Science.gov

Sample records for superconducting energy gaps

  1. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212

    SciTech Connect

    Hussain, Zahid; Lee, W.S.; Vishik, I.M.; Tanaka, K.; Lu, D.H.; Sasagawa, T.; Nagaosa, N.; Devereaux, T.P.; Hussain, Z.; Shen, Z.-X.

    2007-05-26

    he superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (Tc) in conventional BCS superconductors. In underdoped high-Tc superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above Tc (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above Tc is one of the central questions in high-Tc research3, 4, 5, 6, 7, 8. Although some experimental evidence suggests that the two gaps are distinct9, 10, 11, 12, 13, 14, 15, 16, 17, 18, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu?O bond direction (nodal direction), we found a gap that opens at Tc and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu?O bond direction (antinodal region) measured in earlier experiments19, 20, 21.

  2. Abrupt Onset of a Second Energy Gap at the Superconducting Transition of Underdoped Bi2212

    SciTech Connect

    Lee, W.S.; Vishik, I.M.; Tanaka, K.; Lu, D.H.; Sasagawa, T.; Nagaosa, N.; Devereaux, T.P.; Hussain, Z.; Shen, Z.X.; /Stanford U., Appl. Phys. Dept. /SLAC, SSRL

    2007-11-21

    The superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature ({Tc}) in conventional BCS superconductors. In underdoped high-{Tc} superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above {Tc}. Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above {Tc} is one of the central questions in high-{Tc} research. Although some experimental evidence suggests that the two gaps are distinct, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} in the momentum space region overlooked in previous measurements. Near the diagonal of Cu-O bond direction (nodal direction), we found a gap that opens at {Tc} and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu-O bond direction (antinodal region) measured in earlier experiments

  3. Quantization of the superconducting energy gap in an intense microwave field

    NASA Astrophysics Data System (ADS)

    Boris, A. A.; Krasnov, V. M.

    2015-11-01

    We study experimentally photon-assisted tunneling in Nb /AlOx/Nb Josephson junctions. We perform a quantitative calibration of the microwave field inside the junction. This allows direct verification of the quantum efficiency of microwave photon detection, which corresponds to tunneling of one electron per one absorbed microwave photon. We observe that voltages of photon-assisted tunneling steps vary both with the microwave power and the tunneling current. However, this variation is not monotonous but staircaselike. The phenomenon is caused by mutual locking of positive and negative step series. A similar locking is observed with Shapiro steps. As a result, the superconducting gap assumes quantized values equal to multiples of the quarter of the photon energy. The quantization is a manifestation of nonequilibrium tuning (suppression or enhancement) of superconductivity by the microwave field.

  4. Anisotropy of the Fermi surface, Fermi velocity, many-body enhancement, and superconducting energy gap in Nb

    NASA Astrophysics Data System (ADS)

    Crabtree, G. W.; Dye, D. H.; Karim, D. P.; Campbell, S. A.; Ketterson, J. B.

    1987-02-01

    The detailed angular dependence of the Fermi radius kF, the Fermi velocity vF(k), the many-body enhancement factor λ(k), and the superconducting energy gap Δ(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas-van Alphen (dHvA) data of Karim, Ketterson, and Crabtree [J. Low Temp. Phys. 30, 389 (1978)], a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained κ, α', and α'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor λ(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of λ(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap Δ(k) is estimated from our results for λ(k), assuming weak anisotropy.

  5. Model Evidence of a Superconducting State with a Full Energy Gap in Small Cuprate Islands

    NASA Astrophysics Data System (ADS)

    Black-Schaffer, Annica M.; Golubev, Dmitri S.; Bauch, Thilo; Lombardi, Floriana; Fogelström, Mikael

    2013-05-01

    We investigate subdominant order parameters stabilizing at low temperatures in nanoscale high-Tc cuprate islands, motivated by the recent observation of a fully gapped state in nanosized YBa2Cu3O7-δ [D. Gustafsson et al., Nature Nanotech. 8, 25 (2013)]. Using complementary quasiclassical and tight-binding Bogoliubov-de Gennes methods, we show on distinctly different properties dependent on the symmetry being dx2-y2+is or dx2-y2+idxy. We find that a surface-induced dx2-y2+is phase creates a global spectroscopic gap which increases with an applied magnetic field, consistent with experimental observation.

  6. Phonon-induced enhancements of the energy gap and critical current in superconducting aluminum

    SciTech Connect

    Seligson, D.

    1983-05-01

    8 to 10 GHz phonons were generated by piezoelectric transduction of a microwave and by means of a quartz delay line, were allowed to enter the aluminum only after the microwaves had long since disappeared. The maximum enhancements detected were (deltaT/T/sub c/) = -0.07, for i/sub c/ and (deltaT/T/sub c/) = -0.03 for ..delta... The power- and temperature-dependence (0.82 less than or equal to T/T/sub c/ less than or equal to 0.994) of the enhancements were compared with the prediction of a theory given by Eliashberg. The gap-enhancement was in good agreement with the theory only for low input lower. The critical current measurements are predicted to be in rough agreement with the ..delta.. measurements but this was not observed. The magnitude of the critical current enhancements was typically more than twice the observed gap enhancements. The measured critical current enhancement was relatively independent of temperature whereas the gap enhancement decreased rapidly as the temperature was lowered.

  7. Single-gap superconductivity in β -B i2Pd

    NASA Astrophysics Data System (ADS)

    Kačmarčík, J.; Pribulová, Z.; Samuely, T.; Szabó, P.; Cambel, V.; Šoltýs, J.; Herrera, E.; Suderow, H.; Correa-Orellana, A.; Prabhakaran, D.; Samuely, P.

    2016-04-01

    The β -B i2Pd compound has been proposed as another example of a multigap superconductor [Imai et al., J. Phys. Soc. Jpn. 81, 113708 (2012), 10.1143/JPSJ.81.113708]. Here, we report on measurements of several important physical quantities capable of showing a presence of multiple energy gaps on our superconducting single crystals of β -B i2Pd with the critical temperature Tc close to 5 K. The calorimetric study via a sensitive ac technique shows a sharp anomaly at the superconducting transition, however only a single energy gap is detected. Also other characteristics inferred from calorimetric measurements as the field dependence of the Sommerfeld coefficient and the temperature and angular dependence of the upper critical magnetic field point unequivocally to standard single s -wave gap superconductivity. The Hall-probe magnetometry provides the same result from the analysis of the temperature dependence of the lower critical field. A single-gapped BCS density of states is detected by the scanning tunneling spectroscopy measurements. Then, the bulk as well as the surface sensitive probes evidence a standard conventional superconductivity in this system where the topologically protected surface states have been recently detected by angle-resolved photoemission spectroscopy [Sakano et al., Nat. Commun. 6, 8595 (2015)., 10.1038/ncomms9595].

  8. Development of Tunneling Spectroscopy Apparatus for Kelvin and Sub-Kelvin Measurements of Superconducting Energy Gaps by Multi-disciplinary students at a Liberal Arts University

    NASA Astrophysics Data System (ADS)

    Eckhardt, Matt

    2014-03-01

    Tunneling spectroscopy is an important technique used to measure the superconducting energy gap, a feature that is at the heart of the nature of superconductivity in various materials. In this presentation, we report the progress and results in developing high-resolution tunneling spectroscopy experimental platforms in a helium three cryostat, a 3 Kelvin cryocooler and a helium dip-tester. The experimental team working in a liberal arts university is a multi-disciplinary group consisting of one physics major, chemisty majors and a biology major. Students including non-physics majors learned and implemented current-voltage measurement techniques, vacuum system engineering, built electronic boxes and amplifier circuits from scratch, built custom multi-conductor cables for thermometry and current-voltage measurements, and performed conductance measurements. We report preliminary results. Acknowledgments: We acknowledge support from National Science Foundation Grant # DMR-1206561.

  9. Measurement of the superconducting energy gap in La-Ba-Cu oxide and La-Sr-Cu oxide

    NASA Astrophysics Data System (ADS)

    Sulewski, P. E.; Sievers, A. J.; Russek, S. E.; Hallen, H. D.; Lathrop, D. K.

    1987-04-01

    Far-infrared (FIR) reflectivity measurements on sintered pressed powder samples of La-Ba-Cu oxide and La-Sr-Cu oxide are reported. The best samples show fairly sharp transitions to zero measurable resistance with a transition midpoint of 28 K for the Ba alloy and 36 K for the Sr alloy. The FIR measurements reveal an energy gap below Tc with, depending on the measurement criterion used, values of 2Delta/kBTc of 1.3-1.95 for La-Ba-Cu oxide and 1.6-2.7 for La-Sr-Cu oxide, which are lower than expected for a BCS superconductor.

  10. The soft superconducting gap in semiconductor Majorana nanowires

    NASA Astrophysics Data System (ADS)

    Takei, So; Fregoso, Benjamin; Hui, Hoi-Yin; Lobos, Alejandro; Das Sarma, Sankar; Condensed Matter Theory Center; Joint Quantum Institute Team

    2013-03-01

    We theoretically consider the mysterious topic of the soft gap in the tunneling conductance of the proximity-induced superconductivity in a semiconductor-superconductor hybrid structure, where the observation of a zero-bias conductance peak has created considerable excitement because of its possible connection with the elusive zero-energy Majorana mode. The observed experimental superconducting tunneling gap in the semiconductor nanowire looks v-shaped with considerable subgap conductance even at very low temperatures in sharp contrast to the theoretically expected hard BCS gap with exponentially suppressed subgap conductance. We systematically study, by solving the appropriate BdG equations both numerically and analytically, a number of physical mechanisms (e.g. magnetic and non-magnetic disorder, finite temperature, dissipative Cooper pair breaking, interface fluctuations), which could, in principle, lead to a soft gap, finding that only the interface fluctuation effect is a quantitatively and qualitatively viable mechanism that is consistent with the experimental observations. Our work indicates that improving the quality of the superconductor-semiconductor interface would go a long way in enhancing the gap in the hybrid structures being used for studying the Majorana mode. Funding support from DARPA QuEST, JQI-NSF-PFC and Microsoft Q.

  11. Induced gap in topological materials from the superconducting proximity effect

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Kai; Cole, William

    Topological superconductivity has been of considerable interest lately, with several proposed experimental realizations in solid state systems. A heterostructure of s-wave superconductor and 3D topological insulator is one of the more promising platforms, with topological superconductivity realized on the ''naked'' surface of the topological insulator through the superconducting proximity effect. We theoretically study the induced superconducting gap on the naked surface. Adjusting the Fermi level above the bulk gap (which is the case in experiments), our results for the induced superconducting gap are in agreement with that probed in thin topological insulators (<10nm) in the experiments (Nat. Phys. 10, 943-950 (2014) and Phys. Rev. Lett. 112, 217001 (2014)). We further predict the gap in thick topological insulators (>10nm). This work is supported by LPS-MPO-CMTC, Microsoft Q, and JQI-NSF-PFC.

  12. Superconducting energy gap and antiferromagnetic spin fluctuations in the superconductor YNi2B2C: An NMR study

    NASA Astrophysics Data System (ADS)

    Kohara, T.; Oda, T.; Ueda, K.; Yamada, Y.; Mahajan, A.; Elankumaran, K.; Hossian, Zakir; Gupta, L. C.; Nagarajan, R.; Vijayaraghavan, R.; Mazumdar, Chandan

    1995-02-01

    Pulsed NMR studies of 11B and 89Y have been carried out in the recently discovered quaternary borocarbide superconductor YNi2B2C (Tc=15.5 K). These results are as follows: (a) Superconducting state: Though there is only one crystallographic B site in this structure, we have observed two 11B resonances in the superconducting state. One signal comes from a superconducting region, and the other from a normal-metal region. As for the former signal, the nuclear relaxation rate, T-11 decreases drastically with further decrease of temperature with no appreciable enhancement just below Tc, and it starts to saturate below 6 K. (b) Normal state: (T1T)-1 increases as temperature decreases. We interpret this temperature dependence as arising due to two-dimensional or three-dimensional antiferromagnetic spin fluctuations (structure of YNi2B2C is tetragonal and highly anisotropic).

  13. Theoretical approach to resonant inelastic x-ray scattering in iron-based superconductors at the energy scale of the superconducting gap.

    PubMed

    Marra, Pasquale; van den Brink, Jeroen; Sykora, Steffen

    2016-01-01

    We develop a phenomenological theory to predict the characteristic features of the momentum-dependent scattering amplitude in resonant inelastic x-ray scattering (RIXS) at the energy scale of the superconducting gap in iron-based super-conductors. Taking into account all relevant orbital states as well as their specific content along the Fermi surface we evaluate the charge and spin dynamical structure factors for the compounds LaOFeAs and LiFeAs, based on tight-binding models which are fully consistent with recent angle-resolved photoemission spectroscopy (ARPES) data. We find a characteristic intensity redistribution between charge and spin dynamical structure factors which discriminates between sign-reversing and sign-preserving quasiparticle excitations. Consequently, our results show that RIXS spectra can distinguish between s± and s++ wave gap functions in the singlet pairing case. In addition, we find that an analogous intensity redistribution at small momenta can reveal the presence of a chiral p-wave triplet pairing. PMID:27151253

  14. Theoretical approach to resonant inelastic x-ray scattering in iron-based superconductors at the energy scale of the superconducting gap

    PubMed Central

    Marra, Pasquale; van den Brink, Jeroen; Sykora, Steffen

    2016-01-01

    We develop a phenomenological theory to predict the characteristic features of the momentum-dependent scattering amplitude in resonant inelastic x-ray scattering (RIXS) at the energy scale of the superconducting gap in iron-based super-conductors. Taking into account all relevant orbital states as well as their specific content along the Fermi surface we evaluate the charge and spin dynamical structure factors for the compounds LaOFeAs and LiFeAs, based on tight-binding models which are fully consistent with recent angle-resolved photoemission spectroscopy (ARPES) data. We find a characteristic intensity redistribution between charge and spin dynamical structure factors which discriminates between sign-reversing and sign-preserving quasiparticle excitations. Consequently, our results show that RIXS spectra can distinguish between s± and s++ wave gap functions in the singlet pairing case. In addition, we find that an analogous intensity redistribution at small momenta can reveal the presence of a chiral p-wave triplet pairing. PMID:27151253

  15. Temperature dependence of superconducting gap and penetration depth for MgB2

    NASA Astrophysics Data System (ADS)

    Karakaya, Seniye; Ozbas, Omer

    2012-09-01

    In this study, we have investigated both the temperature dependence of magnetic penetration depth and superconducting energy gap for magnesium diboride (MgB2) by considering several models such as Bardeen-Cooper-Schrieffer (BCS), two fluids and two band Eliashberg model. These models are compared with each others and available literature results. Several studies reported that MgB2 has two different superconducting gaps. That is, the multi-band superconductor MgB2 exhibits two dimensional (2D) ?-band and three-dimensional (3D) ?-band superconductivity and have the remarkably high critical temperature (Tc= 39K) all of the metallic superconductors. So, recently it has attracted great attention. The superconductivity in MgB2 has been analyzed by using two band Eliashberg model. We also have calculated the temperature dependence of the superconducting gaps (?? and ??) and compared them with the available experimental data and the other theoretical predictions.

  16. Superconducting dark energy

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Dong; Harko, Tiberiu

    2015-04-01

    Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a nonminimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolutions of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.

  17. The effects of Coulomb interactions on the superconducting gaps in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Leong, Zhidong; Phillips, Philip

    2015-03-01

    Recent ARPES measurements on Co-doped LiFeAs report a large and robust superconducting gap on a band below the chemical potential. We will show that, unlike a conventional BCS theory, a multiband system with strong interband Coulomb interactions can explain the observations. We use a two-band model consisting of a superconducting electron band and a hole band that is below the chemical potential. The two bands are coupled via interband Coulomb interactions. Using Eliashberg theory, we found that superconductivity in the electron band induces a large superconducting gap in the hole band. Furthermore, the repulsive nature of the Coulomb interactions gives the induced gap an opposite sign, corresponding to an s+/- gap symmetry. Unlike other families of iron pnictides, the gap symmetry of LiFeAs has not been ascertained experimentally. The implications for the superconducting mechanism in iron pnictides will be discussed. Z. Leong is supported by a scholarship from the Agency of Science, Technology and Research. P. Phillips is supported by the Center for Emergent Superconductivity, a DOE Energy Frontier Research Center, Grant No. DE-AC0298CH1088.

  18. Single gap s-wave superconductivity in Nb2PdS5

    NASA Astrophysics Data System (ADS)

    Shruti; Goyal, R.; Awana, V. P. S.; Patnaik, S.

    2016-05-01

    Superconducting order parameter and its symmetry are important parameters towards deciphering the pairing mechanism in newly discovered superconducting systems. We report a study on penetration depth measurement on Nb2PdS5 that has recently been reported with extremely high upper critical field with possible triplet pairing mechanism. Our data show that at low temperatures the change in penetration depth Δλ is best fitted with BCS s-wave model for single gap with zero-temperature value of the superconducting energy gap Δ0 = 1.05 meV, corresponding to the ratio 2Δ0/kBTc = 3.9 ± 0.18. The superfluid density in the entire temperature range is well described by single gap with gap ratio 2Δ0/kBTc = 4.1 ± 0.13 for λ(0) = 225 nm.

  19. Momentum dependence of the superconducting gap and in-gap states in MgB2 multiband superconductor

    DOE PAGESBeta

    Mou, Daixiang; Jiang, Rui; Taufour, Valentin; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2015-06-29

    We use tunable laser-based angle-resolved photoemission spectroscopy to study the electronic structure of the multiband superconductor MgB2. These results form the baseline for detailed studies of superconductivity in multiband systems. We find that the magnitude of the superconducting gap on both σ bands follows a BCS-like variation with temperature with Δ0 ~ 7meV. Furthermore, the value of the gap is isotropic within experimental uncertainty and in agreement with a pure s-wave pairing symmetry. We observe in-gap states confined to kF of the σ band that occur at some locations of the sample surface. As a result, the energy of thismore » excitation, ~ 3 meV, was found to be somewhat larger than the previously reported gap on π Fermi sheet and therefore we cannot exclude the possibility of interband scattering as its origin.« less

  20. Noise and Bandwidth Measurements of Diffusion-Cooled Nb Hot-Electron Bolometer Mixers at Frequencies Above the Superconductive Energy Gap

    NASA Technical Reports Server (NTRS)

    Wyss, R. A.; Karasik, B. S.; McGrath, W. R.; Bumble, B.; LeDuc, H.

    1999-01-01

    Diffusion-cooled Nb hot-electron bolometer (HEB) mixers have the potential to simultaneously achieve high intermediate frequency (IF) bandwidths and low mixer noise temperatures for operation at THz frequencies (above the superconductive gap energy). We have measured the IF signal bandwidth at 630 GHz of Nb devices with lengths L = 0.3, 0.2, and 0.1 micrometer in a quasioptical mixer configuration employing twin-slot antennas. The 3-dB EF bandwidth increased from 1.2 GHz for the 0.3 gm long device to 9.2 GHz for the 0.1 gm long device. These results demonstrate the expected 1/L squared dependence of the IF bandwidth at submillimeter wave frequencies for the first time, as well as the largest EF bandwidth obtained to date. For the 0.1 gm device, which had the largest bandwidth, the double sideband (DSB) noise temperature of the receiver was 320-470 K at 630 GHz with an absorbed LO power of 35 nW, estimated using the isothermal method. A version of this mixer with the antenna length scaled for operation at 2.5 THz has also been tested. A DSB receiver noise temperature of 1800 plus or minus 100 K was achieved, which is about 1,000 K lower than our previously reported results. These results demonstrate that large EF bandwidth and low-noise operation of a diffusion-cooled HEB mixer is possible at THz frequencies with the same device geometry.

  1. Dome – like variation of the superconducting gap anisotropy in Fe-based superconductors

    SciTech Connect

    Prozorov, R.; Cho, K.; Kim, H.; Tanatar, M. A.

    2013-07-17

    Experiments performed on different iron-based superconductors suggest a variety of possible structures of the superconducting energy gap, both nodeless and nodal. To understand the pairing mechanisms, it is important to identify common features in the behavior of different materials. Measurements of the temperature - dependent London penetration depth provide important information on the structure of the superconducting gap. We show that despite significant differences between different iron - based superconductors, there is a universal trend: the gap is least anisotropic at the optimal doping and its anisotropy increases upon the departure towards underdoped and overdoped ends of the ''superconducting dome''. As a result, this trend is not related to the presence of the long-range magnetic order in the underdoped state.

  2. Dome – like variation of the superconducting gap anisotropy in Fe-based superconductors

    DOE PAGESBeta

    Prozorov, R.; Cho, K.; Kim, H.; Tanatar, M. A.

    2013-07-17

    Experiments performed on different iron-based superconductors suggest a variety of possible structures of the superconducting energy gap, both nodeless and nodal. To understand the pairing mechanisms, it is important to identify common features in the behavior of different materials. Measurements of the temperature - dependent London penetration depth provide important information on the structure of the superconducting gap. We show that despite significant differences between different iron - based superconductors, there is a universal trend: the gap is least anisotropic at the optimal doping and its anisotropy increases upon the departure towards underdoped and overdoped ends of the ''superconducting dome''.more » As a result, this trend is not related to the presence of the long-range magnetic order in the underdoped state.« less

  3. Far-infrared Optical Conductivity Gap in Superconducting MgB2 Films

    NASA Astrophysics Data System (ADS)

    Carnahan, M. A.; Kaindl, R. A.; Chemla, D. S.; Christen, H. M.; Zhai, H. Y.; Paranthaman, M.; Lowndes, D. H.

    2002-03-01

    The prospect of unconventional coupling in the superconductor MgB2 motivates experiments which probe the density of states around the superconducting gap. The frequency and temperature dependent optical conductivity contains important spectroscopic information about the fundamental gap excitations as well as providing a contactless measure of the superconducting condensate. Here we present the first measurements of the far-infrared conductivity of MgB2 over a broad frequency range which spans excitations across its lowest-energy superconducting gap [1]. Thin films of MgB2 are grown on Al_2O3 substrates through e-beam evaporation and subsequent ex-situ annealing [2]. Both the real and imaginary parts of the conductivity are obtained - without recourse to Kramers-Kronig transformations - from terahertz time-domain spectroscopy. Below Tc we observe a depletion of oscillator strength due to the opening of a superconducting gap. We find a gap size of 2? ? 5 meV. This result, a value which is only half that expected in weak-coupling BCS theory, disfavors a conventional isotropic single-gap scenario. [1] R. Kaindl et al., Phys. Rev. Lett. (to appear). [2] M. Paranthaman et al., Appl. Phys. Lett. 78, 3669 (2001).

  4. Superconducting magnetic energy storage

    SciTech Connect

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  5. Superconducting Magnetic Energy Storage

    SciTech Connect

    Hassenzahl, W.

    1989-03-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high Tc materials on SMES is discussed.

  6. Fermi surfaces and energy gaps of high-temperature superconductors

    SciTech Connect

    Shen, Z.X.; Dessau, D.S.

    1994-12-31

    In this short paper, the authors describe their recent experimental results from high-temperature superconductors. In the normal state, the data reveals interesting features of the Fermi surfaces and low energy excitations near the Fermi level. In the superconducting state, the data shows a very strong anisotropy in the superconducting gap.

  7. Nodal to nodeless superconducting energy-gap structure change concomitant with Fermi-surface reconstruction in the heavy-fermion compound CeCoIn5

    DOE PAGESBeta

    Kim, Hyunsoo; Tanatar, M. A.; Flint, R.; Petrovic, C.; Hu, Rongwei; White, B. D.; Lum, I. K.; Maple, M. B.; Prozorov, R.

    2015-01-15

    The London penetration depth λ(T) was measured in single crystals of Ce1–xRxCoIn₅, R=La, Nd, and Yb down to Tmin ≈ 50 mK (Tc/Tmin ~50) using a tunnel-diode resonator. In the cleanest samples Δλ(T) is best described by the power law, Δλ(T) ∝ Tn, with n ~ 1, consistent with line nodes. Substitutions of Ce with La, Nd, and Yb lead to similar monotonic suppressions of Tc, however, the effects on Δλ(T) differ. While La and Nd dopings lead to increase of the exponent n and saturation at n ~ 2, as expected for a dirty nodal superconductor, Yb doping leadsmore » to n > 3, suggesting a change from nodal to nodeless superconductivity. As a result, this superconducting gap structure change happens in the same doping range where changes of the Fermi surface topology were reported, implying that the nodal structure and Fermi surface topology are closely linked.« less

  8. Superconducting energy storage

    SciTech Connect

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  9. Energy-gap spectroscopy of superconductors using a tunneling microscope

    NASA Technical Reports Server (NTRS)

    Le Duc, H. G.; Kaiser, W. J.; Stern, J. A.

    1987-01-01

    A unique scanning tunneling microscope (STM) system has been developed for spectroscopy of the superconducting energy gap. High-resolution control of tunnel current and voltage allows for measurement of superconducting properties at tunnel resistance levels 100-1000 greater than that achieved in prior work. The previously used STM methods for superconductor spectroscopy are compared to those developed for the work reported here. Superconducting energy-gap spectra are reported for three superconductors, Pb, PbBi, and NbN, over a range of tunnel resistance. The measured spectra are compared directly to theory.

  10. Superconducting energy storage magnet

    NASA Technical Reports Server (NTRS)

    Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)

    1993-01-01

    A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.

  11. Hard proximity induced superconducting gap in semiconductor - superconductor epitaxial hybrids

    NASA Astrophysics Data System (ADS)

    Jespersen, Thomas; Krogstrup, Peter; Ziino, Nino; Albrecht, Sven; Chang, Willy; Madsen, Morten; Johnson, Erik; Kuemmeth, Ferdinand; Nygård, Jesper; Marcus, Charles

    2015-03-01

    We present molecular beam epitaxy grown InAs semiconductor nanowires capped with a shell of aluminum (superconductor). The hybrid wires are grown without breaking vacuum, resulting in an epitaxial interface between the two materials as demonstrated by detailed transmission electron microscopy and simulations. The domain matching at the interface is discussed. Incorporating the epitaxial nanowire hybrids in electrical devices we performed detailed tunneling spectroscopy of the proximity induced superconducting gap in the InAs core at 20 mK. We find the sub-gap conductance being at least a factor 200 smaller than the normal state value (gap hardness). This is a significant improvement compared to devices fabricated by conventional lithographic methods and metal evaporation showing no more than a factor of ~ 5 . The epitaxial hybrids seem to solve the soft gap problem associated with the use of nanowire hybrids for future applications in topological quantum information based on Majorana zero modes. Research supported by Microsoft Station Q, Danish National Research Foundation, Villum Foundation, Lundbeck Foundation, and the European Commission.

  12. Design Tool for Liquid-Nitrogen Gaps in Superconducting Apparatus

    SciTech Connect

    Pace, Marshall O; Sauers, Isidor; James, David Randy; Tuncer, Enis; Polyzos, Georgios

    2011-01-01

    For designers of high temperature superconducting equipment with liquid nitrogen as a dielectric, an expedient universal curve is sought that provides breakdown strength for a specified class of electrode shapes, with any practical sizes of electrodes and gap; thus the universal curve fills in missing experimental data. Universal breakdown strength curves at pressures of or slightly above 100 kPa, are being developed for AC, DC or impulse stress for the class with sphere-sphere, plane-plane and sphere-plane gaps, with three independent parameters: the size of each electrode and gap. A user can normalize his parameters and find the corresponding breakdown strength, even though no data were available for his exact dimensions. For AC and DC stresses the geometrical effects of stressed area/volume are incorporated from most published AC and DC experimental data of the last 50 years, by plotting breakdown field versus new geometrical quantities, such that all data fall approximately on or near one normalized universal curve. This avoids the usual difficult task of calculating stressed area and volume effects on the breakdown values for the graph ordinate. For impulse stress a more traditional plot suffices to produce a universal curve. This suggests that area/volume effects might not be so important with impulse stress. If the method proves reliable, it may be possible to determine design parameters for a broad range of geometries, help unify seemingly disparate breakdown data in the literature, and provide easily used, practical guidance for designers.

  13. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  14. Effects of Coulomb interactions on the superconducting gaps in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Leong, Zhidong; Phillips, Philip

    2016-04-01

    Recent angle-resolved photoemission spectroscopy measurements of Co-doped LiFeAs report a large and robust superconducting gap on the Γ -centered hole band that lies 8 meV below the Fermi level. We show that, unlike a conventional superconductor described by BCS theory, a multiband system with strong interband Coulomb interactions can explain these observations. We model LiFeAs with a five-band model in which the shallow hole band is coupled with the other bands by only Coulomb interactions. Using Eliashberg theory, we find reasonable interaction parameters that reproduce the Tc and all five gaps of LiFeAs. The energy independence of the Coulomb interactions then ensures the robustness of the gap induced on the shallow band. Furthermore, due to the repulsive nature of the Coulomb interactions, the gap changes sign between the shallow band and the other hole pockets, corresponding to an unconventional s± gap symmetry. Unlike other families of iron-based superconductors, the gap symmetry of LiFeAs has not been ascertained experimentally. The experimental implications of this sign-changing state are discussed.

  15. Ultrafast quenching of electron-boson interaction and superconducting gap in a cuprate superconductor.

    PubMed

    Zhang, Wentao; Hwang, Choongyu; Smallwood, Christopher L; Miller, Tristan L; Affeldt, Gregory; Kurashima, Koshi; Jozwiak, Chris; Eisaki, Hiroshi; Adachi, Tadashi; Koike, Yoji; Lee, Dung-Hai; Lanzara, Alessandra

    2014-01-01

    Ultrafast spectroscopy is an emerging technique with great promise in the study of quantum materials, as it makes it possible to track similarities and correlations that are not evident near equilibrium. Thus far, however, the way in which these processes modify the electron self-energy--a fundamental quantity describing many-body interactions in a material--has been little discussed. Here we use time- and angle-resolved photoemission to directly measure the ultrafast response of self-energy to near-infrared photoexcitation in high-temperature cuprate superconductor. Below the critical temperature of the superconductor, ultrafast excitations trigger a synchronous decrease of electron self-energy and superconducting gap, culminating in a saturation in the weakening of electron-boson coupling when the superconducting gap is fully quenched. In contrast, electron-boson coupling is unresponsive to ultrafast excitations above the critical temperature of the superconductor and in the metallic state of a related material. These findings open a new pathway for studying transient self-energy and correlation effects in solids. PMID:25222844

  16. Superconducting energy gap and c-axis plasma frequency of (Nd,Sm)FeAsO0.82F0.18 superconductors from infrared ellipsometry.

    PubMed

    Dubroka, A; Kim, K W; Rössle, M; Malik, V K; Drew, A J; Liu, R H; Wu, G; Chen, X H; Bernhard, C

    2008-08-29

    We present far-infrared ellipsometric measurements of polycrystalline samples of the pnictide superconductor RFeAsO0.82F0.18 (R=Nd and Sm). We find evidence that the electronic properties are strongly anisotropic such that the optical spectra are dominated by the weakly conducting c-axis response similar to the cuprate high-temperature superconductors. We deduce an upper limit of the c-axis superconducting plasma frequency of omega pl,c(SC)< or =260 cm(-1) corresponding to a lower limit of the c-axis magnetic penetration depth of lambda c > or =6 microm and lambda c/lambda ab > or =30 as compared to lambda ab=185 nm from muon spin rotation [A. Drew, arXiv:0805.1042 [Phys. Rev. Lett. (to be published)

  17. Properties of the Superconducting Gap Ratio in the Van Hove Scenario of HIGH-Tc Oxides

    NASA Astrophysics Data System (ADS)

    Bechlaghem, A.; Bourbie, D.

    The superconducting gap ratio R = 2Δ(0)/kBTc has been studied in the context when the Fermi level is close to the van Hove singularity. In this approach, we consider the interaction is related to the phonons at low temperature but at high temperature, it is relevant to the magnetic excitations. Our results show that the superconducting gap ratio R takes large values in qualitative agreement with experimental data.

  18. Review of new energy. Superconductivity

    NASA Astrophysics Data System (ADS)

    1989-03-01

    An summary is given of the research and development on high temperature superconductivity. It begins with a description of superconducting state and enumerates chemical elements, in particular oxides, associated with high temperature superconductivity. A brief account is next given on the progress of research and development on the present subject. Some of well known topics associated with superconductivity are described shortly, namely Meissner effect, quenching (transition to normal conducting state from superconducting one), Perovskite structure, positive hole earrier, Josephson effect, SQUID (superconducting quantum interference device) and so on. Various devices or technology are enumerated, to which superconductivity, in particular high temperature one, is proposed to apply, namely electromagnet, MRI (magnetic resonance imaging), particle accelerator, linear motor car, electric power storage and so on. The summary is finished with a future outlook.

  19. Passive energy dump for superconducting coil protection

    DOEpatents

    Luton, J.N. Jr.

    1973-01-16

    The patent describes a passive resistance type energy dump for the protection of the coils of a superconducting magnet. Insertion heaters are immersed in a rigid container filled with a fusible alloy. The energy dump is connected across the coils of the superconducting magnet wherein individual heater elements are connected singly to the windings or otherwise according to the energy dumping requirements upon transition of the magnet to a normal state.

  20. Nodal superconducting gap in tetragonal FeS

    NASA Astrophysics Data System (ADS)

    Xing, Jie; Lin, Hai; Li, Yufeng; Li, Sheng; Zhu, Xiyu; Yang, Huan; Wen, Hai-Hu

    2016-03-01

    Low-temperature specific heat has been measured in FeS superconductor with the transition temperature of 4.55 K. It is found that the low-temperature electronic specific heat Ce/T can be fitted to a linear relation in the low-temperature region, but fails to be described by an exponential relation as expected by an s -wave gap. We try fittings to the data with different gap structures and find that a model with one or two nodal gaps can fit the data. Under a magnetic field, the field induced specific heat coefficient Δ γe=[Ce(H ) -Ce(0 ) ] /T shows the Volovik relation Δ γe(H ) ∝√{H } , suggesting the presence of nodal gap(s) in this material.

  1. Pseudogap from ARPES experiment: Three gaps in cuprates and topological superconductivity (Review Article)

    NASA Astrophysics Data System (ADS)

    Kordyuk, A. A.

    2015-05-01

    A term first coined by Mott back in 1968 a "pseudogap" is the depletion of the electronic density of states at the Fermi level, and pseudogaps have been observed in many systems. However, since the discovery of the high-temperature superconductors (HTSC) in 1986, the central role attributed to the pseudogap in these systems has meant that by many researchers now associate the term pseudogap exclusively with the HTSC phenomenon. Recently, the problem has got a lot of new attention with the rediscovery of two distinct energy scales ("two-gap scenario") and charge density waves patterns in the cuprates. Despite many excellent reviews on the pseudogap phenomenon in HTSC, published from its very discovery up to now, the mechanism of the pseudogap and its relation to superconductivity are still open questions. The present review represents a contribution dealing with the pseudogap, focusing on results from angle resolved photoemission spectroscopy (ARPES) and ends up with the conclusion that the pseudogap in cuprates is a complex phenomenon which includes at least three different "intertwined" orders: spin and charge density waves and preformed pairs, which appears in different parts of the phase diagram. The density waves in cuprates are competing to superconductivity for the electronic states but, on the other hand, should drive the electronic structure to vicinity of Lifshitz transition, that could be a key similarity between the superconducting cuprates and iron-based superconductors. One may also note that since the pseudogap in cuprates has multiple origins there is no need to recoin the term suggested by Mott.

  2. High speed superconducting flywheel system for energy storage

    NASA Astrophysics Data System (ADS)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  3. Superconducting gap in BaFe2(As1 -xPx )2 from temperature-dependent transient optical reflectivity

    NASA Astrophysics Data System (ADS)

    Pogrebna, A.; Mertelj, T.; Ye, Z. R.; Feng, D. L.; Mihailovic, D.

    2015-10-01

    Temperature and fluence dependence of the 1.55-eV optical transient reflectivity in BaFe2(As1 -xPx )2 was measured and analyzed in the low and high excitation density limit. The effective magnitude of the superconducting gap of ˜5 meV obtained from the low-fluence-data bottleneck model fit is consistent with the angle-resolved photoemission spectroscopy results for the γ - and β -hole Fermi surfaces. The superconducting state nonthermal optical destruction energy was determined from the fluence dependent data. The planar optical destruction energy density scales well with Tc2 and is found to be similar in a number of different layered superconductors.

  4. Nodeless superconducting gaps in noncentrosymmetric superconductor PbTaSe2 with topological bulk nodal lines

    NASA Astrophysics Data System (ADS)

    Wang, M. X.; Xu, Y.; He, L. P.; Zhang, J.; Hong, X. C.; Cai, P. L.; Wang, Z. B.; Dong, J. K.; Li, S. Y.

    2016-01-01

    Low-temperature thermal conductivity measurements were performed on single crystal of PbTaSe2, a noncentrosymmetric superconductor with topological bulk nodal lines in the electronic band structure. It is found that the residual linear term ?0/T is negligible in zero magnetic field. Furthermore, the field dependence of ?0/T exhibits an S -shaped curve. These results suggest that PbTaSe2 has multiple nodeless superconducting gaps. Therefore, the spin-triplet state with gap nodes does not play an important role in this noncentrosymmetric superconductor with strong spin-orbital coupling. The fully gapped superconducting state also meets the requirement of a topological superconductor, if PbTaSe2 is indeed the case.

  5. Fully gapped superconductivity in In-doped topological crystalline insulator Pb0.5Sn0.5Te

    NASA Astrophysics Data System (ADS)

    Du, Guan; Du, Zengyi; Fang, Delong; Yang, Huan; Zhong, R. D.; Schneeloch, J.; Gu, G. D.; Wen, Hai-Hu

    2015-07-01

    Superconductors derived from topological insulators and topological crystalline insulators by chemical doping have long been considered to be candidates as topological superconductors. Pb0.5Sn0.5Te is a topological crystalline insulator with mirror symmetry protected surface states on (001)-, (011)-, and (111)-oriented surfaces. The superconductor (Pb0.5Sn0.5 )0.7In0.3Te is produced by In doping in Pb0.5Sn0.5Te , and is thought to be a topological superconductor. Here we report scanning tunneling spectroscopy measurements of the superconducting state as well as the superconducting energy gap in (Pb0.5Sn0.5 )0.7In0.3Te on a (001)-oriented surface. The spectrum can be well fitted by an anisotropic s -wave gap function of Δ (θ )=0.72 +0.18 cos4 θ meV using Dynes model. The results show that the superconductor seems to be a fully gapped one without any in-gap states, in contradiction with the expectation of a topological superconductor.

  6. Fully gapped superconductivity in In-doped topological crystalline insulator Pb0.5Sn0.5Te

    DOE PAGESBeta

    Du, Guan; Gu, G. D.; Du, Zengyi; Fang, Delong; Yang, Huan; Zhong, R. D.; Schneeloch, J.; Wen, Hai -Hu

    2015-07-27

    In this study, superconductors derived from topological insulators and topological crystalline insulators by chemical doping have long been considered to be candidates as topological superconductors. Pb0.5Sn0.5Te is a topological crystalline insulator with mirror symmetry protected surface states on (001)-, (011)-, and (111)-oriented surfaces. The superconductor (Pb0.5Sn0.5)0.7In0.3Te is produced by In doping in Pb0.5Sn0.5Te, and is thought to be a topological superconductor. Here we report scanning tunneling spectroscopy measurements of the superconducting state as well as the superconducting energy gap in (Pb0.5Sn0.5)0.7In0.3Te on a (001)-oriented surface. The spectrum can be well fitted by an anisotropic s-wave gap function of Δ =more » 0.72 + 0.18cos4θ meV using Dynes model. The results show that the superconductor seems to be a fully gapped one without any in-gap states, in contradiction with the expectation of a topological superconductor.« less

  7. Observation of multiple superconducting gaps in Fe1+yTe1-xSex via a nanoscale approach to point-contact spectroscopy

    NASA Astrophysics Data System (ADS)

    Peng, Haibing; De, Debtanu; Wu, Zheng; Diaz-Pinto, Carlos

    2012-11-01

    We report a novel experimental approach to point-contact Andreev reflection spectroscopy with diagnostic capability via a unique design for nanoscale normal metal/superconductor devices with excellent thermomechanical stability, and have employed this method to unveil the existence of two superconducting energy gaps in iron chalcogenide Fe1+yTe1-xSex, which is crucial for understanding its pairing mechanism. This work opens up new opportunities to study gap structures in superconductors and elemental excitations in solids.

  8. Superconductivity

    NASA Astrophysics Data System (ADS)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  9. Non-Fermi liquid behavior and non-universal superconducting gap structure in Fe-pnictides

    NASA Astrophysics Data System (ADS)

    Matsuda, Yuji

    2010-03-01

    The discovery of Fe-pnictide superconductors with Tc exceeding 55 K raises fundamental questions about origin of high-Tc superconductivity. Here we report the systematic studies of the normal-state charge transport, Fermi surface structure and superconducting gap structure in high-quality single crystals of BaFe2(As1-xPx)2 (0 <=x <=0.71), ranging from the SDW state to overdoped Fermi liquid state. Near the SDW boundary, the transport coefficients, including resistivity, Hall coefficient and magnetoresistance, exhibit striking deviations from the Fermi liquid properties [1]. The Fermi surface structure determined by the dHvA effect shows that in the superconducting dome the volume of the electron and hole sheets shrink linearly and the effective masses become strongly enhanced with decreasing x [2]. It is likely that these trends originate from the many-body interaction which gives rise to superconductivity. The penetration depth, thermal conductivity and NMR data for BaFe2(As0.67P0.33)2 (Tc=30 K) provide unambiguous evidence for line nodes in the superconducting gap function [3], in sharp contrast to the other Fe-based compounds with fully gapped structure. This indicates that the gap structure of Fe-based high-Tc superconductors is not universal.[1] S. Kasahara et al., arXiv:0905.4427 [2] H. Shishido et al., arXiv:0910.3634 [3] K. Hashimoto et al., arXiv:0907.4399 [4] K. Hashimoto et al., Phys. Rev. Lett. 102, 017002 (2009), ibid 102, 207001 (2009).

  10. ARPES measurements of the superconducting gap of Fe-based superconductors and their implications to the pairing mechanism

    NASA Astrophysics Data System (ADS)

    Richard, P.; Qian, T.; Ding, H.

    2015-07-01

    Its direct momentum sensitivity confers to angle-resolved photoemission spectroscopy (ARPES) a unique perspective in investigating the superconducting gap of multi-band systems. In this review we discuss ARPES studies on the superconducting gap of high-temperature Fe-based superconductors. We show that while Fermi-surface-driven pairing mechanisms fail to provide a universal scheme for the Fe-based superconductors, theoretical approaches based on short-range interactions lead to a more robust and universal description of superconductivity in these materials. Our findings are also discussed in the broader context of unconventional superconductivity.

  11. Momentum dependence of the superconducting gap and in-gap states in MgB2 multiband superconductor

    SciTech Connect

    Mou, Daixiang; Jiang, Rui; Taufour, Valentin; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2015-06-29

    We use tunable laser-based angle-resolved photoemission spectroscopy to study the electronic structure of the multiband superconductor MgB2. These results form the baseline for detailed studies of superconductivity in multiband systems. We find that the magnitude of the superconducting gap on both σ bands follows a BCS-like variation with temperature with Δ0 ~ 7meV. Furthermore, the value of the gap is isotropic within experimental uncertainty and in agreement with a pure s-wave pairing symmetry. We observe in-gap states confined to kF of the σ band that occur at some locations of the sample surface. As a result, the energy of this excitation, ~ 3 meV, was found to be somewhat larger than the previously reported gap on π Fermi sheet and therefore we cannot exclude the possibility of interband scattering as its origin.

  12. High temperature superconducting magnetic energy storage for future NASA missions

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

  13. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Zimmerman, George O.

    The discovery of superconductivity brought with it the promise of a miracle solution to many technological problems encountered by the electrical power industry. That discovery was at Leiden in 1911. Since then, engineering designs and prototypes have been developed for the use of superconductive materials in electric power transmission, transformers, and machinery. The development of superconducting magnetic energy storage systems also held great promise. Superconductivity was even used to build marine propulsion systems and levitated track vehicles. Despite that, and despite the financial support of governments for prototype developments, the only commercial application of the technology, outside of laboratories, is for MRI magnets. Similar experience is encountered in superconducting applications to electronics, although some success has been achieved in the communication industry. The discovery of high temperature superconductivity, despite its promise, did not significantly change the situation. The developments will be reviewed, and some of the reasons why superconductivity is still mainly confined to the laboratory will be given with the view of what we, as scientists, can do in order to enhance and hasten the commercial adoption of superconducting technology.

  14. Raising gradient limitations in 2.1 GHz superconducting photonic band gap accelerator cavities

    SciTech Connect

    Simakov, Evgenya I. Arsenyev, Sergey A.; Haynes, W. Brian; Shchegolkov, Dmitry Yu.; Suvorova, Natalya A.; Tajima, Tsuyoshi; Boulware, Chase H.; Grimm, Terry L.

    2014-06-16

    We report results from recent 2.1 GHz superconducting radio frequency (SRF) photonic band gap (PBG) resonator experiments at Los Alamos. Two 2.1 GHz PBG cells with elliptical rods were fabricated and tested at high power in a liquid helium bath at the temperatures of 4 K and below 2 K. The described SRF PBG cells were designed with a particular emphasis on changing the shape of the PBG rods to reduce peak surface magnetic fields and at the same time to preserve its effectiveness at damping higher-order-modes. The superconducting PBG cavities have great potential for damping long-range wakefields in SRF accelerator structures without affecting the fundamental accelerating mode. The cells performed in accordance with simulation's predictions and the maximum achieved accelerating gradient was 18.3 MV/m. This represents a 30% increase over gradients previously demonstrated in superconducting PBG cavities with round rods.

  15. Molecular Pairing and Fully Gapped Superconductivity in Yb-doped CeCoIn5

    NASA Astrophysics Data System (ADS)

    Erten, Onur; Flint, Rebecca; Coleman, Piers

    2015-01-01

    The recent observation of fully gapped superconductivity in Yb doped CeCoIn5 poses a paradox, for the disappearance of nodes suggests that they are accidental, yet d -wave symmetry with protected nodes is well established by experiment. Here, we show that composite pairing provides a natural resolution: in this scenario, Yb doping drives a Lifshitz transition of the nodal Fermi surface, forming a fully gapped d -wave molecular superfluid of composite pairs. The T4 dependence of the penetration depth associated with the sound mode of this condensate is in accordance with observation.

  16. Cosmological constraints on superconducting dark energy models

    NASA Astrophysics Data System (ADS)

    Keresztes, Zoltán; Gergely, László Á.; Harko, Tiberiu; Liang, Shi-Dong

    2015-12-01

    We consider cosmological tests of a scalar-vector-tensor gravitational model, in which the dark energy is included in the total action through a gauge-invariant, electromagnetic type contribution. The ground state of dark energy, corresponding to a constant potential V , is a Bose-Einstein type condensate with spontaneously broken U(1) symmetry. In other words, dark energy appears as a massive vector field emerging from a superposition of a massless vector and a scalar field, the latter corresponding to the Goldstone boson. Two particular cosmological models, corresponding to pure electric and pure magnetic type potentials, respectively, are confronted with type IA supernovae and Hubble parameter data. In the electric case, a good fit is obtained along a narrow inclined stripe in the Ωm-ΩV parameter plane, which includes the Λ cold dark matter limit as the best fit. The other points on this admissible region represent superconducting dark energy as a sum of a cosmological constant and a time-evolving contribution. In the magnetic case the cosmological test selects either (i) parameter ranges of the superconducting dark energy allowing for the standard baryonic sector plus dark matter or (ii) a unified superconducting dark matter and dark energy model, additionally including only the baryonic sector.

  17. Energy loss in spark gap switches

    SciTech Connect

    Oreshkin, V. I. Lavrinovich, I. V.

    2014-04-15

    The paper reports on numerical study of the energy loss in spark gap switches. The operation of the switches is analyzed using the Braginsky model which allows calculation of the time dependence of the spark channel resistance. The Braginsky equation is solved simultaneously with generator circuit equations for different load types. Based on the numerical solutions, expressions which determine both the energy released in a spark gap switch and the switching time are derived.

  18. Energy loss in spark gap switches

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.; Lavrinovich, I. V.

    2014-04-01

    The paper reports on numerical study of the energy loss in spark gap switches. The operation of the switches is analyzed using the Braginsky model which allows calculation of the time dependence of the spark channel resistance. The Braginsky equation is solved simultaneously with generator circuit equations for different load types. Based on the numerical solutions, expressions which determine both the energy released in a spark gap switch and the switching time are derived.

  19. Evolution of superconducting gap and metallic ground state in cuprates from transport

    NASA Astrophysics Data System (ADS)

    Taillefer, Louis

    2006-03-01

    We report on fundamental characteristics of the ground state of cuprates in the limit of T=0, for both normal and superconducting states, obtained from transport measurements on high-quality single crystals of YBCO and Tl-2201, as a function of hole concentration. The superconducting gap is extracted from thermal conductivity; it is found to scale with the superconducting transition temperature throughout the overdoped regime, with a gap-to-Tc ratio of 5 [1]. The normal state is accessed by suppressing superconductivity with magnetic fields up to 60 T and is characterized by the limiting behavior of its electrical resistivity; while carrier localization is observed in YBCO at low temperature for carrier concentrations p below 0.1 hole/planar Cu, at p=0.1 and above the material remains highly metallic down to T=0 [2]. This shows that the non-superconducting state of underdoped cuprates, deep in the pseudogap phase, is remarkably similar to that of strongly overdoped cuprates, e.g. at p=0.3. We compare these results with similar measurements on other cuprates and discuss their implication for our understanding of the cuprate phase diagram. [1] In collaboration with: D.G. Hawthorn, S.Y. Li, M. Sutherland, E. Boaknin, R.W. Hill, C. Proust, F. Ronning, M. Tanatar, J. Paglione, D. Peets, R. Liang, D.A. Bonn, W.N. Hardy, and N.N. Kolesnikov. [2] In collaboration with: C. Proust, M. Sutherland, N. Doiron- Leyraud, S.Y. Li, R. Liang, D.A. Bonn, W.N. Hardy, N.E. Hussey, S. Adachi, S. Tajima, J. Levallois, and M. Narbone.

  20. Neutron scattering studies of spin-phonon hybridization and superconducting spin gaps in the high temperature superconductor La2-x(Sr;Ba)xCuO4

    DOE PAGESBeta

    Wagman, J. J.; Carlo, Jeremy P.; Gaudet, J.; Van Gastel, G. J.; Abernathy, Douglas L.; Stone, Matthew B.; Granroth, Garrett E.; Kolesnikov, Alexander I.; Savici, Andrei T.; Kim, Young -June; et al

    2016-03-14

    We present time-of-flight neutron-scattering measurements on single crystals of La2-xBaxCuO4 (LBCO) with 0 ≤ x ≤ 0.095 and La2-xSrxCuO4 (LSCO) with x = 0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high temperature cuprate superconductivity, ranging from insulating, three dimensional commensurate long range antiferromagnetic order for x ≤ 0.02 to two dimensional (2D) incommensurate antiferromagnetism co-existing with superconductivity for x ≥ 0.05. Previous work on lightly doped LBCO with x = 0.035 showed a clear resonant enhancement of the inelastic scattering coincident with the low energy crossings of the highly dispersive spin excitationsmore » and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore we show that the low temperature, low energy magnetic spectral weight is substantially larger for samples with non-superconducting ground states relative to any of the samples with superconducting ground states. Lastly spin gaps, suppression of low energy magnetic spectral weight, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO« less

  1. Superconductivity at 9 K in Mo5PB2 with evidence for multiple gaps

    NASA Astrophysics Data System (ADS)

    McGuire, Michael A.; Parker, David S.

    2016-02-01

    Superconductivity is observed with critical temperatures near 9 K in the tetragonal compound Mo5PB2 . This material adopts the Cr5B3 structure type common to superconducting Nb5Si3 -xBx ,Mo5SiB2 , and W5SiB2 , which have critical temperatures of 5.8 -7.8 K. We have synthesized polycrystalline samples of the compound, made measurements of electrical resistivity, magnetic susceptibility, and heat capacity, and performed first-principles electronic structure calculations. The highest Tc value (9.2 K) occurs in slightly phosphorus rich samples, with composition near Mo5P1.1B1.9 , and the upper critical field Hc 2 at T =0 is estimated to be ≈17 kOe. Together, the measurements and band-structure calculations indicate intermediate coupling (λ =1.0 ), phonon mediated superconductivity. The temperature dependence of the heat capacity and upper critical field Hc 2 below Tc suggest multiple superconducting gaps may be present.

  2. Isotropic multi-gap superconductivity in BaFe1.9Pt0.1As2 from thermal transport and spectroscopic measurements

    NASA Astrophysics Data System (ADS)

    Ziemak, Steven; Kirshenbaum, K.; Saha, S. R.; Hu, R.; Reid, J.-Ph; Gordon, R.; Taillefer, L.; Evtushinsky, D.; Thirupathaiah, S.; Büchner, B.; Borisenko, S. V.; Ignatov, A.; Kolchmeyer, D.; Blumberg, G.; Paglione, J.

    2015-01-01

    Thermal conductivity, point contact spectroscopy, angle-resolved photoemission and Raman spectroscopy measurements were performed on BaFe1.9Pt0.1As2 single crystals obtained from the same synthesis batch in order to investigate the superconducting energy gap structure using multiple techniques. Low temperature thermal conductivity was measured in the superconducting state as a function of temperature and magnetic field, revealing an absence of quasiparticle excitations in the T\\to 0 limit up to 15 T applied magnetic fields. Point-contact Andreev reflection spectroscopy measurements were performed as a function of temperature using the needle-anvil technique, yielding features in the conductance spectra at both 2.5 meV and 7.0 meV scales consistent with a multi-gap scenario. Angle-resolved photoemission spectroscopy probed the electronic band structure above and below the superconducting transition temperature of Tc = 23 K, revealing an isotropic gap of magnitude ˜ 3 meV on both electron and hole pockets. Finally, Raman spectroscopy was used to probe quasiparticle excitations in multiple channels, showing a threshold energy scale of 3 meV below Tc. Overall, we find strong evidence for an isotropic gap structure with no nodes or deep minima in this system, with a 3 meV magnitude gap consistently observed and a second, larger gap suggested by point-contact spectroscopy measurements. We discuss the implications that the combination of these results reveal about the superconducting order parameter in the BaFe2-xPtxAs2 doping system and how this relates to similar substituted iron pnictides.

