNA) double-strand breaks (DSBs) by the RNF8/RNF168/HERC2 ubiquitin ligases facilitates restoration of genome integrity by licensing chromatin to concentrate genome caretaker proteins near the lesions. In parallel, SUMOylation of so-far elusive upstream DSB regulators is also required for execution of this ubiquitin-dependent chromatin response. We show that HERC2 and RNF168 are novel DNA damage–dependent SUMOylation targets in human cells. In response to DSBs, both HERC2 and RNF168 were specifically modified with SUMO1 at DSB sites in a manner dependent on the SUMO E3 ligase PIAS4. SUMOylation of HERC2 was required for its DSB-induced association with RNF8 and for stabilizing the RNF8–Ubc13 complex. We also demonstrate that the ZZ Zinc finger in HERC2 defined a novel SUMO-specific binding module, which together with its concomitant SUMOylation and T4827 phosphorylation promoted binding to RNF8. Our findings provide novel insight into the regulatory complexity of how ubiquitylation and SUMOylation cooperate to orchestrate protein interactions with DSB repair foci. PMID:22508508

  15. DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger.

    PubMed

    Danielsen, Jannie Rendtlew; Povlsen, Lou Klitgaard; Villumsen, Bine Hare; Streicher, Werner; Nilsson, Jakob; Wikström, Mats; Bekker-Jensen, Simon; Mailand, Niels

    2012-04-16

    Nonproteolytic ubiquitylation of chromatin surrounding deoxyribonucleic acid (DNA) double-strand breaks (DSBs) by the RNF8/RNF168/HERC2 ubiquitin ligases facilitates restoration of genome integrity by licensing chromatin to concentrate genome caretaker proteins near the lesions. In parallel, SUMOylation of so-far elusive upstream DSB regulators is also required for execution of this ubiquitin-dependent chromatin response. We show that HERC2 and RNF168 are novel DNA damage-dependent SUMOylation targets in human cells. In response to DSBs, both HERC2 and RNF168 were specifically modified with SUMO1 at DSB sites in a manner dependent on the SUMO E3 ligase PIAS4. SUMOylation of HERC2 was required for its DSB-induced association with RNF8 and for stabilizing the RNF8-Ubc13 complex. We also demonstrate that the ZZ Zinc finger in HERC2 defined a novel SUMO-specific binding module, which together with its concomitant SUMOylation and T4827 phosphorylation promoted binding to RNF8. Our findings provide novel insight into the regulatory complexity of how ubiquitylation and SUMOylation cooperate to orchestrate protein interactions with DSB repair foci. PMID:22508508

  16. Transcriptional repression by sumoylation of Epstein-Barr virus BZLF1 protein correlates with association of histone deacetylase.

    PubMed

    Murata, Takayuki; Hotta, Naoe; Toyama, Shigenori; Nakayama, Sanae; Chiba, Shigeki; Isomura, Hiroki; Ohshima, Takayuki; Kanda, Teru; Tsurumi, Tatsuya

    2010-07-30

    The transition from latent to lytic phases of the Epstein-Barr virus life cycle is triggered by expression of a viral transactivator, BZLF1, that then induces expression of the viral immediate-early and early genes. The BZLF1 protein is post-translationally modified by a small ubiquitin-related modifier-1 (SUMO-1). Here we found that BZLF1 is conjugated at lysine 12 not only by SUMO-1 but also by SUMO-2 and 3. The K12R mutant of BZLF1, which no longer becomes sumoylated, exhibits stronger transactivation than the wild-type BZLF1 in a reporter assay system as well as in the context of virus genome with nucleosomal structures. Furthermore, exogenous supply of a SUMO-specific protease, SENP, caused de-sumoylation of BZLF1 and enhanced BZLF1-mediated transactivation. Immunoprecipitation experiments proved that histone deacetylase 3 preferentially associated with the sumoylated form of BZLF1. Levels of the sumoylated BZLF1 increased as lytic replication progressed. Based on these observations, we conclude that sumoylation of BZLF1 regulates its transcriptional activity through histone modification during Epstein-Barr virus productive replication. PMID:20516063

  17. Nucleocytoplasmic Recycling of the Nuclear Localization Signal Receptor α Subunit In Vivo Is Dependent on a Nuclear Export Signal, Energy, and RCC1

    PubMed Central

    Boche, Irene; Fanning, Ellen

    1997-01-01

    Nuclear protein import requires a nuclear localization signal (NLS) receptor and at least three other cytoplasmic factors. The α subunit of the NLS receptor, Rag cohort 1 (Rch1), enters the nucleus, probably in a complex with the β subunit of the receptor, as well as other import factors and the import substrate. To learn more about which factors and/or events end the import reaction and how the import factors return to the cytoplasm, we have studied nucleocytoplasmic shuttling of Rch1 in vivo. Recombinant Rch1 microinjected into Vero or tsBN2 cells was found primarily in the cytoplasm. Rch1 injected into the nucleus was rapidly exported in a temperature-dependent manner. In contrast, a mutant of Rch1 lacking the first 243 residues accumulated in the nuclei of Vero cells after cytoplasmic injection. After nuclear injection, the truncated Rch1 was retained in the nucleus, but either Rch1 residues 207–217 or a heterologous nuclear export signal, but not a mutant form of residues 207–217, restored nuclear export. Loss of the nuclear transport factor RCC1 (regulator of chromosome condensation) at the nonpermissive temperature in the thermosensitive mutant cell line tsBN2 caused nuclear accumulation of wild-type Rch1 injected into the cytoplasm. However, free Rch1 injected into nuclei of tsBN2 cells at the nonpermissive temperature was exported. These results suggested that RCC1 acts at an earlier step in Rch1 recycling, possibly the disassembly of an import complex that contains Rch1 and the import substrate. Consistent with this possibility, incubation of purified RanGTP and RCC1 with NLS receptor and import substrate prevented assembly of receptor/substrate complexes or stimulated their disassembly. PMID:9334337

  18. Direct modification and regulation of a nuclear receptor-PIP2 complex by the nuclear inositol-lipid kinase IPMK

    PubMed Central

    Blind, Raymond D.; Suzawa, Miyuki; Ingraham, Holly A.

    2012-01-01

    Phosphatidylinositol (4,5)-bisphosphate (PIP2) is best known as a plasma membrane-bound regulatory lipid. While PIP2 and phosphoinositide-modifying enzymes coexist in the nucleus, their roles in the nucleus remain unclear. Here we show that the nuclear inositol polyphosphate multikinase (IPMK), which functions both as an inositol- and a PI3-kinase, interacts with the nuclear receptor SF-1 (NR5A1) and phosphorylates its bound ligand, PIP2. IPMK failed to recognize SF-1/PIP2 after blocking or displacing PIP2 from SF-1’s large hydrophobic pocket. In contrast to IPMK, p110 catalytic subunits of type 1 PI3-kinases were inactive on SF-1/PIP2. These and other in vitro analyses demonstrated specificity of IPMK for the SF-1/PIP2 protein/lipid complex. Once generated, SF-1/PIP3 is readily dephosphorylated by the lipid phosphatase PTEN. Importantly, decreasing IPMK or increasing PTEN expression greatly reduced SF-1 transcriptional activity. This ability of lipid kinases and phosphatases to alter the activity and directly remodel a non-membrane protein/lipid complex such SF-1/PIP2, establishes a new pathway for promoting lipid-mediated signaling in the nucleus. PMID:22715467

