Science.gov

Sample records for superconducting radiofrequency separator

  1. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  2. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  3. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  4. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  5. Characterization of superconducting radiofrequency breakdown by two-mode excitation

    SciTech Connect

    Eremeev, Grigory V.; Palczewski, Ari D.

    2014-01-14

    We show that thermal and magnetic contributions to the breakdown of superconductivity in radiofrequency (RF) fields can be separated by applying two RF modes simultaneously to a superconducting surface. We develop a simple model that illustrates how mode-mixing RF data can be related to properties of the superconductor. Within our model the data can be described by a single parameter, which can be derived either from RF or thermometry data. Our RF and thermometry data are in good agreement with the model. We propose to use mode-mixing technique to decouple thermal and magnetic effects on RF breakdown of superconductors.

  6. Radiofrequency amplifier based on a dc superconducting quantum interference device

    DOEpatents

    Hilbert, C.; Martinis, J.M.; Clarke, J.

    1984-04-27

    A low noise radiofrequency amplifer, using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID and an input coil are maintained at superconductivity temperatures in a superconducting shield, with the input coil inductively coupled to the superconducting ring of the dc SQUID. A radiofrequency signal from outside the shield is applied to the input coil, and an amplified radiofrequency signal is developed across the dc SQUID ring and transmitted to exteriorly of the shield. A power gain of 19.5 +- 0.5 dB has been achieved with a noise temperature of 1.0 +- 0.4 K at a frequency of 100 MHz.

  7. Radiofrequency amplifier based on a dc superconducting quantum interference device

    DOEpatents

    Hilbert, Claude; Martinis, John M.; Clarke, John

    1986-01-01

    A low noise radiofrequency amplifier (10), using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID (11) and an input coil (12) are maintained at superconductivity temperatures in a superconducting shield (13), with the input coil (12) inductively coupled to the superconducting ring (17) of the dc SQUID (11). A radiofrequency signal from outside the shield (13) is applied to the input coil (12), and an amplified radiofrequency signal is developed across the dc SQUID ring (17) and transmitted to exteriorly of the shield (13). A power gain of 19.5.+-.0.5 dB has been achieved with a noise temperature of 1.0.+-.0.4 K. at a frequency of 100 MHz.

  8. Superconducting surface impedance under radiofrequency field

    DOE PAGESBeta

    Xiao, Binping P.; Reece, Charles E.; Kelley, Michael J.

    2013-04-26

    Based on BCS theory with moving Cooper pairs, the electron states distribution at 0K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure.

  9. Superconducting radiofrequency linac development at Fermilab

    SciTech Connect

    Holmes, Stephen D.; /Fermilab

    2009-10-01

    As the Fermilab Tevatron Collider program draws to a close, a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider, Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X also supports development of a Muon Collider as a future facility at the energy frontier.

  10. Temperature Mapping of Nitrogen-doped Niobium Superconducting Radiofrequency Cavities

    SciTech Connect

    Makita, Junki; Ciovati, Gianluigi; Dhakal, Pashupati

    2015-09-01

    It was recently shown that diffusing nitrogen on the inner surface of superconducting radiofrequency (SRF) cavities at high temperature can improve the quality factor of the niobium cavity. However, a reduction of the quench field is also typically found. To better understand the location of rf losses and quench, we used a thermometry system to map the temperature of the outer surface of ingot Nb cavities after nitrogen doping and electropolishing. Surface temperature of the cavities was recorded while increasing the rf power and also during the quenching. The results of thermal mapping showed no precursor heating on the cavities and quenching to be ignited near the equator where the surface magnetic field is maximum. Hot-spots at the equator area during multipacting were also detected by thermal mapping.

  11. Superconducting radio-frequency modules test faciilty operating experience

    SciTech Connect

    Soyars, W.; Bossert, R.; Darve, C.; Degraff, B.; Klebaner, A.; Martinez, A.; Pei, L.; Theilacker, J.; /Fermilab

    2007-07-01

    Fermilab is heavily engaged and making strong technical contributions to the superconducting radio-frequency research and development program (SRF R&D). Four major SRF test areas are being constructed to enable vertical and horizontal cavity testing, as well as cryomodule testing. The existing Fermilab cryogenic infrastructure has been modified to service Fermilab SRF R&D needs. The first stage of the project has been successfully completed, which allows for distribution of cryogens for a single cavity cryomodule using the existing Cryogenic Test Facility (CTF) that houses three Tevatron satellite refrigerators. The cooling capacity available for cryomodule testing at MDB results from the liquefaction capacity of the CTF cryogenic system. The cryogenic system for a single 9-cell cryomodule is currently operational. The paper describes the status, challenges and operational experience of the initial phase of the project.

  12. Radiofrequency superconductivity applied to free-electron lasers

    SciTech Connect

    Bohn, C.L.; Benson, S.V.

    1998-01-01

    Low wall losses and low wakefields inherent in superconducting radiofrequency (srf) cavities make them attractive candidates for accelerators that operate efficiently at high continuous-wave (cw) gradients. Such accelerators are desirable for free-electron lasers (FELs) that extract high-power cw light from a high-average-current electron beam, or that produce ultrashort-wavelength light from a high-energy electron beam. Efficiency is a prime consideration in the former case, while high electron-beam quality is a prime consideration in the latter case. This paper summarizes the status of FEL projects involving srf accelerators. It also introduces Jefferson Lab`s srf FEL and surveys its design because it is a new machine, with commissioning having commenced in October 1997. Once commissioning is complete, this FEL should produce tunable, cw, kW-level light at 3-6 {mu}m wavelength.

  13. Compact Superconducting Radio-frequency Accelerators and Innovative RF Systems

    SciTech Connect

    Kephart, Robert; Chattopadhyay, Swaapan; Milton, Stephen

    2015-04-10

    We will present several new technical and design breakthroughs that enable the creation of a new class of compact linear electron accelerators for industrial purposes. Use of Superconducting Radio-Frequency (SRF) cavities allow accelerators less than 1.5 M in length to create electron beams beyond 10 MeV and with average beam powers measured in 10’s of KW. These machines can have the capability to vary the output energy dynamically to produce brehmstrahlung x-rays of varying spectral coverage for applications such as rapid scanning of moving cargo for security purposes. Such compact accelerators will also be cost effective for many existing and new industrial applications. Examples include radiation crosslinking of plastics and rubbers, creation of pure materials with surface properties radically altered from the bulk, modification of bulk or surface optical properties of materials, sterilization of medical instruments animal solid or liquid waste, and destruction of organic compounds in industrial waste water effluents. Small enough to be located on a mobile platform, such accelerators will enable new remediation methods for chemical and biological spills and/or in-situ crosslinking of materials. We will describe one current design under development at Fermilab including plans for prototype and value-engineering to reduce costs. We will also describe development of new nano-structured field-emitter arrays as sources of electrons, new methods for fabricating and cooling superconducting RF cavities, and a new novel RF power source based on magnetrons with full phase and amplitude control.

  14. Laser nitriding for niobium superconducting radio-frequency accelerator cavities

    SciTech Connect

    Senthilraja Singaravelu, John Klopf, Gwyn Williams, Michael Kelley

    2010-10-01

    Particle accelerators are a key tool for scientific research ranging from fundamental studies of matter to analytical studies at light sources. Cost-forperformance is critical, both in terms of initial capital outlay and ongoing operating expense, especially for electricity. It depends on the niobium superconducting radiofrequency (SRF) accelerator cavities at the heart of most of these machines. Presently Nb SRF cavities operate near 1.9 K, well (and expensively) below the 4.2 K atmospheric boiling point of liquid He. Transforming the 40 nm thick active interior surface layer from Nb to delta NbN (Tc = 17 K instead of 9.2 K) appears to be a promising approach. Traditional furnace nitriding appears to have not been successful for this. Further, exposing a complete SRF cavity to the time-temperature history required for nitriding risks mechanical distortion. Gas laser nitriding instead has been applied successfully to other metals [P.Schaaf, Prog. Mat. Sci. 47 (2002) 1]. The beam dimensions and thermal diffusion length permit modeling in one dimension to predict the time course of the surface temperature for a range of per-pulse energy densities. As with the earlier work, we chose conditions just sufficient for boiling as a reference point. We used a Spectra Physics HIPPO nanosecond laser (l = 1064 nm, Emax= 0.392 mJ, beam spot@ 34 microns, PRF =15 – 30 kHz) to obtain an incident fluence of 1.73 - 2.15 J/cm2 for each laser pulse at the target. The target was a 50 mm diameter SRF-grade Nb disk maintained in a nitrogen atmosphere at a pressure of 550 – 625 torr and rotated at a constant speed of 9 rpm. The materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and x-ray diffraction (XRD). The SEM images show a sharp transition with fluence from a smooth, undulating topography to significant roughening, interpreted here as the onset of ablation. EPMA measurements of N/Nb atom ratio as a function of depth found a constant

  15. Conceptual design of a sapphire loaded coupler for superconducting radio-frequency 1.3 GHz cavities

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Tantawi, Sami

    2016-02-01

    This paper explores a hybrid mode rf structure that served as a superconducting radio-frequency coupler. This application achieves a reflection S(1 ,1 ) varying from 0 to -30 db and delivers cw power at 7 KW. The coupler has good thermal isolation between the 2 and 300 K sections due to vacuum separation. Only one single hybrid mode can propagate through each section, and no higher order mode is coupled. The analytical and numerical analysis for this coupler is given and the design is optimized. The coupling mechanism to the cavity is also discussed.

  16. Method and means for separating and classifying superconductive particles

    DOEpatents

    Park, Jin Y.; Kearney, Robert J.

    1991-01-01

    The specification and drawings describe a series of devices and methods for classifying and separating superconductive particles. The superconductive particles may be separated from non-superconductive particles, and the superconductive particles may be separated by degrees of susceptibility to the Meissner effect force. The particles may also be simultaneously separated by size or volume and mass to obtain substantially homogeneous groups of particles. The separation techniques include levitation, preferential sedimentation and preferential concentration. Multiple separation vector forces are disclosed.

  17. Probing the fundamental limit of niobium in high radiofrequency fields by dual mode excitation in superconducting radiofrequency cavities

    SciTech Connect

    Eremeev, Grigory; Geng, Rongli; Palczewski, Ari

    2011-07-01

    We have studied thermal breakdown in several multicell superconducting radiofrequency cavity by simultaneous excitation of two TM{sub 010} passband modes. Unlike measurements done in the past, which indicated a clear thermal nature of the breakdown, our measurements present a more complex picture with interplay of both thermal and magnetic effects. JLab LG-1 that we studied was limited at 40.5 MV/m, corresponding to B{sub peak} = 173 mT, in 8{pi}/9 mode. Dual mode measurements on this quench indicate that this quench is not purely magnetic, and so we conclude that this field is not the fundamental limit in SRF cavities.

  18. Eccentric superconducting RF cavity separator structure

    DOEpatents

    Aggus, John R.; Giordano, Salvatore T.; Halama, Henry J.

    1976-01-01

    Accelerator apparatus having an eccentric-shaped, iris-loaded deflecting cavity for an rf separator for a high energy high momentum, charged particle accelerator beam. In one embodiment, the deflector is superconducting, and the apparatus of this invention provides simplified machining and electron beam welding techniques. Model tests have shown that the electrical characteristics provide the desired mode splitting without adverse effects.

  19. Superconducting radio-frequency resonator in magnetic fields up to 6 T

    NASA Astrophysics Data System (ADS)

    Ebrahimi, M. S.; Stallkamp, N.; Quint, W.; Wiesel, M.; Vogel, M.; Martin, A.; Birkl, G.

    2016-07-01

    We have measured the characteristics of a superconducting radio-frequency resonator in an external magnetic field. The magnetic field strength has been varied with 10 mT resolution between zero and 6 T. The resonance frequency and the quality factor of the resonator have been found to change significantly as a function of the magnetic field strength. Both parameters show a hysteresis effect which is more pronounced for the resonance frequency. Quantitative knowledge of such behaviour is particularly important when experiments require specific values of resonance frequency and quality factor or when the magnetic field is changed while the resonator is in the superconducting state.

  20. Mechanical design of SXLS (Superconducting X-ray Lithography Source) radio-frequency cavity

    SciTech Connect

    Mortazavi, P.; Sharma, S.; Keane, J.; Thomas, M.

    1989-01-01

    This paper presents the mechanical design of a Radio-Frequency (RF) cavity to be used on a compact storage ring for Superconducting X-ray Lithography Source (SXLS). Various design features of this cavity are discussed, including basic geometrical configuration, structural design, initial and operational tuning, vacuum multipactoring, power window, and damping of higher order modes. A second application of this cavity design for beam life extension in an existing storage ring is also described. 2 refs., 6 figs.

  1. A laboratory superconducting high gradient magnetic separator

    SciTech Connect

    Yan, L.G.; Yu, Y.J.; Wang, Z.K.; Kao, Z.Y.; Ye, Z.X.; Xue, C.L.; Ye, P.; Cheng, Y.L.; Li, X.M.; Kong, Q.M.

    1989-03-01

    In order to know the effectiveness of high gradient magnetic separation for Kaolin clay purification and coal desulfurization in China and to develop suitable technology, a superconducting HGMS facility has been constructed and put into operation at the Institute of Electrical Engineering of Chinese Academy of Sciences. The working separation chamber is 80mm in diameter and 400mm in length. the magnet is wound with 0.75 and 0.5 mm in diameter NbTi superconducting composite. The winding is compact and wax-filled. The test proves that the magnet can operate at 5T. Special attention has been paid in the design and construction of the magnet cryostat in order for it to work as long as possible. In the wet beneficiation mode, there are two separation systems available, one is the upward pumping feeding system and another is with the downward gravity feeding. The rate of flow and the linear velocity are 0-0.5L/s and 0-100 cm/s respectively. The preliminary sample test results for Kaolin clay purification and coal desulfurization show the good feasibility of magnetic separation.

  2. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    DOE PAGESBeta

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; et al

    2012-03-16

    An apparatus was created to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

  3. Niobium Thin Film Characterization for Thin Film Technology Used in Superconducting Radiofrequency Cavities

    NASA Astrophysics Data System (ADS)

    Dai, Yishu; Valente-Feliciano, Anne-Marie

    2015-10-01

    Superconducting RadioFrequency (SRF) penetrates about 40-100 nm of the top surface, making thin film technology possible in producing superconducting cavities. Thin film is based on the deposition of a thin Nb layer on top of a good thermal conducting material such as Al or Cu. Thin film allows for better control of the surface and has negligible response to the Earth's magnetic field, eliminating the need for magnetic shielding of the cavities. Thin film superconductivity depends heavily on coating process conditions, involving controllable parameters such as crystal plane orientation, coating temperature, and ion energy. MgO and Al2O3 substrates are used because they offer very smooth surfaces, ideal for studying film growth. Atomic Force Microscopy is used to characterize surface's morphology. It is evident that a lower nucleation energy and a long coating time increases the film quality in the r-plane sapphire crystal orientation. The quality of the film increases with thickness. Nb films coated on r-plane, grow along the (001) plane and yield a much higher RRR compared to the films grown on a- and c-planes. This information allows for further improvement on the research process for thin film technology used in superconducting cavities for the particle accelerators. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  4. Calorimeters for precision power dissipation measurements on controlled-temperature superconducting radiofrequency samples.

    PubMed

    Xiao, B P; Reece, C E; Phillips, H L; Kelley, M J

    2012-12-01

    Two calorimeters, with stainless steel and Cu as the thermal path material for high precision and high power versions, respectively, have been designed and commissioned for the 7.5 GHz surface impedance characterization system at Jefferson Lab to provide low temperature control and measurement for CW power up to 22 W on a 5 cm diameter disk sample which is thermally isolated from the radiofrequency (RF) portion of the system. A power compensation method has been developed to measure the RF induced power on the sample. Simulation and experimental results show that with these two calorimeters, the whole thermal range of interest for superconducting radiofrequency materials has been covered. The power measurement error in the interested power range is within 1.2% and 2.7% for the high precision and high power versions, respectively. Temperature distributions on the sample surface for both versions have been simulated and the accuracy of sample temperature measurements have been analyzed. Both versions have the ability to accept bulk superconductors and thin film superconducting samples with a variety of substrate materials such as Al, Al(2)O(3), Cu, MgO, Nb, and Si. PMID:23278016

  5. Magnetic separation of organic dyes using superconducting bulk magnets

    NASA Astrophysics Data System (ADS)

    Kondo, N.; Yokoyama, K.; Hosaka, S.

    Organic dyes were separated from wastewater using superconducting bulk magnets. Two types of particles, magnetic activated carbon (MAC) and reactive nanoscale iron particles (RNIP), were used as magnetic seeds. We set up a magnetic separator consisting of an acrylic pipe located between the magnetic poles of a face-to-face superconducting bulk magnet. We tested the separator under both high-gradient magnetic separation (HGMS) and open-gradient magnetic separation (OGMS). Adsorption ratios greater than 95% were achieved for sufficient concentrations of both MAC and RNIP, and separation ratios greater than 90% were achieved in HGMS and OGMS for certain dye-particle combinations.

  6. Surface Impedance Measurements of Single Crystal MgB2 Films for Radiofrequency Superconductivity Applications

    SciTech Connect

    Binping Xiao, Xin Zhao, Joshua Spradlin, Charles Reece, Michael Kelley, Teng Tan, Xi Xiaoxing

    2012-07-01

    We report microstructure analyses and superconducting radiofrequency (SRF) measurements of large scale epitaxial MgB{sub 2} films. MgB{sub 2} films on 5 cm dia. sapphire disks were fabricated by a Hybrid Physical Chemical Vapor Deposition (HPCVD) technique. The electron-beam backscattering diffraction (EBSD) results suggest that the film is a single crystal complying with a MgB{sub 2}(0001) {parallel} Al{sub 2}O{sub 3}(0001) epitaxial relationship. The SRF properties of different film thicknesses (200 nm and 350 nm) were evaluated under different temperatures and applied fields at 7.4 GHz. A surface resistance of 9 {+-} 2 {mu}{Omega} has been observed at 2.2 K.

  7. Summary of performance of superconducting radio-frequency cavities built from CBMM niobium ingots

    SciTech Connect

    Ciovati, Gianluigi Dhakal, Pashupati Kneisel, Peter Myneni, Ganapati R.

    2015-12-04

    Several Nb ingots have been provided by CBMM to Jefferson Lab since 2004 as part of an R&D collaboration aimed at evaluating the performance of superconducting radio-frequency cavities built from ingots with different purity, as a results of different ingot production processes. Approximately 32 multi- and single-cell cavities with resonant frequency between ∼1.3-2.3 GHz were built, treated and tested at 2 K at Jefferson Lab between 2004 and 2014. The average peak surface field achieved in cavities made of RRR∼260 and RRR∼100-150 ingots was (119 ± 4) mT and (100 ± 8) mT, respectively. Higher quality factor values at 2.0 K have been measured in medium-purity, compared to higher purity material.

  8. Defect Detection in Superconducting Radiofrequency Cavity Surface Using C + + and OpenCV

    NASA Astrophysics Data System (ADS)

    Oswald, Samantha; Thomas Jefferson National Accelerator Facility Collaboration

    2014-03-01

    Thomas Jefferson National Accelerator Facility (TJNAF) uses superconducting radiofrequency (SRF) cavities to accelerate an electron beam. If theses cavities have a small particle or defect, it can degrade the performance of the cavity. The problem at hand is inspecting the cavity for defects, little bubbles of niobium on the surface of the cavity. Thousands of pictures have to be taken of a single cavity and then looked through to see how many defects were found. A C + + program with Open Source Computer Vision (OpenCV) was constructed to reduce the number of hours searching through the images and finds all the defects. Using this code, the SRF group is now able to use the code to identify defects in on-going tests of SRF cavities. Real time detection is the next step so that instead of taking pictures when looking at the cavity, the camera will detect all the defects.

  9. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    NASA Astrophysics Data System (ADS)

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; Wang, H.; Wilson, K.; Zhang, S.

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ˜1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  10. Superconducting radio-frequency cavities made from medium and low-purity niobium ingots

    NASA Astrophysics Data System (ADS)

    Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R.

    2016-06-01

    Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q 0-values. In this contribution we present the results from cryogenic RF tests of 1.3–1.5 GHz single-cell cavities made of ingot Nb of medium (RRR = 100–150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q 0-value of 2 × 1010 at 2 K after standard processing treatments. The performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching.

  11. Calorimeters for Precision Power Dissipation Measurements on Controlled-Temperature Superconducting Radiofrequency Samples

    SciTech Connect

    Xiao, Binping P.; Kelley, Michael J.; Reece, Charles E.; Phillips, H. L.

    2012-12-01

    Two calorimeters, with stainless steel and Cu as the thermal path material for high precision and high power versions, respectively, have been designed and commissioned for the surface impedance characterization (SIC) system at Jefferson Lab to provide low temperature control and measurement for CW power up to 22 W on a 5 cm dia. disk sample which is thermally isolated from the RF portion of the system. A power compensation method has been developed to measure the RF induced power on the sample. Simulation and experimental results show that with these two calorimeters, the whole thermal range of interest for superconducting radiofrequency (SRF) materials has been covered. The power measurement error in the interested power range is within 1.2% and 2.7% for the high precision and high power versions, respectively. Temperature distributions on the sample surface for both versions have been simulated and the accuracy of sample temperature measurements have been analysed. Both versions have the ability to accept bulk superconductors and thin film superconducting samples with a variety of substrate materials such as Al, Al{sub 2}O{sub 3}, Cu, MgO, Nb and Si.

  12. Superconducting radio-frequency cavities made from medium and low-purity niobium ingots

    DOE PAGESBeta

    Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R.

    2016-04-07

    Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q0-values. In this contribution we present the results from cryogenic RF tests of 1.3–1.5 GHz single-cell cavities made of ingot Nb ofmore » medium (RRR = 100–150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q0-value of 2 × 1010 at 2 K after standard processing treatments. As a result, the performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching.« less

  13. Radio-frequency ion deflector for mass separation

    SciTech Connect

    Schlösser, Magnus Rudnev, Vitaly; Ureña, Ángel González

    2015-10-15

    Electrostatic cylindrical deflectors act as energy analyzer for ion beams. In this article, we present that by imposing of a radio-frequency modulation on the deflecting electric field, the ion transmission becomes mass dependent. By the choice of the appropriate frequency, amplitude, and phase, the deflector can be used as mass filter. The basic concept of the new instrument as well as simple mathematic relations are described. These calculations and further numerical simulations show that a mass sensitivity is achievable. Furthermore, we demonstrate the proof-of-principle in experimental measurements, compare the results to those of from a 1 m linear time-of-flight spectrometer, and comment on the mass resolution of the method. Finally, some potential applications are indicated.

  14. Radio-frequency ion deflector for mass separation.

    PubMed

    Schlösser, Magnus; Rudnev, Vitaly; González Ureña, Ángel

    2015-10-01

    Electrostatic cylindrical deflectors act as energy analyzer for ion beams. In this article, we present that by imposing of a radio-frequency modulation on the deflecting electric field, the ion transmission becomes mass dependent. By the choice of the appropriate frequency, amplitude, and phase, the deflector can be used as mass filter. The basic concept of the new instrument as well as simple mathematic relations are described. These calculations and further numerical simulations show that a mass sensitivity is achievable. Furthermore, we demonstrate the proof-of-principle in experimental measurements, compare the results to those of from a 1 m linear time-of-flight spectrometer, and comment on the mass resolution of the method. Finally, some potential applications are indicated. PMID:26520948

  15. First Demonstration of Electron Beam Generation and Characterization with an All Superconducting Radio-frequency (SRF) Photoinjector

    SciTech Connect

    Kamps, T; Barday, R; Jankowiak, A; Knobloch, J; Kugeler, O; Matveenko, A N; Neumann, A; Quast, T; Rudolph, J; Schubert, S G; Volker, J; Kneisel, P; Nietubyc, R; Sekutowicz, J K; Smedley, J; Volkov, V; Weinberg, G; Will, I

    2011-09-01

    In preparation for a high brightness, high average current electron source for the energy-recovery linac BERLinPro an all superconducting radio-frequency photoinjector is now in operation at Helmholtz-Zentrum Berlin. The aim of this experiment is beam demonstration with a high brightness electron source able to generate sub-ps pulse length electron bunches from a superconducting (SC) cathode film made of Pb coated on the backwall of a Nb SRF cavity. This paper describes the setup of the experiment and first results from beam measurements.

  16. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    SciTech Connect

    Feng, L. W.; Lin, L.; Huang, S. L.; Quan, S. W.; Hao, J. K.; Zhu, F.; Wang, F.; Liu, K. X.; Jiang, T.; Zhu, P. F.; Fu, F.; Wang, R.; Zhao, L.; Xiang, D.

    2015-11-30

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  17. Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

    SciTech Connect

    Ford, Denise Christine

    2013-03-01

    Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 <-> HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities – hydrogen, oxygen, nitrogen, and carbon – in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I

  18. Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Ford, Denise Christine

    Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 <-> HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities---hydrogen, oxygen, nitrogen, and carbon---in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I present the beginning of a model to describe magnetic

  19. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    SciTech Connect

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  20. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    DOE PAGESBeta

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities mademore » from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.« less

  1. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    NASA Astrophysics Data System (ADS)

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2015-02-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. Large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  2. Surface studies of niobium chemically polished under conditions for superconducting radiofrequency cavity production

    SciTech Connect

    Hui Tian; Michael Kelley; Charles Reece

    2005-11-14

    The performance of niobium superconducting radiofrequency accelerator cavities is strongly impacted by the topmost several nanometers of the active (interior) surface, especially by the final surface conditioning treatments. We examined the effect of the most commonly employed treatment, buffered chemical polishing (BCP), on polycrystalline niobium sheet over a range of realistic solution flow rates using electron back scatter diffraction (EBSD), stylus profilometry, atomic force microscopy, laboratory XPS and synchrotron (variable photon energy) XPS, seeking to collect statistically significant data sets. We found that the predominant general surface orientation is (100), but others are also present and at the atomic-level details of surface plane orientation are more complex. The post-etch surface exhibits micron-scale roughness, whose extent does not change with treatment conditions. The outermost surface consists of a few-nm thick layer of niobium pentoxide, whose thickness increases with solution flow rate to a maximum of 1.3 - 1.4 times that resulting from static solution. The standard deviation of the roughness measurements is ?? 30% and that of the surface composition is ?? 5%.

  3. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    SciTech Connect

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  4. Advances in development of Nb3Sn superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Posen, Sam; Liepe, Matthias

    2014-11-01

    A 1.3 GHz Nb3Sn superconducting radio-frequency cavity prepared with a modified annealing step reached Bp k>50 mT , well above Bc 1=25 ±7 mT , without the strong Q -slope observed in previous Nb3Sn cavities. At 4.2 K, it has a Q0 of approximately 1 ×1 010 at >10 MV /m , far outperforming Nb at useable gradients. At 2 K, quench occurred at ˜55 mT , apparently due to a defect, so additional treatment may increase the maximum gradient. Material parameters of the coating were extracted from Q vs T data, including a Tc of 18.0 ±0.1 K , close to the maximum literature value. High power pulses were used to reach fields far higher than in CW measurements, and near Tc, quench fields close to the superheating field were observed. Based on a review of previous experience with Nb3Sn cavities, a speculative mechanism involving weak link grain boundaries is presented to explain how the modified annealing step could be the cause of the absence of strong Q -slope. Finally, an analysis of the progress to date provides hints that the path forward for Nb3Sn cavities should focus on minimizing defects.

  5. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    SciTech Connect

    Tong Wang

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  6. Evidence for thermal boundary resistance effects on superconducting radiofrequency cavity performances

    NASA Astrophysics Data System (ADS)

    Palmieri, Vincenzo; Rossi, Antonio Alessandro; Stark, Sergey Yu; Vaglio, Ruggero

    2014-08-01

    The majority of the literature on superconducting cavities for particle accelerators concentrates on the interaction of a radiofrequency (RF) electromagnetic field with a superconductor cooled in liquid helium, generally either at a fixed temperature of 4.2 K or 1.8 K, basing the analysis of experimental results on the assumption that the superconductor is at the same temperature as the infinite reservoir of liquid helium. Only a limited number of papers have extended their analysis to the more complex overall system composed of an RF field, a superconductor and liquid helium. Only a few papers have analyzed, for example, the problem of the Kapitza resistance, i.e. the thermal boundary resistance between the superconductor and the superfluid helium. Among them, the general conclusion is that the Kapitza resistance, one of the most controversial and less understood topics in physics, is generally negligible, or not relevant for the performance enhancement of cavities. In our work presented here, studying the performance of 6 GHz niobium (Nb) test cavities, we have discovered and studied a new effect consisting of an abrupt change in the surface resistance versus temperature at the superfluid helium lambda transition Tλ. This abrupt change (or ‘jump’) clearly appears when the RF measurement of a cavity is performed at constant power rather than at a constant field. We have correlated this jump to a change in the thermal exchange regime across the lambda transition, and, through a simple thermal model and further reasonable assumptions, we have calculated the thermal boundary resistance between niobium and liquid helium in the temperature range between 4.2 K and 1.8 K. We find that the absolute values of the thermal resistance both above and below the lambda point are fully compatible with the data reported in the literature for heat transfer to pool boiling helium I (HeI) above Tλ and for the Kapitza interface resistance (below Tλ) between a polished metal

  7. Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites

    DOEpatents

    Norem, James H.; Pellin, Michael J.

    2013-06-11

    Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

  8. Surface Characterization of Nb Samples Electro-polished Together With Real Superconducting Radio-frequency Accelerator Cavities

    DOE PAGESBeta

    Xin Zhao; Geng, Rongli; Tyagi, P. V.; Hayano, Hitoshi; Kato, Shigeki; Nishiwaki, Michiru; Saeki, Takayuki; Sawabe, Motoaki

    2010-12-01

    We report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granules withmore » a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.« less

  9. Separation of sources in radiofrequency measurements of partial discharges using time-power ratio maps.

    PubMed

    Albarracin, R; Robles, G; Martinez-Tarifa, J M; Ardila-Rey, J

    2015-09-01

    Partial discharges measurement is one of the most useful tools for condition monitoring of high-voltage (HV) equipment. These phenomena can be measured on-line in radiofrequency (RF) with sensors such as the Vivaldi antenna, used in this paper, which improves the signal-to-noise ratio by rejecting FM and low-frequency TV bands. Additionally, the power ratios (PR), a signal-processing technique based on the power distribution of the incoming signals in frequency bands, are used to characterize different sources of PD and electromagnetic noise (EMN). The calculation of the time length of the pulses is introduced to separate signals where the PR alone do not give a conclusive solution. Thus, if several EM sources could be previously calibrated, it is possible to detect pulses corresponding to PD activity. PMID:25997372

  10. Separation of Radio-Frequency Sources and Localization of Partial Discharges in Noisy Environments

    PubMed Central

    Robles, Guillermo; Fresno, José Manuel; Martínez-Tarifa, Juan Manuel

    2015-01-01

    The detection of partial discharges (PD) can help in early-warning detection systems to protect critical assets in power systems. The radio-frequency emission of these events can be measured with antennas even when the equipment is in service which reduces dramatically the maintenance costs and favours the implementation of condition-based monitoring systems. The drawback of these type of measurements is the difficulty of having a reference signal to study the events in a classical phase-resolved partial discharge pattern (PRPD). Therefore, in open-air substations and overhead lines where interferences from radio and TV broadcasting and mobile communications are important sources of noise and other pulsed interferences from rectifiers or inverters can be present, it is difficult to identify whether there is partial discharges activity or not. This paper proposes a robust method to separate the events captured with the antennas, identify which of them are partial discharges and localize the piece of equipment that is having problems. The separation is done with power ratio (PR) maps based on the spectral characteristics of the signal and the identification of the type of event is done localizing the source with an array of four antennas. Several classical methods to calculate the time differences of arrival (TDOA) of the emission to the antennas have been tested, and the localization is done using particle swarm optimization (PSO) to minimize a distance function. PMID:25923935

  11. Separation of radio-frequency sources and localization of partial discharges in noisy environments.

    PubMed

    Robles, Guillermo; Fresno, José Manuel; Martínez-Tarifa, Juan Manuel

    2015-01-01

    The detection of partial discharges (PD) can help in early-warning detection systems to protect critical assets in power systems. The radio-frequency emission of these events can be measured with antennas even when the equipment is in service which reduces dramatically the maintenance costs and favours the implementation of condition-based monitoring systems. The drawback of these type of measurements is the difficulty of having a reference signal to study the events in a classical phase-resolved partial discharge pattern (PRPD). Therefore, in open-air substations and overhead lines where interferences from radio and TV broadcasting and mobile communications are important sources of noise and other pulsed interferences from rectifiers or inverters can be present, it is difficult to identify whether there is partial discharges activity or not. This paper proposes a robust method to separate the events captured with the antennas, identify which of them are partial discharges and localize the piece of equipment that is having problems. The separation is done with power ratio (PR) maps based on the spectral characteristics of the signal and the identification of the type of event is done localizing the source with an array of four antennas. Several classical methods to calculate the time differences of arrival (TDOA) of the emission to the antennas have been tested, and the localization is done using particle swarm optimization (PSO) to minimize a distance function. PMID:25923935

  12. Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation

    NASA Astrophysics Data System (ADS)

    Li, Yiran; Wang, Jun; Wang, Xiaojun; Wang, Baoqiang; Luan, Zhaokun

    2011-02-01

    The disposal of bayer red mud tailings now seriously threats the environment safety. Reduction and recycling of red mud is now an urgent work in aluminum industry. High gradient superconducting magnetic separation (HGSMS) system was applied to separate the extreme fine RM particles (<100 μm) into high iron content part and low iron content part. Two sorts of RM were fed in the HGSMS. The iron oxide contents in concentrates were about 65% and 45% when RM 1# and RM 2# were fed respectively. Meanwhile, the residues contained 52.0% or 14.1% iron oxide in residues after eight separation stages when RM 1# and RM 2# were fed respectively. The mass recovery of iron concentrates was about 10% after once separation process regardless of RM 1# or RM 2# was fed. Extreme fine particles (<10 μm) could be captured in the HGSMS. Intergrowth of Fe and other elements is disadvantages for iron mineral separation from RM by HGSMS. Some improvement should be studied to enhance the efficiency of iron separation. It is possible for HGSMS to separate RM into high iron content part and low iron content part, the former part could be used in iron-making furnace and the later part could be recycling to sintering process for alumina production or used as construction material.

  13. Proof-of-principle demonstration of Nb3Sn superconducting radiofrequency cavities for high Q0 applications

    NASA Astrophysics Data System (ADS)

    Posen, S.; Liepe, M.; Hall, D. L.

    2015-02-01

    Many future particle accelerators require hundreds of superconducting radiofrequency (SRF) cavities operating with high duty factor. The large dynamic heat load of the cavities causes the cryogenic plant to make up a significant part of the overall cost of the facility. This contribution can be reduced by replacing standard niobium cavities with ones coated with a low-dissipation superconductor such as Nb3Sn. In this paper, we present results for single cell cavities coated with Nb3Sn at Cornell. Five coatings were carried out, showing that at 4.2 K, high Q0 out to medium fields was reproducible, resulting in an average quench field of 14 MV/m and an average 4.2 K Q0 at quench of 8 × 109. In each case, the peak surface magnetic field at quench was well above Hc1, showing that it is not a limiting field in these cavities. The coating with the best performance had a quench field of 17 MV/m, exceeding gradient requirements for state-of-the-art high duty factor SRF accelerators. It is also shown that—taking into account the thermodynamic efficiency of the cryogenic plant—the 4.2 K Q0 values obtained meet the AC power consumption requirements of state-of-the-art high duty factor accelerators, making this a proof-of-principle demonstration for Nb3Sn cavities in future applications.

  14. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    DOE PAGESBeta

    Zhao, Xin; Ciovati, G.; Bieler, T. R.

    2010-12-15

    The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced bymore » crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. In conclusion, the local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.« less

  15. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    SciTech Connect

    Zhao, Xin; Ciovati, G.; Bieler, T. R.

    2010-12-15

    The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced by crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. In conclusion, the local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.

  16. Radio-Frequency Illuminated Superconductive Disks: Reverse Josephson Effects and Implications for Precise Measuring of Proposed Gravity Effects

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Koczor, Ronald J.

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. It have been indicated three essential components to achieve anomalous gravity effects, namely large, two-layer high-temperature YBCO superconductors, magnetic levitation and AC input in the form of radio-frequency (RF) electromagnetic fields. We report experiments on RF-illuminated (1-15 MHz) superconducting disks with corresponding gravity readings indicating an apparent increase in observed gravity of approximately 3-5 x l0(exp -5)cm/sq s, above and to the side of the superconductor. In this preliminary study, RF- illumination is achieved using a series of large radius (15 cm) spiral antenna with RF power inputs equal to or greater than 90 W. The observed gravitational modification range is significantly lower than the 2.1% gravity modification. The error analyses of thermal and electromagnetic interference in a magnetically shielded gravimeter with vacuum enclosures, Faraday cages and shielded instrument leads, are outlined both experimentally and theoretically. The nearly exact correspondence between the peak gravity effects reported and the well-known peak in AC resistance in superconductors (2-7 MHz, owing to reverse Josephson quantum effects) suggests that electrical resistance will arise in this frequency range and subsequently any trapped magnetic fields in the superconductor may disperse partially into the measuring instrument's local environment. Implications for propulsion initiatives and RF-heating in superconductors will be discussed.

  17. Laser Processing on the Surface of Niobium Superconducting Radio-Frequency Accelerator Cavities

    NASA Astrophysics Data System (ADS)

    Singaravelu, Senthilraja; Klopf, Michael; Krafft, Geoffrey; Kelley, Michael

    2011-03-01

    Superconducting Radio frequency (SRF) niobium cavities are at the heart of an increasing number of particle accelerators.~ Their performance is dominated by a several nm thick layer at the interior surface. ~Maximizing its smoothness is found to be critical and aggressive chemical treatments are employed to this end.~ We describe laser-induced surface melting as an alternative ``greener'' approach.~ Modeling guided selection of parameters for irradiation with a Q-switched Nd:YAG laser.~ The resulting topography was examined by SEM, AFM and Stylus Profilometry.

  18. Laser polishing of niobium for superconducting radio-frequency accelerator applications

    SciTech Connect

    Zhao, Liang; Klopf, John M.; Reece, Charles E.; Kelley, Michael J.

    2014-08-01

    Interior surfaces of niobium cavities used in superconducting radio frequency accelerators are now obtained by buffered chemical polish and/or electropolish. Laser polishing is a potential alternative, having advantages of speed, freedom from noxious chemistry and availability of in-process inspection. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damage. Computational modeling was used to estimate the surface temperature and gain insight into the mechanism of laser polishing. Power spectral density analysis of surface topography measurements shows that laser polishing can produce smooth topography similar to that obtained by electropolish. This is a necessary first step toward introducing laser polishing as an alternative to the currently practiced chemical polishing.

  19. Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Dzyuba, A.; Romanenko, A.; Cooley, L. D.

    2010-12-01

    A model for the onset of the reduction in superconducting radio-frequency (SRF) cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration Hpen. Such defects were argued to be the worst case by Buzdin and Daumens (1998 Physica C 294 257), whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter κ. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of Hpen when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower Hpen was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of κ. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ~ 20%, and that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was

  20. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    SciTech Connect

    Ahmed, Shahid; Mammosser, John D.