  3. Superconducting gap and vortex lattice of the heavy-fermion compound CeCu2Si2

    NASA Astrophysics Data System (ADS)

    Enayat, Mostafa; Sun, Zhixiang; Maldonado, Ana; Suderow, Hermann; Seiro, Silvia; Geibel, Christoph; Wirth, Steffen; Steglich, Frank; Wahl, Peter

    2016-01-01

    The order parameter and pairing mechanism for superconductivity in heavy-fermion compounds are still poorly understood. Scanning tunneling microscopy and spectroscopy at ultralow temperatures can yield important information about the superconducting order parameter and the gap structure. Here, we study the first heavy-fermion superconductor, CeCu2Si2 . Our data show the superconducting gap which is not fully formed and exhibits features that point to a multigap order parameter. Spatial mapping of the zero-bias conductance in magnetic field reveals the vortex lattice, which allows us to unequivocally link the observed conductance gap to superconductivity in CeCu2Si2 . The vortex lattice is found to be predominantly triangular with distortions at fields close to ˜0.7 Hc 2 .

  4. Strong coupling and double-gap density of states in superconducting MgB2

    NASA Astrophysics Data System (ADS)

    Giubileo, F.; Roditchev, D.; Sacks, W.; Lamy, R.; Klein, J.

    2002-06-01

    Using scanning tunneling spectroscopy at T = 4.2 K, we perform simultaneously the topographic imaging and the quasiparticle density of states (DOS) mapping in granular MgB2. We observe a new type of spectrum, showing a pronounced double gap, with the magnitudes of ΔS = 3.9 meV and ΔL = 7.5 meV, i.e. well below and well above the BCS limit. The largest gap value gives the ratio 2ΔL/kBTC = 4.5, which implies strong electron-phonon coupling. Other superconducting regions are found to have a characteristic BCS-shaped DOS. However, the variation of the spectral shape and lower gap widths, from 2.0 meV to 6.5 meV, indicate the importance of surface inhomogeneity and proximity effects in previously published tunneling data. Our finding gives no evidence for any important gap anisotropy. Instead, it strongly supports the multiple-gap scenario in MgB2 in the clean limit, and the single-gap scenario in the dirty limit.

  5. Zn-substitution effects on the normal optical conductivity and the superconducting gap

    NASA Astrophysics Data System (ADS)

    Tajima, S.; Hauff, R.; Jang, W.-J.; Rykov, A.; Sato, Y.; Terasaki, I.

    1996-11-01

    The Zn-substitution effects on the c-axis optical spectra have been investigated for highly oxygenated YBa2 Cu3Oy crystals with y = 6.88 6.92. In the normal state, the Zn-substitution does not affect the high frequency conductivity but changes the ω-dependence of the scattering rate at low frequencies, leading to the increase in the dc resistivity in the c-direction. In the superconducting state, we observed a pronounced effect of Zn-substitution that a large number of unpaired carriers form a Drude-like absorption band within the gap, keeping the maximum gap amplitude unchanged. The missing area which gives the superfluid density is found to correlate with Tc.

  6. Neutron scattering studies of spin-phonon hybridization and superconducting spin gaps in the high-temperature superconductor La2-x(Sr,Ba)xCuO4

    NASA Astrophysics Data System (ADS)

    Wagman, J. J.; Carlo, J. P.; Gaudet, J.; Van Gastel, G.; Abernathy, D. L.; Stone, M. B.; Granroth, G. E.; Kolesnikov, A. I.; Savici, A. T.; Kim, Y. J.; Zhang, H.; Ellis, D.; Zhao, Y.; Clark, L.; Kallin, A. B.; Mazurek, E.; Dabkowska, H. A.; Gaulin, B. D.

    2016-03-01

    We present time-of-flight neutron scattering measurements on single crystals of La2-xBaxCuO4 (LBCO) with 0 ≤x ≤0.095 and La2-xSrxCuO4 (LSCO) with x =0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high-temperature cuprate superconductivity, ranging from insulating, three-dimensional commensurate long-range antiferromagnetic order, for x ≤0.02 , to two-dimensional (2D) incommensurate antiferromagnetism coexisting with superconductivity for x ≥0.05 . Previous work on lightly doped LBCO with x =0.035 showed a clear enhancement of the inelastic scattering coincident with the low-energy crossings of the highly dispersive spin excitations and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore, we show that the low-temperature, low-energy magnetic spectral weight is substantially larger for samples with nonsuperconducting ground states relative to any of the samples with superconducting ground states. Spin gaps, suppression of low-energy magnetic spectral weight as a function of decreasing temperature, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO.

  7. ARPES observation of isotropic superconducting gaps in isovalent Ru-substituted Ba(Fe0.75Ru0.25)2As2

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Xu, N.; Richard, P.; Shi, X.; Roekeghem, A. Van; Qian, T.; Ding, H.; Nakayama, K.; Sato, T.; Ieki, E.; Takahashi, T.; Xing, J.; Wen, H.-H.; Shi, M.; Rienks, E.; Thirupathaiah, S.

    2014-03-01

    We used high-energy resolution angle-resolved photoemission spectroscopy to extract the momentum dependence of the superconducting gap of Ru-substituted Ba(Fe0.75Ru0.25)2As2(Tc = 15 K). Despite a strong out-of-plane warping of the Fermi surface, the magnitude of the superconducting gap observed experimentally is nearly isotropic and independent of the out-of-plane momentum. More precisely, we respectively observed 5.7 meV and 4.5 meV superconducting gaps on the inner and outer ?-centered hole Fermi surface pockets, whereas a 4.8 meV gap is recorded on the M-centered electron Fermi surface pockets. Our results are consistent with the J1 -J2 model with a dominant antiferromagnetic exchange interaction between the next-nearest Fe neighbors. This work was supported by grants from CAS (2010Y1JB6), MOST (2010CB923000 and 2011CBA001000, 2011CBA00102, 2012CB821403) and NSFC (10974175, 11004232 and 11034011/A0402) from China, JSPS, TRiP-JST, CREST-JST and MEXT of Japan.

  8. Superconducting gap structure of kappa-(BEDT-TTF)2Cu(NCS)2 probed by thermal conductivity tensor.

    PubMed

    Izawa, K; Yamaguchi, H; Sasaki, T; Matsuda, Yuji

    2002-01-14

    The thermal conductivity of organic superconductor kappa-(BEDT-TTF)2Cu(NCS)2 (Tc = 10.4 K) has been studied in a magnetic field rotating within the 2D superconducting planes with high alignment precision. At low temperatures ( T < or = 0.5 K), a clear fourfold symmetry in the angular variation, which is characteristic of a d-wave superconducting gap with nodes along the directions rotated 45 degrees relative to the b and c axes of the crystal, was resolved. The determined nodal structure is inconsistent with recent theoretical predictions of superconductivity induced by the antiferromagnetic spin fluctuation. PMID:11801028

  9. Superconducting magnetic energy storage for asynchronous electrical systems

    DOEpatents

    Boenig, H.J.

    1984-05-16

    It is an object of the present invention to provide superconducting magnetic energy storage for a plurality of asynchronous electrical systems. It is a further object of the present invention to provide load leveling and stability improvement in a plurality of independent ac systems using a single superconducting magnetic energy storage coil.

  10. Electromechanical energy conversion in the nanometer gaps

    NASA Astrophysics Data System (ADS)

    Kostsov, E. G.

    2008-03-01

    The design the new principle of electromechanical energy conversion that allows one to carry the electrome-chanical energy conversion in the nanometer gap, and significantly (up to two orders of magnitude) increase MEMS specific energy output, operation speed and power. The energy conversion takes place in the nanometer gap (5 - 200 nm), when the electric energy accumulated during reversible electrostatic pressing of the free metallic film (moving electrode) to the surface of the thin crystalline dielectric (ferroelectric film, FF) with high dielectric permeability ɛ (more than 3000-5000) is transformed into mechanical energy . The tension of the metallic film caused by electro-static forces in converted into the mechanical motion of the moving element of the device. With this approach, the specific energy output of 0.3 - 1 10-6 J/mm2 and driving force of 0.01-0.3 N can be achieved starting from the first microseconds of the voltage pulse. An experimental investigation of new electromechanical energy converter is per-formed.

  11. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor.

    PubMed

    Guguchia, Z; Amato, A; Kang, J; Luetkens, H; Biswas, P K; Prando, G; von Rohr, F; Bukowski, Z; Shengelaya, A; Keller, H; Morenzoni, E; Fernandes, Rafael M; Khasanov, R

    2015-01-01

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap. PMID:26548650

  12. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor

    DOE PAGESBeta

    Guguchia, Z.; Amato, A.; Kang, J.; Luetkens, H.; Biswas, P. K.; Prando, G.; von Rohr, F.; Bukowski, Z.; Shengelaya, A.; Keller, H.; et al

    2015-11-09

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. Contrasting with other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperaturemore » behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.« less

  13. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor

    PubMed Central

    Guguchia, Z.; Amato, A.; Kang, J.; Luetkens, H.; Biswas, P. K.; Prando, G.; von Rohr, F.; Bukowski, Z.; Shengelaya, A.; Keller, H.; Morenzoni, E.; Fernandes, Rafael M.; Khasanov, R.

    2015-01-01

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap. PMID:26548650

  14. An evaluation of superconducting magnetic energy storage

    NASA Astrophysics Data System (ADS)

    Winer, B. M.; Nicol, J.

    1981-01-01

    A Superconducting Magnetic Energy Storage (SMES) system will accept and regenerate ac electrical energy very efficiently. It can therefore compete economically with alternative advanced storage technologies if (1) the unit's cost and efficiency are within the presently expected ranges; and (2) the unit is sized so as to perform the same task as the alternatives and no more. Present conceptual SMES designs are unlikely to meet the electric utilities' needs for reliability, maintainability and system protection; and the environmental impact of the magnetic field may be large. Consequently, the uncertainties associated with the costs of an acceptable SMES system are large. Their reduction should be the principal goal of future component and system research.

  15. Competition between superconductivity and magnetic/nematic order as a source of anisotropic superconducting gap in underdoped Ba1-xKxFe2As2

    SciTech Connect

    Kim, H; Tanatar, M A; Straszheim, W E; Cho, K; Murphy, J; Spyrison, N; Reid, J -Ph; Shen, Bing; Wen, Hai-Hu; Fernandes, R M; Prozorov, R

    2014-07-01

    The in-plane London penetration depth Δλ(T) was measured using a tunnel diode resonator technique in single crystals of Ba1-xKxFe2As2 with doping levels x ranging from heavily underdoped, x=0.16 (Tc=7K), to nearly optimally doped, x=0.34 (Tc=39K). Exponential saturation of Δλ(T) in the T→0 limit is found in optimally doped samples, with the superfluid density ρs(T)≡[λ(0)/λ(T)]2 quantitatively described by a self-consistent γ model with two nodeless isotropic superconducting gaps. As the doping level is decreased towards the extreme end of the superconducting dome at x=0.16, the low-temperature behavior of Δλ(T) becomes nonexponential and is best described by the power law Δλ(T)∝T2, characteristic of strongly anisotropic gaps. The change between the two regimes happens within the range of coexisting magnetic/nematic order and superconductivity, x<0.25, and is accompanied by a rapid rise in the absolute value of Δλ(T) with underdoping. This effect, characteristic of the competition between superconductivity and other ordered states, is very similar to but of significantly smaller magnitude than what is observed in the electron-doped Ba(Fe1-xCox)2As2 compounds. Our study suggests that the competition between superconductivity and magnetic/nematic order in hole-doped compounds is weaker than in electron-doped compounds, and that the anisotropy of the superconducting state in the underdoped iron pnictides is a consequence of the anisotropic changes in the pairing interaction and in the gap function promoted by both magnetic and nematic long-range orders.

  16. Closing the energy gap through passive energy expenditure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of obesity is a gradual process occurring when daily energy intake persistently exceeds energy expenditure (EE). Typical daily weight gain is attributed to an energy gap or excess of stored energy of 15 to 50 kcal/day. Sedentary jobs likely promote weight gain. Standing may be a passive ...

  17. Energy gaps measured by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Giambattista, B.; Slough, C. G.; Coleman, R. V.; Subramanian, M. A.

    1990-11-01

    A scanning tunneling microscope (STM) has been used to measure energy gaps in the charge-density-wave (CDW) phases of the layer-structure dichalcogenides and in the high-temperature superconductor Bi2Sr2CaCu2O8. Measured values of ?CDW at 4.2 K for 2H-TaSe2, 2H-TaS2, and 2H-NbSe2 are 80, 50, and 34 meV giving values of 2?CDW/kBTc equal to 15.2, 15.4, and 23.9, indicating strong coupling in these CDW systems. Measured values of ?CDW at 4.2 K in 1T-TaSe2 and 1T-TaS2 are ~150 meV for both materials giving 2?CDW/kBTc~=5.8. STM scans of Bi2Sr2CaCu2O8 at 4.2 K resolve atoms on the BiOx layer and show possible variations in electronic structure. The energy gap determined from I versus V and dI/dV versus V curves is in the range 30-35 meV giving values of 2?/kBTc~=8. Spectroscopy measurements with the STM can exhibit large zero-bias anomalies which complicate the analysis of the energy-gap structure, but adequate separation has been accomplished.

  18. Operation of a test bed axial-gap brushless dc rotor with a superconducting stator

    SciTech Connect

    McKeever, J.W.; Sohns, C.W.; Schwenterly, S.W.; Young, R.W. Sr.; Campbell, V.W.; Hickey, M.H.; Ott, G.W.; Bailey, J.M.

    1993-08-01

    A variable-speed axial-gap motor with a stator consisting of four liquid helium cooled superconducting electromagnets (two pole pairs) was built and proof tested up to 608 rpm in November 1990 as a tool for joint industry-laboratory evaluation of coils fabricated from high-temperature oxide superconductors. A second rotor was fabricated with improved materia winding configuration, and wire type, and the drive system was modified to eliminate current spiking. The modified motor was characterized to design speed, 188 rad/s (1800 rpm), to acquire a performance baseline for future comparison with that of high-temperature superconducting (HIS) wire. As it becomes commercially available, HTS wire will replace the low-temperature electromagnet wire in a stator modified to control wire temperatures between 4 K and 77 K. Measurements of the superconducting electromagnetic field and locked rotor torque as functions of cryocurrent and dc current through two phases of the rotor, respectively, provided data to estimate power that could be developed by the rotor. Back emf and parasitic mechanical and electromagnetic drag torques were measured as functions of angular velocity to calculate actual rotor power developed and to quantify losses, which reduce the motor`s efficiency. A detailed measurement of motor power at design speed confirmed the developed power equation. When subsequently operated at the 33-A maximum available rotor current, the motor delivered 15.3 kill (20.5 hp) to the load. In a final test, the cryostat was operated at 2500 A, 200 A below its critical current. At rotor design current of 60 A and 2500 A stator current, the extrapolated developed power would be 44.2 kill (59.2 hp) with 94% efficiency.

  19. Pushing the Gradient Limitations of Superconducting Photonic Band Gap Structure Cells

    SciTech Connect

    Simakov, Evgenya I.; Haynes, William B.; Kurennoy, Sergey S.; Shchegolkov, Dmitry; O'Hara, James F.; Olivas, Eric R.

    2012-06-07

    Superconducting photonic band gap resonators present us with unique means to place higher order mode couples in an accelerating cavity and efficiently extract HOMs. An SRF PBG resonator with round rods was successfully tested at LANL demonstrating operation at 15 MV/m. Gradient in the SRF PBG resonator was limited by magnetic quench. To increase the quench threshold in PBG resonators one must design the new geometry with lower surface magnetic fields and preserve the resonator's effectiveness for HOM suppression. The main objective of this research is to push the limits for the high-gradient operation of SRF PBG cavities. A NCRF PBG cavity technology is established. The proof-of-principle operation of SRF PBG cavities is demonstrated. SRF PBG resonators are effective for outcoupling HOMs. PBG technology can significantly reduce the size of SRF accelerators and increase brightness for future FELs.

  20. Anomalous Inner-Gap Structure in Transport Characteristics of Superconducting Junctions with Degraded Interfaces

    NASA Astrophysics Data System (ADS)

    Zhitlukhina, E.; Devyatov, I.; Egorov, O.; Belogolovskii, M.; Seidel, P.

    2016-02-01

    Quantitative description of charge transport across tunneling and break-junction devices with novel superconductors encounters some problems not present or not as severe for traditional superconducting materials. In this work, we explain unexpected features in related transport characteristics as an effect of a degraded nanoscaled sheath at the superconductor surface. A model capturing the main aspects of the ballistic charge transport across hybrid superconducting structures with normally conducting nanometer-thick interlayers is proposed. The calculations are based on a scattering formalism taking into account Andreev electron-into-hole (and inverse) reflections at normal metal-superconductor interfaces as well as transmission and backscattering events in insulating barriers between the electrodes. Current-voltage characteristics of such devices exhibit a rich diversity of anomalous (from the viewpoint of the standard theory) features, in particular shift of differential-conductance maxima at gap voltages to lower positions and appearance of well-defined dips instead expected coherence peaks. We compare our results with related experimental data.

  1. Anomalous Inner-Gap Structure in Transport Characteristics of Superconducting Junctions with Degraded Interfaces.

    PubMed

    Zhitlukhina, E; Devyatov, I; Egorov, O; Belogolovskii, M; Seidel, P

    2016-12-01

    Quantitative description of charge transport across tunneling and break-junction devices with novel superconductors encounters some problems not present or not as severe for traditional superconducting materials. In this work, we explain unexpected features in related transport characteristics as an effect of a degraded nanoscaled sheath at the superconductor surface. A model capturing the main aspects of the ballistic charge transport across hybrid superconducting structures with normally conducting nanometer-thick interlayers is proposed. The calculations are based on a scattering formalism taking into account Andreev electron-into-hole (and inverse) reflections at normal metal-superconductor interfaces as well as transmission and backscattering events in insulating barriers between the electrodes. Current-voltage characteristics of such devices exhibit a rich diversity of anomalous (from the viewpoint of the standard theory) features, in particular shift of differential-conductance maxima at gap voltages to lower positions and appearance of well-defined dips instead expected coherence peaks. We compare our results with related experimental data. PMID:26842791

  2. Flywheel energy storage using superconducting magnetic bearings

    SciTech Connect

    Abboud, R.G.; Uherka, K.; Hull, J.; Mulcahy, T.

    1994-04-01

    Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

  3. Superconducting magnetic energy storage for asynchronous electrical systems

    DOEpatents

    Boenig, Heinrich J.

    1986-01-01

    A superconducting magnetic energy storage coil connected in parallel between converters of two or more ac power systems provides load leveling and stability improvement to any or all of the ac systems. Control is provided to direct the charging and independently the discharging of the superconducting coil to at least a selected one of the ac power systems.

  4. Sheet Dependence on Superconducting Gap in Oxygen-Deficient Iron-Based Oxypnictide Superconductors NdFeAsO0.85

    NASA Astrophysics Data System (ADS)

    Aiura, Yoshihiro; Sato, Koji; Iwasawa, Hideaki; Nakashima, Yosuke; Anzai, Hiroaki; Ino, Akihiro; Arita, Masashi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Hase, Izumi; Miyazawa, Kiichi; Shirage, Parasharam M.; Eisaki, Hiroshi; Kito, Hijiri; Iyo, Akira

    2008-10-01

    Photoemission spectroscopy with low-energy tunable photons on oxygen-deficient iron-based oxypnictide superconductors NdFeAsO0.85 (Tc=52 K) reveals a distinct photon-energy dependence of the electronic structure near the Fermi level (EF). A clear shift of the leading-edge can be observed in the superconducting states with 9.5 eV photons, while a clear Fermi cutoff with little leading-edge shift can be observed with 6.0 eV photons. The results are indicative of the superconducting gap opening not on the hole-like ones around Γ(0,0) point but on the electron-like sheets around M(π,π) point.

  5. Reaffirming the d(x2-y2) superconducting gap using the autocorrelation angle-resolved photoemission spectroscopy of Bi1.5Pb0.55Sr1.6La0.4CuO(6+δ).

    PubMed

    Hashimoto, M; He, R-H; Testaud, J P; Meevasana, W; Moore, R G; Lu, D H; Yoshida, Y; Eisaki, H; Devereaux, T P; Hussain, Z; Shen, Z-X

    2011-04-22

    Knowledge of the gap function is important to understand the pairing mechanism for high-temperature (T(c)) superconductivity. However, Fourier transform scanning tunneling spectroscopy (FT STS) and angle-resolved photoemission spectroscopy (ARPES) in the cuprates have reported contradictory gap functions, with FT-STS results deviating strongly from a canonical d(x2-y2) form. By applying an "octet model" analysis to autocorrelation ARPES, we reveal that a contradiction occurs because the octet model does not consider the effects of matrix elements and the pseudogap. This reaffirms the canonical d(x2-y2) superconducting gap around the node, which can be directly determined from ARPES. Further, our study suggests that the FT-STS reported fluctuating superconductivity around the node at far above T(c) is not necessary to explain the existence of the quasiparticle interference at low energy. PMID:21599403

  6. Gapped triplet p -wave superconductivity in strong spin-orbit-coupled semiconductor quantum wells in proximity to s -wave superconductor

    NASA Astrophysics Data System (ADS)

    Yu, T.; Wu, M. W.

    2016-05-01

    We show that gapped triplet superconductivity, i.e., a triplet superconductor with a triplet order parameter, can be realized in strong spin-orbit-coupled (100) quantum wells in proximity to an s -wave superconductor. It is revealed that in quantum wells with the singlet order parameter induced from the superconducting proximity effect, not only can the triplet pairings arise due to spin-orbit coupling, but the triplet order parameter can also be induced due to the repulsive effective electron-electron interaction, including the electron-electron Coulomb and electron-phonon interactions. This is a natural extension of the work of de Gennes, in which the repulsive-interaction-induced singlet order parameter arises in normal metal in proximity to an s -wave superconductor [Rev. Mod. Phys. 36, 225 (1964), 10.1103/RevModPhys.36.225]. Specifically, we derive the effective Bogoliubov-de Gennes equation, in which the self-energies due to the effective electron-electron interactions contribute to the singlet and triplet order parameters. It is further shown that for the singlet order parameter, it is efficiently suppressed due to this self-energy renormalization, whereas for the triplet order parameter it is the p -wave (px±i py ) one with the d vector parallel to the effective magnetic field due to the spin-orbit coupling. Finally, we perform a numerical calculation in InSb (100) quantum wells. Specifically, we reveal that the Coulomb interaction is much more important than the electron-phonon interaction at low temperature. Moreover, it is shown that with proper electron density, the minimum of the renormalized singlet and the maximum of the induced triplet order parameters are comparable, and hence they can be experimentally distinguished.

  7. Universal heat conduction in Ce1 -xYbxCoIn5 : Evidence for robust nodal d -wave superconducting gap

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Dong, J. K.; Lum, I. K.; Zhang, J.; Hong, X. C.; He, L. P.; Wang, K. F.; Ma, Y. C.; Petrovic, C.; Maple, M. B.; Shu, L.; Li, S. Y.

    2016-02-01

    In the heavy-fermion superconductor Ce1 -xYbxCoIn5 , Yb doping was reported to cause a possible change from nodal d -wave superconductivity to a fully gapped d -wave molecular superfluid of composite pairs near x ≈0.07 (nominal value xnom=0.2 ). Here we present systematic thermal conductivity measurements on Ce1 -xYbxCoIn5 (x =0.013 , 0.084, and 0.163) single crystals. The observed finite residual linear term κ0/T is insensitive to Yb doping, verifying the universal heat conduction of the nodal d -wave superconducting gap in Ce1 -xYbxCoIn5 . Similar universal heat conduction is also observed in the CeCo (In1 -yCdy )5 system. These results reveal a robust nodal d -wave gap in CeCoIn5 upon Yb or Cd doping.

  8. Fully gapped superconductivity in In-doped topological crystalline insulator Pb0.5Sn0.5Te

    SciTech Connect

    Du, Guan; Gu, G. D.; Du, Zengyi; Fang, Delong; Yang, Huan; Zhong, R. D.; Schneeloch, J.; Wen, Hai -Hu

    2015-07-27

    In this study, superconductors derived from topological insulators and topological crystalline insulators by chemical doping have long been considered to be candidates as topological superconductors. Pb0.5Sn0.5Te is a topological crystalline insulator with mirror symmetry protected surface states on (001)-, (011)-, and (111)-oriented surfaces. The superconductor (Pb0.5Sn0.5)0.7In0.3Te is produced by In doping in Pb0.5Sn0.5Te, and is thought to be a topological superconductor. Here we report scanning tunneling spectroscopy measurements of the superconducting state as well as the superconducting energy gap in (Pb0.5Sn0.5)0.7In0.3Te on a (001)-oriented surface. The spectrum can be well fitted by an anisotropic s-wave gap function of Δ = 0.72 + 0.18cos4θ meV using Dynes model. The results show that the superconductor seems to be a fully gapped one without any in-gap states, in contradiction with the expectation of a topological superconductor.

  9. Evaluation of superconducting magnetic energy storage systems

    NASA Astrophysics Data System (ADS)

    Lee, S. T.; Albert, R. S.; Imamura, D. T.

    1983-02-01

    The breakeven capital cost of Superconducting Magnetic Energy Storage (SMES) and its highest possible value were studied. The results are compared by EPRI to the capital cost of SMES being estimated by Bechtel in a related study. The best and most reasonable estimate of the SMES breakeven capital cost is 1080 $/kW in 1981 dollars. The highest possible value for an ideal SMES with perfect availability, zero refrigeration load and 100% incremental cycle efficiency is 1510 $/kW when installed in a utility approximately one third of the US in size. Two methods of analysis are used. A single year analysis that assigns an energy credit and a capacity credit to SMES provides the method for parametric and sensitivity analyses. A thirty year life cycle analysis comparing SMES to a coal fired generation alternative recognizes fuel cost escalation effects. The value of SMES to each of the six EPRI Regional Systems is computed. In comparison with pumped storage, SMES is worth 14% more to a utility.

  10. Superconducting gap structure of spin-triplet superconductor Sr2RuO4 studied by thermal conductivity.

    PubMed

    Izawa, K; Takahashi, H; Yamaguchi, H; Matsuda, Y; Suzuki, M; Sasaki, T; Fukase, T; Yoshida, Y; Settai, R; Onuki, Y

    2001-03-19

    To clarify the superconducting gap structure of the spin-triplet superconductor Sr2RuO4, the in-plane thermal conductivity has been measured as a function of relative orientations of the thermal flow, the crystal axes, and a magnetic field rotating within the 2D RuO2 planes. The in-plane variation of the thermal conductivity is incompatible with any model with line nodes vertical to the 2D planes and indicates the existence of horizontal nodes. These results place strong constraints on models that attempt to explain the mechanism of the triplet superconductivity. PMID:11290003

  11. Hydrocarbon deposition in gaps of tungsten and graphite tiles in Experimental Advanced Superconducting Tokamak edge plasma parameters

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Yang, Zhongshi; Luo, Guang-Nan

    2015-09-01

    The three-dimensional (3D) Monte Carlo code PIC-EDDY has been utilized to investigate the mechanism of hydrocarbon deposition in gaps of tungsten tiles in the Experimental Advanced Superconducting Tokamak (EAST), where the sheath potential is calculated by the 2D in space and 3D in velocity particle-in-cell method. The calculated results for graphite tiles using the same method are also presented for comparison. Calculation results show that the amount of carbon deposited in the gaps of carbon tiles is three times larger than that in the gaps of tungsten tiles when the carbon particles from re-erosion on the top surface of monoblocks are taken into account. However, the deposition amount is found to be larger in the gaps of tungsten tiles at the same CH4 flux. When chemical sputtering becomes significant as carbon coverage on tungsten increases with exposure time, the deposition inside the gaps of tungsten tiles would be considerable.

  12. Superconductivity

    SciTech Connect

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries.

  13. Optical study of BaFe2As2 under pressure: Coexistence of spin-density-wave gap and superconductivity

    NASA Astrophysics Data System (ADS)

    Uykur, E.; Kobayashi, T.; Hirata, W.; Miyasaka, S.; Tajima, S.; Kuntscher, C. A.

    2015-12-01

    Temperature-dependent reflectivity measurements in the frequency range 85 -7000 cm-1 were performed on BaFe2As2 single crystals under pressure up to ˜5 GPa. The corresponding pressure- and temperature-dependent optical conductivity was analyzed with the Drude-Lorentz model to extract the coherent and incoherent contributions. The gradual suppression of the spin-density-wave (SDW) state with increasing pressure and the appearance of the superconducting phase coexisting with the SDW phase at 3.6 GPa were observed. At 3.6 GPa, the reflectivity reaches unity below ˜95 cm-1 indicating the opening of the superconducting gap and shows a full gap tendency at 6 K.

  14. A rotating superconducting solenoid for 100 kWh energy storage. [in space

    NASA Technical Reports Server (NTRS)

    Waynert, J.; Eyssa, Y. M.; Mcintosh, G. E.; Feng, Z.

    1985-01-01

    Two concentric superconducting solenoids, one rotating, the other stationary are analyzed for energy storage in space. Energy is transferred from the rotating mass through a shaft coupled to a motor-generator. The inner windings interact with the magnetic field of the outer solenoid to cancel the centrifugal and self-field forces of the flywheel rim. Current is induced in the inner solenoid thus requiring no separate power supply, while the current in the outer solenoid must vary with the angular velocity of the flywheel. The effect of the gap and scaling laws are developed. The efficiency in energy per unit mass is marginally attractive.

  15. Scrutinizing the double superconducting gaps and strong coupling pairing in (Li1−xFex)OHFeSe

    PubMed Central

    Du, Zengyi; Yang, Xiong; Lin, Hai; Fang, Delong; Du, Guan; Xing, Jie; Yang, Huan; Zhu, Xiyu; Wen, Hai-Hu

    2016-01-01

    In the field of iron-based superconductors, one of the frontier studies is about the pairing mechanism. The recently discovered (Li1−xFex)OHFeSe superconductor with the transition temperature of about 40 K provides a good platform to check the origin of double superconducting gaps and high transition temperature in the monolayer FeSe thin film. Here we report a scanning tunnelling spectroscopy study on the (Li1−xFex)OHFeSe single crystals. The tunnelling spectrum mimics that of the monolayer FeSe thin film and shows double gaps at about 14.3 and 8.6 meV. Further analysis based on the quasiparticle interference allows us to rule out the d-wave gap, and for the first time assign the larger (smaller) gap to the outer (inner) Fermi pockets (after folding) associating with the dxy (dxz/dyz) orbitals, respectively. The gap ratio amounts to 8.7, which demonstrates the strong coupling mechanism in the present superconducting system. PMID:26822281

  16. Scrutinizing the double superconducting gaps and strong coupling pairing in (Li1-xFex)OHFeSe.

    PubMed

    Du, Zengyi; Yang, Xiong; Lin, Hai; Fang, Delong; Du, Guan; Xing, Jie; Yang, Huan; Zhu, Xiyu; Wen, Hai-Hu

    2016-01-01

    In the field of iron-based superconductors, one of the frontier studies is about the pairing mechanism. The recently discovered (Li1-xFex)OHFeSe superconductor with the transition temperature of about 40 K provides a good platform to check the origin of double superconducting gaps and high transition temperature in the monolayer FeSe thin film. Here we report a scanning tunnelling spectroscopy study on the (Li1-xFex)OHFeSe single crystals. The tunnelling spectrum mimics that of the monolayer FeSe thin film and shows double gaps at about 14.3 and 8.6 meV. Further analysis based on the quasiparticle interference allows us to rule out the d-wave gap, and for the first time assign the larger (smaller) gap to the outer (inner) Fermi pockets (after folding) associating with the dxy (dxz/dyz) orbitals, respectively. The gap ratio amounts to 8.7, which demonstrates the strong coupling mechanism in the present superconducting system. PMID:26822281

  17. Method for making mirrored surfaces comprising superconducting material

    DOEpatents

    Early, J.T.; Hargrove, R.S.

    1989-12-12

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40 K and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  18. Toroidal constant-tension superconducting magnetic energy storage units

    DOEpatents

    Herring, J. Stephen

    1992-01-01

    A superconducting magnetic energy storage unit is provided in which the magnet is wound in a toroidal fashion such that the magnetic field produced is contained only within the bore of the magnet, and thus producing a very low external field. The superconducting magnet includes a coolant channel disposed through the wire. The bore of the magnet comprises a storage volume in which cryogenic coolant is stored, and this volume supplies the coolant to be delivered to the coolant channel in the magnet.

  19. Upper critical field of KFe2As2 under pressure: A test for the change in the superconducting gap structure

    SciTech Connect

    Taufour, Valentin; Foroozani, Neda; Tanatar, Makariy A.; Lim, Jinhyuk; Kaluarachchi, Udhara; Kim, Stella K.; Liu, Yong; Lograsso, Thomas A.; Kogan, Vladimir G.; Prozorov, Ruslan; Bud'ko, Sergey L.; Schilling, James S.; Canfield, Paul C.

    2014-06-01

    We report measurements of electrical resistivity under pressure to 5.8 GPa, magnetization to 6.7 GPa, and ac susceptibility to 7.1 GPa in KFe2As2. The previously reported change of slope in the pressure dependence of the superconducting transition temperature Tc(p) at a pressure p∗∼1.8 GPa is confirmed, and Tc(p) is found to be nearly constant above p∗ up to 7.1 GPa. The T−p phase diagram is very sensitive to the pressure conditions as a consequence of the anisotropic uniaxial pressure dependence of Tc. Across p∗, a change in the behavior of the upper critical field is revealed through a scaling analysis of the slope of Hc2 with the effective mass as determined from the A coefficient of the T2 term of the temperature-dependent resistivity. We show that this scaling provides a quantitative test for the changes of the superconducting gap structure and suggests the development of a kz modulation of the superconducting gap above p∗ as a most likely explanation.

  20. Superconducting gap evolution in overdoped BaFe2(As1-xPx) 2 single crystals through nanocalorimetry

    NASA Astrophysics Data System (ADS)

    Campanini, D.; Diao, Z.; Fang, L.; Kwok, W.-K.; Welp, U.; Rydh, A.

    2015-06-01

    We report on specific heat measurements on clean overdoped BaFe2(As1-xPx)2 single crystals performed with a high resolution membrane-based nanocalorimeter. A nonzero residual electronic specific heat coefficient at zero temperature γr=C/T | T →0 is seen for all doping compositions, indicating a considerable fraction of the Fermi surface ungapped or having very deep minima. The remaining superconducting electronic specific heat is analyzed through a two-band s -wave α model in order to investigate the gap structure. Close to optimal doping we detect a single zero-temperature gap of Δ0˜5.3 meV , corresponding to Δ0/kBTc˜2.2 . Increasing the phosphorus concentration x , the main gap reduces till a value of Δ0˜1.9 meV for x =0.55 and a second weaker gap becomes evident. From the magnetic field effect on γr, all samples however show similar behavior [γr(H ) -γr(H =0 ) ∝Hn , with n between 0.6 and 0.7]. This indicates that, despite a considerable redistribution of the gap weights, the total degree of gap anisotropy does not change drastically with doping.

  1. Superconducting gap evolution in overdoped BaFe₂(As1-xPx)₂ single crystals through nanocalorimetry

    DOE PAGESBeta

    Campanini, D.; Diao, Z.; Fang, L.; Kwok, W.-K.; Welp, U.; Rydh, A.

    2015-06-18

    We report on specific heat measurements on clean overdoped BaFe₂(As1-xPx)₂ single crystals performed with a high resolution membrane-based nanocalorimeter. A nonzero residual electronic specific heat coefficient at zero temperature γr=C/T|T→0 is seen for all doping compositions, indicating a considerable fraction of the Fermi surface ungapped or having very deep minima. The remaining superconducting electronic specific heat is analyzed through a two-band s-wave α model in order to investigate the gap structure. Close to optimal doping we detect a single zero-temperature gap of Δ₀~5.3 me V, corresponding to Δ₀/kBTc ~ 2.2. Increasing the phosphorus concentration x, the main gap reduces tillmore » a value of Δ₀ ~ 1.9 meV for x = 0.55 and a second weaker gap becomes evident. From the magnetic field effect on γr, all samples however show similar behavior [γr(H) - γr (H = 0)∝ Hn, with n between 0.6 and 0.7]. This indicates that, despite a considerable redistribution of the gap weights, the total degree of gap anisotropy does not change drastically with doping.« less

  2. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    NASA Astrophysics Data System (ADS)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  3. Feasible utility scale superconducting magnetic energy storage system

    NASA Astrophysics Data System (ADS)

    Loyd, R. J.; Schoenung, S. M.; Nakamura, T.; Lieurance, D. W.; Hilal, M. A.; Rogers, J. D.; Purcell, J. R.; Hassenzahl, W. V.

    This paper presents the latest design features and estimated costs of a 5000 MWh/1000 MW Superconducting Magnetic Energy Storage (SMES) plant. SMES is proposed as a commercially viable technology for electric utility load leveling. The primary advantage of SMES over other electrical energy storage technologies is its high net roundtrip efficiency. Other features include rapid availability and low maintenance and operating costs. Economic comparisons are made with other energy storage options and with gas turbines. In a diurnal load leveling application, a superconducting coil can be charged from the utility grid during off-peak hours. The ac grid is connected to the dc magnetic coil through a power conversion system that includes an inverter/rectifier. Once charged, the superconducting coil conducts current, which supports an electromagnetic field, with virtually no losses. During hours of peak load, the stored energy is discharged to the grid by reversing the charging process. The principle of operation of a SMES unit is shown. For operation in the superconducting mode, the coil is maintained at extremely low temperature by immersion in a bath of liquid helium.

  4. Toroidal constant-tension superconducting magnetic energy storage units

    DOEpatents

    Herring, J.S.

    1992-11-03

    A superconducting magnetic energy storage unit is provided in which the magnet is wound in a toroidal fashion such that the magnetic field produced is contained only within the bore of the magnet, and thus producing a very low external field. The superconducting magnet includes a coolant channel disposed through the wire. The bore of the magnet comprises a storage volume in which cryogenic coolant is stored, and this volume supplies the coolant to be delivered to the coolant channel in the magnet. 6 figs.

  5. Dipolon theory of energy gap parameters at finite temperature and transition temperatures Tc and T∗ in high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Sharma, R. R.

    2006-06-01

    First temperature dependent regular and pseudo-energy gap parameters and regular and pseudo-transition temperatures arising from the same physical origin have been calculated in the strong coupling formalism. Temperature dependent many-body field-theoretic techniques have been developed, as an extension of our previous zero-temperature formalism, to derive temperature dependent general expressions for the renormalized energy gap parameter Δ(k→,ω), the gap renormalization parameter Z(k→,ω) and energy band renormalization parameter χ(k→,ω) for momentum k→ and frequency ω making use of dipolon propagator and electron Green’s function taking into account explicitly the dressed dipolons as mediators of superconductivity, the screened Coulomb repulsion and nonrigid electron energy bands considering retardation and damping effects and electron-hole asymmetry. The theory takes into account all necessary and important correlations. Our self-consistent calculations utilize the previously symmetry predicted two energy gap parameters for superconducting cuprates, one being antisymmetric (“as”) with respect to the exchange of the kx and ky components of vector k→ and the other being symmetric (“s”) with respect to the exchange of kx and ky. Our present temperature dependent self-consistent solutions of the real and imaginary parts of the Δ(k→,ω), Z(k→,ω) and χ(k→,ω) confirm the existence of these two (different) solutions and conclude that the antisymmetric solution of the gap parameter corresponds to the observed regular (“reg”) superconducting energy gap whereas the symmetric solution corresponds to the observed pseudo-(“pse-”) energy gap. Explicit temperature dependent self-consistent calculations have been performed here for Bi 2Sr 2CaCu 2O 8+ δ as well as Bi 2Sr 2CaCu 2O 8 giving temperature dependent energy gap parameters and corresponding transition temperatures. The calculated results are consistent with the available experimental data. Our calculated results take into account different appropriate sets of electron-electron Coulomb interaction energy and screening constant with Pauling’s as well as TKS polarizabilities for various ions in these systems. The uncertainties in the calculated values of the energy gap parameters and transition temperatures are mainly due to uncertainties in the polarizabilities of the ions, Coulomb energy and the screening constant. Migdal vertex correction has been estimated. The calculated results have been discussed with respect to the available experiments. In particular, our calculations show that T∗ is greater than the corresponding Tc and they ( Tc and T∗) have the same physical origin, in agreement with experiments. Our results have been discussed and directions for further investigations have been pointed out.

  6. Anisotropy of the superconducting gap in the iron-based superconductor BaFe2(As1-xPx)2

    PubMed Central

    Yoshida, T.; Ideta, S.; Shimojima, T.; Malaeb, W.; Shinada, K.; Suzuki, H.; Nishi, I.; Fujimori, A.; Ishizaka, K.; Shin, S.; Nakashima, Y.; Anzai, H.; Arita, M.; Ino, A.; Namatame, H.; Taniguchi, M.; Kumigashira, H.; Ono, K.; Kasahara, S.; Shibauchi, T.; Terashima, T.; Matsuda, Y.; Nakajima, M.; Uchida, S.; Tomioka, Y.; Ito, T.; Kihou, K.; Lee, C. H.; Iyo, A.; Eisaki, H.; Ikeda, H.; Arita, R.; Saito, T.; Onari, S.; Kontani, H.

    2014-01-01

    We report peculiar momentum-dependent anisotropy in the superconducting gap observed by angle-resolved photoemission spectroscopy in BaFe2(As1-xPx)2 (x = 0.30, Tc = 30 K). Strongly anisotropic gap has been found only in the electron Fermi surface while the gap on the entire hole Fermi surfaces are nearly isotropic. These results are inconsistent with horizontal nodes but are consistent with modified s± gap with nodal loops. We have shown that the complicated gap modulation can be theoretically reproduced by considering both spin and orbital fluctuations. PMID:25465027

  7. Optimal emitter-collector gap for thermionic energy converters

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hyung; Bargatin, Igor; Melosh, Nicholas A.; Howe, Roger T.

    2012-04-01

    In this letter, we calculate numerically the emitter-collector gaps that maximize the power conversion efficiency of vacuum thermionic energy converters (TECs). The optimum arises because efficiency drops both at very large gaps, due to space-charge limitations on the TEC current, and at very small gaps, due to the increased parasitic heat loss via near-field radiative heat transfer. For typical TECs made with cesiated tungsten electrodes, the optimal gaps range from 900 nm to 3 μm and are approximately equal to the characteristic wavelength of the emitter thermal radiation, as given by Wien's displacement law.

  8. Power applications of high-temperature superconductivity: Variable speed motors, current switches, and energy storage for end use

    SciTech Connect

    Hawsey, R.A.; Banerjee, B.B.; Grant, P.M.

    1996-08-01

    The objective of this project is to conduct joint research and development activities related to certain electric power applications of high-temperature superconductivity (HTS). The new superconductors may allow development of an energy-efficient switch to control current to variable speed motors, superconducting magnetic energy storage (SMES) systems, and other power conversion equipment. Motor types that were considered include induction, permanent magnet, and superconducting ac motors. Because it is impractical to experimentally alter certain key design elements in radial-gap motors, experiments were conducted on an axial field superconducting motor prototype using 4 NbTi magnets. Superconducting magnetic energy storage technology with 0.25--5 kWh stored energy was studied as a viable solution to short duration voltage sag problems on the customer side of the electric meter. The technical performance characteristics of the device wee assembled, along with competing technologies such as active power line conditioners with storage, battery-based uninterruptible power supplies, and supercapacitors, and the market potential for SMES was defined. Four reports were prepared summarizing the results of the project.

  9. Nodal to nodeless superconducting energy-gap structure change concomitant with Fermi-surface reconstruction in the heavy-fermion compound CeCoIn5

    SciTech Connect

    Kim, Hyunsoo; Tanatar, M. A.; Flint, R.; Petrovic, C.; Hu, Rongwei; White, B. D.; Lum, I. K.; Maple, M. B.; Prozorov, R.

    2015-01-15

    The London penetration depth λ(T) was measured in single crystals of Ce1–xRxCoIn₅, R=La, Nd, and Yb down to Tmin ≈ 50 mK (Tc/Tmin ~50) using a tunnel-diode resonator. In the cleanest samples Δλ(T) is best described by the power law, Δλ(T) ∝ Tn, with n ~ 1, consistent with line nodes. Substitutions of Ce with La, Nd, and Yb lead to similar monotonic suppressions of Tc, however, the effects on Δλ(T) differ. While La and Nd dopings lead to increase of the exponent n and saturation at n ~ 2, as expected for a dirty nodal superconductor, Yb doping leads to n > 3, suggesting a change from nodal to nodeless superconductivity. As a result, this superconducting gap structure change happens in the same doping range where changes of the Fermi surface topology were reported, implying that the nodal structure and Fermi surface topology are closely linked.

  10. Peculiarities of the superconducting gaps and the electron-boson interaction in TmNi2B2C as seen by point-contact spectroscopy

    NASA Astrophysics Data System (ADS)

    Naidyuk, Yu. G.; Kvitnitskaya, O. E.; Tiutrina, L. V.; Yanson, I. K.; Behr, G.; Fuchs, G.; Drechsler, S.-L.; Nenkov, K.; Schultz, L.

    2011-09-01

    Point-contact (PC) investigations on the title compound in the normal and superconducting (SC) state (Tc≃10.6 K) are presented. The temperature dependence of the SC gap of TmNi2B2C determined from Andreev-reflection (AR) spectra using the standard single-gap approximation (SGA) deviates from the BCS behavior in displaying a maximum at about Tc/2. A refined analysis within the two-gap approximation provides evidence for the presence of a second gap twice as large as the main gap (the first one), while the latter is close to that within the SGA. This way, TmNi2B2C expands the number of nickel borocarbide superconductors which exhibit a clear multiband character. Additionally, “reentrant” features were found in the AR spectra for some PCs measured in a magnetic field. The PC spectroscopy of the electron-boson interaction in TmNi2B2C in the normal state reveals a pronounced phonon maximum at 9.5 meV and a more smeared one at around 15 meV, while at higher energies the PC spectra are almost featureless. Additionally, the most intense peak slightly above 3 meV observed in the PC spectra of TmNi2B2C is presumably caused by crystalline-electric-field (CEF) excitations. The peak near 1 meV detected for some PC spectra is connected with a modification of the CEF, probably due to boron or carbon vacancies, allowing a probe of the local stoichiometry by PC spectroscopy.

  11. Angular position of nodes in the superconducting gap of quasi-2D heavy-fermion superconductor CeCoIn5.

    PubMed

    Izawa, K; Yamaguchi, H; Matsuda, Y; Shishido, H; Settai, R; Onuki, Y

    2001-07-30

    The thermal conductivity of the heavy-fermion superconductor CeCoIn5 has been studied in a magnetic field rotating within the 2D planes. A clear fourfold symmetry of the thermal conductivity which is characteristic of a superconducting gap with nodes along the ( +/- pi,+/- pi) directions is resolved. The thermal conductivity measurement also reveals a first-order transition at H(c2), indicating a Pauli limited superconducting state. These results indicate that the symmetry most likely belongs to d(x(2)-y(2)), implying that the anisotropic antiferromagnetic fluctuation is relevant to the superconductivity. PMID:11497799

  12. Superconductivity

    SciTech Connect

    Rosen, J.

    1988-06-01

    Superconducting materials can conduct dc electricity-sometimes in enormous currents-with to resistance. They can cause a locomotive to levitate. They have been tested in noteworthy projects. But they must still overcome several economic as well as technical constraints. This article discusses some of these obstacles.

  13. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  14. Nuclear energy in Malaysia - closing the gaps

    NASA Astrophysics Data System (ADS)

    >Malaysian Nuclear Society (Mns,

    2013-06-01

    This article is prepared by the Malaysian Nuclear Society (MNS) to present the views of the Malaysian scientific community on the need for Malaysia to urgently upgrade its technical know-how and expertise to support the nuclear energy industry for future sustainable economic development of the country. It also present scientific views that nuclear energy will bring economic growth as well as technically sound industry, capable of supporting nuclear energy industry needs in the country, and recommend action items for timely technical upgrading of Malaysian expertise related to nuclear energy industry.

  15. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor

    SciTech Connect

    Guguchia, Z.; Amato, A.; Kang, J.; Luetkens, H.; Biswas, P. K.; Prando, G.; von Rohr, F.; Bukowski, Z.; Shengelaya, A.; Keller, H.; Morenzoni, E.; Fernandes, Rafael M.; Khasanov, R.

    2015-11-09

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. Contrasting with other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.

  16. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  17. Superconducting magnetic energy storage apparatus structural support system

    DOEpatents

    Withers, Gregory J.; Meier, Stephen W.; Walter, Robert J.; Child, Michael D.; DeGraaf, Douglas W.

    1992-01-01

    A superconducting magnetic energy storage apparatus comprising a cylindrical superconducting coil; a cylindrical coil containment vessel enclosing the coil and adapted to hold a liquid, such as liquefied helium; and a cylindrical vacuum vessel enclosing the coil containment vessel and located in a restraining structure having inner and outer circumferential walls and a floor; the apparatus being provided with horizontal compression members between (1) the coil and the coil containment vessel and (2) between the coil containment vessel and the vacuum vessel, compression bearing members between the vacuum vessel and the restraining structure inner and outer walls, vertical support members (1) between the coil bottom and the coil containment vessel bottom and (2) between the coil containment vessel bottom and the vacuum vessel bottom, and external supports between the vacuum vessel bottom and the restraining structure floor, whereby the loads developed by thermal and magnetic energy changes in the apparatus can be accommodated and the structural integrity of the apparatus be maintained.

  18. Neutron Scattering Study of Low Energy Magnetic Excitation in superconducting Te-vapor annealed under-doped FeTeSe

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Yi, Ming; Xu, Guangyong; Shneeloch, J. A.; Matsuda, Masaaki; Chi, Songxue; Gu, Genda; Tranquada, J. M.; Birgeneau, R. J.

    To study the interplay between magnetism and superconductivity, we have performed neutron scattering and magnetization measurements on a Te vapor annealed single crystal Fe1 +yTe0.8Se0.2 (Tc~13K) sample. Te vapor annealed process is found to reduce/remove the excess Fe in the as-grown sample and make the under-doped originally non-superconducting sample become good superconducting sample. Our neutron scattering studies show both spin gap and spin resonance found in the Te vapor annealed superconducting sample. Comparing to commensurate spin resonance in as-grown optimal-doped sample, the spin resonance of Te annealed sample only shows up at the clearly incommensurate positions. The temperature and energy dependence of low energy magnetic excitations are also measured in the sample. This work is supported by the Office of Basic Energy Sciences, DOE.

  19. Development and operation of the JAERI superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Minehara, Eisuke J.

    2006-02-01

    The Japan Atomic Energy Research Institute free-electron laser (JAERI FEL) group at Tokai, Ibaraki, Japan has successfully developed one of the most advanced and newest accelerator technologies named "superconducting energy recovery linacs (ERLs)" and some applications in near future using the ERLs. In the text, the current operation and high power JAERI ERL-FEL 10 kW upgrading program, ERL-light source design studies, prevention of the stainless-steel cold-worked stress-corrosion cracking failures and decommissioning of nuclear power plants in nuclear energy industries were reported and discussed briefly as a typical application of the ERL-FEL.

  20. Distinct Fermi Surface Topology and nearly Isotropic Superconducting Gap in AxFe2-y Se2 (A=K, Tl, Rb) Superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Xingjiang

    2012-02-01

    High resolution angle-resolved photoemission measurements have been carried out to study the electronic structure and superconducting gap of the newly discovered AxFe2-ySe2 [A=K, (Tl,K) and (Tl,Rb)] superconductors[1,2,3] 1. Distinct Fermi surface topology, consisting of two electron-like Fermi surface sheets around the γ(0,0) point and an electron-like Fermi surface sheet near the M(π,π) point, was revealed in all these samples. This is in strong contrast to the Fermi surface topology of other Fe-based superconductors where hole-like Fermi surface sheets are present near the γ(0,0) point. 2. Both the electron-like Fermi surface sheet near M point and the large electron-like Fermi surface sheet near γ point show nearly isotropic superconducting gap without nodes 3. The doping evolution of the electronic structure from insulating samples to the superconducting samples is consistent with a phase separation picture. The information on the Fermi surface topology and superconducting gap of this new AxFe2-ySe2 superconductor will provide key insights and constraints to understand the superconductivity mechanism in iron-based superconductors. [4pt] [1]. D. X. Mou, X. J. Zhou et. al, Phys. Rev. Lett. 106, 107001 (2011). [0pt] [2]. L. Zhao, X. J. Zhou et. al, Phys. Rev. B 83, 140508(R) (2011). [0pt] [3]. L. Yu, X. J. Zhou et al., unpublished.

  1. Renormalization group flow, competing phases, and the structure of superconducting gap in multiband models of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Maiti, Saurabh; Chubukov, Andrey V.

    2010-12-01

    We perform an analytical renormalization group (RG) study to address the role of Coulomb repulsion, the competition between extended s -wave superconducting order (s±) , and the spin-density wave (SDW) order and the angular dependence of the superconducting gap in multipocket models of iron-based superconductors. Previous analytic RG studies considered a toy model of one hole and one electron pocket. We consider more realistic models of two electron pockets and either two or three hole pockets, and also incorporate angular dependence of the interactions. In a toy two-pocket model, SDW order always wins over s± order at perfect nesting; s± order only appears when doping is finite and RG flow extends long enough to overcome intrapocket Coulomb repulsion. For multipocket models, there are two new effects. First, in most cases there exists an attractive component of the interaction in s± channel no matter how strong intrapocket repulsion is, such that the system necessary becomes a superconductor once it overcomes the competition from the SDW state. Second, in four-pocket case (but not in five-pocket case), s± order wins over SDW order even for perfect nesting, if RG flow extends long enough, suggesting that SDW order is not a necessary precondition for the s± order. Our analytic results are in full agreement with recent numerical functional RG studies by Thomale [arXiv:1002.3599 (unpublished)

  2. Anisotropic rectifying characteristics induced by the superconducting gap of YBa2Cu3O7-δ/Nb-doped SrTiO3 heterojunctions

    NASA Astrophysics Data System (ADS)

    Zhang, M. J.; Hao, F. X.; Zhang, C.; Liu, X.; Li, X. G.

    2015-11-01

    In this paper, we investigated the anisotropic rectifying characteristics of a YBa2Cu3O7-δ (YBCO)/Nb-doped SrTiO3 heterojunction in magnetic fields of up to 9 T by rotating the junction from H//c to H//ab of the YBCO film. From the temperature and field dependencies of the diffusion potential Vd, we found that the angle-resolved reductions of Vd from its original value, δVd, were induced by the anisotropic superconducting gap Δ of the YBCO. The anisotropic parameter obtained from Δ was close to that obtained from the angular-dependent upper critical fields of the YBCO. This heterojunction is helpful both in investigating the superconducting gap and in designing sensitive superconducting devices.