  19. The Nuclear Orphan Receptor NR2F6 Is a Central Checkpoint for Cancer Immune Surveillance

    PubMed Central

    Hermann-Kleiter, Natascha; Klepsch, Victoria; Wallner, Stephanie; Siegmund, Kerstin; Klepsch, Sebastian; Tuzlak, Selma; Villunger, Andreas; Kaminski, Sandra; Pfeifhofer-Obermair, Christa; Gruber, Thomas; Wolf, Dominik; Baier, Gottfried

    2015-01-01

    Summary Nuclear receptor subfamily 2, group F, member 6 (NR2F6) is an orphan member of the nuclear receptor superfamily. Here, we show that genetic ablation of Nr2f6 significantly improves survival in the murine transgenic TRAMP prostate cancer model. Furthermore, Nr2f6−/− mice spontaneously reject implanted tumors and develop host-protective immunological memory against tumor rechallenge. This is paralleled by increased frequencies of both CD4+ and CD8+ T cells and higher expression levels of interleukin 2 and interferon γ at the tumor site. Mechanistically, CD4+ and CD8+ T cell-intrinsic NR2F6 acts as a direct repressor of the NFAT/AP-1 complex on both the interleukin 2 and the interferon γ cytokine promoters, attenuating their transcriptional thresholds. Adoptive transfer of Nr2f6-deficient T cells into tumor-bearing immunocompetent mice is sufficient to delay tumor outgrowth. Altogether, this defines NR2F6 as an intracellular immune checkpoint in effector T cells, governing the amplitude of anti-cancer immunity. PMID:26387951

  20. Discriminating agonist and antagonist ligands of the nuclear receptors using 3D-pharmacophores.

    PubMed

    Lagarde, Nathalie; Delahaye, Solenne; Zagury, Jean-François; Montes, Matthieu

    2016-01-01

    Nuclear receptors (NRs) constitute an important class of therapeutic targets. We evaluated the performance of 3D structure-based and ligand-based pharmacophore models in predicting the pharmacological profile of NRs ligands using the NRLiSt BDB database. We could generate selective pharmacophores for agonist and antagonist ligands and we found that the best performances were obtained by combining the structure-based and the ligand-based approaches. The combination of pharmacophores that were generated allowed to cover most of the chemical space of the NRLiSt BDB datasets. By screening the whole NRLiSt BDB on our 3D pharmacophores, we demonstrated their selectivity towards their dedicated NRs ligands. The 3D pharmacophores herein presented can thus be used as a predictor of the pharmacological activity of NRs ligands.Graphical AbstractUsing a combination of structure-based and ligand-based pharmacophores, agonist and antagonist ligands of the Nuclear Receptors included in the NRLiSt BDB database could be separated. PMID:27602059

  1. Transcriptional regulation of the human TR2 orphan receptor gene by nuclear factor 1-A

    SciTech Connect

    Lin, Y.-L.; Wang, Y.-H.; Lee, H.-J. . E-mail: hjlee@mail.ndhu.edu.tw

    2006-11-17

    The human testicular receptor 2 (TR2), a member of the nuclear hormone receptor superfamily, has no identified ligand yet. Previous evidence demonstrated that a 63 bp DNA fragment, named the promoter activating cis-element (PACE), has been identified as a positive regulatory region in the 5' promoter region of the human TR2 gene. In the present report, the human nuclear factor 1-A (NF1-A) was identified as a transcriptional activator to recognize the center of the PACE, called the PACE-C. NF1-A could bind to the 18 bp PACE-C region, and enhance about 13- to 17-fold of the luciferase reporter gene activity via the PACE-C in dose-dependent and orientation-independent manners. This transcriptional activation was further confirmed by real-time RT-PCR assay. In conclusion, our results indicated that NF1-A transcription factor plays an important role in the transcriptional activation of the TR2 gene expression via the PACE-C in the minimal promoter region.

  2. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway.

    PubMed

    Wang, Wei-jia; Wang, Yuan; Chen, Hang-zi; Xing, Yong-zhen; Li, Feng-wei; Zhang, Qian; Zhou, Bo; Zhang, Hong-kui; Zhang, Jie; Bian, Xue-li; Li, Li; Liu, Yuan; Zhao, Bi-xing; Chen, Yan; Wu, Rong; Li, An-zhong; Yao, Lu-ming; Chen, Ping; Zhang, Yi; Tian, Xu-yang; Beermann, Friedrich; Wu, Mian; Han, Jiahuai; Huang, Pei-qiang; Lin, Tianwei; Wu, Qiao

    2014-02-01

    Autophagy is linked to cell death, yet the associated mechanisms are largely undercharacterized. We discovered that melanoma, which is generally resistant to drug-induced apoptosis, can undergo autophagic cell death with the participation of orphan nuclear receptor TR3. A sequence of molecular events leading to cellular demise is launched by a specific chemical compound, 1-(3,4,5-trihydroxyphenyl)nonan-1-one, newly acquired from screening a library of TR3-targeting compounds. The autophagic cascade comprises TR3 translocation to mitochondria through interaction with the mitochondrial outer membrane protein Nix, crossing into the mitochondrial inner membrane through Tom40 and Tom70 channel proteins, dissipation of mitochondrial membrane potential by the permeability transition pore complex ANT1-VDAC1 and induction of autophagy. This process leads to excessive mitochondria clearance and irreversible cell death. It implicates a new approach to melanoma therapy through activation of a mitochondrial signaling pathway that integrates a nuclear receptor with autophagy for cell death. PMID:24316735

  3. Thyroid hormone receptor alpha1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway.

    PubMed

    Grespin, Matthew E; Bonamy, Ghislain M C; Roggero, Vincent R; Cameron, Nicole G; Adam, Lindsay E; Atchison, Andrew P; Fratto, Victoria M; Allison, Lizabeth A

    2008-09-12

    The thyroid hormone receptor alpha1 (TRalpha) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T(3)). Previously, we have shown that TRalpha, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRalpha is its ability to exit the nucleus through the nuclear pore complex. TRalpha export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRalpha. We show that, in addition to shuttling in heterokaryons, TRalpha shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRalpha directly interacts with calreticulin, and point to the intriguing possibility that TRalpha follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRalpha from the nucleus to cytoplasm. PMID:18641393

  4. Bile acids inhibit duodenal secretin expression via orphan nuclear receptor small heterodimer partner (SHP).

    PubMed

    Lam, Ian P Y; Lee, Leo T O; Choi, Hueng-Sik; Alpini, Gianfranco; Chow, Billy K C

    2009-07-01

    Small heterodimer partner (SHP) is an orphan nuclear receptor in which gene expression can be upregulated by bile acids. It regulates its target genes by repressing the transcriptional activities of other nuclear receptors including NeuroD, which has been shown to regulate secretin gene expression. Here, we evaluated the regulation on duodenal secretin gene expression by SHP and selected bile acids, cholic acid (CA) and chenodeoxycholic acid (CDCA). In vitro treatment of CDCA or fexaramine elevated the SHP transcript level and occupancy on secretin promoter. The increase in the SHP level, induced by bile acid treatment or overexpression, reduced secretin gene expression, whereas this gene inhibitory effect was reversed by silencing of endogenous SHP. In in vivo studies, double-immunofluorescence staining demonstrated the coexpression of secretin and SHP in mouse duodenum. Feeding mice with 1% CA-enriched rodent chow resulted in upregulation of SHP and a concomitant decrease in secretin transcript and protein levels in duodenum compared with the control group fed with normal chow. A diet enriched with 5% cholestyramine led to a decrease in SHP level and a corresponding increase in secretin expression. Overall, this study showed that bile acids via SHP inhibit duodenal secretin gene expression. Because secretin is a key hormone that stimulates bile flow in cholangiocytes, this pathway thus provides a novel means to modulate secretin-stimulated choleresis in response to intraduodenal bile acids. PMID:19372104