    2015-07-15

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar–O{sub 2} (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM{sub 010}-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  1. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    NASA Astrophysics Data System (ADS)

    Ahmed, Shahid; Mammosser, John D.

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  2. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity.

    PubMed

    Ahmed, Shahid; Mammosser, John D

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper. PMID:26233368

  3. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao; Rigby, Wayne; Wallace, John

    2012-06-15

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 Degree-Sign C) and high ({approx}800 Degree-Sign C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 Degree-Sign C with a maximum pressure of {approx}1 Multiplication-Sign 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 Degree-Sign C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 Degree-Sign C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  4. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect

    Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  5. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    SciTech Connect

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Ruegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; Morenzoni, Elvezio

    2015-09-08

    We report that the recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5≲ p ≲ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc3.2 as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  6. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    PubMed

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-01-01

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 < or ~  p < or ~ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs. PMID:26346548

  7. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    PubMed Central

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Rüegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; Morenzoni, Elvezio

    2015-01-01

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p  3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p  7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc  1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5  p  7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs. PMID:26346548

  8. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    DOE PAGESBeta

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Ruegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; et al

    2015-09-08

    We report that the recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreasesmore » upon increasing the pressure. In the intermediate pressure region (3.5≲ p ≲ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc3.2 as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.« less

  9. Switching Monopolar Radiofrequency Ablation Using a Separable Cluster Electrode in Patients with Hepatocellular Carcinoma: A Prospective Study

    PubMed Central

    Choi, Jin Woo; Lee, Jeong Min; Lee, Dong Ho; Yoon, Jeong-Hee; Suh, Kyung-Suk; Yoon, Jung-Hwan; Kim, Yoon Jun; Lee, Jeong-Hoon; Yu, Su Jong; Han, Joon Koo

    2016-01-01

    Objective This study was conducted to evaluate the outcomes of multi-channel switching RFA using a separable cluster electrode in patients with HCC. Methods From November 2011 to July 2013, 79 patients with 98 HCCs < 5 cm were enrolled and treated with RFA using a multi-channel switching radiofrequency system and a separable cluster electrode under the guidance of a real-time fusion imaging system. The primary and secondary endpoints were the 3-year local tumor progression (LTP) rate and recurrence-free survival (RFS) rate, respectively. For post hoc analyses, LTP, RFS, and major complication rates were retrospectively compared with a historical control group treated with RFA using the same radiofrequency system but with multiple internally-cooled electrodes. Results The technique success rate of the 98 tumors was 100%. Cumulative 1-year, 2-year, and 3-year LTP rates were 3.4%, 6.9%, and 12.4%, respectively. For patient-level data, cumulative 1-year, 2-year, and 3-year RFS rates were 83.9%, 68.6%, and 45.4%, respectively. On post hoc analyses, none of the baseline characteristics showed a significant difference between the separable cluster electrode and multiple internally-cooled electrodes group. Cumulative LTP and RFS rates of the two groups also showed no significant difference (p = 0.401 and p = 0.881, respectively). Finally, major complication rates of the separable cluster electrode group (5.0%, 4/79) and multiple internally-cooled electrodes group (5.9%, 4/74) were also comparable (p = 1.000). Conclusion Switching monopolar RFA using a separable cluster electrode is a feasible and efficient technique for the treatment of HCCs smaller than 5 cm, providing comparable local tumor control to multiple internally-cooled electrodes. Trial Registration ClinicalTrials.gov NCT02745483 PMID:27575787

  10. Development of superconducting high gradient magnetic separation system for highly viscous fluid for practical use

    NASA Astrophysics Data System (ADS)

    Hayashi, S.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-11-01

    In the industrial plants processing highly viscous fluid such as foods or industrial products, it is necessary to remove the metallic wear debris originating from pipe in manufacturing line which triggers quality loss. In this study, we developed a high gradient magnetic separation (HGMS) system which consists of superconducting magnet to remove the metallic wear debris. The magnetic separation experiment and the particle trajectory simulation were conducted with polyvinyl alcohol (PVA) as a model material (viscosity coefficient was 10 Pa s, which is 10,000 times higher than that in water). In order to develop a magnetic separation system for practical use, the particle trajectory simulation by using solenoidal superconducting magnet was conducted, and the possibility of the magnetic separation for removing ferromagnetic stainless steel (SUS) particles in highly viscous fluid of 10 Pa s was indicated. Based on the results, the number of filters to obtain required separation efficiency was examined to design the practical separation system.

  11. Study on magnetic separation system using high Tc superconducting bulk magnets for water purification technique

    NASA Astrophysics Data System (ADS)

    Oka, T.; Kanayama, H.; Tanaka, K.; Fukui, S.; Ogawa, J.; Sato, T.; Yamaguchi, M.; Ooizumi, M.; Yokoyama, K.; Noto, K.

    2009-03-01

    The application of superconducting bulk magnets to the magnetic separation techniques has been investigated for the Mn-bearing waste water drained from the university laboratories. The research has been conducted in comparison with the electromagnets, and the cryo-cooled superconducting solenoid magnet. The separation ratios of ferrite precipitates including Mn element in the waste slurry were estimated by means of the high gradient magnetic separation method with ferromagnetic iron filters in the water channel and open gradient magnetic separation without them. As the magnetic force acting on the particles is given by the product of a magnetization of particles and a gradient of magnetic field, and a superconducting bulk magnet shows a sharp gradient of the magnetic field on the surface, the performances of the bulk magnet system were almost equivalent to those of the superconducting solenoid magnet with wide bore with respect to the magnetic separation ratios. The separation ratios for Mn have reached over 80 % for HGMS and 10 % for OGMS under the flow rates less than 3 liter/min.

  12. Self-optimized superconductivity attainable by interlayer phase separation at cuprate interfaces.

    PubMed

    Misawa, Takahiro; Nomura, Yusuke; Biermann, Silke; Imada, Masatoshi

    2016-07-01

    Stabilizing superconductivity at high temperatures and elucidating its mechanism have long been major challenges of materials research in condensed matter physics. Meanwhile, recent progress in nanostructuring offers unprecedented possibilities for designing novel functionalities. Above all, thin films of cuprate and iron-based high-temperature superconductors exhibit remarkably better superconducting characteristics (for example, higher critical temperatures) than in the bulk, but the underlying mechanism is still not understood. Solving microscopic models suitable for cuprates, we demonstrate that, at an interface between a Mott insulator and an overdoped nonsuperconducting metal, the superconducting amplitude is always pinned at the optimum achieved in the bulk, independently of the carrier concentration in the metal. This is in contrast to the dome-like dependence in bulk superconductors but consistent with the astonishing independence of the critical temperature from the carrier density x observed at the interfaces of La2CuO4 and La2-x Sr x CuO4. Furthermore, we identify a self-organization mechanism as responsible for the pinning at the optimum amplitude: An emergent electronic structure induced by interlayer phase separation eludes bulk phase separation and inhomogeneities that would kill superconductivity in the bulk. Thus, interfaces provide an ideal tool to enhance and stabilize superconductivity. This interfacial example opens up further ways of shaping superconductivity by suppressing competing instabilities, with direct perspectives for designing devices. PMID:27482542

  13. Self-optimized superconductivity attainable by interlayer phase separation at cuprate interfaces

    PubMed Central

    Misawa, Takahiro; Nomura, Yusuke; Biermann, Silke; Imada, Masatoshi

    2016-01-01

    Stabilizing superconductivity at high temperatures and elucidating its mechanism have long been major challenges of materials research in condensed matter physics. Meanwhile, recent progress in nanostructuring offers unprecedented possibilities for designing novel functionalities. Above all, thin films of cuprate and iron-based high-temperature superconductors exhibit remarkably better superconducting characteristics (for example, higher critical temperatures) than in the bulk, but the underlying mechanism is still not understood. Solving microscopic models suitable for cuprates, we demonstrate that, at an interface between a Mott insulator and an overdoped nonsuperconducting metal, the superconducting amplitude is always pinned at the optimum achieved in the bulk, independently of the carrier concentration in the metal. This is in contrast to the dome-like dependence in bulk superconductors but consistent with the astonishing independence of the critical temperature from the carrier density x observed at the interfaces of La2CuO4 and La2−xSrxCuO4. Furthermore, we identify a self-organization mechanism as responsible for the pinning at the optimum amplitude: An emergent electronic structure induced by interlayer phase separation eludes bulk phase separation and inhomogeneities that would kill superconductivity in the bulk. Thus, interfaces provide an ideal tool to enhance and stabilize superconductivity. This interfacial example opens up further ways of shaping superconductivity by suppressing competing instabilities, with direct perspectives for designing devices. PMID:27482542

  14. High Temperature Superconducting Reciprocating Magnetic Separator Final Report

    SciTech Connect

    James F. Maguire

    2008-06-05

    In 2001, under DOE's Superconductivity Partnership Initiative (SPI), E. I. du Pont de Nemours & Co. (Dupont) was awarded a cost-share contract to build a fully functional full-scale model high temperature superconducting reciprocating magnet unit specifically designed for the koalin clay industry. After competitive bidding, American Superconductor (AMSC) was selected to provide the coil for the magnet. Dupont performed the statement of work until September 2004, when it stopped work, with the concurrence of DOE, due to lack of federal funds. DOE had paid all invoices to that point, and Dupont had provided all cost share. At this same time, Dupont determined that this program did not fit with its corporate strategies and notified DOE that it was not interesting in resuming the program when funding became available. AMSC expressed interest in assuming performance of the Agreement to Dupont and DOE, and in March 2005, this project was transferred to AMSC by DOE amendment to the original contract and Novation Agreement between AMSC and Dupont. Design drawings and some hardware components and subassemblies were transferred to AMSC. However, no funding was obligated by DOE and AMSC never performed work on the project. This report contains a summary of the work performed by Dupont up to the September 04 timeframe.

  15. Phase Separation of Superconducting Phases in the Penson-Kolb-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Jerzy Kapcia, Konrad; Czart, Wojciech Robert; Ptok, Andrzej

    2016-04-01

    In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson-Kolb-Hubbard model for two dimensional square lattice within Hartree-Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed.

  16. Separating pairing from quantum phase coherence dynamics above the superconducting transition by femtosecond spectroscopy

    PubMed Central

    Madan, I.; Kurosawa, T.; Toda, Y.; Oda, M.; Mertelj, T.; Kusar, P.; Mihailovic, D.

    2014-01-01

    In classical superconductors an energy gap and phase coherence appear simultaneously with pairing at the transition to the superconducting state. In high-temperature superconductors, the possibility that pairing and phase coherence are distinct and independent processes has led to intense experimental search of their separate manifestations. Using femtosecond spectroscopy methods we now show that it is possible to clearly separate fluctuation dynamics of the superconducting pairing amplitude from the phase relaxation above the critical transition temperature. Empirically establishing a close correspondence between the superfluid density measured by THz spectroscopy and superconducting optical pump-probe response over a wide region of temperature, we find that in differently doped Bi2Sr2CaCu2O8+δ crystals the pairing gap amplitude monotonically extends well beyond Tc, while the phase coherence shows a pronounced power-law divergence as T → Tc, thus showing that phase coherence and gap formation are distinct processes which occur on different timescales. PMID:25014162

  17. One-step implementation of a Toffoli gate of separated superconducting qubits via quantum Zeno dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Mei-Feng; Chen, Yong-Fa; Ma, Song-She

    2016-04-01

    Based on the quantum Zeno dynamics, a scheme is presented to implement a Toffoli gate of three separated superconducting qubits (SQs) by one step. Three separated SQs are connected by two resonators. The scheme is insensitive to the resonator decay because the Zeno subspace does not include the state of the resonators being excited. Numerical simulations indicate that the scheme is robust to the fluctuation of the parameters and the Toffoli gate can be implemented with high fidelity.

  18. Highly efficient magnetic separation using five-aligned superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Fujishiro, Hiroyuki; Miura, Takashi; Naito, Tomoyuki; Hayashi, Hidemi

    2010-06-01

    We have constructed the highly efficient magnetic separation system using five-aligned superconducting bulk magnets, which has ten usable magnetic poles on both sides in open space. We applied the bulk magnet system to the magnetic separation of ferromagnetic particles (magnetite; Fe3O4) and paramagnetic ones (α-hematite Fe2O3) dispersed in water for various average particle diameters d, flow speeds VF and initial concentrations C0 of the particles. The multi-bulk magnet system has been confirmed to be effective for the magnetic separation and the efficiency of the magnetic separation per one magnetic pole has been estimated using the theoretical relation.

  19. Large-scale superconducting separator for Kaolin processing

    SciTech Connect

    Winters, A.J, Jr. ); Selvaggi, J.A. )

    1990-01-01

    Currently, high gradient magnetic separators (HGMSs) are used almost exclusively by the clay processing industry, particularly in producing an extremely white kaolin for the paper, coatings and rubber industries where a bright additive is desirable. As mined, the clay is a light cream color-not white. Many of these impurities can be removed chemically using a reducing agent such as sodium hydrosulfite in low pH, sulfuric acid, and alum. High purity, however, can be obtained by removing trace amounts of paramagnetic particles (100% finer than 2 {mu}m). This is accomplished by separating these particles from 28 wt% kaolin in a water slurry retaining them on magnetic wool, which is then periodically regenerated.

  20. Superconductivity

    SciTech Connect

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries.

  1. Non-separable pairing interaction kernels applied to superconducting cuprates

    NASA Astrophysics Data System (ADS)

    Haley, Stephen B.; Fink, Herman J.

    2014-05-01

    A pairing Hamiltonian H(Γ) with a non-separable interaction kernel Γ produces HTS for relatively weak interactions. The doping and temperature dependence of Γ(x,T) and the chemical potential μ(x) is determined by a probabilistic filling of the electronic states in the cuprate unit cell. A diverse set of HTS and normal state properties is examined, including the SC phase transition boundary TC(x), SC gap Δ(x,T), entropy S(x,T), specific heat C(x,T), and spin susceptibility χs(x,T). Detailed x,T agreement with cuprate experiment is obtained for all properties.

  2. Feasibility of turbidity removal by high-gradient superconducting magnetic separation.

    PubMed

    Zeng, Hua; Li, Yiran; Xu, Fengyu; Jiang, Hao; Zhang, Weimin

    2015-01-01

    Several studies have focused on pollutant removal by magnetic seeding and high-gradient superconducting magnetic separation (HGSMS). However, few works reported the application of HGSMS for treating non-magnetic pollutants by an industrial large-scale system. The feasibility of turbidity removal by a 600 mm bore superconducting magnetic separation system was evaluated in this study. The processing parameters were evaluated by using a 102 mm bore superconducting magnetic separation system that was equipped with the same magnetic separation chamber that was used in the 600 mm bore system. The double-canister system was used to process water pollutants. Analytical grade magnetite was used as a magnetic seed and the turbidity of the simulated raw water was approximately 110 NTU, and the effects of polyaluminum chloride (PAC) and magnetic seeds on turbidity removal were evaluated. The use of more PAC and magnetic seeds had few advantages for the HGSMS at doses greater than 8 and 50 mg/l, respectively. A magnetic intensity of 5.0 T was beneficial for HGSMS, and increasing the flow rate through the steel wool matrix decreased the turbidity removal efficiency. In the breakthrough experiments, 90% of the turbidity was removed when 100 column volumes were not reached. The processing capacity of the 600 mm bore industry-scale superconducting magnetic separator for turbidity treatment was approximately 78.0 m(3)/h or 65.5 × 10(4) m(3)/a. The processing cost per ton of water for the 600 mm bore system was 0.1 $/t. Thus, the HGSMS separator could be used in the following special circumstances: (1) when adequate space is not available for traditional water treatment equipment, especially the sedimentation tank, and (2) when decentralized sewage treatment HGSMS systems are easier to transport and install. PMID:25828094

  3. Research on red mud treatment by a circulating superconducting magnetic separator.

    PubMed

    Li, Yiran; Chen, Haoshu; Wang, Jun; Xu, Fengyu; Zhang, Weimin

    2014-01-01

    Red mud (RM) accumulated over the years and caused a serious environmental problem. Iron-rich fraction separation is a cost-effective way to reduce the amount of disposal RM. A circulating high-gradient superconducting magnetic separator was produced in this work. Steel wool was filled in the circulating boxes. The boxes were connected by two chains, which moved in and out the magnetic field by a drive motor. The efficiency of iron-rich RM separation by the superconducting magnetic separator was investigated. An amount of 25% (w/w) iron-rich RM fractions with a grade of 65% were separated from the 56% iron content raw RM. The parameters of the steel wool matrix were important in controlling the iron-rich RM magnetic separation. Finer steel wool increased the iron recovery ratio, but decreased the grade of the iron-rich RM concentrates. Microscopic photographs of the RM particles showed that opaque mineral particles were enriched in the collected RM. The particle size distributions of raw, concentrate and residue RM were measured. The increased particle size of concentrate RM implied that large particles were entrapped in the steel wool matrix. PMID:24701921

  4. Effect of high temperature heat treatments on the quality factor of a large-grain superconducting radio-frequency niobium cavity

    SciTech Connect

    Dhakal, P.; Ciovati, G.; Myneni, G. R.; Gray, K. E.; Groll, N.; Maheshwari, P.; McRae, D. M.; Pike, R.; Proslier, T.; Stevie, F.; Walsh, R. P.; Yang, Q.; Zasadzinzki, J.

    2013-04-01

    Large-grain Nb has become a viable alternative to fine-grain Nb for the fabrication of superconducting radio-frequency cavities. In this contribution we report the results from a heat treatment study of a large-grain 1.5 GHz single-cell cavity made of “medium purity” Nb. The baseline surface preparation prior to heat treatment consisted of standard buffered chemical polishing. The heat treatment in the range 800–1400°C was done in a newly designed vacuum induction furnace. Q{sub 0} values of the order of 2×10{sup 10} at 2.0 K and peak surface magnetic field (B{sub p}) of 90 mT were achieved reproducibly. A Q{sub 0} value of (5±1)×10{sup 10} at 2.0 K and B{sub p}=90mT was obtained after heat treatment at 1400°C. This is the highest value ever reported at this temperature, frequency, and field. Samples heat treated with the cavity at 1400°C were analyzed by secondary ion mass spectrometry, x-ray photoelectron spectroscopy, energy dispersive x ray, point-contact tunneling, and x-ray diffraction, and revealed a complex surface composition which includes titanium oxide, increased carbon, and nitrogen content but reduced hydrogen concentration compared to a non-heat-treated sample.

  5. Superconductivity

    NASA Astrophysics Data System (ADS)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  6. Purification of condenser water in thermal power station by superconducting magnetic separation

    NASA Astrophysics Data System (ADS)

    Ha, D. W.; Kwon, J. M.; Baik, S. K.; Lee, Y. J.; Han, K. S.; Ko, R. K.; Sohn, M. H.; Seong, K. C.

    2011-11-01

    Thermal power station is made up of a steam turbine and a steam condenser which need a lot of water. The water of steam condenser should be replaced, since scales consisting of iron oxide mainly are accumulated on the surface of condenser pipes as it goes. Superconducting high gradient magnetic separation (HGMS) system has merits to remove paramagnetic substance like iron oxides because it can generate higher magnetic field strength than electromagnet or permanent magnet. In this paper, cryo-cooled Nb-Ti superconducting magnet that can generate up to 6 T was used for HGMS systems. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The result of X-ray analysis showed contaminants were mostly α-Fe 2O 3 (hematite) and γ-Fe 2O 3 (maghemite). The higher magnetic field was applied up to 6 T, the more iron oxides were removed. As the wire diameter of magnetic filter decreased, the turbidity removal of the sample was enhanced.

  7. Stripe-like nanoscale structural phase separation in superconducting BaPb1−xBixO3

    PubMed Central

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; Manoharan, H.C.; Beasley, M.R.; Geballe, T.H.; Kramer, M.J.; Fisher, I.R.

    2015-01-01

    The phase diagram of BaPb1−xBixO3 exhibits a superconducting dome in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high-resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare with the Ginzburg–Landau coherence length. We find that the maximum Tc occurs when the superconducting coherence length matches the width of the partially disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome. PMID:26373890

  8. Stripe-like nanoscale structural phase separation in superconducting BaPb1-xBixO3

    DOE PAGESBeta

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; Manoharan, H. C.; Beasley, M. R.; Geballe, T. H.; Kramer, M. J.; Fisher, I. R.

    2015-09-16

    The phase diagram of BaPb1-xBixO3 exhibits a superconducting “dome” in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum Tc occurs when the superconducting coherence length matches the width of the partially disordered stripes, implying amore » connection between the structural phase separation and the shape of the superconducting dome.« less

  9. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Tachibana, S.; Miura, O.; Takeuchi, M.

    2011-11-01

    Recently, mercury Hg concentration in human blood increases due to expanding the global mercury contamination. Excess mercury bioaccumulation poses a significant health risk. In order to decrease mercury concentration in the environment and human blood, we have developed two different kinds of nanostructured magnetic adsorbents for mercury to apply them to superconducting magnetic separation instead of conventional filtration. One is magnetic beads (MBs) which have nanosize magnetite particles in the core and a lot of SH radicals on the surface to adsorb Hg ions effectively. MBs were developed mainly to remove mercury from human blood. The maximum amount of the adsorption for MBs is 6.3 mg/g in the solution in less than a minute. Dithiothreitol can easily remove mercury adsorbed to MBs, hence MBs can be reusable. The other is nanostructured magnetic activated carbon (MAC) which is activated carbon with mesopores and nanosize magnetite. The maximum amount of the adsorption for MAC is 38.3 mg/g in the solution. By heat-treatment mercury can be easily removed from MAC. We have studied superconducting magnetic separation using each adsorbent for mercury removal from solution.

  10. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet

    NASA Astrophysics Data System (ADS)

    Igarashi, Susumu; Nomura, Naoki; Mishima, Fumihito; Akiyama, Yoko

    2014-09-01

    The accident of Fukushima Daiichi nuclear power plant caused the diffusion of radioactive cesium over the wide area. We examined the possibility of applying magnetic separation method using the superconducting magnet, which can process a large amount of the soil in high speed, to the soil decontamination and volume reduction of the radioactive cesium contaminated soil. Clay minerals are classified as 2:1 and 1:1 types by the difference of their layer structures, and these types of minerals are respectively paramagnetic and diamagnetic including some exception. It is known that most of the radioactive cesium is strongly adsorbed on the clay, especially on 2:1 type clay minerals. It is expected that the method which can separate only 2:1 type clay minerals selectively from the mixture clay minerals can enormously contribute to the volume reduction of the contaminated soil. In this study, the components in the clay before and after separation were evaluated to estimate the magnetic separation efficiency by using X-ray diffraction. From the results, the decontamination efficiency and the volume reduction ratio were estimated in order to examine the appropriate separation conditions for the practical decontamination of the soil.

  11. Proof-of-principle demonstration of Nb{sub 3}Sn superconducting radiofrequency cavities for high Q{sub 0} applications

    SciTech Connect

    Posen, S. Liepe, M.; Hall, D. L.

    2015-02-23

    Many future particle accelerators require hundreds of superconducting radiofrequency (SRF) cavities operating with high duty factor. The large dynamic heat load of the cavities causes the cryogenic plant to make up a significant part of the overall cost of the facility. This contribution can be reduced by replacing standard niobium cavities with ones coated with a low-dissipation superconductor such as Nb{sub 3}Sn. In this paper, we present results for single cell cavities coated with Nb{sub 3}Sn at Cornell. Five coatings were carried out, showing that at 4.2 K, high Q{sub 0} out to medium fields was reproducible, resulting in an average quench field of 14 MV/m and an average 4.2 K Q{sub 0} at quench of 8 × 10{sup 9}. In each case, the peak surface magnetic field at quench was well above H{sub c1}, showing that it is not a limiting field in these cavities. The coating with the best performance had a quench field of 17 MV/m, exceeding gradient requirements for state-of-the-art high duty factor SRF accelerators. It is also shown that—taking into account the thermodynamic efficiency of the cryogenic plant—the 4.2 K Q{sub 0} values obtained meet the AC power consumption requirements of state-of-the-art high duty factor accelerators, making this a proof-of-principle demonstration for Nb{sub 3}Sn cavities in future applications.

  12. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  13. Model for Initiation of Quality Factor Degradation at High Accelerating Fields in Superconducting Radio-Frequency Cavaties

    SciTech Connect

    Dzyuba, A.; Romanenko, A.; Cooley, L.D.; /Fermilab

    2010-07-13

    was extended to fit cavity test data, which indicated that reduction of the superconducting gap by contaminants may also play a role in Q-drop.

  14. Performance improvement of a high-temperature superconducting coil by separating and grading the coil edge

    NASA Astrophysics Data System (ADS)

    Ishiguri, Shinichi; Funamoto, Taisuke

    2011-06-01

    In this paper, we establish a model to analyze the transport current performance of a high-temperature superconducting (HTS) coil, considering the dependencies of critical current and n-value of an HTS tape on magnetic field and magnetic field angles. This analysis shows that relatively large electric fields appear at the coil’s edges, preventing improvement in the transport current performance of the coil. To solve this problem, in this paper, we propose a graded coil in which several coil edges of different heights are separated and graded. Analysis of its performance shows that the coil’s critical current increases, thus confirming that there exists an optimum coil cross section at which the stored energy and central magnetic field improve 2.1 times and 45%, respectively, compared with a typical rectangular coil that employs the same total length of the HTS tape. It is recommended that these results of the coil should be applied to SMES.

  15. Superconductivity and Phase Separation in Oxygenated LANTHANUM(2-X) Strontium(x) Copper OXYGEN(4+DELTA)

    NASA Astrophysics Data System (ADS)

    Feng, Hung-Hsu

    1995-01-01

    In spite of the intensive, world-wide study of high temperature superconductors since their discovery ten years ago, the understanding of the microscopic mechanism of high temperature superconductivity is still limited. Phenomenologically, the hole concentration (P) is the most important parameter for manipulating the superconducting properties. Various physical properties have been established in terms of P to search for universal behaviors among the high-T_{c} cuprates. Recently, the phenomenon of clustering of holes in real space has been investigated for the high-T_ {c} cuprates, experimentally and theoretically. The realization of clustering of holes in the high- T_{c} cuprates will provide a new concept of the underlying electronic structure in them. In this work, we have studied the physical properties and behavior of phase separation for oxygenated rm La_{2-x}Sr_{x}CuO _{4+delta} (x = 0, 0.05; 0 < delta < 0.12), and compared the results to that of cation doped La_ {2-x}M_{x}CuO_4. We have, for the first time, synthesized two series of La_2CuO_{4+delta } (0 < delta < 0.12) and La_{1.95}Sr_{0.05 }CuO_{4+delta} (0 < delta <= 0.05) exhibiting consistent and reproducible physical properties. The results of this study show the following: (1) An anomalous electronic state with T_{c} ~ 15 K corresponding to P ~ 0.125 is found in both oxygenated La_2CuO _{4+delta} and La_{1.95}Sr_{0.05}CuO _{4+delta} systems. This indicates that all the T_{c } anomalies observed in cation doped La_{2-x}M_{x}CuO _4 and anion doped La_2CuO _{4+delta} are electronically driven and are of a common origin. (2) A two-superconducting phase region, T_{c} ~ 15 K and ~ 32 K, is found both in oxygenated La_2CuO _{4+delta} and La_{1.95}Sr_{0.05}CuO _{4+delta} in the same hole concentration range (P > 0.1) but in different oxygen concentration ranges. This indicates that the phase separation is electronically driven. (3) A universal physical picture in terms of phase separation and hole

  16. Inert Gas Buffered Milling and Particle Size Separation of μm-Scale Superconducting Precursor Powders

    SciTech Connect

    Seshadri, S.; McIntyre, P.

    2008-06-20

    The project developed an aerosol system for the met milling and particle size separation of the precursor powders used in fabrication of powder-in-tube superconductors. The work builds upon the results of a previous SBIR-funded development that proved the basic principles of the virtual impactor (VI) technology and its efficacy for the powders of interest. The new project extended that work in three respects: it integrated provisions for recirculating the aerosol flow using inert gas to avoid contamination from O2, CO2 and water in ambient air; a quad configuration of VI subassemblies to support kg/hr throughput; and it incorporated design features that eliminate error trajectories which would introduce trace contamination of larger particles into the separated flow. The project demonstrated the technical effectiveness of the process and established its economic feasibility by achieving kg/hr throughput within a cost profile that would be profitable within the range of competitive toll fees. The project is beneficial to the public through its potential to improve the performance of superconducting materials for research and for biomedicine. It also conveys potential benefits for powders used in high-performance ceramics (for example for engines for automobiles and for aircraft) and for high-performance electrical insulators for telecommunications circuitry.

  17. Nanoscale phase separation of antiferromagnetic order and superconductivity in K0.75Fe1.75Se2

    PubMed Central

    Yuan, R. H.; Dong, T.; Song, Y. J.; Zheng, P.; Chen, G. F.; Hu, J. P.; Li, J. Q.; Wang, N. L.

    2012-01-01

    We report an in-plane optical spectroscopy study on the iron-selenide superconductor K0.75Fe1.75Se2. The measurement revealed the development of a sharp reflectance edge below Tc at frequency much smaller than the superconducting energy gap on a relatively incoherent electronic background, a phenomenon which was not seen in any other Fe-based superconductors so far investigated. Furthermore, the feature could be noticeably suppressed and shifted to lower frequency by a moderate magnetic field. Our analysis indicates that this edge structure arises from the development of a Josephson-coupling plasmon in the superconducting condensate. Together with the transmission electron microscopy analysis, our study yields compelling evidence for the presence of nanoscale phase separation between superconductivity and magnetism. The results also enable us to understand various seemingly controversial experimental data probed from different techniques. PMID:22355735

  18. An rf separated kaon beam from the Main Injector: Superconducting aspects

    SciTech Connect

    D.A. Edwards

    1998-11-01

    ThE report is intended to focus on the superconducting aspects of a potential separated kaon beam facility for the Main Injector, and most of this document reflects that emphasis. However, the RF features cannot be divorced from the overall beam requirements, and so the next section is devoted to the latter subject. The existing optics design that meets the needs of the two proposed experiments is outliied, and its layout at Fermilab is shown. The frequency and deflection gradient choices present implementation dMiculties, and the section closes with some commentary on these issues. Sec. 3 provides an introduction to cavity design considerations, and, in particular carries forward the discussion of resonator shape and frequency selection. The R&D program is the subject of Sec. 4. Provisional parameter choices will be summarized. Initial steps toward cavity fabrication based `on copper models have been taken. The next stages in cavity fabrication will be reviewed in some detail. The infrastructure needs and availability will be discussed. Sec. 5 discusses what maybe characterized as the in~edlents of a point design. At this writing, some aspects are clear and some are not. The basic systems are reasonably clear and are described. The final section presents a cost and schedule estimate for both the Ft&D and production phase. Some supporting material and elaboration is provided in the Appendices.

  19. Research in Superconducting Radiofrequency Systems

    SciTech Connect

    Hoffstaetter, Georg

    2012-02-01

    The aim of the program is to transfer our successes in single cell high gradient R&D to multi-cell cavities of advanced shapes. We have also developed a new technique for electropolishing (EP) which is much less expensive than the standard EP technique used at other labs. Our aim is to apply this technique to multi-cell cavities of advanced shapes. The scientific program of this grant was concluded in 2010. An extension of this grant al-lowed us to receive ARRA funding, which we used to improve the helium-liquefier system in Cornell's SRF laboratory. Part of this system had been purchased and installed by another grant. The extension to grant DE-FG02-04ER41354 was proposed to extend this system to sufficient power so that helium can be recovered from SRF-cavity test and simultaneously can be liquefied. This significantly increased the number of cavities we can test per week. This upgrade project was finished in the spring of 2010 and has been in regular use ever since.

  20. Superconductivity in KCa2Fe4As4F2 with Separate Double Fe2As2 Layers.

    PubMed

    Wang, Zhi-Cheng; He, Chao-Yang; Wu, Si-Qi; Tang, Zhang-Tu; Liu, Yi; Ablimit, Abduweli; Feng, Chun-Mu; Cao, Guang-Han

    2016-06-29

    We report the synthesis, crystal structure, and physical properties of a quinary iron arsenide fluoride, KCa2Fe4As4F2. The new compound crystallizes in a body-centered tetragonal lattice (space group I4/mmm, a = 3.8684(2) Å, c = 31.007(1) Å, Z = 2) that contains double Fe2As2 conducting layers separated by insulating Ca2F2 layers. Our measurements of electrical resistivity, direct-current magnetic susceptibility, and heat capacity demonstrate bulk superconductivity at 33 K in KCa2Fe4As4F2. PMID:27321364

  1. Stripe-like nanoscale structural phase separation in superconducting BaPb1-xBixO3

    SciTech Connect

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; Manoharan, H. C.; Beasley, M. R.; Geballe, T. H.; Kramer, M. J.; Fisher, I. R.

    2015-09-16

    The phase diagram of BaPb1-xBixO3 exhibits a superconducting “dome” in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum Tc occurs when the superconducting coherence length matches the width of the partially disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome.

  2. Stripe-like nanoscale structural phase separation in superconducting BaPb1-xBixO3

    SciTech Connect

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; Manoharan, H. C.; Beasley, M. R.; Geballe, T. H.; Kramer, M. J.; Fisher, I. R.

    2015-09-16

    The phase diagram of BaPb1-xBixO3 exhibits a superconducting dome in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high-resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare with the Ginzburg–Landau coherence length. We find that the maximum Tc occurs when the superconducting coherence length matches the width of the partially disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome.

  3. Removal of less biodegradable dissolved organic matters in water by superconducting magnetic separation with magnetic mesoporous carbon

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Jin, T.; Miura, O.

    2010-11-01

    Less biodegradable dissolved organic matters in water as typified by humic substances are known as precursors of carcinogenic trihalomethanes, and are removed about 60% by current advanced water treatments. However, further increase of the removal ratio is demand. In this study, magnetic mesoporous carbon (MMPC), which can adsorb the substances physically and be efficiently collected by using superconducting high gradient magnetic separation (HGMS), has been synthesized with coconut-shell-based activated carbon and ferric nitrate solution by the gas activation method. The MMPC has the maximum magnetization value of 30.7 emu/g and an adsorption ability of 87% to 10 mg/L humic acid in a short time. The standard MMPC having a magnetization of 6.43 emu/g was able to be separated at magnetic field of 2 T. Used MMPC regained the adsorption ability to 93.1% by N 2 reactivation heat treatment. These results show promise for application of current water treatments by superconducting HGMS, which is suitable for high-speed water treatment without secondary wastes.

  4. SUPERCONDUCTING OPEN-GRADIENT MAGNETIC SEPARATION FOR THE PRETREATMENT OF RADIOACTIVE OR MIXED WASTE VITRIFICATION FEEDS

    EPA Science Inventory

    Scientists need to gain a better understanding of the magnetic separation processes that can be used to separate deleterious constituents (crystalline, amorphous, and colloidal) in vitrification feed streams for borosilicate glass production without adding chemicals or generating...

  5. Phase separation and neighboring ground states of superconductivity in KxFe2---ySe 2

    NASA Astrophysics Data System (ADS)

    Ryu, Hyejin

    Iron-based superconductor KxFe2-ySe 2 has generated considerable attention having higher critical temperature (~31 K)* than previously reported FeSe series (~8 K) and showing a unique phase separation with Fe vacancy order. We investigate the effect of the chemical substitution to the ground state and report various ground states such as spin glass phase and superconductor-insulator transition (SIT) under high-magnetic field by substitution of Na, Te, and Ni on KxFe2-ySe 2 single crystal. The normal-state in-plane resistivity below Tc and the upper critical field for KxFe2-ySe1.85Te0.15 and K0.50Na0.24Fe2-ySe2 are measured by suppressing superconductivity in pulsed magnetic fields. The normal-state resistivity is found to increase logarithmically as T/T c goes to 0 with decreasing temperature similar to granular superconductors and Cu-based high-Tc superconductors. Our results suggest that SIT may be induced in high magnetic fields, which is related to the intrinsic real space phase separated states. We also present a ground state change of KxFe2-delta-yNiySe2 (0.06≤y≤1.44) single crystal alloys. Small amount of Ni (~ 4%) substitution suppresses superconductivity below 1.8 K and for higher Ni content insulating spin glass magnetic ground state is induced.

  6. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation using Superconducting Tunnel Junctions with Radio-Frequency Single-Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The science drivers for the SPIRIT/SPECS missions demand sensitive, fast, compact, low-power, large-format detector arrays for high resolution imaging and spectroscopy in the far infrared and submillimeter. Detector arrays with 10,000 pixels and sensitivity less than 10(exp 20)-20 W/Hz(exp 20)0.5 are needed. Antenna-coupled superconducting tunnel junction detectors with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique when forming arrays. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  7. High-temperature superconducting radiofrequency probe for magnetic resonance imaging applications operated below ambient pressure in a simple liquid-nitrogen cryostat

    NASA Astrophysics Data System (ADS)

    Lambert, Simon; Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Darrasse, Luc

    2013-05-01

    The present work investigates the joined effects of temperature and static magnetic field on the electrical properties of a 64 MHz planar high-temperature superconducting (HTS) coil, in order to enhance the signal-to-noise ratio (SNR) in nuclear magnetic resonance (NMR) applications with a moderate decrease of the HTS coil temperature (THTS). Temperature control is provided with accuracy better than 0.1 K from 80 to 66 K by regulating the pressure of the liquid nitrogen bath of a dedicated cryostat. The actual temperature of the HTS coil is obtained using a straightforward wireless method that eliminates the risks of coupling electromagnetic interference to the HTS coil and of disturbing the static magnetic field by DC currents near the region of interest. The resonance frequency ( f0) and the quality factor (Q) of the HTS coil are measured as a function of temperature in the 0-4.7 T field range with parallel and orthogonal orientations relative to the coil plane. The intrinsic HTS coil sensitivity and the detuning effect are then analyzed from the Q and f0 data. In the presence of the static magnetic field, the initial value of f0 in Earth's field could be entirely recovered by decreasing THTS, except for the orthogonal orientation above 1 T. The improvement of Q by lowering THTS was substantial. From 80 to 66 K, Q was multiplied by a factor of 6 at 1.5 T in orthogonal orientation. In parallel orientation, the maximum measured improvement of Q from 80 K to 66 K was a factor of 2. From 80 to 66 K, the improvement of the RF sensitivity relative to the initial value at the Earth's field and ambient pressure was up to 4.4 dB in parallel orientation. It was even more important in orthogonal orientation and continued to increase, up to 8.4 dB, at the maximum explored field of 1.5 T. Assuming that the noise contributions from the RF receiver are negligible, the SNR improvement using enhanced HTS coil cooling in NMR experiments was extracted from Q measurements either

  8. Phase separation and superconductivity in K1-xFe2-ySe2 single crystals under different thermal treatments

    NASA Astrophysics Data System (ADS)

    Wen, Hai-Hu; Ding, Xiaxin; Tao, Jian; Yang, Huan

    2013-03-01

    Single crystals with the starting composition of K0.8Fe2Se2 have been thermally treated in three different ways: slow furnace cooling (SFC) from 1020 °C, retreated for 2 hours at 250 °C (S250) and 350 °C (S350:) and followed by quenching. The DC magnetization measurements on them exhibit very different behavior: the SFC samples show a tiny diamagnetic signal, while the sample S350 shows a quite large Meissner shielding volume with the S250 in the middle. The resistive measurements on the sample S350 show zero resistance below 31 K with a sharp transition; while those from the sample SFC or S250 show much larger residual resistance together with a much wider transition. By using the SEM, we have successfully identified that, in SFC, the superconducting areas have relatively larger sizes (about one micrometer) and are widely separated; the superconducting area change into many thin but well connected networks in the sample S350, which construct a 3D spider-web. This explains both the magnetic shielding and the resistive transitions in the three samples. In addition, the superconducting area has a composition of about K0.64Fe1.8Se2. We suggest that the thermodynamically stable phase for the superconducting state has probably one vacancy in every 10 Fe-sites.