  3. A feasibility demonstration program for superconducting magnetic energy storage

    SciTech Connect

    Filios, P.G. )

    1988-01-01

    The Defense Nuclear Agency, as the agent of the Strategic Defense Initiative (SDI) Office, has begun a program to build an engineering test model (ETM) of a superconducting magnetic energy storage (SMES) system. The ETM will serve to demonstrate the feasibility of using SMES technology to meet both SDI and public utility requirements for electric energy storage. SMES technology characteristics are reviewed and related to SDI and electric utility requirements. Program structure and schedule are related to specific objectives, and critical issues are defined.

  4. The calculation of band gap energy in zinc oxide films

    NASA Astrophysics Data System (ADS)

    Arif, Ali; Belahssen, Okba; Gareh, Salim; Benramache, Said

    2015-01-01

    We investigated the optical properties of undoped zinc oxide thin films as the n-type semiconductor; the thin films were deposited at different precursor molarities by ultrasonic spray and spray pyrolysis techniques. The thin films were deposited at different substrate temperatures ranging between 200 and 500 °C. In this paper, we present a new approach to control the optical gap energy of ZnO thin films by concentration of the ZnO solution and substrate temperatures from experimental data, which were published in international journals. The model proposed to calculate the band gap energy with the Urbach energy was investigated. The relation between the experimental data and theoretical calculation suggests that the band gap energies are predominantly estimated by the Urbach energies, film transparency, and concentration of the ZnO solution and substrate temperatures. The measurements by these proposal models are in qualitative agreements with the experimental data; the correlation coefficient values were varied in the range 0.96-0.99999, indicating high quality representation of data based on Equation (2), so that the relative errors of all calculation are smaller than 4%. Thus, one can suppose that the undoped ZnO thin films are chemically purer and have many fewer defects and less disorder owing to an almost complete chemical decomposition and contained higher optical band gap energy.

  5. A universal theorem of energy discretization - its implication in a promising mechanism of all superconductivities[1

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J. X.; Johansson, P.-I.

    2000-03-01

    We report on a theorem stating that discretization of wavevector hence energy would universally result, if the motion of a quantum particle is spatially prohibited. The prohibition to electrons in a metal can be effectuated by such as a tight binding effect or a large resistivity. On identification of the resultant energy quanta as the superconducting gap, and, in combining this with the simple theory of metals, we correctly predict that good "normal conductors" such as Cu are not superconductors, or vice verse; and the estimated T_c's for the superconductors fall within the right magnitudes. Work supported by the Swedish Natural Science Research Council. With thanks to Prof B Johansson, Prof V Heine, Prof K-F Berggren, Prof M Springford, Dr B Sernulius for useful discussions. [1] Paper presented at The XXII Int Conf on Low Temp Phys (1999) Finland; also: Abst, pp307.

  6. STRIPES AND SUPERCONDUCTIVITY IN CUPRATE SUPERCONDUCTORS

    SciTech Connect

    TRANQUADA, J.M.

    2005-08-22

    One type of order that has been observed to compete with superconductivity in cuprates involves alternating charge and antiferromagnetic stripes. Recent neutron scattering studies indicate that the magnetic excitation spectrum of a stripe-ordered sample is very similar to that observed in superconducting samples. In fact, it now appears that there may be a universal magnetic spectrum for the cuprates. One likely implication of this universal spectrum is that stripes of a dynamic form are present in the superconducting samples. On cooling through the superconducting transition temperature, a gap opens in the magnetic spectrum, and the weight lost at low energy piles up above the gap; the transition temperature is correlated with the size of the spin gap. Depending on the magnitude of the spin gap with respect to the magnetic spectrum, the enhanced magnetic scattering at low temperature can be either commensurate or incommensurate. Connections between stripe correlations and superconductivity are discussed.

  7. Nodeless superconducting gaps in Ca10(Pt4- δ As8)((Fe1- x Pt x )2As2)5 probed by quasiparticle heat transport

    NASA Astrophysics Data System (ADS)

    Qiu, Xun; He, LanPo; Hong, XiaoChen; Zhang, Zhen; Pan, Jian; Shen, XiaoPing; Feng, DongLai; Li, ShiYan

    2016-05-01

    The in-plane thermal conductivity of the iron-based superconductor Ca10(Pt4- δ As8)((Fe1- x Pt x )2As2)5 single crystal ("10-4-8", T c = 22 K) was measured down to 80 mK. In a zero field, the residual linear term κ 0/ T is negligible, suggesting the nodeless superconducting gaps in this multiband compound. In the magnetic fields, κ 0/ T increases rapidly, which mimics the multiband superconductor NbSe2 and LuNi2B2C with highly anisotropic gap. Such a field dependence of κ 0/ T is an evidence for the multiple superconducting gaps with quite different magnitudes or highly anisotropic gap. Compared with the London penetration depth results of the Ca10(Pt4- δ As8)((Fe1- x Pt x )2As2)5 ("10-3-8") compound, the 10-4-8 and 10-3-8 compounds may have a similar superconducting gap structure.

  8. Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative

    DOE PAGESBeta

    David, Tanya M. S.; Zhang, Cheng; Sun, Sam-Shajing

    2014-01-01

    Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene) or PDDTV. The polymer exhibited an optical energy gap of 1.46 eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO) level is −4.79 eV, resulting in the lowest unoccupied molecular orbital (LUMO) level of −3.33 eV based on optical energy gap. The polymer wasmore » synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.« less

  9. Heat transport in RbFe2As2 single crystals: Evidence for nodal superconducting gap

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Wang, A. F.; Hong, X. C.; Zhang, J.; Pan, B. Y.; Pan, J.; Xu, Y.; Luo, X. G.; Chen, X. H.; Li, S. Y.

    2015-01-01

    The in-plane thermal conductivity of iron-based superconductor RbFe2As2 single crystal (Tc≈ 2.1 K) was measured down to 100 mK. In zero field, the observation of a significant residual linear term κ0/T = 0.65 mW K-2 cm-1 provides clear evidence for nodal superdonducting gap. The field dependence of κ0/T is similar to that of its sister compound CsFe2As2 with comparable residual resistivity ρ0 and lies between the dirty and clean KFe2As2 . These results suggest that the (K, Rb, Cs)Fe2As2 serial superconductors have a common nodal gap structure.

  10. Effective low-energy theory for superconducting topological insulators

    NASA Astrophysics Data System (ADS)

    Hao, Lei; Lee, Ting-Kuo

    2015-03-01

    Candidate pairings of superconducting topological insulators support interesting surface Andreev bound states (SABSs) known as Majorana fermions. As these materials are described by a two-orbital Bernevig-Hughes-Zhang type model, a general understanding of the low-energy physics such as the possible kinds of SABSs are difficult. By virtue of an analogy between a topological insulator and a time reversal invariant topological superconductor, we propose a simple and intuitive method of constructing the low-energy effective models for superconducting topological insulators like CuxBi2Se3. Depending on the value of the chemical potential and for experimentally relevant model parameters, the low-energy properties of these superconductors are shown to be determined by one copy or two copies of single-orbital effective models. If the effective pairing potential shows sign reversal upon reflection by the surface, one Kramers' pair or two Kramers' pairs of SABSs are expected to appear. Explicit analytical calculations in terms of the effective low energy model reproduce the dispersions of the numerically confirmed two pairs of SABSs for a commonly studied pairing.

  11. Effective low-energy theory for superconducting topological insulators.

    PubMed

    Hao, Lei; Lee, Ting-Kuo

    2015-03-18

    Candidate pairings of superconducting topological insulators support interesting surface Andreev bound states (SABSs) known as Majorana fermions. As these materials are described by a two-orbital Bernevig-Hughes-Zhang type model, a general understanding of the low-energy physics such as the possible kinds of SABSs are difficult. By virtue of an analogy between a topological insulator and a time reversal invariant topological superconductor, we propose a simple and intuitive method of constructing the low-energy effective models for superconducting topological insulators like CuxBi2Se3. Depending on the value of the chemical potential and for experimentally relevant model parameters, the low-energy properties of these superconductors are shown to be determined by one copy or two copies of single-orbital effective models. If the effective pairing potential shows sign reversal upon reflection by the surface, one Kramers' pair or two Kramers' pairs of SABSs are expected to appear. Explicit analytical calculations in terms of the effective low energy model reproduce the dispersions of the numerically confirmed two pairs of SABSs for a commonly studied pairing. PMID:25705794

  12. Robust measurement of superconducting gap sign changes via quasiparticle interference: an application to 111 compounds

    NASA Astrophysics Data System (ADS)

    Eremin, Ilya; Altenfeld, Dustin; Hirschfeld, Peter; Mazin, Igor

    While quasiparticle interference (QPI) measurements based on scanning tunneling spectroscopy are often proposed as definitive tests of gap structure, the analysis typically relies on details of the model employed. Here using the simplified two-band model system we propose, that the temperature dependence of momentum-integrated QPI data can be used to identify gap sign changes in a qualitative way, and present an illustration for s+/- and s+ + states in a system with typical Fe-pnictide Fermi surface. Using ARPES derived band structures within 10 orbital model Hamiltonian we analyze the QPI spectra in LiFeAs and Co-doped NaFeAs compounds and show that the sign-changing gap can be clearly identified using non-magnetic impurity scattering. P.J.H. was supported by NSF-DMR-1005625, and I.I.M. by the U.S. Office of Naval Research through the Naval Research Laboratory's Basic Research Program. The work of DA and IE was supported by the Focus Program 1458 Eisen-Pniktide of the DFG.

  13. ORNL Superconducting Technology Program for Electric Energy Systems

    SciTech Connect

    Hawsey, R.A.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  14. Energy Gaps in the Failed High-Tc Superconductor La1.875Ba0.125CuO4

    SciTech Connect

    Not Available

    2011-08-11

    A central issue in high-T{sub c} superconductivity is the nature of the normal-state gap (pseudogap) in the underdoped regime and its relationship with superconductivity. Despite persistent efforts, theoretical ideas for the pseudogap evolve around fluctuating superconductivity, competing order, and spectral weight suppression due to many-body effects. Recently, although some experiments in the superconducting state indicate a distinction between the superconducting gap and pseudogap, others in the normal state, either by extrapolation from high-temperature data or directly from La{sub 1.875)Ba{sub 0.125}CuO{sub 4} (LBCO-1/8) at low temperature, suggest the ground-state pseudogap is a single gap of d-wave form. Here, we report angle-resolved photoemission data from LBCO-1/8, collected with improved experimental conditions, that reveal the ground-state pseudogap has a pronounced deviation from the simple d-wave form. It contains two distinct components: a d-waev component within an extended region around the node and the other abruptly enhanced close to the antinode, pointing to a dual nature of the pseudogap in this failed high-T{sub c} superconductor that involves a possible precursor-pairing energy scale around the node and another of different but unknown origin near the antinode.

  15. Localization of metal-induced gap states at the metal-insulator interface: Origin of flux noise in SQUIDs and superconducting qubits

    SciTech Connect

    Choi, SangKook; Lee, Dung-Hai; Louie, Steven G.; Clarke, John

    2009-10-10

    The origin of magnetic flux noise in Superconducting Quantum Interference Devices with a power spectrum scaling as 1/f (f is frequency) has been a puzzle for over 20 years. This noise limits the decoherence time of superconducting qubits. A consensus has emerged that the noise arises from fluctuating spins of localized electrons with an areal density of 5 x 10(17)m(-2). We show that, in the presence of potential disorder at the metal-insulator interface, some of the metal-induced gap states become localized and produce local moments. A modest level of disorder yields the observed areal density.

  16. Superconductivity in graphite intercalation compounds

    SciTech Connect

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  17. Superconductivity in graphite intercalation compounds

    DOE PAGESBeta

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  18. Energy transfer among isoelectronic dopants in GaP

    NASA Astrophysics Data System (ADS)

    Christian, Theresa; Alberi, Kirstin; Fluegel, Brian; Mascarenhas, Angelo

    2014-03-01

    Although GaP is an indirect-bandgap material, it can also be an efficient light-emitter at visible wavelengths when isoelectronic impurities mediate radiative recombination via states within the bandgap. Since these states also provide a medium for energy transfer via exciton hopping among localized isoelectronic trap sites, the carrier dynamics in doped GaP are strongly dependent on the distribution and density of impurity species. We present spectroscopic data demonstrating the role of energy transfer among isoelectronic states in GaP via temperature-dependent and time-resolved photoluminescence. Research was supported by the U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC36-08GO28308 and by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100.

  19. Parameter-dependences of superconducting condensation energy of 2D Hubbard model

    NASA Astrophysics Data System (ADS)

    Yamaji, K.; Koike, S.; Miyazaki, M.; Yanagisawa, T.

    2003-10-01

    By calculating the superconducting and spin density wave (SDW) condensation energies for the two-dimensional Hubbard model by the variational Monte Carlo method on the 10 10 and 12 12 lattices, we have searched for the parameter region where superconductivity overcomes SDW in the ground state. This model leads to a reasonable superconducting region as a function of electron density ? when on-site Coulomb energy U=6 in units of nearest-neighbor transfer energy t which was suggested from recent neutron diffraction data of the spin wave energy. When we fix U=6 and ?=0.84 (hole density 0.16), the superconducting phase wins in a relatively narrow range of -0.10? t??0.05, where t? is the second-neighbor transfer energy. In this region the superconducting condensation energy sharply increases with decreasing t?, which is considered to give the basis for clarifying the family dependence of the maximum Tc in the cuprate superconductors.

  20. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    SciTech Connect

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; Scalapino, Douglas J.; Maier, Thomas A.

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called η-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, η pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentum calculations with 1 Fe per unit cell.

  1. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    DOE PAGESBeta

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; Scalapino, Douglas J.; Maier, Thomas A.

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called η-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, η pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentummore » calculations with 1 Fe per unit cell.« less

  2. ``Hybrid'' multi-gap/single-gap Josephson junctions: Evidence of macroscopic quantum tunneling in superconducting-to-normal switching experiments on MgB2/I/Pb and MgB2/I/Sn junctions

    NASA Astrophysics Data System (ADS)

    Carabello, Steve; Lambert, Joseph; Dai, Wenqing; Li, Qi; Chen, Ke; Cunnane, Daniel; Xi, X. X.; Ramos, Roberto

    We report results of superconducting-to-normal switching experiments on MgB2/I/Pb and MgB2/I/Sn junctions, with and without microwaves. These results suggest that the switching behavior is dominated by quantum tunneling through the washboard potential barrier, rather than thermal excitations or electronic noise. Evidence includes a leveling in the standard deviation of the switching current distribution below a crossover temperature, a Lorentzian shape of the escape rate enhancement peak upon excitation by microwaves, and a narrowing in the histogram of escape counts in the presence of resonant microwave excitation relative to that in the absence of microwaves. These are the first such results reported in ``hybrid'' Josephson tunnel junctions, consisting of multi-gap and single-gap superconducting electrodes.

  3. Optical and electrical properties of thin superconducting films

    NASA Technical Reports Server (NTRS)

    Covington, Billy C.; Jing, Feng Chen

    1990-01-01

    Infrared spectroscopic techniques can provide a vital probe of the superconducting energy gap which is one of the most fundamental physical properties of superconductors. Currently, the central questions regarding the optical properties of superconductors are how the energy gap can be measured by infrared techniques and at which frequency the gap exists. An effective infrared spectroscopic method to investigate the superconducting energy gap, Eg, was developed by using the Bomem DA 3.01 Fourier Transformation Spectrophotometer. The reflectivity of a superconducting thin film of YBaCuO deposited on SrTiO3 was measured. A shoulder was observed in the superconducting state reflectance R(sub S) at 480/cm. This gives a value of Eg/kT(sub c) = 7.83, where k is the Boltzmann constant and T(sub c) is the superconducting transition temperature, from which, it is suggested that YBaCuO is a very strong coupling superconductor.

  4. Design of a 4.5 MJ/1 MW sectored toroidal superconducting energy storage magnet

    NASA Astrophysics Data System (ADS)

    Bhunia, Uttam; Akhter, Javed; Nandi, Chinmay; Pal, Gautam; Saha, Subimal

    2014-09-01

    A 4.5 MJ/1 MW superconducting magnetic energy storage (SMES) system is being developed at VECC centre, Kolkata. The magnet system consists of the cryostat and coil assembly comprising eight superconducting solenoid coils made of custom-made NbTi based Rutherford-type cable and arranged in toroidal fashion with finite inter-sector gap. Since the strong electromagnetic force distributed to the coil is asymmetric and non-uniform in nature, a precise 3-D finite element analysis (FEA) has been carried out to design a mechanically stable coil and support structure under various operational scenarios. The results reveal that maximum stress developed on coil and its support structure is below allowable stress limit. Extensive transient analysis has also been carried out to evaluate transient loss and assess the feasibility of using helium re-condensation technology with commercially available cryo-refrigerators. Finally, quench protection scenario has also been discussed suitable for this toroidal-type SMES system. The article investigates the design concept of the cryostat and coil assembly.

  5. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (< 400 km). The -5/3 spectra is presumably related to 3D turbulence which is dominated by the classical Kolmogrov energy cascade. The -3 spectra is related to 2D turbulence, which is dominated by strong forward scatter of enstrophy and weak forward scatter of energy. In classical 2D turbulence theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation of 2D and 3D spectra is explained using spectral gap energy transfer. The existence of the spectral gap energy transfer is validated by performing LES for the interaction of large scale circulation with a wall, and studying the evolution of the energy spectra both near to and far from the wall. Simulations are also performed using the Advanced Weather and Research Forecasting (WRF-ARW) for moist zonal flow over Gaussian ridge, and the energy spectra close and away from the ground are studied. The energy spectra predicted by WRF-ARW are qualitatively compared with LES results to emphasize the limitations of the currently used turbulence parameterizations. Ongoing validation efforts include: (1) extending the interaction of large scale circulation with wall simulations to finer grids to capture a wider range of wavenumbers; and (2) a coupled 2D-3D simulation is planned to predict the entire atmospheric turbulence spectra at a very low computational expense. The overarching objective of this study to develop turbulence modeling capability based on the energy transfer mechanisms proposed in this study. Such a model will be implemented in WRF-ARW, and applied to atmospheric simulations, for example the prediction of moisture convergence patterns at the meso-scale in the southeast United States (Tao & Barros, 2008).

  6. Majorana modes in InSb nanowires (I): zero bias peaks in hybrid devices with low-disorder and hard induced superconducting gap

    NASA Astrophysics Data System (ADS)

    Gül, Ö.; Zhang, H.; de Moor, M. W. A.; de Vries, F.; van Veen, J.; van Woerkom, D. J.; Zuo, K.; Mourik, V.; Cassidy, M.; Geresdi, A.; Car, D.; Bakkers, E. P. A. M.; Goswami, S.; Watanabe, K.; Taniguchi, T.; Kouwenhoven, L. P.

    Majorana modes in hybrid superconductor-semiconductor nanowire devices can be probed via tunnelling spectroscopy which shows a zero bias peak (ZBP) in differential conductance (1). However, alternative mechanisms such as disorder or formation of quantum dots can also give rise to ZBPs, and obscure experimental studies of Majoranas. Further, a soft induced superconducting gap commonly observed in experiments presents an outstanding challenge for the demonstration of their topological protection. In this talk we show that with device improvements, we reach low-disorder transport regime with clear quantized conductance plateaus and Andreev enhancement approaching the theoretical limit. Tunnelling spectroscopy shows a hard induced superconducting gap and no formation of quantum dots. Together with extremely stable ZBPs observed in large gate voltage and magnetic field ranges, we exclude various alternative theories besides the formation of localized Majorana modes for our observations.

  7. Public perceptions and information gaps in solar energy in Texas

    NASA Astrophysics Data System (ADS)

    Rai, Varun; Beck, Ariane L.

    2015-07-01

    Studying the behavioral aspects of the individual decision-making process is important in identifying and addressing barriers in the adoption of residential solar photovoltaic (PV). However, there is little systematic research focusing on these aspects of residential PV in Texas, an important, large, populous state, with a range of challenges in the electricity sector including increasing demand, shrinking reserve margins, constrained water supply, and challenging emissions reduction targets under proposed federal regulations. This paper aims to address this gap through an empirical investigation of a new survey-based dataset collected in Texas on solar energy perceptions and behavior. The results of this analysis offer insights into the perceptions and motivations influencing intentions and behavior toward solar energy in a relatively untapped market and help identify information gaps that could be targeted to alleviate key barriers to adopting solar, thereby enabling significant emissions reductions in the residential sector in Texas.

  8. Optical and electronic properties of some semiconductors from energy gaps

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Pattanaik, Anup

    2016-03-01

    II-VI and III-V tetrahedral semiconductors have significant potential for novel optoelectronic applications. In the present work, some of the optical and electronic properties of these groups of semiconductors have been studied using a recently proposed empirical relationship for refractive index from energy gap. The calculated values of these properties are also compared with those calculated from some well known relationships. From an analysis of the calculated electronic polarisability of these tetrahedral binary semiconductors from different formulations, we have proposed an empirical relation for its calculation. The predicted values of electronic polarisability of these semiconductors agree fairly well with the known values over a wide range of energy gap. The proposed empirical relation has also been used to calculate the electronic polarisability of some ternary compounds.

  9. Anisotropic superconducting gap and elongated vortices with Caroli-De Gennes-Matricon states in the new superconductor Ta4Pd3Te16.

    PubMed

    Du, Zengyi; Fang, Delong; Wang, Zhenyu; Li, Yufeng; Du, Guan; Yang, Huan; Zhu, Xiyu; Wen, Hai-Hu

    2015-01-01

    The superconducting state is formed by the condensation of a large number of Cooper pairs. The normal state electronic properties can give significant influence on the superconducting state. For usual type-II superconductors, the vortices are cylinder like with a round cross-section. For many two dimensional superconductors, such as Cuprates, albeit the in-plane anisotropy, the vortices generally have a round shape. In this paper we report results based on the scanning tunnelling microscopy/spectroscopy measurements on a newly discovered superconductor Ta4Pd3Te16. The chain-like conducting channels of PdTe2 in Ta4Pd3Te16 make a significant anisotropy of the in-plane Fermi velocity. We suggest at least one anisotropic superconducting gap with gap minima or possible node exists in this multiband system. In addition, elongated vortices are observed with an anisotropy of ξ||b/ξ&bottom⊥b ≈ 2.5. Clear Caroli-de Gennes-Matricon states are also observed within the vortex cores. Our results will initiate the study on the elongated vortices and superconducting mechanism in the new superconductor Ta4Pd3Te16. PMID:25797138

  10. Anisotropic Superconducting Gap and Elongated Vortices with Caroli-De Gennes-Matricon States in the New Superconductor Ta4Pd3Te16

    PubMed Central

    Du, Zengyi; Fang, Delong; Wang, Zhenyu; Li, Yufeng; Du, Guan; Yang, Huan; Zhu, Xiyu; Wen, Hai-Hu

    2015-01-01

    The superconducting state is formed by the condensation of a large number of Cooper pairs. The normal state electronic properties can give significant influence on the superconducting state. For usual type-II superconductors, the vortices are cylinder like with a round cross-section. For many two dimensional superconductors, such as Cuprates, albeit the in-plane anisotropy, the vortices generally have a round shape. In this paper we report results based on the scanning tunnelling microscopy/spectroscopy measurements on a newly discovered superconductor Ta4Pd3Te16. The chain-like conducting channels of PdTe2 in Ta4Pd3Te16 make a significant anisotropy of the in-plane Fermi velocity. We suggest at least one anisotropic superconducting gap with gap minima or possible node exists in this multiband system. In addition, elongated vortices are observed with an anisotropy of ξ||b/ξ&bottom⊥b ≈ 2.5. Clear Caroli-de Gennes-Matricon states are also observed within the vortex cores. Our results will initiate the study on the elongated vortices and superconducting mechanism in the new superconductor Ta4Pd3Te16. PMID:25797138

  11. Survey of domestic research on superconducting magnetic energy storage

    SciTech Connect

    Dresner, L.

    1991-09-01

    This report documents the results of a survey of domestic research on superconducting magnetic energy storage (SMES) undertaken with the support of the Oak Ridge National Laboratory (ORNL) Superconductivity Pilot Center. Each survey entry includes the following: Name, address, and other telephone and facsimile numbers of the principal investigator and other staff members; funding for fiscal year 1991, 1992, 1993; brief descriptions of the program, the technical progress to date, and the expected technical progress; a note on any other collaboration. Included with the survey are recommendations intended to help DOE decide how best to support SMES research and development (R D). To summarize, I would say that important elements of a well-rounded SMES research program for DOE are as follows. (1) Construction of a large ETM. (2) Development of SMES as an enabling technology for solar and wind generation, especially in conjunction with the ETM program, if possible. (3) Development of small SMES units for electric networks, for rapid transit, and as noninterruptible power supplies (uses (2), (3), and (4) above). In this connection, lightweight, fiber-reinforced polymer structures, which would be especially advantageous for space and transportation applications, should be developed. (4) Continued study of the potential impacts of high-temperature superconductors on SMES, with construction as soon as feasible of small SMES units using high-temperature superconductors (HTSs).

  12. Survey of domestic research on superconducting magnetic energy storage

    SciTech Connect

    Dresner, L.

    1991-09-01

    This report documents the results of a survey of domestic research on superconducting magnetic energy storage (SMES) undertaken with the support of the Oak Ridge National Laboratory (ORNL) Superconductivity Pilot Center. Each survey entry includes the following: Name, address, and other telephone and facsimile numbers of the principal investigator and other staff members; funding for fiscal year 1991, 1992, 1993; brief descriptions of the program, the technical progress to date, and the expected technical progress; a note on any other collaboration. Included with the survey are recommendations intended to help DOE decide how best to support SMES research and development (R&D). To summarize, I would say that important elements of a well-rounded SMES research program for DOE are as follows. (1) Construction of a large ETM. (2) Development of SMES as an enabling technology for solar and wind generation, especially in conjunction with the ETM program, if possible. (3) Development of small SMES units for electric networks, for rapid transit, and as noninterruptible power supplies [uses (2), (3), and (4) above]. In this connection, lightweight, fiber-reinforced polymer structures, which would be especially advantageous for space and transportation applications, should be developed. (4) Continued study of the potential impacts of high-temperature superconductors on SMES, with construction as soon as feasible of small SMES units using high-temperature superconductors (HTSs).

  13. Large superconducting double-gap, a pronounced pseudogap and evidence for proximity-induced topological superconductivity in the Bi2Te3/Fe1+yTe interfacial superconductor

    NASA Astrophysics Data System (ADS)

    Shen, J. Y.; He, M. Q.; He, Q. L.; Law, K. T.; Sou, I. K.; Lortz, R.; Petrovic, A. P.

    We investigate directional point-contact spectroscopy on a Bi2Te3/ Fe1+yTe heterostructure, fabricated via van der Waals epitaxy, which is interfacial superconducting with an onset TC at 12K and zero resistance below 8K. A large superconducting twin-gap structure is seen down to 0.27K, together with a zero bias conductance peak. The anisotropic smaller gap (Δ1) is around 5 meV at 0.27K and closes at 8K, while the other one (Δ2), as large as 12 meV, is isotropic and eventually evolves into a pseudogap closing at 40K. Both, the two-gap BTK and Dynes models can well reproduce our data, demonstrating Δ1 should be associated with the proximity-induced superconductivity in the topological Bi2Te3 layer, while Δ2 may be attributed to an intrinsically-doped FeTe thin film at the interface. This work was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (603010, SEGHKUST03).

  14. Parametric investigation of nano-gap thermophotovoltaic energy conversion

    NASA Astrophysics Data System (ADS)

    Lau, Japheth Z.-J.; Bong, Victor N.-S.; Wong, Basil T.

    2016-03-01

    Nano-gap thermophotovoltaic energy converters have the potential to be excellent generators of electrical power due to the near-field radiative effect which enhances the transfer of energy from one medium to another. However, there is still much to learn about this new form of energy converter. This paper seeks to investigate three parameters that affect the performance of nano-gap thermophotovoltaic devices: the emitter material, the thermophotovoltaic cell material, and the cell thickness. Furthermore, the temperature profiles in insulated thin films (cells exposed to below-band gap near-field radiation) are analysed. It was discovered that an effective emitter material is one that has a high generalised emissivity value and is also able to couple with the TPV cell material through surface polaritons while a cell material's electrical properties and its thickness has heavy bearing on its internal quantum efficiency. In regards to the temperature profile, the heat-flux absorbed causes a rise in temperature across the thin film, but is insufficient to generate a temperature gradient across the film.

  15. Energy Gaps and Interaction Blockade in Confined Quantum Systems

    SciTech Connect

    Capelle, K.; Borgh, M.; Kaerkkaeinen, K.; Reimann, S. M.

    2007-07-06

    We investigate universal properties of strongly confined particles that turn out to be dramatically different from what is observed for electrons in atoms and molecules. For a large class of harmonically confined systems, such as small quantum dots and optically trapped atoms, many-body particle addition and removal energies, and energy gaps, are accurately obtained from single-particle eigenvalues. Transport blockade phenomena are related to the derivative discontinuity of the exchange-correlation functional. This implies that they occur very generally, with Coulomb blockade being a particular realization of a more general phenomenon. In particular, we predict a van der Waals blockade in cold atom gases in traps.

  16. Low cost composite structures for superconducting magnetic energy storage systems

    SciTech Connect

    Rix, C. ); McColskey, D. ); Acree, R. )

    1994-07-01

    As part of the Superconducting Magnetic Energy Storage/Engineering Test Model (SMES-ETM) programs, design, analysis, fabrication and test programs were conducted to evaluate the low cost manufacturing of Fiberglass Reinforced Plastic (FRP) beams for usage as major components of the structural and electrical insulation systems. These studies utilized pultrusion process technologies and vinylester resins to produce large net sections at costs significantly below that of conventional materials. Demonstration articles incorporating laminate architectures and design details representative of SMES-ETM components were fabricated using the pultrusion process and epoxy, vinylester, and polyester resin systems. The mechanical and thermal properties of these articles were measured over the temperature range from 4 K to 300 K. The results of these tests showed that the pultruded, vinylester components have properties comparable to those of currently used materials, such as G-10, and are capable of meeting the design requirements for the SMES-ETM system.

  17. Low cost composite structures for superconducting magnetic energy storage systems

    NASA Astrophysics Data System (ADS)

    Rix, Craig; McColskey, David; Acree, Robert

    1994-07-01

    As part of the Superconducting Magnetic Energy Storage/Engineering Test Model (SMES-ETM) program, design, analysis, fabrication and test programs were conducted to evaluate the low cost manufacturing of Fiberglass Reinforced Plastic (FRP) beams for usage as major components of the structural and electrical insulation systems. These studies utilized pultrusion process technologies and vinylester resins to produce large net sections at costs significantly below that of conventional materials. Demonstration articles incorporating laminate architectures and design details representative of SMES-ETM components were fabricated using the pultrusion process and epoxy, vinylester, and polyester resin systems. The mechanical and thermal properties of these articles were measured over the temperature range from 4 K to 300 K. The results of these tests showed that the pultruded, vinylester components have properties comparable to those of currently used materials, such as G-10, and are capable of meeting the design requirements for the SMES-ETM system.

  18. Superconducting magnetic energy storage (SMES) program, January 1-December 31, 1981

    SciTech Connect

    Rogers, J.D.

    1982-02-01

    Work reported is on the development of a 30 MJ superconducting magnetic energy storage (SMES) unit for use by the Bonneville Power Administration (BPA) to stabilize power oscillations on their Pacific AC Intertie. The 30 MJ superconducting coil manufacture was completed. Design of the seismic mounting of the coil to the nonconducting dewar lid and a concrete foundation is complete. The superconducting application VAR (SAVAR) control study indicated a low economic advantage and the SAVAR program was terminated. An economic and technological evaluation of superconducting fault current limiter (SFCL) was completed and the results are reported.

  19. Department of Energy`s Wire Development Workshop - Superconductivity program for electric systems

    SciTech Connect

    1996-06-01

    The 1996 High-Temperature Superconducting Wire Development Workshop was held on January 31--February 1 at the Crown Plaza Tampa Westshore in Tampa, Florida. The meeting was hosted by Tampa Electric Company and sponsored by the Department of Energy`s Superconductivity Program for Electric Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. Tampa Electric`s Greg Ramon began the meeting by giving a perspective on the changes now occurring in the utility sector. Major program wire development accomplishments during the past year were then highlighted, particularly the world record achievements at Los Alamos and Oak Ridge National Laboratories. The meeting then focussed on three priority technical issues: thallium conductors; AC losses in HTS conductors; and coated conductors on textured substrates. Following in-depth presentations, working groups were formed in each technology area to discuss and critique the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  20. New Insights into High-Tc Superconductivity from Angle-Resolved Photoemission at Low Photon Energies

    NASA Astrophysics Data System (ADS)

    Plumb, Nicholas Clark

    Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct and powerful probes for studying the physics of solids. ARPES takes a "snapshot" of electrons in momentum space (k-space) to reveal details of the dispersion relation E( k), as well as information about the lifetimes of interacting quasiparticles. From this we learn not only where the electrons live, but also, if we are crafty, what they are doing. Beginning with work by our group in 2006 using a 6-eV laser, ARPES experiments have begun to make use of a new, low photon energy regime (roughly hnu = 6--9 eV). These low photon energies give drastic improvements in momentum resolution, photoelectron escape depths, and overall spectral sharpness. This has led to several important new findings in the intensively-studied problem of high-temperature superconductivity. This thesis will focus on two of the latest results from our group using low-energy ARPES (LE-ARPES) to study the cuprate high-Tc superconductor Bi2Sr2CaCu2O8+delta (Bi2212). The first of these is an investigation into the nature of many-body interactions at a well-known energy scale ( 60--70 meV) where the dispersion shows a large bend, or "kink". Using LE-ARPES measurements, the k-dependence of this kink is investigated in unprecedented detail. An attempt is then made to map the feature's k evolution into the scattering q-space of boson dispersions. In our analysis, the q-dispersion of the kink bears more resemblance to dispersive spin excitations than phonons --- a surprising finding in light of previous evidence that the the kink originates from interactions with phonons. However, phonons cannot be ruled out, and the results may hint that both types of interactions contribute to the main nodal kink. A second result is the discovery of a new ultralow (< 10 meV) energy scale for electron interactions, corresponding to a distinct, smaller kink in the electron dispersion. The temperature and doping dependence of this feature show not only that it turns on near Tc --- signalling a possible relation to the mechanism of high-T c superconductivity --- but also that it leads to a subtle breakdown of the so-called "universal" Fermi velocity vF along nodes of the anisotropic superconducting gap. Moreover, vF is found to depend quite strongly on temperature, which may be an important factor in the physics of cuprates.

  1. Analytical design of a superconducting magnetic energy storage for pulsed power peak

    SciTech Connect

    Netter, D.; Leveque, J.; Rezzoug, A.; Caron, J.P.; Sargos, F.M.

    1996-09-01

    A Superconducting Magnetic Energy Storage can be used to produce very high pulsed power peak. A superconducting coil is magnetically coupled with another coil linked to the load. During the storage phase, the current is constant. In order to transfer the energy to the load, the authors cause the quench of the superconducting coil. It is very important to know the efficiency of the transfer and how much energy is discharged in the Helium vessel. In this paper, they propose an analytical method which enables to calculate very quickly the electrical parameters of such a device.

  2. The energy gap of the compound FeSe0.5Te0.5 determined by specific heat and Point Contact Spectroscopy

    NASA Astrophysics Data System (ADS)

    Escudero, Roberto; Lpez-Romero, Rodolfo E.

    2015-10-01

    The superconductor FeSe0.5Te0.5 was studied with Point Contact spectroscopy and specific heat in polycrystalline samples. The transition temperature determined by magnetic measurement was TC=14.5 K. The size of the energy gap measured by junctions is ? = 1.9 meV, whereas the gap determined by the specific heat measurements was ? = 2.3 meV. The gap evolution with temperature follows BCS, the ratio 2?/KBTC has values between 2.88 ? 2 ? /KBTC ? 3.04. The compound was grown by solid state synthesis in quartz ampoules under vacuum at 950 C. Crystal structure was characterized by X-ray diffraction. The superconducting properties were characterized by magnetization, resistivity and specific heat. This superconductor shows an isotropic energy gap as observed with the fitting of the specific heat at low temperature.

  3. Specific heat in magnetic fields and superconducting gap structure in FeSe1-xTex (0.6 ⩽ x ⩽ 1)

    NASA Astrophysics Data System (ADS)

    Konno, Takuya; Adachi, Tadashi; Imaizumi, Masato; Noji, Takashi; Kawamata, Takayuki; Koike, Yoji

    2014-09-01

    Specific heat has been measured in magnetic fields at low temperatures down to 0.4 K in the iron-chalcogenide superconductors of FeSe1-xTex, in order to investigate details of the superconducting (SC) gap. Using the two-gap model, it has been found that the smaller SC gap is significantly depressed by the application of magnetic field. Moreover, it has been found that the enhancement of the residual electronic-specific-heat-coefficient in the ground state by the application of magnetic field is much smaller than that expected for superconductors with the typical s-wave or d-wave SC paring symmetry. These results are discussed in relation to the multi-band effect in the iron-based superconductors.

  4. Superconducting gap evolution in overdoped BaFe₂(As1-xPx)₂ single crystals through nanocalorimetry

    SciTech Connect

    Campanini, D.; Diao, Z.; Fang, L.; Kwok, W.-K.; Welp, U.; Rydh, A.

    2015-06-18

    We report on specific heat measurements on clean overdoped BaFe₂(As1-xPx)₂ single crystals performed with a high resolution membrane-based nanocalorimeter. A nonzero residual electronic specific heat coefficient at zero temperature γr=C/T|T→0 is seen for all doping compositions, indicating a considerable fraction of the Fermi surface ungapped or having very deep minima. The remaining superconducting electronic specific heat is analyzed through a two-band s-wave α model in order to investigate the gap structure. Close to optimal doping we detect a single zero-temperature gap of Δ₀~5.3 me V, corresponding to Δ₀/kBTc ~ 2.2. Increasing the phosphorus concentration x, the main gap reduces till a value of Δ₀ ~ 1.9 meV for x = 0.55 and a second weaker gap becomes evident. From the magnetic field effect on γr, all samples however show similar behavior [γr(H) - γr (H = 0)∝ Hn, with n between 0.6 and 0.7]. This indicates that, despite a considerable redistribution of the gap weights, the total degree of gap anisotropy does not change drastically with doping.

  5. Universal heat conduction in Ce1-xYbxCoIn5: Evidence for robust nodal d-wave superconducting gap

    DOE PAGESBeta

    Xu, Y.; Petrovic, C.; Dong, J. K.; Lum, I. K.; Zhang, J.; Hong, X. C.; He, L. P.; Wang, K. F.; Ma, Y. C.; Maple, M. B.; et al

    2016-02-01

    In the heavy-fermion superconductor Ce1-xYbxCoIn5, Yb doping was reported to cause a possible change from nodal d-wave superconductivity to a fully gapped d-wave molecular superfluid of composite pairs near x ≈ 0.07 (nominal value xnom = 0.2). Here we present systematic thermal conductivity measurements on Ce1-xYbxCoIn5 (x = 0.013, 0.084, and 0.163) single crystals. The observed finite residual linear term κ0/T is insensitive to Yb doping, verifying the universal heat conduction of the nodal d-wave superconducting gap in Ce1-xYbxCoIn5. Similar universal heat conduction is also observed in the CeCo(In1–yCdy)5 system. Furthermore, these results reveal a robust nodal d-wave gap inmore » CeCoIn5 upon Yb or Cd doping.« less

  6. Effects of Out-of-Plane Disorder on the Nodal Quasiparticle and Superconducting Gap in Single-Layer Bi_2Sr_1.6Ln_0.4CuO_6 delta (Ln = La, Nd, Gd)

    SciTech Connect

    Hashimoto, M.

    2011-01-04

    How out-of-plane disorder affects the electronic structure has been investigated for the single-layer cuprates Bi{sub 2}Sr{sub 1.6}Ln{sub 0.4}CuO{sub 6+{delta}} (Ln = La, Nd, Gd) by angle-resolved photoemission spectroscopy. We have observed that, with increasing disorder, while the Fermi surface shape and band dispersions are not affected, the quasi-particle width increases, the anti-nodal gap is enhanced and the superconducting gap in the nodal region is depressed. The results indicate that the superconductivity is significantly depressed by out-of-plane disorder through the enhancement of the anti-nodal gap and the depression of the superconducting gap in the nodal region.

  7. Effects of out-of-plane disorder on the nodal quasiparticle and superconducting gap in single-layer Bi2Sr1.6L0.4CuO6+δ (L=La,Nd,Gd)

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Yoshida, T.; Fujimori, A.; Lu, D. H.; Shen, Z.-X.; Kubota, M.; Ono, K.; Ishikado, M.; Fujita, K.; Uchida, S.

    2009-04-01

    How out-of-plane disorder affects the electronic structure has been investigated for the single-layer cuprates Bi2Sr1.6L0.4CuO6+δ ( L=La , Nd, and Gd) by angle-resolved photoemission spectroscopy. We have observed that, with increasing disorder, while the Fermi-surface shape and band dispersions are not affected, the quasiparticle width increases, the antinodal gap is enhanced and the superconducting gap in the nodal region is depressed. The results indicate that the superconductivity is significantly depressed by out-of-plane disorder through the enhancement of the antinodal gap and the depression of the superconducting gap in the nodal region.

  8. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOEpatents

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  9. Doping Evolution of the Superconducting Gap Structure in Heavily Hole-Doped Ba1-xKxFe2As2: a Heat Transport Study

    NASA Astrophysics Data System (ADS)

    Hong, Xiao-Chen; Wang, Ai-Feng; Zhang, Zhen; Pan, Jian; He, Lan-Po; Luo, Xi-Gang; Chen, Xian-Hui; Li, Shi-Yan

    2015-12-01

    We performed systematic thermal conductivity measurements on heavily hole-doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$ single crystals with 0.747 $\\leq x \\leq$ 0.974. At $x$ = 0.747, the $\\kappa_0/T$ is negligible, indicating nodeless superconducting gap. A small residual linear term $\\kappa_0/T$ ($\\approx$ 0.035 mW/K$^2$ cm) appears at $x$ = 0.826, and it increases slowly up to $x$ = 0.974, followed by a drastic increase of more than 20 times to the pure KFe$_2$As$_2$ ($x$ = 1.0). This doping dependence of $\\kappa_0/T$ clearly shows that the nodal gap appears near $x = 0.8$, likely associated with the change of Fermi surface topology. The small values of $\\kappa_0/T$ from $x$ = 0.826 to 0.974 support a "$\\curlyvee$"-shaped nodal $s$-wave gap recently revealed by angle-resolved photoemission spectroscopy experiments at $x$ = 0.9. Furthermore, the drastic increase of $\\kappa_0/T$ from $x$ = 0.974 to 1.0 is inconsistent with a symmetry-imposed $d$-wave gap in KFe$_2$As$_2$, and the possible nodal gap structure in KFe$_2$As$_2$ is discussed.

  10. Tunneling spectra and superconducting gap in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+delta} and Tl{sub 2}Ba{sub 2}CuO{sub 6+delta}.

    SciTech Connect

    Miyakawa, N.; Qzyuzer, L.; Zasadzinski, J. F.

    1999-07-21

    Tunneling spectra are reported for Bi{sub 2}Sr{sub 2}CaCu{sub 2} ({sub 8+{delta}}) (Bi-2212) over a wide doping range using superconductor-insulator-superconductor (SIS) break junctions. The energy gap inferred from the tunneling data displays a remarkable monotonic dependence on doping, increasing to very large values in the underdoped region even as T{sub c} decreases. This leads to unphysically large values of the strong coupling ratio ({approximately}20). The tunneling spectra are qualitatively similar over the entire doping range even though the gap parameter, {Delta}, changes from 12 meV to 80 meV. Each spectrum exhibits dip and hump features at high bias with characteristic energies that scale with the superconducting gap. Tunneling spectra of near optimally-doped Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} (Tl-2201) also display a weak dip feature in superconductor-insulator-normal metal (SIN) junctions. Generated SIS spectra of Tl-2201 are compared with measured spectra on Bi-2212 and it is concluded that the dip and hump features are generic to high temperature superconductors.

  11. Tunneling spectra and superconducting gap in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} and Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}}

    SciTech Connect

    Ozyuzer, L.; Zasadzinski, J.F.; Miyakawa, N.

    1999-12-20

    Tunneling spectra are reported for Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212) over a wide doping range using superconductor-insulator-superconductor (SIS) break junctions. The energy gap inferred from the tunneling data displays a remarkable monotonic dependence on doping, increasing to very large values in the underdoped region even as {Tc} decreases. This leads to unphysically large values of the strong coupling ratio ({approximately}20). The tunneling spectra are qualitatively similar over the entire doping range even though the gap parameter, {Delta}, changes from 12 meV to 60 meV. Each spectrum exhibits dip and hump features at high bias with characteristic energies that scale with the superconducting gap. Tunneling spectra of near optimally-doped Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} (Tl-2202) also display a weak dip feature in superconductor-insulator-normal metal (SIN) junctions. Generated SIS spectra of Tl-2201 are compared with measured spectra on Bi-2212 and it is concluded that the dip and hump features are generic to high temperature superconductors.

  12. Electric utility benefits of superconducting magnetic energy storage

    SciTech Connect

    De Steese, J.G.; Dagle, J.E.

    1990-06-01

    This paper summarizes a preliminary scoping analysis to illustrate examples of the benefits electric utilities might derive from Superconducting Magnetic Energy Storage (SMES). A major objective of the study was to show that, even though SMES technology is at an early stage of development, available data permit the assessment of SMES benefits and costs in specific system applications. The purpose of this effort is to help increase utility interest in SMES and thereby assist the rapid development of the technology. A number of important benefits are addressed including the projected ability of SMES to provide: (1) cost-effective diurnal energy storage; (2) system stability and dynamic control; (3) an alternative to and/or deferral of new generation and transmission construction; (4) function enhancement of other system components; and (5) reduced reliance on premium fuels. While many of these SMES benefits have been evaluated in generic studies, this paper relates existing generic performance information to system-specific application scenarios. This study provides an early view of SMES benefits from several perspectives. At the national level, a major part of the SMES application potential may be projected from trends in utility storage capacity already evident abroad. On this basis, the SMES share among competing technologies in the US could provide a future alternative to between 15 GW and 45 GW of conventional generating capacity. The potential for SMES applications in the Pacific Northwest includes very small units (1 kWh/10 MW) to large 8000 MWh/1500 MW storage systems. Examples of other SMES applications considered were units that protect and enhance high-voltage direct-current (HVDC) transmission systems. 17 refs., 1 fig., 3 tabs.

  13. Revisiting orbital-fluctuation-mediated superconductivity in LiFeAs: Nontrivial spin-orbit interaction effects on the band structure and superconducting gap function

    NASA Astrophysics Data System (ADS)

    Saito, Tetsuro; Yamakawa, Youichi; Onari, Seiichiro; Kontani, Hiroshi

    2015-10-01

    The precise gap structure in LiFeAs (Tc=18 K) given by ARPES studies offers significant information that helps us understand the pairing mechanism in iron-based superconductors. The most remarkable characteristic in the LiFeAs gap structure would be that "the largest gap emerges on the tiny hole-pockets around the Z point." This result has been naturally explained in terms of the orbital-fluctuation scenario [T. Saito et al., Phys. Rev. B 90, 035104 (2014)], 10.1103/PhysRevB.90.035104, whereas the opposite result is obtained by the spin-fluctuation scenario. In this paper, we study the gap structure in LiFeAs by taking the spin-orbit interaction (SOI) into account, motivated by the recent ARPES studies that revealed a significant SOI-induced modification of the Fermi surface topology. For this purpose, we construct two possible tight-binding models with finite SOI by referring the band structures given by different ARPES groups. In addition, we extend the gap equation for multiorbital systems with finite SOI, and calculate the gap functions by applying the orbital-spin fluctuation theory. On the basis of both SOI-induced band structures, the main characteristics of the gap structure in LiFeAs are naturally reproduced only in the presence of strong interorbital interactions between (dx z /y z-dx y) orbitals. Thus the experimental gap structure in LiFeAs is a strong evidence for the orbital-fluctuation pairing mechanism.

  14. Superconducting cascade electron refrigerator

    SciTech Connect

    Camarasa-Gómez, M.; Giazotto, F.; Di Marco, A.; Hekking, F. W. J.; Winkelmann, C. B.; Courtois, H.

    2014-05-12

    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance, and limitations of such a device.

  15. The effects of the air gap between pancake windings on the central magnetic field in a high temperature superconducting magnet

    NASA Astrophysics Data System (ADS)

    Kang, Myunghun; Ku, Myunghwan; Lee, Heejoon; Cha, Gueesoo

    2010-02-01

    In an HTS magnet consisting of pancake windings, an air gap between the pancake windings can be used to increase the central magnetic field because the air gap increases the critical current of pancake windings. The effects of an air gap on the central magnetic field of an HTS magnet are discussed in this paper according to the various number of turns and also to the number of pancake windings. Results of calculation show the air gap could increase the central magnetic field and the field uniformity simultaneously. The optimum air gap which maximized the central magnetic field was about 4 mm at eight pancake windings and 50 turns per pancake winding. The central magnetic field increased 6.2% from 0.225 T (no air gap) to 0.239 T (4 mm air gap) at that case.

  16. Superconducting Magnetic Energy Storage (SMES). (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1993-09-01

    The bibliography contains citations concerning the technology and use of superconducting magnetic energy storage (SMES). The design, analysis, evaluation, and operation of SMES systems and equipment are discussed. Topics include utility scale SMES plants, SMES for transmission line stabilization, design and protection of superconducting magnets and coils, computer controlled SMES systems, and fusion power reactors. (Contains a minimum of 82 citations and includes a subject term index and title list.)

  17. Superconducting magnetic energy storage (SMES). (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-08-01

    The bibliography contains citations concerning the technology and use of superconducting magnetic energy storage (SMES). The design, analysis, evaluation, and operation of SMES systems and equipment are discussed. Topics include utility scale SMES plants, SMES for transmission line stabilization, design and protection of superconducting magnets and coils, computer controlled SMES systems, and fusion power reactors. (Contains a minimum of 77 citations and includes a subject term index and title list.)

  18. Superconducting Magnetic Energy Storage (SMES). (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1993-11-01

    The bibliography contains citations concerning the technology and use of superconducting magnetic energy storage (SMES). The design, analysis, evaluation, and operation of SMES systems and equipment are discussed. Topics include utility scale SMES plants, SMES for transmission line stabilization, design and protection of superconducting magnets and coils, computer controlled SMES systems, and fusion power reactors. (Contains a minimum of 82 citations and includes a subject term index and title list.)

  19. Superconducting Magnetic Energy Storage (SMES). (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning the technology and use of superconducting magnetic energy storage (SMES). The design, analysis, evaluation, and operation of SMES systems and equipment are discussed. Topics include utility scale SMES plants, SMES for transmission line stabilization, design and protection of superconducting magnets and coils, computer controlled SMES systems, and fusion power reactors. (Contains a minimum of 88 citations and includes a subject term index and title list.)

  20. Superconductivity, cohesive energy density, and electron-atom ratio in metals

    NASA Technical Reports Server (NTRS)

    England, C.; Lawson, D. D.; Hrubes, J. D.

    1981-01-01

    It is shown that superconductivity above 8 K occurs in alloys and metallic compounds within relatively narrow regions of cohesive energy density with a sharp peak which includes Nb3Ge, SiV3, Nb3Ga, and NbN. When cross-correlated with the electron-atom ratio, high-temperature superconductivity can be observed in only a few regions. This suggests a search for superconductors with high-transition temperatures and critical fields within these regions.

  1. Low-energy physical properties of high- Tc superconducting Cu oxides: A comparison between the resonating valence bond and experiments

    NASA Astrophysics Data System (ADS)

    Yang, Kai-Yu; Shih, C. T.; Chou, C. P.; Huang, S. M.; Lee, T. K.; Xiang, T.; Zhang, F. C.

    2006-06-01

    In a recent review by Anderson and co-workers, it was pointed out that an early resonating valence bond (RVB) theory is able to explain a number of unusual properties of high-temperature superconducting (SC) Cu oxides. Here we extend previous calculations to study more systematically the low-energy physical properties of the plain vanilla d -wave RVB state, and to compare the results with the available experiments. We use a renormalized mean-field theory combined with variational Monte Carlo and power Lanczos methods to study the RVB state of an extended t-J model in a square lattice with parameters suitable for the hole-doped Cu oxides. The physical observable quantities we study include the specific heat, the linear residual thermal conductivity, the in-plane magnetic penetration depth, the quasiparticle energy at the antinode (π,0) , the superconducting energy gap, the quasiparticle spectra, and the Drude weights. The traits of nodes (including kF , the Fermi velocity vF , and the velocity along Fermi surface v2 ), and the SC order parameter are studied. Comparisons of the theory and the experiments in cuprates show an overall qualitative agreement, especially on their doping dependences.

  2. The effects of hybridization on Cooper-pair binding energy in an intra-band model of superconductivity

    NASA Astrophysics Data System (ADS)

    Dinla Neto, F.; Dinla, I. S.; Neto, M. A.; Padilha, I. T.; Rowley, S. E.; Continentino, M. A.

    2015-10-01

    In this paper we analyze the effects of electron band hybridization in a superconducting material studying the effects on the binding energy of the Cooper pairs and on their size. We adopt a multi-band model that provides the intra-band pairing correlation functions. The hybridization can be tuned by an externally applied pressure or doping, and couple both bands acting to suppress the superconducting gap amplitude. Our analysis extends for all ranges of interactions coming from the usual BCS limit (weak coupling) going to the BEC limit of Cooper pairs (strong coupling) where these pairs become an effective bosonic particle. Our results show the dependence of the Cooper-pair binding energy and size as a function of the hybridization for T = 0. We propose a theoretical description for the intra-band binding-energy of the effective bosons in the BEC limit as a function of the hybridization. We also propose a description for the dependence of doping parameter as a function of the hybridization for the La2 - xSrxCuO4 compound.