  5. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    SciTech Connect

    Song, Kwang-Hoon

    2010-01-29

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  6. Minireview: Nuclear Receptor Coregulators of the p160 Family: Insights into Inflammation and Metabolism

    PubMed Central

    Rollins, David A.; Coppo, Maddalena

    2015-01-01

    Nuclear receptor coactivators (NCOAs) are multifunctional transcriptional coregulators for a growing number of signal-activated transcription factors. The members of the p160 family (NCOA1/2/3) are increasingly recognized as essential and nonredundant players in a number of physiological processes. In particular, accumulating evidence points to the pivotal roles that these coregulators play in inflammatory and metabolic pathways, both under homeostasis and in disease. Given that chronic inflammation of metabolic tissues (“metainflammation”) is a driving force for the widespread epidemic of obesity, insulin resistance, cardiovascular disease, and associated comorbidities, deciphering the role of NCOAs in “normal” vs “pathological” inflammation and in metabolic processes is indeed a subject of extreme biomedical importance. Here, we review the evolving and, at times, contradictory, literature on the pleiotropic functions of NCOA1/2/3 in inflammation and metabolism as related to nuclear receptor actions and beyond. We then briefly discuss the potential utility of NCOAs as predictive markers for disease and/or possible therapeutic targets once a better understanding of their molecular and physiological actions is achieved. PMID:25647480

  7. The Nuclear Orphan Receptor NR2F6 Is a Central Checkpoint for Cancer Immune Surveillance.

    PubMed

    Hermann-Kleiter, Natascha; Klepsch, Victoria; Wallner, Stephanie; Siegmund, Kerstin; Klepsch, Sebastian; Tuzlak, Selma; Villunger, Andreas; Kaminski, Sandra; Pfeifhofer-Obermair, Christa; Gruber, Thomas; Wolf, Dominik; Baier, Gottfried

    2015-09-29

    Nuclear receptor subfamily 2, group F, member 6 (NR2F6) is an orphan member of the nuclear receptor superfamily. Here, we show that genetic ablation of Nr2f6 significantly improves survival in the murine transgenic TRAMP prostate cancer model. Furthermore, Nr2f6(-/-) mice spontaneously reject implanted tumors and develop host-protective immunological memory against tumor rechallenge. This is paralleled by increased frequencies of both CD4(+) and CD8(+) T cells and higher expression levels of interleukin 2 and interferon γ at the tumor site. Mechanistically, CD4(+) and CD8(+) T cell-intrinsic NR2F6 acts as a direct repressor of the NFAT/AP-1 complex on both the interleukin 2 and the interferon γ cytokine promoters, attenuating their transcriptional thresholds. Adoptive transfer of Nr2f6-deficient T cells into tumor-bearing immunocompetent mice is sufficient to delay tumor outgrowth. Altogether, this defines NR2F6 as an intracellular immune checkpoint in effector T cells, governing the amplitude of anti-cancer immunity. PMID:26387951

  8. Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1.

    PubMed

    de Vera, Ian Mitchelle S; Giri, Pankaj K; Munoz-Tello, Paola; Brust, Richard; Fuhrmann, Jakob; Matta-Camacho, Edna; Shang, Jinsai; Campbell, Sean; Wilson, Henry D; Granados, Juan; Gardner, William J; Creamer, Trevor P; Solt, Laura A; Kojetin, Douglas J

    2016-07-15

    Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined. Here, we show that unsaturated fatty acids also interact with the Nurr1 LBD, and solution NMR spectroscopy reveals the binding epitope of DHA at its putative ligand-binding pocket. Biochemical assays reveal that DHA-bound Nurr1 interacts with high affinity with a peptide derived from PIASγ, a protein that interacts with Nurr1 in cellular extracts, and DHA also affects cellular Nurr1 transactivation. This work is the first structural report of a natural ligand binding to a canonical NR4A ligand-binding pocket and indicates a natural ligand can bind and affect Nurr1 function. PMID:27128111

  9. Nuclear receptor ligand-binding domains: reduction of helix H12 dynamics to favour crystallization

    SciTech Connect

    Nahoum, Virginie; Lipski, Alexandra; Quillard, Fabien; Guichou, Jean-François; Boublik, Yvan; Pérez, Efrèn; Germain, Pierre; Lera, Angel R. de; Bourguet, William

    2008-07-01

    Attempts have been made to crystallize the ligand-binding domain of the human retinoid X receptor in complex with a variety of newly synthesized ligands. An inverse correlation was observed between the ‘crystallizability’ and the structural dynamics of the various receptor–ligand complexes. Crystallization trials of the human retinoid X receptor α ligand-binding domain (RXRα LBD) in complex with various ligands have been carried out. Using fluorescence anisotropy, it has been found that when compared with agonists these small-molecule effectors enhance the dynamics of the RXRα LBD C-terminal helix H12. In some cases, the mobility of this helix could be dramatically reduced by the addition of a 13-residue co-activator fragment (CoA). In keeping with these observations, crystals have been obtained of the corresponding ternary RXRα LBD–ligand–CoA complexes. In contrast, attempts to crystallize complexes with a highly mobile H12 remained unsuccessful. These experimental observations substantiate the previously recognized role of co-regulator fragments in facilitating the crystallization of nuclear receptor LBDs.

  10. The orphan nuclear receptor small heterodimer partner mediates male infertility induced by diethylstilbestrol in mice

    PubMed Central

    Volle, David H.; Decourteix, Mélanie; Garo, Erwan; McNeilly, Judy; Fenichel, Patrick; Auwerx, Johan; McNeilly, Alan S.; Schoonjans, Kristina; Benahmed, Mohamed

    2009-01-01

    Studies in rodents have shown that male sexual function can be disrupted by fetal or neonatal administration of compounds that alter endocrine homeostasis, such as the synthetic nonsteroidal estrogen diethylstilbestrol (DES). Although the molecular basis for this effect remains unknown, estrogen receptors likely play a critical role in mediating DES-induced infertility. Recently, we showed that the orphan nuclear receptor small heterodimer partner (Nr0b2), which is both a target gene and a transcriptional repressor of estrogen receptors, controls testicular function by regulating germ cell entry into meiosis and testosterone synthesis. We therefore hypothesized that some of the harmful effects of DES on testes could be mediated through Nr0b2. Here, we present data demonstrating that Nr0b2 deficiency protected mice against the negative effects of DES on testis development and function. During postnatal development, Nr0b2-null mice were resistant to DES-mediated inhibition of germ cell differentiation, which may be the result of interference by Nr0b2 with retinoid signals that control meiosis. Adult Nr0b2-null male mice were also protected against the effects of DES; however, we suggest that this phenomenon was due to the removal of the repressive effects of Nr0b2 on steroidogenesis. Together, these data demonstrate that Nr0b2 plays a critical role in the pathophysiological changes induced by DES in the mouse testis. PMID:19884658