  9. Radiofrequency Ablation of Liver Tumors

    MedlinePlus

    ... Other equipment such as needle electrodes, an electrical generator and grounding pads may also be used. Radiofrequency ... retractable electrodes that extend when needed. The radiofrequency generator produces electrical currents in the range of radiofrequency ...

  10. Entangled microwaves as a resource for entangling spatially separate solid-state qubits: Superconducting qubits, nitrogen-vacancy centers, and magnetic molecules

    NASA Astrophysics Data System (ADS)

    Gómez, Angela Viviana; Rodríguez, Ferney Javier; Quiroga, Luis; García-Ripoll, Juan José

    2016-06-01

    Quantum correlations present in a broadband two-line squeezed microwave state can induce entanglement in a spatially separated bipartite system consisting of either two single qubits or two-qubit ensembles. By using an appropriate master equation for a bipartite quantum system in contact with two separate but entangled baths, the generating entanglement process in spatially separated quantum systems is thoroughly characterized. Decoherence thermal effects on the entanglement transfer are also discussed. Our results provide evidence that this entanglement transfer by dissipation is feasible, yielding to a steady-state amount of entanglement in the bipartite quantum system which can be optimized for a wide range of realistic physical systems that include state-of-the-art experiments with nitrogen-vacancy centers in diamond, superconducting qubits, or even magnetic molecules embedded in a crystalline matrix.

  11. Nanoscale memristive radiofrequency switches

    NASA Astrophysics Data System (ADS)

    Pi, Shuang; Ghadiri-Sadrabadi, Mohammad; Bardin, Joseph C.; Xia, Qiangfei

    2015-06-01

    Radiofrequency switches are critical components in wireless communication systems and consumer electronics. Emerging devices include switches based on microelectromechanical systems and phase-change materials. However, these devices suffer from disadvantages such as large physical dimensions and high actuation voltages. Here we propose and demonstrate a nanoscale radiofrequency switch based on a memristive device. The device can be programmed with a voltage as low as 0.4 V and has an ON/OFF conductance ratio up to 1012 with long state retention. We measure the radiofrequency performance of the switch up to 110 GHz and demonstrate low insertion loss (0.3 dB at 40 GHz), high isolation (30 dB at 40 GHz), an average cutoff frequency of 35 THz and competitive linearity and power-handling capability. Our results suggest that, in addition to their application in memory and computing, memristive devices are also a leading contender for radiofrequency switch applications.

  12. Compressibility and pressure-induced disorder in superconducting phase-separated Cs0.72Fe1.57Se2

    NASA Astrophysics Data System (ADS)

    Svitlyk, V.; Chernyshov, D.; Bosak, A.; Pomjakushina, E.; Krzton-Maziopa, A.; Conder, K.; Pomjakushin, V.; Dmitriev, V.; Garbarino, G.; Mezouar, M.

    2014-04-01

    The pressure-dependent diffraction response of the superconducting phase-separated Cs0.72Fe1.57Se2(Tc = 28.5 K) has been studied at room temperature using synchrotron radiation up to the pressure of 19 GPa. The main and secondary phases of Cs0.72Fe1.57Se2 have been observed in the whole pressure range. The main ordered phase has been found to undergo an order-disorder transition in the Fe sublattice at P = 11 GPa with the corresponding kinetics on the order of hours. Contrary to the analogous temperature-induced transition, the secondary phase has not been suppressed suggesting that its stability pressure range is higher than 19 GPa or the corresponding transformation kinetics is too slow at room temperature. Together with the previously reported pressure-dependent resistivity and magnetic susceptibility measurements, this work indicates that superconductivity in the AxFe2-ySe2 (A: alkali metals) phases could be related to the Fe-vacancy ordering in the main phase.

  13. Suppression of phase separation and giant enhancement of superconducting transition temperature in FeSe1−xTex thin films

    PubMed Central

    Imai, Yoshinori; Sawada, Yuichi; Nabeshima, Fuyuki; Maeda, Atsutaka

    2015-01-01

    We demonstrate the successful fabrication on CaF2 substrates of FeSe1−xTex films with 0≤x≤1, including the region of 0.1≤x≤0.4, which is well known to be the “phase-separation region,” via pulsed laser deposition that is a thermodynamically nonequilibrium method. In the resulting films, we observe a giant enhancement of the superconducting transition temperature, Tc, in the region of 0.1≤x≤0.4: The maximum value reaches 23 K, which is ∼1.5 times as large as the values reported for bulk samples of FeSe1−xTex. We present a complete phase diagram of FeSe1−xTex films. Surprisingly, a sudden suppression of Tc is observed at 0.1superconductivity realized in x=0−0.1 and in x≥0.2. To obtain a film of FeSe1−xTex with high Tc, the controls of the Te content x and the in-plane lattice strain are found to be key factors. PMID:25646450

  14. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  15. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  16. Radiofrequency Ablation of Lung Tumors

    MedlinePlus

    ... computed tomography (CT) imaging, needle electrodes , an electrical generator and grounding pads are used. There are two ... retractable electrodes that extend when needed. The radiofrequency generator produces electrical currents in the range of radiofrequency ...

  17. Minimally Invasive Radiofrequency Devices.

    PubMed

    Sadick, Neil; Rothaus, Kenneth O

    2016-07-01

    This article reviews minimally invasive radiofrequency options for skin tightening, focusing on describing their mechanism of action and clinical profile in terms of safety and efficacy and presenting peer-reviewed articles associated with the specific technologies. Treatments offered by minimally invasive radiofrequency devices (fractional, microneedling, temperature-controlled) are increasing in popularity due to the dramatic effects they can have without requiring skin excision, downtime, or even extreme financial burden from the patient's perspective. Clinical applications thus far have yielded impressive results in treating signs of the aging face and neck, either as stand-alone or as postoperative maintenance treatments. PMID:27363771

  18. Nanoscale memristive radiofrequency switches.

    PubMed

    Pi, Shuang; Ghadiri-Sadrabadi, Mohammad; Bardin, Joseph C; Xia, Qiangfei

    2015-01-01

    Radiofrequency switches are critical components in wireless communication systems and consumer electronics. Emerging devices include switches based on microelectromechanical systems and phase-change materials. However, these devices suffer from disadvantages such as large physical dimensions and high actuation voltages. Here we propose and demonstrate a nanoscale radiofrequency switch based on a memristive device. The device can be programmed with a voltage as low as 0.4 V and has an ON/OFF conductance ratio up to 10(12) with long state retention. We measure the radiofrequency performance of the switch up to 110 GHz and demonstrate low insertion loss (0.3 dB at 40 GHz), high isolation (30 dB at 40 GHz), an average cutoff frequency of 35 THz and competitive linearity and power-handling capability. Our results suggest that, in addition to their application in memory and computing, memristive devices are also a leading contender for radiofrequency switch applications. PMID:26108890

  19. Thermal compression and molding of atherosclerotic vascular tissue with use of radiofrequency energy: implications for radiofrequency balloon angioplasty

    SciTech Connect

    Lee, B.I.; Becker, G.J.; Waller, B.F.; Barry, K.J.; Connolly, R.J.; Kaplan, J.; Shapiro, A.R.; Nardella, P.C.

    1989-04-01

    The combined delivery of pressure and thermal energy may effectively remodel intraluminal atherosclerotic plaque and fuse intimal tears. To test these hypotheses with use of a non-laser thermal energy source, radiofrequency energy was delivered to postmortem human atherosclerotic vessels from a metal hot-tip catheter, block-mounted bipolar electrodes and from a prototype radiofrequency balloon catheter. Sixty-two radiofrequency doses delivered from a metal electrode tip produced dose-dependent ablation of atherosclerotic plaque, ranging from clean and shallow craters with histologic evidence of thermal compression at doses less than 40 J to tissue charring and vaporization at higher (greater than 80 J) doses. Lesion dimensions ranged between 3.14 and 3.79 mm in diameter and 0.20 and 0.47 mm in depth. Tissue perforation was not observed. To test the potential for radiofrequency fusion of intimal tears, 5 atm of pressure and 200 J radiofrequency energy were delivered from block-mounted bipolar electrodes to 48 segments of human atherosclerotic aorta, which had been manually separated into intima-media and media-adventitial layers. Significantly stronger tissue fusion resulted (28.5 +/- 3.3 g) with radiofrequency compared with that with pressure alone (4.8 +/- 0.26 g; p less than 0.0001). A prototype radiofrequency balloon catheter was used to deliver 3 atm of balloon pressure with or without 200 J radiofrequency energy to 20 postmortem human atherosclerotic arterial segments. In 10 of 10 radiofrequency-treated vessels, thermal molding of both normal and atherosclerotic vessel wall segments resulted with increased luminal diameter and histologic evidence of medial myocyte damage.

  20. Radiofrequency Ablation of Cancer

    PubMed Central

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2008-01-01

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized. PMID:15383844

  1. Radiofrequency Ablation of Cancer

    SciTech Connect

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2004-09-15

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized.

  2. Superconductivity in doped insulators

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.

  3. Spin-orbit-coupled superconductivity

    PubMed Central

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C.-T.

    2014-01-01

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature Tc, clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T < Tc, the resistivity peak can still be observed; however, its line-shape is now affected by the onset of the quasi two-dimensional superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity. PMID:24961726

  4. Free-standing superconductive articles

    SciTech Connect

    Wu, X.D.; Muenchausen, R.E.

    1991-12-31

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer, the ceramic superconductive material layer and the protective material layer, removing the protective material layer from the composite structure whereby a substrate-free, free-standing ceramic superconductive film remains.

  5. Radiofrequency in cosmetic dermatology.

    PubMed

    Beasley, Karen L; Weiss, Robert A

    2014-01-01

    The demand for noninvasive methods of facial and body rejuvenation has experienced exponential growth over the last decade. There is a particular interest in safe and effective ways to decrease skin laxity and smooth irregular body contours and texture without downtime. These noninvasive treatments are being sought after because less time for recovery means less time lost from work and social endeavors. Radiofrequency (RF) treatments are traditionally titrated to be nonablative and are optimal for those wishing to avoid recovery time. Not only is there minimal recovery but also a high level of safety with aesthetic RF treatments. PMID:24267424

  6. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  7. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  8. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  9. Plasma model of superconducting crystals

    NASA Astrophysics Data System (ADS)

    Netesova, Nadezhda P.

    2016-04-01

    Within inharmonious plasma oscillation model the superconducting crystal AB is considered consisting of two subsystems 2AB=A2+B2. In high-temperature superconductors spontaneous division into two phases: superconducting and isolating was revealed. Phase separation was caused by plasma instability. It is obtained the transition superconducting phase temperature dependence Tc = F (q12, q1, q2, V12, V1, V2) on the isotopic substitution physical parameters: q - initial and component interaction parameters, V - volume in initial and component crystal lattices. The isotopic transition superconducting phase temperature displacement ΔTc is associated with the change of the initial and component interaction and crystal lattice parameters. From the plasma mechanism of superconductivity follows superconducting crystals exist at room temperature.

  10. Radiofrequency attenuator and method

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-01-20

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  11. Measurement of radiofrequency fields

    NASA Astrophysics Data System (ADS)

    Leonowich, J. A.

    1992-05-01

    We are literally surrounded by radiofrequency (RFR) and microwave radiation, from both natural and man-made sources. The identification and control of man-made sources of RFR has become a high priority of radiation safety professionals in recent years. For the purposes of this paper, we will consider RFR to cover the frequencies from 3 kHz to 300 MHz, and microwaves from 300 MHz to 300 GHz, and will use the term RFR interchangeably to describe both. Electromagnetic radiation below 3 kHz is considered Extremely Low Frequency (ELF) and will not be discussed in this paper. Unlike x- and gamma radiation, RFR is non-ionizing. The energy of any RFR photon is insufficient to produce ionizations in matter. The measurement and control of RFR hazards is therefore fundamentally different from ionizing radiation. The purpose of this paper is to acquaint the reader with the fundamental issues involved in measuring and safely using RFR fields.

  12. Radiofrequency attenuator and method

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-11-10

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3 C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  13. Apparatus for characterizing conductivity of superconducting materials

    DOEpatents

    Doss, J.D.

    1993-12-07

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 10 figures.

  14. Superconducting RFQ development at Los Alamos

    SciTech Connect

    Wangler, T.P.; Cimabue, A.; Merson, J.; Mills, R.S.; Wood, R.; Young, L.

    1992-10-01

    We are investigating the performance capabilities of a niobium, superconducting, radiofrequency-quadrupole (RFQ) accelerator for high- field continuous-wave operation, to provide greater acceleration and stronger focusing of low-velocity ion beams. We present the results of our RFQ beam-dynamics studies, which test new design methods for increasing the beam transmission, our cavity-design calculations, and some mechanical-design aspects of a short, superconducting RFQ 4-vane prototype structure that will be tested at high fields during the coming year.

  15. Superconducting RFQ development at Los Alamos

    SciTech Connect

    Wangler, T.P.; Cimabue, A.; Merson, J.; Mills, R.S.; Wood, R.; Young, L.

    1992-01-01

    We are investigating the performance capabilities of a niobium, superconducting, radiofrequency-quadrupole (RFQ) accelerator for high- field continuous-wave operation, to provide greater acceleration and stronger focusing of low-velocity ion beams. We present the results of our RFQ beam-dynamics studies, which test new design methods for increasing the beam transmission, our cavity-design calculations, and some mechanical-design aspects of a short, superconducting RFQ 4-vane prototype structure that will be tested at high fields during the coming year.

  16. Apparatus for characterizing conductivity of superconducting materials

    DOEpatents

    Doss, James D.

    1993-01-01

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples.

  17. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  18. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  19. Low gravity phase separator

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.; Pope, W. L.; Smith, L. (Inventor)

    1977-01-01

    An apparatus is described for phase separating a gas-liquid mixture as might exist in a subcritical cryogenic helium vessel for cooling a superconducting magnet at low gravity such as in planetary orbit, permitting conservation of the liquid and extended service life of the superconducting magnet.

  20. Phase separation at the magnetic-superconducting transition in La0.7Y0.3FeAsO1-xFx

    NASA Astrophysics Data System (ADS)

    Prando, Giacomo; Sanna, Samuele; Lamura, Gianrico; Shiroka, Toni; Tropeano, Matteo; Palenzona, Andrea; Grafe, Hans-Joachim; Büchner, Bernd; Carretta, Pietro; De Renzi, Roberto

    2013-03-01

    In this paper we report a detailed $\\mu^{+}$SR and {}$^{19}$F-NMR study of the La$_{0.7}$Y$_{0.3}$FeAsO$_{1-x}$F$_{x}$ class of materials. Here, the diamagnetic La$_{1-y}$Y$_{y}$ substitution increases chemical pressure and, accordingly, sizeably enhances the optimal superconducting transition temperature. We investigate the magnetic-superconducting phase transition by keeping the Y content constant ($y = 0.3$) and by varying the F content in the range $0.025 \\leq x \\leq 0.15$. Our results show how magnetism and superconductivity coexist for $x = 0.065$. Such coexistence is due to segregation of the two phases in macroscopic regions, resembling what was observed in LaFeAsO$_{1-x}$F$_{x}$ materials under applied hydrostatic pressure. This scenario is qualitatively different from the nanoscopic coexistence of the two order parameters observed when La is fully substituted by magnetic rare-earth ions like Sm or Ce.

  1. Measurement of radiofrequency fields

    SciTech Connect

    Leonowich, J.A.

    1992-05-01

    We are literally surrounded by radiofrequency (RFR) and microwave radiation, from both natural and man-made sources. The identification and control of man-made sources of RFR has become a high priority of radiation safety professionals in recent years. For the purposes of this paper, we will consider RFR to cover the frequencies from 3 kHz to 300 MHz, and microwaves from 300 MHz to 300 GHz, and will use the term RFR interchangeably to describe both. Electromagnetic radiation and field below 3 kHz is considered Extremely Low Frequency (ELF) and will not be discussed in this paper. Unlike x- and gamma radiation, RFR is non-ionizing. The energy of any RFR photon is insufficient to produce ionizations in matter. The measurement and control of RFR hazards is therefore fundamentally different from ionizing radiation. The purpose of this paper is to acquaint the reader with the fundamental issues involved in measuring and safely using RFR fields. 23 refs.

  2. Biplanar Radiofrequency Coil Design

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Insko, E. K.; Bolinger, L.; Leigh, J. S.

    A novel geometry for radiofrequency coil design is described. In this geometry, longitudinal wires of the coil lie on two parallel planes. The currents in the wires of one plane run in the direction opposite to those of the other plane. An analytic solution is provided for the field produced by infinite surface currents running in the biplanar geometry. For the case of discrete wires, computer-generated field maps imply that the homogeneity and sensitivity of the biplanar design are superior to those of a saddle coil, but worse than those obtained in an equivalent discrete cosine or birdcage coil design. Optimization of this coil design was performed using computer simulations. The measured B1 map of an optimized, single-tuned biplanar coil compares favorably to that of an equivalent discrete cosine coil, demonstrating excellent homogeneity in the central region of the coil. A 30 × 24 × 40 cm biplanar coil has been coupled to a 1.5 T imaging system. Images of the human abdomen generated with this coil demonstrate a high degree of homogeneity across nearly all of the sensitive region of the coil.

  3. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  4. Free-standing oxide superconducting articles

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-12-14

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.

  5. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  6. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  7. Light modulated electron beam driven radiofrequency emitter

    DOEpatents

    Wilson, M.T.; Tallerico, P.J.

    1979-10-10

    The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  8. New-generation radiofrequency technology.

    PubMed

    Krueger, Nils; Sadick, Neil S

    2013-01-01

    Radiofrequency (RF) technology has become a standard treatment in aesthetic medicine with many indications due to its versatility, efficacy, and safety. It is used worldwide for cellulite reduction; acne scar revision; and treatment of hypertrophic scars and keloids, rosacea, and inflammatory acne in all skin types. However, the most common indication for RF technology is the nonablative tightening of tissue to improve skin laxity and reduce wrinkles. Radiofrequency devices are classified as unipolar, bipolar, or multipolar depending on the number of electrodes used. Additional modalities include fractional RF; sublative RF; phase-controlled RF; and combination RF therapies that apply light, massage, or pulsed electromagnetic fields (PEMFs). This article reviews studies and case series on these devices. Radiofrequency technology for aesthetic medicine has seen rapid advancements since it was used for skin tightening in 2003. Future developments will continue to keep RF technology at the forefront of the dermatologist's armamentarium for skin tightening and rejuvenation. PMID:23461058

  9. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

    1996-07-02

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

  10. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  11. Superconducting multipole corrector magnet

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2004-10-01

    A novel concept of superconducting multipole corrector magnet is discussed. This magnet assembled from 12 identical racetrack type coils and can generate any combination of dipole, quadrupole and sextupole magnetic fields. The coil groups are powered from separate power supplies. In the case of normal dipole, quadrupole and sextupole fields the total field is symmetrical relatively the magnet median plane and there are only five powered separately coil groups. This type multipole corrector magnet was proposed for BTeV, Fermilab project and has following advantages: universal configuration, simple manufacturing and high mechanical stability. The results of magnetic design including the field quality and magnetic forces in comparison with known shell type superconducting correctors are presented.

  12. Superconducting Memristors

    NASA Astrophysics Data System (ADS)

    Peotta, Sebastiano; Di Ventra, Massimiliano

    2014-09-01

    In his original work, Josephson predicted that a phase-dependent conductance should be present in superconducting tunnel junctions, an effect difficult to detect, mainly because it is hard to single it out from the usual nondissipative Josephson current. We propose a solution for this problem that consists of using different superconducting materials to realize the two junctions of a superconducting interferometer. According to the Ambegaokar-Baratoff relation the two junctions have different conductances if the critical currents are equal, thus the Josephson current can be suppressed by fixing the magnetic flux in the loop at half of a flux quantum without canceling the phase-dependent conductance. Our proposal can be used to study the phase-dependent conductance, an effect present in principle in all superconducting weak links. From the standpoint of nonlinear circuit theory, such a device is in fact an ideal memristor with possible applications to memories and neuromorphic computing in the framework of ultrafast and low-energy-consumption superconducting digital circuits.

  13. Superconductive articles

    SciTech Connect

    Wu, X.D.; Muenchausen, R.E.

    1991-12-31

    An article of manufacture including a substrate, a patterned interlayer of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of oxides of Ce, Y, Cm, Dy, Er, Eu, Fe, Gd, Ho, In, La, Mn, Lu, Nd, Pr, Pu, Sm, Tb, Tl, Tm, Y, and Yb over the entire exposed surface of the intermediate article, and, a ceramic superconductive material layer as an overcoat upon the buffer layer whereby the ceramic superconductive material situated directly above the substrate has a crystal structure substantially different than the ceramic superconductive material situated above the overcoated patterned interlayer.

  14. Superconducting magnets

    SciTech Connect

    Willen, E.; Dahl, P.; Herrera, J.

    1985-01-01

    This report provides a self-consistent description of a magnetic field in the aperture of a superconducting magnet and details how this field can be calculated in a magnet with cos theta current distribution in the coils. A description of an apparatus that can be used to measure the field uniformity in the aperture has been given. Finally, a detailed description of the magnet being developed for use in the Superconducting Super Collider is given. When this machine is built, it will be by far the largest application of superconductivity to date and promises to make possible the experimental discoveries needed to understand the basic laws of nature governing the world in which we live.

  15. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  16. Archimedean solidlike superconducting framework in phase-separated K0.8F e1.6 +xS e2(0 ≤x ≤0.15 )

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Cai, Y.; Wang, Z. W.; Ma, C.; Chen, Z.; Yang, H. X.; Tian, H. F.; Li, J. Q.

    2015-02-01

    The superconducting (SC) phase in phase-separated (PS) K0.8F e1.6 +xS e2(0 ≤x ≤0.15 ) materials is found to crystallize on Archimedean solidlike frameworks, and this structural feature originates from a spinodal phase separation (SPS) at around Ts≈540 K , depending slightly on the Fe concentration, as revealed by in situ heating TEM observations and shown in a phase diagram. Two stable phases in K0.8F e1.6 +xS e2 are demonstrated to be the SC K0.5F e2S e2 and antiferromagnetic (AFM) K0.8F e1.6S e2 . The spinodal waves go along the systematic [113 ] direction and result in notable lamellar structure as illustrated by strain-field theoretical simulations. The three-dimensional SC framework is constructed with hollow truncated octahedron similar to that discussed for Archimedean solids. Based on this structural model, we can efficiently calculate the volume fraction of the SC phase in this type of PS SC material.

  17. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    SciTech Connect

    Dhakal, Pashupati Ciovati, Gianluigi Myneni, Ganapati R.

    2015-12-04

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications.

  18. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  19. The Advanced Superconducting Test Accelerator at Fermilab: Science Program

    SciTech Connect

    Piot, Philippe; Harms, Elvin; Henderson, Stuart; Leibfritz, Jerry; Nagaitsev, Sergei; Shiltsev, Vladimir; Valishev, Alexander

    2014-07-01

    The Advanced Superconducting Test Accelerator (ASTA) currently in commissioning phase at Fermilab is foreseen to support a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop novel approaches to particle-beam generation, acceleration and manipulation. ASTA incorporates a superconducting radiofrequency (SCRF) linac coupled to a flexible high-brightness photoinjector. The facility also includes a small-circumference storage ring capable of storing electrons or protons. This report summarizes the facility capabilities, and provide an overview of the accelerator-science researches to be enabled.

  20. Radiofrequency Physics for Minimally Invasive Aesthetic Surgery.

    PubMed

    Levy, Adam S; Grant, Robert T; Rothaus, Kenneth O

    2016-07-01

    Radiofrequency energy has a wide range of medical applications, including noninvasive treatment of wrinkles and body contouring. This technology works by differential heating of skin and soft tissue layers causing dermal remodeling or adipolysis, ultimately leading to observable effects. This article reviews the physics of radiofrequency as applied clinically. PMID:27363769

  1. Aesthetic Applications of Radiofrequency Devices.

    PubMed

    Sadick, Neil; Rothaus, Kenneth O

    2016-07-01

    Radiofrequency (RF)-based devices are used to improve face and neck laxity, a major feature of aging that until recently could only be addressed with surgery. Although these treatments are not meant to replace surgical procedures, patient satisfaction studies have been consistently high. For physicians offering these skin rejuvenation procedures, it is essential to have intimate knowledge of how the devices work, select appropriate candidates, set realistic expectations, and combine treatments to optimize outcomes. This article discusses the various noninvasive RF technologies currently in use and reviews pertinent clinical studies evaluating their efficacy and safety. PMID:27363770

  2. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  3. SUPERCONDUCTING PHOTOINJECTOR

    SciTech Connect

    BEN-ZVI,I.; BURRILL, A.; CALAGA, R.; CHANG, X.; GROVER, R.; GUPTA, R.; HAHN, H.; HAMMONS, L.; KAYRAN, D.; KEWISCH, J.; LAMBIASE, R.; LITVINENKO, V.; MCINTYRE, G.; NAIK, D.; PATE, D.; PHILLIPS, D.; POZDEYEV, E.; RAO, T.; SMEDLEY, J.; THAN, R.; TODD, R.; WEISS, D.; WU, Q.; ZALTSMAN, A.; ET AL.

    2007-08-26

    One of the frontiers in FEL science is that of high power. In order to reach power in the megawatt range, one requires a current of the order of one ampere with a reasonably good emittance. The superconducting laser-photocathode RF gun with a high quantum efficiency photocathode is the most natural candidate to provide this performance. The development of a 1/2 cell superconducting photoinjector designed to operate at up to a current of 0.5 amperes and beam energy of 2 MeV and its photocathode system are the subjects covered in this paper. The main issues are the photocathode and its insertion mechanism, the power coupling and High Order Mode damping. This technology is being developed at BNL for DOE nuclear physics applications such as electron cooling at high energy and electron ion colliders..

  4. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  5. Freely oriented portable superconducting magnet

    DOEpatents

    Schmierer, Eric N.; Prenger, F. Coyne; Hill, Dallas D.

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  6. Band-selective radiofrequency pulses

    NASA Astrophysics Data System (ADS)

    Geen, Helen; Freeman, Ray

    A theoretical treatment is given of the general problem of designing amplitude-modulated radiofrequency pulses that will excite a specified band of frequencies within a high-resolution NMR spectrum with uniform intensity and phase but with negligible excitation elsewhere. First a trial pulse envelope is defined in terms of a finite Fourier series and its frequency-domain profile calculated through the Bloch equations. The result is compared with the desired target profile to give a multidimensional error surface. The method of simulated annealing is then used to find the global minimum on this surface and the result refined by standard gradient-descent optimization. In this manner, a family of new shaped radio-frequency pulses, known as BURP ( band-selective, uniform response, pure-phase) pulses, has been created. These are of two classes—pulses that excite or invert z magnetization and those that act as general-rotation πr/2 or π pulses irrespective of the initial condition of the nuclear magnetization. It was found convenient to design the latter class as amplitude-modulated time-symmetric pulses. Tables of Fourier coefficients and pulse-shape ordinates are given for practical implementation of BURP pulses, together with the calculated frequency-domain responses and experimental verifications. Examples of the application of band-selective pulses in conventional and multidimensional spectroscopy are given. Pure-phase pulses of this type should also find applications in magnetic resonance imaging where refocusing schemes are undesirable.

  7. Recent developments in rf superconductivity for high-brightness and high-gradient ion beam accelerators

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Nichols, G.L.; Roche, C.T.; Sagalovsky, L.

    1992-01-01

    Recent progress in on-going development program leading to the design of superconducting continuous-wave (cw) linear accelerators for high-brightness ion beams is reviewed. A new spoke-resonator geometry incorporating a half-wavelength resonant line was fabricated and tested. This geometry serves as the basis for the constituent cavities of a superconducting section being designed for high-current testing with a deuterium beam. Considerable progress has been made in the design of this section. A multi-phased program leading to the development of a superconducting radio-frequency quadrupole (SCRFQ) has been initiated. Design considerations and test results from the various activities are presented.

  8. Recent developments in rf superconductivity for high-brightness and high-gradient ion beam accelerators

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Nichols, G.L.; Roche, C.T.; Sagalovsky, L.

    1992-02-01

    Recent progress in on-going development program leading to the design of superconducting continuous-wave (cw) linear accelerators for high-brightness ion beams is reviewed. A new spoke-resonator geometry incorporating a half-wavelength resonant line was fabricated and tested. This geometry serves as the basis for the constituent cavities of a superconducting section being designed for high-current testing with a deuterium beam. Considerable progress has been made in the design of this section. A multi-phased program leading to the development of a superconducting radio-frequency quadrupole (SCRFQ) has been initiated. Design considerations and test results from the various activities are presented.

  9. Free-standing oxide superconducting articles

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  10. Superconducting combined function magnets

    SciTech Connect

    Hahn, H.; Fernow, R.C.

    1983-01-01

    Superconducting accelerators and storage rings, presently under construction or in the design phase, are based on separate dipole and quadrupole magnets. It is here suggested that a hybrid lattice configuration consisting of dipoles and combined function gradient magnets would: (1) reduce the number of magnet units and their total cost; and (2) increase the filling factor and thus the energy at a given field. Coil cross sections are presented for the example of the Brookhaven Colliding Beam Accelerator. An asymmetric two-layer cable gradient magnet would have transfer functions of 10.42 G/A and 0.628 G cm/sup -1//A versus 15.77 G/A and 2.03 G cm/sup -1//A of the present separate dipoles and quadrupoles.

  11. Radiofrequency Ablation of Metastatic Pheochromocytoma

    PubMed Central

    Venkatesan, Aradhana M.; Locklin, Julia; Lai, Edwin W.; Adams, Karen T.; Fojo, Antonio Tito; Pacak, Karel; Wood, Bradford J.

    2013-01-01

    In the present report on the preliminary safety and effectiveness of radiofrequency (RF) ablation for pheochromocytoma metastases, seven metastases were treated in six patients (mean size, 3.4 cm; range, 2.2–6 cm). α- and β-adrenergic and catecholamine synthesis inhibition and intraprocedural anesthesia monitoring were used. Safety was assessed by recording ablation-related complications. Complete ablation was defined as a lack of enhancement within the ablation zone on follow-up computed tomography. No serious adverse sequelae were observed. Complete ablation was achieved in six of seven metastases (mean follow-up, 12.3 months; range, 2.5–28 months). In conclusion, RF ablation may be safely performed for metastatic pheochromocytoma given careful attention to peri-procedural management. PMID:19875067

  12. Trigeminal Neuralgia and Radiofrequency Lesioning

    PubMed Central

    Eugene, Andy R.

    2016-01-01

    Trigeminal Neuralgia is a disorder that is characterized with electrical-type shocking pain in the face and jaw. This pain may either present as sharp unbearable pain unilateral or bilaterally. There is no definite etiology for this condition. There are various treatment methods that are currently being used to relieve the pain. One of the pharmacological treatments is Carbamazepine and the most prevalent surgical treatments include Gamma Knife Surgery (GKS), Microvascular Decompression (MVD) and Radiofrequency Lesioning (RFL). Although, MVD is the most used surgical method it is not an option for all the patients due to the intensity of the procedure. RFL is used when MVD is not suitable. In this paper we present the various options in the treatment of Trigeminal Neuralgia. PMID:26770820

  13. Adaptive Response in Animals Exposed to Non-Ionizing Radiofrequency Fields: Some Underlying Mechanisms

    PubMed Central

    Cao, Yi; Tong, Jian

    2014-01-01

    During the last few years, our research group has been investigating the phenomenon of adaptive response in animals exposed to non-ionizing radiofrequency fields. The results from several separate studies indicated a significant increase in survival, decreases in genetic damage as well as oxidative damage and, alterations in several cellular processes in mice pre-exposed to radiofrequency fields and subsequently subjected to sub-lethal or lethal doses of γ-radiation or injected with bleomycin, a radiomimetic chemical mutagen. These observations indicated the induction of adaptive response providing the animals the ability to resist subsequent damage. Similar studies conducted by independent researchers in mice and rats have supported our observation on increased survival. In this paper, we have presented a brief review of all of our own and other independent investigations on radiofrequency fields-induced adaptive response and some underlying mechanisms discussed. PMID:24758897

  14. Esophageal papilloma: Flexible endoscopic ablation by radiofrequency

    PubMed Central

    del Genio, Gianmattia; del Genio, Federica; Schettino, Pietro; Limongelli, Paolo; Tolone, Salvatore; Brusciano, Luigi; Avellino, Manuela; Vitiello, Chiara; Docimo, Giovanni; Pezzullo, Angelo; Docimo, Ludovico

    2015-01-01

    Squamous papilloma of the esophagus is a rare benign lesion of the esophagus. Radiofrequency ablation is an established endoscopic technique for the eradication of Barrett esophagus. No cases of endoscopic ablation of esophageal papilloma by radiofrequency ablation (RFA) have been reported. We report a case of esophageal papilloma successfully treated with a single session of radiofrequency ablation. Endoscopic ablation of the lesion was achieved by radiofrequency using a new catheter inserted through the working channel of endoscope. The esophageal ablated tissue was removed by a specifically designed cup. Complete ablation was confirmed at 3 mo by endoscopy with biopsies. This case supports feasibility and safety of as a new potential indication for BarrxTM RFA in patients with esophageal papilloma. PMID:25789102

  15. Radiofrequency quadrupole accelerators and their applications

    SciTech Connect

    Stokes, R.H.; Wangler, T.P.

    1988-01-01

    This review of Radiofrequency Quadrupole (RFQ) Acelerators contains a short history of Soviet and Los Alamos RFQ developments, RFQ beam dynamics, resonator structures, and the characteristics and performance of RFQ accelerators. (AIP)

  16. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  17. Architecture for high critical current superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.

    2002-01-01

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO.sub.2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.

  18. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  19. Superconducting current transducer

    SciTech Connect

    Kuchnir, M.; Ozelis, J.P.

    1990-10-01

    The construction and performance of an electric current meter that operates in liquid He and mechanically splits apart to permit replacement of the current carrying conductor is described. It permits the measurement of currents induced in a loop of superconducting cable and expeditious exchange of such loops. It is a key component for a short sample cable testing facility that requires no high current power supplies nor high current leads. Its superconducting pickup circuit involves a non-magnetic core toroidal split-coil that surrounds the conductor and a solenoid whose field is sensed by a Hall probe. This toroidal split-coil is potted inside another compensating toroidal split-coil. The C shaped half toroids can be separated and brought precisely together from outside the cryostat. The Hall probe is energized and sensed by a lock-in amplifier whose output drives a bipolar power supply which feeds the compensating coil. The output is the voltage across a resistor in this feedback circuit. Currents of up to 10 kA can be measured with a precision of 150 mA. 3 refs., 4 figs.

  20. Radiofrequency ablation for hepatocellular carcinoma.

    PubMed

    Nishikawa, Hiroki; Kimura, Toru; Kita, Ryuichi; Osaki, Yukio

    2013-09-01

    Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related mortality worldwide. Unfortunately, only 20% of HCC patients are amenable to curative therapy (liver transplantation or surgical resection). Locoregional therapies such as radiofrequency ablation (RFA), percutaneous ethanol injection, microwave coagulation therapy, and transcatheter arterial chemoembolisation play a key role in the management of HCC. The choice of the treatment modality depends on the size of the tumour, tumour location, anatomic considerations and the number of tumours present and liver function. RFA therapy for HCC can be performed safely using a percutaneous, laparoscopic, or an open approach, even in patients with poor functional reserve. Since the introduction of RFA, several randomised controlled trials and non-randomised studies comparing RFA and other therapies for HCC have been conducted. In addition, in the last decade there have been technical advances in RFA therapy for HCC, resulting in significant improvement in the prognosis of HCC patients treated with this modality. In this review, we primarily focus on percutaneous RFA therapy for HCC and refer to current knowledge and future perspectives for this therapy. We also discuss new emerging ablation techniques. PMID:23937321

  1. Percutaneous Tumor Ablation with Radiofrequency

    PubMed Central

    Wood, Bradford J.; Ramkaransingh, Jeffrey R.; Fojo, Tito; Walther, McClellan M.; Libutti, Stephen K.

    2008-01-01

    BACKGROUND Radiofrequency thermal ablation (RFA) is a new minimally invasive treatment for localized cancer. Minimally invasive surgical options require less resources, time, recovery, and cost, and often offer reduced morbidity and mortality, compared with more invasive methods. To be useful, image-guided, minimally invasive, local treatments will have to meet those expectations without sacrificing efficacy. METHODS Image-guided, local cancer treatment relies on the assumption that local disease control may improve survival. Recent developments in ablative techniques are being applied to patients with inoperable, small, or solitary liver tumors, recurrent metachronous hereditary renal cell carcinoma, and neoplasms in the bone, lung, breast, and adrenal gland. RESULTS Recent refinements in ablation technology enable large tumor volumes to be treated with image-guided needle placement, either percutaneously, laparoscopically, or with open surgery. Local disease control potentially could result in improved survival, or enhanced operability. CONCLUSIONS Consensus indications in oncology are ill-defined, despite widespread proliferation of the technology. A brief review is presented of the current status of image-guided tumor ablation therapy. More rigorous scientific review, long-term follow-up, and randomized prospective trials are needed to help define the role of RFA in oncology. PMID:11900230

  2. The radiofrequency magnetic dipole discharge

    NASA Astrophysics Data System (ADS)

    Martines, E.; Zuin, M.; Marcante, M.; Cavazzana, R.; Fassina, A.; Spolaore, M.

    2016-05-01

    This paper describes a novel and simple concept of plasma source, which is able to produce a radiofrequency magnetized discharge with minimal power requirements. The source is based on the magnetron concept and uses a permanent magnet as an active electrode. The dipolar field produced by the magnet confines the electrons, which cause further ionization, thus producing a toroidally shaped plasma in the equatorial region around the electrode. A plasma can be ignited with such scheme with power levels as low as 5 W. Paschen curves have been built for four different working gases, showing that in Helium or Neon, plasma breakdown is easily obtained also at atmospheric pressure. The plasma properties have been measured using a balanced Langmuir probe, showing that the electron temperature is around 3-4 eV and higher in the cathode proximity. Plasma densities of the order of 1016 m-3 have been obtained, with a good positive scaling with applied power. Overall, the electron pressure appears to be strongly correlated with the magnetic field magnitude in the measurement point.

  3. 21 CFR 882.4725 - Radiofrequency lesion probe.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (a) Identification. A radiofrequency lesion probe is a device connected to a radiofrequency (RF) lesion generator to deliver the RF energy to the site within the nervous system where a lesion is...

  4. 21 CFR 882.4725 - Radiofrequency lesion probe.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (a) Identification. A radiofrequency lesion probe is a device connected to a radiofrequency (RF) lesion generator to deliver the RF energy to the site within the nervous system where a lesion is...