  3. 100 Years of Superconductivity: Perspective on Energy Applications

    NASA Astrophysics Data System (ADS)

    Grant, Paul

    2011-11-01

    One hundred years ago this past April, in 1911, traces of superconductivity were first detected near 4.2 K in mercury in the Leiden laboratory of Kammerlingh Onnes, followed seventy-five years later in January, 1986, by the discovery of ``high temperature'' superconductivity above 30 K in layered copper oxide perovskites by Bednorz and Mueller at the IBM Research Laboratory in Rueschlikon. Visions of application to the electric power infrastructure followed each event, and the decades following the 1950s witnessed numerous, successful demonstrations to electricity generation, transmission and end use -- rotating machinery, cables, transformers, storage, current limiters and power conditioning, employing both low and high temperature superconductors in the USA, Japan, Europe, and more recently, China. Despite these accomplishments, there has been to date no substantial insertion of superconducting technology in the electric power infrastructure worldwide, and its eventual deployment remains problematic. We will explore the issues delaying such deployment and suggest future electric power scenarios where superconductivity will play an essential central role.

  4. Superconducting Magnetic Energy Storage and other large-scale SDI cryogenic applications programs

    NASA Astrophysics Data System (ADS)

    Verga, Richard L.

    The paper describes the Superconducting Magnetic Energy Storage (SMES) program for terrestrial storage of energy for use in powering ground-based directed energy weapons. Special attention is given to SMES technology for SDI applications, the components of a SMES system, the SMES Engineering Test Model Development Program, and the SMES critical technologies. It is pointed out that SMES has applications other than SDI, such as the commercial electric utility industry and space power systems, including hydrogen-cooled cryoconductors, superconducting turboalternators, and high-temperature superconductor power leads.

  5. Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    SciTech Connect

    Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2006-05-11

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety codes. Unlike traditional grid technology, superconducting fault current limiters are smart. They increase their resistance abruptly in response to overcurrents from faults in the system, thus limiting the overcurrents and protecting the grid from damage. They react fast in both triggering and automatically resetting after the overload is cleared, providing a new, self-healing feature that enhances grid reliability. Superconducting reactive power regulators further enhance reliability by instantaneously adjusting reactive power for maximum efficiency and stability in a compact and economic package that is easily sited in urban grids. Not only do superconducting motors and generators cut losses, weight, and volume by a factor of two, but they are also much more tolerant of voltage sag, frequency instabilities, and reactive power fluctuations than their conventional counterparts. The challenge facing the electricity grid to provide abundant, reliable power will soon grow to crisis proportions. Continuing urbanization remains the dominant historic demographic trend in the United States and in the world. By 2030, nearly 90% of the U.S. population will reside in cities and suburbs, where increasingly strict permitting requirements preclude bringing in additional overhead access lines, underground cables are saturated, and growth in power demand is highest. The power grid has never faced a challenge so great or so critical to our future productivity, economic growth, and quality of life. Incremental advances in existing grid technology are not capable of solving the urban power bottleneck. Revolutionary new solutions are needed ? the kind that come only from superconductivity.

  6. Hybrid superconducting magnetic bearing for kinetic energy storage applications and its frictional energy loss

    SciTech Connect

    Xia, Zule; Ma, Ki; Chen, Quark

    1996-12-31

    A hybrid superconducting magnetic bearing (HSMB) has been designed, constructed and implemented in a flywheel energy storage (FES) prototype. The HSMB design uses magnetic forces from permanent magnets for levitation and high temperature superconductor YBCO in between the magnets for stabilization. A 19 kg (42 lb.) flywheel currently can rotate up to 6,000 RPM with kinetic energy of 8 Wh stored. To identify the factors of frictional energy loss in the bearings, the authors have conducted a series of spin-down experiments in different operational conditions. The result from the recent test under the air pressure of 10{sup {minus}5} torr indicates an average frictional energy loss <2% per hour, with the imperfect system alignment and an unbalanced rotor.

  7. Scanning tunneling spectroscopy of proximity superconductivity in epitaxial multilayer graphene

    NASA Astrophysics Data System (ADS)

    Natterer, Fabian D.; Ha, Jeonghoon; Baek, Hongwoo; Zhang, Duming; Cullen, William G.; Zhitenev, Nikolai B.; Kuk, Young; Stroscio, Joseph A.

    2016-01-01

    We report on spatial measurements of the superconducting proximity effect in epitaxial graphene induced by a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial multilayer graphene on SiC. The aluminum films were discontinuous, with networks of trenches in the film morphology reaching down to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting energy gap with increasing separation from the graphene-aluminum edges. The spectra were well described by BCS theory. The decay length for the superconducting energy gap in graphene was determined to be greater than 400 nm. Deviations in the exponentially decaying energy gap were also observed on a much smaller length scale of tens of nanometers.

  8. Scanning Tunneling Spectroscopy of Proximity Superconductivity in Epitaxial Multilayer Graphene

    PubMed Central

    Natterer, Fabian D.; Ha, Jeonghoon; Baek, Hongwoo; Zhang, Duming; Cullen, William; Zhitenev, Nikolai B.; Kuk, Young; Stroscio, Joseph A.

    2016-01-01

    We report on spatial measurements of the superconducting proximity effect in epitaxial graphene induced by a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial multilayer graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting energy gap with increasing separation from the graphene-aluminum edges. The spectra were well described by Bardeen-Cooper-Schrieffer (BCS) theory. The decay length for the superconducting energy gap in graphene was determined to be greater than 400 nm. Deviations in the exponentially decaying energy gap were also observed on a much smaller length scale of tens of nanometers.

  9. Liquid helium dump concept for a large scale superconducting magnetic energy storage plant

    NASA Astrophysics Data System (ADS)

    Schoenung, S. M.; Loyd, R. J.; Nakamura, T.; Rogers, J. D.; Purcell, J. R.

    Superconducting Magnetic Energy Storage (SMES) is a potentially cost effective technology for electric utility load leveling. Design concepts and cost estimates of SMES plants capable of delivering 5000 MWh daily have been previously identified. An important feature of a large commercial plant is a system that will reliably shut down the magnet by thermally dissipating the stored energy in the event of an imminent or actual loss of superconductivity. To prevent damage to the coil during such a protective energy dump, the entire coil must be driven normal, i.e., resistive rather than superconducting, in a short period of time. This requires rapid removal of the liquid helium coolant surrounding the coil. A simple system that has been developed to rapidly remove the liquid helium from the helium vessel is described. The system requires only a small number of active components, no external helium storage, and is practical to reset and maintain.

  10. Capacitor energy needed to induce transitions from the superconducting to the normal state

    NASA Astrophysics Data System (ADS)

    Eberhard, P. H.; Ross, R. R.

    1985-08-01

    A technique is described to turn a long length of superconducting wire normal by dumping a charged capacitor into it and justify some formulae needed in the design. The physical phenomenon is described. A formula for the energy to be stored in the capacitor is given. There are circumstances where the dc in an electrical circuit containing superconducting elements has to be turned off quickly and where the most convenient way to switch the current off is to turn a large portion or all of the superconducting wire normal. Such was the case of the Time Projection Chamber (TPC) superconducting magnet as soon as a quench was detected. The technique used was the discharge of a capacitor into the coil center tap. It turned the magnet winding normal in ten milliseconds or so and provided an adequate quench protection. The technique of discharging a capacitor into a superconducting wire should have many other applications whenever a substantial resistance in a superconducting circuit has to be generated in that kind of time scale.

  11. Simple Experimental Verification of the Relation between the Band-Gap Energy and the Energy of Photons Emitted by LEDs

    ERIC Educational Resources Information Center

    Precker, Jurgen W.

    2007-01-01

    The wavelength of the light emitted by a light-emitting diode (LED) is intimately related to the band-gap energy of the semiconductor from which the LED is made. We experimentally estimate the band-gap energies of several types of LEDs, and compare them with the energies of the emitted light, which ranges from infrared to white. In spite of…

  12. Simple Experimental Verification of the Relation between the Band-Gap Energy and the Energy of Photons Emitted by LEDs

    ERIC Educational Resources Information Center

    Precker, Jurgen W.

    2007-01-01

    The wavelength of the light emitted by a light-emitting diode (LED) is intimately related to the band-gap energy of the semiconductor from which the LED is made. We experimentally estimate the band-gap energies of several types of LEDs, and compare them with the energies of the emitted light, which ranges from infrared to white. In spite of

  13. Spin gap and resonance at the nesting wave vector in superconducting FeSe_{0.4}Te_{0.6}.

    PubMed

    Qiu, Yiming; Bao, Wei; Zhao, Y; Broholm, Collin; Stanev, V; Tesanovic, Z; Gasparovic, Y C; Chang, S; Hu, Jin; Qian, Bin; Fang, Minghu; Mao, Zhiqiang

    2009-08-01

    Neutron scattering is used to probe magnetic excitations in FeSe_{0.4}Te_{0.6} (T_{c} = 14 K). Low energy spin fluctuations are found with a characteristic wave vector (1/21/2L) that corresponds to Fermi surface nesting and differs from Q_{m} = (delta01/2) for magnetic ordering in Fe_{1+y}Te. A spin resonance with variant Planck's over 2piOmega_{0} = 6.51(4) meV approximately 5.3k_{B}T_{c} and variant Planck's over 2piGamma = 1.25(5) meV develops in the superconducting state from a normal state continuum. We show that the resonance is consistent with a bound state associated with s_{+/-} superconductivity and imperfect quasi-2D Fermi surface nesting. PMID:19792603

  14. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    SciTech Connect

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  15. Experimental and analytical study of the DC breakdown characteristics of polypropylene laminated paper with a butt gap condition considering the insulation design of superconducting cable

    NASA Astrophysics Data System (ADS)

    Seo, In-jin; Choi, Won; Seong, Jae-gyu; Lee, Bang-wook; Koo, Ja-yoon

    2014-08-01

    It has been reported that the insulation design under DC stress is considered as one of the critical factors in determining the performance of high-voltage direct current (HVDC) superconducting cable. Therefore, it is fundamentally necessary to investigate the DC breakdown characteristics of the composite insulation system consisting of liquid nitrogen (LN2)/polypropylene-laminated-paper (PPLP). In particular, the insulation characteristics under DC polarity reversal condition should be verified to understand the polarity effect of the DC voltage considering the unexpected incidents taking place at line-commutated-converters (LCC) under service at a DC power grid. In this study, to examine the variation of DC electric field strength, the step voltage and polarity reversal breakdown tests are performed under DC stress. Also, we investigate the electric field distributions in a butt gap of the LN2/PPLP condition considering the DC polarity reversal by using simulation software.

  16. Temperature dependence of superconducting gaps in Mg 1- xAl xB 2 system investigated by SnS-Andreev spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuzmichev, S. A.; Shanygina, T. E.; Tchesnokov, S. N.; Krasnosvobodtsev, S. I.

    2012-01-01

    Detailed temperature dependence of both superconducting gaps was obtained directly by means of SnS-Andreev spectroscopy. The Δ(T)-curves were shown to be deviated from standard BCS-like behavior, due to k-space proximity effect between σ- and π-condensates, which could give a key to experimental determination of interband electron-phonon coupling constants. For the first time, an excellent qualitative agreement with theoretical predictions of Nicol and Carbotte, and Moskalenko and Suhl was shown. dI(V)/dV-spectra of SnS-Andreev contacts based on MgB 2 samples (with defects of crystal structure), and Mg 1- xAl xB 2 polycrystalline samples (with the local critical temperature TC variation 10 K≤TC≤37 K) were studied by means of the "break-junction" technique within the temperature range 4.2 K≤T≤TC.

  17. Localization of Metal-Induced Gap States at the Metal-Insulator Interface: Origin of Flux Noise in SQUIDs and Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Choi, Sangkook; Lee, Dung-Hai; Louie, Steven G.; Clarke, John

    2010-03-01

    The origin of magnetic flux noise in dc Superconducting Quantum Interference Devices (SQUIDs) with a power spectrum scaling as 1/f (f is frequency) has been a puzzle for over 25 years. This noise limits both the low frequency performance of SQUIDs and the decoherence time of flux-sensitive superconducting qubits, making scaling-up for quantum computing problematic. Recent calculations and experiments indicate that the noise is generated by electrons that randomly reverse their spin directions. Their areal density of ˜ 5 x 10^17 m-2 is relatively insensitive to the nature of the superconductor and substrate. Here, we propose that the local magnetic moments originate in metal-induced gap states (MIGSs) localized by potential disorder at the metal-insulator interface. MIGSs are particularly sensitive to such disorder, so that the localized states have a Coulomb repulsion sufficiently large to make them singly occupied. Our calculations demonstrate that a modest level of disorder generates the required areal density of localized moments. This result suggests that magnetic flux noise could be reduced by fabricating superconductor-insulator interfaces with less disorder. Support: NSF DMR07-05941, US DOE De-AC02-05CH11231, Samsung Foundation, Teragrid, NERSC.

  18. Technical Barriers, Gaps,and Opportunities Related to Home Energy Upgrade Market Delivery

    SciTech Connect

    Bianchi, Marcus V.A.

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program.

  19. A correlation between ionization energies and critical temperatures in superconducting A3C60 fullerides

    NASA Astrophysics Data System (ADS)

    Hetfleisch, Florian; Stepper, Marco; Roeser, Hans-Peter; Bohr, Artur; Lopez, Juan Santiago; Mashmool, Mojtaba; Roth, Susanne

    2015-06-01

    Buckminster A3C60 fullerides (A = alkali metal) are usually superconductors with critical temperatures Tc in the range 2.5-40 K. Although they are very similar in size, structure and many other aspects, the effect of the alkali atoms on Tc has generally been understood in terms of the variation of the lattice constant. Here we show that there seems to be a direct correlation between the sum of the ionization energies of the three alkali atoms in the superconducting A3C60 compounds and the corresponding critical temperatures. A linear fit of the correlation implies a certain limit for the sum, below which superconductivity should not occur. Ionization energies have so far not been connected to superconductivity.

  20. Coexistence of ferromagnetism and superconductivity in Ni/Bi bilayers.

    PubMed

    LeClair, P; Moodera, J S; Philip, J; Heiman, D

    2005-01-28

    In spite of a lack of superconductivity in bulk crystalline Bi, thin film Bi deposited on thin Ni underlayers are strong-coupled superconductors below approximately 4 K. We unambiguously demonstrate that by tuning the Ni thickness the competition between ferromagnetism and superconductivity in the Ni/Bi can be tailored. For a narrow range of Ni thicknesses, the coexistence of both a superconducting energy gap and conduction electron spin polarization are visible within the Ni side of the Ni/Bi bilayers, independent of any particular theoretical model. We believe that this represents one of the clearest observations of superconductivity and ferromagnetism coexisting. PMID:15698312

  1. Performance of a power conversion system for superconducting magnetic energy storage (SMES)

    SciTech Connect

    Skiles, J.J.; Kustom, R.L.; Vong, F.; Ko, K.P.; Wong, V.; Ko, K.S.; Klontz, K.

    1996-11-01

    This paper presents results of laboratory tests of a power conversion system (PCS) for superconducting magnetic energy storage (SMES). The PCS uses a two-quadrant chopper and a voltage source converter. Operating modes of the chopper are discussed. Operation of the SMES to provide independent control of real and reactive power, operation as a static var compensator, low frequency modulation of the real power, and speed of response are demonstrated. A circuit is presented for testing a SMES PCS that doe not require a superconducting coil.

  2. Concepts of flywheels for energy storage using autostable high-T(sub c) superconducting magnetic bearings

    NASA Technical Reports Server (NTRS)

    Bornemann, Hans J.; Zabka, R.; Boegler, P.; Urban, C.; Rietschel, H.

    1994-01-01

    A flywheel for energy storage using autostable high-T(sub c) superconducting magnetic bearings has been built. The rotating disk has a total weight of 2.8 kg. The maximum speed is 9240 rpm. A process that allows accelerated, reliable and reproducible production of melt-textured superconducting material used for the bearings has been developed. In order to define optimum configurations for radial and axial bearings, interaction forces in three dimensions and vertical and horizontal stiffness have been measured between superconductors and permanent magnets in different geometries and various shapes. Static as well as dynamic measurements have been performed. Results are being reported and compared to theoretical models.

  3. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    SciTech Connect

    Cooper, W.E.; Bianchi, A.J.; Barger, R.K.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-03-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and non-high current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test.

  4. Doping-dependent anisotropic superconducting gap in Na1-δ(Fe1-xCox)As from London penetration depth

    SciTech Connect

    Cho, Kyuil; Tanatar, Makariy A.; Spyrison, Nicholas; Kim, Hyunsoo; Song, Y.; Dai, Pengcheng; Zhang, C.L.; Prozorov, Ruslan

    2012-07-30

    The London penetration depth was measured in single crystals of self-doped Na1-δFeAs (from under doping to optimal doping, Tc from 14 to 27 K) and electron-doped Na(Fe1-xCox)As with x ranging from undoped, x=0, to overdoped, x=0.1. In all samples, the low-temperature variation of the penetration depth exhibits a power-law dependence, Δλ(T)=ATn, with the exponent that varies in a domelike fashion from n˜1.1 in the underdoped, reaching a maximum of n˜1.9 in the optimally doped, and decreasing again to n˜1.3 on the overdoped side. While the anisotropy of the gap structure follows a universal domelike evolution, the exponent at optimal doping, n˜1.9, is lower than in other charge-doped Fe-based superconductors (FeSCs). The full-temperature range superfluid density, ρs(T)=λ(0)/λ(T)2, at optimal doping is also distinctly different from other charge-doped FeSCs but is similar to isovalently substituted BaFe2(As1-xPx)2, believed to be a nodal pnictide at optimal doping. These results suggest that the superconducting gap in Na(Fe1-xCox)As is highly anisotropic even at optimal doping.

  5. 30-MJ superconducting magnetic energy storage for electric-transmission stabilization

    SciTech Connect

    Turner, R.D.; Rogers, J.D.

    1981-01-01

    The Bonneville Power Administration operates the electric power transmission system that connects the Pacific Northwest and southern California. The HVAC interties develop 0.35 Hz oscillations when the lines are heavily loaded. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter can provide system damping for the oscillation. The unit is scheduled for installation in 1982 and operation in 1982-83. Status of the project is described. The conductor has been fully tested electrically and mechanically and the 5 kA superconducting cable has been produced. The 30 MJ superconducting coil is essentially complete. All major components of the electrical and cryogenic systems except the nonconducting dewar have been completed. The refrigerator and converter are undergoing tests. The system is to be located at the BPA Tacoma Substation and operated by microwave link from Portland, OR.

  6. Sensing with superconducting point contacts.

    PubMed

    Nurbawono, Argo; Zhang, Chun

    2012-01-01

    Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors. PMID:22778630

  7. Sensing with Superconducting Point Contacts

    PubMed Central

    Nurbawono, Argo; Zhang, Chun

    2012-01-01

    Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors. PMID:22778630

  8. Two Sizes of Superconducting Gaps on an Under-doped Bi2.1Sr1.9Ca2Cu3O10+δ with TC ∼ 101 K by Tunneling Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sekine, R.; Ogata, K.; Tsukada, A.; Miyakawa, N.

    We measured tunneling conductances on an under-doped trilayer cuprate Bi2.1Sr1.9Ca2Cu3O10+≏ (Bi2223) with TC ∼ 101 K by a point contact method, which has three CuO2 planes in a unit cell. The tunneling conductances on Bi2223 exhibited two sizes of gaps originated from outer and inner CuO2 plane (OP and IP). The estimated size of superconducting gap from OP ΔOP is 34 ± 6 meV, and the ΔIP from IP is 51 ± 5 meV, respectively. We also observed tunneling conductances which simultaneously displayed two superconducting peaks of OP and IP. Moreover, we propose the model of two superconductor-insulator-normal metal junctions which exhibit two sizes gaps of OP and IP.

  9. Generation of full polarization in ferromagnetic graphene with spin energy gap

    SciTech Connect

    Wu, Qing-Ping; Liu, Zheng-Fang E-mail: aixichen@ecjtu.edu.cn; Liu, Zhi-Min; Chen, Ai-Xi E-mail: aixichen@ecjtu.edu.cn; Xiao, Xian-Bo

    2014-12-22

    We propose a workable scheme for the generation of full spin polarization in ferromagnetic graphene system with strain or Rashba spin-orbit interaction. A spin energy gap can be opened in ferromagnetic graphene system in the presence of strain or Rashba spin-orbit interaction, leading to the full polarization in the spin energy gap. In addition, under the combined modulation of strain and Rashba spin-orbit interaction, the ferromagnetic graphene system can generate significantly large spin-polarized current with a full polarization in the spin energy gap. It is anticipated to apply such a phenomenon to design the electron spin devices based on the graphene.

  10. On the Equivalence of the Binding Energy of a Cooper Pair and the BCS Energy Gap:. a Framework for Dealing with Composite Superconductors

    NASA Astrophysics Data System (ADS)

    Malik, G. P.

    Employing the Bethe-Salpeter equation (BSE) and the Matsubara recipe, and invoking both the electron-electron and the hole-hole scattering channels, we establish that the binding energy (W) of a Cooper pair (CP) is real, and equals the BCS energy gap (Δ) for all T ≤ Tc for a one-component superconductor. Given that the BCS theory is a generalization of the Hartree-Fock theory (generalized to allow for particle number fluctuations), the cognescenti would expect this result as a direct consequence of Koopman's theorem, proved for and well-known in the latter theory. However, this theorem is seldom mentioned in the literature on superconductivity; on the contrary, there is the statement in well-known texts that the binding energy of a CP becomes imaginary when the above-stated scattering channels are invoked for their formation. The importance of |W| = |Δ| for high-Tc superconductors is brought out by replacing the one-particle propagator in the BSE by a superpropagator — a field-theoretic construct apt for dealing with composite superconductors (CSs). A set of generalized BCS equations is thus obtained which, with the input of the multiple gaps of a CS, enables one to calculate its Tc uniquely. Applications of these equations will be taken up in a subsequent paper.

  11. Graphene field effect transistor without an energy gap

    PubMed Central

    Jang, Min Seok; Kim, Hyungjun; Son, Young-Woo; Atwater, Harry A.; Goddard, William A.

    2013-01-01

    Graphene is a room temperature ballistic electron conductor and also a very good thermal conductor. Thus, it has been regarded as an ideal material for postsilicon electronic applications. A major complication is that the relativistic massless electrons in pristine graphene exhibit unimpeded Klein tunneling penetration through gate potential barriers. Thus, previous efforts to realize a field effect transistor for logic applications have assumed that introduction of a band gap in graphene is a prerequisite. Unfortunately, extrinsic treatments designed to open a band gap seriously degrade device quality, yielding very low mobility and uncontrolled on/off current ratios. To solve this dilemma, we propose a gating mechanism that leads to a hundredfold enhancement in on/off transmittance ratio for normally incident electrons without any band gap engineering. Thus, our saw-shaped geometry gate potential (in place of the conventional bar-shaped geometry) leads to switching to an off state while retaining the ultrahigh electron mobility in the on state. In particular, we report that an on/off transmittance ratio of 130 is achievable for a sawtooth gate with a gate length of 80 nm. Our switching mechanism demonstrates that intrinsic graphene can be used in designing logic devices without serious alteration of the conventional field effect transistor architecture. This suggests a new variable for the optimization of the graphene-based device—geometry of the gate electrode. PMID:23671093

  12. Ni-impurity effects on the superconducting gap of La2-xSrxCuO4 studied from the magnetic field and temperature dependence of the electronic specific heat

    NASA Astrophysics Data System (ADS)

    Kurosawa, T.; Momono, N.; Oda, M.; Ido, M.

    2012-04-01

    The magnetic field and temperature dependence of the electronic specific heat Cel have been systematically investigated in La2-xSrxCu1-yNiyO4 (LSCNO) in order to study Ni-impurity effects on the superconducting (SC) gap. In LSCNO with x = 0.15 and y = 0.015, the value of γ (≡Cel/T) at T = 0 K, γ0, is enhanced under the magnetic field H applied along the c axis. The increment of γ0, Δγ0, follows the Volovik relation Δγ0 = AH, characteristic of the SC gap with line nodes, with prefactor A similar to that of a pure sample. The Cel/T versus T curve under H = 0 shows a d-wave-like SC anomaly with an abrupt increase at Tc and T-linear dependence at T ≪ Tc, although the γ0-value in the Cel/T versus T curve increases with increasing Ni concentrations. Interestingly, as the SC part of Cel/T, Cel/T - γ0 ≡ γs, decreases in LSCNO, Tc is reduced in proportion to the decrease of γs. These findings can be explained phenomenologically by a simple model in which Ni impurities bring about strong pair breaking at the edges of the coherent nodal part of the Fermi surface but in the vicinity of the nodes of the SC gap. The reduction of the SC condensation energy U0 in LSCNO, evaluated from Cel at T≲Tc, is also understood by the same model.

  13. Carrier relaxation in colloidal nanocrystals: Bridging large electronic energy gaps by low-energy vibrations

    NASA Astrophysics Data System (ADS)

    Han, Peng; Bester, Gabriel

    2015-02-01

    The three-dimensional confinement characterizing a nanocrystal (NC) leads to the formation of discrete electronic states. The energy gap between these states in colloidal NCs can be up to an order of magnitude larger than the vibrational energy of the host material. This large energetic mismatch (not given in self-assembled quantum dots) leads to the expectation that an electron occupying an excited state would be unable to release its energy to vibrations and a "phonon bottleneck" should finally be observed. Using large-scale ab initio calculations and a time-dependent formalism, we show that on the contrary, a phonon bottleneck can be observed only in a narrow window of diameters for CdSe and InAs NCs and should not occur at all in Si NCs. Two relaxation pathways enable fast carrier relaxation. For smaller structures (below 20-Å radius), the coupling strength and energy detuning are such that quantum mechanics allows us to effectively bridge electronic gaps much larger than the vibronic energy. For larger structures, the coupling to passivant modes, although very weak, leads to an efficient picosecond carrier relaxation. This work provides insight into the nature of carrier relaxation in colloidal nanostructures and highlights that defects, of any kind, are not necessary to explain the observed fast carrier relaxation.

  14. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    NASA Astrophysics Data System (ADS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  15. Study of superconducting magnetic bearing applicable to the flywheel energy storage system that consist of HTS-bulks and superconducting-coils

    NASA Astrophysics Data System (ADS)

    Seino, Hiroshi; Nagashima, Ken; Tanaka, Yoshichika; Nakauchi, Masahiko

    2010-06-01

    The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.

  16. Energy Transfer with Hydrogen and Superconductivity - The Review of the First Experimental Results

    NASA Astrophysics Data System (ADS)

    Vysotsky, V. S.; Antyukhov, I. V.; Firsov, V. P.; Blagov, E. V.; Kostyuk, V. V.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Rachuk, V. S.; Katorgin, B. I.

    The transfer of massive amounts of both electrical and chemical power over long distances will present a major challenge for the global energy enterprise in future. Attraction of hydrogen is apparent as a chemical energy agent, possessing among the highest energy density content of various common fuels, whose combustive "waste" is simply water. The usage of "gratis" cold to cool a superconducting cable made of proper superconductor permits to deliver extra electrical power with the same line. This, rather old theoretical idea recently found its experimental realization. The team of Russian institutes and organizations with using Italian-produced MgB2 wire has made and successfully tested two hybrid energy transfer lines with liquid hydrogen as a chemical source of power and superconducting cable as a source of electricity. The first line has been tested in 2011. It has length ∼10 m, maximum liquid hydrogen flow ∼250 g/s and maximum current of MgB2 superconducting cable 2600 A @ 20K. This test was the first experimental proof of conception of the hybrid energy transfer line. The second line has been tested in October 2013. It has length ∼30 m. The new MgB2 cable has critical current at 21 K ∼3500 A and successfully passed high voltage DC test of 50 kV. New hydrogen cryostat has three sections with different types of thermal insulation in each section. The idea of hybrid energy transfer is formulated and details of first experiments are reviewed.

  17. Introduction to progress and promise of superconductivity for energy storage in the electric power sector

    SciTech Connect

    Wolsky, A.M.

    1998-05-01

    Around the world, many groups conduct research, development and demonstration (RD and D) to make storage an economic option for the electric power sector. The progress and prospects for the application of superconductivity, with emphasis on high-temperature superconductivity, to the electric power sector has been the topic of an IEA Implementing Agreement, begun in 1990. The present Task members are Canada, Denmark, Finland, Germany, Israel, Italy, Japan, Korea, the Netherlands, Norway, Sweden, Switzerland, Turkey, the United Kingdom and the US. As a result of the Implementing Agreement, work has been done by the Operating Agent with the full participation of all the member countries. This work has facilitated the exchange of informtion among experts in all countries and has documented relevant assessments. Further, this work has reviewed the status of SMES and is now updating same, as well as investigating the progress on and prospects for flywheels with superconducting bearings. The Operating Agent and Task members find a substantially different set of opportunities for and alternatives to storage than was the case before the 1987 discovery of high-temperature superconductivity. Beside the need to level generation, there is also the need to level the load on transmission lines, increase transmission stability, and increase power quality. These needs could be addressed by high power storage that could be brought in and out of the grid in fractions of a second. Superconducting Magnetic Energy Storage and flywheels with superconducting bearings are devices that deserve continued RD and D because they promise to be the needed storage devices.

  18. Energy-Gap Dependence on the Mn Mole Fraction and Temperature in Cdmnte Crystal

    SciTech Connect

    Kim, K.; Bolotnikov, A; Camarda, G; Yang, G; Hossain, A; Cui, Y; James, r; Hong, J; Kim, S

    2009-01-01

    We measured the dependence of the energy gap in Bridgman-grown Cd1-xMnxTe crystals, 0 {le} x {le} 0.25, on the Mn mole fraction and temperatures from 40 to 300 K. We determined the Mn mole fraction and energy gap, respectively, from electron probe microanalysis and near-infrared Fourier-transform infrared transmission spectra. The energy gap increased linearly with an increase in the Mn content in the crystal and with a decrease in temperature. We formulated new equations from these experimental results, wherein we expressed the energy gap as a function of Mn mole fraction and temperature. Also, we compare our findings with published results.

  19. Canted-Cosine-Theta Superconducting Accelerator Magnets for High Energy Physics and Ion Beam Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Brouwer, Lucas Nathan

    Advances in superconducting magnet technology have historically enabled the construction of new, higher energy hadron colliders. Looking forward to the needs of a potential future collider, a significant increase in magnet field and performance is required. Such a task requires an open mind to the investigation of new design concepts for high field magnets. Part I of this thesis will present an investigation of the Canted-Cosine-Theta (CCT) design for high field Nb3Sn magnets. New analytic and finite element methods for analysis of CCT magnets will be given, along with a discussion on optimization of the design for high field. The design, fabrication, and successful test of the 2.5 T NbTi dipole CCT1 will be presented as a proof-of-principle step towards a high field Nb3Sn magnet. Finally, the design and initial steps in the fabrication of the 16 T Nb3Sn dipole CCT2 will be described. Part II of this thesis will investigate the CCT concept extended to a curved magnet for use in an ion beam therapy gantry. The introduction of superconducting technology in this field shows promise to reduce the weight and cost of gantries, as well as open the door to new beam optics solutions with high energy acceptance. An analytic approach developed for modeling curved CCT magnets will be presented, followed by a design study of a superconducting magnet for a proton therapy gantry. Finally, a new magnet concept called the "Alternating Gradient CCT" (AG-CCT) will be introduced. This concept will be shown to be a practical magnet solution for achieving the alternating quadrupole fields desired for an achromatic gantry, allowing for the consideration of treatment with minimal field changes in the superconducting magnets. The primary motivation of this thesis is to share new developments for Canted-Cosine-Theta superconducting magnets, with the hope this design will improve technology for high energy physics and ion beam cancer therapy.

  20. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  1. Dirac-Hartree-Bogoliubov calculation for spherical and deformed hot nuclei: Temperature dependence of the pairing energy and gaps, nuclear deformation, nuclear radii, excitation energy, and entropy

    NASA Astrophysics Data System (ADS)

    Lisboa, R.; Malheiro, M.; Carlson, B. V.

    2016-02-01

    Background: Unbound single-particle states become important in determining the properties of a hot nucleus as its temperature increases. We present relativistic mean field (RMF) for hot nuclei considering not only the self-consistent temperature and density dependence of the self-consistent relativistic mean fields but also the vapor phase that takes into account the unbound nucleon states. Purpose: The temperature dependence of the pairing gaps, nuclear deformation, radii, binding energies, entropy, and caloric curves of spherical and deformed nuclei are obtained in self-consistent RMF calculations up to the limit of existence of the nucleus. Method: We perform Dirac-Hartree-Bogoliubov (DHB) calculations for hot nuclei using a zero-range approximation to the relativistic pairing interaction to calculate proton-proton and neutron-neutron pairing energies and gaps. A vapor subtraction procedure is used to account for unbound states and to remove long range Coulomb repulsion between the hot nucleus and the gas as well as the contribution of the external nucleon gas. Results: We show that p -p and n -n pairing gaps in the S10 channel vanish for low critical temperatures in the range Tcp≈0.6 -1.1 MeV for spherical nuclei such as 90Zr, 124Sn, and 140Ce and for both deformed nuclei 150Sm and 168Er. We found that superconducting phase transition occurs at Tcp=1.03 Δp p(0 ) for 90Zr, Tcp=1.16 Δp p(0 ) for 140Ce, Tcp=0.92 Δp p(0 ) for 150Sm, and Tcp=0.97 Δp p(0 ) for 168Er. The superfluidity phase transition occurs at Tcp=0.72 Δn n(0 ) for 124Sn, Tcp=1.22 Δn n(0 ) for 150Sm, and Tcp=1.13 Δn n(0 ) for 168Er. Thus, the nuclear superfluidity phase—at least for this channel—can only survive at very low nuclear temperatures and this phase transition (when the neutron gap vanishes) always occurs before the superconducting one, where the proton gap is zero. For deformed nuclei the nuclear deformation disappear at temperatures of about Tcs=2.0 -4.0 MeV , well above the critical temperatures for pairing, Tcp. If we associate the melting of hot nuclei into the surrounding vapor with the liquid-gas phase transition our results indicate that it occurs at temperatures around T =8.0 -10.0 MeV , somewhat higher than observed in many experimental results. Conclusions: The change of the pairing fields with the temperature is important and must be taken into account in order to define the superfluidity and superconducting phase transitions. We obtain a Hamiltonian form of the pairing field calibrated by an overall constant cpair to compensate for deficiencies of the interaction parameters and of the numerical calculation. When the pairing is not zero, the states close to the Fermi energy make the principal contribution to the anomalous density that appears in the pairing field. By including temperature through the use of the Matsubara formalism, the normal and anomalous densities are multiplied by a Fermi occupation factor. This leads to a reduction in the anomalous density and in the pairing as the temperature increases. When the temperature increases (T ≥4 MeV ), the effects of the vapor phase that take into account the unbound nucleon states become important, allowing the study of nuclear properties of finite nuclei from zero to high temperatures.

  2. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    SciTech Connect

    Not Available

    2010-08-01

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  3. Determination of a Magnetic Component to the Superconducting Condensation Energy for Fe1+δSexTe1-x

    NASA Astrophysics Data System (ADS)

    Leiner, Jonathan; Thampy, Vivek; Lumsden, Mark; Christianson, Andrew; Abernathy, Douglas; Sales, Brian; Sefat, Athena; Mao, Zhiqiang; Hu, Jin; Bao, Wei; Broholm, Collin

    2014-03-01

    A quantitative method to extract a magnetic component of the superconducting condensation energy from inelastic neutron scattering data is described and applied to Fe1+δSe0.4Te0.6. Based on the first moment sum-rule for the dynamic correlation function, the method is sensitive to changes in the inter-site magnetic correlation energy, ΔEij , associated with superconductivity. We find the length scale over which ΔEij is appreciable coincides with the superconducting coherence length as determined by Scanning Tunneling Microscopy. The overall change in inter-site magnetic correlation energy is compared to the superconducting condensation energy determined through specific heat measurements. Supported by ORNL LDRD funding.

  4. Relationship between orbital energy gaps and excitation energies for long-chain systems.

    PubMed

    Tsuneda, Takao; Singh, Raman K; Nakata, Ayako

    2016-06-15

    The difference between the excitation energies and corresponding orbital energy gaps, the exciton binding energy, is investigated based on time-dependent (TD) density functional theory (DFT) for long-chain systems: all-trans polyacetylenes and linear oligoacenes. The optimized geometries of these systems indicate that bond length alternations significantly depend on long-range exchange interactions. In TDDFT formalism, the exciton binding energy comes from the two-electron interactions between occupied and unoccupied orbitals through the Coulomb-exchange-correlation integral kernels. TDDFT calculations show that the exciton binding energy is significant when long-range exchange interactions are involved. Spin-flip (SF) TDDFT calculations are then carried out to clarify double-excitation effects in these excitation energies. The calculated SF-TDDFT results indicate that double-excitation effects significantly contribute to the excitations of long-chain systems. The discrepancies between the vertical ionization potential minus electron affinity (IP-EA) values and the HOMO-LUMO excitation energies are also evaluated for the infinitely long polyacetylene and oligoacene using the least-square fits to estimate the exciton binding energy of infinitely long systems. It is found that long-range exchange interactions are required to give the exciton binding energy of the infinitely long systems. Consequently, it is concluded that long-range exchange interactions neglected in many DFT calculations play a crucial role in the exciton binding energies of long-chain systems, while double-excitation correlation effects are also significant to hold the energy balance of the excitations. © 2016 Wiley Periodicals, Inc. PMID:27010365

  5. Superconducting magnetic energy storage (SMES) program. Progress report, January 1-December 31, 1980

    SciTech Connect

    Rogers, J.D.

    1981-03-01

    Work is reported on the development of two superconducting magnetic energy storage (SMES) units. One is a 30-MJ unit for use by the Bonneville Power Administration (BPA) to stabilize power oscillations on their Pacific AC Intertie, and the second is a 1- to 10-GWh unit for use as a diurnal load leveling device. Emphasis has been on the stabilizing system. The manufacturing phase of the 30-MJ superconducting coil was initiated and the coil fabrication has advanced rapidly. The two converter power transformers were manufactured, successfully factory tested, and shipped. One transformer reached the Tacoma Substation in good condition; the other was dropped enroute and has been returned to the factory for rebuilding. Insulation of the 30-MJ coil has been examined for high voltage effects apt to be caused by transients such as inductive voltage spikes from the protective dump circuit. The stabilizing system converter and protective energy dump system were completed, factory tested, and delivered.

  6. Development of an abort gap monitor for high-energy proton rings

    SciTech Connect

    Beche, Jean-Francois; Byrd, John; De Santis, Stefano; Denes, Peter; Placidi, Massimo; Turner, William; Zolotorev, Max

    2004-05-03

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the ''abort gap'' and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider

  7. Distinct Fermi-Momentum-Dependent Energy Gaps in Deeply UnderdopedBi2212

    SciTech Connect

    Tanaka, Kiyohisa; Lee, W.S.; Lu, D.H.; Fujimori, A.; Fujii, T.; Risdiana, ???; Terasaki, I.; Scalapino, D.J.; Devereaux, T.P.; Hussain,Z.; Shen, Z.-X.

    2006-11-16

    We used angle-resolved photoemission spectroscopy applied todeeply underdoped cuprate superconductors Bi2Sr2Ca(1-x)YxCu2O8 (Bi2212)to reveal the presence of two distinct energy gaps exhibiting differentdoping dependence. One gap, associated with the antinodal region where nocoherent peak is observed, increased with underdoping, a behavior knownfor more than a decade and considered as the general gap behavior in theunderdoped regime. The other gap, associated with the near-nodal regimewhere a coherent peak in the spectrum can be observed, did not increasewith less doping, a behavior not previously observed in the singleparticle spectra. We propose a two-gap scenario in momentum space that isconsistent with other experiments and may contain important informationon the mechanism of high-transition temperaturesuperconductivity.

  8. Power system stabilization by superconducting magnetic energy storage with solid-state phase shifter

    SciTech Connect

    Mitani, Y.; Uranaka, T.; Tsuji, K.

    1995-08-01

    In this paper, a new configuration of power system controller with a combination of superconducting magnetic energy storage and phase shifter, is proposed to improve the stability of a long distance bulk power transmission system. A power system stabilizing control scheme is also proposed. A related simulation shows that the proposed controller is effective for enhancement of power system stability independent of the location of controller in a long distance bulk power transmission system.

  9. First-principle study on energy gap of CNT superlattice structure

    NASA Astrophysics Data System (ADS)

    Zhonghua, Yang; Guili, Liu; Yingdong, Qu; Rongde, Li

    2015-10-01

    By using the CASTEP modules based on density functional theory, the electronic structures of B/N pair co-doping (5, 5) CNT rings superlattice have been investigated. The calculation results show that the formation energies of B/N pair co-doping CNT rings are negative, indicating that the new type construction will probably be stable. The band structure and state density of the new type construction show that the energy gap is opened by B/N co-doping in (5, 5) metallic CNT and the metallic CNT is changed into a semiconductor. The energy gap of pure CNT is strongly sensitive to the changes of CNT diameter but the energy gap of B/N co-doping CNT rings remains stable when the diameters are in a reasonable scope, which means that the requirements for the production of CNT have been reduced. The compressive deformation effects mean that the energy gaps are narrowed, which is equivalent to enhancing the doping volume concentration. However, the changes of the energy gap under the tensile deformation effect are opposite. Achieving control of the electrical conductivity of CNT has an important significance for electron devices. Project supported by the National Natural Science Foundation of China (Nos. 51274142, 50671069).

  10. Photoemission and density functional theory study of Ir(111); energy band gap mapping

    NASA Astrophysics Data System (ADS)

    Pletikosi?, I.; Kralj, M.; ok?evi?, D.; Brako, R.; Lazi?, P.; Pervan, P.

    2010-04-01

    We have performed combined angle-resolved photoemission spectroscopy (ARPES) experiments and density functional theory (DFT) calculations of the electronic structure of the Ir(111) surface, with the focus on the existence of energy band gaps. The investigation was motivated by the experimental results suggesting Ir(111) as an ideal support for the growth of weakly bonded graphene. Therefore, our prime interest was electronic structure around the \\bar {\\mathrm {K}} symmetry point. In accordance with DFT calculations, ARPES has shown a wide energy band gap with the shape of a parallelogram centred around the \\bar {\\mathrm {K}} point. Within the gap three surface states were identified; one just below the Fermi level and two spin-orbit split surface states at the bottom of the gap.

  11. Distinct Fermi-momentum dependent energy gaps in deeply underdoped Bi2212.

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Lee, W. S.; Lu, D. H.; Fujimori, A.; Fujii, T.; Risdiana; Terasaki, I.; Fujita, K.; Ishikado, M.; Uchida, S.; Scalapino, D. J.; Devereaux, T. P.; Hussain, Z.; Shen, Z.-X.

    2007-03-01

    Our recent angle-resolved photoemission spectroscopy study of deeply underdoped cuprate superconductors Bi2Sr2(Ca,R)Cu2O8 (R = Y or Dy) (Bi2212) suggested the presence of two distinct energy gaps exhibiting different doping dependences [1]. One gap, associated with the antinodal region where no coherent peak is observed, increases with underdoping - a behavior known for more than a decade and considered as the general behavior of the gap in the underdoped regime. The other gap, associated with the near nodal regime where a coherent peak can be observed in energy distribution curves (EDCs), does not increase with less doping - a behavior not seen in the single particle spectra before. The theoretical implications of these findings and temperature dependence of the spectra will be discussed. [1] Science, in press. (http://www.sciencemag.org/cgi/content/abstract/1133411)

  12. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    NASA Astrophysics Data System (ADS)

    Al-Talibi, A. Adhim

    An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e determination. The model was verified and showed a good agreement with billed and measured data from a base case study. In a next phase, a supplemental computational tool can be created for conducting plant energy design comparisons and plant energy and emissions parameters assessments. The main conclusions drawn from this research is that current approaches are severely limited, not covering plant's design phase and not fully considering the balance of energy consumed (EC), energy produced (EP) and the resulting CO2 e emission integration. Finally their results are not representative. This makes reported governmental and institutional national energy consumption figures incomplete and/or misleading, since they are mainly considering energy consumptions from electricity and some fuels or certain processes only. The distinction of the energy trilogy model over existing approaches is based on the following: (1) the ET energy model is unprecedented, prepared to fit WWTP energy assessment during the design and rehabilitation phases, (2) links the energy trilogy eliminating the need for using several models or tools, (3) removes the need for on-site expensive energy measurements or audits, (4) offers alternatives for energy optimization during plant's life-cycle, and (5) ensures reliable GHG emissions inventory reporting for permitting and regulatory compliance.

  13. Free energy surfaces in the superconducting mixed state

    NASA Technical Reports Server (NTRS)

    Finnemore, D. K.; Fang, M. M.; Bansal, N. P.; Farrell, D. E.

    1989-01-01

    The free energy surface for Tl2Ba2Ca2Cu3O1O has been measured as a function of temperature and magnetic field to determine the fundamental thermodynamic properties of the mixed state. The change in free energy, G(H)-G(O), is found to be linear in temperature over a wide range indicating that the specific heat is independent of field.

  14. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells

    SciTech Connect

    Henry, C.H.

    1980-08-01

    The maximum efficiencies of ideal solar cells are calculated for both single and multiple energy gap cells using a standard air mass 1.5 terrestrial solar spectrum. The calculations of efficiency are made by a simple graphical method, which clearly exhibits the contributions of the various intrinsic losses. The maximum efficiency, at a concentration of 1 sun, is 31%. At a concentration of 1000 suns with the cell at 300 K, the maximum efficiencies are 37, 50, 56, and 72% for cells with 1, 2, 3, and 36 energy gaps, respectively. The value of 72% is less than the limit of 93% imposed by thermodynamics for the conversion of direct solar radiation into work. Ideal multiple energy gap solar cells fall below the thermodynamic limit because of emission of light from the forward-biased p-n junctions. The light is radiated at all angles and causes an entropy increase as well as an energy loss.

  15. Effect of temperature, energy gap, and distortion of potential surfaces on photoinduced intramolecular electron transfer

    SciTech Connect

    Islampour, R.; Alden, R.G.; Wu, G.Y.C.; Lin, S.H. )

    1993-07-01

    We report the quantitative examination of the effect of distortion of potential energy surfaces and the temperature effect on photoinduced intramolecular electron transfer (PIET) as a function of electronic energy gap. The results demonstrate the importance of distorted oscillators in determining the dependence of the rate of PIET on the energy gap. This phenomenon may in some cases lead to misinterpretations of experimental data, when undistorted oscillators are assumed to be involved in the PIET process. The condition for observing the linear (rather than parabolic) dependence of the ET rate will be determined using the multimode model. The inclusion of multivibrational modes in the nuclear factors results in energy gap behavior, which is markedly different from the single mode case. Finally, a comparison between PIET and internal conversion is discussed. 25 refs., 5 figs., 3 tabs.

  16. Point contact spectroscopy in oriented La[sub 2-x]Sr[sub x]CuO[sub 4] superconductors; energy gap and Fermi velocity

    SciTech Connect

    Hass, N. ); Deutscher, G. ); Revcolevschi, A.; Dhalenne, G. )

    1994-08-01

    Point contact measurements in oriented La[sub 2-x]Sr[sub x]CuO[sub 4] samples were performed using metal tips. The current-voltage curves measured along the CuO plane direction (ab) are characteristic of the Andreev reflection phenomenon. The superconducting energy gap in the ab plane is determined, [Delta][sub ab] = 6 [+-] 1 meV, with a possibility for the existence of a lower subgap in the plane. A lower limit for the Fermi velocity in the CuO planes is also set by the measurements; V[sub F] [ge] 6 [times] 10[sup 7] cm/sec, which is significantly higher than the average velocity obtained by band calculations. The results are discussed in the context of different models for superconductivity in the layered oxides. In particular, the authors raise the possibility of an anisotropic gap parameter which may indicate a nonstandard s-wave pairing in La[sub 2-x]Sr[sub x]CuO[sub 4]. A comparison with previous results obtained on YBa[sub 2]Cu[sub 3]O[sub 7-[delta

  17. Electronic energy gap correlation function and spectral density of anharmonic molecules at low temperatures I: Theory

    NASA Astrophysics Data System (ADS)

    Toutounji, Mohamad

    2015-01-01

    A closed-form expression for the electronic energy gap correlation function of anharmonic molecules weighed by their coupling strengths to the electronic transition is derived. These undamped anharmonic vibrations may be viewed as only linearly coupled phonons. The spectral density derived herein may be viewed as a spectrum of Franck-Condon factors for the phonons coupled linearly to the electronic transition in the low temperature limit. A formula for Morse oscillator reorganizational energy is derived. An approximate form for anharmonic energy gap correlation function is also provided, from which the spectral density of intramolecular vibrations is derived.

  18. Superconducting transport in single and parallel double InAs quantum dot Josephson junctions with Nb-based superconducting electrodes

    SciTech Connect

    Baba, Shoji Sailer, Juergen; Deacon, Russell S.; Oiwa, Akira; Shibata, Kenji; Hirakawa, Kazuhiko; Tarucha, Seigo

    2015-11-30

    We report conductance and supercurrent measurements for InAs single and parallel double quantum dot Josephson junctions contacted with Nb or NbTiN superconducting electrodes. Large superconducting gap energy, high critical field, and large switching current are observed, all reflecting the features of Nb-based electrodes. For the parallel double dots, we observe an enhanced supercurrent when both dots are on resonance, which may reflect split Cooper pair tunneling.

  19. Superconducting transport in single and parallel double InAs quantum dot Josephson junctions with Nb-based superconducting electrodes

    NASA Astrophysics Data System (ADS)

    Baba, Shoji; Sailer, Juergen; Deacon, Russell S.; Oiwa, Akira; Shibata, Kenji; Hirakawa, Kazuhiko; Tarucha, Seigo

    2015-11-01

    We report conductance and supercurrent measurements for InAs single and parallel double quantum dot Josephson junctions contacted with Nb or NbTiN superconducting electrodes. Large superconducting gap energy, high critical field, and large switching current are observed, all reflecting the features of Nb-based electrodes. For the parallel double dots, we observe an enhanced supercurrent when both dots are on resonance, which may reflect split Cooper pair tunneling.

  20. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    SciTech Connect

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  1. Acoustic detection of high-energy electrons in a superconducting niobium resonant bar

    NASA Astrophysics Data System (ADS)

    Bassan, M.; Blair, D.; Buonomo, B.; Cavallari, G.; Coccia, E.; D'Antonio, S.; Delle Monache, G.; di Gioacchino, D.; Fafone, V.; Ligi, C.; Marini, A.; Mazzitelli, G.; Modestino, G.; Pizzella, G.; Quintieri, L.; Roccella, S.; Rocchi, A.; Ronga, F.; Tripodi, P.; Valente, P.

    2006-12-01

    We have performed an experiment based on a suspended cylindrical bar, hit by an electron beam, for investigating the results on cosmic rays detected by the gravitational wave antenna Nautilus. The experiment is aimed at measuring the amplitude of the fundamental longitudinal mode of oscillation of a niobium bar, excited by the pressure impulse due to the local interactions of high-energy electrons. We report on the amplitude measurements in a wide temperature range. For niobium in normal state the amplitude agrees within few percents with the predictions of the underlying theory. The amplitude shows a discontinuity at the temperature of transition to superconducting state and, in this state, we measure a reduced amplitude with respect to the normal state. Data in the superconducting state are compared with two models.

  2. Strain energy minimization in SSC (Superconducting Super Collider) magnet winding

    SciTech Connect

    Cook, J.M.

    1990-09-24

    Differential geometry provides a natural family of coordinate systems, the Frenet frame, in which to specify the geometric properties of magnet winding. By a modification of the Euler-Bernoulli thin rod model, the strain energy is defined with respect to this frame. Then it is minimized by a direct method from the calculus of variations. The mathematics, its implementation in a computer program, and some analysis of an SSC dipole by the program will be described. 16 refs.

  3. Proximity induced Superconductivity in Epitaxial Graphene

    NASA Astrophysics Data System (ADS)

    Natterer, Fabian D.; Ha, Jeonghoon; Baek, Hongwoo; Zhang, Duming; Cullen, William; Zhitenev, Nikolai B.; Kuk, Young; Stroscio, Joseph A.

    The intimate electrical contact of a superconductor with a normal metal leads to an exchange of carriers through their boundary. Cooper pairs leak into the normal metal via Andreev reflection and enable the normal metal to acquire superconducting-like properties. The electron-hole conversion process in graphene is prominent due to relativistic quantum mechanics governing low energy chiral carriers in a multi-valley system. In the present experiment, we reveal spatial measurements of the proximity effect in graphene from a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to the substrate to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting gap width with increasing separation from the graphene-aluminum edges. The decay length for the superconducting energy gap extends beyond 400 nm. Subtle deviations in the exponentially decaying energy gap were also observed on a much smaller length scale of tens of nanometers. Funding from SNSF (project 158468), NIST/CNST Grant 70NANB10H193, and KRF-2010-00349.

  4. Energy-gap reduction in heavily doped silicon: Causes and consequences

    NASA Astrophysics Data System (ADS)

    Pantelides, Sokrates T.; Selloni, Annabella; Car, Roberto

    1985-02-01

    The authors review briefly the existing theoretical treatments of the various effects that contribute to the reduction of the energy gap in heavily doped Si, namely electron-electron and electron-impurity interactions and the effect of disorder in the impurity distribution. They then turn to the longstanding question why energy-gap reductions extracted from three different types of experiments have persistently produced values with substantial discrepancies, making it impossible to compare with theoretical values. First, they demonstrate that a meaningful comparison between theory and experiment can indeed be made if theoretical calculations are carried out for actual quantities that experiments measure, e.g. luminescence spectra, as recently done by Selloni and Pantelides. Then, they demonstrate that, independent of any theoretical calculations, the optical absorption spectra are fully consistent with the luminescence spectra and that the discrepancies in the energy-gap reductions extracted from the two sets of spectra are caused entirely by the curve-fitting procedures used in analyzing optical-absorption data. Finally, they show explicitly that, as already believed by many authors, energy-gap reductions extracted from electrical measurements on transistors do not correspond to true gap reductions. They identify two corrections that must be added to the values extracted from the electrical data in order to arrive at the true gap reductions and show that the resulting values are in good overall agreement with luminescence and absorption data. They, therefore, demonstrate that the observed reduction in emitter injection efficiency in bipolar transistors is not strictly due to a gap reduction, as generally believed, but to three very different effects.

  5. Superconducting magnetic energy storage (SMES). January 1972-April 1989 (Citations from the NTIS database). Report for January 1972-April 1989

    SciTech Connect

    Not Available

    1989-04-01

    This bibliography contains citations concerning the techchnology and utilization of superconducting magnetic energy storage (SMES). The design, analysis, evaluation, and operation of SMES systems and equipment are discussed. Topics include utility scale SMES plants, SMES for transmission-line stabilization, design and protection of superconducting magnets and coils, computer controlled SMES systems, and fusion power reactors. (This updated bibliography contains 116 citations, 10 of which are new entries to the previous edition.)