  11. Nuclear receptor RORα regulates pathologic retinal angiogenesis by modulating SOCS3-dependent inflammation

    PubMed Central

    Sun, Ye; Liu, Chi-Hsiu; SanGiovanni, John Paul; Evans, Lucy P.; Tian, Katherine T.; Zhang, Bing; Stahl, Andreas; Pu, William T.; Kamenecka, Theodore M.; Solt, Laura A.; Chen, Jing

    2015-01-01

    Pathologic ocular angiogenesis is a leading cause of blindness, influenced by both dysregulated lipid metabolism and inflammation. Retinoic-acid-receptor–related orphan receptor alpha (RORα) is a lipid-sensing nuclear receptor with diverse biologic function including regulation of lipid metabolism and inflammation; however, its role in pathologic retinal angiogenesis remains poorly understood. Using a mouse model of oxygen-induced proliferative retinopathy, we showed that RORα expression was significantly increased and genetic deficiency of RORα substantially suppressed pathologic retinal neovascularization. Loss of RORα led to decreased levels of proinflammatory cytokines and increased levels of antiinflammatory cytokines in retinopathy. RORα directly suppressed the gene transcription of suppressors of cytokine signaling 3 (SOCS3), a critical negative regulator of inflammation. Inhibition of SOCS3 abolished the antiinflammatory and vasoprotective effects of RORα deficiency in vitro and in vivo. Moreover, treatment with a RORα inverse agonist SR1001 effectively protected against pathologic neovascularization in both oxygen-induced retinopathy and another angiogenic model of very-low–density lipoprotein receptor (Vldlr)-deficient (Vldlr−/−) mice with spontaneous subretinal neovascularization, whereas a RORα agonist worsened oxygen-induced retinopathy. Our data demonstrate that RORα is a novel regulator of pathologic retinal neovascularization, and RORα inhibition may represent a new way to treat ocular neovascularization. PMID:26243880

  12. Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation

    PubMed Central

    Carthy, Jon M.; Stöter, Martin; Bellomo, Claudia; Vanlandewijck, Michael; Heldin, Angelos; Morén, Anita; Kardassis, Dimitris; Gahman, Timothy C.; Shiau, Andrew K.; Bickle, Marc; Zerial, Marino; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    Plasticity in epithelial tissues relates to processes of embryonic development, tissue fibrosis and cancer progression. Pharmacological modulation of epithelial transitions during disease progression may thus be clinically useful. Using human keratinocytes and a robotic high-content imaging platform, we screened for chemical compounds that reverse transforming growth factor β (TGF-β)-induced epithelial-mesenchymal transition. In addition to TGF-β receptor kinase inhibitors, we identified small molecule epithelial plasticity modulators including a naturally occurring hydroxysterol agonist of the liver X receptors (LXRs), members of the nuclear receptor transcription factor family. Endogenous and synthetic LXR agonists tested in diverse cell models blocked α-smooth muscle actin expression, myofibroblast differentiation and function. Agonist-dependent LXR activity or LXR overexpression in the absence of ligand counteracted TGF-β-mediated myofibroblast terminal differentiation and collagen contraction. The protective effect of LXR agonists against TGF-β-induced pro-fibrotic activity raises the possibility that anti-lipidogenic therapy may be relevant in fibrotic disorders and advanced cancer. PMID:27430378

  13. Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR.

    PubMed Central

    Kitareewan, S; Burka, L T; Tomer, K B; Parker, C E; Deterding, L J; Stevens, R D; Forman, B M; Mais, D E; Heyman, R A; McMorris, T; Weinberger, C

    1996-01-01

    RXR is a nuclear receptor that plays a central role in cell signaling by pairing with a host of other receptors. Previously, 9-cis-retinoic acid (9cRA) was defined as a potent RXR activator. Here we describe a unique RXR effector identified from organic extracts of bovine serum by following RXR-dependent transcriptional activity. Structural analyses of material in active fractions pointed to the saturated diterpenoid phytanic acid, which induced RXR-dependent transcription at concentrations between 4 and 64 microM. Although 200 times more potent than phytanic acid, 9cRA was undetectable in equivalent amounts of extract and cannot be present at a concentration that could account for the activity. Phytanic acid, another phytol metabolite, was synthesized and stimulated RXR with a potency and efficacy similar to phytanic acid. These metabolites specifically displaced [3H]-9cRA from RXR with Ki values of 4 microM, indicating that their transcriptional effects are mediated by direct receptor interactions. Phytol metabolites are compelling candidates for physiological effectors, because their RXR binding affinities and activation potencies match their micromolar circulating concentrations. Given their exclusive dietary origin, these chlorophyll metabolites may represent essential nutrients that coordinate cellular metabolism through RXR-dependent signaling pathways. PMID:8856661

  14. Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation.

    PubMed

    Carthy, Jon M; Stöter, Martin; Bellomo, Claudia; Vanlandewijck, Michael; Heldin, Angelos; Morén, Anita; Kardassis, Dimitris; Gahman, Timothy C; Shiau, Andrew K; Bickle, Marc; Zerial, Marino; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    Plasticity in epithelial tissues relates to processes of embryonic development, tissue fibrosis and cancer progression. Pharmacological modulation of epithelial transitions during disease progression may thus be clinically useful. Using human keratinocytes and a robotic high-content imaging platform, we screened for chemical compounds that reverse transforming growth factor β (TGF-β)-induced epithelial-mesenchymal transition. In addition to TGF-β receptor kinase inhibitors, we identified small molecule epithelial plasticity modulators including a naturally occurring hydroxysterol agonist of the liver X receptors (LXRs), members of the nuclear receptor transcription factor family. Endogenous and synthetic LXR agonists tested in diverse cell models blocked α-smooth muscle actin expression, myofibroblast differentiation and function. Agonist-dependent LXR activity or LXR overexpression in the absence of ligand counteracted TGF-β-mediated myofibroblast terminal differentiation and collagen contraction. The protective effect of LXR agonists against TGF-β-induced pro-fibrotic activity raises the possibility that anti-lipidogenic therapy may be relevant in fibrotic disorders and advanced cancer. PMID:27430378

  15. Tributyltin engages multiple nuclear receptor pathways and suppresses osteogenesis in bone marrow multipotent stromal cells.