  5. 21 CFR 882.4725 - Radiofrequency lesion probe.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (a) Identification. A radiofrequency lesion probe is a device connected to a radiofrequency (RF) lesion generator to deliver the RF energy to the site within the nervous system where a lesion is...

  6. 21 CFR 882.4725 - Radiofrequency lesion probe.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... (a) Identification. A radiofrequency lesion probe is a device connected to a radiofrequency (RF) lesion generator to deliver the RF energy to the site within the nervous system where a lesion is...

  7. 47 CFR 2.801 - Radiofrequency device defined.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.801 Radiofrequency device..., but are not limited to: (a) The various types of radio communication transmitting devices...

  8. Superconductivity in Ca-doped graphene laminates

    NASA Astrophysics Data System (ADS)

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-03-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  9. Superconductivity in Ca-doped graphene laminates.

    PubMed

    Chapman, J; Su, Y; Howard, C A; Kundys, D; Grigorenko, A N; Guinea, F; Geim, A K; Grigorieva, I V; Nair, R R

    2016-01-01

    Despite graphene's long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc's strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp. PMID:26979564

  10. Superconductivity in Ca-doped graphene laminates

    PubMed Central

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-01-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp. PMID:26979564

  11. 47 CFR 2.801 - Radiofrequency device defined.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Radiofrequency device defined. 2.801 Section 2.801 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.801 Radiofrequency device defined. As used in this part,...

  12. 47 CFR 2.801 - Radiofrequency device defined.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Radiofrequency device defined. 2.801 Section 2.801 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.801 Radiofrequency device defined. As used in this part,...

  13. 47 CFR 2.801 - Radiofrequency device defined.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Radiofrequency device defined. 2.801 Section 2.801 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.801 Radiofrequency device defined. As used in this part,...

  14. 47 CFR 2.801 - Radiofrequency device defined.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Radiofrequency device defined. 2.801 Section 2.801 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.801 Radiofrequency device defined. As used in this part,...

  15. Radiofrequency ablation technique eradicating palpebral margin neoplasm

    PubMed Central

    Jiang, Tian-Yu; Wang, Xing-Lin; Suo, Wei; He, Qing-Hua; Xiao, Hong-Yu

    2011-01-01

    AIM To report the study on radiofrequency ablation technique for eradication of palpebral margin neoplasm and its clinical effects. METHODS One hundred and six cases with the palpebral margin neoplasm were performed surgical removal with radiofrequency ablation technique. The 1-2 months postoperative follow-up was investigated and the lost cases were excluded from statistics. The continuing follow-up lasted about 6-16months. RESULTS One hundred cases underwent one treatment and 6 cases underwent two treatments. Six cases were missed. All the cases followed up healed well without pigmentation or scar left, nor eyelash loss or palpebral margin deformation. No case was recurrent. CONCLUSION Radiofrequency ablation has significant efficiency in eradicating the palpebral margin neoplasm. PMID:22553639

  16. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  17. Superconductivity in the metallic elements at high pressures

    NASA Astrophysics Data System (ADS)

    Hamlin, J. J.

    2015-07-01

    Although the highest superconducting critical temperature, Tc , found in an elemental solid at ambient pressure is 9.2 K (niobium), under the application of ultra-high pressures, several elements exhibit Tc values near or above 20 K. This review includes a survey of the occurrence and understanding of pressure-induced superconductivity in the subset of elements that are metallic at ambient pressure. A particular focus is directed towards those elements that display the highest superconducting critical temperatures or exhibit substantial increases in Tc with pressure. A separate article in this issue by Shimizu will cover pressure-induced superconductivity in elements that are insulating at ambient pressure.

  18. Superconductivity in the Tungsten Bronzes

    NASA Astrophysics Data System (ADS)

    Wu, Phillip; Ishii, Satoshi; Tanabe, Kenji; Munakata, Ko; Hammond, Robert H.; Tokiwa, Kazuyasu; Geballe, Theodore H.; Beasley, Malcolm R.

    2015-03-01

    Via pulsed laser deposition and post-annealing, high quality K-doped WO3-y films with reproducible transport properties are obtained. A home built two-coil mutual inductance setup is used to probe the behavior of the films in the superconducting and normal state. The inverse penetration depths and dissipation peaks are measured as a function of temperature and field. Separately, via thin film deposition techniques, we report for the first time stable crystalline hexagonal WO3 on substrates. In order to tune the physical properties of the undoped material, we utilized an ionic liquid gating technique. We observe an insulator-to-metal transition, showing the ionic liquid gate to be a viable technique to alter the electrical transport properties of this material. By comparing the alkali and ionic liquid gated WO3, we conclude with some remarks regarding how superconductivity arises in this system.

  19. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  20. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. PMID:25666075

  1. Managing turbinate hypertrophy: coblation vs. radiofrequency treatment.

    PubMed

    Passali, D; Loglisci, M; Politi, L; Passali, G C; Kern, E

    2016-06-01

    The role of inferior turbinate hypertrophy in the reduction of nasal airflow is well established. Although chronic nasal obstruction is not life- threatening, it significantly impairs patients' quality of life, affecting many aspects of daily activities; therefore, patients seek medical intervention. 40 patients were selected (27 males and 13 females) between 27 and 64 years of age with a symptom of nasal obstruction. The patients were divided in two groups: Group 1: coblation, 25 patients (18 males and 7 females); Group 2: radiofrequency, 15 patients (7 males and 6 females). These 40 patients were followed for 3 years. Patients were analyzed using both subjective and objective methods. The visual analog scale (VAS) subjective data and objective data including both active anterior rhinomanometry and acoustic rhinometry were recorded and analyzed. Data were collected pre-operatively and at 1 and 3 years post-operatively. According to our data, both coblation and radiofrequency turbinate reduction benefit patients with good results. The complications, found during the follow-up, are limited to minimal bleeding and crusting. Coblation and radiofrequency were significantly less painful than others procedures during the early post-operative period. In our study, both coblation and radiofrequency provide an improvement in nasal airflow with a reduction in nasal obstructive symptoms in the short term, but their efficacy tended to decrease within 3 years. PMID:26321749

  2. Termination for superconducting power transmission systems

    DOEpatents

    Forsyth, E.B.; Jensen, J.E.

    1975-08-26

    This patent relates to a cold, electrical gradient, terminal section for a superconducting cable for alternating current power transmission. A cold electrical gradient section filled with a gaseous coolant acting as an insulator is provided in series with a separate thermal gradient section. (auth)

  3. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations. PMID:27248118

  4. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  5. Superconducting levitating bearing

    NASA Technical Reports Server (NTRS)

    Moon, Francis C. (Inventor)

    1996-01-01

    A superconducting bearing assembly includes a coil field source that may be superconducting and a superconducting structure. The coil field source assembly and superconducting structure are positioned so as to enable relative rotary movement therebetween. The structure and coil field source are brought to a supercooled temperature before a power supply induces a current in the coil field source. A Meissner-like effect is thereby obtained and little or no penetration of the field lines is seen in the superconducting structure. Also, the field that can be obtained from the superconducting coil is 2-8 times higher than that of permanent magnets. Since the magnetic pressure is proportioned to the square of the field, magnetic pressures from 4 to 64 times higher are achieved.

  6. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  7. Superconducting electron and hole lenses

    NASA Astrophysics Data System (ADS)

    Cheraghchi, H.; Esmailzadeh, H.; Moghaddam, A. G.

    2016-06-01

    We show how a superconducting region (S), sandwiched between two normal leads (N), in the presence of barriers, can act as a lens for propagating electron and hole waves by virtue of the so-called crossed Andreev reflection (CAR). The CAR process, which is equivalent to Cooper pair splitting into two N electrodes, provides a unique possibility of constructing entangled electrons in solid state systems. When electrons are locally injected from an N lead, due to the CAR and normal reflection of quasiparticles by the insulating barriers at the interfaces, sequences of electron and hole focuses are established inside another N electrode. This behavior originates from the change of momentum during electron-hole conversion beside the successive normal reflections of electrons and holes due to the barriers. The focusing phenomena studied here are fundamentally different from the electron focusing in other systems, such as graphene p-n junctions. In particular, due to the electron-hole symmetry of the superconducting state, the focusing of electrons and holes is robust against thermal excitations. Furthermore, the effects of the superconducting layer width, the injection point position, and barrier strength are investigated on the focusing behavior of the junction. Very intriguingly, it is shown that by varying the barrier strength, one can separately control the density of electrons or holes at the focuses.

  8. Energy losses in superconductive DC-electromagnets due to ferromagnetic movement

    SciTech Connect

    Ciesla, A.; Matras, A.

    1996-05-01

    A DC-current, superconductive electromagnet is a source of the magnetic field in a separator matrix. This type of separator operates in a cyclic way. Therefore, it appears as very important to ensure the electromagnet stability during operation, i.e., range of parameters` changes that could maintain the magnet winding in the superconductive state. This means selecting parameter changes representing the magnet winding in the superconductive state.

  9. The interminable adolescence of superconductivity

    SciTech Connect

    Kolm, H.H.

    1988-12-01

    The author contends that superconductivity has failed to mature into a practical technology seventy-seven years after its discovery because Americans have lacked the curiosity to understand it, the imagination to appreciate it, and the spirit of enterprise to develop it, and that America is about to miss its last chance to regain technical leadership and economic security if it continues to pretend that higher transition temperature materials alone will change the situation. He goes on to discuss a range of applications, including high-gradient magnetic separation and filtration magnetically levitated transportation and makes recommendations for future materials and application research.

  10. High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  11. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  12. Superconductive imaging surface magnetometer

    DOEpatents

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  13. The optimal radiofrequency temperature in radiofrequency thermocoagulation for idiopathic trigeminal neuralgia

    PubMed Central

    Tang, Yuan-Zhang; Yang, Li-Qiang; Yue, Jian-Ning; Wang, Xiao-Ping; HE, Liang-Liang; NI, Jia-Xiang

    2016-01-01

    Abstract Objective: Our previous study evaluated the effectiveness and safety of radiofrequency thermocoagulation (RFT) of trigeminal gasserian ganglion for idiopathic trigeminal neuralgia (ITN). The aim of this study was to evaluate the optimal radiofrequency temperature of computed tomography (CT)-guided RFT for treatment of ITN. Methods: A retrospective study of patients with ITN treated with a single CT-guided RFT procedure between January 2002 and December 2013. Patients were divided into ≤75 °C, 75 °C, and ≥80 °C groups according to the highest radiofrequency temperature used. Pain relief was graded from poor to excellent, and facial numbness/dysesthesia from I (absent) to IV (most severe). Results: A total of 1161 RFT procedures were undertaken in the 1137 patients. The mean follow-up time was 46 ± 31 months. There were no significant differences in the rate of excellent pain relief according to the radiofrequency temperature used. However, more patients experienced with no facial numbness or facial numbness gradually resolved and those patients treated at 75 °C had a lower rate of grade IV facial numbness/dysesthesia than other groups. Conclusions: The optimal radiofrequency temperature to maximize pain relief and minimize facial numbness or dysesthesia may be 75 °C, but this requires confirmation. PMID:27428194

  14. Superconducting fault current controller/current controller

    DOEpatents

    Cha, Yung S.

    2004-06-15

    A superconducting fault current controller/current controller employs a superconducting-shielded core reactor (SSCR) with a variable impedance in a secondary circuit to control current in a primary circuit such as an electrical distribution system. In a second embodiment, a variable current source is employed in a secondary circuit of an SSCR to control current in the primary circuit. In a third embodiment, both a variable impedance in one secondary circuit and a variable current source in a second circuit of an SSCR are employed for separate and independent control of current in the primary circuit.

  15. Development of high magnetic field superconducting magnet technology and applications in China

    NASA Astrophysics Data System (ADS)

    Wang, Qiuliang; Dai, Yingming; Zhao, Baozhi; Song, Shouseng; Lei, Yuanzhong; Wang, Houseng; Ye, Bai; Hu, Xinning; Huang, Tianbing; Wang, Hui; He, Chu; Shang, Muxi; Wang, Chao; Cui, Chunyan; Zhao, Shangwu; Zhang, Quan; Diao, Yanhua; Peng, Yan; Xu, Guoxin; Deng, Fanping; Weng, Peide; Kuang, Guangli; Gao, Bingjun; Lin, Liangzhen; Yan, Luguang

    2007-07-01

    High magnetic field superconducting magnet technology has been developed in the recent years for all kinds of applications in China. The superconducting magnets on the basis of the conduction-cooled high (HTS) and lower temperature superconductor (LTS) through GM cryocooler are designed, fabricated and operated for the magnetic separator, superconducting magnet energy storage system (SMES), material processing, gyrotron, electromagnetic launcher, space anti-matter detection, magnetic surgery system (MSS), heavy ion accelerator dipole magnet and test bed for characteristics of superconducting material in Institute of Electrical Engineering, Chinese Academy of Sciences (IEECAS). The EAST superconducting Tokamak is being fabricated in Institute of Plasma Physics, Chinese Academy of Sciences. In the paper, we report the successful development of high magnetic field superconducting magnet technology in China. Some new research projects, such as 40 T hybrid magnet, 25 T high magnetic field superconducting magnet, split-pair magnets for the pallation Neutron Source, high temperature superconducting coils for MSS and MRI are introduced.

  16. Radiofrequency ablation of abdominal wall endometrioma.

    PubMed

    Carrafiello, Gianpaolo; Fontana, Federico; Pellegrino, Carlo; Mangini, Monica; Cabrini, Luca; Mariani, Davide; Piacentino, Filippo; Cuffari, Salvatore; Laganà, Domenico; Fugazzola, Carlo

    2009-11-01

    Extraperitoneal endometriosis is the presence of ectopic, functional endometrium outside the peritoneal cavity, and its occurrence is exceedingly rare. Diagnostic imaging--including ultrasound, duplex ultrasonography, and magnetic resonance imaging--in the preoperative assessment of patients with suspected abdominal wall endometriosis (AWE) is helpful for detection and accurate determination of the extent of disease. The treatment of choice for AWE is surgical excision. In addition, medical therapies can be used. We present one case of AWE treated with percutaneous radiofrequency ablation under ultrasound guidance. There were no major complications, and the patient's symptoms improved. In selected patients, radiofrequency ablation can be used safely for the treatment of AWE; however, further studies are needed to confirm this hypothesis. PMID:19184197

  17. Radiofrequency-oxidation treatment of sewage sludge.

    PubMed

    Srinivasan, Asha; Young, Chris; Liao, Ping H; Lo, Kwang V

    2015-12-01

    A novel thermal-chemical treatment technology using radiofrequency heating and oxidants (hydrogen peroxide, ozone and a combination of both) was used for the treatment of sewage sludge. This was to evaluate the process effectiveness on cell disintegration and nutrient release of sludge, physical property changes such as particle size distribution, dewaterability and settleability, and their inter-relationships. The effectiveness of treatment processes was in the following order, from the most to least: thermal-oxidation process, oxidation process and thermal process. The thermal-oxidation process greatly increased cell disintegration and nutrient release, improved settleability, and decreased particle sizes. The treatment scheme involving ozone addition followed by hydrogen peroxide and radiofrequency heating yielded the highest soluble chemical oxygen demand, volatile fatty acids, ammonia and metals, while proffering the shortest capillary suction time and excellent settling properties. PMID:26233925

  18. Bilateral vision loss associated with radiofrequency exposure

    PubMed Central

    Liu, Dianna; Cruz, Franz Marie; Subramanian, Prem S

    2012-01-01

    A 57-year-old otherwise healthy woman presented with painless binocular vision loss 1 week after direct application of radiofrequency energy to her orbits. She had no light perception bilaterally. Pupils were dilated and not reactive to light. Fundoscopic exam initially showed optic disc swelling in the right eye and a normal-appearing disc in the left eye. Magnetic resonance imaging of the brain and orbits showed gadolinium enhancement of both intraorbital optic nerves. She underwent a course of high-dose steroid treatment without recovery of vision. Optic discs were pale 11 weeks after injury. With exclusion of other possible causes, this represents a unique case of irreversible binocular optic nerve damage and blindness secondary to radiofrequency exposure. PMID:23271888

  19. Fraxelated radiofrequency device for acne scars

    NASA Astrophysics Data System (ADS)

    Rao, Babar K.; Khokher, Sairah

    2012-09-01

    Acne scars can be improved with various treatments such as topical creams, chemical peels, dermal fillers, microdermabrasion, laser, and radiofrequency devices. Some of these treatments especially lasers and deep chemical peels can have significant side effects such as post inflammatory hyperpigmentation in darker skin types. Fraxelated RF Laser devices have been reported to have lower incidence of side effects in all skin phototypes. Nine patients between ages 18 and 35 of various skin phototypes were selected from a private practice and treated with a RF fraxelated device (E-matrix) for acne scars. Outcomes were measured by physician observation, subjective feedback received by patients, and comparison of before and after photographs. In this small group of patients with various skin phototypes, fraxelated radiofrequency device improved acne scars with minimal side effects and downtime.

  20. Radiofrequency and microwave interactions between biomolecular systems.

    PubMed

    Kučera, Ondřej; Cifra, Michal

    2016-01-01

    The knowledge of mechanisms underlying interactions between biological systems, be they biomacromolecules or living cells, is crucial for understanding physiology, as well as for possible prevention, diagnostics and therapy of pathological states. Apart from known chemical and direct contact electrical signaling pathways, electromagnetic phenomena were proposed by some authors to mediate non-chemical interactions on both intracellular and intercellular levels. Here, we discuss perspectives in the research of nanoscale electromagnetic interactions between biosystems on radiofrequency and microwave wavelengths. Based on our analysis, the main perspectives are in (i) the micro and nanoscale characterization of both passive and active radiofrequency properties of biomacromolecules and cells, (ii) experimental determination of viscous damping of biomacromolecule structural vibrations and (iii) detailed analysis of energetic circumstances of electromagnetic interactions between oscillating polar biomacromolecules. Current cutting-edge nanotechnology and computational techniques start to enable such studies so we can expect new interesting insights into electromagnetic aspects of molecular biophysics of cell signaling. PMID:26174548

  1. Radiofrequency Wire Recanalization of Chronically Thrombosed TIPS.

    PubMed

    Majdalany, Bill S; Elliott, Eric D; Michaels, Anthony J; Hanje, A James; Saad, Wael E A

    2016-07-01

    Radiofrequency (RF) guide wires have been applied to cardiac interventions, recanalization of central venous thromboses, and to cross biliary occlusions. Herein, the use of a RF wire technique to revise chronically occluded transjugular intrahepatic portosystemic shunts (TIPS) is described. In both cases, conventional TIPS revision techniques failed to revise the chronically thrombosed TIPS. RF wire recanalization was successfully performed through each of the chronically thrombosed TIPS, demonstrating initial safety and feasibility in this application. PMID:26902703

  2. Ultrasound-guided Pulsed Radiofrequency of the Third Occipital Nerve

    PubMed Central

    Kim, Eung Don; Kim, Young Hoon; Park, Chong Min; Kwak, Jung Ah

    2013-01-01

    A C2-3 zygapophygeal joint is a major source of cervicogenic headache. Radiofrequency (RF) neurotomy is preformed widely for zygapophygeal joint pain. Conventional RF denervation technique is generally performed under fluoroscopic control. Recently, ultrasound-guided radiofrequency on zygapophygeal joint has emerged as an alternative method. We report our experiences of two successful ultrasound-guided pulsed radiofrequencies on 39-year-old and 42-year-old males, who complained occipital headache and posterior neck pain. PMID:23614084

  3. Radiofrequency Microtenotomy for Elbow Epicondylitis: Midterm Results.

    PubMed

    Tasto, James P; Richmond, John M; Cummings, Jeffrey R; Hardesty, Renee; Amiel, David

    2016-01-01

    We conducted a prospective, nonrandomized, single-center clinical study to evaluate the safety and midterm effectiveness of microtenotomy using a radiofrequency probe to treat chronic tendinosis of the elbow. All patients had failed conservative treatment for 6 months. The radiofrequency-based microtenotomy was performed using the Topaz Microdebrider (ArthroCare). Patients were followed annually for up to 9 years postoperatively. Pain status was documented using a visual analog scale self-reported measure. Eighty consecutive patients with tendinosis of the elbow were enrolled; 69 patients were treated for lateral epicondylitis and 11 for medial epicondylitis. The duration of follow-up ranged from 6 months to 9 years (mean, 2.5 years). Ninety-one percent of the patients reported a successful outcome. Within the lateral epicondylitis group, the preoperative visual analog scale improved from 6.9 to 1.3 postoperatively and demonstrated an 81% improvement (P ≤ .01). For the medial epicondylitis patients, the preoperative visual analog scale improved from 6.1 to 1.3 after surgery, a 79% improvement (P ≤ .01). No complications were reported. Radiofrequency-based microtenotomy is a safe and effective procedure for elbow epicondylitis. The results are durable with successful outcomes observed at 9 years after surgery. PMID:26761915

  4. Superconductivity of magnesium diboride

    SciTech Connect

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  5. Superconductivity of magnesium diboride

    NASA Astrophysics Data System (ADS)

    Bud'ko, Sergey L.; Canfield, Paul C.

    2015-07-01

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In this article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. In particular, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  6. Superconductivity in bad metals

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is argued that many synthetic metals, including high temperature superconductors are ``bad metals`` with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described.

  7. Superconducting gyroscope research

    NASA Technical Reports Server (NTRS)

    Hendricks, J. B.; Karr, G. R.

    1985-01-01

    Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture.

  8. Superconducting properties of protactinium.

    PubMed

    Smith, J L; Spirlet, J C; Müller, W

    1979-07-13

    The superconducting transition temperature and upper critical magnetic field of protactinium were measured by alternating-current susceptibility techniques. Since the superconducting behavior of protactinium is affected by its 5f electron character, it is clear now that protactinium is a true actinide element. PMID:17750320

  9. Rapid cycling superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fabbricatore, P.; Farinon, S.; Gambardella, U.; Greco, M.; Volpini, G.

    2006-04-01

    The paper deals with the general problematic related to the development of fast cycled superconducting magnets for application in particle accelerator machines. Starting from the requirements of SIS300 synchrotron under design at GSI and an envisaged future Super-SPS injector at CERN, it is shown which developments are mandatory in the superconducting wire technology and in the magnet design field.

  10. Development of superconductive magnets

    NASA Technical Reports Server (NTRS)

    Laurence, J. C.

    1970-01-01

    Survey of superconductive magnets considers - stabilization problems, advances in materials and their uses, and design evolution. Uses of superconducting magnets in particle accelerators and bubble chambers, as well as possible applications in magnetohydrodynamic and thermonuclear power generation and levitation are discussed.

  11. Superconductivity of magnesium diboride

    DOE PAGESBeta

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  12. Segmented superconducting tape having reduced AC losses and method of making

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Holesinger, Terry G.; Wang, Haiyan

    2009-09-22

    A superconducting tape having reduced AC losses. The tape has a high temperature superconductor layer that is segmented. Disruptive strips, formed in one of the tape substrate, a buffer layer, and the superconducting layer create parallel discontinuities in the superconducting layer that separate the current-carrying elements of the superconducting layer into strips or filament-like structures. Segmentation of the current-carrying elements has the effect of reducing AC current losses. Methods of making such a superconducting tape and reducing AC losses in such tapes are also disclosed.

  13. Superconducting Graphene Nanoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Wang, Joel; Zaffalon, Michele; Jarillo-Herrero, Pablo

    2010-03-01

    Graphene, a single atom-thick sheet of graphite discovered in recent years, has attracted tremendous attention due to its exotic electronic properties. At low energy, its gapless linear band structure results in transport properties described by the Dirac equation, making it an ideal system for the study of exotic quantum phenomena and other new physics. Graphene may also exhibit many novel transport characteristics in the superconducting regime. New phenomena, such as pseudo-diffusive dynamics of ballistic electrons, the relativistic Josephson effect, and specular Andreev reflection are predicted by theoretical models combining relativistic quantum mechanics and superconductivity. We study these phenomena experimentally with superconductor-graphene-superconductor junctions. The supercurrent in graphene is induced by the superconducting contacts through proximity effect. Various superconducting materials are considered for different explorations. Preliminary tests indicate clean electrical contact with graphene and superconducting properties as expected.

  14. Superconductivity in carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  15. Metal optics and superconductivity

    SciTech Connect

    Golovashkin, A.L.

    1989-01-01

    The articles contained in this collection are dedicated to the study of the electron structure of transition metals and superconducting alloys and compounds based on them. The study of the electron structure of materials is one of the central problems of solid-state physics and defines the solution of a number of problems. One of them is the problem of high-temperature superconductivity which has attracted exceptional attention from physicists in connection with the discovery of new classes of ceramic oxides which are superconducting at liquid-nitrogen temperature. The electron structure is one of the three whales on which all of superconductivity rests. It is frequently our ignorance of the electronic properties of a metal, alloy or compound in its normal state which makes it impossible to predict superconductivity in the material, preventing use from calculating the parameters of the superconducting state. There are now a number of effective methods for investigation of the electron structure of the metals and allows. This collection discusses metal optics, tunneling and magnetic measurements in superconductors. These methods are quite informative and allow us to obtain many important electron characteristics and temperature relations. Various characteristics of the superconducting compounds Nb{sub 3}Ge, Nb{sub 3}Al, nb{sub 3}Sn and Nb{sub 3}Ga with A15 structure and NbN with B1 structure, having rather high critical temperatures, are experimentally studied.

  16. Ferromagnetic/Superconducting Multilayers

    NASA Astrophysics Data System (ADS)

    Bader, S. D.

    1998-03-01

    Although it is well known that magnetism influences superconductivity, the converse issue has been less well explored. Recent theoretical predictions for ferromagnetic/ superconducting/ ferromagnetic trilayers exhibiting interlayer magnetic coupling in the normal state indicate that the coupling should be suppressed below the superconducting transition temperature.(C.A. R. Sá de Melo, Phys. Rev. Lett. 79), 1933 (1997); O. Sipr, B.L. Györffy, J. Phys. Cond. Matt. 7, 5239 (1995). To realize such a situation, a requirement (when the magnetic layers are thick) is that the superconducting layer thickness must simultaneously be less than the range over which the magnetic interlayer coupling decays, but greater than the superconducting coherence length. This introduces serious materials constraints. The present work describes initial explorations of three sputtered multilayer systems in an attempt to observe coupling of the ferromagnetic layers across a superconducting spacer:((a) J.E. Mattson, R.M. Osgood III, C.D. Potter, C.H. Sowers, and S.D. Bader, J. Vac. Sci. Technol. A 15), 1774 (1997); (b) J.E. Mattson, C.D. Potter, M.J. Conover, C.H. Sowers, and S.D. Bader, Phys. Rev. B 55, 70 (1997), and (c) R.M. Osgood III, J.E. Pearson, C.H. Sowers, and S.D. Bader, submitted (1997). (a) Ni/Nb, (b) Fe_4N/NbN, and (c) GdN/NbN. In these systems we have retained thinner superconducting layers than had been achieved previously, but interlayer magnetic coupling is not observed even in the normal state. For Ni/Nb the interfacial Ni loses its moment, which also reduces the superconducting pair-breaking. GdN is an insulating ferromagnet, so itinerancy is sacrificed, and, probably as a result of this, no coupling is observed. Each system gives rise to interesting and anisotropic superconducting properties. Thus, although the goal remains elusive, our search highlights the challenges and opportunities.

  17. Flux Penetration in a Ferromagnetic/Superconducting Bilayer

    NASA Astrophysics Data System (ADS)

    Adamus, Z.; Cieplak, M. Z.; Abal-Oshev, A.; Kończykowski, M.; Cheng, X. M.; Zhu, L. Y.; Chien, C. L.

    2007-01-01

    An array of miniature Hall sensors is used to study the magnetic flux penetration in a ferromagnetic/superconducting bilayer consisting of Nb as a superconducting layer and Co/Pt multilayer with perpendicular magnetic anisotropy as a ferromagnetic layer, separated by an amorphous Si layer to avoid the proximity effect. It is found that the magnetic domains in the ferromagnetic layer create a large edge barrier in the superconducting layer which delays flux penetration. The smooth flux profiles observed in the absence of magnetic pinning change into terraced profiles in the presence of domains.

  18. 21 CFR 886.4100 - Radiofrequency electrosurgical cautery apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiofrequency electrosurgical cautery apparatus. 886.4100 Section 886.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4100 Radiofrequency electrosurgical cautery apparatus....

  19. 21 CFR 882.4725 - Radiofrequency lesion probe.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiofrequency lesion probe. 882.4725 Section 882.4725 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4725 Radiofrequency lesion probe. (a) Identification. A...

  20. 21 CFR 886.4100 - Radiofrequency electrosurgical cautery apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiofrequency electrosurgical cautery apparatus. 886.4100 Section 886.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4100 Radiofrequency electrosurgical cautery apparatus....

  1. 21 CFR 886.4100 - Radiofrequency electrosurgical cautery apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiofrequency electrosurgical cautery apparatus. 886.4100 Section 886.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4100 Radiofrequency electrosurgical cautery apparatus....

  2. 21 CFR 882.4400 - Radiofrequency lesion generator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiofrequency lesion generator. 882.4400 Section 882.4400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... lesion generator. (a) Identification. A radiofrequency lesion generator is a device used to...

  3. 21 CFR 882.4400 - Radiofrequency lesion generator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiofrequency lesion generator. 882.4400 Section 882.4400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... lesion generator. (a) Identification. A radiofrequency lesion generator is a device used to...

  4. 21 CFR 882.4400 - Radiofrequency lesion generator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiofrequency lesion generator. 882.4400 Section 882.4400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... lesion generator. (a) Identification. A radiofrequency lesion generator is a device used to...

  5. 21 CFR 882.4400 - Radiofrequency lesion generator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiofrequency lesion generator. 882.4400 Section 882.4400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... lesion generator. (a) Identification. A radiofrequency lesion generator is a device used to...

  6. 21 CFR 882.4400 - Radiofrequency lesion generator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiofrequency lesion generator. 882.4400 Section 882.4400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... lesion generator. (a) Identification. A radiofrequency lesion generator is a device used to...

  7. 21 CFR 886.4100 - Radiofrequency electrosurgical cautery apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiofrequency electrosurgical cautery apparatus. 886.4100 Section 886.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... electrosurgical cautery apparatus. (a) Identification. A radiofrequency electrosurgical cautery apparatus is an...

  8. Note: Control of liquid helium supply to cryopanels of Kolkata superconducting cyclotron

    SciTech Connect

    Bhattacharyya, T. K. Pal, G.

    2015-02-15

    The Kolkata superconducting cyclotron utilises liquid helium to cool the main magnet niobium-titanium (NbTi) coil and the cryopanels. Three liquid helium cooled cryopanels, placed inside the dees of the radio-frequency system, maintain the high vacuum in the acceleration region of the superconducting cyclotron. The small cryostat placed inside the cryogenic distribution manifold located at the basement of the superconducting cyclotron building supplies liquid helium in parallel branches to three cold heads, used for cooling their associated cryopanels. The level in the cryostat has to be maintained at an optimum value to ensure uninterrupted flow of liquid helium to these three cold heads. This paper describes the transfer function of the overall system, its tuning parameters, and discusses the actual control of cryostat level by using these parameters.

  9. Structures behind superconductivity

    SciTech Connect

    Rotman, D.

    1988-07-01

    The previously reported preparation and structures of superconducting materials are reviewed. The two systems, Y-Ba-Cu-O and La-Cu-O, previously reported with high transition temperatures are discussed in some detail. The new systems introduced in 1987 that were not based on a rare earth but including Bi-Sr-Cu-O are also reviewed. Superconductive materials including thallium rather than bismuth that have been reported but not thoroughly studied are discussed briefly. It is pointed out that many superconducting materials have been prepared, but good documentation of the structures and properties of these materials need much more study.

  10. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  11. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  12. Tunneling in superconducting structures

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  13. Design Optimization of Superconducting Parallel-bar Cavities

    SciTech Connect

    Delayen, Jean R.; De Silva, Payagalage Suba

    2009-11-01

    The parallel-bar structure is a new superconducting geometry [1] whose features and properties may have significant advantages over conventional superconducting deflecting and crabbing cavities for a number of applications. Jefferson Lab is in need for a 499 MHz, 11 GeV rf separator as part of its 12 GeV upgrade program. We report on design optimization studies performed to-date for this and other applications.

  14. Numerical investigation on electrical characterization of a capacitive coupled radio-frequency plasma

    NASA Astrophysics Data System (ADS)

    Yao, H.; He, X.; Chen, J. P.; Zhang, Y. C.

    2015-05-01

    This paper presents the main electrical features of capacitive coupled radio-frequency (CCRF) discharges in gas. A two-dimensional, time-dependent fluid model was established. Capacitive coupled plasmas (CCP) were produced by applying radio-frequency voltage to a pair of parallel plate electrodes which are separated from the plasma by dielectric layers. The electron equation and the electron transport equations were solved and yielded the electron number density and electron temperature. The electrostatic field was obtained by the solution of the Poisson equation. The distribution of electron temperature and electron number density was studied under different conditions: radio-frequency applied voltages (VRF=100-2000V), frequencies (f=3.0-40.68MHz), pressures (p=0.001-1torr), and gas species (O2, Ar, He, N2). The results show that electron number density presents a minimum near the electrodes, and presents a maximum between the positive and the negative electrodes. The distinguishing feature of CCP is the presence of oscillating sheaths near electrodes where displacement current dominates conduction current. These informations will help us to analyze the characters of CCP for application.

  15. Active stabilization of ion trap radiofrequency potentials

    NASA Astrophysics Data System (ADS)

    Johnson, K. G.; Wong-Campos, J. D.; Restelli, A.; Landsman, K. A.; Neyenhuis, B.; Mizrahi, J.; Monroe, C.

    2016-05-01

    We actively stabilize the harmonic oscillation frequency of a laser-cooled atomic ion confined in a radiofrequency (rf) Paul trap by sampling and rectifying the high voltage rf applied to the trap electrodes. We are able to stabilize the 1 MHz atomic oscillation frequency to be better than 10 Hz or 10 ppm. This represents a suppression of ambient noise on the rf circuit by 34 dB. This technique could impact the sensitivity of ion trap mass spectrometry and the fidelity of quantum operations in ion trap quantum information applications.

  16. Radiofrequency Ablation Complicated by Skin Burn

    PubMed Central

    Huffman, S.D.; Huffman, N.P.; Lewandowski, Robert J.; Brown, Daniel B.

    2011-01-01

    Radiofrequency (RF) ablation has been increasingly utilized as a minimally invasive treatment for primary and metastatic liver tumors, as well as tumors in the kidneys, bones, and adrenal glands. The development of high-current RF ablation has subsequently led to an increased risk of thermal skin injuries at the grounding pad site. The incidence of skin burns in recent studies ranges from 0.1–3.2% for severe skin burns (second-/third-degree), and from 5–33% for first-degree burns.1–3 PMID:22654258

  17. Radiofrequency in Cosmetic Dermatology: An Update.

    PubMed

    Dunbar, Scott W; Goldberg, David J

    2015-11-01

    Treatment options for cosmetic improvement of the skin and body continue to grow more numerous with each passing year. The decline in utilization of invasive surgical treatments for aging and body contour correlates with the recent rise in laser and light devices. These light based technologies transmit either a single or broad wavelength of amplified light to the skin, resulting in volumetric tissue heating. Depending on the chromophore targeted and wavelength applied, varied applications exist to treat numerous cosmetic concerns. Radiofrequency (RF) devices have become more popular recently as science has advanced and brought new, safer, and better therapies. PMID:26580871

  18. Radiofrequency Ablation to Prevent Sudden Cardiac Death

    PubMed Central

    Atoui, Moustapha; Gunda, Sampath; Lakkireddy, Dhanunjaya; Mahapatra, Srijoy

    2015-01-01

    Radiofrequency ablation may prevent or treat atrial and ventricular arrhythmias. Since some of these arrhythmias are associated with sudden cardiac death, it has been hypothesized that ablation may prevent sudden death in certain cases. We performed a literature search to better understand under which circumstances ablation may prevent sudden death and found little randomized data demonstrating the long-term effects of ablation. Current literature shows that ablation clearly prevents symptoms of arrhythmia and may reduce the incidence of sudden cardiac death in select patients, although data does not indicate improved mortality. Ongoing clinical trials are needed to better define the role of ablation in preventing sudden cardiac death. PMID:26306130

  19. Radiofrequency ablation for benign thyroid nodules.

    PubMed

    Bernardi, S; Stacul, F; Zecchin, M; Dobrinja, C; Zanconati, F; Fabris, B

    2016-09-01

    Benign thyroid nodules are an extremely common occurrence. Radiofrequency ablation (RFA) is gaining ground as an effective technique for their treatment, in case they become symptomatic. Here we review what are the current indications to RFA, its outcomes in terms of efficacy, tolerability, and cost, and also how it compares to the other conventional and experimental treatment modalities for benign thyroid nodules. Moreover, we will also address the issue of treating with this technique patients with cardiac pacemakers (PM) or implantable cardioverter-defibrillators (ICD), as it is a rather frequent occurrence that has never been addressed in detail in the literature. PMID:27098804

  20. Cooled radiofrequency ablation for bilateral greater occipital neuralgia.

    PubMed

    Vu, Tiffany; Chhatre, Akhil

    2014-01-01

    This report describes a case of bilateral greater occipital neuralgia treated with cooled radiofrequency ablation. The case is considered in relation to a review of greater occipital neuralgia, continuous thermal and pulsed radiofrequency ablation, and current medical literature on cooled radiofrequency ablation. In this case, a 35-year-old female with a 2.5-year history of chronic suboccipital bilateral headaches, described as constant, burning, and pulsating pain that started at the suboccipital region and radiated into her vertex. She was diagnosed with bilateral greater occipital neuralgia. She underwent cooled radiofrequency ablation of bilateral greater occipital nerves with minimal side effects and 75% pain reduction. Cooled radiofrequency ablation of the greater occipital nerve in challenging cases is an alternative to pulsed and continuous RFA to alleviate pain with less side effects and potential for long-term efficacy. PMID:24716017

  1. Heterogeneous magneto-superconducting systems

    NASA Astrophysics Data System (ADS)

    Erdin, Serkan

    2002-09-01

    We first present a new method to calculate the vortex and magnetization arrangement for a system of interacting superconductors and ferromagnets separated in space. The method is based on the static London-Maxwell equations and the corresponding energy. The possibility of superconducting (SC) vortices is included in this system. Using this method we analyze screening currents in a SC film induced by magnetic textures in a thin magnetic film. We assume that the two films are parallel and positioned close to each other, but interact exclusively via magnetic fields. We also consider the possibility of vortices within this SC film, and their interactions with the magnetic texture. As an example of such a magnetic texture we consider a single magnetic dot with magnetization perpendicular to the film. We derive the condition for which spontaneous formation of one, two or more vortices and antivortices is energetically favorable. We prove that, for a circular magnetic dot with perpendicular magnetization, when the vortex emerges in the SC film, the normal component of the magnetic field near the SC film changes sign outside of the dot range. Secondly, a square array of magnetic dots grown on a SC film in the presence of the antivortices is studied. We show that the symmetry of the array is spontaneously violated. The positions of the vortices and the antivortices are calculated, depending on the magnetization and the size of the dots. Next, ferromagnet-superconductor bilayers (FSB) are considered. The homogeneous state of a FSB with magnetization perpendicular to the layer can be unstable with respect to the formation of vortices in the superconducting layer. The developing topological instability in the FSB leads to formation of domains in which the direction of the magnetization in the magnetic film and the direction of vorticity in the superconducting film both alternate. These domain structures are studied both in the continuum and the discrete regimes.