  6. Phase competition in trisected superconducting dome.

    PubMed

    Vishik, I M; Hashimoto, M; He, Rui-Hua; Lee, Wei-Sheng; Schmitt, Felix; Lu, Donghui; Moore, R G; Zhang, C; Meevasana, W; Sasagawa, T; Uchida, S; Fujita, Kazuhiro; Ishida, S; Ishikado, M; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Hussain, Zahid; Devereaux, Thomas P; Shen, Zhi-Xun

    2012-11-01

    A detailed phenomenology of low energy excitations is a crucial starting point for microscopic understanding of complex materials, such as the cuprate high-temperature superconductors. Because of its unique momentum-space discrimination, angle-resolved photoemission spectroscopy (ARPES) is ideally suited for this task in the cuprates, where emergent phases, particularly superconductivity and the pseudogap, have anisotropic gap structure in momentum space. We present a comprehensive doping- and temperature-dependence ARPES study of spectral gaps in Bi(2)Sr(2)CaCu(2)O(8+δ), covering much of the superconducting portion of the phase diagram. In the ground state, abrupt changes in near-nodal gap phenomenology give spectroscopic evidence for two potential quantum critical points, p = 0.19 for the pseudogap phase and p = 0.076 for another competing phase. Temperature dependence reveals that the pseudogap is not static below T(c) and exists p > 0.19 at higher temperatures. Our data imply a revised phase diagram that reconciles conflicting reports about the endpoint of the pseudogap in the literature, incorporates phase competition between the superconducting gap and pseudogap, and highlights distinct physics at the edge of the superconducting dome. PMID:23093670

  7. Phase competition in trisected superconducting dome

    PubMed Central

    Vishik, I. M.; Hashimoto, M.; He, Rui-Hua; Lee, Wei-Sheng; Schmitt, Felix; Lu, Donghui; Moore, R. G.; Zhang, C.; Meevasana, W.; Sasagawa, T.; Uchida, S.; Fujita, Kazuhiro; Ishida, S.; Ishikado, M.; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Hussain, Zahid; Devereaux, Thomas P.; Shen, Zhi-Xun

    2012-01-01

    A detailed phenomenology of low energy excitations is a crucial starting point for microscopic understanding of complex materials, such as the cuprate high-temperature superconductors. Because of its unique momentum-space discrimination, angle-resolved photoemission spectroscopy (ARPES) is ideally suited for this task in the cuprates, where emergent phases, particularly superconductivity and the pseudogap, have anisotropic gap structure in momentum space. We present a comprehensive doping- and temperature-dependence ARPES study of spectral gaps in Bi2Sr2CaCu2O8+δ, covering much of the superconducting portion of the phase diagram. In the ground state, abrupt changes in near-nodal gap phenomenology give spectroscopic evidence for two potential quantum critical points, p = 0.19 for the pseudogap phase and p = 0.076 for another competing phase. Temperature dependence reveals that the pseudogap is not static below Tc and exists p > 0.19 at higher temperatures. Our data imply a revised phase diagram that reconciles conflicting reports about the endpoint of the pseudogap in the literature, incorporates phase competition between the superconducting gap and pseudogap, and highlights distinct physics at the edge of the superconducting dome. PMID:23093670

  8. Modeling US Adult Obesity Trends: A System Dynamics Model for Estimating Energy Imbalance Gap

    PubMed Central

    Rahmandad, Hazhir; Huang, Terry T.-K.; Bures, Regina M.; Glass, Thomas A.

    2014-01-01

    Objectives. We present a system dynamics model that quantifies the energy imbalance gap responsible for the US adult obesity epidemic among gender and racial subpopulations. Methods. We divided the adult population into gender–race/ethnicity subpopulations and body mass index (BMI) classes. We defined transition rates between classes as a function of metabolic dynamics of individuals within each class. We estimated energy intake in each BMI class within the past 4 decades as a multiplication of the equilibrium energy intake of individuals in that class. Through calibration, we estimated the energy gap multiplier for each gender–race–BMI group by matching simulated BMI distributions for each subpopulation against national data with maximum likelihood estimation. Results. No subpopulation showed a negative or zero energy gap, suggesting that the obesity epidemic continues to worsen, albeit at a slower rate. In the past decade the epidemic has slowed for non-Hispanic Whites, is starting to slow for non-Hispanic Blacks, but continues to accelerate among Mexican Americans. Conclusions. The differential energy balance gap across subpopulations and over time suggests that interventions should be tailored to subpopulations’ needs. PMID:24832405

  9. Controlling of optical energy gap of Co-ferrite quantum dots in poly (methyl methacrylate) matrix

    NASA Astrophysics Data System (ADS)

    El-Sayed, H. M.; Agami, W. R.

    2015-07-01

    Different crystallite sizes of Co-ferrite nanoparticles were prepared and dispersed in the matrix of poly (methyl methacrylate) (PMMA) polymer. The effect of crystallite size on the structure and optical energy gap of Co-nanoferrite/PMMA composite has been studied. The optical energy gap of Co-ferrite was greatly affected by the crystallite size. This result was discussed in terms of the formation of electron-hole exciton using particle in a box model. The effective mass and the Bohr radius of the formed exciton have been calculated from the spectroscopic measurements.

  10. Enhancing the design of a superconducting coil for magnetic energy storage systems

    NASA Astrophysics Data System (ADS)

    Indira, Gomathinayagam; UmaMaheswaraRao, Theru; Chandramohan, Sankaralingam

    2015-01-01

    Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done.

  11. Spin-dependent energy gap oscillations in the ultra-short carbon nanotube (5, 5)

    NASA Astrophysics Data System (ADS)

    Tuchin, A. V.; Popov, S. V.; Glushkov, G. I.; Bityutskaya, L. A.

    2015-11-01

    Results of the numerical simulation of an electronic structure of an ultrashort singlewalled carbon nanotube (5, 5) at singlet and triplet states were presented. An antiphase energy gap oscillation on the length of the ultrashort nanotube (5, 5) at singlet and triplet states was revealed. It was found that the ground state of the nanotube is singlet, herewith the energy of the singlet-triplet transition corresponds to the energy value of visible andIR-radiation.

  12. Superconducting proximity effect in clean ferromagnetic layers

    NASA Astrophysics Data System (ADS)

    Zareyan, M.; Belzig, W.; Nazarov, Yu. V.

    2002-05-01

    We investigate the superconducting proximity effect in clean ferromagnetic layers with rough boundaries. The subgap density of states is formed by Andreev bound states at energies which depend on trajectory length and the ferromagnetic exchange field. At energies above the gap, the spectrum is governed by resonant scattering states. The resulting density of states, measurable by tunneling spectroscopy, exhibits a rich structure, which allows us to connect the theoretical parameters from experiments.

  13. A promising way to open an energy gap in bilayer graphene.

    PubMed

    Hao, Jialei; Huang, Chengxi; Wu, Haiping; Qiu, Yuhao; Gao, Qian; Hu, Zhenpeng; Kan, Erjun; Zhang, Lixin

    2015-10-28

    There has been huge research interest in the energy gap problem of monolayer and bilayer graphene due to their great potential in practical applications. Herein, based on first-principles calculations, we report a promising way to open a large band gap in bilayer graphene (BLG) by sandwiching it between two substrates, although this is not usually expected to occur due to the weak interlayer interactions dominated by van der Waals forces. Taking surface-functionalized boron-nitrides as substrates, we predict from first-principles calculations that BLG can have energy gaps ranging from 0.35 eV to 0.55 eV, depending on the substrates and stacking order. Compared to other methods of band-gap manipulation in BLG, the structural integrity of BLG is well-preserved in our study, and the predicted energy gap is suitable for electric devices. Since the proposed method is easily realized in experiments, our results will hopefully accelerate the application of graphene in semiconductor devices and promote the development of graphene technology. PMID:26420470

  14. Energy gap in the aetiology of body weight gain and obesity: a challenging concept with a complex evaluation and pitfalls.

    PubMed

    Schutz, Yves; Byrne, Nuala M; Dulloo, Abdul; Hills, Andrew P

    2014-01-01

    The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the 'efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty. PMID:24457473

  15. Energy Gaps and Layer Polarization of Integer and Fractional Quantum Hall States in Bilayer Graphene.

    PubMed

    Shi, Yanmeng; Lee, Yongjin; Che, Shi; Pi, Ziqi; Espiritu, Timothy; Stepanov, Petr; Smirnov, Dmitry; Lau, Chun Ning; Zhang, Fan

    2016-02-01

    Owing to the spin, valley, and orbital symmetries, the lowest Landau level in bilayer graphene exhibits multicomponent quantum Hall ferromagnetism. Using transport spectroscopy, we investigate the energy gaps of integer and fractional quantum Hall (QH) states in bilayer graphene with controlled layer polarization. The state at filling factor ν=1 has two distinct phases: a layer polarized state that has a larger energy gap and is stabilized by high electric field, and a hitherto unobserved interlayer coherent state with a smaller gap that is stabilized by large magnetic field. In contrast, the ν=2/3 quantum Hall state and a feature at ν=1/2 are only resolved at finite electric field and large magnetic field. These results underscore the importance of controlling layer polarization in understanding the competing symmetries in the unusual QH system of BLG. PMID:26894724

  16. ORNL Superconducting Technology Program for Electric Energy Systems. Annual report for FY 1992

    SciTech Connect

    Hawsey, R.A.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s (DOE`s) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE`s Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  17. Two-gap superconducting properties of alkaline-earth intercalated {{\\rm{A}}}_{x}({{\\rm{NH}}}_{3}){{\\rm{Fe}}}_{2}{{\\rm{Se}}}_{2} (A = Ba or Sr)

    NASA Astrophysics Data System (ADS)

    Hsu, Yung-Yuan; Li, Yu-Bo; Jian, Shou-Ting; Li, Gu-Kuei; Yang, Ming-Cheng

    2016-03-01

    Superconducting properties were studied on high quality superconductors {{{Ba}}}x({{{NH}}}3){{{Fe}}}2{{{Se}}}2 (T c = 39 K) and {{{Sr}}}x({{{NH}}}3){{{Fe}}}2{{{Se}}}2 (T c = 44 K) prepared by intercalating Ba/Sr atoms into tetragonal β-FeSe by liquid ammonia. The elongated c-axis and almost unchanged a-axis of {{{Ba}}}x({{{NH}}}3){{{Fe}}}2{{{Se}}}2, compared with β-FeSe, suggests an unchanged intra-{{{Fe}}}2{{{Se}}}2-layer structure and the T c enhancement is due to a 3D to 2D-like Fermi surface transformation. The superconducting coherent lengths ξ(0), the Ginzburg-Landau parameters κ and penetration depths λ(0) obtained from the extrapolated lower and upper critical fields B c1(0) and B c2(0) indicate that both compounds are typical type-II superconductors. The temperature dependence of 1/{λ }2(T) of {{{Ba}}}x({{{NH}}}3){{{Fe}}}2{{{Se}}}2 deduced from the low-field magnetic susceptibility shows a two-gap s-wave behavior with superconducting gaps of {{{Δ }}}1 = 6.47 meV and {{{Δ }}}2 = 1.06 meV.

  18. An outer gap model of high-energy emission from rotation-powered pulsars

    NASA Technical Reports Server (NTRS)

    Chiang, James; Romani, Roger W.

    1994-01-01

    We describe a refined calculation of high-energy emission from rotation-powered pulsars based on the outer gap model of Cheng, Ho, & Ruderman (1986 a, b). In this calculation, vacuum gaps form in regions near the speed-of-light cylinder of the pulsar magnetosphere along the boundary between the closed and open field line zones. We have improved upon previous efforts to model the spectra from these pulsars (e.g., Cheng et al. 1986b; Ho 1989) by following the variation in particle production and radiation properties with position in the outer gap. Curvature, synchotron, and inverse-Compton scattering fluxes vary significantly over the gap, and their interactions via photon-photon pair production build up the radiating charge populations at varying rates. We have also incorporated an approximate treatment of the transport particle and photon fluxes between gap emission zones. These effects, along with improved computations of the particle and photon distribution, provide very important modifications of the model gamma-ray flux. In paticular, we attempt to make specific predictions of pulse profile shapes and spectral variations as a function of pulse phase and suggest further extensions to the model which may provide accurate computations of the observed high-energy emissions.

  19. Eddy Current Analysis and Optimization for Superconducting Magnetic Bearing of Flywheel Energy Storage System

    NASA Astrophysics Data System (ADS)

    Arai, Yuuki; Yamashita, Tomohisa; Hasegawa, Hitoshi; Matsuoka, Taro; Kaimori, Hiroyuki; Ishihara, Terumasa

    Levitation and guidance force is electromagnetic generated between a superconducting coil and zero field cooled bulk superconductors used in our flywheel energy storage system (FESS). Because the magnetic field depends on the configuration of the coil and the bulks, the eccentricity and the vibration of a rotor cause fluctuation in the magnetic field which induces eddy current and consequent Joule heat on electric conductors such as cooling plates. Heat generation in the cryogenic region critically reduces the efficiency of the FESS. In this paper, we will report the result of the electromagnetic analysis of the SMB and propose an optimal divided cooling plate for reducing the eddy current and Joule heat.

  20. Superconducting magnetic energy storage. (Latest citations from the INSPEC database). Published Search

    SciTech Connect

    1997-10-01

    The bibliography contains citations concerning research, development, and assessment of superconducting magnetic energy storage (SMES) technology. References discuss the design and performance of toroidal and solenoid type SMES systems for military, space mission, and electric utility applications. Topics include active and reactive power control, power system stability and diagnosis, power supply quality, uninterruptible power supplies, and SMES systems for critical industrial and military uses. Cost analysis and optimization, marketing, and environmental issues are reviewed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. 30 MJ superconducting magnetic energy storage stabilizing coil. Final report for construction

    SciTech Connect

    1983-03-01

    This report covers Phase II, Fabrication and Delivery of the 30 MJ Superconducting Magnetic Energy Storage Stabilizing Coil. A history of the manufacturing and assembly phase of the magnet is presented. Major problems and solutions are summarized, and illustrations of the major operations are provided. The Quality Assurance program is described with a listing of all nonconformance reports. Design documentation is provided, including a Design Document Index, monthly progress reports, and a list of papers given on the project. Appendices to the report contain copies of released and revised design calculations, test reports, assembly procedure, and nonconformance reports and engineering dispositions.

  2. A pressure dependence model for the band gap energy of the dilute nitride GaNP

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Wei, Tong; Li, Na-Na; Wang, Sha-Sha; Lu, Ke-Qing

    2014-08-01

    The pressure dependence of the band gap energy of the dilute nitride GaNP is analyzed. It is found that the pressure dependence of the Г conduction band minimum (CBM) is stronger than that of the X CBM. We also find that the energy difference between the X CBM and the Г CBM in GaNP becomes large with increasing N content. In order to describe the pressure dependence of the band gap energy of the dilute nitride GaNP, a model is developed. Based on the model, we obtain the energy difference between the X CBM and the Г CBM in GaNP at standard atmospheric pressure. It agrees well with the results obtained by other method.

  3. The optical band gap and surface free energy of polyethylene modified by electron beam irradiations

    NASA Astrophysics Data System (ADS)

    Abdul-Kader, A. M.

    2013-04-01

    In this study, investigations have been carried out on electron beam irradiated ultra high molecular weight polyethylene (UHMWPE). Polyethylene samples were irradiated with 1.5 MeV electron beam at doses ranging from 50 to 500 kGy. Modifications in optical properties and photoluminescence behavior of the polymer were evaluated by UV-vis and photoluminescence techniques. Changes of surface layer composition of UHMWPE produced by electron irradiations were studied by Rutherford back scattering spectrometry (RBS). The change in wettability and surface free energy induced by irradiations was also investigated. The optical absorption studies reveal that both optical band gap and Urbach's energy decreases with increasing electron dose. A correlation between energy gap and the number of carbon atoms in clusters is discussed. Photoluminescence spectra were reveal remarkable decrease in the integrated luminescence intensity with increasing irradiation dose. Contact angle measurements showed that wettability and surface free energy increases with increasing the irradiation dose.

  4. Resistivity changes in superconducting-cavity-grade Nb following high-energy proton irradiation

    SciTech Connect

    Snead, C.L. Jr.; Hanson, A.; Greene, G.A.

    1997-12-01

    Niobium superconducting rf cavities are proposed for use in the proton LINAC accelerators for spallation-neutron applications. Because of accidental beam loss and continual halo losses along the accelerator path, concern for the degradation of the superconducting properties of the cavities with accumulating damage arises. Residual-resistivity-ratio (RRR) specimens of Nb, with a range of initial RRR`s were irradiated at room temperature with protons at energies from 200 to 2000 MeV. Four-probe resistance measurements were made at room temperature and at 4.2 K both prior to and after irradiation. Nonlinear increases in resistivity simulate expected behavior in cavity material after extended irradiation, followed by periodic anneals to room temperature: For RRR = 316 material, irradiations to (2 - 3) x 10{sup 15} p/cm{sup 2} produce degradations up to the 10% level, a change that is deemed operationally acceptable. Without. periodic warming to room temperature, the accumulated damage energy would be up to a factor of ten greater, resulting in unacceptable degradations. Likewise, should higher-RRR material be used, for the same damage energy imparted, relatively larger percentage changes in the RRR will result.

  5. Technical Barriers, Gaps, and Opportunities Related to Home Energy Upgrade Market Delivery

    SciTech Connect

    Bianchi, M. V. A.

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program. The objective of this report is to outline the technical1 barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's (DOE) Building America program. This information will be used to provide guidance for new research necessary to enable the success of the approaches. Investigation for this report was conducted via publications related to home energy upgrade market delivery approaches, and a series of interviews with subject matter experts (contractors, consultants, program managers, manufacturers, trade organization representatives, and real estate agents). These experts specified technical barriers and gaps, and offered suggestions for how the technical community might address them. The potential benefits of home energy upgrades are many and varied: reduced energy use and costs; improved comfort, durability, and safety; increased property value; and job creation. Nevertheless, home energy upgrades do not comprise a large part of the overall home improvement market. Residential energy efficiency is the most complex climate intervention option to deliver because the market failures are many and transaction costs are high (Climate Change Capital 2009). The key reasons that energy efficiency investment is not being delivered are: (1) The opportunity is highly fragmented; and (2) The energy efficiency assets are nonstatus, low-visibility investments that are not properly valued. There are significant barriers to mobilizing the investment in home energy upgrades, including the 'hassle factor' (the time and effort required to identify and secure improvement works), access to financing, and the opportunity cost of capital and split incentives.

  6. Superconductivity of small metal grains

    NASA Astrophysics Data System (ADS)

    Zheng, Renrong; Chen, Zhiqian; Zhu, Shunquan

    2005-08-01

    The formulas of the energy gap and superconducting critical temperature appropriate for systems with both odd and even number of electrons are derived; the bases of the derivations are BCS theory and energy level statistics. Numerical results qualitatively agree with the experimental phenomena. i.e., the superconductivity of small metallic grains will first enhance then decrease to zero when the grain are getting smaller and smaller. The calculations indicate that the above phenomena happen in the metallic grains belonging to Gaussian Orthogonal Ensemble (GOE) and Gaussian Unitary ensemble (GUE) with zero spin; The superconductivity of small metallic grains in Gaussian Symplectic Ensemble (GSE) will monotonically decrease to zero with the decreasing of the grain size. The analyses suggest that the superconductivity enhancements come from pairing and the balance of the strengths between spin-orbital coupling and external magnetic field. In order to take the latter into account, it is necessary to include the level statistics given by Random Matrix Theory (RMT) in describing small metallic grains.

  7. Performance of Small-Gap Undulators at the SLS Intermediate Energy Storage Ring

    NASA Astrophysics Data System (ADS)

    Ingold, G.; Boege, M.; Bulgheroni, W.; Keller, A.; Krempaski, J.; Schulze-Briese, C.; Schulz, L.; Schmidt, T.; Zimoch, D.; Hara, T.; Tanaka, T.; Kitamura, H.

    2007-01-01

    The Swiss Light Source (SLS) at the Paul Scherrer Institut (PSI) became the first medium energy synchrotron user facility to rely on the high harmonic operation of small gap, short period undulators to extend high brightness radiation into a regime (3-18 keV) otherwise only accessible using lower brightness wigglers or operation at higher electron beam energy. Today several facilities with beam energy 2-3 GeV follow a similar route. A PSI/SPring-8 collaboration was formed to install and operate the first in-vacuum undulator shortly after commissioning of the SLS storage ring (2.4 GeV) in 2001. The goal of the joint project was to prove that high harmonic operation of small period undulators at small gaps is a valid concept to operate the PX-I beamline at 1 Å under user operation conditions. The performance of the PX-I beamline proved to be excellent and launched the installation of meanwhile 4 new in-vacuum undulators. Having routinely operated such devices for 5 years, our experience confirms that (1) the concept of operating short period undulators (19-24 mm) on higher harmonics (11./13.) is valid, (2) reliable small gap (5-6 mm) undulator operation is feasible in the presence of top-up injection, and (3) during gap scans the photon beam can be stabilized to sub-μrad precision using non-intercepting photon beam monitors.

  8. Performance of Small-Gap Undulators at the SLS Intermediate Energy Storage Ring

    SciTech Connect

    Ingold, G.; Boege, M.; Bulgheroni, W.; Keller, A.; Krempaski, J.; Schulze-Briese, C.; Schulz, L.; Schmidt, T.; Zimoch, D.; Hara, T.; Tanaka, T.; Kitamura, H.

    2007-01-19

    The Swiss Light Source (SLS) at the Paul Scherrer Institut (PSI) became the first medium energy synchrotron user facility to rely on the high harmonic operation of small gap, short period undulators to extend high brightness radiation into a regime (3-18 keV) otherwise only accessible using lower brightness wigglers or operation at higher electron beam energy. Today several facilities with beam energy 2-3 GeV follow a similar route. A PSI/SPring-8 collaboration was formed to install and operate the first in-vacuum undulator shortly after commissioning of the SLS storage ring (2.4 GeV) in 2001. The goal of the joint project was to prove that high harmonic operation of small period undulators at small gaps is a valid concept to operate the PX-I beamline at 1 Aa under user operation conditions. The performance of the PX-I beamline proved to be excellent and launched the installation of meanwhile 4 new in-vacuum undulators. Having routinely operated such devices for 5 years, our experience confirms that (1) the concept of operating short period undulators (19-24 mm) on higher harmonics (11./13.) is valid, (2) reliable small gap (5-6 mm) undulator operation is feasible in the presence of top-up injection, and (3) during gap scans the photon beam can be stabilized to sub-{mu}rad precision using non-intercepting photon beam monitors.

  9. AdS/CFT and the geometry of an energy gap

    NASA Astrophysics Data System (ADS)

    Hickling, Andrew; Wiseman, Toby

    2016-02-01

    We consider a CFT defined on a static metric that is the product of time with a smooth closed space of positive scalar curvature. We expect the theory to exhibit an energy gap and our aim is to investigate how that gap depends on the geometry of the space. For a free conformal scalar it is straightforward to show the gap normalised by the minimum value of the Ricci scalar of the space is minimized when the space is a sphere. Our main result is then to show using geometric arguments that precisely the same result holds for fluctuations of a scalar operator in any holographic CFT. We prove this under the assumption that the dual vacuum geometry is a smooth Einstein metric ending only on the conformal boundary, and then consider fluctuations of a minimally coupled massive scalar field about this. We also argue the holographic CFT will have states dual to small bulk black holes whose existence is related to the energy gap. We show the thermodynamic properties of these black holes obey a bound of a similar nature to that of the scalar fluctuations—the ratio of CFT energy to a power of entropy for the states dual to black holes in the ‘small’ limit is bounded from below when appropriately normalized by the minimum Ricci scalar of the boundary space. Again the bound is saturated for a sphere.

  10. Specific heat to Hc2: Evidence for nodes or deep minima in the superconducting gap of underdoped and overdoped Ba(Fe1–xCox)₂As₂

    DOE PAGESBeta

    Kim, J. S.; Faeth, B. D.; Wang, Y.; Hirschfeld, P. J.; Stewart, G. R.; Gofryk, K.; Ronning, F.; Sefat, A. S.; Choi, K. Y.; Kim, K. H.

    2012-07-13

    Low-temperature specific heat, C, in magnetic fields up to Hc2 is reported for underdoped Ba(Fe₀.₉₅₅Co₀.₀₄₅)₂As₂ (Tc = 8 K) and for three overdoped samples Ba(Fe₁₋xCox)₂As₂ (x = 0.103, 0.13, and 0.15; Tc = 17.2, 16.5, and 11.7 K, respectively). Previous measurements of thermal conductivity (as a function of temperature and field) and penetration depth on comparable-composition samples gave some disagreement as to whether there was fully gapped/nodal behavior in the under-/overdoped materials, respectively. The present work shows that the measured behavior of the specific heat γ (∝C/T as T → 0, i.e., a measure of the electronic density of statesmore » at the Fermi energy) as a function of field approximately obeys γ ∝ H0.5±0.1, similar to the Volovik effect for nodal superconductors, for both the underdoped and the most overdoped Co samples. However, for the two overdoped compositions x = 0.103 and 0.13, the low-field (H ≤ 10 T) data show a Volovik-like behavior of γ ∝ H0.3–0.4, followed by an inflection point, followed at higher fields by γ ∝ H¹. We argue that, within the two-band theory of superconductivity, an inflection point may occur if the interband coupling is dominant.« less

  11. Tuning the energy gap of bilayer α-graphyne by applying strain and electric field

    NASA Astrophysics Data System (ADS)

    Yang, Hang; Wu, Wen-Zhi; Jin, Yu; Wan-Lin, Guo

    2016-02-01

    Our density functional theory calculations show that the energy gap of bilayer α-graphyne can be modulated by a vertically applied electric field and interlayer strain. Like bilayer graphene, the bilayer α-graphyne has electronic properties that are hardly changed under purely mechanical strain, while an external electric field can open the gap up to 120 meV. It is of special interest that compressive strain can further enlarge the field induced gap up to 160 meV, while tensile strain reduces the gap. We attribute the gap variation to the novel interlayer charge redistribution between bilayer α-graphynes. These findings shed light on the modulation of Dirac cone structures and potential applications of graphyne in mechanical-electric devices. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB933403), the National Natural Science Foundation of China (Grant Nos. 51472117 and 51535005), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures, China (Grant No. 0414K01), the Nanjing University of Aeronautics and Astronautics (NUAA) Fundamental Research Funds, China (Grant No. NP2015203), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  12. On the massless gap'' adjustment of detected energy for passive material in front of a calorimeter

    SciTech Connect

    Trost, H.J.

    1992-01-31

    I have designed a correction scheme for energy losses in passive material in front of a calorimeter based on the massless gap'' idea. I use a flexible geometry model of a calorimeter design for SDC outside of a solenoidal coil made of aluminium cylinders of adjustable thickness. The signal from the first radiation length of active calorimetry is scaled dependent on the incoming and observed energies of the shower. A reasonable recovery of the resolution of an unobstructed calorimeter is achieved using correction factors that depend only upon the total thickness of passive material. Thus a useful correction may be built into the hardware by increasing the amount of scintillator in the first radiation length of the active calorimeter. The distribution of correction factors determined event-by-event indicate that an additional dependence on the observed signal in the massless gap and total incident energy is clearly present.

  13. On the ``massless gap`` adjustment of detected energy for passive material in front of a calorimeter

    SciTech Connect

    Trost, H.J.

    1992-01-31

    I have designed a correction scheme for energy losses in passive material in front of a calorimeter based on the ``massless gap`` idea. I use a flexible geometry model of a calorimeter design for SDC outside of a solenoidal coil made of aluminium cylinders of adjustable thickness. The signal from the first radiation length of active calorimetry is scaled dependent on the incoming and observed energies of the shower. A reasonable recovery of the resolution of an unobstructed calorimeter is achieved using correction factors that depend only upon the total thickness of passive material. Thus a useful correction may be built into the hardware by increasing the amount of scintillator in the first radiation length of the active calorimeter. The distribution of correction factors determined event-by-event indicate that an additional dependence on the observed signal in the massless gap and total incident energy is clearly present.

  14. Relation between Dephasing Time and Energy Gap Fluctuations in Biomolecular Systems.

    PubMed

    Mallus, Maria Ilaria; Aghtar, Mortaza; Chandrasekaran, Suryanarayanan; Lüdemann, Gesa; Elstner, Marcus; Kleinekathöfer, Ulrich

    2016-04-01

    Excitation energy and charge transfer are fundamental processes in biological systems. Because of their quantum nature, the effect of dephasing on these processes is of interest especially when trying to understand their efficiency. Moreover, recent experiments have shown quantum coherences in such systems. As a first step toward a better understanding, we studied the relationship between dephasing time and energy gap fluctuations of the individual molecular subunits. A larger set of molecular simulations has been investigated to shed light on this dependence. This set includes bacterio-chlorophylls in Fenna-Matthews-Olson complexes, the PE545 aggregate, the LH2 complexes, DNA, photolyase, and cryptochromes. For the individual molecular subunits of these aggregates it has been confirmed quantitatively that an inverse proportionality exists between dephasing time and average gap energy fluctuation. However, for entire complexes including the respective intermolecular couplings, such a relation still needs to be verified. PMID:26950038

  15. Energy gap dependence of the photocarrier generation efficiency in layered organic photoreceptors

    SciTech Connect

    Umeda, Minoru; Shimada, Tomoyuki; Aruga, Tamotsu; Niimi, Tatsuya; Sasaki, Masaomi )

    1993-08-12

    The photocarrier generation mechanism was studied in layered-type organic photoreceptors containing triphenylamine-based trisazo pigment in the carrier generation layer (CGL). The photocarrier generation efficiency strongly depended upon a series of N,N-diphenyl-4-biphenylamine derivatives utilized in the carrier transport layer (CTL). The dependence was successfully elucidated by means of the energy gap law using the energy gap of the electrochemical oxidation-potential difference between the azo pigment and the N,N-diphenyl-4-biphenylamine derivatives. This confirms that photocarrier generation occurs at the CGL/CTL interface and is based on photoinduced electron transfer. The reorganization energy originated in the solid system and the extent of adiabaticity of the reaction are discussed. 34 refs., 3 figs., 1 tab.

  16. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    SciTech Connect

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment, tooling, methods and skilled personnel. The final magnet system measured 14 feet in diameter, 10 feet in height, and weighed about 35 tons. The superconducting magnet and design technology was successfully implemented and demonstrated. The project was not successfully concluded however; as the critical planned final demonstration was not achieved. The utilities could not understand or clarify their future business needs and the regulatory requirements, because of the deregulation policies and practices of the country. Much uncertainty existed which prevented utilities from defining business plans, including asset allocation and cost recovery. Despite the technical successes and achievements, the commercial development could not be implemented and achieved. Thus, the demonstration of this enhancement to the utility’s transmission system and to the reliability of the nation’s electrical grid was not achieved. The factory was ultimately discontinued and the technology, equipment and product were placed in storage.

  17. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

    1996-07-02

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

  18. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  19. Superconducting Memristors

    NASA Astrophysics Data System (ADS)

    Peotta, Sebastiano; Di Ventra, Massimiliano

    2014-09-01

    In his original work, Josephson predicted that a phase-dependent conductance should be present in superconducting tunnel junctions, an effect difficult to detect, mainly because it is hard to single it out from the usual nondissipative Josephson current. We propose a solution for this problem that consists of using different superconducting materials to realize the two junctions of a superconducting interferometer. According to the Ambegaokar-Baratoff relation the two junctions have different conductances if the critical currents are equal, thus the Josephson current can be suppressed by fixing the magnetic flux in the loop at half of a flux quantum without canceling the phase-dependent conductance. Our proposal can be used to study the phase-dependent conductance, an effect present in principle in all superconducting weak links. From the standpoint of nonlinear circuit theory, such a device is in fact an ideal memristor with possible applications to memories and neuromorphic computing in the framework of ultrafast and low-energy-consumption superconducting digital circuits.

  20. Extended Acceleration in Slot Gaps and Pulsar High-Energy Emission

    NASA Astrophysics Data System (ADS)

    Muslimov, Alex G.; Harding, Alice K.

    2003-05-01

    We revise the physics of primary electron acceleration in the ``slot gap'' (SG) above the pulsar polar caps (PCs), a regime originally proposed by Arons & Scharlemann in their electrodynamic model of pulsar PCs. We employ the standard definition of the SG as a pair-free space between the last open field lines and the boundary of the pair plasma column that is expected to develop above the bulk of the PC. The rationale for our revision is that the proper treatment of primary acceleration within the pulsar SGs should take into account the effect of the narrow geometry of the gap on the electrodynamics within the gap and also include the effect of inertial frame dragging on the particle acceleration. We show that the accelerating electric field within the gap, being significantly boosted by the effect of frame dragging, becomes reduced because of the gap geometry by a factor proportional to the square of the SG width. The combination of the effects of frame dragging and geometrical screening in the gap region naturally gives rise to a regime of extended acceleration, which is not limited to ``favorably curved'' field lines as in earlier models, and the possibility of multiple-pair production by curvature photons at very high altitudes, up to several stellar radii. We present our estimates of the characteristic SG thickness across the PC, energetics of primaries accelerated within the gap, high-energy bolometric luminosities emitted from the high altitudes in the gaps, and maximum heating luminosities produced by positrons returning from the elevated pair fronts. The estimated theoretical high-energy luminosities are in good agreement with the corresponding empirical relationships for γ-ray pulsars. We illustrate the results of our modeling of the pair cascades and γ-ray emission from the high altitudes in the SG for the Crab pulsar. The combination of the frame-dragging field and high-altitude SG emission enables both acceleration at the smaller inclination angles and a larger emission beam, both necessary to produce widely spaced double-peaked profiles.

  1. Extended Acceleration in Slot Gaps and Pulsar High-Energy Emission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Muslimov, Alex G.; Harding, Alice K.

    2003-01-01

    We revise the physics of primary electron acceleration in the "slot gap" (SG) above the pulsar polar caps (PCs), a regime originally proposed by Arons and Scharlemann (1979) in their electrodynamic model of pulsar PCs. We employ the standard definition of the SG as a pair-free space between the last open field lines and the boundary of the pair plasma column which is expected to develop above the bulk of the PC. The rationale for our revision is that the proper treatment of primary acceleration within the pulsar SGs should take into account the effect of the narrow geometry of the gap on the electrodynamics within the gap and also to include the effect of inertial frame dragging on the particle acceleration. We show that the accelerating electric field within the gap, being significantly boosted by the effect of frame dragging, becomes reduced because of the gap geometry by a factor proportional to the square of the SG width. The combination of the effects of frame dragging and geometrical screening in the gap region naturally gives rise to a regime of extended acceleration, that is not limited to favorably curved field lines as in earlier models, and the possibility of multiple-pair production by curvature photons at very high altitudes, up to several stellar radii. We present our estimates of the characteristic SG thickness across the PC, energetics of primaries accelerated within the gap, high-energy bolometric luminosities emitted from the high altitudes in the gaps, and maximum heating luminosities produced by positrons returning from the elevated pair fronts. The estimated theoretical high-energy luminosities are in good agreement with the corresponding empirical relationships for gamma-ray pulsars. We illustrate the results of our modeling of the pair cascades and gamma-ray emission from the high altitudes in the SG for the Crab pulsar. The combination of the frame-dragging field and high-altitude SG emission enables both acceleration at the smaller inclination angles and a larger emission beam, both necessary to produce widely-spaced double-peaked profiles.

  2. Superconducting magnet energy storage (SMES) using High Temperature Superconductors (HTS) in three geometries

    SciTech Connect

    Schoenung, S.M.; Bieri, R.L.; Bickel, T.C.

    1994-12-31

    Utility and industry interest in superconducting magnetic energy storage (SMES) for power quality and end-use applications is growing. Although today`s costs are high, recent studies have shown potential cost savings in the refrigeration system if high temperature superconductors (HTS) could be used. A potential obstacle to widespread use of small SMES systems is the magnetic field produced by a solenoid coil. A toroidal coil has almost no external field, but is generally more expensive than a solenoid. A system of two coils with opposite currents (a shielded solenoid) limits the extent of the external field, but also has a cost penalty. In this paper the authors present results of a configuration and cost analysis of SMES in solenoidal, toroidal, and shielded solenoidal configurations over the energy range of 1 to 10 MJ.

  3. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B. (Editor); Heinen, Vernon O. (Editor)

    1990-01-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  4. Energy-gap opening in a Bi110 nanoribbon induced by edge reconstruction.

    PubMed

    Sun, Jia-Tao; Huang, Han; Wong, Swee Liang; Gao, H-J; Feng, Yuan Ping; Wee, Andrew Thye Shen

    2012-12-14

    Scanning tunnelling microscopy and spectroscopy experiments complemented by first-principles calculations have been conducted to study the electronic structure of 4 monolayer Bi(110) nanoribbons on epitaxial graphene on silicon carbide [4H-SiC(0001)]. In contrast with the semimetal property of elemental bismuth, an energy gap of 0.4 eV is measured at the centre of the Bi(110) nanoribbons. Edge reconstructions, which can facilitate the edge strain energy release, are found to be responsible for the band gap opening. The calculated density of states around the Fermi level are decreased quickly to zero from the terrace edge to the middle of a Bi(110) nanoribbon potentially signifying a spatial metal-to-semiconductor transition. This study opens new avenues for room-temperature bismuth nanoribbon-based electronic devices. PMID:23368363

  5. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    NASA Technical Reports Server (NTRS)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of electron density for na individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closet neighbors reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  6. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    NASA Technical Reports Server (NTRS)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of the electron density for an individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closest neighbours reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  7. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures

    NASA Technical Reports Server (NTRS)

    Nellis, W. J.; Mitchell, A. C.; Mccandless, P. C.; Erskine, D. J.; Weir, S. T.

    1992-01-01

    Electrical conductivities were measured for liquid D2 and H2 shock compressed to pressures of 10-20 GPa (100-200 kbar), molar volumes near 8 cu cm/mol, and calculated temperatures of 2900-4600 K. The semiconducting energy gap derived from the conductivities is 12 eV, in good agreement with recent quasi-particle calculations and with oscillator frequencies measured in diamond-anvil cells.

  8. Energy calibration of superconducting transition edge sensors for x-ray detection using pulse analysis

    SciTech Connect

    Hollerith, C.; Simmnacher, B.; Weiland, R.; Feilitzsch, F. v.; Isaila, C.; Jochum, J.; Potzel, W.; Hoehne, J.; Phelan, K.; Wernicke, D.; May, T.

    2006-05-15

    Transition edge sensors (TESs) have been developed to be used as high-resolution x-ray detectors. They show excellent energy resolution and can be used in many applications. TESs are a special kind of calorimeters that can determine small temperature changes after x-ray absorption. Such a temperature change causes a strong resistance change (superconducting to normal-conducting phase transition) that can be measured. The energy calibration of a TES based spectrometer is problematic due to the nonlinear behavior of the detector response. In this article, a method is introduced to calibrate the energy scale of TES spectra. This is accomplished by calculating the energy dependence of the response of the detector operated in electrothermal feedback mode. Using this method a calibration accuracy of a few eV for an x-ray energy of 6 keV can be achieved. Examples of energy dispersive x-ray spectroscopy (EDS) measurements demonstrate the high quality of this method for everyday use of TES EDS detectors in material analysis. However, because the method relies only on a few very general assumptions, it should also be useful for other kinds of TES detectors.

  9. Higgsless superconductivity from topological defects in compact BF terms

    NASA Astrophysics Data System (ADS)

    Diamantini, M. Cristina; Trugenberger, Carlo A.

    2015-02-01

    We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalisable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D - 1)-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact low-energy effective BF theories. In the average field approximation, the corresponding uniform emergent charge creates a gap for the (D - 2)-dimensional branes via the Magnus force, the dual of the Lorentz force. One particular combination of intrinsic and emergent charge fluctuations that leaves the total charge distribution invariant constitutes an isolated gapless mode leading to superfluidity. The remaining massive modes organise themselves into a D-dimensional charged, massive vector. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2) and the topological order (4) are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D this type of superconductivity is explicitly realised as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  10. Technical analyses and related planning assistance in support of DOE's superconducting magnetic energy storage program. Final report

    SciTech Connect

    Hoenig, M.; Graneau, P.

    1983-03-15

    Various problems are assessed that will be encountered in the design of large superconducting magnetic energy storage (SMES) systems. Then a scoping study on design requirements for a 10,000 MWh SMES system is reported. Basic system requirements are defined, followed by a comparison of two basic coil concepts. (LEW)

  11. Vanishing Electronic Energy Loss of Very Slow Light Ions in Insulators with Large Band Gaps

    SciTech Connect

    Markin, S. N.; Primetzhofer, D.; Bauer, P.

    2009-09-11

    Electronic energy loss of light ions in nanometer films of materials with large band gaps has been studied for very low velocities. For LiF, a threshold velocity is observed at 0.1 a.u. (250 eV/u), below which the ions move without transferring energy to the electronic system. For KCl, a lower (extrapolated) threshold velocity is found, identical for H and He ions. For SiO{sub 2}, no clear velocity threshold is observed for He particles. For protons and deuterons, electronic stopping is found to perfectly fulfill velocity scaling, as expected for binary ion-electron interaction.

  12. Progress with high-field superconducting magnets for high-energy colliders

    SciTech Connect

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nb$_3$Sn superconductors. Nb$_3$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$_3$Sn accelerator magnet research and development and work toward 20-T magnets.

  13. Progress with high-field superconducting magnets for high-energy colliders

    DOE PAGESBeta

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nb$_3$Sn superconductors.more » Nb$_3$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$_3$Sn accelerator magnet research and development and work toward 20-T magnets.« less

  14. Preliminary investigation of small scale superconducting magnetic energy storage (SMES) systems. Final report

    SciTech Connect

    Schwartz, J.; Burkhardt, E.E.; Taylor, W.R.

    1996-01-01

    Most Army installations purchase electricity from local utilities and pay an additional charge for peak demand. If the peak demand can be reduced, installations can realize significant cost savings. This research investigated the technical and economic issues associated with constructing a small scale superconducting magnetic energy storage (SMES) system for reducing peak demand at Army installations. Analyses included magnetic design parameters, and costs of materials currently available and those being developed. Although advanced materials could reduce costs by as much as 45 percent, current SMES technology is still too costly for use at Army installations. Technological advances and future wide spread use of SMES systems may reduce costs to the point where this alternative would be practical.

  15. Neutron Scattering Study of the High-energy Graphitic Phonons in Superconducting CaC6

    SciTech Connect

    Dean, M.P.; Walters, A.C.; Howard, C.A.; Weller, T.E.; Calandra, M.; Mauri, F.; Ellerby, M.; Saxena, S.S.; Ivanov, A.; McMorrow, D.F.

    2010-07-28

    We present the results of a neutron scattering study of the high energy phonons in the superconducting graphite intercalation compound CaC{sub 6}. The study was designed to address hitherto unexplored aspects of the lattice dynamics in CaC{sub 6}, and in particular any renormalization of the out-of-plane and in-plane graphitic phonon modes. We present a detailed comparison between the data and the results of density functional theory (DFT). A description is given of the analysis methods developed to account for the highly-textured nature of the samples. The DFT calculations are shown to provide a good description of the general features of the experimental data. This is significant in light of a number of striking disagreements in the literature between other experiments and DFT on CaC{sub 6}. The results presented here demonstrate that the disagreements are not due to any large inaccuracies in the calculated phonon frequencies.

  16. Solving LFC problem in an interconnected power system using superconducting magnetic energy storage

    NASA Astrophysics Data System (ADS)

    Farahani, Mohsen; Ganjefar, Soheil

    2013-04-01

    This paper proposes the combination of a load frequency control (LFC) with superconducting magnetic energy storage (SMES) to solve the LFC problem in interconnected power systems. By using this combination, the speed damping of frequency and tie-line power flow deviations is considerably increased. A new control strategy of SMES is proposed in this paper. The problem of determining optimal parameters of PID and SMES control loop is considered as an optimization problem and a pattern search algorithm (PS) optimization is employed to solve it. The simulation results show that if an SMES unit is installed in an interconnected power system, in addition to eliminating oscillations and deviations, the settling time in the frequency and tie-line power flow responses is considerably reduced.

  17. Energy Dependence and Scaling Property of Localization Length near a Gapped Flat Band

    NASA Astrophysics Data System (ADS)

    Ge, Li; Tureci, Hakan

    Using a tight-binding model for a one-dimensional Lieb lattice, we show that the localization length near a gapped flat band behaves differently from the typical Urbach tail in a band gap: instead of reducing monotonically as the energy E moves away from the flat band energy Ef, the presence of the flat band causes a nonmonotonic energy dependence of the localization length. This energy dependence follows a scaling property when the energy is within the spread (W) of uniformly distributed diagonal disorder, i.e. the localization length is only a function of (E-Ef)/W. Several other lattices are compared to distinguish the effect of the flat band on the localization length, where we eliminate, shift, or duplicate the flat band, without changing the dispersion relations of other bands. Using the top right element of the Green's matrix, we derive an analytical relation between the density of states and the localization length, which shines light on these properties of the latter, including a summation rule for its inverse. This work is partially supported by NSF under Grant No. DMR-1506987.

  18. Topological phases of inhomogeneous superconductivity

    NASA Astrophysics Data System (ADS)

    Hoffman, Silas; Klinovaja, Jelena; Loss, Daniel

    2016-04-01

    We theoretically consider the effect of a spatially periodic modulation of the superconducting order parameter on the formation of Majorana fermions induced by a one-dimensional system with magnetic impurities brought into close proximity to an s -wave superconductor. When the magnetic exchange energy is larger than the inter-impurity electron hopping we model the effective system as a chain of coupled Shiba states, while in the opposite regime, the effective system is accurately described by a quantum wire model. Upon including a spatially modulated superconducting pairing, we find, for sufficiently large magnetic exchange energy, that the system is able to support a single pair of Majorana fermions with one Majorana fermion on the left end of the system and one on the right end. When the modulation of superconductivity is large compared to the magnetic exchange energy, the Shiba chain returns to a trivially gapped regime while the quantum wire enters a new topological phase capable of supporting two pairs of Majorana fermions.

  19. Interlayer Interaction that is Decisive in the Energy Gap of a Few Layer Phosphorene

    NASA Astrophysics Data System (ADS)

    Sugihara, Yuki; Oshiyama, Atsushi

    We report on our first-principles calculations that clarify the microscopic origin of the band-gap variation in a few-layer phosphorene (i.e. layered phosphorous) and also rectify a prevailed picture of the electronic structure of this new layered material. Calculations have been done either using GGA with inclusion of van der Waals correction in the density-functional theory or GW approximation in the self-energy. We unequivocally reveal that the interlayer interaction causes the bonding-antibonding splitting of the highest valence band state, thus reducing the fundamental energy gap. This is due to the highest state consists mainly of p orbitals along the direction perpendicular to the layers. It was predicted that phosphorene has four polytypes named α (black), β (blue), γ and δ and all these polytypes exhibit common feature of the band-gap variation. Especially, γ phosphorene is proposed to show the metal-insulator transition from the semiconductor mono-layer to the metal bi-layer. We reveal that this transition takes place in thicker region.

  20. Dynamical Energy Gap Engineering in Graphene via Oscillating Out-of-Plane Deformations

    NASA Astrophysics Data System (ADS)

    Sandler, Nancy; Zhai, Dawei

    The close relation between electronic properties and mechanical deformations in graphene has been the topic of active research in recent years. Interestingly, the effect of deformations on electronic properties can be understood in terms of pseudo-magnetic fields, whose spatial distribution and intensity are controllable via the deformation geometry. Previous results showed that electromagnetic fields (light) have the potential to induce dynamical gaps in graphene's energy bands, transforming graphene from a semimetal to a semiconductor. However, laser frequencies required to achieve these regimes are in the THz regime, which imposes challenges for practical purposes. In this talk we report a novel method to create dynamical gaps using oscillating mechanical deformations, i.e., via time-dependent pseudo-magnetic fields. Using the Floquet formalism we show the existence of a dynamical gap in the band structure at energies set by the frequency of the oscillation, and with a magnitude tuned by the geometry of the deformation. This dynamical-mechanical manipulation strategy appears as a promising venue to engineer electronic properties of suspended graphene devices. Work supported by NSF-DMR 1508325.

  1. Band-gap energy as a descriptor of catalytic activity for propene oxidation over mixed metal oxide catalysts.

    PubMed

    Getsoian, Andrew Bean; Zhai, Zheng; Bell, Alexis T

    2014-10-01

    The development of a descriptor or descriptors that can relate the activity of catalysts to their physical properties is a major objective of catalysis research. In this study, we have found that the apparent activation energy for propene oxidation to acrolein over scheelite-structured, multicomponent, mixed metal oxides (Bi3FeMo2O12, Bi2Mo2.5W0.5O12, and Bi1-x/3V1-xMoxO4, where 0 ≤ x ≤ 1) correlates with the band gap of the catalyst measured at reaction temperature. We show through theoretical analysis of the energy components comprising the activation energy why the band-gap energy is the primary component dependent on catalyst composition and, hence, why one should expect the activation energy for propene oxidation to correlate with the band-gap energy. We also demonstrate that the change in band-gap energy with composition arises from the interplay between the sizes and energies of the V 3d, Fe 3d, Mo 4d, and W 5d orbitals, which give rise to the lowest unoccupied crystal orbitals. Both the utility of the band-gap energy as a descriptor for catalytic activity and the role of orbital overlap in determining the band gap are likely to be general features in mixed metal oxide oxidation catalysts, enabling the rational design of catalysts with greater activity for oxidation reactions. PMID:25187385

  2. Colossal tuning of an energy gap in Sn2P2S6 under pressure

    NASA Astrophysics Data System (ADS)

    Shchennikov, Vladimir V.; Morozova, Natalia V.; Tyagur, Iryna; Tyagur, Yuriy; Ovsyannikov, Sergey V.

    2011-11-01

    We report results of investigation of electrical and thermoelectric properties of Sn2P2S6 under strong compression up to 20 GPa. An "insulator-metal"(I-M)-type transition was discovered by a monotonic and reversible lowering of electrical resistivity by 9-10 orders. The energy gap (Eg = 2.3 eV) was estimated to decrease to ˜0.25-0.3 eV at 20 GPa. X-ray diffraction and Raman studies on samples recovered from the high pressure experiments confirm a conservation of the original monoclinic lattice. Thus, a colossal "band-gap engineering" potential is revealed in this optical material. Sn2P2S6 is a potential candidate for emergent multi-functional switches, between transparent "insulator" state and conducting state with magneto-dependent properties.

  3. Analysis of superconducting magnetic energy storage applications at a proposed wind farm site near Browning, Montana

    SciTech Connect

    Gaustad, K.L.; De Steese, J.G.

    1993-07-01

    A computer program was developed to analyze the viability of integrating superconducting magnetic energy storage (SMES) with proposed wind farm scenarios at a site near Browning, Montana. The program simulated an hour-by-hour account of the charge/discharge history of a SMES unit for a representative wind-speed year. Effects of power output, storage capacity, and power conditioning capability on SMES performance characteristics were analyzed on a seasonal, diurnal, and hourly basis. The SMES unit was assumed to be charged during periods when power output of the wind resource exceeded its average value. Energy was discharged from the SMES unit into the grid during periods of low wind speed to compensate for below-average output of the wind resource. The option of using SMES to provide power continuity for a wind farm supplemented by combustion turbines was also investigated. Levelizing the annual output of large wind energy systems operating in the Blackfeet area of Montana was found to require a storage capacity too large to be economically viable. However, it appears that intermediate-sized SMES economically levelize the wind energy output on a seasonal basis.

  4. Binding energies of electrons by nitrogen pairs in GaP

    NASA Astrophysics Data System (ADS)

    Li, Ming-Fu; Mao, De-Qiang; Ren, Shang-Yuan

    1985-11-01

    Theoretical calculations of binding energies of electrons by nitrogen pairs in GaP are reported. The calculations are based on the Koster-Slater Green's-function equation and the central-cell defect-potential approximation of Hjalmarson et al. [Phys. Rev. Lett. 44, 810 (1980)]. The defect-potential parameters Vs and Vp are adjusted to fit the experimental binding energies of electrons by single N impurity and seven (NN)1 (x=1,2,...,7) pairs. The results are in general agreement for the first time with experiments for either range or ordering of binding energies, and thus strongly support the Hopfield-Thomas-Lynch model for isoelectronic traps. Besides, excited electronic states of (NN)1, (NN)3, (NN)5, and (NN)6 are reported. The energy value of the (NN)1 excited state supports the speculation of Cohen et al.

  5. The Čerenkov limit of Si, GaAs and GaP in electron energy loss spectrometry.

    PubMed

    Horák, Michal; Stöger-Pollach, Michael

    2015-10-01

    Since the advent of monochromated electron energy loss spectrometry (EELS) the experimental detection of band gaps in semiconducting materials is of great importance. In the non-relativistic limit of this technique the onset of the inelastic signal represents the band gap. But due to relativistic energy losses, like Čerenkov losses and the corresponding light guiding modes, appearing at high beam energies the band gap is usually hidden. The highest beam energy, which does not excite relativistic losses in a certain material, is called the Čerenkov limit of the material. In this work the low loss EELS signals of Si, GaAs and GaP are measured at various beam energies and the calculated Čerenkov limits are experimentally confirmed. PMID:26094202

  6. Orbital Feshbach resonances with a small energy gap between open and closed channels

    NASA Astrophysics Data System (ADS)

    Cheng, Yanting; Zhang, Ren; Zhang, Peng

    2016-04-01

    Recently, a new type of Feshbach resonance, i.e., orbital Feshbach resonance (OFR), was proposed for the ultracold alkaline-earth-metal-like atoms and was experimentally observed in the ultracold gases of 173Yb atoms. Unlike most of the magnetic Feshbach resonances of ultracold alkali atoms, when the OFR of 173Yb atoms appears, the energy gap between the thresholds of the open channel (OC) and the closed channel (CC) is much smaller than the characteristic energy of the interatomic interaction, i.e., the van der Waals energy. In this paper we study the OFR in systems with a small CC-OC threshold gap. We show that in these systems the OFR can be induced by the coupling between the OC and either an isolated bound state of the CC or the scattering states of the CC. Moreover, we also show that in each case the two-channel Huang-Yang pesudopotential is always applicable for the approximate calculation of the low-energy scattering amplitude. Our results imply that in the two-channel theoretical calculations for these systems it is appropriate to take into account the contributions from the scattering states of the CC.