    PubMed

    Baker, Amelia H; Watt, James; Huang, Cassie K; Gerstenfeld, Louis C; Schlezinger, Jennifer J

    2015-06-15

    Organotins are members of the environmental obesogen class of contaminants because they activate peroxisome proliferator-activated receptor γ (PPARγ), the essential regulator of adipogenesis. Exposure to thiazolidinediones (PPARγ ligands used to treat type 2 diabetes) is associated with increased fractures. Diminished bone quality likely results from PPARγ's role in promoting adipogenesis while suppressing osteogenesis of bone marrow multipotent mesenchymal stromal cells (BM-MSC). We hypothesized that tributyltin (TBT) would be a potent modifier of BM-MSC differentiation and a negative regulator of bone formation. Organotins interact with both PPARγ and retinoid X receptors (RXR), suggesting that they activate multiple nuclear receptor pathways. To investigate the role of RXR in the actions of TBT, the effects of PPARγ (rosiglitazone) and RXR (bexarotene, LG100268) agonists were compared to the effects of TBT in BMS2 cells and primary mouse BM-MSC cultures. In BMS2 cells, TBT induced the expression of Fabp4, Abca1, and Tgm2 in an RXR-dependent manner. All agonists suppressed osteogenesis in primary mouse BM-MSC cultures, based on decreased alkaline phosphatase activity, mineralization, and expression of osteoblast-related genes. While rosiglitazone and TBT strongly activated adipogenesis, based on lipid accumulation and expression of adipocyte-related genes, the RXR agonists did not. Extending these analyses to other RXR heterodimers showed that TBT and the RXR agonists activated the liver X receptor pathway, whereas rosiglitazone did not. Application of either a PPARγ antagonist (T0070907) or an RXR antagonist (HX531) significantly reduced rosiglitazone-induced suppression of bone nodule formation. Only the RXR antagonist significantly reduced LG100268- and TBT-induced bone suppression. The RXR antagonist also inhibited LG100268- and TBT-induced expression of Abca1, an LXR target gene, in primary BM-MSC cultures. These results provide novel evidence that

  16. Classical Nuclear Hormone Receptor Activity as a Mediator of Complex Concentration Response Relationships for Endocrine Active Compounds

    PubMed Central

    Cookman, Clifford J.; Belcher, Scott M.

    2014-01-01

    Nonmonotonic concentration response relationships are frequently observed for endocrine active ligands that act via nuclear receptors. The curve of best fit for nonmonotonic concentration response relationships are often inverted U-shaped with effects at intermediate concentrations that are different from effects at higher or lower concentrations. Cytotoxicity is a major mode of action responsible for inverted U-shaped concentration response relationships. However, evidence suggests that ligand selectivity, activation of multiple molecular targets, concerted regulation of multiple opposing endpoints, and multiple ligand binding sites within nuclear receptors also contribute to nonmonotonic concentration response relationships of endocrine active ligands. This review reports the current understanding of mechanisms involved in classical nuclear receptor mediated nonmonotonic concentration response relationships with a focus on studies published between 2012 and 2014. PMID:25299165

  17. Generation of ES cells for conditional expression of nuclear receptors and coregulators in vivo.

    PubMed

    Wu, San-Pin; Lee, Dong-Kee; Demayo, Francesco J; Tsai, Sophia Y; Tsai, Ming-Jer

    2010-06-01

    Nuclear receptors and coregulators orchestrate diverse aspects of biological functions and inappropriate expression of these factors often associates with human diseases. The present study describes a conditional overexpression system consisting of a minigene located at the Rosa26 locus in the genome of mouse embryonic stem (ES) cells. Before activation, the minigene is silent due to a floxed STOP cassette inserted between the promoter and the transgene. Upon cre-mediated excision of the STOP cassette, the minigene constitutively expresses the tagged transgene driven by the ubiquitous CAGGS promoter. Thus, this system can be used to express target gene in any tissue in a spatial and/or temporal manner if respective cre mouse lines are available. Serving as proof of principle, the CAG-S-hCOUP-TFI allele was generated in ES cells and subsequently in mice. This allele was capable of conditionally overexpressing human chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) in all tissues tested upon activation by cre drivers. This allele was further subjected to address functionality of expressed COUP-TFI and the functional similarity between COUP-TFI and COUP-TFII. Expression of COUP-TFI in COUP-TFII-ablated uterus suppressed aberrant estrogen receptor-alpha activities and rescued implantation and decidualization defects of COUP-TFII mutants, suggesting that COUP-TFI and COUP-TFII are able to functionally compensate for each other in the uterus. A toolbox currently under construction will contain ES cell lines for overexpressing all 48 nuclear receptors and selected 10 coregulators. Upon completion, it will be a very valuable resource for the scientific community. Several ES cells are currently available for distribution. PMID:20382891

  18. The nuclear melatonin receptor RORα is a novel endogenous defender against myocardial ischemia/reperfusion injury.

    PubMed

    He, Ben; Zhao, Yichao; Xu, Longwei; Gao, Lingchen; Su, Yuanyuan; Lin, Nan; Pu, Jun

    2016-04-01

    Circadian rhythm disruption or decrease in levels of circadian hormones such as melatonin increases ischemic heart disease risk. The nuclear melatonin receptors RORs are pivotally involved in circadian rhythm regulation and melatonin effects mediation. However, the functional roles of RORs in the heart have never been investigated and were therefore the subject of this study on myocardial ischemia/reperfusion (MI/R) injury pathogenesis. RORα and RORγ subtypes were detected in the adult mouse heart, and RORα but not RORγ was downregulated after MI/R. To determine the pathological consequence of MI/R-induced reduction of RORα, we subjected RORα-deficient staggerer mice and wild-type (WT) littermates to MI/R injury, resulting in significantly increased myocardial infarct size, myocardial apoptosis and exacerbated contractile dysfunction in the former. Mechanistically, RORα deficiency promoted MI/R-induced endoplasmic reticulum stress, mitochondrial impairments, and autophagy dysfunction. Moreover, RORα deficiency augmented MI/R-induced oxidative/nitrative stress. Given the emerging evidence of RORα as an essential melatonin effects mediator, we further investigated the RORα roles in melatonin-exerted cardioprotection, in particular against MI/R injury, which was significantly attenuated in RORα-deficient mice, but negligibly affected by cardiac-specific silencing of RORγ. Finally, to determine cell type-specific effects of RORα, we generated mice with cardiomyocyte-specific RORα overexpression and they were less vulnerable to MI/R injury. In summary, our study provides the first direct evidence that the nuclear melatonin receptor RORα is a novel endogenous protective receptor against MI/R injury and an important mediator of melatonin-exerted cardioprotection; melatonin-RORα axis signaling thus appears important in protection against ischemic heart injury. PMID:26797926

  19. The nuclear receptor CAR is a regulator of thyroid hormone metabolism during caloric restriction.

    PubMed

    Maglich, Jodi M; Watson, Joe; McMillen, Patrick J; Goodwin, Bryan; Willson, Timothy M; Moore, John T

    2004-05-01

    The orphan nuclear receptor CAR (NR1I3) has been characterized as a central component in the coordinate response to xenobiotic and endobiotic stress. In this study, we demonstrate that CAR plays a pivotal function in energy homeostasis and establish an unanticipated metabolic role for this nuclear receptor. Wild-type mice treated with the synthetic CAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) exhibited decreased serum concentration of the thyroid hormone (TH) thyroxine (T(4)). However, treatment of Car(-/-) mice with TCPOBOP failed to elicit these changes. To examine whether CAR played a role in the regulation of TH levels under physiological conditions, wild-type and Car(-/-) mice were fasted for 24 h, a process known to alter TH metabolism in mammals. As expected, the serum triiodothyronine and T(4) concentrations decreased in wild-type mice. However, triiodothyronine and T(4) levels in fasted Car(-/-) mice remained significantly higher than those in fasted wild-type animals. Concomitant with the changes in serum TH levels, both CAR agonist treatment and fasting induced the expression of CAR target genes (notably, Cyp2b10, Ugt1a1, Sultn, Sult1a1, and Sult2a1) in a receptor-dependent manner. Importantly, the Ugt1a1, Sultn, Sult1a1, and Sult2a1 genes encode enzymes that are capable of metabolizing TH. An attenuated reduction in TH levels during fasting, as observed in Car(-/-) mice, would be predicted to increase weight loss during caloric restriction. Indeed, when Car(-/-) animals were placed on a 40% caloric restriction diet for 12 weeks, Car(-/-) animals lost over twice as much weight as their wild-type littermates. Thus, CAR participates in the molecular mechanisms contributing to homeostatic resistance to weight loss. These data imply that CAR represents a novel therapeutic target to uncouple metabolic rate from food intake and has implications in obesity and its associated disorders. PMID:15004031

  20. A novel post-translational modification of nucleolin, SUMOylation at Lys-294, mediates arsenite-induced cell death by regulating gadd45α mRNA stability.