  2. Superconducting squid amplifiers for IR detectors and other applications: Phase 2. Final report. [IR (Infrared)

    SciTech Connect

    Osterman, D.

    1993-05-01

    The subject of this report is a completed Phase II SBIR project to develop a superconducting analog multiplexer circuit. The intended application of the multiplexer is as a component of processing circuitry for a superconducting infrared focal plane array (IR FPA). Development of the IR FPA is in progress under a separate contract. Among the accomplishments that are described below is the fabrication and testing of a functioning, superconducting, 20-input multiplexer, appropriate for use with an IR FPA. The motivation for developing a superconducting multiplexer circuit derives primarily from the significant potential advantages of an all-superconducting IR FPA system, i.e. a system in which the detectors, as well as the associated processing circuitry, are superconducting. Section III of this report reviews the subject of superconducting IR FPAs. Chief among the advantages of such systems is the potential for larger arrays with greater numbers of detectors than is now possible.

  3. Bottom-up superconducting and Josephson junction devices inside a group-IV semiconductor.

    PubMed

    Shim, Yun-Pil; Tahan, Charles

    2014-01-01

    Superconducting circuits are exceptionally flexible, enabling many different devices from sensors to quantum computers. Separately, epitaxial semiconductor devices such as spin qubits in silicon offer more limited device variation but extraordinary quantum properties for a solid-state system. It might be possible to merge the two approaches, making single-crystal superconducting devices out of a semiconductor by utilizing the latest atomistic fabrication techniques. Here we propose superconducting devices made from precision hole-doped regions within a silicon (or germanium) single crystal. We analyse the properties of this superconducting semiconductor and show that practical superconducting wires, Josephson tunnel junctions or weak links, superconducting quantum interference devices (SQUIDs) and qubits are feasible. This work motivates the pursuit of 'bottom-up' superconductivity for improved or fundamentally different technology and physics. PMID:24985349

  4. Superconducting thermoelectric generator

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  5. Superconducting thermoelectric generator

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  6. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  7. Supertubes and Superconducting Membranes

    SciTech Connect

    Cordero, Ruben; Miguel-Pilar, Zelin

    2007-02-09

    We show the equivalence between configurations that arise from string theory of type IIA, called supertubes, and superconducting membranes at the bosonic level. We find equilibrium and oscillating configurations for a tubular membrane carrying a current along its axis.

  8. Hybrid superconducting magnetic suspensions

    SciTech Connect

    Tixador, P.; Hiebel, P.; Brunet, Y.

    1996-07-01

    Superconductors, especially high T{sub c} ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO.

  9. Superconductive ceramic oxide combination

    SciTech Connect

    Chatterjee, D.K.; Mehrotra, A.K.; Mir, J.M.

    1991-03-05

    This patent describes the combination of a superconductive ceramic oxide which degrades in conductivity upon contact of ambient air with its surface and, interposed between the ceramic oxide surface and ambient air in the amount of at least 1 mg per square meter of surface area of the superconductive ceramic oxide, a passivant polymer selected from the group consisting of a polyester ionomer and an alkyl cellulose.

  10. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  11. Compact Superconducting Crabbing and Deflecting Cavities

    SciTech Connect

    De Silva, Payagalage Subashini Uddika

    2012-09-01

    Recently, new geometries for superconducting crabbing and deflecting cavities have been developed that have significantly improved properties over those the standard TM{sub 110} cavities. They are smaller, have low surface fields, high shunt impedance and, more importantly for some of them, no lower-order-mode with a well-separated fundamental mode. This talk will present the status of the development of these cavities.

  12. Radio-frequency scanning tunnelling microscopy.

    PubMed

    Kemiktarak, U; Ndukum, T; Schwab, K C; Ekinci, K L

    2007-11-01

    The scanning tunnelling microscope (STM) relies on localized electron tunnelling between a sharp probe tip and a conducting sample to attain atomic-scale spatial resolution. In the 25-year period since its invention, the STM has helped uncover a wealth of phenomena in diverse physical systems--ranging from semiconductors to superconductors to atomic and molecular nanosystems. A severe limitation in scanning tunnelling microscopy is the low temporal resolution, originating from the diminished high-frequency response of the tunnel current readout circuitry. Here we overcome this limitation by measuring the reflection from a resonant inductor-capacitor circuit in which the tunnel junction is embedded, and demonstrate electronic bandwidths as high as 10 MHz. This approximately 100-fold bandwidth improvement on the state of the art translates into fast surface topography as well as delicate measurements in mesoscopic electronics and mechanics. Broadband noise measurements across the tunnel junction using this radio-frequency STM have allowed us to perform thermometry at the nanometre scale. Furthermore, we have detected high-frequency mechanical motion with a sensitivity approaching approximately 15 fm Hz(-1/2). This sensitivity is on par with the highest available from nanoscale optical and electrical displacement detection techniques, and the radio-frequency STM is expected to be capable of quantum-limited position measurements. PMID:17972882

  13. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    NASA Astrophysics Data System (ADS)

    Evtushenko, A. V.; Evtushenko, V. V.; Saushkina, Yu. V.; Lishmanov, Yu. B.; Pokushalov, E. A.; Sergeevichev, D. S.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V.; Anfinogenova, Ya. D.; Smyshlyaev, K. A.; Lotkov, A. I.; Kurlov, I. O.

    2015-11-01

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using 123I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  14. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    SciTech Connect

    Evtushenko, A. V. Evtushenko, V. V.; Saushkina, Yu. V.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Smyshlyaev, K. A.; Kurlov, I. O.; Lishmanov, Yu. B.; Anfinogenova, Ya. D.; Sergeevichev, D. S.; Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V.; Lotkov, A. I.; Pokushalov, E. A.

    2015-11-17

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using {sup 123}I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  15. Electron pairing without superconductivity.

    PubMed

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C Stephen; Levy, Jeremy

    2015-05-14

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. PMID:25971511

  16. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P.; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C. Stephen; Levy, Jeremy

    2015-05-01

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity.

  17. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  18. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  19. Evaporative cooling in a radio-frequency trap

    SciTech Connect

    Garrido Alzar, Carlos L.; Perrin, Helene; Lorent, Vincent; Garraway, Barry M.

    2006-11-15

    A theoretical investigation for implementing a scheme of forced evaporative cooling in radio-frequency (rf) adiabatic potentials is presented. Supposing the atoms to be trapped in a combination of a dc magnetic field and a rf field at frequency {omega}{sub 1}, the cooling procedure is facilitated using a second rf source at frequency {omega}{sub 2}. This second rf field produces a controlled coupling between the spin states dressed by {omega}{sub 1}. The evaporation is then possible in a pulsed or continuous mode. In the pulsed case, atoms with a given energy are transferred into untrapped dressed states by abruptly switching off the {omega}{sub 2} coupling. In the continuous case, it is possible for energetic atoms to adiabatically follow the doubly dressed states and escape out of the trap. Our results also show that when {omega}{sub 1} and {omega}{sub 2} are separated by at least the Rabi frequency associated with {omega}{sub 1}, additional evaporation zones appear which can make this process more efficient.

  20. Comparisons of radio frequency technology for superconducting accelerating structures

    NASA Astrophysics Data System (ADS)

    Kimber, Andrew J.

    2015-12-01

    Since the introduction of radiofrequency (RF) accelerating cavities, normal conducting as well as superconducting, there has been a need to drive them with RF power. At first glance, the function of an RF drive system may seem simple and straightforward, but this belies subtleties that greatly affect the performance of the cavity itself, diminishing efforts in perfecting techniques in design and manufacture. It can also contribute to a significant portion of the initial capital and ongoing running costs of a facility, maintenance labor, downtime and future expenditure as the system ages. The RF `system', should be thought of as just that, the entire collection of components from wall plug to cavity. Following this integrated approach will enable the system to meet or exceed its design goals. This paper seeks to review the current state of RF technology for superconducting structures and to compare these technologies, looking at what has traditionally been used, developments that have enabled higher efficiencies and higher reliabilities as well as looking towards future technologies. It will concentrate on superconducting applications, but much of the narrative is equally applicable to normal conducting structures as well.

  1. Macroscopic Models of Superconductivity

    NASA Astrophysics Data System (ADS)

    Chapman, S. J.

    Available from UMI in association with The British Library. Requires signed TDF. After giving a description of the basic physical phenomena to be modelled, we begin by formulating a sharp -interface free-boundary model for the destruction of superconductivity by an applied magnetic field, under isothermal and anisothermal conditions, which takes the form of a vectorial Stefan model similar to the classical scalar Stefan model of solid/liquid phase transitions and identical in certain two-dimensional situations. This model is found sometimes to have instabilities similar to those of the classical Stefan model. We then describe the Ginzburg-Landau theory of superconductivity, in which the sharp interface is 'smoothed out' by the introduction of an order parameter, representing the number density of superconducting electrons. By performing a formal asymptotic analysis of this model as various parameters in it tend to zero we find that the leading order solution does indeed satisfy the vectorial Stefan model. However, at the next order we find the emergence of terms analogous to those of 'surface tension' and 'kinetic undercooling' in the scalar Stefan model. Moreover, the 'surface energy' of a normal/superconducting interface is found to take both positive and negative values, defining Type I and Type II superconductors respectively. We discuss the response of superconductors to external influences by considering the nucleation of superconductivity with decreasing magnetic field and with decreasing temperature respectively, and find there to be a pitchfork bifurcation to a superconducting state which is subcritical for Type I superconductors and supercritical for Type II superconductors. We also examine the effects of boundaries on the nucleation field, and describe in more detail the nature of the superconducting solution in Type II superconductors--the so-called 'mixed state'. Finally, we present some open questions concerning both the modelling and analysis of

  2. Superconducting wind turbine generators

    NASA Astrophysics Data System (ADS)

    Abrahamsen, A. B.; Mijatovic, N.; Seiler, E.; Zirngibl, T.; Træholt, C.; Nørgård, P. B.; Pedersen, N. F.; Andersen, N. H.; Østergård, J.

    2010-03-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  3. Phase Separation in Cuprate Superconductors - Proceedings of the Workshop

    NASA Astrophysics Data System (ADS)

    Müller, K. A.; Benedek, G.

    1993-01-01

    The Table of Contents for the full book PDF is as follows: * Preface and Scope * Frustrated Phase Separation and High Temperature Superconductivity * Phase Separation and Photo-Induced High Tc Superconductivity in the Cuprates * Neutron Scattering Studies of the Spin Dynamics in La2-xSrxCuO4 * Percolative Phase Separation and High Tc Superconductivity * Phase Separation in Cuprate Superconductors from NMR and Microwave Absorption Measurements * Electronic Structure and Phase Separation in Superconducting Cuprates * The Virtual Exciton Mechanism of Superconductivity * Linear Arrays of Non Homogeneous Cu Sites in the CuO2 Plane: A New Scenario for Pairing Mechanisms in a Corrugated-Iron-Like Plane * Phase Separation, Structure and Superconductivity in Oxygen-Annealed La2CuO4+δ * Phase Separation in La2-xSrxCuO4 and YBa2Cu3Ox Studied by Mössbauer Spectroscopy * Phase Diagram and Transport Studies on La2-xSrxCuO4 * Static and Dynamic Transport Aspects of Phase Separation * Phase Separation in the Superconducting La2Cu4+δ Phases (0 < δ < 0.09) Prepared by Electrochemical Oxidation * Neutron Scattering Study of the YBa2Cu3O6+x System * NMR Investigation of Low Energy Excitations in YBa2Cu3O6+x Single Crystals * Aspects of the Spin Dynamics in the Cuprate Superconductors * Oxygen Order and Spin Structure in YBa2Cu3Ox Deduced from Copper NMR and NQR * Static and Dynamic Magnetic Properties of Ba, Cu and O in YBa2Cu4O8 and Y2Ba4Cu7O15.1 * Positional Splitting of Apex Oxygen and Nonlinear Excitations in Cuprates * Cooper Pair Formation by Distortive Electron-Lattice Coupling * Bipolaronic Charge Density Waves, Polaronic Spin Density Waves, and High Tc Superconductivity * Phase Separation as Result of a Thermodynamical Variational Method for the Emery Model * General Discussion led by G. Benedek and K. A. Müller

  4. Proximity induced Superconductivity in Epitaxial Graphene

    NASA Astrophysics Data System (ADS)

    Natterer, Fabian D.; Ha, Jeonghoon; Baek, Hongwoo; Zhang, Duming; Cullen, William; Zhitenev, Nikolai B.; Kuk, Young; Stroscio, Joseph A.

    The intimate electrical contact of a superconductor with a normal metal leads to an exchange of carriers through their boundary. Cooper pairs leak into the normal metal via Andreev reflection and enable the normal metal to acquire superconducting-like properties. The electron-hole conversion process in graphene is prominent due to relativistic quantum mechanics governing low energy chiral carriers in a multi-valley system. In the present experiment, we reveal spatial measurements of the proximity effect in graphene from a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to the substrate to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting gap width with increasing separation from the graphene-aluminum edges. The decay length for the superconducting energy gap extends beyond 400 nm. Subtle deviations in the exponentially decaying energy gap were also observed on a much smaller length scale of tens of nanometers. Funding from SNSF (project 158468), NIST/CNST Grant 70NANB10H193, and KRF-2010-00349.

  5. Electron Pairing Without Superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy; Cheng, G.; Tomczyk, M.; Lu, S.; Veazey, J. P.; Huang, M.; Irvin, P.; Ryu, S.; Lee, H.; Eom, C.-B.; Hellberg, C. S.

    2015-03-01

    Strontium titanate (SrTiO3) exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. We describe transport experiments with nanowire-based quantum dots localized at the interface between SrTiO3 and LaAlO3. Electrostatic gating of the quantum dot reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical magnetic field Bp 1-4 Tesla, an order of magnitude larger than the superconducting critical magnetic field. For B Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as T = 900 mK, far above the superconducting transition temperature (Tc 300 mK). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by an attractive-U Hubbard model that describes real-space electron pairing as a precursor to superconductivity. This work was supported by ARO MURI W911NF-08-1-0317 (J.L.), AFOSR MURI FA9550-10-1-0524 (C.-B.E., J.L.) and FA9550-12-1-0342 (C.-B.E.), and grants from the National Science Foundation DMR-1104191 (J.L.), DMR.

  6. Electromagnetic limits to radiofrequency (RF) neuronal telemetry

    NASA Astrophysics Data System (ADS)

    Diaz, R. E.; Sebastian, T.

    2013-12-01

    The viability of a radiofrequency (RF) telemetry channel for reporting individual neuron activity wirelessly from an embedded antenna to an external receiver is determined. Comparing the power at the transmitting antenna required for the desired Channel Capacity, to the maximum power that this antenna can dissipate in the body without altering or damaging surrounding tissue reveals the severe penalty incurred by miniaturization of the antenna. Using both Specific Absorption Rate (SAR) and thermal damage limits as constraints, and 300 Kbps as the required capacity for telemetry streams 100 ms in duration, the model shows that conventional antennas smaller than 0.1 mm could not support human neuronal telemetry to a remote receiver (1 m away.) Reducing the antenna to 10 microns in size to enable the monitoring of single human neuron signals to a receiver at the surface of the head would require operating with a channel capacity of only 0.3 bps.

  7. Emerging indications of endoscopic radiofrequency ablation

    PubMed Central

    Becq, Aymeric; Camus, Marine; Rahmi, Gabriel; de Parades, Vincent; Marteau, Philippe

    2015-01-01

    Introduction Radiofrequency ablation (RFA) is a well-validated treatment of dysplastic Barrett's esophagus. Other indications of endoscopic RFA are under evaluation. Results Four prospective studies (total 69 patients) have shown that RFA achieved complete remission of early esophageal squamous intra-epithelial neoplasia at a rate of 80%, but with a substantial risk of stricture. In the setting of gastric antral vascular ectasia, two prospective monocenter studies, and a retrospective multicenter study, (total 51 patients), suggest that RFA is efficacious in terms of reducing transfusion dependency. In the setting of chronic hemorrhagic radiation proctopathy, a prospective monocenter study and a retrospective multicenter study (total 56 patients) suggest that RFA is an efficient treatment. A retrospective comparative study (64 patients) suggests that RFA improves stents patency in malignant biliary strictures. Conclusions Endoscopic RFA is an upcoming treatment modality in early esophageal squamous intra-epithelial neoplasia, as well as in gastric, rectal, and biliary diseases. PMID:26279839

  8. Radiofrequency Ablation Therapy for Solid Tumors

    SciTech Connect

    Kam, Anthony

    2002-12-04

    Surgical resection, systemic chemotherapy, and local radiation have been the conventional treatments for localized solid cancer. Because certain patients are not candidates for tumor resection and because many tumors are poorly responsive to chemotherapy and radiation, there has been an impetus to develop alternative therapies. Radiofrequency ablation (RFA) is a minimally invasive therapy for localized solid cancers that has gained considerable attention in the last 12 years. Advantages of minimally invasive therapies over surgery include less recovery time, lower morbidity and mortality, eligibility of more patients, and lower cost. RFA has been applied most extensively to inoperable hepatic tumors. It is investigational for tumors in the kidney, lung, bone, breast, and adrenal gland. This colloquium will review the mechanism, techniques, limitations, and clinical applications of RFA. The ultimate role that RFA will play in cancer therapy will depend on the results of long-term follow-up and prospective randomized trials.

  9. Palliative Radiofrequency Ablation for Recurrent Prostate Cancer

    SciTech Connect

    Jindal, Gaurav; Friedman, Marc; Locklin, Julia Wood, Bradford J.

    2006-06-15

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive local therapy for cancer. Its efficacy is now becoming well documented in many different organs, including liver, kidney, and lung. The goal of RFA is typically complete eradication of a tumor in lieu of an invasive surgical procedure. However, RFA can also play an important role in the palliative care of cancer patients. Tumors which are surgically unresectable and incompatible for complete ablation present the opportunity for RFA to be used in a new paradigm. Cancer pain runs the gamut from minor discomfort relieved with mild pain medication to unrelenting suffering for the patient, poorly controlled by conventional means. RFA is a tool which can potentially palliate intractable cancer pain. We present here a case in which RFA provided pain relief in a patient with metastatic prostate cancer with pain uncontrolled by conventional methods.

  10. Optical generation of radio-frequency power

    SciTech Connect

    Hietala, V.M.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Meyer, W.J.

    1994-11-01

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100`s of mW`s at millimeter wave frequencies with a theoretical ``wall-plug`` efficiency approaching 34%.

  11. Radiofrequency thermal ablation of renal tumors.

    PubMed

    De Filippo, Massimo; Bozzetti, Francesca; Martora, Rosa; Zagaria, Raffaella; Ferretti, Stefania; Macarini, Luca; Brunese, Luca; Rotondo, Antonio; Rossi, Cristina

    2014-07-01

    Percutaneous radiofrequency ablation (PRFA) of renal malignancies is currently a therapeutic option for patients who are not able to undergo surgery. Some authors consider PRFA as the therapeutic standard in the treatment of renal neoplasms in non-operable patients due to comorbid conditions and in patients with mild-moderate renal failure, to preserve residual renal functionality. The use of PRFA has become more and more widespread due to a rise in the incidental detection of renal cell carcinomas with the ever-increasing use of Imaging for the study of abdominal diseases. Clinical studies indicate that RF ablation is an effective therapy with a low level of risk of complications, which provides good results in selected patients over short and medium term periods of time, however up to now few long-term studies have been carried out which can confirm the effectiveness of PRFA. PMID:25024061

  12. Radio-frequency low-coherence interferometry.

    PubMed

    Fernández-Pousa, Carlos R; Mora, José; Maestre, Haroldo; Corral, Pablo

    2014-06-15

    A method for retrieving low-coherence interferograms, based on the use of a microwave photonics filter, is proposed and demonstrated. The method is equivalent to the double-interferometer technique, with the scanning interferometer replaced by an analog fiber-optics link and the visibility recorded as the amplitude of its radio-frequency (RF) response. As a low-coherence interferometry system, it shows a decrease of resolution induced by the fiber's third-order dispersion (β3). As a displacement sensor, it provides highly linear and slope-scalable readouts of the interferometer's optical path difference in terms of RF, even in the presence of third-order dispersion. In a proof-of-concept experiment, we demonstrate 20-μm displacement readouts using C-band EDFA sources and standard single-mode fiber. PMID:24978555

  13. Radiofrequency Electromagnetic Field Map of Timisoara

    NASA Astrophysics Data System (ADS)

    Stefu, N.; Solyom, I.; Arama, A.

    2015-12-01

    There are many electromagnetic field (EMF) sources nowadays acting simultaneously, especially in urban areas, making the theoretical estimation of electromagnetic power at ground level very difficult. This paper reports on EMF maps built with measurements collected in Timisoara, at various radiofrequencies. A grid of 15×15 squares was built (approximate resolution 400m x 400m) and measurements of the average and maximum values of the electric field E, magnetic field H and total power density S at 0.9, 1.8 and 2.4 GHz were collected in every node of the grid. Positions of the nodes in terms of latitude and longitude were also collected. Maps were built presenting the spatial distribution of the measured quantities over Timisoara. Potential influences of EMF on public health are discussed.

  14. Radio-frequency quadrupole linear accelerator

    SciTech Connect

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented.

  15. Multiparametric imaging with heterogeneous radiofrequency fields

    PubMed Central

    Cloos, Martijn A.; Knoll, Florian; Zhao, Tiejun; Block, Kai T.; Bruno, Mary; Wiggins, Graham C.; Sodickson, Daniel K.

    2016-01-01

    Magnetic resonance imaging (MRI) has become an unrivalled medical diagnostic technique able to map tissue anatomy and physiology non-invasively. MRI measurements are meticulously engineered to control experimental conditions across the sample. However, residual radiofrequency (RF) field inhomogeneities are often unavoidable, leading to artefacts that degrade the diagnostic and scientific value of the images. Here we show that, paradoxically, these artefacts can be eliminated by deliberately interweaving freely varying heterogeneous RF fields into a magnetic resonance fingerprinting data-acquisition process. Observations made based on simulations are experimentally confirmed at 7 Tesla (T), and the clinical implications of this new paradigm are illustrated with in vivo measurements near an orthopaedic implant at 3T. These results show that it is possible to perform quantitative multiparametric imaging with heterogeneous RF fields, and to liberate MRI from the traditional struggle for control over the RF field uniformity. PMID:27526996

  16. Multiparametric imaging with heterogeneous radiofrequency fields.

    PubMed

    Cloos, Martijn A; Knoll, Florian; Zhao, Tiejun; Block, Kai T; Bruno, Mary; Wiggins, Graham C; Sodickson, Daniel K

    2016-01-01

    Magnetic resonance imaging (MRI) has become an unrivalled medical diagnostic technique able to map tissue anatomy and physiology non-invasively. MRI measurements are meticulously engineered to control experimental conditions across the sample. However, residual radiofrequency (RF) field inhomogeneities are often unavoidable, leading to artefacts that degrade the diagnostic and scientific value of the images. Here we show that, paradoxically, these artefacts can be eliminated by deliberately interweaving freely varying heterogeneous RF fields into a magnetic resonance fingerprinting data-acquisition process. Observations made based on simulations are experimentally confirmed at 7 Tesla (T), and the clinical implications of this new paradigm are illustrated with in vivo measurements near an orthopaedic implant at 3T. These results show that it is possible to perform quantitative multiparametric imaging with heterogeneous RF fields, and to liberate MRI from the traditional struggle for control over the RF field uniformity. PMID:27526996

  17. Superconductivity Program for Electric Power Systems: 1994 Annual PEER Review. Volume 1, Meeting Proceedings

    NASA Astrophysics Data System (ADS)

    1994-07-01

    This is Volume 1 of information presented at the Annual Peer Review of the Superconductivity Program For Electric Power Systems. Topics include: Wire development; powder synthesis; characterization of superconducting materials; electric power applications; and motor cooling issues. Individual reports were processed separately for the database.

  18. Genetic effects of radiofrequency radiation (RFR)

    SciTech Connect

    Verschaeve, L. . E-mail: luc.verschaeve@vito.be

    2005-09-01

    The possible effects of radiofrequency (RF) exposure on the genetic material of cells are considered very important since damage to the DNA of somatic cells can be linked to cancer development or cell death whereas damage to germ cells can lead to genetic damage in next and subsequent generations. This is why the scientific literature reports many investigations on the subject. According to a number of review papers, the conclusion so far is that there is little evidence that RFR is directly mutagenic and that adverse effects that were reported in some of the papers are predominantly the result of hyperthermia. Yet, some subtle indirect effects on DNA replication and/or transcription of genes under relatively restricted exposure conditions cannot be ruled out. Furthermore, the possibility of combined effects of RFR with environmental carcinogens/mutagens merits further attention. The present paper takes into account more recent investigations but the conclusion remains the same. A majority of studies report no increased (cyto)genetic damage but yet, a considerable number of investigations do. However, many studies were not sufficiently characterized, are therefore difficult to replicate and cannot be compared to others. Experimental protocols were very different from one study to another and investigations from a single laboratory were very often limited in the sample size or number of cells investigated, preventing a robust statistical analysis. Subtle, but significant differences between RFR-exposed and sham-exposed cells cannot be found in such conditions. For the above reasons, it was concluded at a workshop in Loewenstein (November 2002) that further investigations by individual laboratories most probably will not add much to the discussion of radiofrequency radiation (RFR) genotoxicity. Large, well coordinated, international collaborative studies involving participation of several experienced scientists are considered an alternative of uttermost importance

  19. Genetic effects of radiofrequency radiation (RFR).

    PubMed

    Verschaeve, L

    2005-09-01

    The possible effects of radiofrequency (RF) exposure on the genetic material of cells are considered very important since damage to the DNA of somatic cells can be linked to cancer development or cell death whereas damage to germ cells can lead to genetic damage in next and subsequent generations. This is why the scientific literature reports many investigations on the subject. According to a number of review papers, the conclusion so far is that there is little evidence that RFR is directly mutagenic and that adverse effects that were reported in some of the papers are predominantly the result of hyperthermia. Yet, some subtle indirect effects on DNA replication and/or transcription of genes under relatively restricted exposure conditions cannot be ruled out. Furthermore, the possibility of combined effects of RFR with environmental carcinogens/mutagens merits further attention. The present paper takes into account more recent investigations but the conclusion remains the same. A majority of studies report no increased (cyto)genetic damage but yet, a considerable number of investigations do. However, many studies were not sufficiently characterized, are therefore difficult to replicate and cannot be compared to others. Experimental protocols were very different from one study to another and investigations from a single laboratory were very often limited in the sample size or number of cells investigated, preventing a robust statistical analysis. Subtle, but significant differences between RFR-exposed and sham-exposed cells cannot be found in such conditions. For the above reasons, it was concluded at a workshop in Löwenstein (November 2002) that further investigations by individual laboratories most probably will not add much to the discussion of radiofrequency radiation (RFR) genotoxicity. Large, well coordinated, international collaborative studies involving participation of several experienced scientists are considered an alternative of uttermost importance

  20. Auditory response to pulsed radiofrequency energy.

    PubMed

    Elder, J A; Chou, C K

    2003-01-01

    The human auditory response to pulses of radiofrequency (RF) energy, commonly called RF hearing, is a well established phenomenon. RF induced sounds can be characterized as low intensity sounds because, in general, a quiet environment is required for the auditory response. The sound is similar to other common sounds such as a click, buzz, hiss, knock, or chirp. Effective radiofrequencies range from 2.4 to 10000 MHz, but an individual's ability to hear RF induced sounds is dependent upon high frequency acoustic hearing in the kHz range above about 5 kHz. The site of conversion of RF energy to acoustic energy is within or peripheral to the cochlea, and once the cochlea is stimulated, the detection of RF induced sounds in humans and RF induced auditory responses in animals is similar to acoustic sound detection. The fundamental frequency of RF induced sounds is independent of the frequency of the radiowaves but dependent upon head dimensions. The auditory response has been shown to be dependent upon the energy in a single pulse and not on average power density. The weight of evidence of the results of human, animal, and modeling studies supports the thermoelastic expansion theory as the explanation for the RF hearing phenomenon. RF induced sounds involve the perception via bone conduction of thermally generated sound transients, that is, audible sounds are produced by rapid thermal expansion resulting from a calculated temperature rise of only 5 x 10(-6) degrees C in tissue at the threshold level due to absorption of the energy in the RF pulse. The hearing of RF induced sounds at exposure levels many orders of magnitude greater than the hearing threshold is considered to be a biological effect without an accompanying health effect. This conclusion is supported by a comparison of pressure induced in the body by RF pulses to pressure associated with hazardous acoustic energy and clinical ultrasound procedures. PMID:14628312

  1. Study of materials and adhesives for superconducting cable feedthroughs

    NASA Astrophysics Data System (ADS)

    Perin, A.; Jareño, R. Macias; Metral, L.

    2002-05-01

    Powering superconducting magnets requires the use of cryogenic feedthroughs for the superconducting cables capable of withstanding severe thermal, mechanical and electrical operating conditions. Such feedthroughs shall provide the continuity of the superconducting circuit while ensuring a hydraulic separation at cryogenic temperature. A study about the adhesive and polymers required for the production of thermal shock resistant feedthroughs is presented. The strength of the busbar to adhesive joints was first investigated by compression/shear tests as well as pin-and-collar tests performed with four epoxy adhesives. After the selection of the most appropriate adhesive, pin-and-collar tests were performed with four different polymers. Based on the results, a superconducting cable feedthrough for 6 busbars of 6 kA and 12 busbars of 120 A was constructed and successfully tested.

  2. Scanning Tunneling Spectroscopy of Proximity Superconductivity in Epitaxial Multilayer Graphene

    PubMed Central

    Natterer, Fabian D.; Ha, Jeonghoon; Baek, Hongwoo; Zhang, Duming; Cullen, William; Zhitenev, Nikolai B.; Kuk, Young; Stroscio, Joseph A.

    2016-01-01

    We report on spatial measurements of the superconducting proximity effect in epitaxial graphene induced by a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial multilayer graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting energy gap with increasing separation from the graphene-aluminum edges. The spectra were well described by Bardeen-Cooper-Schrieffer (BCS) theory. The decay length for the superconducting energy gap in graphene was determined to be greater than 400 nm. Deviations in the exponentially decaying energy gap were also observed on a much smaller length scale of tens of nanometers. PMID:27088134

  3. Athermal avalanche in bilayer superconducting nanowire single-photon detectors

    NASA Astrophysics Data System (ADS)

    Verma, V. B.; Lita, A. E.; Stevens, M. J.; Mirin, R. P.; Nam, S. W.

    2016-03-01

    We demonstrate that two superconducting nanowires separated by a thin insulating barrier can undergo an avalanche process. In this process, Joule heating caused by a photodetection event in one nanowire and the associated production of athermal phonons which are transmitted through the barrier cause the transition of the adjacent nanowire from the superconducting to the normal state. We show that this process can be utilized in the fabrication of superconducting nanowire single photon detectors to improve the signal-to-noise ratio, reduce system jitter, maximize device area, and increase the external efficiency over a very broad range of wavelengths. Furthermore, the avalanche mechanism may provide a path towards a superconducting logic element based on athermal gating.

  4. Progress in the Development of Superconducting RF

    NASA Astrophysics Data System (ADS)

    Martinello, Martina

    2016-03-01

    The R &D of superconducting radiofrequency (SRF) cavities is focused on lowering the power dissipation, i.e. increasing the Q factor, during their operation in accelerators. Nitrogen doping is the innovative high Q SRF technology currently implemented in the LCLS-II cavity production. Of crucial importance is the understanding on how high Q factors can be maintained from the cavity vertical test to the cryomodule operation. One of the major issue of SRF cavity operation is the remnant magnetic field which will always be present during the cool down through the critical temperature, jeopardizing the cavity performance. Research is ongoing both to reduce the remnant field levels and to avoid magnetic field trapping during the SC transition. In addition, fundamental studies allowed us to define the best nitrogen doping treatment needed to lower the sensitivity to trapped flux. Recent developments on the preparation of Nb3Sn coatings for SRF cavities will be also presented. This alternative technology has been demonstrated to allow high Q operation even at 4.2 K. In addition, the maximum field limit of Nb3Sn is predicted to be twice that of niobium, potentially providing a significant decrease in the required length of an accelerator to reach a given energy.

  5. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  6. Magnetically levitated superconducting bearing

    SciTech Connect

    Weinberger, B.R.; Lynds, L. Jr.

    1993-10-26

    A magnetically levitated superconducting bearing includes a magnet mounted on a shaft that is rotatable around an axis of rotation and a Type II superconductor supported on a stator in proximity to the magnet. The superconductor is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet to produce an attractive force that levitates the magnet and supports a load on the shaft. The interaction between the superconductor and magnet also produces surface screening currents that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature. The bearing could also be constructed so the magnet is supported on the stator and the superconductor is mounted on the shaft. The bearing can be operated by cooling the superconductor to its superconducting state in the presence of a magnetic field. 6 figures.

  7. Process for selected gas oxide removal by radiofrequency catalysts

    DOEpatents

    Cha, Chang Y.

    1993-01-01

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  8. Radiofrequency catheter ablation in pediatric patients with supraventricular arrhythmias.

    PubMed

    Rhodes, L A; Lobban, J H; Schmidt, S B

    1995-01-01

    Radiofrequency (RF) ablation of foci leading to abnormal cardiac rhythms is rapidly becoming the procedure of choice in the management of arrhythmias in adults. This report reviews our initial experience with RF ablation in the pediatric population. PMID:8533398

  9. The use of radiofrequency catheter ablation to cure dilated cardiomyopathy.

    PubMed

    Schmidt, S B; Lobban, J H; Reddy, S; Hoelper, M; Palmer, D L

    1997-01-01

    Incessant supraventricular tachycardia can cause a dilated cardiomyopathy. This article discusses the case of a 55-year-old woman whose cardiomyopathy was reversed when she underwent successful radiofrequency catheter ablation of a unifocal atrial tachycardia. PMID:9197188

  10. Dynamics Of Ions In A Radio-Frequency Quadrupole Trap

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Williams, Angelyn P.; Maleki, Lutfollah

    1994-01-01

    Report describes computer-simulation study of motions of various numbers of ions in Paul trap. Study part of continuing effort to understand motions of trapped charged particles (atoms, ions, molecules, or dust particles). Motions characterized in terms of heating by radio-frequency fields, formation of crystallike structures in cold clouds of trapped particles, and other phenomena important in operation of radio-frequency traps in frequency standards.

  11. Radiofrequency plasma antenna generated by femtosecond laser filaments in air

    SciTech Connect

    Brelet, Y.; Houard, A.; Point, G.; Prade, B.; Carbonnel, J.; Andre, Y.-B.; Mysyrowicz, A.; Arantchouk, L.; Pellet, M.

    2012-12-24

    We demonstrate tunable radiofrequency emission from a meter-long linear plasma column produced in air at atmospheric pressure. A short-lived plasma column is initially produced by femtosecond filamentation and subsequently converted into a long-lived discharge column by application of an external high voltage field. Radiofrequency excitation is fed to the plasma by induction and detected remotely as electromagnetic radiation by a classical antenna.

  12. A rare complication of radiofrequency ablation: skin burn.

    PubMed

    Ertuğrul, İlker; Karagöz, Tevfik; Aykan, Hayrettin H

    2015-10-01

    Radiofrequency ablation is the first-line treatment for arrhythmias with high success and low complication rates. Skin burns have been reported rarely after electrophysiological procedures, especially procedures in which higher-power energy is used and multiple ablations are performed. Here, we report a case of skin burn that developed after radiofrequency ablation for ventricular tachycardia originating from the right ventricular outflow tract. PMID:25613639

  13. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  14. Superconductivity in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Bustarret, E.

    2015-07-01

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  15. Midwest Superconductivity Consortium

    SciTech Connect

    Liedl, G.L.

    1992-01-01

    The Midwest Superconductivity Consortium's, MISCON, mission is to advance the science and understanding of high {Tc} superconductivity. Programmatic research focuses upon key materials-related problems: synthesis and processing; and limiting features in transport phenomena. During the past twenty-one projects produced over eighty-seven talks and seventy-two publications. Key achievements this past year expand our understanding of processing phenomena relating to crystallization and texture, metal superconductor composites, and modulated microstructures. Further noteworthy accomplishments include calculations on 2-D superconductor insulator transition, prediction of flux line lattice melting, and an expansion of our understanding and use of microwave phenomena as related to superconductors.

  16. Technology of RF superconductivity

    SciTech Connect

    1995-08-01

    This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams.

  17. Gambling with Superconducting Fluctuations

    NASA Astrophysics Data System (ADS)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  18. Proceedings of the fourth international conference and exhibition: World Congress on superconductivity. Volume 1

    SciTech Connect

    Krishen, K.; Burnham, C.

    1994-12-31

    The goals of the World Congress on Superconductivity (WCS) have been to establish and foster the development and commercial application of superconductivity technology on a global scale by providing a non-adversarial, non-advocacy forum where scientists, engineers, businessmen and government personnel can freely exchange information and ideas on recent developments and directions for the future of superconductive research. Sessions were held on: accelerator technology, power and energy, persistent magnetic fields, performance characterization, physical properties, fabrication methodology, superconductive magnetic energy storage (SMES), thin films, high temperature materials, device applications, wire fabrication, and granular superconductors. Individual papers are indexed separately.

  19. A RF superconducting electromechanical transducer for gravitational wave antennae

    NASA Astrophysics Data System (ADS)

    Bocko, Mark F.; Johnson, Warren W.; Iafolla, Valerio

    1989-03-01

    An electromechanical transducer based on a superconducting radio-frequency bridge circuit has been developed for use on a gravitational radiation detector. The low electrical loss of superconductors has made it possible to achieve electrical quality factors of several thousand in a lumped-element circuit which operates at 4 MHz. The bridge could be remotely balanced to one part in 50,000, which led to a displacement noise level of 10-15 m/sq rt Hz. It should be useful in measuring any physical quantity which can be made to change a capacitance. At the present stage of development, capacitance changes of 10-20 F could be detected in a 1-s integration time. One straightforward improvement, namely, the use of a low-phase-noise quartz crystal oscillator as the bridge excitation source, will reduce the noise to 10-17 m/sq rt Hz.

  20. Coherent Suppression of Quasiparticle Dissipation in Superconducting Artificial Atom

    NASA Astrophysics Data System (ADS)

    Pop, Ioan M.

    2015-03-01

    We demonstrate immunity to quasiparticle dissipation in a Josephson junction. At the foundation of this protection rests a prediction by Brian Josephson from fifty years ago: the particle-hole interference of superconducting quasiparticles when tunneling across a Josephson junction. The junction under study is the central element of a fluxonium artificial atom, which we place in an extremely low loss environment and measure using radio-frequency dispersive techniques. Furthermore, by using a quantum limited amplifier (a Josephson Parametric Converter) we can observe quantum jumps between the 0 and 1 states of the qubit in thermal equilibrium with the environment. The distribution of the times in-between the quantum jumps reveals quantitative information about the population and dynamics of quasiparticles. The data is entirely consistent with the hypothesis that our system is sensitive to single quasiparticle excitations, which opens new perspectives for quasiparticle monitoring in low temperature devices. Work supported by: IARPA, ARO, and ONR.