  7. In situ electrical transport measurementof superconductive ultrathin films

    NASA Astrophysics Data System (ADS)

    Liu, Can-Hua; Jia, Jin-Feng

    2015-11-01

    The discovery of an extraordinarily superconductive large energy gap in SrTiO3 supported single-layer FeSe films has recently initiated a great deal of research interests in surface-enhanced superconductivity and superconductive ultrathin films fabricated on crystal surfaces. On account of the instability of ultra-thin films in air, it is desirable to perform electrical transport measurement in ultra-high vaccum (UHV). Here we review the experimental techniques of in situ electrical transport measurement and their applications on superconductive ultrathin films. The work in SJTU was supported by the National Basic Research Program of China (Grant Nos. 2013CB921902 and 2011CB922200) and the National Natural Science Foundation of China (Grant Nos. 11227404, 11274228, 11521404, 11174199, and 11134008).

  8. SUPERCONDUCTING PHOTOINJECTOR

    SciTech Connect

    BEN-ZVI,I.; BURRILL, A.; CALAGA, R.; CHANG, X.; GROVER, R.; GUPTA, R.; HAHN, H.; HAMMONS, L.; KAYRAN, D.; KEWISCH, J.; LAMBIASE, R.; LITVINENKO, V.; MCINTYRE, G.; NAIK, D.; PATE, D.; PHILLIPS, D.; POZDEYEV, E.; RAO, T.; SMEDLEY, J.; THAN, R.; TODD, R.; WEISS, D.; WU, Q.; ZALTSMAN, A.; ET AL.

    2007-08-26

    One of the frontiers in FEL science is that of high power. In order to reach power in the megawatt range, one requires a current of the order of one ampere with a reasonably good emittance. The superconducting laser-photocathode RF gun with a high quantum efficiency photocathode is the most natural candidate to provide this performance. The development of a 1/2 cell superconducting photoinjector designed to operate at up to a current of 0.5 amperes and beam energy of 2 MeV and its photocathode system are the subjects covered in this paper. The main issues are the photocathode and its insertion mechanism, the power coupling and High Order Mode damping. This technology is being developed at BNL for DOE nuclear physics applications such as electron cooling at high energy and electron ion colliders..

  9. Large gap magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Abdelsalam, Moustafa K.; Eyssa, Y. M.

    1991-01-01

    The design of a large gap magnetic suspension system is discussed. Some of the topics covered include: the system configuration, permanent magnet material, levitation magnet system, superconducting magnets, resistive magnets, superconducting levitation coils, resistive levitation coils, levitation magnet system, and the nitrogen cooled magnet system.

  10. Superconducting magnetic energy storage: A key technology for the 21st century

    SciTech Connect

    Baumann, P.D.

    1993-03-15

    Superconducting magnetic energy storage (SMES), a solid state system, is most efficient in round-trip efficiency and in providing instantaneous response to demand. SMES can help electric utilities moderate variations between customer demand requirements and generation load. SMES can conserve fossil fuels through increased system efficiencies, thus providing economic and environmental benefits. SMES can store electricity from intermittent renewable resources and retrieve their energy when needed most. SMES has virtually instantaneous response and can be used for electrical system frequency control and stabilization. Finally, SMES can increase the reliability of electric utility systems and improve power quality. SMES systems include three categories: (1) macro-SMES used for large bulk storage, requiring external structures for support and to become permanent capital installations, (2) mini-SMES for transmission and distribution applications, that may be independently supported, and (3) micro-SMES, stand-alone transportable systems used in power quality applications. Current domestic designs focus on the solenoid. The economic potential and outlook for SMES systems is predicted to be approximately $3 billion a year after 2000 for domestic SMES systems, and potentially another $1 billion in export markets. The electric utility industry has several options to meet new legislation and regulations. Technologies can contribute to reductions in emissions in two basic ways: (1) by reducing emissions from existing generating stations through increased efficiency or control equipment, and (2) through deployment of newer technologies for the generation and management of supply side electrically energy which will, over time, replace older technologies.

  11. Determination of composition and energy gaps of GaInNAsSb layers grown by MBE

    NASA Astrophysics Data System (ADS)

    Aho, A.; Korpijärvi, V.-M.; Isoaho, R.; Malinen, P.; Tukiainen, A.; Honkanen, M.; Guina, M.

    2016-03-01

    We present a method to accurately determine the composition of GaInNAsSb heterostructures and a modified band anti-crossing model to calculate the corresponding bandgaps. The composition determination method is based on combining x-ray diffractometry and energy dispersive x-ray spectroscopy measurements. The modified band anti-crossing model was derived from the model known for GaInNAs and using band-gap composition relations for GaInAs, GaInSb, InAsSb and GaAsSb. The model parameters were defined by fitting with experimental bandgap data retrieved from photoluminescence. For validation and data fitting we used experimental samples with N composition in the range of 0-0.06, In composition from 0 to 0.17, and Sb composition in the range of 0-0.08. All samples were thermally annealed to minimize the band gap shift caused by the short range ordering effects in GaInNAsSb crystal. The modified model yields an excellent fit to the experimental band gap data with an accuracy of ~20 meV, and is a practical tool for designing, fabricating and analyzing optoelectronics devices.

  12. The effect of cluster size on the optical band gap energy of Zn-based metal-organic frameworks.

    PubMed

    Ghosh, Raja; Pedicini, Anthony F; Rao, Purna Chandra; Asha, K S; Reber, Arthur C; Mandal, Sukhendu

    2015-08-14

    We have synthesized three Metal-Organic Frameworks (MOFs) in which Zn metal ions form the secondary building unit, and 4,4'-sulfonyldibenzoic acid (SDB) serves as the ligand: [[Zn(DMF)(SDB)](DMF), 1, [Zn(3)(DMF)(3)(SDB)(3)](DMF), 2 and [Zn(3)(OH)(2)(SDB)(2)] (DMF)(2), 3, where DMF = dimethyl formamide]. Compound contains a paddle-wheel type Zn dimer, compound contains a Zn trimer motif, and contains a one-dimensional Zn-OH-Zn chain. These building units may be considered to be Zn clusters. We have measured and theoretically calculated the band gap energy and by theoretical investigations we found that the cluster size plays an important role in the band gap energy, however additional effects are observed. The larger cluster size corresponds to a larger band gap energy, however the cavity of the trimer based compound (2) traps a solvent molecule that decreases the band gap energy. PMID:26151648

  13. The role of solvents in framework dimensionality and their effect on band gap energy.

    PubMed

    Asha, K S; Kavyasree, P R; George, Anu; Mandal, Sukhendu

    2015-01-21

    The crystal growth rate and morphology can be modulated by tuning the ratio of the solvent in mixed solvents during synthesis. We present here a solvothermal method to synthesize a Cd-FDC based metal-organic framework with different morphologies by tuning the ratio of water in the DMF-water mixed solvent system without adding any other additives. With the increasing water volume ratio a series of crystals with different morphologies were synthesized. Among these we have isolated two single crystal structures, [Cd3(FDC)3(DMF)4(H2O)], and [DMA]2[Cd3(FDC)4]·2H2O, . Compound was synthesized from DMF with small amounts of water while was formed from 25 vol% of water in the DMF-water mixed solvent. Compound contains trimer clusters as building units, which are linked by the furan dicarboxylate ligand to form a two-dimensional structure. Compound also contains trimer clusters which are linked to each other to form a one-dimensional chain with the Cd-O-Cd linkage. This one-dimensional chain in turn is connected by the furan dicarboxylate ligand to form a three-dimensional structure. All these structures are characterized by SEM, XRD, TGA and IR. We have measured the band gap energy and measurements show that the values are decreasing from to . The lower band gap energy of may be due to the presence of infinite Cd-O-Cd linkages which split the states of the conduction band and reduces the band gap energy. PMID:25408115

  14. The resummation of inter-jet energy flow for gaps-between-jets processes at HERA

    NASA Astrophysics Data System (ADS)

    Appleby, R. B.; Seymour, M. H.

    2003-09-01

    We calculate resummed perturbative predictions for gaps-between-jets processes and compare to HERA data. Our calculation of this non-global observable needs to include the effects of primary gluon emission (global logarithms) and secondary gluon emission (non-global logarithms) to be correct at the leading logarithm (LL) level. We include primary emission by calculating anomalous dimension matrices for the geometry of the specific event definitions and estimate the effect of non-global logarithms in the large Nc limit. The resulting predictions for energy flow observables are consistent with experimental data.

  15. Interface superconductor with gap behaviour like a high-temperature superconductor.

    PubMed

    Richter, C; Boschker, H; Dietsche, W; Fillis-Tsirakis, E; Jany, R; Loder, F; Kourkoutis, L F; Muller, D A; Kirtley, J R; Schneider, C W; Mannhart, J

    2013-10-24

    The physics of the superconducting state in two-dimensional (2D) electron systems is relevant to understanding the high-transition-temperature copper oxide superconductors and for the development of future superconductors based on interface electron systems. But it is not yet understood how fundamental superconducting parameters, such as the spectral density of states, change when these superconducting electron systems are depleted of charge carriers. Here we use tunnel spectroscopy with planar junctions to measure the behaviour of the electronic spectral density of states as a function of carrier density, clarifying this issue experimentally. We chose the conducting LaAlO3-SrTiO3 interface as the 2D superconductor, because this electron system can be tuned continuously with an electric gate field. We observed an energy gap of the order of 40 microelectronvolts in the density of states, whose shape is well described by the Bardeen-Cooper-Schrieffer superconducting gap function. In contrast to the dome-shaped dependence of the critical temperature, the gap increases with charge carrier depletion in both the underdoped region and the overdoped region. These results are analogous to the pseudogap behaviour of the high-transition-temperature copper oxide superconductors and imply that the smooth continuation of the superconducting gap into pseudogap-like behaviour could be a general property of 2D superconductivity. PMID:24097347

  16. Benefit/cost comparison for utility SMES applications. [Superconducting Magnetic Energy Storage (SMES)

    SciTech Connect

    DeSteese, J.G.; Dagle, J.E.

    1991-08-01

    This paper summarizes eight case studies that account for the benefits and costs of superconducting magnetic energy storage (SMES) in system-specific utility applications. Four of these scenarios are hypothetical SMES applications in the Pacific Northwest, where relatively low energy costs impose a stringent test on the viability of the concept. The other four scenarios address SMES applications on high-voltage, direct-current (HVDC) transmission lines. While estimated SMES benefits are based on a previously reported methodology, this paper presents results of an improved cost-estimating approach that includes an assumed reduction in the cost of the power conditioning system (PCS) from approximately $160/kW to $80/kW. The revised approach results in all the SMES scenarios showing higher benefit/cost ratios than those reported earlier. However, in all but cases, the value of any single benefits is still less than the unit's levelized cost. This suggests, as a general principle, that the total value of multiple benefits should always be considered if SMES is to appear cost effective in many utility applications. These results should offer utilities further encouragement to conduct more detailed analyses of SMES benefits in scenarios that apply to individual systems. 11 refs., 4 figs.

  17. A study of the fractional quantum Hall energy gap at half filling

    NASA Astrophysics Data System (ADS)

    Dean, Cory R.

    A complete understanding of the nu = 52 fractional quantum hall effect (FQHE) continues to be among the most exciting problems in semiconductor physics. It is widely believed that this unique electron state is described by the Moore-Read Pfaffian wavefunction, resulting from a BCS-like pairing of composite fermions. In recent years this wavefunction has received special interest owing to its non-abelian quantum statistics which underlies a new paradigm for fault tolerant quantum computation. However, in spite of several theoretical advancements, an unequivocal experimental verification of the Moore-Read description is still missing. We studied the 52 state in a very high quality 2DEG sample with the lowest electron density reported to date, by nearly a factor of two. We demonstrate that large discrepancies between experimentally measured values of the 52 energy gap, and theoretical calculations based on the Moore-Read theory, can not be trivially attributed to disorder as has conventionally been assumed. Using a tilted field geometry, we investigated the effect of applying an in-plane magnetic field on the 52 state. We observe the 52 energy gap to collapse linearly with the in-plane field, whereas the neighbouring 73 shows a strong enhancement. The opposite behaviour between the two states is in startling contrast to theory which predicts both gaps should be similarly suppressed. Since the early theoretical foundation in support of the Moore-Read interpretation presumed the two states should behave the same, our experimental finding of opposite behaviour may necessitate a fundamental rethinking of the nature of the 52 FQHE. A crucial step towards verifying the Moore-Read description of the nu = 52 FQHE will be an unambiguous measurement of its spin state. In an effort to measure the 52 spin directly, we implemented a resistively detected nuclear magnetic resonance (RDNMR) technique. I report on our detailed study of the anomalous RDNMR lineshape around nu = 1, and discuss progress made towards measuring the 52 spin with this technique.

  18. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  19. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  20. Strain-induced energy gap variation in ZnTe/ZnMgTe core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Wojnar, P.; Zielinski, M.; Janik, E.; Zaleszczyk, W.; Wojciechowski, T.; Wojnar, R.; Szymura, M.; Kłopotowski, Ł.; Baczewski, L. T.; Pietruchik, A.; Wiater, M.; Kret, S.; Karczewski, G.; Wojtowicz, T.; Kossut, J.

    2014-04-01

    Strain-induced changes of ZnTe energy gap in ZnTe/ZnMgTe core/shell nanowires arising from lattice mismatch between the core and the shell semiconductor are studied by means of optical methods. It is shown that the increase of the Mg content in the shell, as well as the increase of the shell thickness result in an effective redshift of the near band edge photoluminescence from ZnTe nanowire cores, which reflects directly the decrease of energy gap under tensile strain conditions. The conclusions are supported by theoretical calculations in terms of the valence force field model. The observed change of ZnTe energy gap can be as large as 120 meV with respect to the unstrained conditions and can be tuned in a continuous manner by adjusting shell parameters, which open a path towards an effective band gap engineering in these structures.

  1. Efficiency of quasiparticle creation in proximized superconducting photon detectors

    NASA Astrophysics Data System (ADS)

    Hijmering, R. A.; Verhoeve, P.; Martin, D. D. E.; Kozorezov, A. G.; Wigmore, J. K.; Venn, R.; Groot, P. J.; Jerjen, I.

    2009-06-01

    In previous work using thin superconducting films as photon detectors it has been assumed implicitly that the quasiparticle yield in proximized superconducting bilayers should be the same as for a pure superconducting layer with the same energy gap. The reasoning is that, following the energy down conversion cascade, the resultant quasiparticles will all finish up at the edge of the density of states, which has the same energy throughout the whole structure regardless or whether it is pure or proximized. In this paper we show that, although the energy gap is the same, the actual density of quasiparticle states may vary considerably across a proximized structure, with a secondary peak at the energy of the higher gap material. Our calculations indicate that this peak can give rise to the generation of excess subgap phonons through which a larger portion of the original photon energy is lost from the quasiparticle system. The associated lower quasiparticle yield effectively reduces the responsivity of the proximized detector and affects the limiting energy resolution. The predictions have been confirmed by experimental results obtained with a distributed read out imaging detector (DROID) in which the response to photons absorbed in a pure Ta layer and in a Ta/Al proximized structure could be compared directly.

  2. Large dust gaps in the transitional disks of HD 100453 and HD 34282. Connecting the gap size to the spectral energy distribution and mid-infrared imaging

    NASA Astrophysics Data System (ADS)

    Khalafinejad, S.; Maaskant, K. M.; Mariñas, N.; Tielens, A. G. G. M.

    2016-03-01

    Context. The formation of dust gaps in protoplanetary disks is one of the most important signs of disk evolution and might indicate the formation of planets. Aims: We aim to characterize the flaring disk structure around the Herbig Ae/Be stars HD 100453 and HD 34282. Their spectral energy distributions (SEDs) show an emission excess between 15-40 μm, but very weak (HD 100453) and no (HD 34282) signs of the 10 and 20 μm amorphous silicate features. We investigate whether this implies the presence of large dust gaps. Methods: We investigated spatially resolved mid-infrared Q-band images taken with Gemini North/MICHELLE. We performed radiative transfer modeling and examined the radial distribution of dust. We simultaneously fit the Q-band images and SEDs of HD 100453 and HD 34282. Results: Our solutions require that the inner halos and outer disks be separated by large dust gaps that are depleted with respect to the outer disk by a factor of 1000 or more. The inner edges of the outer disks of HD 100453 and HD 34282 have temperatures of ~160 ± 10 K and ~60 ± 5 K, respectively. Because of the high surface brightness of these walls, they dominate the emission in the Q band. Their radii are constrained at 20-2+2 AU and 92-17+31 AU, respectively. Conclusions: HD 100453 and HD 34282 most likely have disk dust gaps. The upper limit of the dust mass in each gap is estimated to be about 10-7 M⊙. We find that the locations and sizes of disk dust gaps are connected to the SED, as traced by the mid-infrared flux ratio F30/F13.5. We propose a new classification scheme for the Meeus groups based on the F30/F13.5 ratio. The absence of amorphous silicate features in the observed SEDs is caused by the depletion of small (≲1 μm) silicate dust at temperatures above ≳160 K, which could be related to the presence of a dust gap in that region of the disk.

  3. Three energy scales in the superconducting state of hole-doped cuprates detected by electronic Raman scattering

    SciTech Connect

    Benhabib, S.; Gu, G. D.; Gallais, Y.; Cazayous, M.; Measson, M. -A.; Zhong, R. D.; Schneeloch, J.; Forget, A.; Colson, D.; Sacuto, A.

    2015-10-06

    We explore by electronic Raman scattering the superconducting state of the Bi2Sr2CaCu2O8+δ (Bi-2212) crystal by performing a fine-tuned doping study. We find three distinct energy scales in A1g, B1g, and B2g symmetries which show three distinct doping dependencies. Above p=0.22, the three energies merge; below p=0.12, the A1g scale is no longer detectable, while the B1g and B2g scales become constant in energy. In between, the A1g and B1g scales increase monotonically with underdoping, while the B2g one exhibits a maximum at p=0.16. The three superconducting energy scales appear to be a universal feature of hole-doped cuprates. Furthermore, we propose that the nontrivial doping dependencies of the three scales originate from the Fermi-surface changes and reveal competing orders inside the superconducting dome.

  4. Three energy scales in the superconducting state of hole-doped cuprates detected by electronic Raman scattering

    DOE PAGESBeta

    Benhabib, S.; Gu, G. D.; Gallais, Y.; Cazayous, M.; Measson, M. -A.; Zhong, R. D.; Schneeloch, J.; Forget, A.; Colson, D.; Sacuto, A.

    2015-10-06

    We explore by electronic Raman scattering the superconducting state of the Bi2Sr2CaCu2O8+δ (Bi-2212) crystal by performing a fine-tuned doping study. We find three distinct energy scales in A1g, B1g, and B2g symmetries which show three distinct doping dependencies. Above p=0.22, the three energies merge; below p=0.12, the A1g scale is no longer detectable, while the B1g and B2g scales become constant in energy. In between, the A1g and B1g scales increase monotonically with underdoping, while the B2g one exhibits a maximum at p=0.16. The three superconducting energy scales appear to be a universal feature of hole-doped cuprates. Furthermore, we proposemore » that the nontrivial doping dependencies of the three scales originate from the Fermi-surface changes and reveal competing orders inside the superconducting dome.« less

  5. Effect of band gap energy on the electrical conductivity in doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Benramache, Said; Belahssen, Okba; Ben Temam, Hachemi

    2014-07-01

    The transparent conductive pure and doped zinc oxide thin films with aluminum, cobalt and indium were deposited by ultrasonic spray technique on glass substrate at 350 °C. This paper is to present a new approach to the description of correlation between electrical conductivity and optical gap energy with dopants' concentration of Al, Co and In. The correlation between the electrical and optical properties with doping level suggests that the electrical conductivity of the films is predominantly estimated by the band gap energy and the concentrations of Al, Co and In. The measurement in the electrical conductivity of doped films with correlation is equal to the experimental value, the error of this correlation is smaller than 13%. The minimum error value was estimated in the cobalt-doped ZnO thin films. This result indicates that such Co-doped ZnO thin films are chemically purer and have far fewer defects and less disorder owing to an almost complete chemical decomposition.

  6. Exchange and correlation energies for gapped helical systems: Graphene and three-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Iurov, Andrii; Gumbs, Godfrey; Huang, Danhong

    2014-03-01

    A formalism is presented for calculating the exchange and correlation energies of gapped graphene as well as three-dimensional topological insulators(3D TI's). With our theory, we investigate the conditions which are required to achieve entangled states of electrons in graphene and 3D TI's. These calculations are performed within the random-phase approximation (RPA). We obtain the dynamical polarization function for imaginary frequencies, which is determined by both the valence and conduction energy bands in conjunction with the overlap of the spin wave functions. We compare and specify both the differences and similarities between graphene and effective surface states in 3D TIs. The application of our derived results to quantum computation will also be explored.

  7. Electron-phonon interaction and pairing mechanism in superconducting Ca-intercalated bilayer graphene

    PubMed Central

    Margine, E. R.; Lambert, Henry; Giustino, Feliciano

    2016-01-01

    Using the ab initio anisotropic Eliashberg theory including Coulomb interactions, we investigate the electron-phonon interaction and the pairing mechanism in the recently-reported superconducting Ca-intercalated bilayer graphene. We find that C6CaC6 can support phonon-mediated superconductivity with a critical temperature Tc = 6.8–8.1 K, in good agreement with experimental data. Our calculations indicate that the low-energy Caxy vibrations are critical to the pairing, and that it should be possible to resolve two distinct superconducting gaps on the electron and hole Fermi surface pockets. PMID:26892805

  8. Electron-phonon interaction and pairing mechanism in superconducting Ca-intercalated bilayer graphene

    NASA Astrophysics Data System (ADS)

    Margine, E. R.; Lambert, Henry; Giustino, Feliciano

    2016-02-01

    Using the ab initio anisotropic Eliashberg theory including Coulomb interactions, we investigate the electron-phonon interaction and the pairing mechanism in the recently-reported superconducting Ca-intercalated bilayer graphene. We find that C6CaC6 can support phonon-mediated superconductivity with a critical temperature Tc = 6.8–8.1 K, in good agreement with experimental data. Our calculations indicate that the low-energy Caxy vibrations are critical to the pairing, and that it should be possible to resolve two distinct superconducting gaps on the electron and hole Fermi surface pockets.

  9. Electron-phonon interaction and pairing mechanism in superconducting Ca-intercalated bilayer graphene.

    PubMed

    Margine, E R; Lambert, Henry; Giustino, Feliciano

    2016-01-01

    Using the ab initio anisotropic Eliashberg theory including Coulomb interactions, we investigate the electron-phonon interaction and the pairing mechanism in the recently-reported superconducting Ca-intercalated bilayer graphene. We find that C6CaC6 can support phonon-mediated superconductivity with a critical temperature Tc = 6.8-8.1 K, in good agreement with experimental data. Our calculations indicate that the low-energy Caxy vibrations are critical to the pairing, and that it should be possible to resolve two distinct superconducting gaps on the electron and hole Fermi surface pockets. PMID:26892805

  10. Certain properties of superconducting junctions in a CO/sub 2/-laser radiation field

    SciTech Connect

    Vedeneev, S.I.; Gubin, M.A.; Stepanov, V.A.

    1985-04-01

    The effect of radiation from a CO/sub 2/ laser (..nu..roughly-equal3x10/sup 13/ Hz) on the characteristics of superconducting niobium junctions is investigated. At low laser-radiation intensities the junctions still exhibit Josephson properties even though the lasing frequency exceeds by 40 times the frequency corresponding to the niobium superconducting energy gap. A characteristic radiation intensity exists above which the thermal effects predominate over the Josephson effects. It is shown that by application of a supplementary microwave field it is possible to increase substantially the sensitivity of superconducting IR detectors.

  11. Superconductivity in noncentrosymmetric SrAuSi3

    NASA Astrophysics Data System (ADS)

    Isobe, Masaaki; Arai, Masao; Shirakawa, Naoki

    2016-02-01

    Superconductivity in the noncentrosymmetric compound SrAuSi3 [BaNiS n3 type, I 4 m m ,a =4.4024 (9 )Å , and c =9.942 (2 )Å ] was studied by electrical resistivity, magnetic susceptibility, and specific heat measurements using single-phase polycrystalline samples, and ab initio band calculation. These measurements of the physical properties confirmed that the SrAuSi3 phase shows bulk superconductivity with a critical temperature of TC˜1.6 K and an upper critical field of HC 2˜1.8 kOe . In the superconducting state, the electronic specific heat exhibits a thermal-activation-type temperature dependence and the Sommerfeld constant γ linearly responds to magnetic fields for low-energy excitation. These results clearly indicate that SrAuSi3 is a full-gap s -wave superconductor without a gap node in the superconducting order parameter. The density functional theory ab initio band calculation revealed that the electron system is composed of three kinds of Fermi surface: a cylindrical shape, a dumbbell shape, and a peculiar-shaped hole pocket. Fermi-surface splitting due to spin-orbit coupling exists only along limited directions in the Brillouin zone. Overall, the splitting energy size is small, insufficient to realize unconventional anisotropic superconductivity attributed to space-inversion symmetry breaking.

  12. Phase Structure and Instability Problem in Color Superconductivity

    NASA Astrophysics Data System (ADS)

    Fukushima, Kenji

    2007-11-01

    We address the phase structure of color superconducting quark matter at high quark density. Under the electric and color neutrality conditions there appear various phases as a result of the Fermi surface mismatch among different quark flavors induced by finite strange quark mass; the color-flavor locked (CFL) phase where quarks are all energy gapped, the u-quark superconducting (uSC) phase where u-quarks are paired with either d- or s-quarks, the d-quark superconducting (dSC) phase that is the d-quark analogue of the uSC phase, the two-flavor superconducting (2SC) phase where u- and d-quarks are paired, and the unpaired quark matter (UQM) that is normal quark matter without pairing. Besides these possibilities, when the Fermi surface mismatch is large enough to surpass the gap energy, the gapless superconducting phases are expected. We focus our discussion on the chromomagnetic instability problem related to the gapless CFL (gCFL) onset and explore the instability regions on the phase diagram as a function of the temperature and the quark chemical potential. We sketch how to reach stable physical states inside the instability regions.

  13. Cryogenic Tests of 30 m Flexible Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB2 Cable

    NASA Astrophysics Data System (ADS)

    Vysotsky, V. S.; Antyukhov, I. V.; Firsov, V. P.; Blagov, E. V.; Kostyuk, V. V.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Rachuk, V. S.; Katorgin, B. I.

    Recently we reported about first in the world test of 10 m hybrid energy transfer line with liquid hydrogen and MgB2 superconducting cable. In this paper we present the new development of our second hybrid energy transfer line with 30 m length. The flexible 30 m hydrogen cryostat has three sections with different types of thermal insulation in each section: simple vacuum superinsulation, vacuum superinsulation with liquid nitrogen shield and active evaporating cryostatting (AEC) system. We performed thermo-hydraulic tests of the cryostat to compare three thermo-insulating methods. The tests were performed at temperatures from 20 to 26 K, hydrogen flow from 100 to 450 g/s and pressure from 0.25 to 0.5 MPa. It was found that AEC thermal insulation practically eliminated completely heat transfer from room temperature to liquid hydrogen in the 10 m section. AEC thermal insulation method can be used for long superconducting power cables. High voltage current leads were developed as well. The current leads and superconducting MgB2 cable have been passed high voltage DC test up to 50 kV DC. Critical current of the cable at ∼21 K was ∼3500 A. The 30 m hybrid energy system developed is able to deliver up to 135 MW of chemical and electrical power in total.

  14. Temperature dependence of the spectral weight in p- and n-type cuprates: A study of normal state partial gaps and electronic kinetic energy

    SciTech Connect

    Bontemps, N. . E-mail: nicole.bontemps@espci.fr; Lobo, R.P.S.M.; Santander-Syro, A.F.; Zimmers, A.

    2006-07-15

    The optical conductivity of CuO{sub 2} (copper-oxygen) planes in p- and n-type cuprates thin films at various doping levels is deduced from highly accurate reflectivity data. The temperature dependence of the real part {sigma} {sub 1} ({omega}) of this optical conductivity and the corresponding spectral weight allow to track the opening of a partial gap in the normal state of n-type Pr{sub 2-x}Ce {sub x}CuO{sub 4} (PCCO) but not of p-type Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (BSCCO) cuprates. This is a clear difference between these two families of cuprates, which we briefly discuss. In BSCCO, the change of the electronic kinetic energy E {sub kin}-deduced from the spectral weight-at the superconducting transition is found to cross over from a conventional BCS behavior (increase of E {sub kin} below T {sub c}) to an unconventional behavior (decrease of E {sub kin} below T {sub c}) as the free carrier density decreases. This behavior appears to be linked to the energy scale over which spectral weight is lost and goes into the superfluid condensate, hence may be related to Mott physics.

  15. 30-MJ superconducting magnetic-energy-storage stabilizing system: an overview

    SciTech Connect

    Roger, J.D.; Boenig, H.J.; Dean, J.W.; Schermer, R.I.; Annestrand, S.A.; Hauer, J.F.; Miller, B.L.

    1983-01-01

    The 30-MJ superconducting magnetic-energy-storage (SMES) system was devised as an alternate means to modulate the Bonneville Power Administration (BPA) Pacific AC Intertie, a part of the Western US Power System, to prevent undamped power oscillations at 0.35 Hz that were observed to be associated with high power transmission. The SMES system was installed at the BPA Tacoma Substation and successfully operated as an experimental device to initiate tests to determine power system dynamics, to investigate their variability, to assess system response to SMES modulation with a major variable load, and to use SMES to develop stability-control techniques. The system has been operated at frequencies of 0.1 to 1.0 Hz at power levels of +- 8.3 MW with a parallel modulation of the converter bridges and up to 9.5 MW reactive power together with +- 4.5 MW real power in constant VAR mode with buck-boost modulation of the bridges. The coil has been charged at a maximum rate of 11.8 MW. Operation of the SMES system is now under BPA jurisdiction, and all hardware has been transferred to BPA.

  16. Micro superconducting magnetic energy storage (SMES) system for protection of critical industrial and military loads

    SciTech Connect

    Kalafala, A.K.; Bascunan, J.; Bell, D.D.; Blecher, L.; Murray, F.S.; Parizh, M.B.; Sampson, M.W.; Wilcox, R.E.

    1996-07-01

    A 6 MJ, 750 kVA Micro SMES system has been designed to protect critical loads against voltage sags and interruptions, as well as to provide continuous power conditioning. Life-cycle costs have been minimized through the use of energy efficient refrigeration units. Maintenance is simplified through the use of Line Replaceable Units (LRU). Availability is maximized through a design approach which allows the magnet to continue protecting the load even in the case of refrigeration degradation or total failure. Reliability is maximized by the use of proven commercial-off-the-shelf (COTS) items. The system provides ride-through capability for {approximately}9 seconds at a power level of 454 kW. The system comprises a niobium titanium superconducting magnet, permanent conduction cooled hybrid current leads, a low loss cryostat, a closed-loop refrigeration subsystem, an off-the-shelf uninterruptible power supply (UPS), a magnet interface unit to connect the magnet to the UPS, and an off-the-shelf monitoring unit providing both local and remote monitoring capability of system parameters.

  17. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.; Tritz, K.; Zhu, Y. B.

    2015-12-15

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  18. Biological effects of magnetic fields from superconducting magnetic energy storage systems

    SciTech Connect

    Tenforde, T.S.

    1989-12-01

    Physical interaction mechanisms and potential biological effects of static and slowly time-varying magnetic fields are summarized. The results of laboratory and human health studies on this topic are related to the fringe magnetic field levels anticipated to occur in the proximity of superconducting magnetic energy storage (SMES) systems. The observed biological effects of magnetic fields include: (1) magnetic induction of electrical potentials in the circulatory system and other tissues, (2) magneto-orientation of macromolecules and membranes in strong magnetic fields, and (3) Zeeman interactions with electronic spin states in certain classes of charge transfer reactions. In general, only the first of these interactions is relevant to the establishment of occupational exposure guidelines. Physical hazards posed by the interactions of magnetic fields with cardiac pacemakers and other implanted medical devices, e.g., aneurysm clips and prostheses, are important factors that must also be considered in establishing exposure guidelines. Proposed guidelines for limiting magnetic field exposure are discussed. 50 refs., 1 fig.

  19. Using SMES (superconductive magnetic energy storage) to support large-scale PV (photovoltaics) power generation

    SciTech Connect

    Tam, Kwa-Sur; Kumar, Prem; Foreman, M. )

    1990-01-01

    Due to environmental concerns and advance in solar technology, the potential for large-scale electric power generation by photovoltaics (PV) is promising. However, when the PV power generation level is high, the fluctuations and uncertainty of PV power would make the planning, operation, and control of a power system more difficult. This paper proposes and demonstrates that a superconductive magnetic energy storage (SMES) system can be used to overcome these difficulties and support large-scale use of PV power generation. Two system configurations for a PV/SMES hybrid system were described in this paper. In both cases, the SMES charging/discharging power is changed in response to PV fluctuations so that the combined PV/SMES power is smooth and controllable. With SMES support, large-scale use of PV power generation can be used in a power system without causing adverse effects. A coordinated PV/SMES scheme that is applicable for various weather conditions is presented in this paper. The combined PV/SMES power is dispatchable and is shown to have advantages over PV or SMES alone. PV arrays can be installed on the surface of the land occupied by an underground SMES system. With SMES support, all of the PV power can be utilized and no oversizing is needed. These benefits improve the economics of PV power generation.

  20. West Coast utility transmission benefits of superconducting magnetic energy storage. Final report

    SciTech Connect

    DeSteese, J.G.; Dagle, J.E.; Trudnowski, D.J.

    1996-01-01

    A scoping study is described that assessed the ability of superconducting magnetic energy storage (SMES) to improve the stability and power transfer capacity of selected pathways in the utility transmission system serving Southern California. Work was guided by transmission planners from five major west coast utilities known, for the purpose of the study, as the West Coast Utility Group (WCUG). The scope of analyses focused on a working case set of 11 system contingency scenarios consisting of the 5 base cases and 6 sensitivity cases identified by the WCUG as being of special interest under the increased loading conditions expected beyond the end of this century. The transmission enhancement potential of SMEs was analyzed using the Extended Transient/Midterm Stability Package, developed by the Electric Power Research Institute. The simulations and analyses utilized a 5,000-bus 1999 heavy summer model of the western North American power system developed by utility members of the Western Systems Coordinating Council. The study evaluated the control effectiveness of SMES in each scenario and compared SMES with other options.

  1. An Action Dependent Heuristic Dynamic Programming-controlled Superconducting Magnetic Energy Storage for Transient Stability Augmentation

    NASA Astrophysics Data System (ADS)

    Wang, Xinpu; Yang, Jun; Zhang, Xiaodong; Yu, Xiaopeng

    To enhance the stability of power system, the active power and reactive power can be absorbed from or released to Superconducting magnetic energy storage (SMES) unit according to system power requirements. This paper proposes a control strategy based on action dependent heuristic dynamic programing (ADHDP) which can control SMES to improve the stability of electric power system with on-line learning ability. Based on back propagation (BP) neural network, ADHDP approximates the optimal control solution of nonlinear system through iteration step by step. This on-line learning ability improves its performance by learning from its own mistakes through reinforcement signal from external environment, so that it can adjust the neural network weights according to the back propagation error to achieve optimal control performance. To investigate the effectiveness of the proposed control strategy, simulation tests are carried out in Matlab/Simulink. And a conventional Proportional-Integral (PI) controlled method is used to compare the performance of ADHDP. Simulation results show that the proposed controller demonstrates superior damping performance on power system oscillation caused by three-phase fault and wind power fluctuation over the PI controller.

  2. Superconducting magnetic energy storage (SMES) program. Progress report, January 1-December 31, 1984

    SciTech Connect

    Rogers, J.D.

    1985-05-01

    The 30 MJ, 10 MW superconducting magnetic energy storage (SMES) system was devised to interact in the Western US Power System as an alternate means to damp unstable oscillations at 0.35 Hz on the Pacific HVAC Intertie. The SMES unit was installed at the Tacoma Substation of the Bonneville Power Administration (BPA). The operating limits of the 30 MJ SMES unit were established, and different means of controlling real and reactive power were tested. The unit can follow a sinusoidal power demand signal with an amplitude of up to 8.6 MW with the converter working in a 12 pulse mode. When the converter operates in the constant VAR mode, a time varying real power demand signal of up to 5 MW can be met. Experiments showed that the Pacific ac Intertie has current and reactive power variations of the same frequency as the modulating frequency of the SMES device. Endurance tests were run to assess the reliability of the SMES subsystems with a narrow band noise input, which is characteristic of the modulation signal for stabilizer operation. During the endurance tests, parameters of the ac power system were determined. Converter short circuit tests, load tests under various control conditions, dc breaker tests for coil current interruption, and converter failure mode tests were conducted. The experimental operation of the SMES system was concluded and the operation was terminated in early 1984.

  3. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak.

    PubMed

    Li, Y L; Xu, G S; Tritz, K; Zhu, Y B; Wan, B N; Lan, H; Liu, Y L; Wei, J; Zhang, W; Hu, G H; Wang, H Q; Duan, Y M; Zhao, J L; Wang, L; Liu, S C; Ye, Y; Li, J; Lin, X; Li, X L

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks. PMID:26724032

  4. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Xu, G. S.; Tritz, K.; Zhu, Y. B.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  5. Self-organized topological superconductivity in a Yu-Shiba-Rusinov chain

    NASA Astrophysics Data System (ADS)

    Schecter, Michael; Flensberg, Karsten; Christensen, Morten H.; Andersen, Brian M.; Paaske, Jens

    2016-04-01

    We study a chain of magnetic moments exchange coupled to a conventional three-dimensional superconductor. In the normal state the chain orders into a collinear configuration, while in the superconducting phase we find that ferromagnetism is unstable to the formation of a magnetic spiral state. Beyond weak exchange coupling the spiral wave vector greatly exceeds the inverse superconducting coherence length as a result of the strong spin-spin interaction mediated through the subgap band of Yu-Shiba-Rusinov states. Moreover, the simple spin-spin exchange description breaks down as the subgap band crosses the Fermi energy, wherein the spiral phase becomes stabilized by the spontaneous opening of a p -wave superconducting gap within the band. This leads to the possibility of electron-driven topological superconductivity with Majorana boundary modes using magnetic atoms on superconducting surfaces.

  6. Frustrated Heisenberg antiferromagnet on the honeycomb lattice: Spin gap and low-energy parameters

    NASA Astrophysics Data System (ADS)

    Bishop, R. F.; Li, P. H. Y.; Gtze, O.; Richter, J.; Campbell, C. E.

    2015-12-01

    We use the coupled cluster method implemented to high orders of approximation to investigate the frustrated spin-1/2 J1-J2-J3 antiferromagnet on the honeycomb lattice with isotropic Heisenberg interactions of strength J1>0 between nearest-neighbor pairs, J2>0 between next-nearest neighbor pairs, and J3>0 between next-next-nearest-neighbor pairs of spins. In particular, we study both the ground-state (GS) and lowest-lying triplet excited-state properties in the case J3=J2?? J1 , in the window 0 ?? ?1 of the frustration parameter, which includes the (tricritical) point of maximum classical frustration at ?cl=1/2 . We present GS results for the spin stiffness ?s and the zero-field uniform magnetic susceptibility ? , which complement our earlier results for the GS energy per spin E /N and staggered magnetization M to yield a complete set of accurate low-energy parameters for the model. Our results all point towards a phase diagram containing two quasiclassical antiferromagnetic phases, one with Nel order for ? ?c 2 . The results for both ? and the spin gap ? provide compelling evidence for a disordered quantum paramagnetic phase that is gapped over a considerable portion of the intermediate region ?c1energy parameters is consistent with the values ?c1=0.450.02 and ?c 2=0.60 0.02 , and with the transition at ?c1being of continuous (and hence probably of the deconfined) type and that at ?c 2 being of first-order type.

  7. Spin-bag mechanism of high-temperature superconductivity

    NASA Technical Reports Server (NTRS)

    Schrieffer, J. R.; Wen, X.-G.; Zhang, S.-C.

    1988-01-01

    A new approach to the theory of high-temperature superconductivity is proposed, based on the two-dimensional antiferromagnetic spin correlations observed in these materials over distances large compared to the lattice spacing. The spin ordering produces an electronic pseudogap which is locally suppressed by the addition of a hole. This suppression forms a bag inside which the hole is self-consistently trapped. Two holes are attracted by sharing a common bag. The resulting pairing interaction leads to a superconducting energy gap which is nodeless over the Femri surface.

  8. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    PubMed

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-01

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials. PMID:26226296

  9. Separating pairing from quantum phase coherence dynamics above the superconducting transition by femtosecond spectroscopy

    PubMed Central

    Madan, I.; Kurosawa, T.; Toda, Y.; Oda, M.; Mertelj, T.; Kusar, P.; Mihailovic, D.

    2014-01-01

    In classical superconductors an energy gap and phase coherence appear simultaneously with pairing at the transition to the superconducting state. In high-temperature superconductors, the possibility that pairing and phase coherence are distinct and independent processes has led to intense experimental search of their separate manifestations. Using femtosecond spectroscopy methods we now show that it is possible to clearly separate fluctuation dynamics of the superconducting pairing amplitude from the phase relaxation above the critical transition temperature. Empirically establishing a close correspondence between the superfluid density measured by THz spectroscopy and superconducting optical pump-probe response over a wide region of temperature, we find that in differently doped Bi2Sr2CaCu2O8+δ crystals the pairing gap amplitude monotonically extends well beyond Tc, while the phase coherence shows a pronounced power-law divergence as T → Tc, thus showing that phase coherence and gap formation are distinct processes which occur on different timescales. PMID:25014162

  10. First-principles study of energy band gap of single-layer Mo1?xCrxS2

    NASA Astrophysics Data System (ADS)

    Ueda, Akiko; Honda, Syuta; Imamura, Hiroshi

    2016-02-01

    The electronic structures of single-layer Mo1?xCrxS2 are calculated by the spin-polarized density functional method. Single-layer Mo1?xCrxS2 exhibits a direct band gap for any Cr concentration (x). The energy band gap monotonically decreases as a function of x and takes an ideal value for photovoltaic applications at x ? 0.23.

  11. Electronic properties of graphene nano-flakes: Energy gap, permanent dipole, termination effect, and Raman spectroscopy

    SciTech Connect

    Singh, Sandeep Kumar Peeters, F. M.; Neek-Amal, M.

    2014-02-21

    The electronic properties of graphene nano-flakes (GNFs) with different edge passivation are investigated by using density functional theory. Passivation with F and H atoms is considered: C{sub N{sub c}} X{sub N{sub x}} (X = F or H). We studied GNFs with 10 < N{sub c} < 56 and limit ourselves to the lowest energy configurations. We found that: (i) the energy difference Δ between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases with N{sub c}, (ii) topological defects (pentagon and heptagon) break the symmetry of the GNFs and enhance the electric polarization, (iii) the mutual interaction of bilayer GNFs can be understood by dipole-dipole interaction which were found sensitive to the relative orientation of the GNFs, (iv) the permanent dipoles depend on the edge terminated atom, while the energy gap is independent of it, and (v) the presence of heptagon and pentagon defects in the GNFs results in the largest difference between the energy of the spin-up and spin-down electrons which is larger for the H-passivated GNFs as compared to F-passivated GNFs. Our study shows clearly the effect of geometry, size, termination, and bilayer on the electronic properties of small GNFs. This study reveals important features of graphene nano-flakes which can be detected using Raman spectroscopy.

  12. Caffeine-containing energy drinks: beginning to address the gaps in what we know.

    PubMed

    Sorkin, Barbara C; Coates, Paul M

    2014-09-01

    Energy drinks are relatively new to the United States but are the fastest growing segment of the beverage market. Humans have a long history of consuming caffeine in traditional beverages, such as cocoa, coffee, tea, and yerba maté, but 2 workshops held at the Institute of Medicine (http://www.iom.edu/Activities/Nutrition/PotentialHazardsCaffeineSupplements/2013-AUG-05.aspx) and the NIH (http://ods.od.nih.gov/News/EnergyDrinksWorkshop2013.aspx) in 2013 highlighted many critical gaps in understanding the biologic and behavioral effects of the mixtures of caffeine, vitamins, herbs, sugar or other sweeteners, and other ingredients that typify caffeine-containing energy drinks (CCEDs). For example, different surveys over the same 2010–2012 timeframe report discrepant prevalence of CCED use by teenagers, ranging from 10.3% in 13–17 y olds to >30% of those in grades 10 and 12. Understanding of functional interactions between CCED ingredients, drivers of use, and biologic and behavioral effects is limited. The 4 speakers in the Experimental Biology 2014 symposium titled “Energy Drinks: Current Knowledge and Critical Research Gaps” described recent progress by their groups in extending our understanding of prevalence of CCED use, sources of caffeine in the United States, drivers of CCED use, and behavioral correlations and effects of CCEDs, including effects on attractiveness of both alcoholic and non-alcoholic beverages. PMID:25469387

  13. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    SciTech Connect

    Adame, J.; Warzel, S.

    2015-11-15

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.

  14. Design and construction of the main linac module for the superconducting energy recovery linac project at Cornell

    SciTech Connect

    Eichhorn, R.; Bullock, B.; He, Y.; Hoffstaetter, G.; Liepe, M.; O'Connell, T.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Veshcherevich, V.

    2014-01-29

    Cornell University has been designing and building superconducting accelerators for various applications for more than 50 years. Currently, an energy-recovery linac (ERL) based synchrotron-light facility is proposed making use of the existing CESR facility. As part of the phase 1 R and D program funded by the NSF, critical challenges in the design were addressed, one of them being a full linac cryo-module. It houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. Pushing the limits, a high quality factor of the cavities (2⋅10{sup 10}) and high beam currents (100 mA accelerated plus 100 mA decelerated) are targeted. We will present the design of the main linac cryo-module (MLC) being finalized recently, its cryogenic features and report on the status of the fabrication which started in late 2012.

  15. Illusory Continuity without Sufficient Sound Energy to Fill a Temporal Gap: Examples of Crossing Glide Tones

    ERIC Educational Resources Information Center

    Kuroda, Tsuyoshi; Nakajima, Yoshitaka; Eguchi, Shuntarou

    2012-01-01

    The gap transfer illusion is an auditory illusion where a temporal gap inserted in a longer glide tone is perceived as if it were in a crossing shorter glide tone. Psychophysical and phenomenological experiments were conducted to examine the effects of sound-pressure-level (SPL) differences between crossing glides on the occurrence of the gap

  16. Singlet-triplet energy gaps for diradicals from particle-particle random phase approximation.

    PubMed

    Yang, Yang; Peng, Degao; Davidson, Ernest R; Yang, Weitao

    2015-05-21

    The particle-particle random phase approximation (pp-RPA) for calculating excitation energies has been applied to diradical systems. With pp-RPA, the two nonbonding electrons are treated in a subspace configuration interaction fashion while the remaining part is described by density functional theory (DFT). The vertical or adiabatic singlet-triplet energy gaps for a variety of categories of diradicals, including diatomic diradicals, carbene-like diradicals, disjoint diradicals, four-π-electron diradicals, and benzynes are calculated. Except for some excitations in four-π-electron diradicals, where four-electron correlation may play an important role, the singlet-triplet gaps are generally well predicted by pp-RPA. With a relatively low O(r(4)) scaling, the pp-RPA with DFT references outperforms spin-flip configuration interaction singles. It is similar to or better than the (variational) fractional-spin method. For small diradicals such as diatomic and carbene-like ones, the error of pp-RPA is slightly larger than noncollinear spin-flip time-dependent density functional theory (NC-SF-TDDFT) with LDA or PBE functional. However, for disjoint diradicals and benzynes, the pp-RPA performs much better and is comparable to NC-SF-TDDFT with long-range corrected ωPBEh functional and spin-flip configuration interaction singles with perturbative doubles (SF-CIS(D)). In particular, with a correct asymptotic behavior and being almost free from static correlation error, the pp-RPA with DFT references can well describe the challenging ground state and charge transfer excitations of disjoint diradicals in which almost all other DFT-based methods fail. Therefore, the pp-RPA could be a promising theoretical method for general diradical problems. PMID:25891638

  17. Fabrication of Nb/A1 Superconducting Tunnel Junction

    NASA Astrophysics Data System (ADS)

    Cho, Sung-Ik; Park, Young-Sik; Park, Jang-Hyun; Lee, Yong-Ho; Lee, Sang-Kil; Kim, Sug-Whan; Han, Won-Yong

    2004-12-01

    We report the successful fabrication and I--V curve superconductivity test results of the Nb/Al-based superconducting tunnel junctions. STJs with side-lengths of 20, 40, 60 and 80 μm were fabricated by deposition of polycrystalline Nb/Al/AlOx/Al/Nb 5-layer thin films incorporated on a 3-inch Si wafer. STJ was designed by TannerTM L-Edit 8.3 program, and fabricated in SQUID fabrication facility, KRISS. 5-layer STJ thin-films were fabricated using UV photolithography, DC magnetron sputtering, Reactive ion etching, and CVD(Chemical Vapor Deposition) techniques. Superconducting state test for STJ was succeeded in 4K with liquid helium cooling system. Their performance indicators such as energy gap, normal resistance, normal resistivity, dynamic resistance, dynamic resistivity, and quality factor were measured from I--V curve. Fabricated Nb/Al STJ shows 11% higher FWHM energy resolution than genuine Nb STJ.

  18. Band Gap Engineering in a 2D Material for Solar-to-Chemical Energy Conversion.

    PubMed

    Hu, Jun; Guo, Zhenkun; Mcwilliams, Peter E; Darges, John E; Druffel, Daniel L; Moran, Andrew M; Warren, Scott C

    2016-01-13

    The electronic structure of 2D semiconductors depends on their thickness, providing new opportunities to engineer semiconductors for energy conversion, electronics, and catalysis. Here we show how a 3D semiconductor, black phosphorus, becomes active for solar-to-chemical energy conversion when it is thinned to a 2D material. The increase in its band gap, from 0.3 eV (3D) to 2.1 eV (2D monolayer), is accompanied by a 40-fold enhancement in the formation of chemical products. Despite this enhancement, smaller flakes also have shorter excited state lifetimes. We deduce a mechanism in which recombination occurs at flake edges, while the "van der Waals" surface of black phosphorus bonds to chemical intermediates and facilitates electron transfer. The unique properties of black phosphorus highlight its potential as a customizable material for solar energy conversion and catalysis, while also allowing us to identify design rules for 2D photocatalysts that will enable further improvements in these materials. PMID:26651872

  19. Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass

    NASA Astrophysics Data System (ADS)

    Masai, Hirokazu; Yamada, Yasuhiro; Suzuki, Yuto; Teramura, Kentaro; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-12-01

    Transparent inorganic luminescent materials have attracted considerable scientific and industrial attention recently because of their high chemical durability and formability. However, photoluminescence dynamics of ns2-type ions in oxide glasses has not been well examined, even though they can exhibit high quantum efficiency. We report on the emission property of Sn2+-doped strontium borate glasses. Photoluminescence dynamics studies show that the peak energy of the emission spectrum changes with time because of site distribution of emission centre in glass. It is also found that the emission decay of the present glass consists of two processes: a faster S1-S0 transition and a slower T1-S0 relaxation, and also that the energy difference between T1 and S1 states was found to be much smaller than that of (Sn, Sr)B6O10 crystals. We emphasize that the narrow energy gap between the S1 and T1 states provides the glass phosphor a high quantum efficiency, comparable to commercial crystalline phosphors.

  20. Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass

    PubMed Central

    Masai, Hirokazu; Yamada, Yasuhiro; Suzuki, Yuto; Teramura, Kentaro; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-01-01

    Transparent inorganic luminescent materials have attracted considerable scientific and industrial attention recently because of their high chemical durability and formability. However, photoluminescence dynamics of ns2-type ions in oxide glasses has not been well examined, even though they can exhibit high quantum efficiency. We report on the emission property of Sn2+-doped strontium borate glasses. Photoluminescence dynamics studies show that the peak energy of the emission spectrum changes with time because of site distribution of emission centre in glass. It is also found that the emission decay of the present glass consists of two processes: a faster S1-S0 transition and a slower T1-S0 relaxation, and also that the energy difference between T1 and S1 states was found to be much smaller than that of (Sn, Sr)B6O10 crystals. We emphasize that the narrow energy gap between the S1 and T1 states provides the glass phosphor a high quantum efficiency, comparable to commercial crystalline phosphors. PMID:24345869

  1. Narrow energy gap between triplet and singlet excited states of Sn2+ in borate glass.

    PubMed

    Masai, Hirokazu; Yamada, Yasuhiro; Suzuki, Yuto; Teramura, Kentaro; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-01-01

    Transparent inorganic luminescent materials have attracted considerable scientific and industrial attention recently because of their high chemical durability and formability. However, photoluminescence dynamics of ns(2)-type ions in oxide glasses has not been well examined, even though they can exhibit high quantum efficiency. We report on the emission property of Sn(2+)-doped strontium borate glasses. Photoluminescence dynamics studies show that the peak energy of the emission spectrum changes with time because of site distribution of emission centre in glass. It is also found that the emission decay of the present glass consists of two processes: a faster S1-S0 transition and a slower T1-S0 relaxation, and also that the energy difference between T1 and S1 states was found to be much smaller than that of (Sn, Sr)B6O10 crystals. We emphasize that the narrow energy gap between the S1 and T1 states provides the glass phosphor a high quantum efficiency, comparable to commercial crystalline phosphors. PMID:24345869

  2. Air gap optimization for output power and band width in out-of-plane vibration energy harvesters employing electrets

    NASA Astrophysics Data System (ADS)

    Asanuma, H.; Hara, M.; Oguchi, H.; Kuwano, H.

    2015-10-01

    We investigated the dependence of output power, frequency band width, and resonance frequency on the initial air gap for electret-based out-of-plane vibration energy harvesters, both numerically and experimentally. In this investigation, the external acceleration and surface charge densities of the electret were held constant. The numerical investigation predicted the following results: (1) an optimum value exists in the initial air gap to maximize the output power; and (2) enhanced electrostatic forces with decreasing the initial air gap emphasize the soft spring effect, which widens the frequency band width and lowers the resonance frequency. The experimental results showed behaviour consistent with the numerical predictions. The maximum output power in experiment was 4.0 μW at the optimum initial air gap of 0.43 mm when the external acceleration and the frequency were 4.9 m s-2 and 102 Hz, respectively. With reducing the initial air gap to 0.28 mm, the frequency band width increased to 17 Hz, a 2.6-fold increase over the optimum initial air gap. The peak output power at the initial air gap of 0.28 mm was 2.7 μW, when the external acceleration and frequency were 4.9 m s-2 and 96 Hz, respectively.