    PubMed

    Zhang, Dongyun; Liang, Yuguang; Xie, Qipeng; Gao, Guangxun; Wei, Jinlong; Huang, Haishan; Li, Jingxia; Gao, Jimin; Huang, Chuanshu

    2015-02-20

    Nucleolin is a ubiquitously expressed protein and participates in many important biological processes, such as cell cycle regulation and ribosomal biogenesis. The activity of nucleolin is regulated by intracellular localization and post-translational modifications, including phosphorylation, methylation, and ADP-ribosylation. Small ubiquitin-like modifier (SUMO) is a category of recently verified forms of post-translational modifications and exerts various effects on the target proteins. In the studies reported here, we discovered SUMOylational modification of human nucleolin protein at Lys-294, which facilitated the mRNA binding property of nucleolin by maintaining its nuclear localization. In response to arsenic exposure, nucleolin-SUMO was induced and promoted its binding with gadd45α mRNA, which increased gadd45α mRNA stability and protein expression, subsequently causing GADD45α-mediated cell death. On the other hand, ectopic expression of Mn-SOD attenuated the arsenite-generated superoxide radical level, abrogated nucleolin-SUMO, and in turn inhibited arsenite-induced apoptosis by reducing GADD45α expression. Collectively, our results for the first time demonstrate that nucleolin-SUMO at K294R plays a critical role in its nucleus sequestration and gadd45α mRNA binding activity. This novel biological function of nucleolin is distinct from its conventional role as a proto-oncogene. Therefore, our findings here not only reveal a new modification of nucleolin protein and its novel functional paradigm in mRNA metabolism but also expand our understanding of the dichotomous roles of nucleolin in terms of cancer development, which are dependent on multiple intracellular conditions and consequently the appropriate regulations of its modifications, including SUMOylation. PMID:25561743

  1. A Novel Post-translational Modification of Nucleolin, SUMOylation at Lys-294, Mediates Arsenite-induced Cell Death by Regulating gadd45α mRNA Stability*

    PubMed Central

    Zhang, Dongyun; Liang, Yuguang; Xie, Qipeng; Gao, Guangxun; Wei, Jinlong; Huang, Haishan; Li, Jingxia; Gao, Jimin; Huang, Chuanshu

    2015-01-01

    Nucleolin is a ubiquitously expressed protein and participates in many important biological processes, such as cell cycle regulation and ribosomal biogenesis. The activity of nucleolin is regulated by intracellular localization and post-translational modifications, including phosphorylation, methylation, and ADP-ribosylation. Small ubiquitin-like modifier (SUMO) is a category of recently verified forms of post-translational modifications and exerts various effects on the target proteins. In the studies reported here, we discovered SUMOylational modification of human nucleolin protein at Lys-294, which facilitated the mRNA binding property of nucleolin by maintaining its nuclear localization. In response to arsenic exposure, nucleolin-SUMO was induced and promoted its binding with gadd45α mRNA, which increased gadd45α mRNA stability and protein expression, subsequently causing GADD45α-mediated cell death. On the other hand, ectopic expression of Mn-SOD attenuated the arsenite-generated superoxide radical level, abrogated nucleolin-SUMO, and in turn inhibited arsenite-induced apoptosis by reducing GADD45α expression. Collectively, our results for the first time demonstrate that nucleolin-SUMO at K294R plays a critical role in its nucleus sequestration and gadd45α mRNA binding activity. This novel biological function of nucleolin is distinct from its conventional role as a proto-oncogene. Therefore, our findings here not only reveal a new modification of nucleolin protein and its novel functional paradigm in mRNA metabolism but also expand our understanding of the dichotomous roles of nucleolin in terms of cancer development, which are dependent on multiple intracellular conditions and consequently the appropriate regulations of its modifications, including SUMOylation. PMID:25561743

  2. Fine spatial assembly for construction of the phenol-binding pocket to capture bisphenol A in the human nuclear receptor estrogen-related receptor γ.

    PubMed

    Liu, Xiaohui; Matsushima, Ayami; Nakamura, Masayuki; Costa, Tommaso; Nose, Takeru; Shimohigashi, Yasuyuki

    2012-04-01

    Various lines of evidence have shown that bisphenol A (BPA) acts as an endocrine disruptor that affects various hormones even at merely physiological levels. We demonstrated recently that BPA binds strongly to human nuclear receptor estrogen-related receptor γ (ERRγ), one of 48 nuclear receptors. Based on X-ray crystal analysis of the ERRγ ligand-binding domain (LBD)/BPA complex, we demonstrated that ERRγ receptor residues, Glu275 and Arg316, function as the intrinsic-binding site of the phenol-hydroxyl group of BPA. If these phenol-hydroxyl↔Glu275 and Arg316 hydrogen bonds anchor the A-benzene ring of BPA, the benzene-phenyl group of BPA would be in a pocket constructed by specific amino acid side chain structures. In the present study, by evaluating the Ala-replaced mutant receptors, we identified such a ligand-binding pocket. Leu268, Leu271, Leu309 and Tyr326, in addition to the previously reported participants Glu275 and Arg316, were found to make a receptacle pocket for the A-ring, whereas Ile279, Ile310 and Val313 were found to assist or structurally support these residues. The results revealed that each amino acid residue is an essential structural element for the strong binding of BPA to ERRγ. PMID:22298789

  3. Molecular adaptation and resilience of the insect’s nuclear receptor USP

    PubMed Central

    2012-01-01

    Background The maintenance of biological systems requires plasticity and robustness. The function of the ecdysone receptor, a heterodimer composed of the nuclear receptors ECR (NR1H1) and USP (NR2B4), was maintained in insects despite a dramatic divergence that occurred during the emergence of Mecopterida. This receptor is therefore a good model to study the evolution of plasticity. We tested the hypothesis that selection has shaped the Ligand-Binding Domain (LBD) of USP during evolution of Mecopterida. Results We isolated usp and cox1 in several species of Drosophilidae, Tenebrionidae and Blattaria and estimated non-synonymous/synonymous rate ratios using maximum-likelihood methods and codon-based substitution models. Although the usp sequences were mainly under negative selection, we detected relaxation at residues located on the surface of the LBD within Mecopterida families. Using branch-site models, we also detected changes in selective constraints along three successive branches of the Mecopterida evolution. Residues located at the bottom of the ligand-binding pocket (LBP) underwent strong positive selection during the emergence of Mecopterida. This change is correlated with the acquisition of a large LBP filled by phospholipids that probably allowed the stabilisation of the new Mecopterida structure. Later, when the two subgroups of Mecopterida (Amphiesmenoptera: Lepidoptera, Trichoptera; Antliophora: Diptera, Mecoptera, Siphonaptera) diverged, the same positions became under purifying selection. Similarly, several positions of the heterodimerisation interface experienced positive selection during the emergence of Mecopterida, rapidly followed by a phase of constrained evolution. An enlargement of the heterodimerisation surface is specific for Mecopterida and was associated with a reinforcement of the obligatory partnership between ECR and USP, at the expense of homodimerisation. Conclusions In order to explain the episodic mode of evolution of USP, we