  1. Treatment of acne vulgaris with fractional radiofrequency microneedling.

    PubMed

    Kim, Sang Tae; Lee, Kang Hoon; Sim, Hyung Jun; Suh, Kee Suck; Jang, Min Soo

    2014-07-01

    Fractional radiofrequency microneedling is a novel radiofrequency technique that uses insulated microneedles to deliver energy to the deep dermis at the point of penetration without destruction of the epidermis. It has been used for the treatment of various dermatological conditions including wrinkles, atrophic scars and hypertrophic scars. There have been few studies evaluating the efficacy of fractional radiofrequency microneedling in the treatment of acne, and none measuring objective parameters like the number of inflammatory and non-inflammatory acne lesions or sebum excretion levels. The safety and efficacy of fractional radiofrequency microneedling in the treatment of acne vulgaris was investigated. In a prospective clinical trial, 25 patients with moderate to severe acne were treated with fractional radiofrequency microneedling. The procedure was carried out three times at 1-month intervals. Acne lesion count, subjective satisfaction score, sebum excretion level and adverse effects were assessed at baseline and at 4, 8 and 12 weeks after the first treatment as well as 4, 8 and 12 weeks after the last treatment. Number of acne lesions (inflammatory and non-inflammatory) decreased. Sebum excretion and subjective satisfaction were more favorable at every time point compared with the baseline values (P < 0.05). Inflammatory lesions responded better than non-inflammatory lesions (P < 0.05). Adverse effects such as pinpoint bleeding, pain and erythema were noted, but were transient and not severe enough to stop treatment. Fractional radiofrequency microneedling is a safe and effective treatment for acne vulgaris. PMID:24807263

  2. In-situ plasma processing to increase the accelerating gradients of superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Doleans, M.; Tyagi, P. V.; Afanador, R.; McMahan, C. J.; Ball, J. A.; Barnhart, D. L.; Blokland, W.; Crofford, M. T.; Degraff, B. D.; Gold, S. W.; Hannah, B. S.; Howell, M. P.; Kim, S.-H.; Lee, S.-W.; Mammosser, J.; Neustadt, T. S.; Saunders, J. W.; Stewart, S.; Strong, W. H.; Vandygriff, D. J.; Vandygriff, D. M.

    2016-03-01

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipacting issues. In this article, the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus are discussed.

  3. Flexible Microstrip Circuits for Superconducting Electronics

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Mateo, Jennette

    2013-01-01

    Flexible circuits with superconducting wiring atop polyimide thin films are being studied to connect large numbers of wires between stages in cryogenic apparatus with low heat load. The feasibility of a full microstrip process, consisting of two layers of superconducting material separated by a thin dielectric layer on 5 mil (approximately 0.13 mm) Kapton sheets, where manageable residual stress remains in the polyimide film after processing, has been demonstrated. The goal is a 2-mil (approximately 0.051-mm) process using spin-on polyimide to take advantage of the smoother polyimide surface for achieving highquality metal films. Integration of microstrip wiring with this polyimide film may require high-temperature bakes to relax the stress in the polyimide film between metallization steps.

  4. Synthesis of superconducting Nb3Sn coatings on Nb substrates

    DOE PAGESBeta

    Barzi, E.; Franz, S.; Reginato, F.; Turrioni, D.; Bestetti, M.

    2015-12-01

    In the present work the electrochemical and thermal syntheses of superconductive Nb3Sn films are investigated. The Nb3Sn phase is obtained by electrodeposition of Sn layers and Cu intermediate layers onto Nb substrates followed by high temperature diffusion in inert atmosphere. Electrodeposition was performed from aqueous solutions at current densities in the 20 to 50 mA/cm2 range and at temperatures between 40 and 50°C. Subsequent thermal treatments were realized to obtain the Nb3Sn superconductive phase. Glow discharge optical emission spectrometry (GDOES) demonstrated that after thermal treatment interdiffusion of Nb and Sn occurred across a thickness of about 13 μm. Scanning Electronmore » Microscopy (SEM) allowed accurately measuring the thickness of the Nb3Sn phase, whose average for the various types of film samples was between 5.7 and 8.0 μm. X-ray diffraction (XRD) patterns confirmed the presence of a cubic Nb3Sn phase (A15 structure) having (210) preferred orientation. The maximum obtained Tc was 17.68 K and the Bc20 ranged between 22.5 T and 23.8 T. With the procedure described in the present paper, coating complex shapes cost-effectively becomes possible, which is typical of electrochemical techniques. Furthermore, this approach can be implemented in classical wire processes such as "Jelly Roll" or "Rod in Tube", or directly used for producing superconducting surfaces. In conclusion, the potential of this method for Superconducting Radiofrequency (SRF) structures is also outlined.« less

  5. Synthesis of superconducting Nb3Sn coatings on Nb substrates

    NASA Astrophysics Data System (ADS)

    Barzi, E.; Bestetti, M.; Reginato, F.; Turrioni, D.; Franz, S.

    2016-01-01

    In the present work the electrochemical and thermal syntheses of superconducting Nb3Sn films are investigated. The Nb3Sn phase is obtained by electrodeposition of Sn layers and Cu intermediate layers onto Nb substrates followed by high temperature diffusion in inert atmosphere. Electrodeposition was performed from aqueous solutions at current densities in the 20-50 mA cm-2 range and at temperatures between 40 °C and 50 °C. Subsequent thermal treatments were realized to obtain the Nb3Sn superconductive phase. Glow discharge optical emission spectrometry demonstrated that after thermal treatment interdiffusion of Nb and Sn occurred across a thickness of about 13 μm. Scanning electron microscopy allowed accurately measuring the thickness of the Nb3Sn phase, whose average for the various types of film samples was between 5.7 and 8.0 μm. X-ray diffraction patterns confirmed the presence of a cubic Nb3Sn phase (A15 structure) having (210) preferred orientation. The maximum obtained T c was 17.68 K and the B c20 ranged between 22.5 and 23.8 T. With the procedure described in the present paper, coating complex shapes cost-effectively becomes possible, which is typical of electrochemical techniques. Furthermore, this approach can be implemented in classical wire processes such as ‘jelly roll’ or ‘rod in tube’, or directly used for producing superconducting surfaces. The potential of this method for superconducting radiofrequency structures is also outlined.

  6. Ultracapacitor separator

    DOEpatents

    Wei, Chang; Jerabek, Elihu Calvin; LeBlanc, Jr., Oliver Harris

    2001-03-06

    An ultracapacitor includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte is a polar aprotic organic solvent and a salt. The porous separator comprises a wet laid cellulosic material.

  7. Applications of Superconductivity

    ERIC Educational Resources Information Center

    Goodkind, John M.

    1971-01-01

    Presents a general review of current practical applications of the properties of superconducters. The devices are classified into groups according to the property that is of primary importance. The article is inteded as a first introduction for students and professionals. (Author/DS)

  8. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  9. Levitation Kits Demonstrate Superconductivity.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  10. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  11. Langmuir vacuum and superconductivity

    NASA Astrophysics Data System (ADS)

    Veklenko, B. A.

    2012-06-01

    It is shown that, in the "jelly" model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  12. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  13. Superconducting thermometer for cryogenics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1977-01-01

    Digital electronic device uses superconducting filaments as sensors. Simple solid-state circuitry combined with filaments comprise highly-reliable temperature monitor. Device has ability to track very fast thermal transients and "on/off" output is adaptable to remote sensing and telemetry.

  14. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  15. Superconductive electromagnet apparatus

    SciTech Connect

    Mine, S.

    1982-12-14

    Disclosed is a superconductive electromagnet apparatus having a coil with a coiled conductor with a channel between adjacently disposed the paths of the coil conductor of which width is selected in accordance with amounts of heat produced at the corresponding portions of the coil section as viewed in cross section.

  16. New research in Superconductivity

    NASA Astrophysics Data System (ADS)

    Khorrami, Mona

    2013-03-01

    Superconductors are materials that have no resistance to electricity's flow; they are one of the last great frontiers of scientific discovery. The theories that explain superconductor behavior seem to be constantly under review. In 1911 superconductivity was first observed in mercury by Dutch physicist Heike Kamerlingh Onnes When he cooled it to the temperature of liquid helium, 4 degrees Kelvin (-452F, -269C), its resistance suddenly disappeared. It was necessary for Onnes to come within 4 degrees of the coldest temperature that is theoretically attainable to witness the phenomenon of superconductivity. In 1933 German researchers Walther Meissner and Robert Ochsenfeld discovered that a superconducting material will repel a magnetic field. A magnet moving by a conductor induces currents in the conductor, but, in a superconductor the induced currents exactly mirror the field that would have otherwise penetrated the superconducting material - causing the magnet to be repulsed. This phenomenon is known as strong diamagnetism and is today often referred to as the ``Meissner effect'' (an eponym). Later on the theory developed by American physicists John Bardeen, Leon Cooper, and John Schrieffer together with extensions and refinements of the theory, which followed in the years after 1957, succeeded in explaining in considerable detail the properties of superconductors.

  17. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  18. Superconducting magnets 1992

    SciTech Connect

    Not Available

    1993-06-01

    This report discusses the following topics on Superconducting Magnets; SSC Magnet Industrialization; Collider Quadrupole Development; A Record-Setting Magnet; D20: The Push Beyond 10T; Nonaccelerator Applications; APC Materials Development; High-T{sub c} at Low Temperature; Cable and Cabling-Machine Development; and Analytical Magnet Design.

  19. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  20. Engineering development of superconducting RF linac for high-power applications

    SciTech Connect

    Dominic Chan, K.C.; Rusnak, B.; Gentzlinger, R.C.; Campbell, B.M.; Kelley, J.P.; Safa, H.

    1998-12-31

    High-power proton linacs are a promising source of neutrons for material processing and research applications. Superconducting radiofrequency (SCRF) Rf linac technology is preferred for such applications because of power efficiency. A multi-year engineering development program is underway at Los Alamos National Laboratory to demonstrate the required SCRF technology. The program consists of development of SC cavities, power couplers, and cryomodule integration. Prototypes will be built and operated to obtain performance and integration information, and for design improvement. This paper describes the scope and present status of the development program.

  1. Radio-frequency single-electron refrigerator.

    PubMed

    Pekola, Jukka P; Giazotto, Francesco; Saira, Olli-Pentti

    2007-01-19

    We propose a cyclic refrigeration principle based on mesoscopic electron transport. Synchronous sequential tunneling of electrons in a Coulomb-blockaded device, a normal metal-superconductor single-electron box, results in a cooling power of approximately k(B)T x f at temperature T over a wide range of cycle frequencies f. Electrostatic work, done by the gate voltage source, removes heat from the Coulomb island with an efficiency of approximately k(B)T/Delta, where Delta is the superconducting gap parameter. The performance is not affected significantly by nonidealities, for instance by offset charges. We propose ways of characterizing the system and of its practical implementation. PMID:17358719

  2. Design of a horizontal test cryostat for superconducting RF cavities for the FREIA facility at Uppsala University

    SciTech Connect

    Chevalier, N. R.; Thermeau, J.-P.; Bujard, P.; Junquera, T.; Hermansson, L.; Kern, R. Santiago; Ruber, R.

    2014-01-29

    Uppsala University is constructing a large scale facility, called FREIA (Facility for Research Instrumentation and Accelerator Development). FREIA includes a helium liquefier and an accelerator test facility and has the capacity to test superconducting radio-frequency (RF) cavities with the same RF system and RF power level as in an accelerator. A central element of FREIA is a horizontal test cryostat connected in closed loop to a helium liquefier. This cryostat can house two fully equipped (tuners, piezo, power coupler, helium tank) superconducting cavities to perform full RF high power tests and operate at temperatures between 1.8 K and 4.2 K. The cryostat is designed to accommodate a large array of superconducting cavities and magnets, among which the European Spallation Source (ESS) type spoke and high-β elliptical cavities as well as TESLA/ILC type elliptical cavities. The present status of the project and the design of the cryostat are reported.

  3. Superstructures and superconductivity

    SciTech Connect

    Fisk, Z.; Aeppli, G.

    1993-04-02

    Heavy fermion materials - so named because their conduction electrons behave as though they had extra mass - are like the cuprates in that they exhibit unusual superconducting properties. By the time the cuprates had been discovered, a good understanding of these materials was in hand. Unlike theories of high-[Tc] superconductivity, however, ideas about heavy fermions have not been the subject of great controversy. Thus, most of the effort in this backwater of condensed matter physics has focused on certain details of the behavior of one particularly well-studied compounds, UPt[sub 3]. The cause for sustained interest was that the process of developing ever more elaborate explanations for ever more elaborate experiments did not seem to converage. A recent paper by Midgley et al. reporting modulations in the crystal lattice of UPt[sub 3] suggests that theory and experiment might finally converge in a way that, while it does not threaten the broad understanding of heavy fermion systems, involves a degree of freedom ignored until now even in the face of past experience with elemental metallic uranium. Their transmission electron micrograph evidence for the existence of an incommensurate lattice modulation in UPt[sub 3] implicates this modulation as a probable source of the double superconducting transitions. Remarkably, the superconducting and magnetic coherence lengths, and the now discovered modulation period, are all of the same magnitude. For some time people have felt that stacking faults might be relevant to the properties of UPt[sub 3], but these new results are distinct from this. What Midgley et al. suggest is that the complicated superconducting phase diagram of UPt[sub 3] derives from the internal strain field caused by the modulation, and that this strain field lifts the degeneracy associated with unconventional pairing.

  4. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cao, Yu; Che, Yuchi; Seo, Jung-Woo T.; Gui, Hui; Hersam, Mark C.; Zhou, Chongwu

    2016-06-01

    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ˜1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ˜100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailored diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.

  5. Superconductivity and the environment: a Roadmap

    NASA Astrophysics Data System (ADS)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Febvre, Pascal; Keenan, Shane; Mukhanov, Oleg; Cooley, Lance D.; Foley, Cathy P.; Hassenzahl, William V.; Izumi, Mitsuru

    2013-11-01

    disasters will be helped by future supercomputer technologies that support huge amounts of data and sophisticated modeling, and with the aid of superconductivity these systems might not require the energy of a large city. We present different sections on applications that could address (or are addressing) a range of environmental issues. The Roadmap covers water purification, power distribution and storage, low-environmental impact transport, environmental sensing (particularly for the removal of unexploded munitions), monitoring the Earth’s magnetic fields for earthquakes and major solar activity, and, finally, developing a petaflop supercomputer that only requires 3% of the current supercomputer power provision while being 50 times faster. Access to fresh water. With only 2.5% of the water on Earth being fresh and climate change modeling forecasting that many areas will become drier, the ability to recycle water and achieve compact water recycling systems for sewage or ground water treatment is critical. The first section (by Nishijima) points to the potential of superconducting magnetic separation to enable water recycling and reuse. Energy. The Equinox Summit held in Waterloo Canada 2011 (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources) identified electricity use as humanity’s largest contributor to greenhouse gas emissions. Our appetite for electricity is growing faster than for any other form of energy. The communiqué from the summit said ‘Transforming the ways we generate, distribute and store electricity is among the most pressing challenges facing society today…. If we want to stabilize CO2 levels in our atmosphere at 550 parts per million, all of that growth needs to be met by non-carbon forms of energy’ (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). Superconducting technologies can provide the energy efficiencies to achieve, in the European Union alone, 33-65% of the required reduction in greenhouse

  6. Quench detector for superconducting elements of the NICA accelerator complex

    NASA Astrophysics Data System (ADS)

    Ivanov, E. V.; Svetov, L. A.; Smirnova, Z. I.

    2014-07-01

    A universal quench detector is designed for new superconducting accelerators of the NICA accelerator complex under construction at JINR. The presence of a two-channel digital input permits the detector to be used both for comparing voltage across two nearest magnets by a bridge scheme and for separating a resistive constituent of the voltage across a controlled element.

  7. Directional Radio-Frequency Identification Tag Reader

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Taylor, John D.; Henderson, John J.

    2004-01-01

    A directional radio-frequency identification (RFID) tag reader has been designed to facilitate finding a specific object among many objects in a crowded room. The device could be an adjunct to an electronic inventory system that tracks RFID-tagged objects as they move through reader-equipped doorways. Whereas commercial RFID-tag readers do not measure directions to tagged objects, the device is equipped with a phased-array antenna and a received signal-strength indicator (RSSI) circuit for measuring direction. At the beginning of operation, it is set to address only the RFID tag of interest. It then continuously transmits a signal to interrogate that tag while varying the radiation pattern of the antenna. It identifies the direction to the tag as the radiation pattern direction of peak strength of the signal returned by the tag. An approximate distance to the tag is calculated from the peak signal strength. The direction and distance can be displayed on a screen. A prototype containing a Yagi antenna was found to be capable of detecting a 915.5-MHz tag at a distance of approximately equal to 15 ft (approximately equal to 4.6 m).

  8. Epidemiology of Health Effects of Radiofrequency Exposure

    PubMed Central

    Ahlbom, Anders; Green, Adele; Kheifets, Leeka; Savitz, David; Swerdlow, Anthony

    2004-01-01

    We have undertaken a comprehensive review of epidemiologic studies about the effects of radiofrequency fields (RFs) on human health in order to summarize the current state of knowledge, explain the methodologic issues that are involved, and aid in the planning of future studies. There have been a large number of occupational studies over several decades, particularly on cancer, cardiovascular disease, adverse reproductive outcome, and cataract, in relation to RF exposure. More recently, there have been studies of residential exposure, mainly from radio and television transmitters, and especially focusing on leukemia. There have also been studies of mobile telephone users, particularly on brain tumors and less often on other cancers and on symptoms. Results of these studies to date give no consistent or convincing evidence of a causal relation between RF exposure and any adverse health effect. On the other hand, the studies have too many deficiencies to rule out an association. A key concern across all studies is the quality of assessment of RF exposure. Despite the ubiquity of new technologies using RFs, little is known about population exposure from RF sources and even less about the relative importance of different sources. Other cautions are that mobile phone studies to date have been able to address only relatively short lag periods, that almost no data are available on the consequences of childhood exposure, and that published data largely concentrate on a small number of outcomes, especially brain tumor and leukemia. PMID:15579422

  9. Electromagnetic limits to radiofrequency (RF) neuronal telemetry

    PubMed Central

    Diaz, R. E.; Sebastian, T.

    2013-01-01

    The viability of a radiofrequency (RF) telemetry channel for reporting individual neuron activity wirelessly from an embedded antenna to an external receiver is determined. Comparing the power at the transmitting antenna required for the desired Channel Capacity, to the maximum power that this antenna can dissipate in the body without altering or damaging surrounding tissue reveals the severe penalty incurred by miniaturization of the antenna. Using both Specific Absorption Rate (SAR) and thermal damage limits as constraints, and 300 Kbps as the required capacity for telemetry streams 100 ms in duration, the model shows that conventional antennas smaller than 0.1 mm could not support human neuronal telemetry to a remote receiver (1 m away.) Reducing the antenna to 10 microns in size to enable the monitoring of single human neuron signals to a receiver at the surface of the head would require operating with a channel capacity of only 0.3 bps. PMID:24346503

  10. Carbon Dust Growth in a Radiofrequency Discharge

    SciTech Connect

    Peng, Y.; Hugon, R.; Brochard, F.; Vasseur, J.-L.; Bougdira, J.; Lacroix, D.; Brosset, C.

    2008-03-19

    Plasma wall interactions studies are of primary importance for increasing the life time of the first wall in fusion devices. In ITER, the divertor target plates will receive on a small surface a significant part of the power during operation, and carbon materials will be used. Although carbon has several advantages than the materials used at other places of the plasma chamber (W and Be), they undergo chemical reactions with hydrogen and its isotopes used as fuel for the fusion reaction. Under ITER operating conditions, the high temperature of the wall will promote diffusion and recombination of atomic hydrogen, withholding the fuel. Moreover, carbon atoms produced by erosion may be deposited at other locations, causing further increase of the hydrogen inventory in the vessel, and encountering several subsequent major safety issues.In our experiment, carbon dust formation and growth are studied in a radiofrequency discharge. Dust particles sediment into the cathode sheath using carbon originating either from a graphite cathode in pure argon plasmas or from C{sub 2}H{sub 2} mixed with argon in case where a stainless steel cathode is used. In this contribution, we present a characterization of carbon dust particles under various plasma conditions (pressure, RF power, C{sub 2}H{sub 2} percentage). Dust growth is studied in situ using FTIR spectroscopy, whereas the structural properties of the dust particles are studied ex situ using TEM, SEM, and FTIR.

  11. Near-field radiofrequency electromagnetic exposure assessment.

    PubMed

    Rubtsova, Nina; Perov, Sergey; Belaya, Olga; Kuster, Niels; Balzano, Quirino

    2015-09-01

    Personal wireless telecommunication devices, such as radiofrequency (RF) electromagnetic field (EMF) sources operated in vicinity of human body, have possible adverse health effects. Therefore, the correct EMF assessment is necessary in their near field. According to international near-field measurement criteria, the specific absorption rate (SAR) is used for absorbed energy distribution assessment in tissue simulating liquid phantoms. The aim of this investigation is to validate the relationship between the H-field of incident EMF and absorbed energy in phantoms. Three typical wireless telecommunication system frequencies are considered (900, 1800 and 2450 MHz). The EMF source at each frequency is an appropriate half-wave dipole antenna and the absorbing medium is a flat phantom filled with the suitable tissue simulating liquid. Two methods for SAR estimation have been used: standard procedure based on E-field measured in tissue simulating medium and a proposed evaluation by measuring the incident H-field. Compared SAR estimations were performed for various distances between sources and phantom. Also, these research data were compared with simulation results, obtained by using finite-difference time-domain method. The acquired data help to determine the source near-field space characterized by the smallest deviation between SAR estimation methods. So, this region near the RF source is suitable for correct RF energy absorption assessment using the magnetic component of the RF fields. PMID:26444190

  12. Radiofrequency ablation of intrahepatic cholangiocarcinoma: preliminary experience.

    PubMed

    Carrafiello, Gianpaolo; Laganà, Domenico; Cotta, Elisa; Mangini, Monica; Fontana, Federico; Bandiera, Francesca; Fugazzola, Carlo

    2010-08-01

    The purpose of this study was to evaluate the safety and efficacy of percutaneous ultrasound (US)-guided radiofrequency ablation (RFA) in patients with intrahepatic cholangiocarcinoma (ICCA) in a small, nonrandomized series. From February 2004 to July 2008, six patients (four men and two women; mean age 69.8 years [range 48 to 83]) with ICCA underwent percutaneous US-guided RFA. Preintervetional transarterial embolization was performed in two cases to decrease heat dispersion during RFA in order to increase the area of ablation. The efficacy of RFA was evaluated using contrast-enhanced dynamic computed tomography (CT) 1 month after treatment and then every 3 months thereafter. Nine RFA sessions were performed for six solid hepatic tumors in six patients. The duration of follow-up ranged from 13 to 21 months (mean 17.5). Posttreatment CT showed total necrosis in four of six tumors after one or two RFA sessions. Residual tumor was observed in two patients with larger tumors (5 and 5.8 cm in diameter). All patients tolerated the procedure, and there with no major complications. Only 1 patient developed post-RFA syndrome (pain, fever, malaise, and leukocytosis), which resolved with oral administration of acetaminophen. Percutaneous RFA is a safe and effective treatment for patients with hepatic tumors: It is ideally suited for those who are not eligible for surgery. Long-term follow-up data regarding local and systemic recurrence and survival are still needed. PMID:20411389

  13. Radiofrequency ablation of hepatocellular carcinoma: Current status

    PubMed Central

    Minami, Yasunori; Kudo, Masatoshi

    2010-01-01

    Ablation therapy is one of the best curative treatment options for malignant liver tumors, and can be an alternative to resection. Radiofrequency ablation (RFA) of primary and secondary liver cancers can be performed safely using percutaneous, laparoscopic, or open surgical techniques, and RFA has markedly changed the treatment strategy for small hepatocellular carcinoma (HCC). Percutaneous RFA can achieve the same overall and disease-free survival as surgical resection for patients with small HCC. The use of a laparoscopic or open approach allows repeated placements of RFA electrodes at multiple sites to ablate larger tumors. RFA combined with transcatheter arterial chemoembolization will make the treatment of larger tumors a clinically viable treatment alternative. However, an accurate evaluation of treatment response is very important to secure successful RFA therapy. Since a sufficient safety margin (at least 0.5 cm) can prevent local tumor recurrences, an accurate evaluation of treatment response is very important to secure successful RFA therapy. To minimize complications of RFA, clinicians should be familiar with the imaging features of each type of complication. Appropriate management of complications is essential for successful RFA treatment. PMID:21179308

  14. Radiofrequency plasma polymerized perfluoroionomer membrane materials

    SciTech Connect

    Danilich, M.J.; Gervasio, D.F.; Marchant, R.E.

    1993-12-31

    Ion exchange membranes have received considerable attention in recent years. Applications of ion exchange membranes have included such electrochemical systems as water and organic electrolyzers, redox-flow batteries, and sensors. This work is a study of radiofrequency plasma polymerization of perfluorinated acid-containing monomers and a perfluorinated {open_quotes}backbone{close_quotes} comonomer as a method for synthesizing novel polyionomer film coatings for use as membranes on electrodes and biomedical sensors. The results indicate that, by altering the deposition conditions, some control can be exercised over the retention of acid functional groups by plasma polymers. Using AC impedance measurements, the ionic conductivity of these films was found to be two to four orders of magnitude higher than their aqueous environments. In addition, several of the acid-containing plasma polymerized films were hydrophilic, having an advancing water contact angle of less than fifteen degrees. The initial results of this study have demonstrated the feasibility of using acid-containing plasma polymers as crosslinked membrane materials suitable for use with electrochemical sensors and biosensors.

  15. Radiofrequency Ablation of Intrahepatic Cholangiocarcinoma: Preliminary Experience

    SciTech Connect

    Carrafiello, Gianpaolo Lagana, Domenico; Cotta, Elisa; Mangini, Monica; Fontana, Federico; Bandiera, Francesca; Fugazzola, Carlo

    2010-08-15

    The purpose of this study was to evaluate the safety and efficacy of percutaneous ultrasound (US)-guided radiofrequency ablation (RFA) in patients with intrahepatic cholangiocarcinoma (ICCA) in a small, nonrandomized series. From February 2004 to July 2008, six patients (four men and two women; mean age 69.8 years [range 48 to 83]) with ICCA underwent percutaneous US-guided RFA. Preintervetional transarterial embolization was performed in two cases to decrease heat dispersion during RFA in order to increase the area of ablation. The efficacy of RFA was evaluated using contrast-enhanced dynamic computed tomography (CT) 1 month after treatment and then every 3 months thereafter. Nine RFA sessions were performed for six solid hepatic tumors in six patients. The duration of follow-up ranged from 13 to 21 months (mean 17.5). Posttreatment CT showed total necrosis in four of six tumors after one or two RFA sessions. Residual tumor was observed in two patients with larger tumors (5 and 5.8 cm in diameter). All patients tolerated the procedure, and there with no major complications. Only 1 patient developed post-RFA syndrome (pain, fever, malaise, and leukocytosis), which resolved with oral administration of acetaminophen. Percutaneous RFA is a safe and effective treatment for patients with hepatic tumors: It is ideally suited for those who are not eligible for surgery. Long-term follow-up data regarding local and systemic recurrence and survival are still needed.

  16. Radiofrequency Heating Pathways for Gold Nanoparticles

    PubMed Central

    Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.

    2015-01-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry and physics, including the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell may all strongly influence to what extent a nanoparticle heats in an RF field. Aspects of RF include: power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields, and also influence the extent to which a gold nanoparticle heats in RF. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  17. Radiofrequency heating pathways for gold nanoparticles.

    PubMed

    Collins, C B; McCoy, R S; Ackerson, B J; Collins, G J; Ackerson, C J

    2014-08-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry which may affect thermal dissipation include the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell. Aspects of RF which may affect thermal dissipation include power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  18. Radiofrequency treatment alters cancer cell phenotype

    NASA Astrophysics Data System (ADS)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  19. Current oncologic applications of radiofrequency ablation therapies

    PubMed Central

    Shah, Dhruvil R; Green, Sari; Elliot, Angelina; McGahan, John P; Khatri, Vijay P

    2013-01-01

    Radiofrequency ablation (RFA) uses high frequency alternating current to heat a volume of tissue around a needle electrode to induce focal coagulative necrosis with minimal injury to surrounding tissues. RFA can be performed via an open, laparoscopic, or image guided percutaneous approach and be performed under general or local anesthesia. Advances in delivery mechanisms, electrode designs, and higher power generators have increased the maximum volume that can be ablated, while maximizing oncological outcomes. In general, RFA is used to control local tumor growth, prevent recurrence, palliate symptoms, and improve survival in a subset of patients that are not candidates for surgical resection. It’s equivalence to surgical resection has yet to be proven in large randomized control trials. Currently, the use of RFA has been well described as a primary or adjuvant treatment modality of limited but unresectable hepatocellular carcinoma, liver metastasis, especially colorectal cancer metastases, primary lung tumors, renal cell carcinoma, boney metastasis and osteoid osteomas. The role of RFA in the primary treatment of early stage breast cancer is still evolving. This review will discuss the general features of RFA and outline its role in commonly encountered solid tumors. PMID:23671734

  20. Radiofrequency treatments: what can we expect?

    PubMed

    Avantaggiato, A; Bertuzzi, G; Addonisio, T; Iannucci, G; Vitiello, U; Carinci, F

    2016-01-01

    Among non-ablative procedures in aesthetic medicine, the radiofrequency (RF) is one of the most popular for the treatment of face and body skin laxity. It can be classified as a physical bio-stimulation that produces a temperature increase on biological structures, using electromagnetic waves. The term encompasses devices having substantial differences in energy, wavelengths, handpieces dimension and structure. Moreover, for some of these, the protocols are only partially defined. The aim of this short review is to clarify some aspecst of the RF therapy starting from the physics, passing through the mechanism of action and finally, with the most suitable protocols. Contrary to mechanic waves, electromagnetic waves, physics are always transversal to the impulse and this leads to the different energy distribution in capacitive (monopolar) or resistive (bi- or multi-polar) applications. The thermal damage as therapeutic effect is a postulate that needs to be discussed and the same is true for the terms “non-surgical” and “non-ablative”, often recurrent in the scientific literature. Protocols must be optimized according to the machine and the patient, keeping in mind the possibilities of biostimulation in terms of immediate improvement and of long lasting investment in skin rejuvenation. It is mandatory to understand the possibilities and limitations of each device to perform useful, safe and correct medical treatments. PMID:27469571

  1. Radiofrequency treatment alters cancer cell phenotype

    PubMed Central

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-01-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment. PMID:26165830

  2. Coronary atheroma regression and plaque characteristics assessed by grayscale and radiofrequency intravascular ultrasound after aerobic exercise.

    PubMed

    Madssen, Erik; Moholdt, Trine; Videm, Vibeke; Wisløff, Ulrik; Hegbom, Knut; Wiseth, Rune

    2014-11-15

    The aim of the present study was to investigate effects of aerobic interval training (AIT) versus moderate continuous training (MCT) on coronary atherosclerosis in patients with significant coronary artery disease on optimal medical treatment. Thirty-six patients were randomized to AIT (intervals at ≈ 90% of peak heart rate) or MCT (continuous exercise at ≈ 70% of peak heart rate) 3 times a week for 12 weeks after intracoronary stent implantation. Grayscale and radiofrequency intravascular ultrasounds (IVUS) were performed at baseline and follow-up. The primary end point was the change in plaque burden, and the secondary end points were change in necrotic core and plaque vulnerability. Separate lesions were classified using radiofrequency IVUS criteria. We demonstrated that necrotic core was reduced in both groups in defined coronary segments (AIT -3.2%, MCT -2.7%, p <0.05) and in separate lesions (median change -2.3% and -0.15 mm(3), p <0.05). Plaque burden was reduced by 10.7% in separate lesions independent of intervention group (p = 0.06). No significant differences in IVUS parameters were found between exercise groups. A minority of separate lesions were transformed in terms of plaque vulnerability during follow-up with large individual differences between and within patients. In conclusion, changes in coronary artery plaque structure or morphology did not differ between patients who underwent AIT or MCT. The combination of regular aerobic exercise and optimal medical treatment for 12 weeks induced a moderate regression of necrotic core and plaque burden in IVUS-defined coronary lesions. PMID:25248813

  3. Continuous Cavitation Designed for Enhancing Radiofrequency Ablation via a Special Radiofrequency Solidoid Vaporization Process.

    PubMed

    Zhang, Kun; Li, Pei; Chen, Hangrong; Bo, Xiaowan; Li, Xiaolong; Xu, Huixiong

    2016-02-23

    Lowering power output and radiation time during radiofrequency (RF) ablation is still a challenge. Although it is documented that metal-based magnetothermal conversion and microbubbles-based inertial cavitation have been tried to overcome above issues, disputed toxicity and poor magnetothermal conversion efficiency for metal-based nanoparticles and violent but transient cavitation for microbubbles are inappropriate for enhancing RF ablation. In this report, a strategy, i.e., continuous cavitation, has been proposed, and solid menthol-encapsulated poly lactide-glycolide acid (PLGA) nanocapsules have been constructed, as a proof of concept, to validate the role of such a continuous cavitation principle in continuously enhancing RF ablation. The synthesized PLGA-based nanocapsules can respond to RF to generate menthol bubbles via distinctive radiofrequency solidoid vaporization (RSV) process, meanwhile significantly enhance ultrasound imaging for HeLa solid tumor, and further facilitate RF ablation via the continuous cavitation, as systematically demonstrated both in vitro and in vivo. Importantly, this RSV strategy can overcome drawbacks and limitations of acoustic droplet vaporization (ADV) and optical droplet vaporization (ODV), and will probably find broad applications in further cancer theranostics. PMID:26800221

  4. Simulation of nonlinear superconducting rf losses derived from characteristic topography of etched and electropolished niobium surfaces

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Reece, Charles E.; Kelley, Michael J.

    2016-03-01

    A simplified numerical model has been developed to simulate nonlinear superconducting radiofrequency (SRF) losses on Nb surfaces. This study focuses exclusively on excessive surface resistance (Rs ) losses due to the microscopic topographical magnetic field enhancements. When the enhanced local surface magnetic field exceeds the superconducting critical transition magnetic field Hc , small volumes of surface material may become normal conducting and increase the effective surface resistance without inducing a quench. We seek to build an improved quantitative characterization of this qualitative model. Using topographic data from typical buffered chemical polish (BCP)- and electropolish (EP)-treated fine grain niobium, we have estimated the resulting field-dependent losses and extrapolated this model to the implications for cavity performance. The model predictions correspond well to the characteristic BCP versus EP high field Q0 performance differences for fine grain niobium. We describe the algorithm of the model, its limitations, and the effects of this nonlinear loss contribution on SRF cavity performance.

  5. Magnetoreception in birds: the effect of radio-frequency fields.

    PubMed

    Wiltschko, Roswitha; Thalau, Peter; Gehring, Dennis; Nießner, Christine; Ritz, Thorsten; Wiltschko, Wolfgang

    2015-02-01

    The avian magnetic compass, probably based on radical pair processes, works only in a narrow functional window around the local field strength, with cryptochrome 1a as most likely receptor molecule. Radio-frequency fields in the MHz range have been shown to disrupt the birds' orientation, yet the nature of this interference is still unclear. In an immuno-histological study, we tested whether the radio-frequency fields interfere with the photoreduction of cryptochrome, but this does not seem to be the case. In behavioural studies, birds were not able to adjust to radio-frequency fields like they are able to adjust to static fields outside the normal functional range: neither a 2-h pre-exposure in a 7.0 MHz field, 480 nT, nor a 7-h pre-exposure in a 1.315 MHz field, 15 nT, allowed the birds to regain their orientation ability. This inability to adjust to radio-frequency fields suggests that these fields interfere directly with the primary processes of magnetoreception and therefore disable the avian compass as long as they are present. They do not have lasting adverse after-effects, however, as birds immediately after exposure to a radio-frequency field were able to orient in the local geomagnetic field. PMID:25540238

  6. Magnetoreception in birds: the effect of radio-frequency fields

    PubMed Central

    Wiltschko, Roswitha; Thalau, Peter; Gehring, Dennis; Nießner, Christine; Ritz, Thorsten; Wiltschko, Wolfgang

    2015-01-01

    The avian magnetic compass, probably based on radical pair processes, works only in a narrow functional window around the local field strength, with cryptochrome 1a as most likely receptor molecule. Radio-frequency fields in the MHz range have been shown to disrupt the birds' orientation, yet the nature of this interference is still unclear. In an immuno-histological study, we tested whether the radio-frequency fields interfere with the photoreduction of cryptochrome, but this does not seem to be the case. In behavioural studies, birds were not able to adjust to radio-frequency fields like they are able to adjust to static fields outside the normal functional range: neither a 2-h pre-exposure in a 7.0 MHz field, 480 nT, nor a 7-h pre-exposure in a 1.315 MHz field, 15 nT, allowed the birds to regain their orientation ability. This inability to adjust to radio-frequency fields suggests that these fields interfere directly with the primary processes of magnetoreception and therefore disable the avian compass as long as they are present. They do not have lasting adverse after-effects, however, as birds immediately after exposure to a radio-frequency field were able to orient in the local geomagnetic field. PMID:25540238

  7. Radiofrequency for the treatment of skin laxity: mith or truth.

    PubMed

    Araújo, Angélica Rodrigues de; Soares, Viviane Pinheiro Campos; Silva, Fernanda Souza da; Moreira, Tatiane da Silva

    2015-01-01

    The nonablative radiofrequency is a procedure commonly used for the treatment of skin laxity from an increase in tissue temperature. The goal is to induce thermal damage to thus stimulate neocollagenesis in deep layers of the skin and subcutaneous tissue. However, many of these devices haven't been tested and their parameters are still not accepted by the scientific community. Because of this, it is necessary to review the literature regarding the physiological effects and parameters for application of radiofrequency and methodological quality and level of evidence of studies. A literature search was performed in MEDLINE, PEDro, SciELO, PubMed, LILACS and CAPES and experimental studies in humans, which used radiofrequency devices as treatment for facial or body laxity, were selected. The results showed that the main physiological effect is to stimulate collagen synthesis. There was no homogeneity between studies in relation to most of the parameters used and the methodological quality of studies and level of evidence for using radiofrequency are low. This fact complicates the determination of effective parameters for clinical use of this device in the treatment of skin laxity. The analyzed studies suggest that radiofrequency is effective, however the physiological mechanisms and the required parameters are not clear in the literature. PMID:26560216

  8. Radiofrequency for the treatment of skin laxity: mith or truth*

    PubMed Central

    de Araújo, Angélica Rodrigues; Soares, Viviane Pinheiro Campos; da Silva, Fernanda Souza; Moreira, Tatiane da Silva

    2015-01-01

    The nonablative radiofrequency is a procedure commonly used for the treatment of skin laxity from an increase in tissue temperature. The goal is to induce thermal damage to thus stimulate neocollagenesis in deep layers of the skin and subcutaneous tissue. However, many of these devices haven't been tested and their parameters are still not accepted by the scientific community. Because of this, it is necessary to review the literature regarding the physiological effects and parameters for application of radiofrequency and methodological quality and level of evidence of studies. A literature search was performed in MEDLINE, PEDro, SciELO, PubMed, LILACS and CAPES and experimental studies in humans, which used radiofrequency devices as treatment for facial or body laxity, were selected. The results showed that the main physiological effect is to stimulate collagen synthesis. There was no homogeneity between studies in relation to most of the parameters used and the methodological quality of studies and level of evidence for using radiofrequency are low. This fact complicates the determination of effective parameters for clinical use of this device in the treatment of skin laxity. The analyzed studies suggest that radiofrequency is effective, however the physiological mechanisms and the required parameters are not clear in the literature. PMID:26560216

  9. Landscape of superconducting membranes

    SciTech Connect

    Denef, Frederik; Hartnoll, Sean A.