  3. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-02-01

    The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.

  4. Superconducting magnetic energy storage (SMES). December 1973-April 1990 (A Bibliography from the NTIS data base). Report for December 1973-April 1990

    SciTech Connect

    Not Available

    1990-04-01

    This bibliography contains citations concerning the technology and use of superconducting magnetic energy storage (SMES). The design, analysis, evaluation, and operation of SMES systems and equipment are discussed. Topics include utility scale SMES plants, SMES for transmission line stabilization, design and protection of superconducting magnets and coils, computer controlled SMES systems, and fusion power reactors. (This updated bibliography contains 143 citations, 27 of which are new entries to the previous edition.)

  5. Superconducting magnetic energy storage (SMES). January 1972-February 1988 (Citations from the NTIS data base). Report for January 1972-February 1988

    SciTech Connect

    Not Available

    1988-03-01

    This bibliography contains citations concerning the technology and use of superconducting magnetic energy storage (SMES). The design, analysis, evaluation, and operation of SMES systems and equipment are discussed. Topics include utility scale SMES plants, SMES for transmission line stabilization, design and protection of superconducting magnets and coils, computer controlled SMES systems, and fusion power reactors. (Contains 141 citations fully indexed and including a title list.)

  6. Control of Superconducting Magnetic Energy Storage Units in Multi-Machine Power Systems

    NASA Astrophysics Data System (ADS)

    Ranaweera, Aruna

    A new scheme, in which a synchronous generator connected to the SMES busbar is used as a feedback generator, is proposed to control superconducting magnetic energy storage (SMES) units in multi-machine power systems, in this dissertation. The speed and the load angle changes of the feedback generator are used to calculate the necessary real power transfers to the SMES, while the necessary reactive power transfers are calculated from the voltage changes of the common busbar. Expressions are derived for the direct and quadrature axis components of the current drawn by the SMES, for unequal firing angles in the converter bridge, and the relationships of the two currents to the total real and reactive power transfers to the SMES are shown. The expressions derived are valid for small or large systems, under steady state or transient conditions, and it is shown through computer simulations in a small power system that, the proposed scheme is quite effective in stabilizing electromechanical oscillations caused by small as well as large disturbances. It is also shown that, the SMES can improve the power output of wind turbine induction generators, and also stabilize the oscillations caused by wind power losses in a steam turbine generator system, and thereby eliminate the need to use diesel turbine generators for the same purpose. Finally, equations are derived to represent the synchronous machine in terms of its d-q circuits, while it is connected to the network which is described by complex quantities, and the formulations done for the proposed scheme are extended to study the use of SMES units with proposed control in power systems of large and complex configurations. The proposed scheme of control is simple, and does not call for a special design of a controller requiring simplifying assumptions such as the presence of an infinite busbar or steady state operating conditions on the system, and therefore, would help in the widespread use of SMES units in electric utilities.

  7. Superconductive energy storage. Volume IV. Final technical report revision, January 1976-September 1981

    SciTech Connect

    Hartwig, K.T. Jr.

    1983-07-01

    The design history of Inductor-Converter (I-C) superconductive energy storage units includes first a solenoid in one deep tunnel, then segmented deep solenoids and finally a fifteen tunnel hour-glass system. Conductor research includes NbTi studies, welding of high purity and high strength aluminum components, moderate strength aluminum alloy development, conductor cruciform alloys and overall conductor fabrication studies. Cryogenic tests of boundary layers are undertaken. Structure research includes the analytical structural design of the conductor, the rippled dewar system and the fiberglass composite struts. Experimental structural work includes property tests of fiberglass composites emphasizing polyester products. The tests are for compressive strengths, cyclic compression, shear strength, fracture toughness, bonding, tensile strength, and creep. Rock mechanics research includes experimental site studies of granite, quartzite, rhyolite, and sedimentary locations. Topics include in situ and laboratory measurements of rock stresses, ground water characteristics, joints, and basic rock sample properties. Design studies cover a three tunnel model, a five tunnel model and a low aspect ratio system. Some attention is given to earth quake analysis. This cryogenics effort includes refrigeration design, cool-down analysis, conductor cooling comparisons, heat transfer from bedrock, and conductor stability. Experimentally there are several He II heat transfer and transport experiments, a He I two phase flow void fraction study, and dielectric breakdown in helium. The electric studies cover converter-inverter technology with both analytical and experimental circuitry. System design and electrical use for diurnal storage and pulsed storage cover primarily three phase Graetz bridge circuitry with some attention to a flying capacitor system.

  8. Superconductivity in the system of p electrons

    SciTech Connect

    Zaitsev, R. O.

    2012-10-15

    The problem of superconductivity in an electron system with partly filled sp shell is studied. The scattering amplitudes are determined and the equations of superconductivity are derived from the assumption that the Hubbard energy is the largest energy parameter.

  9. Enhanced spin polarization in graphene with spin energy gap induced by spin-orbit coupling and strain

    SciTech Connect

    Liu, Zheng-Fang; Wu, Qing-Ping E-mail: aixichen@ecjtu.jx.cn; Chen, Ai-Xi E-mail: aixichen@ecjtu.jx.cn; Xiao, Xian-Bo; Liu, Nian-Hua

    2014-05-28

    We investigate the possibility of spin polarization in graphene. The result shows that a spin energy gap can be opened in the presence of both spin-orbit coupling and strain. We find that high spin polarization with large spin-polarized current is achieved in the spin energy gap. However, only one of the two modulations is present, no spin polarization can be generated. So the combination of the two modulations provides a way to design tunable spin polarization without need for a magnetic element or an external magnetic field.

  10. Scanning Tunneling Spectroscopy of Transition Metal Dichalcogenides: Quasiparticle Gap, Critical Point Energies and Heterojunction Band Offsets

    NASA Astrophysics Data System (ADS)

    Shih, Chih-Kang

    2015-03-01

    As an emergent atomically thin electronic and photonic materials material, transition metal dichalcogenides (TMDs) has triggered intensive research activities toward understanding of their electronic structures. Here I will introduce a comprehensive form of scanning tunneling spectroscopy (STS) which allows us to probe details quasi-particle electronic structures of TMDs. More specifically, we show that not only the quasi-particle band gaps but also the critical point energy locations and their origins in the Brillouin Zone (BZ) can be revealed using this comprehensive form of STS. By using this new method, we unravel the systematic trend of the critical point energies for TMDs due to atomic orbital couplings, spin-orbital coupling and the interlayer coupling. Moreover, by combining the micro-beam X-ray photoelectron spectroscopy (micro-XPS) and STS, we determine the band offsets in planar heterostructures formed between dissimilar single layer TMDs (MoS2, WSe2, and WS2). We show that both commutativity and transitivity of heterojunction band offset hold within the experimental uncertainty. Other Contributors: (i) Chendong Zhang, Yuxuan Chen, and Amber Johnson at the University of Texas at Austin; (ii) Ming-Yang Li, Jing-Kai Huang, Lain-Jong Li, Chih-Piao Chuu and Mei-Yin Chou at the Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan.

  11. Reply to ``Comment on `High-field studies of superconducting fluctuations in high-Tc cuprates: Evidence for a small gap distinct from the large pseudogap'''

    NASA Astrophysics Data System (ADS)

    Rullier-Albenque, F.; Alloul, H.; Rikken, G.

    2012-03-01

    The experimental investigations done in our paper [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.84.014522 84, 014522 (2011)] allowed us to establish that the superconducting fluctuations (SCF) always die out sharply with increasing T. But contrary to the claim in the Comment of Ramallo , this sharp cutoff of SCF measured in YBa2Cu2O6+x depends on hole doping and/or disorder. So our data cannot be used to claim a universality of the extended Gaussian Ginzburg-Landau theory proposed by Ramallo Furthermore, to explain quantitatively our data near optimal doping using this model they need to consider that fluctuations in the two CuO2 planes of a bilayer are totally decoupled, which is not physically well justified. On the contrary, a consistent interpretation of all our data (paraconductivity, Nernst effect, and magnetoresistance) has been done by considering that the coupling between the two layers of the unit cell is dominant at least up to 1.1Tc.

  12. Experimental study of high energy electron interactions in a superconducting aluminum alloy resonant bar

    NASA Astrophysics Data System (ADS)

    Barucci, M.; Bassan, M.; Buonomo, B.; Cavallari, G.; Coccia, E.; D'Antonio, S.; Fafone, V.; Ligi, C.; Lolli, L.; Marini, A.; Mazzitelli, G.; Modestino, G.; Pizzella, G.; Quintieri, L.; Risegari, L.; Rocchi, A.; Ronga, F.; Valente, P.; Ventura, G.; Vinko, S. M.

    2009-05-01

    Peak amplitude measurements of the fundamental mode of oscillation of a suspended aluminum alloy bar hit by an electron beam show that the amplitude is enhanced by a factor ∼3.5 when the material is in the superconducting state. This result is consistent with the cosmic ray observations performed by the resonant gravitational wave detector NAUTILUS, made of the same alloy, when operated in the superconducting state. A comparison of the experimental data with the predictions of the model describing the underlying physical process is also presented.

  13. Band gap energies of solar micro/meso-porous composites of zinc (hydr)oxide with graphite oxides

    NASA Astrophysics Data System (ADS)

    Islam, SM Z.; Gayen, Taposh; Seredych, Mykola; Mabayoje, Oluwaniyi; Shi, Lingyan; Bandosz, Teresa J.; Alfano, Robert R.

    2013-07-01

    The band gap energies of micro/meso-porous zinc (hydr)oxide and its composites with 2 wt. % and 5 wt. % graphite oxides are reported using three optical characterization techniques. The obtained energy gaps (from 2.84 eV to 2.95 eV) of the composites are smaller than that for zinc oxide (˜3.2 eV) and zinc (hydr)oxide (˜3.06 eV). The band gap narrowing of the composite materials is due to the presence of defects, larger particle size, and weaker confinement. The bonds between zinc (hydr)oxide lattice and the carbon of graphene phase also contribute to this phenomenon. The structural properties of these materials are presented using Transmission Electron Microscopy, Scanning Tunneling Electron Microscopy, X-Ray analysis, and Two-Photon Fluorescence imaging Microscopy.

  14. Heat Transport to a Superconducting Metal

    NASA Astrophysics Data System (ADS)

    Yoo, Kyung Hwa

    A theoretical model of the thermal volume resistance arising when heat is transported to a superconducting metal from a dielectric is presented. The model is based on the fact that the interaction between electrons and phonons in a superconductor gives rise to an "additional" temperature jump near the interface. The theory predicts a dependence on the phonon mean free path related to defects and on the superconducting energy gap. For a test of the theory the thermal volume resistance in the superconducting state has been measured for deformed and annealed aluminum from 0.1K to 0.8K. A comparison of our theoretical model and the experimental results shows reasonable agreement. Comparison has been also made with the thermal volume resistances reported by Sahling, et al. and by O'Hara and Anderson. These reported results also have been explained by the present theory. To further test this theory, the thermal volume resistance in the superconducting state has been measured for deformed and annealed tin from 0.05K to 1.2K. The results for the tin samples are consistent with the theory to the extent that the effect of the thermal volume resistance is too small to be observed. In addition to measurements on the thermal volume resistance, the thermal conductivity has been measured for heavily deformed superconductors having different cross -sectional areas to observe the effect of size on the lattice thermal conductivity. However, a definitive conclusion could not be obtained.

  15. Broadband illumination of superconducting pair breaking photon detectors

    NASA Astrophysics Data System (ADS)

    Guruswamy, T.; Goldie, D. J.; Withington, S.

    2016-04-01

    Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η-a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable.

  16. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  17. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  18. Ultrasonic investigation of the superconducting properties of the Nb-Mo system

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.

    1972-01-01

    The superconducting properties of single crystals of Nb and two alloys of Nb with Mo were investigated by ultrasonic techniques. The results of measurements of the ultrasonic attenuation and velocities as a function of temperature, Mo composition, crystallographic direction, and ultrasonic frequency are reported. The attenuation and small velocity changes associated with the superconductivity of the samples are shown to be dependent on the sample resistivity ratio which varied from 4.3 for Nb-9% Mo to 6500 for pure Nb. The ultrasonic attenuation data are analyzed in terms of the superconducting energy gap term of the BCS theory. A new model is proposed for the analysis of ultrasonic attenuation in pure superconductors with two partially decoupled energy bands. To analyze the attenuation in pure superconducting Nb, the existence of two energy gaps was assumed to be associated with the two partially decoupled energy bands. One of the gaps was found to have the normal BCS value of 3.4 and the other gap was found to have the anomalously large value of 10. No experimental evidence was found to suggest that the second energy gap had a different transition temperature. The interpretation of the results for the Nb-Mo alloys is shown to be complicated by the possible existence of a second superconducting phase in Nb-Mo alloys with a transition temperature of 0.35 of the transition temperature of the first phase. The elastic constants of Nb and Nb-Mo alloys are shown to be approximately independent of Mo composition to nine atomic percent Mo. These results do not agree with the current microscopic theory of transition temperature for the transition elements.

  19. Pulse height reduction effects of superconducting tunnel junction particle detectors for low-energy light molecular ions

    SciTech Connect

    Tomita, S.; Sato, Y.; Ohkubo, M.; Ukibe, M.; Hayakawa, S.

    2007-07-30

    The performance of particle detectors using superconducting tunnel junctions has been studied for metal cluster or molecular ions accelerated at 3 keV. The output pulse height for individual ion impact decreases as the mass of projectiles increases in a mass range of less than 800 amu. In addition, pulse height reduction effects strongly depend on the molecular species. These phenomena are understood by taking into account secondary electron emission that carries part of the deposited kinetic energies of ion away from the junction surface.

  20. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling

    SciTech Connect

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥0.5 eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.

  1. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling

    DOE PAGESBeta

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥0.5more » eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.« less

  2. Illusory Continuity without Sufficient Sound Energy to Fill a Temporal Gap: Examples of Crossing Glide Tones

    ERIC Educational Resources Information Center

    Kuroda, Tsuyoshi; Nakajima, Yoshitaka; Eguchi, Shuntarou

    2012-01-01

    The gap transfer illusion is an auditory illusion where a temporal gap inserted in a longer glide tone is perceived as if it were in a crossing shorter glide tone. Psychophysical and phenomenological experiments were conducted to examine the effects of sound-pressure-level (SPL) differences between crossing glides on the occurrence of the gap…

  3. High temperature superconductivity with repulsive pairing interactions

    NASA Astrophysics Data System (ADS)

    Fink, Herman J.; Haley, Stephen B.

    2015-10-01

    A pairing Hamiltonian H (Γ) with an interaction kernel Γ characterized by [ -Γ0, -α0 ] , where Γ0 denotes the separable part and α0 the degree of non-separability, produces high temperature superconductivity for both attractive Γ0 > 0 and repulsive Γ0 < 0 when α0 > 0 . For Γ0 > 0 , typical HTS properties, e.g. cuprate, are produced. Repulsive Γ0 < 0 produces a distinct difference in the kinetic energy dependence of the SC gap, significantly altering thermodynamic properties.

  4. Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Heo, Sung; Cho, Eunseog; Lee, Hyung-Ik; Park, Gyeong Su; Kang, Hee Jae; Nagatomi, T.; Choi, Pyungho; Choi, Byoung-Deog

    2015-07-01

    The band gap and defect states of MgO thin films were investigated by using reflection electron energy loss spectroscopy (REELS) and high-energy resolution REELS (HR-REELS). HR-REELS with a primary electron energy of 0.3 keV revealed that the surface F center (FS) energy was located at approximately 4.2 eV above the valence band maximum (VBM) and the surface band gap width (EgS) was approximately 6.3 eV. The bulk F center (FB) energy was located approximately 4.9 eV above the VBM and the bulk band gap width was about 7.8 eV, when measured by REELS with 3 keV primary electrons. From a first-principles calculation, we confirmed that the 4.2 eV and 4.9 eV peaks were FS and FB, induced by oxygen vacancies. We also experimentally demonstrated that the HR-REELS peak height increases with increasing number of oxygen vacancies. Finally, we calculated the secondary electron emission yields (γ) for various noble gases. He and Ne were not influenced by the defect states owing to their higher ionization energies, but Ar, Kr, and Xe exhibited a stronger dependence on the defect states owing to their small ionization energies.

  5. Synthesis, characterization and band gap energy of poly(ɛ-caprolactone)/Sr-MSA nano-composite

    NASA Astrophysics Data System (ADS)

    Kannammal, L.; Palanikumar, S.; Meenarathi, B.; Yelilarasi, A.; Anbarasan, R.

    2014-04-01

    A mercaptosuccinic acid (MSA) decorated Sr nano-particle (NP) was prepared and characterized by using various analytical techniques and was used as a chemical initiator for the ring opening polymerization (ROP) of ɛ-caprolactone (CL). The ROP of CL was carried out at various experimental conditions under N2 atmosphere with mild stirring. The initiating efficiency of MSA-decorated Sr NP was tested in terms of Fourier transform infrared-relative intensity, melting temperature (Tm), degradation temperature (Td) and molecular weight (Mw) of poly(ɛ-caprolactone) (PCL), differential scanning calorimetry, UV-visible spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis and gel permeation chromatography analytical techniques. The nuclear magnetic resonance spectrum confirms the chemical structure of PCL. While increasing the [M/I] ratio, the Mw of PCL was linearly increased. The band gap energy of Sr was determined from the UV-visible spectrum. The reflectance study proves the hydrophobic nature of the Sr-hybrid and its nano-composite formation with PCL.

  6. On the structure of hot absorption spectra of polyatomic molecules: solvent effect on the transition energy gap.

    PubMed

    Tranca, D C; Neufeld, A A

    2009-04-14

    Hot absorption spectra of polyatomic molecules may exhibit a characteristic shoulder. Its origin and connection to the 0-0 transition energy gap has been established on the basis of a recently developed quantum-classical approach. We demonstrate that an accurate estimate of the transition energy can be obtained directly from experimental data. The method can be used to study the solvent influence on the energetics of electronic transitions. PMID:19368422

  7. Single-particle density of states of a superconductor with a spatially varying gap and phase fluctuations

    NASA Astrophysics Data System (ADS)

    Valdez-Balderas, Daniel; Stroud, David

    2006-11-01

    Recent experiments have shown that the superconducting energy gap in some cuprates is spatially inhomogeneous. Motivated by these experiments, and using exact diagonalization of a model d -wave Hamiltonian, combined with Monte Carlo simulations of a Ginzburg-Landau free energy functional, we have calculated the single-particle local density of states LDOS (?,r) of a model high- Tc superconductor as a function of temperature. Our calculations include both quenched disorder in the pairing potential and thermal fluctuations in both phase and amplitude of the superconducting gap. Most of our calculations assume two types of superconducting regions: ? with a small gap and large superfluid density, and ? with the opposite. If the ? regions are randomly embedded in an ? host, the LDOS on the ? sites still has a sharp coherence peak at T=0 , but the ? component does not, in agreement with experiment. An ordered arrangement of ? regions leads to oscillations in the LDOS as a function of energy. The model leads to a superconducting transition temperature Tc well below the pseudogap temperature Tc0 and has a spatially varying gap at very low T , both consistent with experiments in underdoped Bi2212. Our calculated LDOS (?,r) shows coherence peaks for TTc , in agreement with previous work considering phase but not amplitude fluctuations in a homogeneous superconductor. Well above Tc , the gap in the LDOS disappears.

  8. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    PubMed

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics. PMID:26247853

  9. Experimental Indications of a BCS Behaviour in Superconducting Diamond

    NASA Astrophysics Data System (ADS)

    Sacépé, B.; Chapelier, C.; Marcenat, C.; Kamarik, J.; Klein, T.; Omnès, F.; Bustarret, E.

    2006-10-01

    This special issue of physica status solidi which was guest-edited by Satoshi Koizumi (National Institute for Materials Science, Tsukuba, Japan), Christoph E. Nebel (Diamond Research Center, Tsukuba, Japan), and Milos Nesladek (CEA-LIST, Gif sur Yvette, France) presents 10 Review Articles covering different areas of CVD Diamond research.The cover picture was taken from the article by Sacépé et al. [1]. The authors present a scanning tunneling spectroscopy study of superconducting single-crystalline heavily boron-doped diamond providing an experimental evidence for BCS behaviour. When a perpendicular magnetic field is applied to a superconducting boron-doped diamond film, vortices penetrate the sample, each carrying one quantum flux. In their centre, the superconductivity is washed out on a length scale equal to the superconducting coherence length s. The figures show the electronic Density of States (DOS) measured with a scanning tunnelling microscope at 50 mK along a line crossing the centre of a such a vortex. Outside the vortex core which extends between the two arrows, the DOS presents a gap at the Fermi level (V = 0) and two coherence peaks characteristic of a superconducting DOS. The measured DOS inside the vortex core reveals in addition numerous localized resonances, at positions pointed out by the black arrows on the two-dimensional view. For clean superconductors, quasi-particles are expected to form localized states inside the vortex cores at energies close to the Fermi level. Here, although boron-doped diamond films are in the dirty limit, localized resonances are still visible but at non zero energies inside the superconducting gap.

  10. FROM THE CURRENT LITERATURE: High-temperature superconductivity and the characteristics of the electronic energy spectrum

    NASA Astrophysics Data System (ADS)

    Moskalenko, V. A.; Palistrant, M. E.; Vakalyuk, V. M.

    1991-08-01

    The possibility is indicated of applying the theory of superconductors with overlapping energy bands to describe the thermodynamic and electromagnetic properties of the high-temperature compounds La2-x(Ba,Sr)xCuO4 and YBa2Cu3O7-δ. The two-band model was used to obtain high values of Tc, two energy gaps 2Δ1/Tc > 3.5 and 2Δ2/Tc < 3.5, large negative values of d ln Tc/d ln V (V is the volume) in lanthanum ceramics, small values of the jump in the electron heat capacity at T = Tc, negative curvature of the upper critical magnetic field H2c near the transition temperature, etc. Such behavior of the above quantities is observed experimentally. A description is also obtained of the decrease in Tc as the disordering of oxygen increases, and also as copper atoms are replaced by a nonmagnetic impurity (Al, Zn, etc.). The main mechanism responsible for this decrease is the interband scattering of electrons by impurities and by randomly distributed oxygen vacancies. A theory has been developed of multiband superconductors which takes into account the points of high symmetry in momentum space. On the basis of this theory one can explain the existence of a plateau in the dependence of Tc on δ for YBa2Cu3O7-δ, and also in the dependence of Tc on x for La2-x(Ba,Sr)xCuO4, that has been observed in a number of experiments. Moreover this theory also explains the presence of two maxima in the dependence of Tc on pressure for Bi2Sr2CaCu2O8.

  11. Majorana fermions at the edge of superconducting islands

    NASA Astrophysics Data System (ADS)

    Akzyanov, R. S.; Rakhmanov, A. L.; Rozhkov, A. V.; Nori, Franco

    2015-08-01

    We investigate the properties of electron states localized at the edge of a superconducting island placed on the surface of a topological insulator in a magnetic field. In such systems, Majorana fermions emerge if an odd number of vortices (or odd multivortex vorticity) is hosted by the island; otherwise, no Majorana states exist. Majorana states emerge in pairs: one state is localized near the vortex core, and another at the island edge. We analyze in detail the robustness of Majorana fermions at the edge of the island threaded by a single vortex. If the system parameters are optimized, the energy gap between the Majorana fermion and the first excited state at the edge is of the order of the superconducting gap induced on the surface of the topological insulator. The stability of the Majorana fermion state against a variation of the gate voltage and its sensitivity to the magnetic field allows one to experimentally distinguish the edge Majorana fermion from conventional Dirac fermions.

  12. Evidence for Intertwining of Superconductivity and Antiferromagnetism in a Cuprate

    NASA Astrophysics Data System (ADS)

    Tranquada, John; Xu, Zhijun; Stock, C.; Chi, S. X.; Kolesnikov, A. I.; Xu, G. Y.; Gu, G. D.

    2014-03-01

    We have used inelastic neutron scattering to measure the low-energy, incommensurate antiferromagnetic spin excitations both above and below the superconducting transition temperature (Tc = 32 K) of La1.905Ba0.095CuO4. While the magnetic excitations in optimally-doped cuprates typically show the development of a spin gap and magnetic resonance below Tc, our sample shows no such effect. Instead strong, gapless spin excitations coexist with bulk superconductivity. To understand this, we note that previous transport measurements have shown that the superconducting layers are decoupled by a magnetic field applied along the c-axis, resulting in a state with frustrated interlayer Josephson coupling, similar to LBCO with x = 1 / 8 , where it has been proposed that pair-density-wave superconductivity occurs. This suggests that, in a similar fashion, the spatially modulated antiferromagnetic correlations (which we see directly in the x = 0 . 095 sample) are intertwined with a spatially modulated superconducting pair wave function. Work at BNL supported by Office of Basic Energy Sciences, US DOE, under Contract No. DE-AC02-98CH10886.

  13. Superconducting PM undiffused machines with stationary superconducting coils

    DOEpatents

    Hsu, John S.; Schwenterly, S. William

    2004-03-02

    A superconducting PM machine has a stator, a rotor and a stationary excitation source without the need of a ferromagnetic frame which is cryogenically cooled for operation in the superconducting state. PM material is placed between poles on the rotor to prevent leakage or diffusion of secondary flux before reaching the main air gap, or to divert PM flux where it is desired to weaken flux in the main air gap. The PM material provides hop-along capability for the machine in the event of a fault condition.

  14. Quasiparticle properties of the superconducting state of the two-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Gull, E.; Millis, A. J.

    2015-02-01

    Cluster dynamical mean field methods are used to calculate the normal and anomalous components of the electron self-energy of the two-dimensional Hubbard model. Issues associated with the analytical continuation of the normal and anomalous parts of the gap function are discussed. Methods of minimizing the uncertainties associated with the pseudogap-related pole in the self-energy are discussed. From these the evolution of the superconducting gap and the momentum-dependent electron spectral function across the phase diagram are determined. In the pseudogap regime, decreasing the temperature into the superconducting state leads to a decrease in the energy gap and the formation of a "peak-dip-hump" structure in the electronic density of states. The peak feature disperses very weakly. The calculated spectral functions are in good qualitative agreement with published data. The mathematical origin of the behavior is found to be the effect of the superconductivity on the pole structure giving rise to the normal state pseudogap. In particular the "hump" feature is found to arise from a zero crossing of the real part of the electron self-energy rather than from an onset of scattering. The effect of superconductivity on the zone diagonal spectra is presented.

  15. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye; Sun, Yiyang; Zhang, Shengbai; Zhang, Peihong

    The quasiparticle band gaps of organic-inorganic hybrid perovskites are often determined (and can be controlled) by various factors, complicating predictive materials optimization. Here we report a comprehensive investigation on the band gap formation mechanism in CH3NH3PbI3 by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Four major factors, namely, quasiparticle self-energy, spin-orbit coupling, volume (lattice constant) effects, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organometal hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap through a lattice distortion mechanism and by controlling the overall lattice constants (thus the chemical bonding of the optically active PbI3-). The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies. This work is supported by the National Natural Science Foundation of China (Grant No. 11328401), NSF (Grant No. DMR-0946404 and DMR-1506669), and the SUNY Networks of Excellence.

  16. Noncentrosymmetric superconductivity in a clean crystal of type II superconductor Bi-Pd

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Srinivasan; Pratap, Bhanu; Thamizhavel, A.

    2016-02-01

    In this work, we present the bulk superconductivity of a high-quality single crystal of monoclinic BiPd (α-BiPd, space group P21) below 3.8 K by studying its electrical resistivity, magnetic susceptibility, and heat capacity. This is the cleanest noncentrosymmetric superconductor (NCS) that display anisotropy due to spin-orbit scattering and also exhibits unusual superconducting properties due to s and p wave mixing as evidenced by the observation of Andreev bound state and multiple energy gaps via point contact measurements. In addition, Fermi surface studies suggest multiband superconductivity in this compound. Penetration depth studies and NQR investigations support mixing of s and p wave Copper paring in this crystal. Moroever, Muon spin rotation measurements indicate strong field dependence of the Ginzburg- Landau coefficient of this superconductor. Unusual pairing and multiband superconductivity are extremely sensitive to disorder and they can be observed only in cleanest (RRR > 170) single crystals.

  17. Universality of the dispersive spin-resonance mode in superconducting BaFe2As2.

    PubMed

    Lee, C H; Steffens, P; Qureshi, N; Nakajima, M; Kihou, K; Iyo, A; Eisaki, H; Braden, M

    2013-10-18

    Spin fluctuations in superconducting BaFe2(As(1-x)P(x))2 (x=0.34, T(c)=29.5 K) are studied using inelastic neutron scattering. Well-defined commensurate magnetic signals are observed at (π, 0), which is consistent with the nesting vector of the Fermi surface. Antiferromagnetic (AFM) spin fluctuations in the normal state exhibit a three-dimensional character reminiscent of the AFM order in nondoped BaFe2As2. A clear spin gap is observed in the superconducting phase forming a peak whose energy is significantly dispersed along the c axis. The bandwidth of dispersion becomes larger with approaching the AFM ordered phase universally in all superconducting BaFe2As2, indicating that the dispersive feature is attributed to three-dimensional AFM correlations. The results suggest a strong relationship between the magnetism and superconductivity. PMID:24182293

  18. Scanning Josephson Tunneling Microscopy of Single Crystal Bi2Sr2CaCu2O8+delta with a Conventional Superconducting Tip

    SciTech Connect

    Kimura, H.; Barber Jr., R. P.; Ono, S.; Ando, Yoichi; Dynes, Robert C.

    2009-10-28

    We have performed both Josephson and quasiparticle tunneling in vacuum tunnel junctions formed between a conventional superconducting scanning tunneling microscope tip and overdoped Bi2Sr2CaCu2O8+ single crystals. A Josephson current is observed with a peak centered at a small finite voltage due to the thermal-fluctuation-dominated superconducting phase dynamics. Josephson measurements at different surface locations yield local values for the Josephson ICRN product. Corresponding energy gap measurements were also performed and a surprising inverse correlation was observed between the local ICRN product and the local energy gap.

  19. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    SciTech Connect

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  20. Free energy gap laws for the pulse-induced and stationary fluorescence quenching by reversible charge transfer in polar solutions.

    PubMed

    Khokhlova, Svetlana S; Burshtein, Anatoly I

    2011-01-21

    The Stern-Volmer constants for either pulse-induced or stationary fluorescence being quenched by a contact charge transfer are calculated and their free energy dependencies (the free energy gap laws) are specified. The reversibility of charge transfer is taken into account as well as spin conversion in radical ion pairs, followed by their recombination in either singlet or triplet neutral products. The natural decay of triplets as well as their impurity quenching by ionization are accounted for when estimating the fluorescence quantum yield and its free energy dependence. PMID:21261326

  1. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    SciTech Connect

    Li, Z.

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  2. Superconductivity Enhancements in Small Metallic Grains

    NASA Astrophysics Data System (ADS)

    Zheng, Renrong; Chen, Zhi Qian; Zhu, Shun Quan

    The reasons for superconductivity enhancement in small metallic grains including hundreds of thousand electrons are investigated by solving the generalized gap equation based on BCS mean field theory. The analysis suggests that the superconductivity enhancement in small metallic grains are the results caused by the pairing correlation and the level statistics in the Gaussian orthogonal ensemble (GOE) and the Gaussian unitary ensemble (GUE).

  3. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te).

    PubMed

    Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J C Séamus; Ghigo, Gianluca; Gu, Genda D; Kwok, Wai-Kwong

    2015-05-01

    Maximizing the sustainable supercurrent density, J C, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because J C amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSe x Te1-x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or "columnar defects," plus a higher density of single atomic site "point" defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields. PMID:26601180

  4. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te)

    PubMed Central

    Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J. C. Séamus; Ghigo, Gianluca; Gu, Genda D.; Kwok, Wai-Kwong

    2015-01-01

    Maximizing the sustainable supercurrent density, JC, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because JC amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSexTe1−x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or “columnar defects,” plus a higher density of single atomic site “point” defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields. PMID:26601180

  5. Solitons in SO(5) Superconductivity

    NASA Astrophysics Data System (ADS)

    MacKenzie, R.

    A model unifying superconductivity and antiferromagnetism using an underlying approximate SO(5) symmetry has injected energy into the field of high-temperature superconductivity. This model might lead to a variety of interesting solitons. In this paper, the idea that superconducting vortices may have antiferromagnetic cores is presented, along with the results of some preliminary numerical work. An outlook for future work, including speculations about other possible exotic solitons, is presented.

  6. Precision phase control for the radio frequency system of K500 superconducting cyclotron at Variable Energy Cyclotron Centre, Kolkata

    SciTech Connect

    Som, Sumit; Ghosh, Surajit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Roy, Suprakash

    2013-11-15

    Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A and M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loop consists of both analogue In-phase/Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.

  7. Precision phase control for the radio frequency system of K500 superconducting cyclotron at Variable Energy Cyclotron Centre, Kolkata.

    PubMed

    Som, Sumit; Ghosh, Surajit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Roy, Suprakash

    2013-11-01

    Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A&M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loop consists of both analogue In-phase∕Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata. PMID:24289392

  8. Phenomenological theory of the superconducting state inside the hidden-order phase of URu2Si2

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Fernandes, Rafael M.

    2015-08-01

    Recent experiments have unveiled important properties of the ground state of the elusive heavy fermion URu2Si2 . While tetragonal symmetry-breaking was reported below the hidden-order (HO) transition at THO≈17.5 K , time-reversal symmetry breaking was observed below the superconducting transition temperature Tcsuperconducting state, such an order parameter is incompatible with broken tetragonal symmetry. Here, we employ a phenomenological model to investigate the properties of a chiral superconducting state that develops inside the hidden-order phase. In this case, there are actually two superconducting transition temperatures: while Tc marks a normal-state to superconducting transition, Tc*superconducting-to-superconducting transition in which time-reversal symmetry is broken. In the phase Tc*energy density of states ρ (ω ) is enhanced due to the crossing of two nodal lines, giving rise to an unusual ω ln(ω ) dependence of ρ (ω ) , which is manifested in several thermodynamic properties. We also investigate the emergence of a soft amplitude gap mode near Tc*. In contrast to the usual amplitude mode near a regular normal-state to superconducting transition, this mode becomes soft near a superconducting-to-superconducting transition, which in principle allows for its detection by Raman spectroscopy. Finally, we investigate the impact of twin domains on the anisotropic properties of the superconducting state, and propose experiments in mechanically strained samples to explore the interplay between hidden order and superconductivity in URu2Si2 .

  9. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  10. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  11. Effect of electron divergence in air gaps on the measurement of the energy of cascades in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Apanasenko, A. V.; Baradzey, L. T.; Kanevskaya, Y. A.; Smorodin, Y. A.

    1975-01-01

    The effect of an increase in electron density in the vicinity of the cascade axis caused by an avalanche passing through the gap between lead filters of the emulsion chamber was investigated experimentally. Optical densities were measured in three X-ray films spaced at 400, 800 and 1200 micrometer from the filter surface having a thickness of 6 cascade units. The optical densities of blackening spots caused by electron photon cascades of 1 to 2, 2 to 7 and greater than 7 BeV energies were measured. The results prove the presence of a gap between the filter and the nuclear emulsion which results in the underestimation of energy by several tenths of a percent.

  12. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  13. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  14. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  15. Valence band gaps and plasma energies for galena, sphalerite, and chalcopyrite natural minerals using differential optical reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Todoran, R.; Todoran, D.; Szakacs, Zs.

    2015-12-01

    The paper presents the determinations of the valence band gaps and plasma energies of the galena, sphalerite and chalcopyrite natural minerals. The work was carried out using differential optical reflectance spectroscopy of the clean mineral surfaces. The determination of the optical properties such as refractive index, real part of the complex dielectric constant and the location of certain van Hove singularities, was carried out using the Kramers-Kronig formalism.

  16. Correlation between crystallite size-optical gap energy and precursor molarities of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Benramache, S.; Belahssen, O.; Guettaf, A.; Arif, A.

    2014-04-01

    We investigated the structural and optical properties of ZnO thin films as an n-type semiconductor. The films were deposited at different precursor molarities using an ultrasonic spray method. In this paper we focused our attention on a new approach describing a correlation between the crystallite size and optical gap energy with the precursor molarity of ZnO thin films. The results show that the X-ray diffraction (XRD) spectra revealed a preferred orientation of the crystallites along the c-axis. The maximum value of the crystallite size of the films is 63.99 nm obtained at 0.1 M. The films deposited with 0.1 M show lower absorption within the visible wavelength region. The optical gap energy increased from 3.08 to 3.37 eV with increasing precursor molarity of 0.05 to 0.1 M. The correlation between the structural and optical properties with the precursor molarity suggests that the crystallite size of the films is predominantly influenced by the band gap energy and the precursor molarity. The measurement of the crystallite size by the model proposed is equal to the experimental data. The minimum error value was estimated by Eq. (4) in the higher crystallinity.

  17. ARPES Studies of Cuprate Fermiology: Superconductivity, Pseudogap and Quasiparticle Dynamics

    SciTech Connect

    Vishik, Inna

    2011-06-23

    We present angle-resolved photoemission spectroscopy (ARPES) studies of the cuprate high-temperature superconductors which elucidate the relation between superconductivity and the pseudogap and highlight low-energy quasiparticle dynamics in the superconducting state. Our experiments suggest that the pseudogap and superconducting gap represent distinct states, which coexist below T{sub c}. Studies on Bi-2212 demonstrate that the near-nodal and near-antinodal regions behave differently as a function of temperature and doping, implying that different orders dominate in different momentum-space regions. However, the ubiquity of sharp quasiparticles all around the Fermi surface in Bi-2212 indicates that superconductivity extends into the momentum-space region dominated by the pseudogap, revealing subtlety in this dichotomy. In Bi-2201, the temperature dependence of antinodal spectra reveals particle-hole asymmetry and anomalous spectral broadening, which may constrain the explanation for the pseudogap. Recognizing that electron-boson coupling is an important aspect of cuprate physics, we close with a discussion of the multiple 'kinks' in the nodal dispersion. Understanding these may be important to establishing which excitations are important to superconductivity.

  18. Enhancement of magnetic flux distribution in a DC superconducting electric motor

    NASA Astrophysics Data System (ADS)

    Hamid, N. A.; Ewe, L. S.; Chin, K. M.

    2013-06-01

    Most motor designs require an air gap between the rotor and stator to enable the armature to rotate freely. The interaction of magnetic flux from rotor and stator within the air gap will provide the thrust for rotational motion. Thus, the understanding of magnetic flux in the vicinity of the air gap is very important to mathematically calculate the magnetic flux generated in the area. In this work, a finite element analysis was employed to study the behavior of the magnetic flux in view of designing a synchronous DC superconducting electric motor. The analysis provides an ideal magnetic flux distribution within the components of the motor. From the flux plot analysis, it indicates that flux losses are mainly in the forms of leakage and fringe effect. The analysis also shows that the flux density is high at the area around the air gap and the rotor. The high flux density will provide a high force area that enables the rotor to rotate. In contrast, the other parts of the motor body do not show high flux density indicating low distribution of flux. Consequently, a bench top model of a DC superconducting motor was developed where by motor with a 2-pole type winding was chosen. Each field coil was designed with a racetrack-shaped double pancake wound using DI-BSCCO Bi-2223 superconducting tapes. The performance and energy efficiency of the superconducting motor was superior when compared to the conventional motor with similar capacity.

  19. HOM damping properties of fundamental power couplers in the superconducting electron gun of the energy recovery LINAC at Brookhaven National Laboratory

    SciTech Connect

    Hammons, L.; Hahn, H.

    2011-03-28

    Among the accelerator projects under construction at the Relativistic Heavy Ion Collider (RHIC) is an R and D energy recovery LINAC (ERL) test facility. The ERL includes both a five-cell superconducting cavity as well as a superconducting, photoinjector electron gun. Because of the high-charge and high-current demands, effective higher-order mode (HOM) damping is essential, and several strategies are being pursued. Among these is the use of the fundamental power couplers as a means for damping some HOMs. Simulation studies have shown that the power couplers can play a substantial role in damping certain HOMs, and this presentation discusses these studies along with measurements.

  20. Electronic Characterization of Defects in Narrow Gap Semiconductors-Comparison of Electronic Energy Levels and Formation Energies in Mercury Cadmium Telluride, Mercury Zinc Telluride, and Mercury Zinc Selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1996-01-01

    We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.

  1. Electronic Density of States of a Superconductor with a Spatially Varying Gap and Phase Fluctuations: A Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Valdez-Balderas, Daniel; Stroud, David

    2006-03-01

    Recent experiments have shown that the superconducting energy gap in some high-Tc superconductors is spatially inhomogeneous. Motivated by these experiments, and using exact diagonalization of a model d-wave Hamiltonian (T. Eckl et al. PRB 66 140510), combined with Monte Carlo simulations of a Ginzburg-Landau free energy functional, we have calculated the electronic density of states n(E) of a model high-Tc superconductor with an inhomogeneous gap. The free energy functional incorporates both phase and amplitude fluctuations together with quenched disorder. It leads to a superconducting transition temperature Tc well below the pseudogap temperature Tc0, and has a spatially varying gap at very low T, both consistent with experiments in underdoped Bi2212. Our calculated n(E) shows coherence peaks for T < Tc, which disappear for T > Tc. We will also present calculated results for both the global and local n(E) as a function of temperature and disorder.

  2. Long distance renewable-energy-sources power transmission using hydrogen-cooled MgB 2 superconducting line

    NASA Astrophysics Data System (ADS)

    Trevisani, L.; Fabbri, M.; Negrini, F.

    2007-02-01

    Renewable Energy Sources (RES) exploitation for electric energy and hydrogen production has been identified as one of the leading ways towards a future sustainable energy system. Hydrogen can be stored and transported in gaseous (GH 2) or liquid form (LH 2). When large hydrogen storage is required, liquefaction can be convenient with respect to compression, because of its higher storage density. LH 2 can also be used as a coolant for superconducting lines, acting at the same time as energy vector and cryogen. In particular, in this paper we focus on the MgB 2 material mainly due to economic considerations and working temperature match with LH 2. A system for large scale RES exploitation allowing flexible and controlled delivery of electric energy and LH 2 is presented. For the thermo-hydraulic design, a method is proposed which resorts to compressible fluid equations put in a convenient simplified form. A case application with 20 km distance between cooling stations is considered, and the need of taking into account LH 2 compressibility for pipeline design is shown.

  3. Superconducting linacs: some recent developments

    SciTech Connect

    Bollinger, L.M.

    1985-01-01

    The paper is a review of superconducting linacs that are of interest for heavy-ion acceleration. Most of the paper is concerned with energy boosters for projectiles from tandem electrostatic accelerators, the only application for which superconducting linacs are now used for heavy-ion acceleration. There is also a brief discussion of the concept of a superconducting injector linac being developed as a replacement of the tandem in a multi-stage acceleration system. Throughout, the emphasis is on the technology of the superconducting linac, including some attention to the relationships between resonator design parameters and accelerator performance characteristics. 21 refs., 14 figs., 3 tabs.

  4. Simulation of backgrounds in detectors and energy deposition in superconducting magnets at {mu}{sup +}{mu}{sup {minus}} colliders

    SciTech Connect

    Mokhov, N.V.; Striganov, S.I. |

    1996-01-01

    A calculational approach is described to study beam induced radiation effects in detector and storage ring components at high-energy high-luminosity {mu}{sup +} {mu}{sup {minus}} colliders. The details of the corresponding physics process simulations used in the MARS code are given. Contributions of electromagnetic showers, synchrotron radiation, hadrons and daughter muons to the background rates in a generic detector for a 2 x 2 TeV {mu}{sup +} {mu}{sup {minus}} collider are investigated. Four configurations of the inner triplet and a detector are examined for two sources: muon decays and beam halo interactions in the lattice elements. The beam induced power density in superconducting magnets is calculated and ways to reduce it are proposed.

  5. Theory of superconductivity in a three-orbital model of Sr2RuO4

    NASA Astrophysics Data System (ADS)

    Wang, Q. H.; Platt, C.; Yang, Y.; Honerkamp, C.; Zhang, F. C.; Hanke, W.; Rice, T. M.; Thomale, R.

    2013-10-01

    In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr2RuO4 is the first prime candidate for topological chiral p-wave superconductivity, which has time-reversal breaking odd-parity Cooper pairs known to exist before only in the neutral superfluid 3He. However, there are several key unresolved issues hampering the microscopic description of the unconventional superconductivity. Spin fluctuations at both large and small wave vectors are present in experiments, but how they arise and drive superconductivity is not yet clear. Spontaneous edge current is expected but not observed conclusively. Specific experiments point to highly band- and/or momentum-dependent energy gaps for quasiparticle excitations in the superconducting state. Here, by comprehensive functional renormalization group calculations with all relevant bands, we disentangle the various competing possibilities. In particular, we show the small wave vector spin fluctuations, driven by a single two-dimensional band, trigger p-wave superconductivity with quasi-nodal energy gaps.

  6. Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Jarlborg, Thomas

    2015-11-01

    Emerets's experiments on pressurized sulfur hydride have shown that H3S metal has the highest known superconducting critical temperature Tc = 203 K. The Emerets data show pressure induced changes of the isotope coefficient between 0.25 and 0.5, in disagreement with Eliashberg theory which predicts a nearly constant isotope coefficient.We assign the pressure dependent isotope coefficient to Lifshitz transitions induced by pressure and zero point lattice fluctuations. It is known that pressure could induce changes of the topology of the Fermi surface, called Lifshitz transitions, but were neglected in previous papers on the H3S superconductivity issue. Here we propose thatH3S is a multi-gap superconductor with a first condensate in the BCS regime (located in the large Fermi surface with high Fermi energy) which coexists with second condensates in the BCS-BEC crossover regime (located on the Fermi surface spots with small Fermi energy) near the and Mpoints.We discuss the Bianconi-Perali-Valletta (BPV) superconductivity theory to understand superconductivity in H3S since the BPV theory includes the corrections of the chemical potential due to pairing and the configuration interaction between different condensates, neglected by the Eliashberg theory. These two terms in the BPV theory give the shape resonance in superconducting gaps, similar to Feshbach resonance in ultracold fermionic gases, which is known to amplify the critical temperature. Therefore this work provides some key tools useful in the search for new room temperature superconductors.

  7. Korea's developmental program for superconductivity

    NASA Technical Reports Server (NTRS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  8. Executive summary of NIH workshop on the Use and Biology of Energy Drinks: Current Knowledge and Critical Gaps

    PubMed Central

    Sorkin, Barbara C; Camp, Kathryn M; Haggans, Carol J; Deuster, Patricia A; Haverkos, Lynne; Maruvada, Padma; Witt, Ellen; Coates, Paul M

    2014-01-01

    Sales of energy drinks in the United States reached $12.5 billion in 2012. Emergency department visits related to consumption of these products have increased sharply, and while these numbers remain small relative to product sales, they raise important questions regarding biological and behavioral effects. Although some common ingredients of energy drinks have been extensively studied (e.g., caffeine, B vitamins, sugars, inositol), data on other ingredients (e.g., taurine) are limited. Summarized here are data presented elsewhere in this issue on the prevalence and patterns of caffeine-containing energy drink use, the effects of these products on alertness, fatigue, cognitive functions, sleep, mood, homeostasis, as well as on exercise physiology and metabolism, and the biological mechanisms mediating the observed effects. There are substantial data on the effects of some energy drink ingredients, such as caffeine and sugars, on many of these outcomes; however, even for these ingredients many controversies and gaps remain, and data on other ingredients in caffeine-containing energy drinks, and on ingredient interactions, are sparse. This summary concludes with a discussion of critical gaps in the data and potential next steps. PMID:25293538

  9. Executive summary of NIH workshop on the Use and Biology of Energy Drinks: Current Knowledge and Critical Gaps.

    PubMed

    Sorkin, Barbara C; Camp, Kathryn M; Haggans, Carol J; Deuster, Patricia A; Haverkos, Lynne; Maruvada, Padma; Witt, Ellen; Coates, Paul M

    2014-10-01

    Sales of energy drinks in the United States reached $12.5 billion in 2012. Emergency department visits related to consumption of these products have increased sharply, and while these numbers remain small relative to product sales, they raise important questions regarding biological and behavioral effects. Although some common ingredients of energy drinks have been extensively studied (e.g., caffeine, B vitamins, sugars, inositol), data on other ingredients (e.g., taurine) are limited. Summarized here are data presented elsewhere in this issue on the prevalence and patterns of caffeine-containing energy drink use, the effects of these products on alertness, fatigue, cognitive functions, sleep, mood, homeostasis, as well as on exercise physiology and metabolism, and the biological mechanisms mediating the observed effects. There are substantial data on the effects of some energy drink ingredients, such as caffeine and sugars, on many of these outcomes; however, even for these ingredients many controversies and gaps remain, and data on other ingredients in caffeine-containing energy drinks, and on ingredient interactions, are sparse. This summary concludes with a discussion of critical gaps in the data and potential next steps. PMID:25293538

  10. Superconducting Materials

    NASA Technical Reports Server (NTRS)

    1995-01-01

    After working with Lewis Research Center and Jet Propulsion Laboratory, Superconducting Technologies, Inc. (STI) adapted NASA requirements and refined its own standard production recipe. STI uses high temperature superconducting (HTS) materials in its basic products: high quality thin films, circuits and components. Applications include microwave circuits for radar to reduce interference.

  11. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting

  12. Effect of Li-Al co-doping on the energy gaps of MgB2

    NASA Astrophysics Data System (ADS)

    Daghero, D.; Ummarino, G. A.; Tortello, M.; Delaude, D.; Gonnelli, R. S.; Stepanov, V. A.; Monni, M.; Palenzona, A.

    2009-02-01

    We studied the effects of co-doping with Li and Al on the energy gaps of MgB2 by performing point-contact Andreev-reflection spectroscopy (PCAR) in polycrystalline Mg1-x(AlαLi1-α)xB2 samples with x<=0.4. Even though the lattice parameters and the critical temperature of the compound simply scale with the effective Al content αx, irrespective of the Li concentration, the energy gaps do not. In particular, for a given effective Al content, the comparison with Mg1-y(Al)yB2 with y = αx shows that the σ bandgap is practically the same while the π bandgap is higher. A clear gap merging is observed in the most doped sample (x = 0.4) when Tc<20 K. The results are discussed within the two-band Eliashberg theory and compared to the outcomes of first-principles calculations of the effects of Li and Al co-doping on the electronic structure of magnesium diboride.

  13. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  14. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P.; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C. Stephen; Levy, Jeremy

    2015-05-01

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity.

  15. Thermoelectric effects in triple quantum dots coupled to a normal and a superconducting leads

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Ping; Zhang, Yu-Ying; Wang, Qiang; Li, Zhi-Jian; Nie, Yi-Hang

    2016-02-01

    The thermoelectric transport properties through laterally coupled triple quantum dots attached to a metal and a superconducting electrodes are investigated theoretically in the linear response regime. We calculate thermoelectric quantities by means of non-equilibrium Green's function, analyze their dependence on the energy gap, interdot coupling and Coulomb interaction, and discuss the effects of quantum interference, Coulomb blockade, Andreev reflection and bipolar effect on these quantities in transport process. Our results show that at low temperature the superconducting electrode suppresses the thermal conductance and enhances the thermopower outside the gap, which favors the improvement of figure of merit. In particular, the enhancement function of tunneling coupling between quantum dots and Coulomb blockade on figure of merit, compared with the system with two normal metal electrodes, is greatly increased due to the existence of the gap.

  16. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  17. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  18. Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations

    NASA Astrophysics Data System (ADS)

    Einollahzadeh, H.; Dariani, R. S.; Fazeli, S. M.

    2016-03-01

    In this paper, we consider the optimum coordinate of the penta-graphene. Penta-graphene is a new stable carbon allotrope which is stronger than graphene. Here, we compare the band gap of penta-graphene with various density functional theory (DFT) methods. We plot the band structure of penta-graphene which calculated with the generalized gradient approximation functional HTCH407, about Fermi energy. Then, one-shot GW (G0W0) correction for precise computations of band structure is applied. Quasi-direct band gap of penta-graphene is obtained around 4.1-4.3 eV by G0W0 correction. Penta-graphene is an insulator and can be expected to have broad applications in future, especially in nanoelectronics and nanomechanics.

  19. Measurements of energy gap at the level anti-crossing region of the photo-excited triplet state of organic molecules

    NASA Astrophysics Data System (ADS)

    Yang, Tran-Chin; Sloop, David J.; Weissman, S. I.; Lin, Tien-Sung

    2000-12-01

    By the application of zero-field magnetic resonance (ZFMR)/FID technique and fast-field sweeping around the level anti-crossing region with fixed rf frequency, we obtained the (minimum) energy gaps between the two crossing levels as 16.7±2.0 and 14.3±3.7 MHz for pentacene-h 14 in p-terphenyl and pentacene-d 14 in p-terphenyl, respectively, when B0∥ x. The minimum energy gaps occur at 14 mT for both systems. The hyperfine interaction contributes only partially to the observed energy gap.

  20. Numerical analyses of magnetic field and force in toroidal superconducting magnetic energy storage using unit coils (abstract)

    SciTech Connect

    Kanamaru, Y.; Nakayama, T.; Amemiya, Y.

    1997-04-01

    Superconducting magnetic energy storage (SMES) is more useful than other systems of electric energy storage because of its larger amounts of stored energy and its higher efficiency. There are two types of SMES. One is the solenoid type and the other is the toroidal type. Some models of solenoid-type SMES are designed in the U.S. and in Japan. But the large scale SMES causes a high magnetic field in the living environment, and causes the erroneous operation of electronic equipment. The authors studied some suitable designs of magnetic shielding for the solenoidal-type SMES to reduce the magnetic field in the living environment. The toiroidal type SMES is studied in this article. The magnetic leakage flux of the toiroidal-type SMES is generally lower than that of the solenoid-type SMES. The toroidal-type SMES is constructed of unit coils, which are convenient for construction. The magnetic leakage flux occurs between unit coils. The electromagnetic force of the coils is very strong. Therefore analyses of the leakage flux and electromagnetic force are important to the design of SMES. The authors studied the number, radius, and length of unit coils. The storage energy is 5 G Wh. The numerical analyses of magnetic fields in the toroidal type SMES are obtained by analytical solutions. {copyright} {ital 1997 American Institute of Physics.}

  1. Coexistence of antiferromagnetism and d+id superconducting correlations in the graphene bilayer

    NASA Astrophysics Data System (ADS)

    Milovanović, M. V.; Predin, S.