  4. A structural perspective on nuclear receptors as targets of environmental compounds

    PubMed Central

    Delfosse, Vanessa; Maire, Albane le; Balaguer, Patrick; Bourguet, William

    2015-01-01

    Nuclear receptors (NRs) are members of a large superfamily of evolutionarily related transcription factors that control a plethora of biological processes. NRs orchestrate complex events such as development, organ homeostasis, metabolism, immune function, and reproduction. Approximately one-half of the 48 human NRs have been shown to act as ligand-regulated transcription factors and respond directly to a large variety of endogenous hormones and metabolites that are generally hydrophobic and small in size (eg, retinoic acid or estradiol). The second half of the NR family comprises the so-called orphan receptors, for which regulatory ligands are still unknown or may not exist despite the presence of a C-terminal ligand-binding domain, which is the hallmark of all NRs. Several chemicals released into the environment (eg, bisphenols, phthalates, parabens, etc) share some physicochemical properties with natural ligands, allowing them to bind to NRs and activate or inhibit their action. Collectively referred to as endocrine disruptors or endocrine-disrupting chemicals (EDCs), these environmental pollutants are highly suspected to cause a wide range of developmental, reproductive, neurological, or metabolic defects in humans and wildlife. Crystallographic studies are revealing unanticipated mechanisms by which chemically diverse EDCs interact with the ligand-binding domain of NRs. These studies thereby provide a rational basis for designing novel chemicals with lower impacts on human and animal health. In this review, we provide a structural and mechanistic view of endocrine disrupting action using estrogen receptors α and β, (ERα/β), peroxisome proliferator activated receptor γ (PPARγ), and their respective environmental ligands as representative examples. PMID:25500867

  5. Trafficking of Kainate Receptors

    PubMed Central

    Pahl, Steffen; Tapken, Daniel; Haering, Simon C.; Hollmann, Michael

    2014-01-01

    Ionotropic glutamate receptors (iGluRs) mediate the vast majority of excitatory neurotransmission in the central nervous system of vertebrates. In the protein family of iGluRs, kainate receptors (KARs) comprise the probably least well understood receptor class. Although KARs act as key players in the regulation of synaptic network activity, many properties and functions of these proteins remain elusive until now. Especially the precise pre-, extra-, and postsynaptic localization of KARs plays a critical role for neuronal function, as an unbalanced localization of KARs would ultimately lead to dysregulated neuronal excitability. Recently, important advances in the understanding of the regulation of surface expression, function, and agonist-dependent endocytosis of KARs have been achieved. Post-translational modifications like PKC-mediated phosphorylation and SUMOylation have been reported to critically influence surface expression and endocytosis, while newly discovered auxiliary proteins were shown to shape the functional properties of KARs. PMID:25141211

  6. Radioligand binding assay for accurate determination of nuclear retinoid X receptors: A case of triorganotin endocrine disrupting ligands.

    PubMed

    Toporova, Lucia; Macejova, Dana; Brtko, Julius

    2016-07-01

    Nuclear 9-cis retinoic acid receptors (retinoid X receptors, RXR) are promiscuous dimerization partners for a number of nuclear receptors. In the present study, we established a novel in vitro method for quantitative determination of the nuclear retinoid X receptors in rat liver. One type of high affinity and limited capacity RXR specific binding sites with the Ka value ranging from 1.011 to 1.727×10(9)l/mol and the Bmax value ranging from 0.346 to 0.567pmol/mg, was demonstrated. Maximal 9-cis retinoic acid (9cRA) specific binding to nuclear retinoid X receptors was achieved at 20°C, and the optimal incubation time for the 9cRA-RXR complex formation was 120min. From a number of endocrine disruptors, tributyltins and triphenyltins are known as RXR ligands. Our data confirmed the property of tributyltin chloride or triphenyltin chloride to bind to a high affinity and limited capacity RXR binding sites. Described optimal conditions for ligand binding to RXR molecules enabled us to calculate maximal binding capacity (Bmax) and affinity (Ka) values. This study provides an original RXR radioligand binding assay that can be employed for investigation of novel RXR ligands that comprise both drugs and endocrine disruptors. PMID:27153798

  7. Yes and Lyn play a role in nuclear translocation of the epidermal growth factor receptor.

    PubMed

    Iida, M; Brand, T M; Campbell, D A; Li, C; Wheeler, D L

    2013-02-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in human cancers. Cetuximab is an anti-EGFR antibody that has been approved for use in oncology. Previously we investigated mechanisms of resistance to cetuximab using a model derived from the non-small cell lung cancer line NCI-H226. We demonstrated that cetuximab-resistant clones (Ctx(R)) had increased nuclear localization of the EGFR. This process was mediated by Src family kinases (SFKs), and nuclear EGFR had a role in resistance to cetuximab. To better understand SFK-mediated nuclear translocation of EGFR, we investigated which SFK member(s) controlled this process as well as the EGFR tyrosine residues that are involved. Analyses of mRNA and protein expression indicated upregulation of the SFK members Yes (v-Yes-1 yamaguchi sarcoma viral oncogene) and Lyn (v-yes-1 Yamaguchi sarcoma viral-related oncogene homolog) in all Ctx(R) clones. Further, immunoprecipitation analysis revealed that EGFR interacts with Yes and Lyn in Ctx(R) clones, but not in cetuximab-sensitive (Ctx(S)) parental cells. Using RNAi interference, we found that knockdown of either Yes or Lyn led to loss of EGFR translocation to the nucleus. Conversely, overexpression of Yes or Lyn in low nuclear EGFR-expressing Ctx(S) parental cells led to increased nuclear EGFR. Chromatin immunoprecipitation (ChIP) assays confirmed nuclear EGFR complexes associated with the promoter of the known EGFR target genes B-Myb and iNOS. Further, all Ctx(R) clones exhibited upregulation of B-Myb and iNOS at the mRNA and protein levels. siRNAs directed at Yes or Lyn led to decreased binding of EGFR complexes to the B-Myb and iNOS promoters based on ChIP analyses. SFKs have been shown to phosphorylate EGFR on tyrosines 845 and 1101 (Y845 and Y1101), and mutation of Y1101, but not Y845, impaired nuclear entry of the EGFR. Taken together, our findings demonstrate that Yes and Lyn phosphorylate EGFR at Y1101, which influences EGFR

  8. Targeted Identification of SUMOylation Sites in Human Proteins Using Affinity Enrichment and Paralog-specific Reporter Ions*

    PubMed Central

    Lamoliatte, Frederic; Bonneil, Eric; Durette, Chantal; Caron-Lizotte, Olivier; Wildemann, Dirk; Zerweck, Johannes; Wenshuk, Holger; Thibault, Pierre