    2009-06-15

    The AdS/CFT correspondence may connect the landscape of string vacua and the 'atomic landscape' of condensed matter physics. We study the stability of a landscape of IR fixed points of N=2 large N gauge theories in 2+1 dimensions, dual to Sasaki-Einstein compactifications of M theory, toward a superconducting state. By exhibiting instabilities of charged black holes in these compactifications, we show that many of these theories have charged operators that condense when the theory is placed at a finite chemical potential. We compute a statistical distribution of critical superconducting temperatures for a subset of these theories. With a chemical potential of 1 mV, we find critical temperatures ranging between 0.24 and 165 K.

  10. High temperature interface superconductivity

    DOE PAGESBeta

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  11. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  12. Superconductivity in graphite intercalation compounds

    SciTech Connect

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  13. Superconductivity in graphite intercalation compounds

    DOE PAGESBeta

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  14. Tunable superconductivity in decorated graphene

    NASA Astrophysics Data System (ADS)

    Han, Zheng; Allain, Adrien; Marty, Laetitia; Bendiab, Nedjma; Toulemonde, Pierre; Strobel, Pierre; Coraux, Johann; Bouchiat, Vincent

    2013-03-01

    Graphene offers an exposed bidimensional gas of high mobility charge carriers with gate tunable density. Its chemical inertness offers an outstanding platform to explore exotic 2D superconductivity. Superconductivity can be induced in graphene by means of proximity effect (by depositing a set of superconducting metal clusters such as lead or tin nanoparticles). The influence of decoration material, density or particles and disorder of graphene will be discussed. In the case of disordered graphene, Tin decoration leads to a gate-tunable superconducting-to-insulator quantum phase transition. Superconductivity in graphene is also expected to occur under strong charge doping (induced either by gating or under chemical decoration, in analogy with graphite intercalated compounds). I will also show preliminary results showing the influence of Calcium intercalation of few layer graphene and progress toward the demonstration of intrinsic superconductivity in such systems. Work supported by EU GRANT FP7-NMP GRENADA.

  15. Topological confinement and superconductivity

    SciTech Connect

    Al-hassanieh, Dhaled A; Batista, Cristian D

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  16. TPX superconducting PF magnets

    SciTech Connect

    Calvin, H.; Christiansen, O.; Cizek, J.

    1995-12-31

    The Westinghouse team has extended the Lawrence Livermore National Laboratory advanced conceptual design for the TPX PF magnets through preliminary design. This is the first time superconducting PF magnets have been designed for application in a tokamak. Particular challenges were encountered and solved in developing the coil insulation system, welding the helium stubs, and winding the coil. The authors fabricated a coil using copper stranded CIC conductor, to surface manufacturability issues and demonstrate the solutions.

  17. Superconducting Magnetic Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Lawson, Daniel D.

    1991-01-01

    Proposed projectile launcher exploits Meissner effect to transfer much of kinetic energy of relatively massive superconducting plunger to smaller projectile, accelerating projectile to high speed. Because it operates with magnetic fields, launcher not limited by gas-expansion thermodynamics. Plunger energized mechanically and/or chemically, avoiding need for large electrical power supplies and energy-storage systems. Potential applications include launching of projectiles for military purposes and for scientific and industrial tests of hypervelocity impacts.

  18. High-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Chin, Ken C.

    1990-01-01

    The current status of high-temperature superconductivity (HTSC) and near-term prospects are briefly reviewed with particular reference to Lockheed's experience. Emphasis is placed on an integrated approach to systems applications of HTSC thin films, which hold the greatest near-term promise. These new materials are applied in the production of smaller, more sensitive, and more efficient electronic components to meet the ever-increasing demands for higher-performance signal acquisition and processing systems, communications systems, and computers.

  19. Superconducting cascade electron refrigerator

    SciTech Connect

    Camarasa-Gómez, M.; Giazotto, F.; Di Marco, A.; Hekking, F. W. J.; Winkelmann, C. B.; Courtois, H.

    2014-05-12

    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance, and limitations of such a device.

  20. Supercurrent in superconducting graphene

    NASA Astrophysics Data System (ADS)

    Kopnin, N. B.; Sonin, E. B.

    2010-07-01

    The problem of supercurrent in superconducting graphene is revisited and the supercurrent is calculated within the mean-field model employing the two-component wave functions on a honeycomb lattice with pairing between different valleys in the Brillouin zone. We show that the supercurrent within the linear approximation in the order-parameter-phase gradient is always finite even if the doping level is exactly zero.

  1. Superconducting terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Singh, Ranjan; O' Hara, John F; Azad, Abul K; Trugman, Stuart A; Jia, Quanxi; Taylor, Antoinette J

    2010-01-01

    During the past ten years subwavelength metallic structures have enabled metamaterials exhibiting exotic physical properties that are not possible or difficult to realize using naturally occurring materials, This bottom-up metamaterial approach is particularly attractive in the terahertz (THz) frequency range, where the THz gap is inherently associated with the lack of materials with appropriate reponse. In fact THz metamaterial devices have accomplished unprecedented performance towards practical applications. In these devices, the key is to incorporate natural materials, e,g, semiconductors, as the metamaterial substrates or integration parts of metamaterial structures. The active or dynamic tunability of metamaterials is through the application of external stimuli such as temperature, photoexcitation, or electric field. to modify the capacitive gaps in split-ring resonators (SRRs), It becomes clear that we would not be able to do much on the metallic SRRs, i.e. the metal conductivity and therefore the inductance largely remain constant not affected by external stimuli. Recently, there has been increasing interest in superconducting metamaterials towards loss reduction. Significant Joule losses have often prevented resonant metal metamaterials from achieving proposed applications. particularly in the optical frequency range. At low temperatures, superconducting materials possess superior conductivity than metals at frequencies up to THz. and therefore it is expected that superconducting melamaterials will have a lower loss than metal metamatetials, More interestingly, superconductors exhibit tunable complex conductivity over a wide range of values through change of temperature and application of photoexcitation, electrical currents and magnetic fields. Therefore, we would expect correspondingly tunable metamaterials. which originate from the superconducting materials composing the metamaterial, in contrast to tuning the metamaterial embedded environment.

  2. Superconducting cascade electron refrigerator

    NASA Astrophysics Data System (ADS)

    Camarasa-Gómez, M.; Di Marco, A.; Hekking, F. W. J.; Winkelmann, C. B.; Courtois, H.; Giazotto, F.

    2014-05-01

    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance, and limitations of such a device.

  3. Proceedings of the First International Symposium on Physical and Technical Problems of Superconductivity Application in Power Generation

    NASA Astrophysics Data System (ADS)

    The proceedings contain the introductory speech of the representative of the Electrotechnical Institute of the Slovak Academy of Sciences, the text of the recommendation adopted by the participants of the symposium, the symposium program, and the full texts of 24 of 39 papers submitted. These papers are classified into five areas, i.e., superconducting ac facilities, superconducting magnet systems, magnetic separation, superconducting materials, and electromagnetic and thermal properties of superconductors.

  4. US Navy superconductivity program

    NASA Technical Reports Server (NTRS)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  5. Navy superconductivity efforts

    NASA Technical Reports Server (NTRS)

    Gubser, D. U.

    1990-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  6. Tunable superconducting microstrip resonators

    NASA Astrophysics Data System (ADS)

    Adamyan, A. A.; Kubatkin, S. E.; Danilov, A. V.

    2016-04-01

    We report on a simple yet versatile design for a tunable superconducting microstrip resonator. Niobium nitride is employed as the superconducting material and aluminum oxide, produced by atomic layer deposition, as the dielectric layer. We show that the high quality of the dielectric material allows to reach the internal quality factors in the order of Qi˜104 in the single photon regime. Qi rapidly increases with the number of photons in the resonator N and exceeds 105 for N ˜10 -50 . A straightforward modification of the basic microstrip design allows to pass a current bias through the strip and to control its kinetic inductance. We achieve a frequency tuning δf =62 MHz around f0=2.4 GHz for a fundamental mode and δf =164 MHz for a third harmonic. This translates into a tuning parameter Qiδf /f0=150 . The presented design can be incorporated into essentially any superconducting circuitry operating at temperatures below 2.5 K.

  7. Superconducting dark energy

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Dong; Harko, Tiberiu

    2015-04-01

    Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a nonminimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolutions of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.

  8. Magnetically leviated superconducting bearing

    DOEpatents

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  9. Separated flow

    NASA Technical Reports Server (NTRS)

    Sellers, W. L., III; Dunham, R. E., Jr.; Goodman, W. L.; Howard, F. G.; Margason, R. J.; Rudy, D. H.; Rumsey, C. L.; Stough, H. P., III; Thomas, J. L.

    1986-01-01

    A brief overview of flow separation phenomena is provided. Langley has many active research programs in flow separation related areas. Three cases are presented which describe specific examples of flow separation research. In each example, a description of the fundamental fluid physics and the complexity of the flow field is presented along with a method of either reducing or controlling the extent of separation. The following examples are discussed: flow over a smooth surface with an adverse pressure gradient; flow over a surface with a geometric discontinuity; and flow with shock-boundary layer interactions. These results will show that improvements are being made in the understanding of flow separation and its control.

  10. Silicon superconducting quantum interference device

    SciTech Connect

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F.; Chiodi, F.; Débarre, D.; Hasselbach, K.; Kirtley, J. R.

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  11. Endoscopic radiofrequency ablation for malignant biliary strictures

    PubMed Central

    WANG, FEI; LI, QUANPENG; ZHANG, XIUHUA; JIANG, GUOBING; GE, XIANXIU; YU, HONG; NIE, JUNJIE; JI, GUOZHONG; MIAO, LIN

    2016-01-01

    Endoscopic radiofrequency ablation (RFA) is a novel palliation therapy for malignant biliary stricture; however, its feasibility and safety has not yet been clearly defined. The aim of the present study was to evaluate the feasibility and safety of endoscopic RFA for the treatment of malignant biliary strictures. A total of 12 patients treated by endoscopic RFA between December 2011 and October 2013 were retrospectively analyzed. Adverse events within 30 days post-intervention, stricture diameters prior to and following RFA, stent patency and survival time were investigated. A total of 12 patients underwent 20 RFA procedures as a treatment for malignant biliary strictures. Two patients required repeated elective RFA (4 and 6 times, respectively). All 20 RFA procedures were successfully performed without technical problems. During a 30 day period following each RFA procedure, two patients experienced fever (38.2 and 38.9°C, respectively) and another patient exhibited post-endoscopic retrograde cholangiopancreatography pancreatitis. The 30- and 90-day mortality rates were 0 and 8.3%, respectively. Mean stricture diameter prior to RFA was 5.3 mm (standard deviation (SD), 0.9 mm; range, 5–8 mm), and the mean diameter following RFA was 12.6 mm (SD, 3.1 mm; range, 8–15 mm). There was a significant increase of 7.3 mm in the bile duct diameter following RFA in comparison with prior to RFA (t=8.6; P≤0.001). Of the 11 patients with stents inserted following RFA, the median stent patency was 125.0 days [95% confidence interval (CI), 94.7–155.3 days]. Extrapolated median survival following the first RFA was 232 days (95% CI, 94.3–369.7 days). In conclusion, RFA appears to be an efficient and safe treatment strategy for the palliation of unresectable malignant biliary strictures. PMID:27284336

  12. Quantitative calibration of radiofrequency NMR Stark effects

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.; Kempf, James G.

    2011-10-01

    Nuclear magnetic resonance (NMR) Stark responses can occur in quadrupolar nuclei for an electric field oscillating at twice the usual NMR frequency (2ω0). Calibration of responses to an applied E field is needed to establish nuclear spins as probes of native E fields within material and molecular systems. We present an improved approach and apparatus for accurate measurement of quadrupolar Stark effects. Updated values of C14 (the response parameter in cubic crystals) were obtained for both 69Ga and 75As in GaAs. Keys to improvement include a modified implementation of voltage dividers to assess the 2ω0 amplitude, |E|, and the stabilization of divider response by reduction of stray couplings in 2ω0 circuitry. Finally, accuracy was enhanced by filtering sets of |E| through a linear response function that we established for the radiofrequency amplifier. Our approach is verified by two types of spectral results. Steady-state 2ω0 excitation to presaturate NMR spectra yielded C14 = (2.59 ± 0.06) × 1012 m-1 for 69Ga at room-temperature and 14.1 T. For 75As, we obtained (3.1 ± 0.1) × 1012 m-1. Both values reconcile with earlier results from 77 K and below 1 T, whereas current experiments are at room temperature and 14.1 T. Finally, we present results where few-microsecond pulses of the 2ω0 field induced small (tens of Hz) changes in high-resolution NMR line shapes. There too, spectra collected vs |E| agree with the model for response, further establishing the validity of our protocols to specify |E|.

  13. Radiofrequency Cauterization with Biopsy Introducer Needle

    PubMed Central

    Pritchard, William F.; Wray-Cahen, Diane; Karanian, John W.; Hilbert, Stephen; Wood, Bradford J.

    2014-01-01

    PURPOSE The principal risks of needle biopsy are hemorrhage and implantation of tumor cells in the needle tract. This study compared hemorrhage after liver and kidney biopsy with and without radiofrequency (RF) ablation of the needle tract. MATERIALS AND METHODS Biopsies of liver and kidney were performed in swine through introducer needles modified to allow RF ablation with the distal 2 cm of the needle. After each biopsy, randomization determined whether the site was to undergo RF ablation during withdrawal of the introducer needle. Temperature was measured with a thermistor stylet near the needle tip, with a target temperature of 70°C–100°C with RF ablation. Blood loss was measured as grams of blood absorbed in gauze at the puncture site for 2 minutes after needle withdrawal. Selected specimens were cut for gross examination. RESULTS RF ablation reduced bleeding compared with absence of RF ablation in liver and kidney (P < .01), with mean blood loss reduced 63% and 97%, respectively. Mean amounts of blood loss (±SD) in the liver in the RF and no-RF groups were 2.03 g ± 4.03 (CI, 0.53–3.54 g) and 5.50 g ± 5.58 (CI, 3.33–7.66 g), respectively. Mean amounts of blood loss in the kidney in the RF and no-RF groups were 0.26 g ± 0.32 (CI, −0.01 to 0.53 g) and 8.79 g ± 7.72 (CI, 2.34–15.24 g), respectively. With RF ablation, thermal coagulation of the tissue surrounding the needle tract was observed. CONCLUSION RF ablation of needle biopsy tracts reduced hemorrhage after biopsy in the liver and kidney and may reduce complications of hemorrhage as well as implantation of tumor cells in the tract. PMID:14963187

  14. Photoacoustic characterization of radiofrequency ablation lesions

    NASA Astrophysics Data System (ADS)

    Bouchard, Richard; Dana, Nicholas; Di Biase, Luigi; Natale, Andrea; Emelianov, Stanislav

    2012-02-01

    Radiofrequency ablation (RFA) procedures are used to destroy abnormal electrical pathways in the heart that can cause cardiac arrhythmias. Current methods relying on fluoroscopy, echocardiography and electrical conduction mapping are unable to accurately assess ablation lesion size. In an effort to better visualize RFA lesions, photoacoustic (PA) and ultrasonic (US) imaging were utilized to obtain co-registered images of ablated porcine cardiac tissue. The left ventricular free wall of fresh (i.e., never frozen) porcine hearts was harvested within 24 hours of the animals' sacrifice. A THERMOCOOLR Ablation System (Biosense Webster, Inc.) operating at 40 W for 30-60 s was used to induce lesions through the endocardial and epicardial walls of the cardiac samples. Following lesion creation, the ablated tissue samples were placed in 25 °C saline to allow for multi-wavelength PA imaging. Samples were imaged with a VevoR 2100 ultrasound system (VisualSonics, Inc.) using a modified 20-MHz array that could provide laser irradiation to the sample from a pulsed tunable laser (Newport Corp.) to allow for co-registered photoacoustic-ultrasound (PAUS) imaging. PA imaging was conducted from 750-1064 nm, with a surface fluence of approximately 15 mJ/cm2 maintained during imaging. In this preliminary study with PA imaging, the ablated region could be well visualized on the surface of the sample, with contrasts of 6-10 dB achieved at 750 nm. Although imaging penetration depth is a concern, PA imaging shows promise in being able to reliably visualize RF ablation lesions.

  15. Saline-Linked Surface Radiofrequency Ablation

    PubMed Central

    Topp, Stefan A.; McClurken, Michael; Lipson, David; Upadhya, Gundumi A.; Ritter, Jon H.; Linehan, David; Strasberg, Steven M.

    2004-01-01

    Summary Background Data: Saline-linked surface radiofrequency (RF) ablation is a new technique for applying RF energy to surfaces. The surface is cooled, which prevents charring and results in deeper coagulation. However, subsurface heating may lead to steam formation and a form of tissue disruption called steam popping. We determined parameters that predict steam popping and depth of tissue destruction under nonpopping conditions. A commercially available saline-linked surface RF cautery device (Floating Ball 3.0, TissueLink, Inc.) was used. Methods: One hundred eighty circular lesions were created varying in lesion diameter, duration, power, and inflow occlusion. Variables affecting popping were determined. Then factors influencing lesion depth were studied at fixed nonpopping diameter/power combinations (1 cm/10W, 2 cm/15W, 4 cm/60W). Tissue viability was determined in selected samples by staining of tissue NADH. Results: The probability of steam popping was directly related to power level and inflow occlusion, and indirectly related to lesion diameter. Depth of injury under safe nonpopping conditions was directly related to power, lesion size, and inflow occlusion. Maximum depth in excess of 20 mm was achieved using a 4 cm diameter at 60W with inflow occlusion. Microscopy of NADH-stained tissues showed a complete cell killing in the macroscopically visible coagulated area. Conclusions: Steam popping can be avoided by selecting power level/lesion diameter combinations. Tissue destruction to 20 mm can be safely achieved with short periods of inflow occlusion. The device has promise as a treatment of superficial tumors and close resection margins. PMID:15024313

  16. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    systems. In addition, the role of thermodynamic fluctuations on superconducting properties has been extensively studied in the context of nanoparticles and nanowires both experimentally and theoretically. In the past decade, a lot of work has been initiated in the area of interface superconductivity where different techniques have been demonstrated to tune Tc. Although the progress in this field has deepened our understanding of nanoscale superconductors, there are several open and key questions which need to be addressed. Some of these are: (1) can superconductivity be enhanced and Tc increased in nanostructures with respect to the bulk limit and if so, how can it be controlled? (2) What are the theoretical and experimental limits for the enhancement and control of superconductivity? (3) Can the phenomena identified in conventional nanostructures shed light on phenomena in high Tc superconductors and vice versa? (4) How will the new fundamental physics of superconductivity at the nanoscale promote advances in nanotechnology applications and vice versa? The papers in this focus section reflect the advances made in this field, in particular in nanowires and nanofilms, but also attempt to answer some of the key open questions outlined above. The theoretical papers explore unconventional quantum phenomena such as the role of confinement in the dynamics of single Cooper pairs in isolated grains [1] and Fano resonances in superconducting gaps in multi-condensate superconductors near a 2.5 Lifshitz transition [2]. Here a new emerging class of quantum phenomena of fundamental physics appear at the Bose-BCS crossover in multi-condensate superconductors [2]. Nanosize effects can now be manipulated by controlling defects in layered oxides [3]. A new approach is provided by controlling the self-organization of oxygen interstitials in layered copper oxides that show an intrinsic nanoscale phase separation [4]. In this case a non-trivial distribution of superconducting nanograins

  17. The electrical asymmetry effect in capacitively coupled radio-frequency discharges

    NASA Astrophysics Data System (ADS)

    Czarnetzki, U.; Schulze, J.; Schüngel, E.; Donkó, Z.

    2011-04-01

    We present an analytical model to describe capacitively coupled radio-frequency (CCRF) discharges and the electrical asymmetry effect (EAE) based on the non-linearity of the boundary sheaths. The model describes various discharge types, e.g. single and multi-frequency as well as geometrically symmetric and asymmetric discharges. It yields simple analytical expressions for important plasma parameters such as the dc self-bias, the uncompensated charge in both sheaths, the discharge current and the power dissipated to electrons. Based on the model results the EAE is understood. This effect allows control of the symmetry of CCRF discharges driven by multiple consecutive harmonics of a fundamental frequency electrically by tuning the individual phase shifts between the driving frequencies. This novel class of capacitive radio-frequency (RF) discharges has various advantages: (i) A variable dc self-bias can be generated as a function of the phase shifts between the driving frequencies. In this way, the symmetry of the sheaths in geometrically symmetric discharges can be broken and controlled for the first time. (ii) Almost ideal separate control of ion energy and flux at the electrodes can be realized in contrast to classical dual-frequency discharges driven by two substantially different frequencies. (iii) Non-linear self-excited plasma series resonance oscillations of the RF current can be switched on and off electrically even in geometrically symmetric discharges. Here, the basics of the EAE are introduced and its main applications are discussed based on experimental, simulation, and modeling results.

  18. An unshielded radio-frequency atomic magnetometer with sub-femtoTesla sensitivity

    SciTech Connect

    Keder, David A.; Prescott, David W.; Conovaloff, Adam W.; Sauer, Karen L.

    2014-12-15

    We demonstrate a radio-frequency potassium-vapor magnetometer operating with sensitivities of 0.3 fT/√(Hz) at 0.5 MHz and 0.9 fT/√(Hz) at 1.31 MHz in the absence of radio-frequency and mu-metal or magnetic shielding. The use of spatially separated magnetometers, two voxels within the same cell, permits for the subtraction of common mode noise and the retention of a gradient signal, as from a local source. At 0.5 MHz the common mode noise was white and measured to be 3.4 fT/√(Hz); upon subtraction the noise returned to the values observed when the magnetometer was shielded. At 1.31 MHz, the common mode noise was from a nearby radio station and was reduced by a factor of 33 upon subtraction, limited only by the radio signal picked up by receiver electronics. Potential applications include in-the-field low-field magnetic resonance, such as the use of nuclear quadrupole resonance for the detection of explosives.

  19. Lack of teratogenicity after combined exposure of pregnant mice to CDMA and WCDMA radiofrequency electromagnetic fields.

    PubMed

    Lee, Hae-June; Lee, Jae-Seon; Pack, Jeong-Ki; Choi, Hyung-Do; Kim, Nam; Kim, Sung-Ho; Lee, Yun-Sil

    2009-11-01

    Concern about the possible adverse effects of radiofrequency (RF)-field exposure on public health has increased because of the extensive use of wireless mobile phones and other telecommunication devices in daily life. The murine fetus is a very sensitive indicator of the effects of stress or stimuli in the environment. Therefore, we investigated the teratogenic effects of multi-signal radiofrequency electromagnetic fields (RF EMFs) on mouse fetuses. Pregnant mice were simultaneously exposed to two types of RF signals, single code division multiple access (CDMA) and wideband code division multiple access (WCDMA). Mice received two 45-min RF-field exposures, separated by a 15-min interval, daily throughout the entire gestation period. The whole-body average specific absorption rate (SAR) of CDMA or WCDMA was 2.0 W/kg. The animals were killed humanely on the 18th day of gestation and fetuses were examined for mortality, growth retardation, changes in head size and other morphological abnormalities. From the results, we report for the first time that simultaneous experimental exposure to CDMA and WCDMA RF EMFs did not cause any observable adverse effects on mouse fetuses. PMID:19883234

  20. Korea's developmental program for superconductivity

    NASA Technical Reports Server (NTRS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  1. Superconductivity in intercalated molybdenum disulfide.

    NASA Technical Reports Server (NTRS)

    Somoano, R.; Hadek, V.; Rembaum, A.

    1972-01-01

    X-ray studies show the existence of two different types of expansions of the intercalated unit cell in both Na and K compounds. Two different phases are also indicated in the superconducting behavior of the K compound. All intercalated samples studied show a superconducting transition. K and Rb compounds become superconductors in the temperature range from 6.5 to 6.0 K. The Na compounds become superconductors at about 4.5 K. In all cases, the superconductivity disappears upon a short exposure of the sample to air. This phenomenon confirms that the superconductivity is due to the presence of the alkali metal.

  2. Superconducting linacs: some recent developments

    SciTech Connect

    Bollinger, L.M.

    1985-01-01

    The paper is a review of superconducting linacs that are of interest for heavy-ion acceleration. Most of the paper is concerned with energy boosters for projectiles from tandem electrostatic accelerators, the only application for which superconducting linacs are now used for heavy-ion acceleration. There is also a brief discussion of the concept of a superconducting injector linac being developed as a replacement of the tandem in a multi-stage acceleration system. Throughout, the emphasis is on the technology of the superconducting linac, including some attention to the relationships between resonator design parameters and accelerator performance characteristics. 21 refs., 14 figs., 3 tabs.

  3. Cosmic sparks from superconducting strings.

    PubMed

    Vachaspati, Tanmay

    2008-10-01

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents approximately 10{5} GeV. The superconducting string model predicts an event rate that falls off only as S{-1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model. PMID:18851517

  4. Cosmic Sparks from Superconducting Strings

    SciTech Connect

    Vachaspati, Tanmay

    2008-10-03

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents {approx}10{sup 5} GeV. The superconducting string model predicts an event rate that falls off only as S{sup -1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model.

  5. Superconducting tape characterization under flexion

    NASA Astrophysics Data System (ADS)

    Álvarez, A.; Suárez, P.; Cáceres, D.; Pérez, B.; Cordero, E.; Castaño, A.

    2002-08-01

    Electrotechnical applications of high temperature superconducting materials are limited by the difficulty of constructing classical windings with ceramic materials. While Bi-2223 tape may be a solution, it cannot be bent to radii less than a certain value since its superconducting capacity disappears. We describe an automated measurement system of the characteristics of this tape under flexion. It consists of a device that coils the tape over cylinders with different radii. At the same time, the parameters of its superconducting behaviour (e.g. resistance) are taken and processed. This system was developed at the “Benito Mahedero Laboratory of Superconducting Electrical Applications” in the University of Extremadura.

  6. 21 CFR 880.6300 - Implantable radiofrequency transponder system for patient identification and health information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implantable radiofrequency transponder system for... radiofrequency transponder system for patient identification and health information. (a) Identification. An implantable radiofrequency transponder system for patient identification and health information is a...

  7. 21 CFR 880.6300 - Implantable radiofrequency transponder system for patient identification and health information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implantable radiofrequency transponder system for... radiofrequency transponder system for patient identification and health information. (a) Identification. An implantable radiofrequency transponder system for patient identification and health information is a...

  8. 21 CFR 880.6300 - Implantable radiofrequency transponder system for patient identification and health information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implantable radiofrequency transponder system for... radiofrequency transponder system for patient identification and health information. (a) Identification. An implantable radiofrequency transponder system for patient identification and health information is a...

  9. 21 CFR 880.6300 - Implantable radiofrequency transponder system for patient identification and health information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... radiofrequency transponder system for patient identification and health information. (a) Identification. An implantable radiofrequency transponder system for patient identification and health information is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable radiofrequency transponder system...

  10. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Radiofrequency radiation for the heating of food... PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation,...

  11. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Radiofrequency radiation for the heating of food... PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation,...

  12. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Radiofrequency radiation for the heating of food... FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including microwave frequencies, may be...

  13. Successful Management of Atrio-Esophageal Fistula after Cardiac Radiofrequency Catheter Ablation

    PubMed Central

    Shim, Hun Bo; Kim, Chilsung; Kim, Hong-Kwan

    2013-01-01

    An increase in cardiac radiofrequency catheter ablation for treating refractory atrial fibrillation has resulted in an increased prevalence of complications. Among numerous complications of radiofrequency catheter ablation, atrio-esophageal fistula, although rare, is known to have fatal results. We report a case of successful management of an atrio-esophageal fistula as a complication of cardiac radiofrequency catheter ablation. PMID:23614102

  14. Superconducting drift-tube cavity development for the RIA driver.

    SciTech Connect

    Shepard, K. W.; Kelly, M. P.; Fuerst, J. D.

    2002-09-23

    This paper reports the design and development of two intermediate-velocity superconducting cavities and design of an associated cryomodule for the RIA driver linac. The two cavity types are a 115 MHz, {beta}{sub GEOM} = 0.15 quarter-wave resonant (QWR) cavity, and a 173 MHz, {beta}{sub GEOM} = 0.26 half-wave loaded cavity. Both cavities are well-corrected for dipole and quadrupole asymmetries in the accelerating field. The cryomodule is being designed to incorporate a separate vacuum system for cavity vacuum to provide a particulate-free environment for the superconducting cavities.

  15. The Superconducting Magnets of the ILC Beam Delivery System

    SciTech Connect

    Parker, B.; Anerella, M.; Escallier, J.; He, P.; Jain, A.; Marone, A.; Nosochkov, Y.; Seryi, Andrei; /SLAC

    2007-09-28

    The ILC Beam Delivery System (BDS) uses a variety of superconducting magnets to maximize luminosity and minimize background. Compact final focus quadrupoles with multifunction correction coils focus incoming beams to few nanometer spot sizes while focusing outgoing disrupted beams into a separate extraction beam line. Anti-solenoids mitigate effects from overlapping focusing and the detector solenoid field. Far from the interaction point (IP) strong octupoles help minimize IP backgrounds. A low-field but very large aperture dipole is integrated with the detector solenoid to reduce backgrounds from beamstrahlung pairs generated at the IP. Physics requirements and magnetic design solutions for the BDS superconducting magnets are reviewed in this paper.

  16. Histopomorphic Evaluation of Radiofrequency Mediated Débridement Chondroplasty

    PubMed Central

    Ganguly, Kumkum; McRury, Ian D; Goodwin, Peter M; Morgan, Roy E; Augé II, Wayne K

    2010-01-01

    The use of radiofrequency devices has become widespread for surgical ablation procedures. When ablation devices have been deployed in treatment settings requiring tissue preservation like débridement chondroplasty, adoption has been limited due to the collateral damage caused by these devices in healthy tissue surrounding the treatment site. Ex vivo radiofrequency mediated débridement chondroplasty was performed on osteochondral specimens demonstrating surface fibrillation obtained from patients undergoing knee total joint replacement. Three radiofrequency systems designed to perform débridement chondroplasty were tested each demonstrating different energy delivery methods: monopolar ablation, bipolar ablation, and non-ablation energy. Treatment outcomes were compared with control specimens as to clinical endpoint and histopomorphic characteristics. Fibrillated cartilage was removed in all specimens; however, the residual tissue remaining at the treatment site displayed significantly different characteristics attributable to radiofrequency energy delivery method. Systems that delivered ablation-based energies caused tissue necrosis and collateral damage at the treatment site including corruption of cartilage Superficial and Transitional Zones; whereas, the non-ablation system created a smooth articular surface with Superficial Zone maintenance and without chondrocyte death or tissue necrosis. The mechanism of radiofrequency energy deposition upon tissues is particularly important in treatment settings requiring tissue preservation. Ablation-based device systems can cause a worsened state of articular cartilage from that of pre-treatment. Non-ablation energy can be successful in modifying/preconditioning tissue during débridement chondroplasty without causing collateral damage. Utilizing a non-ablation radiofrequency system provides the ability to perform successful débridement chondroplasty without causing additional articular cartilage tissue damage and may

  17. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    systems. In addition, the role of thermodynamic fluctuations on superconducting properties has been extensively studied in the context of nanoparticles and nanowires both experimentally and theoretically. In the past decade, a lot of work has been initiated in the area of interface superconductivity where different techniques have been demonstrated to tune Tc. Although the progress in this field has deepened our understanding of nanoscale superconductors, there are several open and key questions which need to be addressed. Some of these are: (1) can superconductivity be enhanced and Tc increased in nanostructures with respect to the bulk limit and if so, how can it be controlled? (2) What are the theoretical and experimental limits for the enhancement and control of superconductivity? (3) Can the phenomena identified in conventional nanostructures shed light on phenomena in high Tc superconductors and vice versa? (4) How will the new fundamental physics of superconductivity at the nanoscale promote advances in nanotechnology applications and vice versa? The papers in this focus section reflect the advances made in this field, in particular in nanowires and nanofilms, but also attempt to answer some of the key open questions outlined above. The theoretical papers explore unconventional quantum phenomena such as the role of confinement in the dynamics of single Cooper pairs in isolated grains [1] and Fano resonances in superconducting gaps in multi-condensate superconductors near a 2.5 Lifshitz transition [2]. Here a new emerging class of quantum phenomena of fundamental physics appear at the Bose-BCS crossover in multi-condensate superconductors [2]. Nanosize effects can now be manipulated by controlling defects in layered oxides [3]. A new approach is provided by controlling the self-organization of oxygen interstitials in layered copper oxides that show an intrinsic nanoscale phase separation [4]. In this case a non-trivial distribution of superconducting nanograins

  18. Study of Temperature Wave Propagation in Superfluid Helium Focusing on Radio-Frequency Cavity Cooling

    NASA Astrophysics Data System (ADS)

    Koettig, T.; Peters, B. J.; Avellino, S.; Junginger, T.; Bremer, J.

    2015-12-01

    Oscillating Superleak Transducers (OSTs) can be used to localize quenches of superconducting radio-frequency cavities. Local hot spots at the cavity surface initiate temperature waves in the surrounding superfluid helium that acts as cooling fluid at typical temperatures in the range of 1.6 K to 2 K. The temperature wave is characterised by the properties of superfluid helium such as the second sound velocity. For high heat load densities second sound velocities greater than the standard literature values are observed. This fast propagation has been verified in dedicated small scale experiments. Resistors were used to simulate the quench spots under controlled conditions. The three dimensional propagation of second sound is linked to OST signals. The aim of this study is to improve the understanding of the OST signal especially the incident angle dependency. The characterised OSTs are used as a tool for quench localisation on a real size cavity. Their sensitivity as well as the time resolution was proven to be superior to temperature sensors glued to the surface of the cavity.

  19. Endovenous radiofrequency ablation for the treatment of varicose veins

    PubMed Central

    Kayssi, Ahmed; Pope, Marc; Vucemilo, Ivica; Werneck, Christiane

    2015-01-01

    Summary Varicose veins are a common condition that can be treated surgically. Available operative modalities include saphenous venous ligation and stripping, phlebectomy, endovenous laser therapy and radiofrequency ablation. Radiofrequency ablation is the newest of these technologies, and to our knowledge our group was the first to use it in Canada. Our experience suggests that it is a safe and effective treatment for varicose veins, with high levels of patient satisfaction reported at short-term follow-up. More studies are needed to assess long-term effectiveness and compare the various available treatment options for varicose veins. PMID:25799244

  20. Assessing personal exposures to environmental radiofrequency electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Mann, Simon

    2010-11-01

    Recent advances in the capability of body-worn instruments for measuring the strengths of environmental radiofrequency signals have opened up a range of exciting new research possibilities. The readings from these instruments can be used in health related studies, but they have to be considered carefully when developing exposure metrics, as does the physical dosimetry concerning interactions between radio waves and the body. Several studies have distributed the instruments to large groups of people and analysed the gathered data in relation to possible determinants of exposure. This article reviews the state of the art in personal exposure measurements at radiofrequencies.

  1. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, John R.

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  2. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, J.R.

    1996-09-17

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings are disclosed. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures. 20 figs.

  3. Superconducting cavity material for the European XFEL

    NASA Astrophysics Data System (ADS)

    Singer, W.; Singer, X.; Brinkmann, A.; Iversen, J.; Matheisen, A.; Navitski, A.; Tamashevich, Y.; Michelato, P.; Monaco, L.

    2015-08-01

    Analysis of the strategy for superconducting cavity material procurement and quality management is done on the basis of the experience with the cavity production for the European x-ray free electron laser (EXFEL) facility. An adjustment of the material specification to EXFEL requirements, procurement of material, quality control (QC), documentation, and shipment to cavity producers have been worked out and carried out by DESY. A multistep process of qualification of the material suppliers included detailed material testing, single- and nine-cell cavity fabrication, and cryogenic radiofrequency tests. Production of about 25 000 semi-finished parts of high purity niobium and niobium-titanium alloy in a period of three years has been divided finally between companies Heraeus, Tokyo Denkai, Ningxia OTIC, and PLANSEE. Consideration of large-grain (LG) material as a possible option for the EXFEL has resulted in the production of one cryogenic module consisting of seven (out of eight) LG cavities. LG materials fulfilled the EXFEL requirements and showed even 25% to 30% higher unloaded quality factor. A possible shortage of the required quantity of LG material on the market led, however, to the choice of conventional fine-grain (FG) material. Eddy-current scanning (ECS) has been applied as an additional QC tool for the niobium sheets and contributed significantly to the material qualification and sorting. Two percent of the sheets have been rejected, which potentially could affect up to one-third of the cavities. The main imperfections and defects in the rejected sheets have been analyzed. Samples containing foreign material inclusions have been extracted from the sheets and electrochemically polished. Some inclusions remained even after 150 μm surface layer removal. Indications of foreign material inclusions have been found in the industrially fabricated and treated cavities and a deeper analysis of the defects has been performed.

  4. Freely Oriented, Portable Superconducting Magnet

    NASA Astrophysics Data System (ADS)

    Schmierer, E. N.; Charles, B.; Efferson, R.; Hill, D.; Jankowski, T.; Laughon, G.; Prenger, C.

    2008-03-01

    A high-field low-temperature superconducting solenoidal magnet was developed that is portable and can be operated in any orientation relative to gravity. The design consists of several features that make this feasible; 1) bulk liquid cryogen storage occurs in a separate Dewar rather than as part of the magnet assembly, which allows single-person transport due to each component of the system having low relative weight, 2) vapor generated pressurization that circulates cryogenic fluid to and from the magnet with flexible transfer lines allowing operation in any orientation, and 3) composite, low-conducting structural members are used to suspend the magnet and shield layers within the vacuum vessel that provide a robust low heat loss design. Cooling is provided to the magnet through fluid channels that are in thermal contact with the magnet. The overall design of this magnet system, some of the analyses performed that address unique behavior of this system (pressure rise during a magnet quench and transient cooldown), and test results are presented.

  5. Separation techniques.

    PubMed

    Duke, T

    1998-10-01

    The past two years have seen continued development of capillary electrophoresis methods. The separation performance of flowable sieving media now equals, and in some respects exceeds, that provided by gels. The application of microfabrication techniques to separation science is gaining pace. There is a continuing trend towards miniaturization and integration of separation with preparative or analytical steps. Innovative separation methods based on microfabrication technology include electrophoresis in purpose-designed molecular sieves, dielectric, trapping using microelectrodes, and force-free motion in Brownian ratchets. PMID:9818184

  6. Optimized unconventional superconductivity in a molecular Jahn-Teller metal.

    PubMed

    Zadik, Ruth H; Takabayashi, Yasuhiro; Klupp, Gyöngyi; Colman, Ross H; Ganin, Alexey Y; Potočnik, Anton; Jeglič, Peter; Arčon, Denis; Matus, Péter; Kamarás, Katalin; Kasahara, Yuichi; Iwasa, Yoshihiro; Fitch, Andrew N; Ohishi, Yasuo; Garbarino, Gaston; Kato, Kenichi; Rosseinsky, Matthew J; Prassides, Kosmas

    2015-04-01

    Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above T c is a major challenge for all unconventional superconductors. The molecular A3C60 fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C60 (3-) electronic structure controls the geometry and spin state of the structural building unit via the on-molecule Jahn-Teller effect. We identify the Jahn-Teller metal as a fluctuating microscopically heterogeneous coexistence of both localized Jahn-Teller-active and itinerant electrons that connects the insulating and superconducting states of fullerides. The balance between these molecular and extended lattice features of the electrons at the Fermi level gives a dome-shaped variation of T c with interfulleride separation, demonstrating molecular electronic structure control of superconductivity. PMID:26601168

  7. Optimized unconventional superconductivity in a molecular Jahn-Teller metal

    PubMed Central

    Zadik, Ruth H.; Takabayashi, Yasuhiro; Klupp, Gyöngyi; Colman, Ross H.; Ganin, Alexey Y.; Potočnik, Anton; Jeglič, Peter; Arčon, Denis; Matus, Péter; Kamarás, Katalin; Kasahara, Yuichi; Iwasa, Yoshihiro; Fitch, Andrew N.; Ohishi, Yasuo; Garbarino, Gaston; Kato, Kenichi; Rosseinsky, Matthew J.; Prassides, Kosmas

    2015-01-01

    Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above Tc is a major challenge for all unconventional superconductors. The molecular A3C60 fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C603– electronic structure controls the geometry and spin state of the structural building unit via the on-molecule Jahn-Teller effect. We identify the Jahn-Teller metal as a fluctuating microscopically heterogeneous coexistence of both localized Jahn-Teller–active and itinerant electrons that connects the insulating and superconducting states of fullerides. The balance between these molecular and extended lattice features of the electrons at the Fermi level gives a dome-shaped variation of Tc with interfulleride separation, demonstrating molecular electronic structure control of superconductivity. PMID:26601168

  8. Superconducting thin film cavities and base electrode planarization

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher Doyle

    1997-11-01

    This study concerns two separate projects. The first deals with a new technique to improve superconducting tunnel junction fabrication technology through the use of planarized base electrodes. Planarization, resulting in smooth film surfaces, is realized by coating a conventional niobium base electrode with a multilayer of niobium and aluminum. Very low leakage tunnel junctions were made using this method. The second project involves electromagnetic coupling to a superconducting thin film cavity. A novel device, potentially useful as an x-ray detector, has been fabricated and characterized. The theory of operation of this closed superconducting cavity, or "Fiske Cavity", is presented along with experimental results. Current - voltage measurements reveal current steps at selected voltages that are predicted theoretically and indicate electromagnetic coupling in this system. This form of coupling motivates new devices with arrays of phase locked junctions that interact through an underlying resonant waveguide and with no external microwave source.

  9. Superconducting Field-Effect Transistors

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Romanofsky, Robert R.; Tabib-Azar, Massood

    1995-01-01

    Devices offer switching speeds greater than semiconducting counterparts. High-Tc superconducting field-effect transistors (SUPEFETs) investigated for use as electronic switches in delay-line-type microwave phase shifters. Resemble semiconductor field-effect transistors in some respects, but their operation based on different principle; namely, electric-field control of transition between superconductivity and normal conductivity.

  10. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  11. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  12. High critical current superconducting tapes

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi; Foltyn, Stephen R.

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  13. A superconducting magnetic gear

    NASA Astrophysics Data System (ADS)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  14. Superconducting Nanotube Dots

    NASA Astrophysics Data System (ADS)

    Schönenberger, Christian

    2007-03-01

    In this talk, I will focus on charge transport in carbon nanotube devices with superconducting source and drain contacts in the finite-bias non-equilibrium transport regime. As contact material, bi-layers of Au and Al were used and transport has been studied at temperatures in the 0.1 K range. Because carbon nanotubes are quantum dots (qdots), we in fact explore the physics of qdots with superconducting contacts, something which only recently became possible thanks to carbon nanotubes and most recently to semiconducting nanowires. In my talk, I will first summarize our pioneering work on multiwalled carbon nanotubes in which we could demonstrate proximity induced effects both in the weak and the strong coupling regime. In the latter an intriguing interplay between superconductivity and Kondo physics appears. Then, I will discuss the physics of multiple Andreev reflection in a situation when only one resonant state is present and compare this with experimental results. Finally, I will compare our early results with our recent measurements on single-wall carbon nanotubes. This work has been supported by the Swiss Institute on Nanoscience, the Swiss National Science Foundation, EU projects DIENOW and HYSWITCH. I gratefully acknowledge contribution of the following persons to this work (in alphabetic order): B. Babic, W. Belzig, C. Bruder, M. R. Buitelaar, J.-C. Cuevas, A. Eichler, L. Forro, J. Gobrecht, M. Gr"aber, M. Iqbal, T. Kontos, A. Levy Yeyati, A. Martin-Rodero, T. Nussbaumer, S. Oberholzer, C. Strunk, H. Scharf, J. Trbovic, E. Vecino, M. Weiss

  15. Superconducting magnet cooling system

    DOEpatents

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  16. High gradient superconducting quadrupoles

    SciTech Connect

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed.

  17. Superconducting dipole electromagnet

    DOEpatents

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  18. Induced superconductivity in graphene

    NASA Astrophysics Data System (ADS)

    Heersche, Hubert B.; Jarillo-Herrero, Pablo; Oostinga, Jeroen B.; Vandersypen, Lieven M. K.; Morpurgo, Alberto F.

    2007-07-01

    Graphene layers, prepared by mechanical exfoliation, were contacted by superconducting electrodes consisting of a titanium-aluminium bilayer. Quantum hall measurements in the normal state confirmed the single layer nature of the graphene samples. Proximity induced supercurrents were observed in all samples, below 1 K. Using a backgate, the Fermi energy could be swept from valence to conduction band via the Charge neutrality point, demonstrating supercurrents carried by holes and electrons, respectively. Interestingly, a finite supercurrent was also observed at the charge neutrality (or Dirac) point, where the density of carrier states vanishes. Our results demonstrate phase coherence in graphene.

  19. Spatiotemporal study of gas heating mechanisms in a radio-frequency electrothermal plasma micro-thruster

    NASA Astrophysics Data System (ADS)

    Greig, Amelia; Charles, Christine; Boswell, Roderick

    2015-10-01

    A spatiotemporal study of neutral gas temperature during the first 100 s of operation for a radio-frequency electrothermal plasma micro-thruster operating on nitrogen at 60 W and 1.5 Torr is performed to identify the heating mechanisms involved. Neutral gas temperature is estimated from rovibrational band fitting of the nitrogen second positive system. A set of baffles are used to restrict the optical image and separate the heating mechanisms occurring in the central bulk discharge region and near the thruster walls. For each spatial region there are three distinct gas heating mechanisms being fast heating from ion-neutral collisions with timescales of tens of milliseconds, intermediate heating with timescales of 10 s from ion bombardment on the inner thruster tube surface creating wall heating, and slow heating with timescales of 100 s from gradual warming of the entire thruster housing. The results are discussed in relation to optimising the thermal properties of future thruster designs.

  20. Electromagnetic Initiation and Propagation of Bipolar Radiofrequency Tissue Reactions via Invasive Non-Insulated Microneedle Electrodes.

    PubMed

    Na, Jongju; Zheng, Zhenlong; Dannaker, Christopher; Lee, Sang Eun; Kang, Jin-Soo; Cho, Sung Bin

    2015-01-01

    Radiofrequency (RF) energy can be emitted into the skin, either non- or invasively, via a monopolar mode that utilizes an active electrode and a grounded electrode or via a bipolar mode that employs two active electrodes. In this experimental study of RF tissue reactions, bipolar RF energy was emitted in vivo to micropig skin at varying microneedle penetration depths, signal amplitudes, and conduction times. Immediately after RF treatment, skin samples exhibited RF-induced coagulation columns of thermal injury, separately generated around each microneedle in the dermis. In ex vivo bovine liver tissue, the thermal coagulation columns were found to be concentrated maximally around the pointed tips of each electrode. After a RF conduction time of 2 seconds, the individual areas of thermal coagulation began to converge with neighboring RF-induced coagulation columns; the convergence of coagulation columns was found to start from the tips of neighboring electrodes. PMID:26563971

  1. What Are the Benefits and Risks of Fitting Patients with Radiofrequency Identification Devices

    PubMed Central

    Levine, Mark; Adida, Ben; Mandl, Kenneth; Kohane, Isaac; Halamka, John

    2007-01-01

    Background to the debate: In 2004, the United States Food and Drug Administration approved a radiofrequency identification (RFID) device that is implanted under the skin of the upper arm of patients and that stores the patient's medical identifier. When a scanner is passed over the device, the identifier is displayed on the screen of an RFID reader. An authorized health professional can then use the identifier to access the patient's clinical information, which is stored in a separate, secure database. Such RFID devices may have many medical benefits—such as expediting identification of patients and retrieval of their medical records. But critics of the technology have raised several concerns, including the risk of the patient's identifying information being used for nonmedical purposes. PMID:18044979

  2. Rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC)

    SciTech Connect

    Li, Xiuling; Huang, Wen

    2015-04-28

    A rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis, where the multilayer sheet comprises a conductive pattern layer on a strain-relieved layer. The conductive pattern layer comprises a first conductive film and a second conductive film separated from the first conductive film in a rolling direction. In the rolled configuration, the first conductive film surrounds the longitudinal axis, and the second conductive film surrounds the first conductive film. The first conductive film serves as a signal line and the second conductive film serves as a conductive shield for the rolled-up transmission line structure.

  3. Electromagnetic Initiation and Propagation of Bipolar Radiofrequency Tissue Reactions via Invasive Non-Insulated Microneedle Electrodes

    PubMed Central

    Na, Jongju; Zheng, Zhenlong; Dannaker, Christopher; Lee, Sang Eun; Kang, Jin-Soo; Cho, Sung Bin

    2015-01-01

    Radiofrequency (RF) energy can be emitted into the skin, either non- or invasively, via a monopolar mode that utilizes an active electrode and a grounded electrode or via a bipolar mode that employs two active electrodes. In this experimental study of RF tissue reactions, bipolar RF energy was emitted in vivo to micropig skin at varying microneedle penetration depths, signal amplitudes, and conduction times. Immediately after RF treatment, skin samples exhibited RF-induced coagulation columns of thermal injury, separately generated around each microneedle in the dermis. In ex vivo bovine liver tissue, the thermal coagulation columns were found to be concentrated maximally around the pointed tips of each electrode. After a RF conduction time of 2 seconds, the individual areas of thermal coagulation began to converge with neighboring RF-induced coagulation columns; the convergence of coagulation columns was found to start from the tips of neighboring electrodes. PMID:26563971

  4. Pulsed Radiofrequency Ablation Under Ultrasound Guidance for Huge Neuroma

    PubMed Central

    Jung, Il; Lee, Chang Hee; Kim, Se Hun; Kim, Jin Sun; Yoo, Byoung Woo

    2014-01-01

    Amputation neuroma can cause very serious, intractable pain. Many treatment modalities are suggested for painful neuroma. Pharmacologic treatment shows a limited effect on eliminating the pain, and surgical treatment has a high recurrence rate. We applied pulsed radiofrequency treatment at the neuroma stalk under ultrasonography guidance. The long-term outcome was very successful, prompting us to report this case. PMID:25031817

  5. Genetic damage in subjects exposed to radiofrequency radiation.

    PubMed

    Verschaeve, Luc

    2009-01-01

    Despite many research efforts and public debate there is still great concern about the possible adverse effects of radiofrequency (RF) radiation on human health. This is especially due to the enormous increase of wireless mobile telephones and other telecommunication devices throughout the world. The possible genetic effects of mobile phone radiation and other sources of radiofrequencies constitute one of the major points of concern. In the past several review papers were published on laboratory investigations that were devoted to in vitro and in vivo animal (cyto)genetic studies. However, it may be assumed that some of the most important observations are those obtained from studies with individuals that were exposed to relatively high levels of radiofrequency radiation, either as a result of their occupational activity or as frequent users of radiofrequency emitting tools. In this paper the cytogenetic biomonitoring studies of RF-exposed humans are reviewed. A majority of these studies do show that RF-exposed individuals have increased frequencies of genetic damage (e.g., chromosomal aberrations) in their lymphocytes or exfoliated buccal cells. However, most of the studies, if not all, have a number of shortcomings that actually prevents any firm conclusion. Radiation dosimetry was lacking in all papers, but some of the investigations were flawed by much more severe imperfections. Large well-coordinated multidisciplinary investigations are needed in order to reach any robust conclusion. PMID:19073278

  6. A technique for periorbital syringomas: intralesional radiofrequency ablation

    PubMed Central

    Huang, Li-Ping; Zhang, Leng; Wang, Xing-Lin; Liu, Xiao-Cui; Jiang, Tian-Yu; Lin, Bi-Weng

    2012-01-01

    AIM To evaluate the efficacy of intralesional radiofrequency ablation in the treatment of periorbital syringomas. METHODS We tried the intralesional radiofrequency ablation for 64 patients with periorbital syringomas from 2007 to 2011. The operation was performed under 2.5 loupe magnifications. The handpiece was assembled with a needle electrode and connected to the radiofrequency ablation apparatus. The electrode was then inserted into the target lesions in dermis and delivering injury to the base of these tumors. Results were assessed clinically by comparing pre- and post-treatment photographs and patient satisfaction rates. RESULTS Clinical improvement increased with each subsequent treatment session. The percent of patients whose clinic improvement grade were≥3 after each session was respectively 71.9%(Session1), 83.3%(Session2), and 100%(Session3). The statistical results indicated the concordance of the clinical assessment and the satisfaction level of patients (kappa=0.78 of the session1; kappa=0.82 of the session2). The majority of patients had good or excellent cosmetic results. Postoperatively, there were no permanent side effects or recurrences. CONCLUSION As a new technique of minimally invasion, the intralesional radiofrequency ablation was found to be an effective, inexpensive, highly precise and safe way of treating periorbital syringomas. PMID:22762046

  7. The imprint of radiofrequency in the management of hepatocellular carcinoma

    PubMed Central

    Bramis, Ioannis; Triantopoulou, Charikleia; Madariaga, Juan; Dervenis, Christos

    2006-01-01

    Background. This article reviews the current results of radiofrequency application in the management of hepatocellular carcinoma (HCC) with reference to the comparison between the different surgical modalities. Method. An electronic search was performed for studies on the treatment of HCC. Results. Thermoablation by means of radiofrequency (RFA), microwave coagulation therapy (MCT) and laser-induced thermotherapy (LITT) provides tumor necrosis with a low complication rate. These methods are still not predictable and it is difficult to monitor the extent of necrosis in a real-time manner. Combined transarterial embolization and RF ablation is a promising strategy for large HCCs. Radiofrequency-assisted liver resection is unique and has become very popular recently because it permits parenchymal transection with minimal blood loss. Conclusion. Many alternative techniques have been applied recently for the management of HCC but their exact roles need to be defined by randomized studies. Advances in technology and refinements in technique may provide an effective and predictable way to ablate liver tumors using radiofrequency devices. PMID:18333136

  8. Cardiovascular risk in operators under radiofrequency electromagnetic radiation.

    PubMed

    Vangelova, Katia; Deyanov, Christo; Israel, Mishel

    2006-03-01

    The aim of the study was to assess the long-term effects of radiofrequency electromagnetic radiation (EMR) on the cardiovascular system. Two groups of exposed operators (49 broadcasting (BC) station and 61 TV station operators) and a control group of 110 radiorelay station operators, matched by sex and age, with similar job characteristics except for the radiofrequency EMR were studied. The EMR exposure was assessed and the time-weighted average (TWA) was calculated. The cardiovascular risk factors arterial pressure, lipid profile, body mass index, waist/hip ratio, smoking, and family history of cardiovascular disease were followed. The systolic and diastolic blood pressure (SBP and DBP), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly higher in the two exposed groups. It was found that the radiofrequency EMR exposure was associated with greater chance of becoming hypertensive and dyslipidemic. The stepwise multiple regression equations showed that the SBP and TWA predicted the high TC and high LDL-C, while the TC, age and abdominal obesity were predictors for high SBP and DBP. In conclusion, our data show that the radiofrequency EMR contributes to adverse effects on the cardiovascular system. PMID:16503299

  9. Process for selected gas oxide removal by radiofrequency catalysts

    DOEpatents

    Cha, C.Y.

    1993-09-21

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.

  10. Longevity of radiofrequency identification device microchips in citrus trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term identification of individual plants in the field is an important part of many types of botanical and horticultural research. In a previous report, we described methods for using implanted radiofrequency (RFID) microchips to tag citrus trees for field research. This report provides an upd...

  11. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... exposure limits. The criteria listed in table 1 shall be used to evaluate the environmental impact of human..., “Evaluating Compliance with FCC-Specified Guidelines for Human Exposure to Radiofrequency Radiation.” Note to... Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,”...

  12. Superconducting dome in doped quasi-two-dimensional organic Mott insulators: A paradigm for strongly correlated superconductivity

    NASA Astrophysics Data System (ADS)

    Hébert, Charles-David; Sémon, Patrick; Tremblay, A.-M. S.

    2015-11-01

    first-order transition between metal and pseudogap. Finally, we predict that electron doping should also lead to an increased range of U /t for superconductivity but with a reduced maximum Tc. This work also clearly shows that the superconducting dome in organic superconductors is tied to the Mott transition and its continuation as a transition separating pseudogap phase from correlated metal in doped compounds, as in the cuprates. Contrary to heavy fermions for example, the maximum Tc is definitely not attached to an antiferromagnetic quantum critical point. That can also be verified experimentally.

  13. Method of isotope separation by chemi-ionization

    DOEpatents

    Wexler, Sol; Young, Charles E.

    1977-05-17

    A method for separating specific isotopes present in an isotopic mixture by aerodynamically accelerating a gaseous compound to form a jet of molecules, and passing the jet through a stream of electron donor atoms whereby an electron transfer takes place, thus forming negative ions of the molecules. The molecular ions are then passed through a radiofrequency quadrupole mass filter to separate the specific isotopes. This method may be used for any compounds having a sufficiently high electron affinity to permit negative ion formation, and is especially useful for the separation of plutonium and uranium isotopes.

  14. Analysis of radiofrequency discharges in plasma

    DOEpatents

    Kumar, D.; McGlynn, S.P.

    1992-08-04

    Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition. 15 figs.

  15. Analysis of radiofrequency discharges in plasma

    DOEpatents

    Kumar, Devendra; McGlynn, Sean P.

    1992-01-01

    Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition.

  16. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  17. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  18. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  19. Overview on superconducting photoinjectors

    NASA Astrophysics Data System (ADS)

    Arnold, A.; Teichert, J.

    2011-02-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR-free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng.PSISDG0277-786X 5534, 22 (2004)10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1μmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang , in Proceedings of the 31st International Free Electron Laser Conference (FEL 09), Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009), p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.

  20. Optimization of the generator settings for endobiliary radiofrequency ablation

    PubMed Central

    Barret, Maximilien; Leblanc, Sarah; Vienne, Ariane; Rouquette, Alexandre; Beuvon, Frederic; Chaussade, Stanislas; Prat, Frederic

    2015-01-01

    AIM: To determine the optimal generator settings for endobiliary radiofrequency ablation. METHODS: Endobiliary radiofrequency ablation was performed in live swine on the ampulla of Vater, the common bile duct and in the hepatic parenchyma. Radiofrequency ablation time, “effect”, and power were allowed to vary. The animals were sacrificed two hours after the procedure. Histopathological assessment of the depth of the thermal lesions was performed. RESULTS: Twenty-five radiofrequency bursts were applied in three swine. In the ampulla of Vater (n = 3), necrosis of the duodenal wall was observed starting with an effect set at 8, power output set at 10 W, and a 30 s shot duration, whereas superficial mucosal damage of up to 350 μm in depth was recorded for an effect set at 8, power output set at 6 W and a 30 s shot duration. In the common bile duct (n = 4), a 1070 μm, safe and efficient ablation was obtained for an effect set at 8, a power output of 8 W, and an ablation time of 30 s. Within the hepatic parenchyma (n = 18), the depth of tissue damage varied from 1620 μm (effect = 8, power = 10 W, ablation time = 15 s) to 4480 μm (effect = 8, power = 8 W, ablation time = 90 s). CONCLUSION: The duration of the catheter application appeared to be the most important parameter influencing the depth of the thermal injury during endobiliary radiofrequency ablation. In healthy swine, the currently recommended settings of the generator may induce severe, supratherapeutic tissue damage in the biliary tree, especially in the high-risk area of the ampulla of Vater. PMID:26566429

  1. Char separator

    DOEpatents

    Matthews, Francis T.

    1979-01-01

    Particulates removed from the flue gases produced in a fluidized-bed furnace are separated into high-and low-density portions. The low-density portion is predominantly char, and it is returned to the furnace or burned in a separate carbon burnup cell. The high-density portion, which is predominantly limestone products and ash, is discarded or reprocessed. According to another version, the material drained from the bed is separated, the resulting high-and low-density portions being treated in a manner similar to that in which the flue-gas particulates are treated.

  2. CENTRIFUGAL SEPARATORS

    DOEpatents

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  3. Stereoisomers Separation

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr

    The use of capillary electrophoresis for enantiomer separation and optical purity determination is presented. The contents start with basic information about the nature of stereoizomers and the mechanism of enantioseparation using capillary electrophoresis techniques. The molecules to be separated show identical chemical structure and electrochemical behavior. Therefore, the chiral recognition of enantiomers is possible only by bonding to chiral selector and the separation based on very small differences in complexation energies of diastereomer complexes formed. This method is useful for this purpose due to the fact that different compounds can be used as chiral selectors. The mostly used chiral selectors like cyclodextrins, crown ethers, chiral surfactants, macrocyclic antibiotics, transition metal complexes, natural, and synthetic polymers and their application for this purpose is also discussed. Finally, examples of practical applications of electromigration techniques for enantiomers separation and determination are presented.

  4. Superconductivity in doped Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  5. Battery separator

    SciTech Connect

    Balouskus, R.A.; Feinberg, S.C.; Lundquist, J.T.; Lundsager, C.B.

    1980-09-23

    A battery separator and a method of forming the same is described. The separator has good electrical conductivity and a high degree of inhibition to dendrite formation, and is in the form of a thin sheet formed from a substantially uniform mixture of a thermoplastic rubber and a filler in a volume ratio of from about 1:0.15 to 1:0.6. The thermoplastic rubber is preferably a styrene/elastomer/styrene block copolymer.

  6. Design and test results of a 600-kW tetrode amplifier for the Superconducting Super Collider

    SciTech Connect

    Rees, D.E.; Brittain, D.L. ); Grippe, J.M.; Marrufo, O. )

    1993-01-01

    This paper describes the design and testing of a pulsed 600-kW tetrode amplifier that will be used to drive a radiofrequency quadrupole (RFQ) for the Superconducting Super Collider (SSC). Three stages of amplification provide a nominal gain of 77 dB and peak output power of 600 kW. The amplifier is operated at a pulse width of 100 [mu]s and a repetition frequency of 10 Hz. This paper presents the rf design and calculated operating conditions for the amplifier. Details of the electrical design are presented, along with test results.

  7. Design and test results of a 600-kW tetrode amplifier for the Superconducting Super Collider

    SciTech Connect

    Rees, D.E.; Brittain, D.L.; Grippe, J.M.; Marrufo, O.

    1993-05-01

    This paper describes the design and testing of a pulsed 600-kW tetrode amplifier that will be used to drive a radiofrequency quadrupole (RFQ) for the Superconducting Super Collider (SSC). Three stages of amplification provide a nominal gain of 77 dB and peak output power of 600 kW. The amplifier is operated at a pulse width of 100 {mu}s and a repetition frequency of 10 Hz. This paper presents the rf design and calculated operating conditions for the amplifier. Details of the electrical design are presented, along with test results.

  8. Product separator

    DOEpatents

    Welsh, Robert A.; Deurbrouck, Albert W.

    1976-01-20

    A secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present.

  9. Superconductivity Program for Electric Power Systems: 1994 Annual PEER Review. Volume 2, Meeting Proceedings

    NASA Astrophysics Data System (ADS)

    1994-07-01

    This is volume 2 of information that was presented at the 1994 Annual Peer Review, Superconductivity Program For Electric Power. Topics include component development; characterization of high-(Tc) Superconductors; wire development; coils; magnetic refrigerators; motor cooling issues; and magnetic separation. Individual projects were processed separately for the database.

  10. Nozzle for superconducting fiber production

    DOEpatents

    Righi, Jamal

    1992-11-17

    A nozzle apparatus for producing flexible fibers of superconducting material receives melted material from a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through the downwardly directed nozzle where it is subjected to a high velocity air flow which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by blowing them against a porous cloth.

  11. Antiferromagnetic hedgehogs with superconducting cores

    NASA Astrophysics Data System (ADS)

    Goldbart, Paul M.; Sheehy, Daniel E.

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang's SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to ``escape'' into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined.

  12. Antiferromagnetic hedgehogs with superconducting cores

    SciTech Connect

    Goldbart, P.M.; Sheehy, D.E.

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang{close_quote}s SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to {open_quotes}escape{close_quotes} into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined. {copyright} {ital 1998} {ital The American Physical Society}

  13. Negative refraction and superconductivity

    NASA Astrophysics Data System (ADS)

    Amariti, Antonio; Forcella, Davide; Mariotti, Alberto; Siani, Massimo

    2011-10-01

    We discuss exotic properties of charged hydrodynamical systems, in the broken superconducting phase, probed by electromagnetic waves. Motivated by general arguments from hydrodynamics, we observe that negative refraction, namely the propagation in opposite directions of the phase velocities and of the energy flux, is expected for low enough frequencies. We corroborate this general idea by analyzing a holographic superconductor in the AdS/CFT correspondence, where the response functions can be explicitly computed. We study the dual gravitational theory both in the probe and in the backreacted case. We find that, while in the first case the refractive index is positive at every frequency, in the second case there is negative refraction at low enough frequencies. This is in agreement with hydrodynamic considerations.

  14. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  15. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  16. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  17. Superconducting energy storage

    SciTech Connect

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  18. Superconductivity in uranium compounds

    NASA Astrophysics Data System (ADS)

    Mineev, V. P.

    2014-08-01

    On the basis of microscopic theory it is demonstrated how the coupling between the electrons by means of magnetization fluctuations in ferromagnetic metals with orthorhombic symmetry gives rise to an equal-spin pairing superconducting state with the general form of the order parameter dictated by symmetry. The strong upturn of the upper critical field along the b direction above 5 T in UCoGe is explained by the increase of the pairing interaction caused by the suppression of the Curie temperature by a magnetic field parallel to the b axis. It is proposed that a similar phenomenon at a much higher field must take place also for a field directed along the magnetically hardest a direction.

  19. Reduction of electronic noise from radiofrequency generator during radiofrequency ablation in interventional MRI.

    PubMed

    Oshiro, Thomas; Sinha, Usha; Lu, David; Sinha, Shantanu

    2002-01-01

    MRI has been used increasingly in the recent past for the guidance and monitoring of minimally invasive interventional procedures, using typically radiofrequency (RF) and laser energy, cryoablation, and percutaneous ethanol. RF energy has been used over the last 30 years for the ablation of tissues. Its use in conjunction with MRI for monitoring is limited, however, because of the electronic noise produced by the RF generators, which can significantly deteriorate image quality. The objective of this work was to devise methods by which this noise can be reduced to an acceptable level to allow simultaneous acquisition of MR images for monitoring purposes with the application of RF energy. Three different methods of noise reduction were investigated in a 0.2 T MR scanner: filtration using external hardware circuitry, MR scanner software-controlled filtration, and keyholing. The last two methods were unable by themselves to suppress the noise to an acceptable degree. Hardware filtration, however, provides excellent suppression of RF noise and is able to withstand up to 12 W of RF energy. When all the three approaches are combined, significant reduction of RF noise is achieved. The feasibility of creating an RF lesion of about 1.2 cm diameter in vivo in a porcine model simultaneously with temperature-sensitive MRI with adequate noise suppression is demonstrated. PMID:11884792

  20. Percutaneous radiofrequency ablation versus surgical radiofrequency ablation for malignant liver tumours: the long-term results

    PubMed Central

    Wong, John; Lee, Kit-Fai; Yu, Simon Chun-Ho; Lee, Paul Sing-Fun; Cheung, Yue-Sun; Chong, Ching-Ning; Ip, Philip Ching-Tak; Lai, Paul Bo-San

    2013-01-01

    Background Radiofrequency ablation (RFA) has been used to treat hepatocellular carcinoma (HCC) and liver metastases for more than 10 years with promising early outcomes. Preliminary results comparing percutaneous and surgical approaches have shown no difference in short-term outcomes. In this study, the longer-term outcomes were presented. Methods Patients with liver malignancies treated by RFA were prospectively studied from 2003 to 2011. Post-ablation assessment by computed tomography (CT) scan and serum biochemistry was performed at regular intervals. Recurrence rates and long-term survival were analysed. Results A total of 233 patients with liver malignancies (75.5% HCC and 24.5% liver metastases) were analysed. Three RFA approaches were used (percutaneous 58.4%, laparoscopic 9.4% and open 32.2%). The median follow-up time was 29 months. Complete ablation was achieved in 83.7%, with no difference between the two approaches. More wound and chest complications were observed in the surgical group. Intra-hepatic recurrences were observed in 69.5%; extra-hepatic recurrences were detected in 22.3%, with no difference between the two groups. There was no statistical difference between the two approaches in overall 1-, 3- and 5-year survival. Conclusion An extended period of follow-up in patients with liver malignancies showed that RFA is an effective treatment. No difference was demonstrated between the percutaneous and surgical approach, in terms of recurrence and survival. PMID:23458320

  1. Cryoballoon or Radiofrequency Ablation for Paroxysmal Atrial Fibrillation.

    PubMed

    Kuck, Karl-Heinz; Brugada, Josep; Fürnkranz, Alexander; Metzner, Andreas; Ouyang, Feifan; Chun, K R Julian; Elvan, Arif; Arentz, Thomas; Bestehorn, Kurt; Pocock, Stuart J; Albenque, Jean-Paul; Tondo, Claudio

    2016-06-01

    Background Current guidelines recommend pulmonary-vein isolation by means of catheter ablation as treatment for drug-refractory paroxysmal atrial fibrillation. Radiofrequency ablation is the most common method, and cryoballoon ablation is the second most frequently used technology. Methods We conducted a multicenter, randomized trial to determine whether cryoballoon ablation was noninferior to radiofrequency ablation in symptomatic patients with drug-refractory paroxysmal atrial fibrillation. The primary efficacy end point in a time-to-event analysis was the first documented clinical failure (recurrence of atrial fibrillation, occurrence of atrial flutter or atrial tachycardia, use of antiarrhythmic drugs, or repeat ablation) following a 90-day period after the index ablation. The noninferiority margin was prespecified as a hazard ratio of 1.43. The primary safety end point was a composite of death, cerebrovascular events, or serious treatment-related adverse events. Results A total of 762 patients underwent randomization (378 assigned to cryoballoon ablation and 384 assigned to radiofrequency ablation). The mean duration of follow-up was 1.5 years. The primary efficacy end point occurred in 138 patients in the cryoballoon group and in 143 in the radiofrequency group (1-year Kaplan-Meier event rate estimates, 34.6% and 35.9%, respectively; hazard ratio, 0.96; 95% confidence interval [CI], 0.76 to 1.22; P<0.001 for noninferiority). The primary safety end point occurred in 40 patients in the cryoballoon group and in 51 patients in the radiofrequency group (1-year Kaplan-Meier event rate estimates, 10.2% and 12.8%, respectively; hazard ratio, 0.78; 95% CI, 0.52 to 1.18; P=0.24). Conclusions In this randomized trial, cryoballoon ablation was noninferior to radiofrequency ablation with respect to efficacy for the treatment of patients with drug-refractory paroxysmal atrial fibrillation, and there was no significant difference between the two methods with regard to

  2. Map Separates

    USGS Publications Warehouse

    U.S. Geological Survey

    2001-01-01

    U.S. Geological Survey (USGS) topographic maps are printed using up to six colors (black, blue, green, red, brown, and purple). To prepare your own maps or artwork based on maps, you can order separate black-and-white film positives or negatives for any color printed on a USGS topographic map, or for one or more of the groups of related features printed in the same color on the map (such as drainage and drainage names from the blue plate.) In this document, examples are shown with appropriate ink color to illustrate the various separates. When purchased, separates are black-and-white film negatives or positives. After you receive a film separate or composite from the USGS, you can crop, enlarge or reduce, and edit to add or remove details to suit your special needs. For example, you can adapt the separates for making regional and local planning maps or for doing many kinds of studies or promotions by using the features you select and then printing them in colors of your choice.

  3. The superconducting cavity stability ruby maser oscillator

    NASA Technical Reports Server (NTRS)

    Dick, G. J.; Strayer, D. M.

    1985-01-01

    Analysis of an application of the rudy maser to a superconducting Cavity Stabilized oscillator shows many attractive features. These derive from the mechancial stability inherent in an all-cryogenic design and from the properties of the ruby maser itself. A multiple-cavity design has been developed to allow physical separation of the high-Q superconducting cavity and the ruby element with its requried applied magnetic field. Mode selection is accomplished in this design by tuning the ruby by means of the applied field. We conclude that such an oscillator would perform well, even with cavity Q's as low as 10 to the 8th power allowing the use of a superconductor-on-sapphire resonator with its greater rigidity and lower thermal expansion. A first test of the Superconducting Cavity Stabilized Maser Oscillator (SCSMO) confirms the efficacy of the multiple-cavity design and the applicability of the ruby maser. Frequency variation less than 4x10 to the minus 11th power was measured in the stabilized mode and is attributed to the reference oscillator and to instabilities in the pump source. Variation of 10 to the minus 10th power was observed in the low-Q unstabilized mode, again attributable to pump fluctuations. Even so, direct scaling to a Q of 10 the 9th power predicts a stability better than 10 to the minus 15th power. Together with results showing the lowest losses to date in sapphire at microwave frequencies, and preliminary experiments on superconductor-on-sapphire resonators, frequency stability, levels as low as 10 to the minus 17th power are indicated.

  4. Mixed-mu superconducting bearings

    DOEpatents

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  5. Mixed-mu superconducting bearings

    DOEpatents

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  6. Search for Superconductivity in Micrometeorites

    PubMed Central

    Guénon, S.; Ramírez, J. G.; Basaran, Ali C.; Wampler, J.; Thiemens, M.; Taylor, S.; Schuller, Ivan K.

    2014-01-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10−12 cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures. PMID:25476841

  7. Superconductivity: A celebration of pairs

    NASA Astrophysics Data System (ADS)

    Norman, Michael R.

    2007-12-01

    It is fifty years since John Bardeen, Leon Cooper and Bob Schrieffer presented the microscopic theory of superconductivity. At a wonderful conference in Urbana the 'good old days' were remembered, and the challenges ahead surveyed.

  8. Superconductivity from Emerging Magnetic Moments.

    PubMed

    Hoshino, Shintaro; Werner, Philipp

    2015-12-11

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds. PMID:26705649

  9. Superconductivity from Emerging Magnetic Moments

    NASA Astrophysics Data System (ADS)

    Hoshino, Shintaro; Werner, Philipp

    2015-12-01

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds.

  10. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  11. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  12. High pressure studies of superconductivity

    NASA Astrophysics Data System (ADS)

    Hillier, Narelle Jayne

    Superconductivity has been studied extensively since it was first discovered over 100 years ago. High pressure studies, in particular, have been vital in furthering our understanding of the superconducting state. Pressure allows researchers to enhance the properties of existing superconductors, to find new superconductors, and to test the validity of theoretical models. This thesis presents a series of high pressure measurements performed in both He-gas and diamond anvil cell systems on various superconductors and on materials in which pressure-induced superconductivity has been predicted. Under pressure the alkali metals undergo a radical departure from the nearly-free electron model. In Li this leads to a superconducting transition temperature that is among the highest of the elements. All alkali metals have been predicted to become superconducting under pressure. Pursuant to this, a search for superconductivity has been conducted in the alkali metals Na and K. In addition, the effect of increasing electron concentration on Li1-xMgx alloys has been studied. Metallic hydrogen and hydrogen-rich compounds are believed to be good candidates for high temperature superconductivity. High pressure optical studies of benzene (C6H6) have been performed to 2 Mbar to search for pressure-induced metallization. Finally, cuprate and iron-based materials are considered high-Tc superconductors. These layered compounds exhibit anisotropic behavior under pressure. Precise hydrostatic measurements of dTc/dP on HgBa2CuO 4+delta have been carried out in conjunction with uniaxial pressure experiments by another group. The results obtained provide insight into the effect of each of the lattice parameters on Tc. Finally, a series of hydrostatic and non-hydrostatic measurements on LnFePO (Ln = La, Pr, Nd) reveal startling evidence that the superconducting state in the iron-based superconductors is highly sensitive to lattice strain.

  13. The challenge of unconventional superconductivity.

    SciTech Connect

    Norman, M. R.

    2011-04-08

    During the past few decades, several new classes of superconductors have been discovered that do not appear to be related to traditional superconductors. The source of the superconductivity of these materials is likely different from the electron-ion interactions that are at the heart of conventional superconductivity. Developing a rigorous theory for any of these classes of materials has proven to be a difficult challenge and will remain one of the major problems in physics in the decades to come.

  14. Magnetic Levitators With Superconductive Components

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P.

    1995-01-01

    Magnetic noncontact levitators that include superconductive components provide vibration-damping suspension for cryogenic instruments, according to proposal. Because superconductive components attached to levitated cryogenic instruments, no additional coolant liquid or refrigeration power needed. Also because vibration-damping components of levitators located outside cold chambers, in ambient environment, not necessary to waste coolant liquid or refrigeration power on dissipation of vibrational energy. At least three levitating magnets and three superconductors necessary for stable levitation.

  15. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.20, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  16. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata.

    PubMed

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.2(0), respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result. PMID:23464200

  17. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    SciTech Connect

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-15

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and {+-}0.2{sup 0}, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ('Dee' voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  18. Superconducting magnets for space flight. [magnetic cosmic ray spectrometers

    NASA Technical Reports Server (NTRS)

    Golden, R. L.

    1975-01-01

    The operating principle and application of superconducting magnetic spectrometers for cosmic ray analysis are described. Magnetic spectrometer experiments are thought to be possible in the areas of charge composition and its possible energy dependence, isotopic separation up to several GeV/n, electrons and positrons energy spectra, galactic secondary antiprotons, searches for primordial antimatter, searches for substructure in energy spectra, and gamma ray astronomy. Operational problems associated with the magnets are discussed, and a possible shuttle payload is also described.

  19. Superconducting pipes and levitating magnets

    NASA Astrophysics Data System (ADS)

    Levin, Yan; Rizzato, Felipe B.

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L≳a decays, in the axial direction, with a characteristic length ξ≈0.26a . The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  20. Superconducting pipes and levitating magnets.

    PubMed

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel. PMID:17280160