    2012-11-01

    We discuss the t-J-U model on a honeycomb monolayer that has the same low-energy description of the kinetic term as the graphene bilayer, and in particular study coexistence of antiferromagnetism and superconducting correlations that originate from Cooper pairs without phase coherence. We show that the model is relevant for the description of the graphene bilayer and that the presence of the d+id superconducting correlations with antiferromagnetism can lead to quadratic dependence in small magnetic fields of the gap of the effective monolayer consistent with the transport measurements of Velasco on the graphene bilayer.

  2. Effects of low-lying excitations on ground-state energy and energy gap of the Sherrington-Kirkpatrick model in a transverse field

    NASA Astrophysics Data System (ADS)

    Koh, Yang Wei

    2016-04-01

    We present an extensive numerical study of the Sherrington-Kirkpatrick model in a transverse field. Recent numerical studies of quantum spin glasses have focused on exact diagonalization of the full Hamiltonian for small systems (≈20 spins). However, such exact numerical treatments are difficult to apply on larger systems. We propose making an approximation by using only a subspace of the full Hilbert space spanned by low-lying excitations consisting of one-spin-flipped and two-spin-flipped states. The approximation procedure is carried out within the theoretical framework of the Hartree-Fock approximation and configuration interaction. Although not exact, our approach allows us to study larger system sizes comparable to that achievable by state-of-the-art quantum Monte Carlo simulations. We calculate two quantities of interest due to recent advances in quantum annealing, the ground-state energy and the energy gap between the ground and first excited states. For the energy gap, we derive a formula that enables it to be calculated using just the ground-state wave function, thereby circumventing the need to diagonalize the Hamiltonian. We calculate the scalings of the energy gap and the leading correction to the extensive part of the ground-state energy with system size, which are difficult to obtain with current methods.

  3. Chern mosaic: Topology of chiral superconductivity on ferromagnetic adatom lattices

    NASA Astrophysics Data System (ADS)

    Röntynen, Joel; Ojanen, Teemu

    2016-03-01

    In this work, we will explore the properties of superconducting surfaces decorated by two-dimensional ferromagnetic adatom lattices. As discovered recently [Röntynen and Ojanen, Phys. Rev. Lett. 114, 236803 (2015), 10.1103/PhysRevLett.114.236803], in the presence of a Rashba spin-orbit coupling these systems may support topological superconductivity with complex phase diagrams and high Chern numbers. We show how the long-range hopping nature of the effective low-energy theory generically gives rise to a phase diagram covered by a Chern mosaic, a rich pattern of topological phases with large Chern numbers. We study different lattice geometries and the dependence of energy gaps and abundance of different phases as a function of system parameters. Our findings establish the studied system as one of the richest platforms for topological matter known to date.

  4. Superconducting nanostructured materials.

    SciTech Connect

    Metlushko, V.

    1998-07-13

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines.

  5. Energy band gap, intrinsic carrier concentration, and Fermi level of CdTe bulk crystal between 304 and 1067 K

    NASA Astrophysics Data System (ADS)

    Su, Ching-Hua

    2008-04-01

    Optical transmission measurements were performed on CdTe bulk single crystals. It was found that when sliced and polished CdTe wafers were used, a white film started to develop on the sample surface and the wafer became opaque when it was heated above 530K. Therefore, a bulk crystal of CdTe was first grown in the window area by physical vapor transport. The optical transmission was then measured between 304 and 1067K and from which the energy band gap was derived. The band gaps of CdTe can fit well as a function of temperature by the Varshni expression. Using the band gap data, the high temperature electron-hole equilibrium was numerically calculated by assuming Kane's conduction band structure and a light-hole and a heavy-hole parabolic valence bands. The calculated intrinsic carrier concentrations agree well with the experimental data previously reported. The calculated intrinsic Fermi levels between 200 and 1200K were also presented.

  6. First-principles data-driven discovery of new low-band-gap oxides for solar energy capture and conversion

    NASA Astrophysics Data System (ADS)

    Yan, Qimin; Chen, Wei; Jain, Anubhav; Persson, Kristin; Neaton, Jeffery B.

    2014-03-01

    We develop first-principles data driven discovery approach to explore experimentally-known oxide compounds with low band gaps. Cr-based oxide compounds comprise a nice test bed for assessing high throughput discovery of light absorbers and photocatalysts. An interesting subclass with promising band gaps, this Cr oxide testbed spans a range of electronic and magnetic properties; predicting trends across such a range can challenge for standard density functional theory and many-body perturbation theory. We focus on this set and implement a broadly-applicable high-throughput workflow for calculation of band gaps, adsorption spectra, and band edges, initially using semi-local and hybrid functionals. We develop best practices for analysis of these data, and successfully identify several promising new compounds for solar energy capture and conversion applications, which we then apply more rigorous many-body perturbation theory including GW method and beyond to further study their optical and electronic properties. This work was supported by DOE through the Materials Project; computational resources provided by NERSC.

  7. NLO vertex for a forward jet plus a rapidity gap at high energies

    SciTech Connect

    Hentschinski, Martin; Madrigal Martínez, José Daniel; Murdaca, Beatrice; Vera, Agustín Sabio

    2015-04-10

    We present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov’s effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green’s function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets)

  8. Inhomogeneous superconductivity

    NASA Astrophysics Data System (ADS)

    Covaci, Lucian

    We have studied the effects of inhomogeneities like surfaces, interfaces and disorder on the properties of s-wave and d-wave superconductors. The description of such inhomogeneous scenarios is very important, as they have a big influence on experimental observations. Tunneling experiments on the surface of superconductors will have a direct look into these peculiar surface states, like the zero bias conductance peak and the Andreev bound states. Using the tight-binding Extended Hubbard Hamiltonian, we numerically solve the discretized Bogoliubov-de Gennes equations applied to various inhomogeneous problems. We use simplifications due to the symmetries of surfaces, to solve problems like superconductivity near a surface, the giant proximity effect and the formation of Andreev bound states. Full two-dimensional calculations are employed to describe rough surfaces, finite size systems and the localization of the Andreev bound states in finite size samples. We find that the order parameter near surfaces exhibits Friedel-like oscillations on the order of the Fermi wavelength, and that interference effects occur in finite size systems. Major differences between the properties of d-wave superconductors near the (100) surface as compared to the (110) surface are uncovered. Zero energy bound states are present not only at the (110) surface of a d-wave superconductor, but also in a normal metal layer sitting on top of a d-wave superconductor. We demonstrate that rough surfaces of d-wave superconductors will acquire zero energy bound states at any surface orientation. We observe that Andreev bound states form in a normal metal when it is in proximity to a superconductor, and we show that in the case of finite size systems these states are localized in different locations depending on their energy.

  9. Superconducting terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Singh, Ranjan; O' Hara, John F; Azad, Abul K; Trugman, Stuart A; Jia, Quanxi; Taylor, Antoinette J

    2010-01-01

    During the past ten years subwavelength metallic structures have enabled metamaterials exhibiting exotic physical properties that are not possible or difficult to realize using naturally occurring materials, This bottom-up metamaterial approach is particularly attractive in the terahertz (THz) frequency range, where the THz gap is inherently associated with the lack of materials with appropriate reponse. In fact THz metamaterial devices have accomplished unprecedented performance towards practical applications. In these devices, the key is to incorporate natural materials, e,g, semiconductors, as the metamaterial substrates or integration parts of metamaterial structures. The active or dynamic tunability of metamaterials is through the application of external stimuli such as temperature, photoexcitation, or electric field. to modify the capacitive gaps in split-ring resonators (SRRs), It becomes clear that we would not be able to do much on the metallic SRRs, i.e. the metal conductivity and therefore the inductance largely remain constant not affected by external stimuli. Recently, there has been increasing interest in superconducting metamaterials towards loss reduction. Significant Joule losses have often prevented resonant metal metamaterials from achieving proposed applications. particularly in the optical frequency range. At low temperatures, superconducting materials possess superior conductivity than metals at frequencies up to THz. and therefore it is expected that superconducting melamaterials will have a lower loss than metal metamatetials, More interestingly, superconductors exhibit tunable complex conductivity over a wide range of values through change of temperature and application of photoexcitation, electrical currents and magnetic fields. Therefore, we would expect correspondingly tunable metamaterials. which originate from the superconducting materials composing the metamaterial, in contrast to tuning the metamaterial embedded environment.

  10. Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian

    2016-01-01

    We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.

  11. Th-doped URu 2Si 2: influence of “Kondo holes” on coexisting superconductivity and magnetism

    NASA Astrophysics Data System (ADS)

    de la Torre, A. Lopez; Visani, P.; Dalichaouch, Y.; Lee, B. W.; Maple, M. B.

    1992-07-01

    The effect of thorium impurities on superconductivity and antiferromagnetism, which coexist below the superconducting critical temperature Tc, has been investigated in the heavy electron compound URu 2Si 2. The substitution of up to 5 at% Th for U was found to (1) enhance the low temperature normal state magnetic susceptibility and electronic specific heat coefficient γ, (2) broaden the superconducting and antiferromagnetic transitions, (3) suppress the specific heat jump associated with the superconductivity at Tc and antiferromagnetism at the Néel temperature TN, and (4) induce a Kondo-like minimum in the electrical resistivity at low temperatures. The increase in γ and decrease in TN and the antiferromagnetic energy gap Δ with negative “chemical pressure” associated with the substitution of Th for U correlates with the decrease in γ and increase in TN and Δ upon application of an external pressure.

  12. Coexistence of the spini-density-wave and superconductivity in the Ba1-xKxFe2As2

    SciTech Connect

    Bao, Wei; Chen, H; Ren, Y; Qiu, Y; Liu, R; Wu, G H; Wu, T; Xie, Y L; Wang, F; Huang, Q; Chen, X H

    2008-01-01

    The relation between the spin-density-wave (SDW) and superconducting order is a central topic in current research on the FeAs-based high T{sub c} superconductors. Conflicting results exist in the LaFeAs(O,F)-class of materials, for which whether the SDW and superconductivity are mutually exclusive or they can coexist has not been settled. Here we show that for the (Ba,K)Fe{sub 2}As{sub 2} system, the SDW and superconductivity can coexist in an extended range of compositions. The availability of single crystalline samples and high value of the energy gaps would make the materials a model system to investigate the high T{sub c} ferropnictide superconductivity.

  13. Coexistence of the spin-density-wave and superconductivity in the Ba1-xKxFe2As2

    NASA Astrophysics Data System (ADS)

    Ren, Yang; Chen, H.; Qiu, Y.; Bao, Wei; Liu, R. H.; Wu, G.; Wu, T.; Xie, Y. L.; Wang, X. F.; Huang, Q.; Chen, X. H.

    2009-03-01

    The relation between the spin-density-wave (SDW) and superconducting order is a central topic in current research on the FeAs-based high Tc superconductors. Conflicting results exist in the LaFeAs(O,F)-class of materials, for which whether the SDW and superconductivity are mutually exclusive or they can coexist has not been settled. Here we show that for the (Ba,K)Fe2As2 system, the SDW and superconductivity can coexist in an extended range of compositions. The availability of single crystalline samples and high value of the energy gaps would make the materials a model system to investigate the high Tc ferropnictide superconductivity. [arXiv:0807.3950 (2008)

  14. Coexistence of the spin-density wave and superconductivity in Ba1-xKxFe2As2

    NASA Astrophysics Data System (ADS)

    Chen, H.; Ren, Y.; Qiu, Y.; Bao, Wei; Liu, R. H.; Wu, G.; Wu, T.; Xie, Y. L.; Wang, X. F.; Huang, Q.; Chen, X. H.

    2009-01-01

    The relation between the spin-density wave (SDW) and superconducting order is a central topic in the current research on the FeAs-based high-TC superconductors. Conflicting results exist in the LaFeAs(O, F)-class of materials, for which whether the SDW and superconductivity are mutually exclusive or they can coexist has not been settled. Here we show that for the (Ba, K)Fe2As2 system, the SDW and superconductivity can coexist in an extended range of compositions. The availability of single crystalline samples and high value of the energy gaps would make the materials a model system to investigate the high-TC ferropnictide superconductivity.

  15. Evidence from tunneling spectroscopy for a quasi-one-dimensional origin of superconductivity in Sr2RuO4

    NASA Astrophysics Data System (ADS)

    Lederer, S.; Firmo, I. A.; Lupien, C.; MacKenzie, A. P.; Davis, J. C.; Kivelson, S. A.

    2014-03-01

    To establish the mechanism of unconventional superconductivity in Sr2RuO4, a prerequisite is direct information concering the momentum-space structure of the energy gaps Δi(k) , and in particular whether the pairing strength is stronger (``dominant'') on the quasi-one-dimensional (α and β) or on the quasi-two-dimensional (γ) Fermi surfaces. We present scanning tunneling spectroscopy measurements of the density of states spectra in the superconducting state of Sr2RuO4 for 0 . 1Tc < T superconducting gape scale with maximum value 2 Δ ~ 5Tc , along with a spectral shape indicative of line nodes is consistent, within a weak-coupling model, with magnetically mediated odd-parity superconductivity generated by dominant, near-nodal Cooper pairing on the α and β bands.

  16. Fermionic scenario for the destruction of superconductivity in ultrathin MoC films evidenced by STM measurements

    NASA Astrophysics Data System (ADS)

    Szabó, P.; Samuely, T.; Hašková, V.; Kačmarčík, J.; Žemlička, M.; Grajcar, M.; Rodrigo, J. G.; Samuely, P.

    2016-01-01

    We use sub-Kelvin scanning tunneling spectroscopy to investigate the suppression of superconductivity in homogeneously disordered ultrathin MoC films. We observe that the superconducting state remains spatially homogeneous even on the films of 3-nm thickness. The vortex imaging suggests the global phase coherence in our films. Upon decreasing thickness, when the superconducting transition drops from 8.5 to 1.2 K, the superconducting energy gap Δ follows Tc perfectly. All this is pointing to a two-stage fermionic scenario of the superconductor-insulator transition (SIT) via a metallic state as an alternative to the direct bosonic SIT scenario with a Cooper-pair insulating state evidenced by the past decade STM experiments.

  17. Athermal Energy Loss from X-Rays Deposited in Thin Superconducting Bilayers on Solid Substrates

    NASA Technical Reports Server (NTRS)

    Bandler, Simon R.; Kozorezov, Alexander; Balvin, Manuel A.; Busch, Sarah E.; Nagler, Peter N.; Porst, Jan-Patrick; Smith, Stephen J.; Stevenson, Thomas R.; Sadleir, John E.; Seidel, George M.

    2012-01-01

    An important feature that determines the energy resolution of any type of thin film microcalorimeter is the fraction of athermal energy that can be lost to the heat bath prior to the device coming into thermal equilibrium.

  18. Nonequilibrium superconducting detectors

    NASA Astrophysics Data System (ADS)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  19. Note: Determination of temperature dependence of GaP bandgap energy from diode temperature response characteristics

    NASA Astrophysics Data System (ADS)

    Krasnov, V. A.; Shutov, S. V.; Shwarts, Yu. M.; Yerochin, S. Yu.

    2011-08-01

    A simple method of Eg(T) dependence determination for active areas of semiconductor devices based on wide bandgap semiconductors has been proposed and developed. Verification of the method has been carried out while determining Eg(T) dependence in a base area of p+-n-type GaP diodes in the temperature range 77-523 K. The method is based on U-T characterization of the diodes and calculation of Eg(T) dependence according to the expression obtained within present study. Satisfactory agreement between experimental and theoretical results has been achieved including references available on gallium phosphide. The method proposed could be applied to experimental data processing in high-temperature thermometry.

  20. Fields and forces in flywheel energy storage with high-temperature superconducting bearings

    SciTech Connect

    Turner, L.R.

    1996-05-01

    The development of low-loss bearings employing high-temperature superconductors has brought closer the advent of practical flywheel energy storage systems. These systems require magnetic fields and forces for levitation, stabilization, and energy transfer. This paper describes the status of experiments on flywheel energy storage at Argonne National Laboratory and computations in support of that project, in particular computations for the permanent-magnet rotor of the motor-generator that transfers energy to and from the flywheel, for other energy-transfer systems under consideration, and for the levitation and stabilization subsystem.

  1. Fields and forces in flywheel energy storage with high-temperature superconducting bearings

    SciTech Connect

    Turner, L.R.

    1997-03-01

    The development of low-loss bearings employing high-temperature superconductors has brought closer the advent of practical flywheel energy storage systems. These systems require magnetic fields and forces for levitation, stabilization, and energy transfer. This paper describes the status of experiments on flywheel energy storage at Argonne National Laboratory and computations in support of that project, in particular computations for the permanent-magnet rotor of the motor-generator that transfers energy to and from the flywheel, for other energy-transfer systems under consideration, and for the levitation and stability subsystems.

  2. Visualizing the Atomic-scale Influence on Superconductivity and Vortex Pinning of High-Energy Ion Irradiation in FeSeTe

    NASA Astrophysics Data System (ADS)

    Sprau, Peter; Massee, Freek; Wang, Yonglei; Davis, J. C. Seamus; Gu, Genda; Kwok, Wai-Kwong

    2015-03-01

    The maximum sustainable supercurrent density, JC, may be greatly enhanced by preventing dissipative motion of quantized vortices. Irradiation of superconductors with heavy ions is often used to create nanoscale defects with deep pinning potential for the vortices and this approach holds great promise for high current applications of iron-based superconductivity. However, for these compounds virtually nothing is known directly about the atomic-scale interplay between the crystal damage from high-energy ions, the superconducting order parameter, and the vortex pinning processes. Here, we visualize the atomic-scale effects of irradiating FeSe0.45Te0.55 with 249 MeV Au ions and find two distinct forms of damage: compact regions of crystal disruption ascribable to the actual ion trajectory along with single atomic-site `point' defects. We show directly that the superconducting order is virtually annihilated within the former while it is strongly altered by the latter. Simultaneous atomically-resolved images of the crystal defects, the superconducting density-of-states, and the vortex cores, then reveal how the vortex pinning evolves with increasing field in irradiating FeSe0.45Te0.55.

  3. Anomalous Energy Gaps of the Odd Denominator Fractional Quantum Hall States in Different Spin Branches of the Second Landau Level

    NASA Astrophysics Data System (ADS)

    Kleinbaum, Ethan; Kumar, Ashwani; Manfra, Michael; Pfeiffer, Loren; West, Ken; Csathy, Gabor

    2013-03-01

    The nature of the fractional quantum Hall states forming in the second Landau level, including those with odd denominator Landau level filling factors, remain unknown. Conjectures of nonconventional origins have lead to the investigation of several odd denominator states in the lower spin branch of the second Landau level, such as the ones at ν=2+1/3 and 2+2/3. We report first measurements of the energy gaps in the upper spin branch of the second Landau level at ν=3+1/3, 3+2/3, 3+1/5 and 3+4/5. A comparison of the energy gaps of these states to those of their counterparts in the lower spin branch reveals a surprising reversal in the relative magnitudes of the states at partial filling factors 1/3 and 1/5. We explore possible explanations of this unusual observation. The work at Purdue was supported by the DOE BES contract no. DE-SC0006671. K.K. West and L.N. Pfeiffer acknowledge the support of the Princeton NSF-MRSEC and the Moore Foundation.

  4. Optical absorption of divalent metal tungstates: Correlation between the band-gap energy and the cation ionic radius

    NASA Astrophysics Data System (ADS)

    Lacomba-Perales, R.; Ruiz-Fuertes, J.; Errandonea, D.; Martínez-García, D.; Segura, A.

    2008-08-01

    We have carried out optical-absorption and reflectance measurements at room temperature in single crystals of AWO4 tungstates (A=Ba, Ca, Cd, Cu, Pb, Sr, and Zn). From the experimental results their band-gap energy has been determined to be 5.26 eV (BaWO4), 5.08 eV (SrWO4), 4.94 eV (CaWO4), 4.15 eV (CdWO4), 3.9-4.4 eV (ZnWO4), 3.8-4.2 eV (PbWO4), and 2.3 eV (CuWO4). The results are discussed in terms of the electronic structure of the studied tungstates. It has been found that those compounds where only the s electron states of the A2+ cation hybridize with the O 2p and W 5d states (e.g., BaWO4) have larger band-gap energies than those where also p, d, and f states of the A2+ cation contribute to the top of the valence band and the bottom of the conduction band (e.g., PbWO4). The results are of importance in view of the large discrepancies existent in prevoiusly published data.

  5. Effect of Al Doping on Optical Band Gap Energy of Al-TiO2 Thin Films.

    PubMed

    Song, Yo-Seung; Kim, Bae-Yeon; Cho, Nam-Ihn; Lee, Deuk Yong

    2015-07-01

    Al-TiO2 thin films were prepared using a sol-gel derived spin coating by varying the Al/Ti molar ratio from 0 to 0.73 to investigate the effect of Al doping on the optical band gap energy (Eg) of the films. GAXRD results indicated that Al-TiO2 is composed of anatase and FTO phases when the Al/Ti molar ratio was less than 0.18. Above 0.38, no other peaks except FTO were found and transparency of the films was severely deteriorated. Eg of Al-TiO2 decreased from 3.20 eV to 2.07 eV when the Al/Ti ratio was raised from 0 to 0.38. Eg of 2.59 eV was found for the anatase Al-TiO2 films having the Al/Ti ratio of 0.18. The absorption band of Al-TiO2 coatings shifted dramatically from the UV region to the visible region with increasing the amount of Al dopant. The Al doping was mainly attributed to the optical band gap energy of Al-TiO2. PMID:26373112

  6. Attenuation in Superconducting Rectangular Waveguides

    NASA Astrophysics Data System (ADS)

    Yeap, Kim Ho; Mei Teh, Joyce Shu; Nisar, Humaira; Yeong, Kee Choon; Hirasawa, Kazuhiro

    2015-03-01

    We present an accurate analysis on the attenuation of waves, propagating in rectangular waveguides with superconducting walls. The wavenumbers kx and ky in the x and y directions, respectively, are first obtained as roots of a set of transcendental equations developed by matching the tangential fields at the surface of the wall with the electrical properties of the wall material. The complex conductivity of the superconducting waveguide is obtained from the extended Mattis-Bardeen theory. The propagation constant kz is found by substituting the values of kx and ky into the dispersion relation. We have computed and compared the loss in the waveguides below and above the critical temperature. At frequencies above the cutoff frequency fc but below the gap frequency fg, the loss in the superconducting waveguide is significantly lower than that in a normal conducting waveguide. Above the gap frequency, however, the result indicates that the attenuation in the waveguide below the critical temperature is higher than that at room temperature. We attribute the higher loss as due to the higher surface resistance and field penetration for superconducting waveguides operating above the gap frequency.

  7. Kinetics of thermal-assisted delayed fluorescence in blue organic emitters with large singlet-triplet energy gap.

    PubMed

    Dias, Fernando B

    2015-06-28

    The kinetics of thermally activated delayed fluorescence (TADF) is investigated in dilute solutions of organic materials with application in blue light-emitting diodes (OLEDs). A method to accurately determine the energy barrier (ΔEa) and the rate of reverse intersystem crossing (kRisc) in TADF emitters is developed, and applied to investigate the triplet-harvesting mechanism in blue-emitting materials with large singlet-triplet energy gap (ΔEST). In these materials, triplet-triplet annihilation (TTA) is the dominant mechanism for triplet harvesting; however, above a threshold temperature TADF is able to compete with TTA and give enhanced delayed fluorescence. Evidence is obtained for the interplay between the TTA and the TADF mechanisms in these materials. PMID:25987577

  8. Attempting to bridge the gap between laboratory and seismic estimates of fracture energy

    USGS Publications Warehouse

    McGarr, A.; Fletcher, Joe B.; Beeler, N.M.

    2004-01-01

    To investigate the behavior of the fracture energy associated with expanding the rupture zone of an earthquake, we have used the results of a large-scale, biaxial stick-slip friction experiment to set the parameters of an equivalent dynamic rupture model. This model is determined by matching the fault slip, the static stress drop and the apparent stress. After confirming that the fracture energy associated with this model earthquake is in reasonable agreement with corresponding laboratory values, we can use it to determine fracture energies for earthquakes as functions of stress drop, rupture velocity and fault slip. If we take account of the state of stress at seismogenic depths, the model extrapolation to larger fault slips yields fracture energies that agree with independent estimates by others based on dynamic rupture models for large earthquakes. For fixed stress drop and rupture speed, the fracture energy scales linearly with fault slip.

  9. Strained graphene Josephson junction with anisotropic d-wave superconductivity

    NASA Astrophysics Data System (ADS)

    Goudarzi, H.; Khezerlou, M.; Kamalipour, H.

    2015-07-01

    Effect of proximity-induced superconductivity in the new two-dimensional structures, as graphene and topological insulator on the Andreev bound states (ABSs) and Josephson supercurrent has attracted much efforts. Motivated by this subject, we study, in particular, the influence of anisotropic Fermi velocity and unconventional d-wave pairing in a strained graphene-based superconductor/normal/ superconductor junction. Strain is applied in the zigzag direction of graphene sheet. In this process, effect of zero energy states and Fermi wavevector mismatch are investigated. It is shown, that strain up to 22% in graphene lattice differently affects Josephson currents in parallel and perpendicular directions of strain. Strain causes to exponentially decrease the supercurrent in the strain direction, whereas increase for other direction. We find that, in one hand, the ABSs strongly depend on strain and, on the other hand, a gap opens in the states with respect to non-zero incidence angle of quasiparticles, where a period of 2 π is obtained for Andreev states. Moreover, we observe no gap for θs ≠ 0 , when the zero energy states (ZESs) occur in α = π / 4 due to anisotropic superconducting gap. In this case, ABSs have a period of 4 π .S

  10. Superconducting accelerating structures for very low velocity ion beams

    SciTech Connect

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  11. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.; Li, Wei-Gang

    1995-01-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  12. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    NASA Astrophysics Data System (ADS)

    Patterson, James D.; Li, Wei-Gang

    1995-03-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  13. Superconductivity and ferromagnetism in topological insulators

    NASA Astrophysics Data System (ADS)

    Zhang, Duming

    Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but conducting at the surface or edges. This peculiar behavior is characterized by an insulating bulk energy gap and gapless surface or edge states, which originate from strong spin-orbit coupling and time-reversal symmetry. The spin and momentum locked surface states not only provide a model system to study fundamental physics, but can also lead to applications in spintronics and dissipationless electronics. While topological insulators are interesting by themselves, more exotic behaviors are predicted when an energy gap is induced at the surface. This dissertation explores two types of surface state gap in topological insulators, a superconducting gap induced by proximity effect and a magnetic gap induced by chemical doping. The first three chapters provide introductory theory and experimental details of my research. Chapter 1 provides a brief introduction to the theoretical background of topological insulators. Chapter 2 is dedicated to material synthesis principles and techniques. I will focus on two major synthesis methods: molecular beam epitaxy for the growth of Bi2Se3 thin films and chemical vapor deposition for the growth of Bi2Se3 nanoribbons and nanowires. Material characterization is discussed in Chapter 3. I will describe structural, morphological, magnetic, electrical, and electronic characterization techniques used to study topological insulators. Chapter 4 discusses the experiments on proximity-induced superconductivity in topological insulator (Bi2Se3) nanoribbons. This work is motivated by the search for the elusive Majorana fermions, which act as their own antiparticles. They were proposed by Ettore Majorara in 1937, but have remained undiscovered. Recently, Majorana's concept has been revived in condensed matter physics: a condensed matter analog of Majorana fermions is predicted to exist when topological insulators are interfaced with superconductors. The observation of Majorana fermions would not only be fundamentally important, but would also lead to applications in fault-tolerant topological quantum computation. By interfacing topological insulator nanoribbons with superconducting electrodes, we observe distinct signatures of proximity-induced superconductivity, which is found to be present in devices with channel lengths that are much longer than the normal transport characteristic lengths. This might suggest preferential coupling of the proximity effect to a ballistic surface channel of the topological insulator. In addition, when the electrodes are in the superconducting state, we observe periodic magnetoresistance oscillations which suggest the formation of vortices in the proximity-induced region of the nanoribbons. Our results demonstrate that proximity-induced superconductivity and vortices can be realized in our nanoribbon geometry, which accomplishes a first important step towards the search for Majorana fermions in condensed matter. In Chapter 5, I will discuss experiments on a magnetically-doped topological insulator (Mn-doped Bi2Se3) to induce a surface state gap. The metallic Dirac cone surface states of a topological insulator are expected to be protected against small perturbations by time-reversal symmetry. However, these surface states can be dramatically modified and a finite energy gap can be opened at the Dirac point by breaking the time-reversal symmetry via magnetic doping. The interplay between magnetism and topological surface states is predicted to yield novel phenomena of fundamental interest such as a topological magneto-electric effect, a quantized anomalous Hall effect, and the induction of magnetic monopoles. Our systematic measurements reveal a close correlation between the onset of ferromagnetism and quantum corrections to diffusive transport, which crosses over from the symplectic (weak anti-localization) to the unitary (weak localization) class. A comprehensive interpretation of data obtained from electrical transport, angle-resolved photoemission spectroscopy, superconducting quantum interference device magnetometry, and scanning tunneling microscopy indicates that the ferromagnetism responsible for modifications in the surface states occurs in nanoscale regions on the surface where magnetic atoms segregate during sample growth. This suggests that some aspects of the observed magnetoconductance may indeed originate from surface transport despite the non-ideal nature of the samples. These observations are consistent with the prediction of a time-reversal symmetry breaking gap, which is further supported by angle-resolved photoemission spectroscopy measurements.

  14. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as part of a persistent-current circuit having an inductance of 1 mH. A current was induced in a loop, and no attenuation of the current after a time interval 1,000 s was discernible in a measurement having a fractional accuracy of 10(exp -4): This observation supports the conclusion that the weld had an electrical resistance <10(exp -10) omega.

  15. Investigation of gap-closing interdigitated capacitors for electrostatic vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Oxaal, John; Foster, Daniel; Hella, Mona; Borca-Tasciuc, Diana-Andra

    2015-10-01

    This paper reports on the dynamic characteristics of a MEMS electrostatic harvester employing interdigitated gap-closing topology. Devices are fabricated using SOIMUMPS technology and are characterized with and without biasing voltages for a broad range of excitation accelerations. At low vibration amplitudes the presence of a dc bias causes the resonant frequency peak to shift to lower frequencies with increasing bias. At higher vibration amplitudes the dynamic response of the devices exhibits the behavior of a Duffing oscillator with spring softening due to nonlinear stiffness attributed to the effect of electrostatic forces. Specifically, the devices exhibit sweep direction hysteresis with jump phenomena due to the multivaluedness of the response curve. Amplitude sweeps at constant frequency and varying bias voltage also show jump phenomena, highlighting how slight differences in operating conditions dramatically affect device performance. Spring hardening effects are reported for devices contaminated with dust particles. The paper also discusses SOIMUMPS limitations, the importance of reducing off-axis vibration during testing, characterization methods, and the effect of grounding on parasitic capacitance.

  16. Picosecond nonradiative processes in neodymium-doped crystals and glasses: mechansim for the energy gap law

    SciTech Connect

    Bibeau, C.; Payne, S.A.

    1997-09-29

    We present measurements of the 4G7/2 emission lifetime for 26 Nd-doped materials. A model of nonradiative decay based on dipole-dipole energy transfer is developed and found to be supported by our data.

  17. Attempting to Bridge the Gap Between Laboratory and Seismic Estimates of Fracture Energy

    NASA Astrophysics Data System (ADS)

    McGarr, A.; Beeler, N. M.; Fletcher, J. B.

    2003-12-01

    The elastic strain energy released during an earthquake is partitioned into energy radiated by the seismic waves, work expended to overcome frictional resistance, and the fracture energy consumed as the rupture surface expands. Of these three components, the fracture energy Gc is perhaps the least understood and, in particular, attempts to relate laboratory estimates of this component to counterparts measured seismically for earthquakes have been controversial. Because of its important role in the development of dynamic rupture models of earthquakes, it is important to be able to understand the behavior of Gc, especially its dependence on the state of stress and the scale of rupture. Encouraged by success at scaling fault slip and slip rate from biaxial stick-slip friction laboratory experiments to those for earthquakes (McGarr and Fletcher, Bull. Seismol. Soc. Am., in press, 2003), we propose a similar approach for extrapolating Gc measured in the laboratory to investigate its behavior for earthquakes. Fracture energy is commonly represented as the area of a right triangle whose height represents the difference between the yield stress and the dynamic frictional stress (dynamic stress drop) and whose base is the slip-weakening distance Dc. Fracture mechanics analysis suggests that Dc may scale as the dimension of the seismic rupture and the dynamic stress drop is determined by the state of stress in the seismogenic crust. The dimension of rupture is often taken to be the size of the entire earthquake. Slip models developed for major earthquakes, however, indicate that the distribution of slip is quite inhomogeneous, consisting of patches of high slip separated by zones of relatively little offset. This suggests that Gc and Dc scale more appropriately with either the dimension of an asperity or its associated slip; slip turns out to be a more straightforward scaling parameter. Thus, using slip as the parameter to scale from laboratory friction experiments to major well-studied earthquakes typically yields estimates of Gc and Dc that are less than those used in most dynamic rupture models of earthquakes. This new approach to estimating Gc appears to resolve a problem involving calculations of seismic energy radiation from dynamic rupture models of earthquakes; that is, these energies tend to be less than other types of estimates (e.g., teleseismic). We suggest that the high values of Dc used in some recently-published dynamic rupture models resulted in overestimates of the fracture energies at the expense of the seismic energies. We find that distributions of Gc and Dc that are constrained by laboratory results and the distribution of fault slip yield lower fracture energies and higher seismic energies that are in better accord with independent estimates.

  18. Suppression of activation energy and superconductivity by the addition of Al{sub 2}O{sub 3} nanoparticles in CuTl-1223 matrix

    SciTech Connect

    Jabbar, Abdul; Qasim, Irfan; Mumtaz, M.; Zubair, M.; Nadeem, K.; Khurram, A. A.

    2014-05-28

    Low anisotropic (Cu{sub 0.5}Tl{sub 0.5})Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10−δ} (CuTl-1223) high T{sub c} superconducting matrix was synthesized by solid-state reaction and Al{sub 2}O{sub 3} nanoparticles were prepared separately by co-precipitation method. Al{sub 2}O{sub 3} nanoparticles were added with different concentrations during the final sintering cycle of CuTl-1223 superconducting matrix to get the required (Al{sub 2}O{sub 3}){sub y}/CuTl-1223, y = 0.0, 0.5, 0.7, 1.0, and 1.5 wt. %, composites. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray, and dc-resistivity (ρ) measurements. The activation energy and superconductivity were suppressed with increasing concentration of Al{sub 2}O{sub 3} nanoparticles in (CuTl-1223) matrix. The XRD analysis showed that the addition of Al{sub 2}O{sub 3} nanoparticles did not affect the crystal structure of the parent CuTl-1223 superconducting phase. The suppression of activation energy and superconducting properties is most probably due to weak flux pinning in the samples. The possible reason of weak flux pinning is reduction of weak links and enhanced inter-grain coupling due to the presence of Al{sub 2}O{sub 3} nanoparticles at the grain boundaries. The presence of Al{sub 2}O{sub 3} nanoparticles at the grain boundaries possibly reduced the number of flux pinning centers, which were present in the form of weak links in the pure CuTl-1223 superconducting matrix. The increase in the values of inter-grain coupling (α) deduced from the fluctuation induced conductivity analysis with the increased concentration of Al{sub 2}O{sub 3} nanoparticles is a theoretical evidence of improved inter-grain coupling.

  19. Assessment of biological effects associated with magnetic fields from a superconducting magnetic energy storage plant: Final report. [Contains glossary

    SciTech Connect

    Tenforde, T.S.

    1986-04-01

    This report provides a detailed evaluation of the potential biological effects of fringe magnetic fields associated with a superconducting magnetic energy storage (SMES) plant. The aspects of magnetic fields that are discussed include mechanisms of interaction of static and slowly time-varying magnetic fields with living systems; biological effects of magnetic fields on human and subhuman species, including the results of both laboratory studies and human epidemiological surveys; physical hazards posed by the interactions of magnetic fields with metallic implants, e.g., aneurysm clips and prostheses, and with medical electronic devices such as cardiac pacemakers; extant guidelines for occupational exposure to magnetic fields are summarized; recommendations for defining acceptable levels of exposure to SMES magnetic fields by occupational personnel and the population-at-large; and recommendations concerning several areas of research that would further our understanding of magnetic field interactions with living systems, and would provide additional elements of information required for the development of future exposure standards. 328 refs., 12 figs., 5 tabs.

  20. Athermal Energy Loss from X-rays Deposited in Thin Superconducting Films on Solid Substrates

    NASA Technical Reports Server (NTRS)

    Kozorezov, Alexander G.; Lambert, Colin J.; Bandler, Simon R.; Balvin, Manuel A.; Busch, Sarah E.; Sagler, Peter N.; Porst, Jan-Patrick; Smith, Stephen J.; Stevenson, Thomas R.; Sadleir, John E.

    2013-01-01

    When energy is deposited in a thin-film cryogenic detector, such as from the absorption of an X-ray, an important feature that determines the energy resolution is the amount of athermal energy that can be lost to the heat bath prior to the elementary excitation systems coming into thermal equilibrium. This form of energy loss will be position-dependent and therefore can limit the detector energy resolution. An understanding of the physical processes that occur when elementary excitations are generated in metal films on dielectric substrates is important for the design and optimization of a number of different types of low temperature detector. We have measured the total energy loss in one relatively simple geometry that allows us to study these processes and compare measurements with calculation based upon a model for the various di.erent processes. We have modeled the athermal phonon energy loss in this device by finding an evolving phonon distribution function that solves the system of kinetic equations for the interacting system of electrons and phonons. Using measurements of device parameters such as the Debye energy and the thermal di.usivity we have calculated the expected energy loss from this detector geometry, and also the position-dependent variation of this loss. We have also calculated the predicted impact on measured spectral line-shapes, and shown that they agree well with measurements. In addition, we have tested this model by using it to predict the performance of a number of other types of detector with di.erent geometries, where good agreement is also found.

  1. Fast-cycling superconducting synchrotrons and possible path to the future of US experimental high-energy particle physics

    SciTech Connect

    Piekarz, Henryk; /Fermilab

    2008-02-01

    The authors outline primary physics motivation, present proposed new arrangement for Fermilab accelerator complex, and then discuss possible long-range application of fast-cycling superconducting synchrotrons at Fermilab.

  2. Superconducting Magnetic Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Lawson, Daniel D.

    1991-01-01

    Proposed projectile launcher exploits Meissner effect to transfer much of kinetic energy of relatively massive superconducting plunger to smaller projectile, accelerating projectile to high speed. Because it operates with magnetic fields, launcher not limited by gas-expansion thermodynamics. Plunger energized mechanically and/or chemically, avoiding need for large electrical power supplies and energy-storage systems. Potential applications include launching of projectiles for military purposes and for scientific and industrial tests of hypervelocity impacts.

  3. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts.

    PubMed

    Zimnyakov, D A; Sevrugin, A V; Yuvchenko, S A; Fedorov, F S; Tretyachenko, E V; Vikulova, M A; Kovaleva, D S; Krugova, E Y; Gorokhovsky, A V

    2016-06-01

    Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka-Munk function reveals a presence of local maxima in the regions 0.5-1.5 eV and 1.6-3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction. PMID:27158654

  4. Effect of surface viscosity, anchoring energy, and cell gap on the response time of nematic liquid crystals

    SciTech Connect

    Souza, R.F. de; Yang, D.-Ke; Lenzi, E.K.; Evangelista, L.R.; Zola, R.S.

    2014-07-15

    An analytical expression for the relaxation time of a nematic liquid crystal is obtained for the first time by considering the influence of surface viscosity, anchoring energy strength and cell gap, validated numerically by using the so-called relaxation method. This general equation for the molecular response time (τ{sub 0}) was derived for a vertical aligned cell and by solving an eigenvalue equation coming from the usual balance of torque equation in the Derzhanskii and Petrov formulation, recovering the usual equations in the appropriate limit. The results show that τ∼d{sup b}, where b=2 is observed only for strongly anchored cells, while for moderate to weak anchored cells, the exponent lies between 1 and 2, depending on both, surface viscosity and anchoring strength. We found that the surface viscosity is important when calculating the response time, specially for thin cells, critical for liquid crystal devices. The surface viscosity’s effect on the optical response time with pretilt is also explored. Our results bring new insights about the role of surface viscosity and its effects in applied physics. - Highlights: • The relaxation of nematic liquid crystals is calculated by taking the surface viscosity into account. • An analytical expression for the relaxation time depending on surface viscosity, anchoring strength and cell gap is obtained. • The results are numerically verified. • Surface viscosity is crucial for thin and weak anchored cells. • The effect on optical time and pretilt angle is also studied.

  5. Surface electronic state of superconducting topological crystalline insulator

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuki; Yada, Keiji; Sato, Masatoshi; Tanaka, Yukio

    2015-11-01

    We study the surface state of a doped topological crystalline insulator in the superconducting state. Motivated by Sn1 -xInxTe , we consider fully gapped pair potentials and calculate the surface spectral function. It is found that mirror-protected zero-energy surface Andreev bound states (SABSs) appear at the (001) surface. The gapless points of these SABSs appear on the mirror-symmetric line on the surface Brillouin zone while the positions of the gapless points depend on the chemical potential. In addition, due to the presence of the Dirac surface states in the normal state, the dispersion of the SABSs drastically changes with the chemical potential.

  6. Ultrasonic attenuation in superconducting molybdenum-rhenium alloys.

    NASA Technical Reports Server (NTRS)

    Ashkin, M.; Deis, D. W.; Gottlieb, M.; Jones, C. K.

    1971-01-01

    Investigation of longitudinal sound attenuation in superconducting Mo-Re alloys as a function of temperature, magnetic field, and frequency. Evaporated thin film CdS transducers were used for the measurements at frequencies up to 3 GHz. The normal state attenuation coefficient was found to be proportional to the square of frequency over this frequency range. Measurements in zero magnetic field yielded a value of the energy gap parameter close to the threshold value of 3.56 kTc, appropriate to a weakly coupled dirty limit superconductor.

  7. Negative differential thermal conductance and thermal rectification effects across a graphene-based superconducting junction

    NASA Astrophysics Data System (ADS)

    Zhou, Xingfei; Zhang, Zhi

    2016-05-01

    We study the heat transport in a graphene-based normal-superconducting junction by solving the Bogoliubov-de Gennes (BdG) equation. There are two effects, the competitive and cooperative effects, which come from the interaction between the temperature-dependent energy-gap function in the superconducting region and the occupation difference of quasiparticles. It is found that the competitive effect can not only bring the negative differential thermal conductance effect but also the thermal rectification effect. By contrast, the cooperative effect just causes the thermal rectification effect. Furthermore, the thermal rectification ratio and the magnitude of heat current should be seen as two inseparable signs for characterizing the thermal rectification effect. These discoveries can add more application for the graphene-based superconducting junction, such as heat diode and heat transistor, at cryogenic temperatures.

  8. Weak-localization correction to the number density of superconducting electrons

    SciTech Connect

    Smith, R.A.; Ambegaokar, V. )

    1992-02-01

    Anticipating that the backscattering processes that lead to weak localization in normal metals will occur also in dirty superconductors, we have evaluated the effect of these processes on the number density of superconducting electrons. We find a reduction in this density similar in form to the reduction in conductivity for the normal metal, except that the superconducting gap now provides the lower energy cutoff instead of the inelastic scattering rate. This result can be derived heuristically from the conductivity sum rule, and also from the use of an exact-eigenstates method. The localization effect leads to a weakening of the superconducting state to a point at which order-parameter amplitude fluctuations become important.

  9. Effect of disorder on superconductivity in the presence of spin-density wave order

    NASA Astrophysics Data System (ADS)

    Mishra, Vivek

    2015-03-01

    The majority of unconventional superconductors has close proximity to a magnetic phase. In many cases, the magnetic phase coexists with superconductivity in some fraction of the phase diagram. The response of these two competing phases to disorder can be used as a tool to gain a better understanding of these complex systems. Here I consider the effect of disorder on a multiband superconductor appropriate for the ferro-pnictide superconductors. I consider both interband and intraband scattering for a two-band model consisting of a hole pocket and an electron pocket. The scattering from pointlike impurities is treated within the self-consistent Born approximation. I calculate the effect of disorder on the transition temperature to the superconducting state. The influence of impurity scattering on the low-energy excitation spectrum in the superconducting state is also studied for different kinds of gap structures.

  10. Anomalies in Specific Heat: the Influence of Spin Fluctuations and Superconductivity in Cuprates

    NASA Astrophysics Data System (ADS)

    Mohanta, K. L.; Rout, G. C.

    2013-05-01

    We report here a microscopic theory of the temperature dependence of specific heat in high-Tc cuprate superconductors. The system is described by a model Hamiltonian consisting the antiferromagnetic spin fluctuations due to the impurity f-electrons as well as the conduction electrons, besides the superconducting interaction due to the itinerant electrons. The Hamiltonian is treated within a mean-field approach. The transverse spin fluctuation parameters and the superconducting gap are calculated by Zubarev's Green's function technique and solved self-consistently. The temperature dependent specific heat is calculated from the free energy in order to study the anomalies appearing at the spin fluctuation and superconducting transition temperatures. The evolutions of these anomalies are studied by varying the model parameters of the systems and results are discussed in reference to experimental observations.

  11. Superconductive articles

    SciTech Connect

    Wu, X.D.; Muenchausen, R.E.

    1991-12-31

    An article of manufacture including a substrate, a patterned interlayer of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of oxides of Ce, Y, Cm, Dy, Er, Eu, Fe, Gd, Ho, In, La, Mn, Lu, Nd, Pr, Pu, Sm, Tb, Tl, Tm, Y, and Yb over the entire exposed surface of the intermediate article, and, a ceramic superconductive material layer as an overcoat upon the buffer layer whereby the ceramic superconductive material situated directly above the substrate has a crystal structure substantially different than the ceramic superconductive material situated above the overcoated patterned interlayer.

  12. Investigation of superconducting and normal-state properties of the filled-skutterudite system PrPt4Ge12-xSbx

    NASA Astrophysics Data System (ADS)

    Jeon, I.; Huang, K.; Yazici, D.; Kanchanavatee, N.; White, B. D.; Ho, P.-C.; Jang, S.; Pouse, N.; Maple, M. B.

    2016-03-01

    We report a study of the superconducting and normal-state properties of the filled-skutterudite system PrPt4Ge12 -xSbx . Polycrystalline samples with Sb concentrations up to x =5 were synthesized and investigated by means of x-ray diffraction, electrical resistivity, magnetic susceptibility, and specific heat measurements. We observed a suppression of superconductivity with increasing Sb substitution up to x =4 , above which no signature of superconductivity was observed down to 140 mK. The Sommerfeld coefficient, γ , of superconducting specimens decreases with increasing x up to x =3 , suggesting that superconductivity may depend on the density of electronic states in this system. The specific heat for x =0.5 exhibits an exponential temperature dependence in the superconducting state, reminiscent of a nodeless superconducting energy gap. We observed evidence for a weak "rattling" mode associated with the Pr ions, characterized by an Einstein temperature ΘE˜60 K for 0 ≤x ≤5 ; however, the rattling mode may not play any role in suppressing superconductivity.

  13. Hierarchy of gaps and magnetic minibands in graphene in the presence of the Abrikosov vortex lattice

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Fal'ko, Vladimir I.

    2016-01-01

    We determine the bands and gaps in graphene subjected to the magnetic field of an Abrikosov lattice of vortices in the underlying superconducting film. The spectrum features one nondispersive magnetic miniband at zero energy, separated by the largest gaps in the miniband spectrum from a pair of minibands resembling a slightly broadened first Landau level in graphene, suggesting the persistence of ν =±2 and ±6 quantum Hall effect states. Also, we identify an occasional merging point of magnetic minibands with a Dirac-type dispersion at the miniband edges.

  14. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  15. Evidence of multiband superconductivity in the β-phase Mo1-xRex alloys

    NASA Astrophysics Data System (ADS)

    Sundar, Shyam; Sharath Chandra, L. S.; Chattopadhyay, M. K.; Roy, S. B.

    2015-02-01

    We present a detailed study of the superconducting properties in the β-phase Mo1-xRex (x = 0.25 and 0.4) solid solution alloys pursued through magnetization and heat capacity measurements. The temperature dependence of the upper critical field HC2(T) in these binary alloys shows a deviation from the prediction of the Werthamer-Helfand-Hohenberg (WHH) theory. The temperature dependence of superfluid density estimated from the variation of lower critical field HC1 with temperature, cannot be explained within the framework of a single superconducting energy gap. The heat capacity also shows an anomalous feature in its temperature dependence. All these results can be reasonably explained by considering the existence of two superconducting energy gaps in these Mo1-xRex alloys. Initial results of electronic structure calculations and resonant photoelectron spectroscopy measurements support this possibility and suggest that the Re-5d like states at the Fermi level may not intermix with the Mo-5p and 5s like states in the β-phase Mo1-xRex alloys and contribute quite distinctly to the superconductivity of these alloys.

  16. 119Sn-NMR investigations on superconducting Ca3Ir4Sn13: Evidence for multigap superconductivity

    NASA Astrophysics Data System (ADS)

    Sarkar, R.; Brückner, F.; Günther, M.; Wang, Kefeng; Petrovic, C.; Biswas, P. K.; Luetkens, H.; Morenzoni, E.; Amato, A.; Klauss, H.-H.

    2015-12-01

    We report bulk superconductivity (SC) in Ca3Ir4Sn13 by means of 119Sn nuclear magnetic resonance (NMR) experiments. Two classical signatures of BCS superconductivity in spin-lattice relaxation rate (1/T1), namely the Hebel-Slichter coherence peak just below the Tc, and the exponential decay in the superconducting phase, are evident. The noticeable decrease of 119Sn Knight shift below Tc indicates spin-singlet superconductivity. The temperature dependence of the spin-lattice relaxation rate 119(1/T1) is convincingly described by the multigap isotropic superconducting gap. NMR experiments do not witness any sign of enhanced spin fluctuations.

  17. 119Sn-NMR investigations on superconducting Ca3Ir4Sn13: Evidence for multigap superconductivity

    DOE PAGESBeta

    Sarkar, R.; Petrovic, C.; Bruckner, F.; Gunther, M.; Wang, Kefeng; Biswas, P. K.; Luetkens, H.; Morenzoni, E.; Amato, A.; Klauss, H. -H.

    2015-09-25

    In this study, we report bulk superconductivity (SC) in Ca3Ir4Sn13 by means of 119Sn nuclear magnetic resonance (NMR) experiments. Two classical signatures of BCS superconductivity in spin-lattice relaxation rate (1/T1), namely the Hebel–Slichter coherence peak just below the Tc, and the exponential decay in the superconducting phase, are evident. The noticeable decrease of 119Sn Knight shift below Tc indicates spin-singlet superconductivity. The temperature dependence of the spin-lattice relaxation rate 119(1/T1) is convincingly described by the multigap isotropic superconducting gap. NMR experiments do not witness any sign of enhanced spin fluctuations.

  18. Picosecond nonradiative processes in neodymium-doped crystals and glasses: mechanism for the energy gap law

    SciTech Connect

    Bibeau, C.; Payne, S.A.

    1998-03-02

    This report presents measurements of the {sup 4}G{sub 7/2} emission for 26 nd-doped materials. A model of nonradiative decay based on dipole-dipole energy is developed and found to be supported by the data.

  19. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010 and by invited authors selected by the editor. We are grateful to IUPAP, ICTP and the European Office of Aerospace Research and Development, Air Force Office of Scientific Research, United States Air Force Laboratory. We would like to acknowledge the authors for their careful work, and finally we thank Dr L Smith the publisher of Journal of Physics: Condensed Matter for her patience and help. Superconducting materials contents Raman spectrum in the pseudogap phase of the underdoped cuprates: effect of phase coherence and the signature of the KT-type superconducting transitionTao Li and Haijun Liao Pressure effects on Dirac fermions in α-(BEDT-TTF)2I3Takahiro Himura, Takao Morinari and Takami Tohyama Effect of Zn doping in hole-type 1111 phase (Pr, Sr)FeAsOXiao Lin, Chenyi Shen, Chen Lv, Jianjian Miao, Hao Tan, Guanghan Cao and Zhu-An Xu Superconductivity and ferromagnetism in EuFe2(As1 - xPx)2*Guanghan Cao, Shenggao Xu, Zhi Ren, Shuai Jiang, Chunmu Feng and Zhu'an Xu OInhomogeneous superconductivity in organic conductors: the role of disorder and magnetic fieldS Haddad, S Charfi-Kaddour and J-P Pouget

  20. Electron Energy Distribution in Hotspots of Cygnus A:Filling the Gap with Spitzer Space Telescope

    SciTech Connect

    Stawarz, L.; Cheung, C.C.; Harris, D.E.; Ostrowski, M.

    2007-03-06

    Here we present Spitzer Space Telescope imaging of Cyg A with the Infrared Array Camera at 4.5 {micro}m and 8.0 {micro}m, resulting in the detection of the high-energy tails or cut-offs in the synchrotron spectra for all four hotspots of this archetype radio galaxy. When combined with the other data collected (and re-analyzed) from the literature, our observations allow for detailed modeling of the broad-band (radio-to-X-ray) emission for the brightest spots A and D. We confirm that the X-ray flux detected previously from these features is consistent with the synchrotron self-Compton radiation for the magnetic field intensity B {approx} 170 {micro}G in spot A, and B {approx} 270 {micro}G in spot D. We also find that the energy density of the emitting electrons is most likely larger by a factor of a few than the energy density of the hotspots magnetic field. We construct energy spectra of the radiating ultrarelativistic electrons. We find that for both hotspots A and D these spectra are consistent with a broken power-law extending from at least 100MeV up to {approx} 100GeV, and that the spectral break corresponds almost exactly to the proton rest energy of {approx} 1GeV. We argue that the shape of the electron continuum most likely reflects two different regimes of the electron acceleration process taking place at mildly relativistic shocks, rather than resulting from radiative cooling and/or absorption e.ects. In this picture the protons inertia defines the critical energy for the hotspot electrons above which Fermi-type acceleration processes may play a major role, but below which the operating acceleration mechanism has to be of a different type. At energies {approx}> 100 GeV, the electron spectra cut-off/steepen again, most likely as a result of spectral aging due to radiative loss effects. We discuss several implications of the presented analysis for the physics of extragalactic jets.