    2013-01-01

    Protein modification by small ubiquitin-like modifier (SUMO) modulates the activities of numerous proteins involved in different cellular functions such as gene transcription, cell cycle, and DNA repair. Comprehensive identification of SUMOylated sites is a prerequisite to determine how SUMOylation regulates protein function. However, mapping SUMOylated Lys residues by mass spectrometry (MS) is challenging because of the dynamic nature of this modification, the existence of three functionally distinct human SUMO paralogs, and the large SUMO chain remnant that remains attached to tryptic peptides. To overcome these problems, we created HEK293 cell lines that stably express functional SUMO paralogs with an N-terminal His6-tag and an Arg residue near the C terminus that leave a short five amino acid SUMO remnant upon tryptic digestion. We determined the fragmentation patterns of our short SUMO remnant peptides by collisional activation and electron transfer dissociation using synthetic peptide libraries. Activation using higher energy collisional dissociation on the LTQ-Orbitrap Elite identified SUMO paralog-specific fragment ions and neutral losses of the SUMO remnant with high mass accuracy (< 5 ppm). We exploited these features to detect SUMO modified tryptic peptides in complex cell extracts by correlating mass measurements of precursor and fragment ions using a data independent acquisition method. We also generated bioinformatics tools to retrieve MS/MS spectra containing characteristic fragment ions to the identification of SUMOylated peptide by conventional Mascot database searches. In HEK293 cell extracts, this MS approach uncovered low abundance SUMOylated peptides and 37 SUMO3-modified Lys residues in target proteins, most of which were previously unknown. Interestingly, we identified mixed SUMO-ubiquitin chains with ubiquitylated SUMO proteins (K20 and K32) and SUMOylated ubiquitin (K63), suggesting a complex crosstalk between these two modifications. PMID

  9. Cross-talk between the NR3B and NR4A families of orphan nuclear receptors.

    PubMed

    Lammi, Johanna; Rajalin, Ann-Marie; Huppunen, Johanna; Aarnisalo, Piia

    2007-07-27

    Estrogen-related receptors (NR3B family) and Nurr1, NGFI-B, and Nor1 (NR4A family) are orphan nuclear receptors lacking identified natural ligands. The mechanisms regulating their transcriptional activities have remained elusive. We have previously observed that the members of NR3B and NR4A families are coexpressed in certain cell types such as osteoblasts and that the ability of Nurr1 to transactivate the osteopontin promoter is repressed by ERRs. We have now studied the cross-talk between NR3B and NR4A receptors. We show that NR3B and NR4A receptors mutually repress each others' transcriptional activity. The repression involves intact DNA-binding domains and dimerization interfaces but does not result from competition for DNA binding or from heterodimerization. The activation functions of NR3B and NR4A receptors are dispensable for the cross-talk. In conclusion, we report that cross-talk between NR3B and NR4A receptors is a mechanism modulating the transcriptional activities of these orphan nuclear receptors. PMID:17543277

  10. Sumoylated HSP90 is a dominantly inherited plasma cell dyscrasias risk factor

    PubMed Central

    Preuss, Klaus-Dieter; Pfreundschuh, Michael; Fadle, Natalie; Regitz, Evi; Kubuschok, Boris

    2014-01-01

    Posttranslationally modified proteins serve as autoimmunogenic targets in a wide spectrum of autoimmune diseases. Here, we identified a posttranslationally modified paraprotein target (paratargs) in monoclonal gammopathies of undetermined significance (MGUS), multiple myelomas (MM), and Waldenstrom’s macroglobulinemias (WM) using protein macroarrays that were sumoylated and screened for reactivity with paraproteins from MGUS, MM, and WM patients. We found that paraproteins from a proportion of European, African-American, and Japanese patients specifically reacted with the sumoylated heat-shock protein 90 β isoform-α (HSP90-SUMO1, where SUMO indicates small ubiquitin-like modifier), while no reactivity with HSP90-SUMO1 was detected in over 800 controls. HSP90-SUMO1 was present in blood cells from all patients with HSP90-SUMO1–binding paraproteins. We determined that the HSP90-SUMO1 carrier state is autosomal-dominantly inherited and caused by the inability of SUMO peptidase sentrin/SUMO-specific protease 2 (SENP2) to desumoylate HSP90-SUMO1. HSP90-SUMO1 was detected in a small percentage of healthy individuals from all backgrounds; however, only MGUS, MM, and WM patients who were HSP90-SUMO1 carriers produced HSP90-SUMO1–specific paraproteins, suggesting that sumoylated HSP90 promotes pathogenesis of these diseases through chronic antigenic stimulation. This study demonstrates that harboring HSP90-SUMO1 identifies healthy individuals at risk for plasma cell dyscrasias and that dominant inheritance of posttranslationally modified autoantigenic paratargs is one of the strongest molecular defined risk factors for MGUS, MM, and WM. PMID:25485683

  11. Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging

    PubMed Central

    Sapir, Amir; Tsur, Assaf; Koorman, Thijs; Ching, Kaitlin; Mishra, Prashant; Bardenheier, Annabelle; Podolsky, Lisa; Bening-Abu-Shach, Ulrike; Boxem, Mike; Chou, Tsui-Fen; Broday, Limor; Sternberg, Paul W.

    2014-01-01

    Many metabolic pathways are critically regulated during development and aging but little is known about the molecular mechanisms underlying this regulation. One key metabolic cascade in eukaryotes is the mevalonate pathway. It catalyzes the synthesis of sterol and nonsterol isoprenoids, such as cholesterol and ubiquinone, as well as other metabolites. In humans, an age-dependent decrease in ubiquinone levels and changes in cholesterol homeostasis suggest that mevalonate pathway activity changes with age. However, our knowledge of the mechanistic basis of these changes remains rudimentary. We have identified a regulatory circuit controlling the sumoylation state of Caenorhabditis elegans HMG-CoA synthase (HMGS-1). This protein is the ortholog of human HMGCS1 enzyme, which mediates the first committed step of the mevalonate pathway. In vivo, HMGS-1 undergoes an age-dependent sumoylation that is balanced by the activity of ULP-4 small ubiquitin-like modifier protease. ULP-4 exhibits an age-regulated expression pattern and a dynamic cytoplasm-to-mitochondria translocation. Thus, spatiotemporal ULP-4 activity controls the HMGS-1 sumoylation state in a mechanism that orchestrates mevalonate pathway activity with the age of the organism. To expand the HMGS-1 regulatory network, we combined proteomic analyses with knockout studies and found that the HMGS-1 level is also governed by the ubiquitin–proteasome pathway. We propose that these conserved molecular circuits have evolved to govern the level of mevalonate pathway flux during aging, a flux whose dysregulation is associated with numerous age-dependent cardiovascular and cancer pathologies. PMID:25187565

  12. Plasticity of an Ultrafast Interaction between Nucleoporins and Nuclear Transport Receptors

    PubMed Central

    Milles, Sigrid; Mercadante, Davide; Aramburu, Iker Valle; Jensen, Malene Ringkjøbing; Banterle, Niccolò; Koehler, Christine; Tyagi, Swati; Clarke, Jane; Shammas, Sarah L.; Blackledge, Martin; Gräter, Frauke; Lemke, Edward A.

    2015-01-01

    Summary The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited