Science.gov

Sample records for supersonic aerodynamic characteristics

  1. Supersonic Aerodynamic Characteristics of Proposed Mars '07 Smart Lander Configurations

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Horvath, Thomas J.; Erickson, Gary E.; Green, Joseph M.

    2002-01-01

    Supersonic aerodynamic data were obtained for proposed Mars '07 Smart Lander configurations in NASA Langley Research Center's Unitary Plan Wind Tunnel. The primary objective of this test program was to assess the supersonic aerodynamic characteristics of the baseline Smart Lander configuration with and without fixed shelf/tab control surfaces. Data were obtained over a Mach number range of 2.3 to 4.5, at a free stream Reynolds Number of 1 x 10(exp 6) based on body diameter. All configurations were run at angles of attack from -5 to 20 degrees and angles of sideslip of -5 to 5 degrees. These results were complemented with computational fluid dynamic (CFD) predictions to enhance the understanding of experimentally observed aerodynamic trends. Inviscid and viscous full model CFD solutions compared well with experimental results for the baseline and 3 shelf/tab configurations. Over the range tested, Mach number effects were shown to be small on vehicle aerodynamic characteristics. Based on the results from 3 different shelf/tab configurations, a fixed control surface appears to be a feasible concept for meeting aerodynamic performance metrics necessary to satisfy mission requirements.

  2. Supersonic Aerodynamic Characteristics of Blunt Body Trim Tab Configurations

    NASA Technical Reports Server (NTRS)

    Korzun, Ashley M.; Murphy, Kelly J.; Edquist, Karl T.

    2013-01-01

    Trim tabs are aerodynamic control surfaces that can allow an entry vehicle to meet aerodynamic performance requirements while reducing or eliminating the use of ballast mass and providing a capability to modulate the lift-to-drag ratio during entry. Force and moment data were obtained on 38 unique, blunt body trim tab configurations in the NASA Langley Research Center Unitary Plan Wind Tunnel. The data were used to parametrically assess the supersonic aerodynamic performance of trim tabs and to understand the influence of tab area, cant angle, and aspect ratio. Across the range of conditions tested (Mach numbers of 2.5, 3.5, and 4.5; angles of attack from -4deg to +20deg; angles of sideslip from 0deg to +8deg), the effects of varying tab area and tab cant angle were found to be much more significant than effects from varying tab aspect ratio. Aerodynamic characteristics exhibited variation with Mach number and forebody geometry over the range of conditions tested. Overall, the results demonstrate that trim tabs are a viable approach to satisfy aerodynamic performance requirements of blunt body entry vehicles with minimal ballast mass. For a 70deg sphere-cone, a tab with 3% area of the forebody and canted approximately 35deg with no ballast mass was found to give the same trim aerodynamics as a baseline model with ballast mass that was 5% of the total entry mass.

  3. Theoretical and experimental investigation of supersonic aerodynamic characteristics of a twin-fuselage concept

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.; Brentner, K. S.

    1983-01-01

    A theoretical and experimental investigation has been conducted to evaluate the fundamental supersonic aerodynamic characteristics of a generic twin-body model at a Mach number of 2.70. Results show that existing aerodynamic prediction methods are adequate for making preliminary aerodynamic estimates.

  4. Comparison of analytical and experimental supersonic aerodynamic characteristics of a forward control missile

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1981-01-01

    Techniques to predict the aerodynamic characteristics of slender cruciform missiles have been developed and are constantly being updated and improved. This paper presents comparisons between analytical and experimental supersonic aerodynamic data for a class of canard-controlled missile configurations similar to the sidewinder missile. Three aerodynamic prediction computer codes, including program MISSILE2, a recently improved version of program MISSILE, are evaluated by comparison with the test data to assess their accuracy. The major emphasis is placed on the roll control characteristics. In addition, tail span optimization, longitudinal and lateral control, induced roll, and missile roll orientation effects are addressed.

  5. The aerodynamics of supersonic parachutes

    SciTech Connect

    Peterson, C.W.

    1987-06-01

    A discussion of the aerodynamics and performance of parachutes flying at supersonic speeds is the focus of this paper. Typical performance requirements for supersonic parachute systems are presented, followed by a review of the literature on supersonic parachute configurations and their drag characteristics. Data from a recent supersonic wind tunnel test series is summarized. The value and limitations of supersonic wind tunnel data on hemisflo and 20-degree conical ribbon parachutes behind several forebody shapes and diameters are discussed. Test techniques were derived which avoided many of the opportunities to obtain erroneous supersonic parachute drag data in wind tunnels. Preliminary correlations of supersonic parachute drag with Mach number, forebody shape and diameter, canopy porosity, inflated canopy diameter and stability are presented. Supersonic parachute design considerations are discussed and applied to a M = 2 parachute system designed and tested at Sandia. It is shown that the performance of parachutes in supersonic flows is a strong function of parachute design parameters and their interactions with the payload wake.

  6. Assessment of analytic methods for the prediction of aerodynamic characteristics of arbitrary bodies at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Landrum, E. J.; Miller, D. S.

    1980-01-01

    Trends toward the automation of the design process for airplanes and missiles accentuate the need for analytic techniques for the prediction of aerodynamic characteristics. A number of computer codes have been developed or are under development which show promise of significantly improving the estimation of aerodynamic characteristics for arbitrarily-shaped bodies at supersonic speeds. The programs considered range in complexity from a simple linearized solution employing slender body theory to an exact finite difference solution of the Euler equations. The results from five computer codes are compared with experimental data to determine the accuracy, range of applicability, ease of use, and computer time and cost of the programs. The results provide a useful guide for selecting the appropriate method for treating bodies at the various levels of an automated design process.

  7. Supersonic aerodynamic characteristics of an advanced F-16 derivative aircraft configuration

    NASA Technical Reports Server (NTRS)

    Fox, Mike C.; Forrest, Dana K.

    1993-01-01

    A supersonic wind tunnel investigation was conducted in the NASA Langley Unitary Plan Wind Tunnel on an advanced derivative configuration of the United States Air Force F-16 fighter. Longitudinal and lateral directional force and moment data were obtained at Mach numbers of 1.60 to 2.16 to evaluate basic performance parameters and control effectiveness. The aerodynamic characteristics for the F-16 derivative model were compared with the data obtained for the F-16C model and also with a previously tested generic wing model that features an identical plan form shape and similar twist distribution.

  8. Supersonic aerodynamic characteristics of the North American Rockwell ATP shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Ware, G. M.; Pencer, B., Jr.; Founier, R. H.

    1973-01-01

    A wind tunnel study to determine the supersonic aerodynamic characteristics of a 0.01925-scale model of the space shuttle orbiter configuration is reported. The model consisted of a low-finess-ratio body with a blended 50 swept delta wing forming an ogee planform and a center-line-mounted vertical tail. Tests were made at Mach numbers from 1.90 to 4.63, at angles of attack from -6 to 30, at angles of sideslip of 0 and 3, and at a Reynolds number, based on body length, of 5.3x 1 million.

  9. Aerodynamic Characteristics of a Supersonic Fighter Aircraft Model at Mach 0.40 to 2.47

    NASA Technical Reports Server (NTRS)

    Capone, F. J.; Bare, E. A.; Arbiter, D.

    1986-01-01

    The aerodynamic characteristics of an advanced twin-engine fighter aircraft designed for supersonic cruise have been studied in the Langley 16-Foot Transonic Tunnel and the Lewis 10- by 10-Foot Supersonic Tunnel. The objective of this investigation was to establish an aerodynamic data base for the configuration with flow-through nacelles and representative inlets. The use of a canard for trim and the effects of fairing over the inlets were assessed. Comparisons between experimental and theoretical results were also made. The theoretical results were determined by using a potential vortex lift code for subsonic speeds and a linear aerodynamic code for supersonic speeds. This investigation was conducted at Mach numbers from 0.40 to 2.47, at angles of attack from 0 deg to about 20 deg, and at inlet capture ratios of about 0.5 to 1.4.

  10. Subsonic and supersonic aerodynamic characteristics of a supersonic cruise fighter model with a twisted and cambered wing with 74 deg sweep

    NASA Technical Reports Server (NTRS)

    Morris, O. A.

    1977-01-01

    A wind tunnel investigation has been conducted to determine the longitudinal and lateral aerodynamic characteristics of a model of a supersonic cruise fighter configuration with a design Mach number of 2.60. The configuration is characterized by a highly swept arrow wing twisted and cambered to minimize supersonic drag due to lift, twin wing mounted vertical tails, and an aft mounted integral underslung duel-engine pod. The investigation also included tests of the configuration with larger outboard vertical tails and with small nose strakes.

  11. Supersonic Parachute Aerodynamic Testing and Fluid Structure Interaction Simulation

    NASA Astrophysics Data System (ADS)

    Lingard, J. S.; Underwood, J. C.; Darley, M. G.; Marraffa, L.; Ferracina, L.

    2014-06-01

    The ESA Supersonic Parachute program expands the knowledge of parachute inflation and flying characteristics in supersonic flows using wind tunnel testing and fluid structure interaction to develop new inflation algorithms and aerodynamic databases.

  12. Supersonic aerodynamic characteristics of conformal carriage monoplanar circular missile configurations with low-profile quadriform tail fins

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1990-01-01

    Wind tunnel tests were conducted on monoplanar circular missile configurations with low-profile quadriform tail fins to provide an aerodynamic data base to study and evaluate air-launched missile candidates for efficient conformal carriage on supersonic-cruise-type aircraft. The tests were conducted at Mach numbers from 1.70 to 2.86 for a constant Reynolds number per foot of 2,000,000. Selected test results are presented to show the effects of tail-fin dihedral angle, wing longitudinal and vertical location, and nose-body strakes on the static longitudinal and lateral-directional aerodynamic stability and control characteristics.

  13. Supersonic aerodynamics of delta wings

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    1988-01-01

    Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.

  14. Supersonic aerodynamic characteristics of a tail-control cruciform maneuverable missile with and without wings

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.; Fournier, R. H.

    1978-01-01

    The aerodynamic characteristics for a winged and a wingless cruciform missile are examined. The body was an ogive-cylinder with a 3.5 caliber forebody; an overall length-to-diameter ratio of 11.667; and has cruciform tails that were trapexoidal in planform. Tests were made both with and without 72.9 deg cruciform delta wings. The investigation was made for Mach numbers from 1.50 to 4.63, roll attitudes of 0 and 45 deg, angles of attack from -40 to 22 deg, and tail control deflections from 10 to -40 deg. The purpose is to determine the influence of the aerodynamic behavior on the design choice for maneuverable missiles intended primarily for air-to-air or surface-to-surface missions. The results indicate that the winged missile with its more linear aerodynamic characteristics and higher lift-curve slope, should provide the highest maneuverability over a large operational range.

  15. Application of a full potential method for predicting supersonic flow fields and aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Jones, K. M.

    1983-01-01

    A nonlinear aerodynamic prediction technique which solves the conservative full potential equation has been applied to the analysis of three waverider configurations. This technique was selected based on its capability to analyze the off-design characteristics of the waveriders. Very good correlations were achieved with surface pressure data for both the Mach 4 elliptic cone waverider and the Mach 6 caret-wing derivative. Off-design Mach number and angle-of-attack pressure correlations were very good for the elliptic cone waverider. The range of correlation with data exceeded that expected based on the theory limitations. A surface pressure integration routine was demonstrated and agreement between predicted aerodynamic forces and experimental force data for the Mach 4 waverider was excellent. Analysis of a nonconical waverider configuration was initiated where a discrete input option is used to achieve the computational gridding. Preliminary analysis of this configuration indicates the correct shock location will be predicted.

  16. Supersonic aerodynamic characteristics of canard, tailless, and aft-tail configurations for 2 wing planforms

    NASA Technical Reports Server (NTRS)

    Covell, P. F.

    1985-01-01

    Aerodynamic characteristics of canard, tailless, and aft tail configurations were compared in tests on a general research model (generic fuselage without canopy, inlets, or vertical tails) at Mach 1.60 and 2.00 in the Langley Unitary Plan Wind Tunnel. Two uncambered wing planforms (trapezoidal with 44 deg leading edge sweep and delta with 60 deg leading edge sweep) were tested for each configuration. The relative merits of the configurations were also determined theoretically, to evaluate the capabilities of a linear theory code for such analyses. The canard and aft tail configurations have similar measured values for lift curve slope, maximum lift drag ratio, and zero lift drag. The stability decrease as Mach number increases is greatest for the tailless configuration and least for the canard configuration. Because of very limited accuracy in predicting the aerodynamic parameter increments between configurations, the linear theory code is not adequate for determining the relative merits of canard, tailless, and aft tail configurations.

  17. Supersonic aerodynamic characteristics of a tail-control cruciform maneuverable missile with and without wings

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    The aerodynamic characteristics for a winged and wingless cruciform missile configuration were examined. The configuration had an ogive-cylinder body with a 3.5 caliber forebody; an overall length-to-diameter ratio of 11.667; and had cruciform tails that were trapezoidal in planform. Tests were made both with and without 72.9 degree cruciform delta wings. The investigation was made for Mach numbers from 1.50 to 4.63, roll attitudes of 0 degrees and 45 degrees, angles of attack from -4 degrees to 22 degrees, and tail control deflections from 10 degrees to -40 degrees.

  18. Transonic aerodynamic characteristics of a supersonic cruise aircraft research model with the engines suspended above the wing

    NASA Technical Reports Server (NTRS)

    Mercer, C. E.; Carson, G. T., Jr.

    1979-01-01

    The influence of upper-surface nacelle exhaust flow on the aerodynamic characteristics of a supersonic cruise aircraft research configuration was investigated in a 16 foot transonic tunnel over a range of Mach numbers from 0.60 to 1.20. The arrow-wing transport configuration with engines suspended over the wing was tested at angles of attack from -4 deg to 6 deg and jet total pressure ratios from 1 to approximately 13. Wing-tip leading edge flap deflections of -10 deg to 10 deg were tested with the wing-body configuration. Various nacelle locations (chordwise, spanwise, and vertical) were tested over the ranges of Mach numbers, angles of attack, and jet total-pressure ratios. The results show that reflecting the wing-tip leading edge flap from 0 deg to -10 deg increased the maximum lift-drag ratio by 1.0 at subsonic speeds. Jet exhaust interference effects were negligible.

  19. Survey of engineering computational methods and experimental programs for estimating supersonic missile aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Sawyer, W. C.; Allen, J. M.; Hernandez, G.; Dillenius, M. F. E.; Hemsch, M. J.

    1982-01-01

    This paper presents a survey of engineering computational methods and experimental programs used for estimating the aerodynamic characteristics of missile configurations. Emphasis is placed on those methods which are suitable for preliminary design of conventional and advanced concepts. An analysis of the technical approaches of the various methods is made in order to assess their suitability to estimate longitudinal and/or lateral-directional characteristics for different classes of missile configurations. Some comparisons between the predicted characteristics and experimental data are presented. These comparisons are made for a large variation in flow conditions and model attitude parameters. The paper also presents known experimental research programs developed for the specific purpose of validating analytical methods and extending the capability of data-base programs.

  20. Effect of milling machine roughness and wing dihedral on the supersonic aerodynamic characteristics of a highly swept wing

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.

    1989-01-01

    An experimental investigation was conducted to assess the effect of surface finish on the longitudinal and lateral aerodynamic characteristics of a highly-swept wing at supersonic speeds. A study of the effects of wing dihedral was also made. Included in the tests were four wing models: three models having 22.5 degrees of outboard dihedral, identical except for surface finish, and a zero-dihedral, smooth model of the same planform for reference. Of the three dihedral models, two were taken directly from the milling machine without smoothing: one having a maximum scallop height of 0.002 inches and the other a maximum scallop height of 0.005 inches. The third dihedral model was handfinished to a smooth surface. Tests were conducted in Test Section 1 of the Unitary Plan Wind Tunnel at NASA-Langley over a range of Mach numbers from 1.8 to 2.8, a range of angle of attack from -5 to 8 degrees, and at a Reynolds numbers per foot of 2 x 10(6). Selected data were also taken at a Reynolds number per foot of 6 x 10(6). Drag coefficient increases, with corresponding lift-drag ratio decreases were the primary aerodynamic effects attributed to increased surface roughness due to milling machine grooves. These drag and lift-drag ratio increments due to roughness increased as Reynolds number increased.

  1. Subsonic and supersonic static aerodynamic characteristics of a family of bulbous base cones measured with a magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Vlajinac, M.; Stephens, T.; Gilliam, G.; Pertsas, N.

    1972-01-01

    Results of subsonic and supersonic wind-tunnel tests with a magnetic balance and suspension system on a family of bulbous based cone configurations are presented. At subsonic speeds the base flow and separation characteristics of these configurations is shown to have a pronounced effect on the static data. Results obtained with the presence of a dummy sting are compared with support interference free data. Support interference is shown to have a substantial effect on the measured aerodynamic coefficient.

  2. Supersonic aerodynamic characteristics of a proposed Assured Crew Return Capability (ACRC) lifting-body configuration

    NASA Technical Reports Server (NTRS)

    Ware, George M.

    1989-01-01

    An investigation was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers from 1.6 to 4.5. The model had a low-aspect-ratio body with a flat undersurface. A center fin and two outboard fins were mounted on the aft portion of the upper body. The outboard fins were rolled outboard 40 deg from the vertical. Elevon surfaces made up the trailing edges of the outboard fins, and body flaps were located on the upper and lower aft fuselage. The center fin pivoted about its midchord for yaw control. The model was longitudinally stable about the design center-of-gravity position at 54 percent of the body length. The configuration with undeflected longitudinal controls trimmed near 0 deg angle of attack at Mach numbers from 1.6 to 3.0 where lift and lift-drag ratio were negative. Longitudinal trim was near the maximum lift-drag ratio (1.4) at Mach 4.5. The model was directionally stable over Mach number range except at angles of attack around 4 deg at M = 2.5. Pitch control deflection of more than -10 deg with either elevons or body flaps is needed to trim the model to angles of attack at which lift becomes positive. With increased control deflection, the lifting-body configuration should perform the assured crew return mission through the supersonic speed range.

  3. Effects of upper-surface blowing and thrust vectoring on low-speed aerodynamic characteristics of a large-scale supersonic transport model

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Mclemore, H. C.; Shivers, J. P.

    1975-01-01

    Tests were conducted in the Langley full-scale tunnel to determine the low-speed aerodynamic characteristics of a large-scale arrow-wing supersonic transport configured with engines mounted above the wing for upper surface blowing, and conventional lower surface engines with provisions for thrust vectoring. A limited number of tests were conducted for the upper surface engine configuration in the high lift condition for beta = 10 in order to evaluate lateral directional characteristics, and with the right engine inoperative to evaluate the engine out condition.

  4. Transonic and supersonic ground effect aerodynamics

    NASA Astrophysics Data System (ADS)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  5. Supersonic aerodynamic characteristics of a series of wrap-around-fin missile configurations

    NASA Technical Reports Server (NTRS)

    Fournier, R. H.

    1977-01-01

    A parametric study of wrap-around-fin missile configurations was conducted at Mach numbers from 1.60 to 2.86 in the Langley Unitary Plan wind tunnel. The fin configurations investigated included variations in chord length, leading edge sweep, thickness ratio, and leading edge shape. The investigation also included a smooth and a stepped-down afterbody required for flush retraction of the wrap-around-fin configuration. The investigation indicated no unusual longitudinal characteristics; however, all the wrap-around-fin configurations tested indicated erratic lateral behavior, particularly in the form of induced roll at zero angle of attack and irregular variations of roll with angle of attack and Mach number. The magnitude of rolling moment at an angle of attack of 0 deg is estimated to represent approximately 0.25 deg or less roll control deflection. The stepped-down afterbody has a marked effect on reducing the induced roll.

  6. Aerodynamic Design Opportunities for Future Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.; Flamm, Jeffrey D.

    2002-01-01

    A discussion of a diverse set of aerodynamic opportunities to improve the aerodynamic performance of future supersonic aircraft has been presented and discussed. These ideas are offered to the community in a hope that future supersonic vehicle development activities will not be hindered by past efforts. A number of nonlinear flow based drag reduction technologies are presented and discussed. The subject technologies are related to the areas of interference flows, vehicle concepts, vortex flows, wing design, advanced control effectors, and planform design. The authors also discussed the importance of improving the aerodynamic design environment to allow creativity and knowledge greater influence. A review of all of the data presented show that pressure drag reductions on the order of 50 to 60 counts are achievable, compared to a conventional supersonic cruise vehicle, with the application of several of the discussed technologies. These drag reductions would correlate to a 30 to 40% increase in cruise L/D (lift-to-drag ratio) for a commercial supersonic transport.

  7. High supersonic aerodynamic characteristics of five irregular planform wings with systematically varying wing fillet geometry tested in the NASA/LaRC 4-foot UPWT (LEG 2) (LA45A/B)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An experimental and analytical aerodynamic program to develop predesign guides for irregular planform wings is reported. The benefits are linearization of subsonic lift curve slope to high angles of attack and avoidance of subsonic pitch instabilities at high lift by proper tailoring of the planform fillet wing combination while providing the desired hypersonic trim angle and stability. The two prime areas of concern are to optimize shuttle orbiter landing and entry characteristics. Basic longitudinal aerodynamic characteristics at high supersonic speeds are developed.

  8. Hydrodynamic and Aerodynamic Characteristics of a Model of a Supersonic Multijet Water-Based Aircraft Equipped with Supercavitating Hydrofoils

    NASA Technical Reports Server (NTRS)

    McKann, Robert E.; Blanchard, Ulysse J.; Pearson, Albin O.

    1960-01-01

    The hydrodynamic and aerodynamic characteristics of a model of a multijet water-based Mach 2.0 aircraft equipped with hydrofoils have been determined. Takeoff stability and spray characteristics were very good, and sufficient excess thrust was available for takeoff in approximately 32 seconds and 4,700 feet at a gross weight of 225,000 pounds. Longitudinal and lateral stability during smooth-water landings were good. Lateral stability was good during rough-water landings, but forward location of the hydrofoils or added pitch damping was required to prevent diving. Hydrofoils were found to increase the aerodynamic lift-curve slope and to increase the aerodynamic drag coefficient in the transonic speed range, and the maximum lift-drag ratio decreased from 7.6 to 7.2 at the cruise Mach number of 0.9. The hydrofoils provided an increment of positive pitching moment over the Mach number range of the tests (0.6 to 1.42) and reduced the effective dihedral and directional stability.

  9. Supersonic aerodynamic characteristics of a maneuvering canard-controlled missile with fixed and free-rolling tail fins

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1990-01-01

    Wind tunnel investigations were conducted on a generic cruciform canard-controlled missile configuration. The model featured fixed or free-rolling tail-fin afterbodies to provide an expanded aerodynamic data base with particular emphasis on alleviating large induced rolling moments and/or for providing canard roll control throughout the entire test angle-of-attack range. The tests were conducted in the NASA Langley Unitary Plan Wind Tunnel at Mach numbers from 2.50 to 3.50 at a constant Reynolds number per foot of 2.00 x 10 to the 6th. Selected test results are presented to show the effects of a fixed or free-rolling tail-fin afterbody on the static longitudinal and lateral-directional aerodynamic characteristics of a canard-controlled missile with pitch, yaw, and roll control at model roll angles of 0 deg and 45 deg.

  10. Post-Flight Aerodynamic and Aerothermal Model Validation of a Supersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Tang, Chun; Muppidi, Suman; Bose, Deepak; Van Norman, John W.; Tanimoto, Rebekah; Clark, Ian

    2015-01-01

    NASA's Low Density Supersonic Decelerator Program is developing new technologies that will enable the landing of heavier payloads in low density environments, such as Mars. A recent flight experiment conducted high above the Hawaiian Islands has demonstrated the performance of several decelerator technologies. In particular, the deployment of the Robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R) was highly successful, and valuable data were collected during the test flight. This paper outlines the Computational Fluid Dynamics (CFD) analysis used to estimate the aerodynamic and aerothermal characteristics of the SIAD-R. Pre-flight and post-flight predictions are compared with the flight data, and a very good agreement in aerodynamic force and moment coefficients is observed between the CFD solutions and the reconstructed flight data.

  11. Aerodynamic characteristics of a supersonic cruise airplane configuration at Mach numbers of 2.30, 2.96, and 3.30. [Langley Unitary Plan wind tunnel test

    NASA Technical Reports Server (NTRS)

    Shrout, B. L.; Fournier, R. H.

    1979-01-01

    An investigation was made in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30, 2.96, and 3.30 to determine the static longitudinal and lateral aerodynamic characteristics of a model of a supersonic cruise airplane. The configuration, with a design Mach number of 3.0, has a highly swept arrow wing with tip panels of lesser sweep, a fuselage chine, outboard vertical tails, and outboard engines mounted in nacelles beneath the wings. For wind tunnel test conditions, a trimmed value above 6.0 of the maximum lift-drag ratio was obtained at the design Mach number. The configuration was statically stable, both longitudinally and laterally. Data are presented for variations of vertical-tail roll-out and toe-in and for various combinations of components. Some roll control data are shown as are data for the various sand grit sizes used in fixing the boundary layer transition location.

  12. Aerodynamic Characteristics and Flying Qualities of a Tailless Triangular-wing Airplane Configuration as Obtained from Flights of Rocket-propelled Models at Transonic and Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L; Stevens, Joseph E; Norris, Harry P

    1956-01-01

    A flight investigation of rocket-powered models of a tailless triangular-wing airplane configuration was made through the transonic and low supersonic speed range at the Langley Pilotless Aircraft Research Station at Wallops Island, Va. An analysis of the aerodynamic coefficients, stability derivatives, and flying qualities based on the results obtained from the successful flight tests of three models is presented.

  13. Aerodynamic characteristics of three slender sharp-edge 74 degrees swept wings at subsonic, transonic, and supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Davenport, E. E.

    1974-01-01

    Slender sharp-edge wings having leading-edge sweep angles of 74 deg have been studied at Mach numbers from 0.60 to 2.80, at angles of attack from about minus 4 deg to 22 deg, and at angles of sideslip from 0 deg to 5 deg. The wings had delta, arrow, and diamond planforms. The experimental tests were made in the Langley 8-foot transonic pressure tunnel and the Langley Unitary Plan wind tunnel test section number 1. The theoretical predictions were made using the theories of NASA TN D-3767 and NASA TN D-6243. The results of the study indicated that the lift and drag characteristics as affected by planform and Mach number could be reasonably well predicted for the delta wing in the subsonic and transonic Mach number range. In the supersonic range, the delta and diamond wings were about equally good in the degree of agreement between experiment and theory. In making drag-due-to-lift predictions the vortex lift effects must be taken into account if reasonable results are to be obtained at moderate or high lift coefficients.

  14. Low-Speed Aerodynamic and Hydrodynamic Characteristics of a Proposed Supersonic Multijet Water-Based Hydro-Ski Aircraft with Upward-Rotating Engines

    NASA Technical Reports Server (NTRS)

    Petynia, William W.; Croom, Delwin R.; Davenport, Edwin E.

    1958-01-01

    The low-speed aerodynamic and hydrodynamic characteristics of a proposed multijet water-based aircraft configuration for supersonic operation have been investigated. The design features include upward-rotating engines, body indentation, a single hydro-ski, and a wing with an aspect ratio of 3.0, a taper ratio of 0.143, 36.90 sweepback of the quarter-chord line, and NACA 65AO04 airfoil sections. For the aerodynamic investigation, with the flaps retracted, the model was longitudinally and directionally stable up to the stall. The all-movable horizontal tail was capable of trimming the model up to a lift coefficient of approximately 0.87. All flap configurations investigated had a tendency to become longitudinally unstable at stall. The effectiveness of the all-movable horizontal tail increased with increasing lift coefficient for all flap configurations investigated; however, with the large static margin of the configuration with the center of gravity at 0.25 mean aerodynamic chord, the all-movable horizontal tail was not powerful enough to trim all the various flapped configurations investigated throughout the angle-of-attack range. For the hydrodynamic investigation, longitudinal stability during take-offs and landings was satisfactory. Decreasing the area of the hydro-ski 60 percent increased the maximum resistance and emergence speed 40 and 70 percent, respectively. Without the jet exhaust, the resistance was reduced by simulating the vertical-lift component of the forward engines rotated upward. However, the jet exhaust of the forward engines increased the maximum resistance approximately 60 percent. The engine inlets and horizontal tail were free from spray for all loads investigated and for both hydro-ski sizes.

  15. Aerodynamic detuning analysis of an unstalled supersonic turbofan cascade

    NASA Technical Reports Server (NTRS)

    Hoyniak, D.; Fleeter, S.

    1985-01-01

    An approach to passive flutter control is aerodynamic detuning, defined as designed passage-to-passage differences in the unsteady aerodynamic flow field of a rotor blade row. Thus, aerodynamic detuning directly affects the fundamental driving mechanism for flutter. A model to demonstrate the enhanced supersonic aeroelastic stability associated with aerodynamic detuning is developed. The stability of an aerodynamically detuned cascade operating in a supersonic inlet flow field with a subsonic leading edge locus is analyzed, with the aerodynamic detuning accomplished by means of nonuniform circumferential spacing of adjacent rotor blades. The unsteady aerodynamic forces and moments on the blading are defined in terms of influence coefficients in a manner that permits the stability of both a conventional uniformally spaced rotor configuration as well as the detuned nonuniform circumferentially spaced rotor to be determined. With Verdon's uniformly spaced Cascade B as a baseline, this analysis is then utilized to demonstrate the potential enhanced aeroelastic stability associated with this particular type of aerodynamic detuning.

  16. Nonlinear potential analysis techniques for supersonic-hypersonic aerodynamic design

    NASA Technical Reports Server (NTRS)

    Shankar, V.; Clever, W. C.

    1984-01-01

    Approximate nonlinear inviscid theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at supersonic and moderate hypersonic speeds were developed. Emphasis was placed on approaches that would be responsive to conceptual configuration design level of effort. Second order small disturbance and full potential theory was utilized to meet this objective. Numerical codes were developed for relatively general three dimensional geometries to evaluate the capability of the approximate equations of motion considered. Results from the computations indicate good agreement with experimental results for a variety of wing, body, and wing-body shapes.

  17. Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo

    2015-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.

  18. Wind-Tunnel Investigation of Subsonic Longitudinal Aerodynamic Characteristics of a Tiltable-Wing Vertical-Take-Off-and-Landing Supersonic Bomber Configuration Including Turbojet Power Effects

    NASA Technical Reports Server (NTRS)

    Thompson, Robert F.; Vogler, Raymond D.; Moseley, William C., Jr.

    1959-01-01

    Jet-powered model tests were made to determine the low-speed longitudinal aerodynamic characteristics of a vertical-take-off and-landing supersonic bomber configuration. The configuration has an unique engine-wing arrangement wherein six large turbojet engines (three on each side of the fuselage) are buried in a low-aspect-ratio wing which is tilted into the vertical plane for take-off. An essentially two-dimensional variable inlet, spanning the leading edge of each wing semispan, provides air for the engines. Jet flow conditions were simulated for a range of military (nonafterburner) and afterburner turbojet-powered flight at subsonic speeds. Three horizontal tails were tested at a station down-stream of the jet exit and at three heights above the jet axes. A semi-span model was used and test parameters covered wing-fuselage incidence angles from 0 deg to 15 deg, wing angles of attack from -4 deg to 36 deg, a variable range of horizontal-tail incidence angles, and some variations in power simulation conditions. Results show that, with all horizontal tails tested, there were large variations in static stability throughout the lift range. When the wing and fuselage were alined, the model was statically stable throughout the test range only with the largest tail tested (tail span of 1.25 wing span) and only when the tail was located in the low test position which placed the tail nearest to the undeflected jet. For transition flight conditions, none of the tail configurations provided satisfactory longitudinal stability or trim throughout the lift range. Jet flow was destabilizing for most of the test conditions, and varying the jet-exit flow conditions at a constant thrust coefficient had little effect on the stability of this model. Wing leading-edge simulation had some important effects on the longitudinal aerodynamic characteristics.

  19. LTSTAR- SUPERSONIC WING NON-LINEAR AERODYNAMICS PROGRAM

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.

    1994-01-01

    The Supersonic Wing Nonlinear Aerodynamics computer program, LTSTAR, was developed to provide for the estimation of the nonlinear aerodynamic characteristics of a wing at supersonic speeds. This corrected linearized-theory method accounts for nonlinearities in the variation of basic pressure loadings with local surface slopes, predicts the degree of attainment of theoretical leading-edge thrust forces, and provides an estimate of detached leading-edge vortex loadings that result when the theoretical thrust forces are not fully realized. Comparisons of LTSTAR computations with experimental results show significant improvements in detailed wing pressure distributions, particularly for large angles of attack and for regions of the wing where the flow is highly three-dimensional. The program provides generally improved predictions of the wing overall force and moment coefficients. LTSTAR could be useful in design studies aimed at aerodynamic performance optimization and for providing more realistic trade-off information for selection of wing planform geometry and airfoil section parameters. Input to the LTSTAR program includes wing planform data, freestream conditions, wing camber, wing thickness, scaling options, and output options. Output includes pressure coefficients along each chord, section normal and axial force coefficients, and the spanwise distribution of section force coefficients. With the chordwise distributions and section coefficients at each angle of attack, three sets of polars are output. The first set is for linearized theory with and without full leading-edge thrust, the second set includes nonlinear corrections, and the third includes estimates of attainable leading-edge thrust and vortex increments along with the nonlinear corrections. The LTSTAR program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 150K (octal) of 60 bit words. The LTSTAR

  20. Aerodynamic Models for the Low Density Supersonic Declerator (LDSD) Supersonic Flight Dynamics Test (SFDT)

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2015-01-01

    An overview of pre-flight aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a large helium balloon, then accelerating the TV to Mach 4 and and 53 km altitude with a solid rocket motor. The first flight test (SFDT-1) delivered a 6 meter diameter robotic mission class decelerator (SIAD-R) to several seconds of flight on June 28, 2014, and was successful in demonstrating the SFDT flight system concept and SIAD-R. The trajectory was off-nominal, however, lofting to over 8 km higher than predicted in flight simulations. Comparisons between reconstructed flight data and aerodynamic models show that SIAD-R aerodynamic performance was in good agreement with pre-flight predictions. Similar comparisons of powered ascent phase aerodynamics show that the pre-flight model overpredicted TV pitch stability, leading to underprediction of trajectory peak altitude. Comparisons between pre-flight aerodynamic models and reconstructed flight data are shown, and changes to aerodynamic models using improved fidelity and knowledge gained from SFDT-1 are discussed.

  1. Experimental aerodynamic characteristics at Mach numbers from 0.60 to 2.70 of two supersonic cruise fighter configurations

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.

    1979-01-01

    Two 0.085-scale full span wind-tunnel models of a Mach 1.60 design supercruiser configuration were tested at Mach numbers from 0.60 to 2.70. One model incorporated a varying dihedral (swept-up) wing to obtain the desired lateral-directional characteristics; the other incorporated more conventional twin vertical tails. The data from the wind-tunnel tests are presented without analysis.

  2. Planform effects on the supersonic aerodynamics of multibody configurations

    NASA Technical Reports Server (NTRS)

    Mcmillin, Naomi; Wood, Richard M.

    1987-01-01

    An experimental and theoretical investigation of the effect of planform on the supersonic aerodynamics of low-fineness-ratio multibody configurations was conducted. Longitudinal and lateral-directional aerodynamic and flow visualization data were obtained on three multibody configurations. The data indicated that planform has a small effect on the zero lift drag of a multibody configuration. The longitudinal data obtained at lifting conditions showed a sensitivity to planform shape. Lateral-directional data obtained for all configurations did not uncover any unusual stability traits for this class of configuration. A comparison study was also made between the planform effects observed on single-body and multibody configurations. Results from this study indicate that the multibody concept appears to offer a mechanism for employing a low-sweep wing with no significant increase in zero-lift drag but still retaining high-performance characteristics at high-lift conditions. Evaluation of the linear-theory prediction methods revealed a general inability of the methods to predict the characteristics of low-fineness-ratio geometries.

  3. Transonic Aerodynamic Characteristics of a Model of a Proposed Six-Engine Hull-Type Seaplane Designed for Supersonic Flight

    NASA Technical Reports Server (NTRS)

    Wornom, Dewey E.

    1960-01-01

    Force tests of a model of a proposed six-engine hull-type seaplane were performed in the Langley 8-foot transonic pressure tunnel. The results of these tests have indicated that the model had a subsonic zero-lift drag coefficient of 0.0240 with the highest zero-lift drag coefficient slightly greater than twice the subsonic drag level. Pitchup tendencies were noted for subsonic Mach numbers at relatively high lift coefficients. Wing leading-edge droop increased the maximum lift-drag ratio approximately 8 percent at a Mach number of 0.80 but this effect was negligible at a Mach number of 0.90 and above. The configuration exhibited stable lateral characteristics over the test Mach number range.

  4. Summary of the Aerodynamic Characteristics and Flying Qualities Obtained from Flights of Rocket-Propelled Models of an Airplane Configuration Incorporating a Sweptback Inversely Tapered Wing at Transonic and Low-Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L.; Blanchard, Willard S., Jr.

    1950-01-01

    Flight tests have been conducted on rocket-propelled models of an airplane configuration incorporating a sweptback wing with inverse taper to investigate the drag, stability, and control characteristics at transonic and supersonic speeds. The models were tested with a conventional tail arrangement in the Mach number range from 0.55 to 1.2. In addition to the various aerodynamic parameters obtained, the flying qualities were computed for a full-scale airplane with the center-of-gravity location at 18 percent of the mean aerodynamic chord. Also, included in this investigation are drag measurements made on relatively simple fixed-control models tested with both conventional and V-tail arrangements.

  5. Supersonic aerodynamic characteristics of a Sparrow 3 type missile model with wing controls and comparison with existing tail-control results

    NASA Technical Reports Server (NTRS)

    Monta, W. J.

    1977-01-01

    An experimental investigation was conducted on a model of a wing control version of the Sparrow III type missile to determine the static aerodynamic characteristics over an angle of attack range from 0 deg to 40 deg for Mach numbers from 1.50 to 4.60.

  6. Supersonic aerodynamic characteristics of a low-aspect-ratio missile model with wing and tail controls and with tails in line and interdigitated

    NASA Technical Reports Server (NTRS)

    Graves, E. B.

    1972-01-01

    A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.

  7. Supersonic aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform at Mach 2.30 to 4.60

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1972-01-01

    An investigation has been made in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform. The model was tested at Mach numbers from 2.30 to 4.60, at nominal angles of attack from -4 deg to 60 deg and angles of sideslip from -4 deg to 10 deg, and at a Reynolds number of 2.5 million per foot.

  8. Wind-tunnel/flight correlation study of aerodynamic characteristics of a large flexible supersonic cruise airplane (XB-70-1). 3: A comparison between characteristics predicted from wind-tunnel measurements and those measured in flight

    NASA Technical Reports Server (NTRS)

    Arnaiz, H. H.; Peterson, J. B., Jr.; Daugherty, J. C.

    1980-01-01

    A program was undertaken by NASA to evaluate the accuracy of a method for predicting the aerodynamic characteristics of large supersonic cruise airplanes. This program compared predicted and flight-measured lift, drag, angle of attack, and control surface deflection for the XB-70-1 airplane for 14 flight conditions with a Mach number range from 0.76 to 2.56. The predictions were derived from the wind-tunnel test data of a 0.03-scale model of the XB-70-1 airplane fabricated to represent the aeroelastically deformed shape at a 2.5 Mach number cruise condition. Corrections for shape variations at the other Mach numbers were included in the prediction. For most cases, differences between predicted and measured values were within the accuracy of the comparison. However, there were significant differences at transonic Mach numbers. At a Mach number of 1.06 differences were as large as 27 percent in the drag coefficients and 20 deg in the elevator deflections. A brief analysis indicated that a significant part of the difference between drag coefficients was due to the incorrect prediction of the control surface deflection required to trim the airplane.

  9. Experimental aerodynamic characteristics of two V/STOL fighter/attack aircraft configurations at Mach numbers from 1.6 to 2.0. [Ames 9 by 7 foot supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.; Durston, D. A.; Lummus, J. R.

    1981-01-01

    Tests were conducted in the Ames 9 by 7 ft supersonic wind tunnel to measure the aerodynamic characteristics of two horizontal attitude takeoff and landing V/STOL fighter/attack aircraft concepts. One concept featured a jet diffuser ejector for its vertical lift system and the other employed a remote augmentation lift system (RALS). Test results for Mach numbers from 1.6 to 2.0 are reported. Effects of varying the angle of attack (-4 deg to +17 deg), angle of sideslip (-4 deg to +8 deg) Mach number, and configuration building were investigated. The effects of wing trailing edge flap deflections, canard incidence, and vertical tail deflections were also explored as well as the effects of varying the canard longitudinal location and shapes of the inboard nacelle body strakes.

  10. Extended mapping and characteristics techniques for inverse aerodynamic design

    NASA Technical Reports Server (NTRS)

    Sobieczky, H.; Qian, Y. J.

    1991-01-01

    Some ideas for using hodograph theory, mapping techniques and methods of characteristics to formulate typical aerodynamic design boundary value problems are developed. The inverse method of characteristics is shown to be a fast tool for design of transonic flow elements as well as supersonic flows with given shock waves.

  11. Overview of Supersonic Aerodynamics Measurement Techniques in the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2007-01-01

    An overview is given of selected measurement techniques used in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the aerodynamic characteristics of aerospace vehicles operating at supersonic speeds. A broad definition of a measurement technique is adopted in this paper and is any qualitative or quantitative experimental approach that provides information leading to the improved understanding of the supersonic aerodynamic characteristics. On-surface and off-surface measurement techniques used to obtain discrete (point) and global (field) measurements and planar and global flow visualizations are described, and examples of all methods are included. The discussion is limited to recent experiences in the UPWT and is, therefore, not an exhaustive review of existing experimental techniques. The diversity and high quality of the measurement techniques and the resultant data illustrate the capabilities of a ground-based experimental facility and the key role that it plays in the advancement of our understanding, prediction, and control of supersonic aerodynamics.

  12. Effects of roughness size on the position of boundary-layer transition and on the aerodynamic characteristics of a 55 deg. swept delta wing at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Stallings, R. L., Jr.; Lamb, M.

    1977-01-01

    An experimental investigation was conducted to determine the effects of roughness size on the position of boundary layer transition and on the aerodynamic characteristics of a 55 deg swept delta wing model. Results are presented and discussed for wind tunnel tests conducted at free stream Mach numbers from 1.50 to 4.63, Reynolds numbers per meter from 3,300,000 to 1.6 x 10 to the 7th power, angles of attack from -8 to 16 deg, and roughness sizes ranging from 0.027 cm sand grit to 0.127 cm high cylinders. Comparisons were made with existing flat plate data. An approximate method was derived for predicting the drag of roughness elements used in boundary layer trips.

  13. The aerodynamic design of the oblique flying wing supersonic transport

    NASA Technical Reports Server (NTRS)

    Vandervelden, Alexander J. M.; Kroo, Ilan

    1990-01-01

    The aerodynamic design of a supersonic oblique flying wing is strongly influenced by the requirement that passengers must be accommodated inside the wing. It was revealed that thick oblique wings of very high sweep angle can be efficient at supersonic speeds when transonic normal Mach numbers are allowed on the upper surface of the wing. The goals were motivated by the ability to design a maximum thickness, minimum size oblique flying wing. A 2-D Navier-Stokes solver was used to design airfoils up to 16 percent thickness with specified lift, drag and pitching moment. A new method was developed to calculate the required pressure distribution on the wing based on the airfoil loading, normal Mach number distribution and theoretical knowledge of the minimum drag of oblique configurations at supersonic speeds. The wing mean surface for this pressure distribution was calculated using an inverse potential flow solver. The lift to drag ratio of this wing was significantly higher than that of a comparable delta wing for cruise speeds up to Mach 2.

  14. Aerodynamic and performance characterization of supersonic retropropulsion for application to planetary entry and descent

    NASA Astrophysics Data System (ADS)

    Korzun, Ashley M.

    shock layer of a blunt body in supersonic flow. Although numerous wind tunnel tests of relevance to SRP have been conducted, the scope of the work is limited in the freestream conditions and composition, retropropulsion conditions and composition, and configurations and geometries explored. The SRP aerodynamic - propulsive interaction alters the aerodynamic characteristics of the vehicle, and models must be developed that accurately represent the impact of SRP on system mass and performance. Work within this thesis has defined and advanced the state of the art for supersonic retropropulsion. This has been achieved through the application of systems analysis, computational analysis, and analytical methods. The contributions of this thesis include a detailed performance analysis and exploration of the design space specific to supersonic retropropulsion, establishment of the relationship between vehicle performance and the aerodynamic - propulsive interaction, and an assessment of the required fidelity and computational cost in simulating supersonic retropropulsion flowfields, with emphasis on the effort required to develop aerodynamic databases for conceptual design.

  15. Calculation of subsonic and supersonic steady and unsteady aerodynamic forces using velocity potential aerodynamic elements

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.; Yoo, Y. S.

    1976-01-01

    Expressions for calculation of subsonic and supersonic, steady and unsteady aerodynamic forces are derived, using the concept of aerodynamic elements applied to the downwash velocity potential method. Aerodynamic elements can be of arbitrary out of plane polygon shape, although numerical calculations are restricted to rectangular elements, and to the steady state case in the supersonic examples. It is suggested that the use of conforming, in place of rectangular elements, would give better results. Agreement with results for subsonic oscillating T tails is fair, but results do not converge as the number of collocation points is increased. This appears to be due to the form of expression used in the calculations. The methods derived are expected to facilitate automated flutter analysis on the computer. In particular, the aerodynamic element concept is consistent with finite element methods already used for structural analysis. The method is universal for the complete Mach number range, and, finally, the calculations can be arranged so that they do not have to be repeated completely for every reduced frequency.

  16. Aerodynamic Optimization of Supersonic Transport at Near-Sonic Regime

    NASA Astrophysics Data System (ADS)

    Yamazaki, Wataru; Matsushima, Kisa; Obayashi, Shigeru; Nakahashi, Kazuhiro

    Recently, an airplane cruising at near-sonic regime is watched with keen interest. The Sonic-Cruiser, of which the Boeing Company has examined and challenged the development, is the most remarkable case. In this paper, motivated by this trend, aerodynamic performance optimization for an airplane cruising at near-sonic regime is discussed based on CFD simulations. NAL’s experimental supersonic airplane, called NEXST-1, was employed as the baseline model for optimization. Aerodynamic performance was evaluated by solving the Euler equations with the unstructured grid method. It was confirmed that the performance Euler simulation predicted was qualitatively correct. By the evaluation to select a baseline model for optimization, NEXST-1 was accepted as a candidate of sonic plane because of the existence of drag bucket at near-sonic regime. In the optimization, Genetic Algorithm was used with Euler simulations. The objective was to reduce drag keeping lift constant, at the flying speed of Mach 0.98. The optimized result showed L/D improvement not only for near-sonic regime but also for transonic regime. The mechanism of design to reduce drag force was found through the analysis and comparison of the geometries and aerodynamic phenomena about the baseline model and the optimized one.

  17. Effect of conventional and square stores on the longitudinal aerodynamic characteristics of a fighter aircraft model at supersonic speeds. [in the langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Monta, W. J.

    1980-01-01

    The effects of conventional and square stores on the longitudinal aerodynamic characteristics of a fighter aircraft configuration at Mach numbers of 1.6, 1.8, and 2.0 was investigated. Five conventional store configurations and six arrangements of a square store configuration were studied. All configurations of the stores produced small, positive increments in the pitching moment throughout the angle-of-attack range, but the configuration with area ruled wing tanks also had a slight decrease on stability at the higher angles of attack. There were some small changes in lift coefficient because of the addition of the stores, causing the drag increment to vary with the lift coefficient. As a result, there were corresponding changes in the increments of the maximum lift drag ratios. The store drag coefficient based on the cross sectional area of the stores ranged from a maximum of 1.1 for the configuration with three Maverick missiles to a minimum of about .040 for the two MK-84 bombs and the arrangements with four square stores touching or two square stores in tandem. Square stores located side by side yielded about 0.50 in the aft position compared to 0.74 in the forward position.

  18. Flight effects on the aerodynamic and acoustic characteristics of inverted profile coannular nozzles, volume 3. [supersonic cruise aircraft research wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    Acoustic data from tests of the 0.75 area ratio coannular nozzle with ejector and the 1.2 area ratio coannular are presented in tables. Aerodynamic data acquired for the four test configurations are included.

  19. Vacuum chamber with a supersonic-flow aerodynamic window

    DOEpatents

    Hanson, C.L.

    1980-10-14

    A supersonic flow aerodynamic window is disclosed whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

  20. Vacuum chamber with a supersonic flow aerodynamic window

    DOEpatents

    Hanson, Clark L.

    1982-01-01

    A supersonic flow aerodynamic window, whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

  1. Rocket Sled Propelled Testing of a Supersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Meacham, Michael B.; Kennett, Andrew; Townsend, Derik J.; Marti, Benjamin

    2013-01-01

    Decelerators (IADs) have traditionally been tested in wind tunnels. As the limitations of these test facilities are reached, other avenues must be pursued. The IAD being tested is a Supersonic IAD (SIAD), which attaches just aft of the heatshield around the perimeter of an entry body. This 'attached torus' SIAD is meant to improve the accuracy of landing for robotic class missions to Mars and allow for potentially increased payloads. The SIAD Design Verification (SDV) test aims to qualify the SIAD by applying a targeted aerodynamic load to the vehicle. While many test architectures were researched, a rocket sled track was ultimately chosen to be the most cost effective way to achieve the desired dynamic pressures. The Supersonic Naval Ordnance Research Track (SNORT) at the Naval Air Warfare Center Weapons Division (NAWCWD) China Lake is a four mile test track, traditionally used for warhead and ejection seat testing. Prior to SDV, inflatable drag bodies have been tested on this particular track. Teams at Jet Propulsion Laboratory (JPL) and NAWCWD collaborate together to design and fabricate one of the largest sleds ever built. The SDV sled is comprised of three individual sleds: a Pusher Sled which holds the solid booster rockets, an Item Sled which supports the test vehicle, and a Camera Sled that is pushed in front for in-situ footage and measurements. The JPL-designed Test Vehicle has a full-scale heatshield shape and contains all instrumentation and inflation systems necessary to inflate and test a SIAD. The first campaign that is run at SNORT tested all hardware and instrumentation before the SIAD was ready to be tested. For each of the three tests in this campaign, the number of rockets and top speed was increased and the data analyzed to ensure the hardware is safe at the necessary accelerations and aerodynamic loads.

  2. Nonlinear potential analysis techniques for supersonic aerodynamic design

    NASA Technical Reports Server (NTRS)

    Shankar, V.; Szema, K. Y.

    1985-01-01

    A numerical method based on the conservation form of the full potential equation has been applied to the problem of three-dimensional supersonic flows with embedded subsonic regions. The governing equation is cast in a nonorthogonal coordinate system, and the theory of characteristics is used to accurately monitor the type-dependent flow field. A conservative switching scheme is employed to transition from the supersonic marching procedure to a subsonic relaxation algorithm and vice versa. The newly developed computer program can handle arbitrary geometries with fuselage, canard, wing, flow through nacelle, vertical tail and wake components at combined angles of attack and sideslip. Results are obtained for a variety of configurations that include a Langley advanced fighter concept with fuselage centerline nacelle, Rockwell's Advanced Tactical Fighter (ATF) with wing mounted nacelles, and the Shuttle Orbiter configuration. Comparisons with available experiments were good.

  3. Flight effects on the aerodynamic and acoustic characteristics of inverted profile coannular nozzles, volume 1. [supersonic cruise aircraft research wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    Jet noise spectra obtained at static conditions from an acoustic wind tunnel and an outdoor facility are compared. Data curves are presented for (1) the effect of relative velocity on OASPL directivity (all configurations); (2) the effect of relative velocity on noise spectra (all configurations); (3) the effect of velocity on PNL directivity (coannular nozzle configurations); (4) nozzle exhaust plume velocity profiles; and (5) the effect of relative velocity on aerodynamic performance.

  4. A system for aerodynamic design and analysis of supersonic aircraft. Part 4: Test cases

    NASA Technical Reports Server (NTRS)

    Middleton, W. D.; Lundry, J. L.

    1980-01-01

    An integrated system of computer programs was developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. Representative test cases and associated program output are presented.

  5. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations with applications to flutter

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general formulation is presented for the analysis of steady and unsteady, subsonic and supersonic aerodynamics for complex aircraft configurations. The theoretical formulation, the numerical procedure, the description of the program SOUSSA (steady, oscillatory and unsteady, subsonic and supersonic aerodynamics) and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, AGARD wing-tail interference in both subsonic and supersonic flows as well as flutter analysis results are included. The theoretical formulation is based upon an integral equation, which includes completely arbitrary motion. Steady and oscillatory aerodynamic flows are considered. Here small-amplitude, fully transient response in the time domain is considered. This yields the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency domain analysis. This is particularly convenient for the linear systems analysis of the whole aircraft.

  6. Estimation of Supersonic Stage Separation Aerodynamics of Winged-Body Launch Vehicles Using Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Deloach, Richard

    2008-01-01

    A collection of statistical and mathematical techniques referred to as response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration using data obtained on small-scale models at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. The simulated Mach 3 staging was dominated by multiple shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. This motivated a partitioning of the overall inference space into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using cuboidal and spherical central composite designs capable of fitting full second-order response functions. The primary goal was to approximate the underlying overall aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle using relatively simple, lower-order polynomial functions that were piecewise-continuous across the full independent variable ranges of interest. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. The potential benefits of augmenting the central composite designs to full third order using computer-generated D-optimality criteria were also evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting low-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.

  7. Estimation of Supersonic Stage Separation Aerodynamics of Winged-Body Launch Vehicles Using Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2010-01-01

    Response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration at supersonic speeds in the NASA LaRC Unitary Plan Wind Tunnel. The Mach 3 staging was dominated by shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. The inference space was partitioned into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using central composite designs capable of fitting full second-order response functions. The underlying aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle were estimated using piecewise-continuous lower-order polynomial functions. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. Augmenting the central composite designs to full third-order using computer-generated D-optimality criteria was evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting lower-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.

  8. Interference effects of aft reaction-control yaw jets on the aerodynamic characteristics of a space shuttle orbiter model at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Covell, P. F.

    1983-01-01

    A wind tunnel investigation of the interference effects of aft reaction control system yaw jet plumes on a 0.0125 scale Space Shuttle orbiter model was conducted at Mach numbers from 2.50 to 4.50. Test variables included model angle of attack, model angle of sideslip, jet to free stream mass flow ratio, and number and position of operating jets. The aft reaction control jet plume creates a blockage above and behind the wing on the side in which the jet exhausts and results in flow separation on the wing upper surface and fuselage side. Positive pitching moment and side force increments and negative yawing moment and rolling moment increments due to the flow separations are incurred for left side firing jets, primarily at angles of attack above 10 deg. The yawing moment interference increments are favorable and result in a small jet thrust amplification. As a result of this investigation, the aft reaction control system was certified for operation at supersonic Mach numbers prior to the first flight of the space transportation system (STS-1).

  9. Developing Supersonic Impactor and Aerodynamic Lens for Separation and Handling of Nano-Sized Particles

    SciTech Connect

    Goodarz Ahmadi

    2008-06-30

    A computational model for supersonic flows of compressible gases in an aerodynamic lens with several lenses and in a supersonic/hypersonic impactor was developed. Airflow conditions in the aerodynamic lens were analyzed and contour plots for variation of Mach number, velocity magnitude and pressure field in the lens were evaluated. The nano and micro-particle trajectories in the lens and their focusing and transmission efficiencies were evaluated. The computational model was then applied to design of a aerodynamic lens that could generate focus particle beams while operating under atmospheric conditions. The computational model was also applied to airflow condition in the supersonic/hypersonic impactor. Variations of airflow condition and particle trajectories in the impactor were evaluated. The simulation results could provide understanding of the performance of the supersonic and hypersonic impactors that would be helpful for the design of such systems.

  10. Development and applications of supersonic unsteady consistent aerodynamics for interfering parallel wings

    NASA Technical Reports Server (NTRS)

    Appa, K.; Smith, G. C. C.

    1973-01-01

    The analytical development of unsteady supersonic aerodynamic influence coefficients for isolated and nearly parallel interfering coplanar and noncoplanar wings is described. Numerical formulations based on triangular discretizations of wings and diaphragms are handled in a kinematically consistent manner. Examples of isolated wing cases are compared with respect to aerodynamic influence coefficients and flutter boundaries. Aerodynamic influence coefficients for interfering wings are compared where corresponding results are available.

  11. X-34 Vehicle Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.

    1998-01-01

    The X-34, being designed and built by the Orbital Sciences Corporation, is an unmanned sub-orbital vehicle designed to be used as a flying test bed to demonstrate key vehicle and operational technologies applicable to future reusable launch vehicles. The X-34 will be air-launched from an L-1011 carrier aircraft at approximately Mach 0.7 and 38,000 feet altitude, where an onboard engine will accelerate the vehicle to speeds above Mach 7 and altitudes to 250,000 feet. An unpowered entry will follow, including an autonomous landing. The X-34 will demonstrate the ability to fly through inclement weather, land horizontally at a designated site, and have a rapid turn-around capability. A series of wind tunnel tests on scaled models was conducted in four facilities at the NASA Langley Research Center to determine the aerodynamic characteristics of the X-34. Analysis of these test results revealed that longitudinal trim could be achieved throughout the design trajectory. The maximum elevon deflection required to trim was only half of that available, leaving a margin for gust alleviation and aerodynamic coefficient uncertainty. Directional control can be achieved aerodynamically except at combined high Mach numbers and high angles of attack, where reaction control jets must be used. The X-34 landing speed, between 184 and 206 knots, is within the capabilities of the gear and tires, and the vehicle has sufficient rudder authority to control the required 30-knot crosswind.

  12. Supersonic unstalled flutter. [aerodynamic loading of thin airfoils induced by cascade motion

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

    1978-01-01

    Flutter analyses were developed to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. These analyses are utilized in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results are correlated against experimental qualitative observation to validate the models.

  13. Supersonic aerodynamic characteristics of hypersonic low-wave-drag elliptical body-tail combinations as affected by changes in stabilizer configuration

    NASA Technical Reports Server (NTRS)

    Spencer, B., Jr.; Fournier, R. H.

    1973-01-01

    An investigation has been made at Mach numbers from 1.50 to 4.63 to determine systematically the effects of the addition and position of outboard stabilizers and vertical- and vee-tail configurations on the performance and stability characteristics of a low-wave-drag elliptical body. The basic body shape was a zero-lift hypersonic minimum-wave-drag body as determined for the geometric constraints of length and volume. The elliptical cross section had an axis ratio of 2 (major axis horizontal) and an equivalent fineness ratio of 6.14. Base-mounted outboard stabilizers were at various dihedral angles from 90 deg to minus 90 deg with and without a single center-line vertical tail or a vee-tail. The angle of attack was varied from about minus 6 to 27 deg at sideslip angles of 0 and 5 deg and a constant Reynolds number of 4.58 x one million (based on body length).

  14. A computational system for aerodynamic design and analysis of supersonic aircraft. Part 2: User's manual

    NASA Technical Reports Server (NTRS)

    Middleton, W. D.; Lundry, J. L.; Coleman, R. G.

    1976-01-01

    An integrated system of computer programs was developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. This user's manual contains a description of the system, an explanation of its usage, the input definition, and example output.

  15. Aerodynamic design and analysis system for supersonic aircraft. Part 1: General description and theoretical development

    NASA Technical Reports Server (NTRS)

    Middleton, W. D.; Lundry, J. L.

    1975-01-01

    An integrated system of computer programs has been developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. This part presents a general description of the system and describes the theoretical methods used.

  16. Aerodynamic study on supersonic flows in high-velocity oxy-fuel thermal spray process

    NASA Astrophysics Data System (ADS)

    Katanoda, Hiroshi; Matsuoka, Takeshi; Kuroda, Seiji; Kawakita, Jin; Fukanuma, Hirotaka; Matsuo, Kazuyasu

    2005-06-01

    To clarify the characteristics of gas flow in high velocity oxy-fuel (HVOF) thermal spray gun, aerodynamic research is performed using a special gun. The gun has rectangular cross-sectional area and sidewalls of optical glass to visualize the internal flow. The gun consists of a supersonic nozzle with the design Mach number of 2.0 followed by a straight passage called barrel. Compressed dry air up to 0.78 MPa is used as a process gas instead of combustion gas which is used in a commercial HVOF gun. The high-speed gas flows with shock waves in the gun and jets are visualized by schlieren technique. Complicated internal and external flow-fields containing various types of shock wave as well as expansion wave are visualized.

  17. Notes on the theoretical characteristics of two-dimensional supersonic airfoils

    NASA Technical Reports Server (NTRS)

    Ivey, H Reese

    1947-01-01

    The shock expansion method of the NACA TN No. 1143 was used to determine the principal aerodynamic characteristics of two-dimensional supersonic airfoils. A discussion is given of the effect of thickness ratio, free-stream Mach number, angle of attack, camber, thickness distribution, and aileron deflection. The calculations indicated that the minimum drag of supersonic airfoils is obtained when the maximum thickness is behind the 0.50 chord. The center of pressure obtained for a symmetrical supersonic airfoil was found to be ahead of the 0.50 chord.

  18. Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2016-01-01

    An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.

  19. Integration of a supersonic unsteady aerodynamic code into the NASA FASTEX system

    NASA Technical Reports Server (NTRS)

    Appa, Kari; Smith, Michael J. C.

    1987-01-01

    A supersonic unsteady aerodynamic loads prediction method based on the constant pressure method was integrated into the NASA FASTEX system. The updated FASTEX code can be employed for aeroelastic analyses in subsonic and supersonic flow regimes. A brief description of the supersonic constant pressure panel method, as applied to lifting surfaces and body configurations, is followed by a documentation of updates required to incorporate this method in the FASTEX code. Test cases showing correlations of predicted pressure distributions, flutter solutions, and stability derivatives with available data are reported.

  20. Development and applications of supersonic unsteady consistent aerodynamics for interfering parallel wings: User's manual

    NASA Technical Reports Server (NTRS)

    Paine, A. A.

    1972-01-01

    The input data required to execute the computer program AIC/INT (aerodynamic influence coefficients with interference) are presented. The purpose of the computer program is to generate aerodynamic forces for a pair of plane and interfering nearly parallel, non-coplanar wings at supersonic Mach numbers. A finite element technique has been employed. Planforms are described by triangular elements and diaphragm regions are generated automatically.

  1. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will design, build, and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604BOO02G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate the aerodynamic flight database for the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. Al these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  2. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  3. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database i n the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  4. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime, The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  5. Aerodynamic derivatives of a cone with a semi-apex angle 20° at supersonic velocities

    NASA Astrophysics Data System (ADS)

    Adamov, N. P.; Kharitonov, A. M.; Chasovnikov, E. A.

    2014-12-01

    The paper deals with an experimental study of stationary and nonstationary aerodynamic characteristics of a circular cone in the range of Mach numbers 1.75-7. The experimental equipment and the method of determining the aerodynamic characteristics are briefly described. The integral aerodynamic characteristics of the model in tests with force measurements and the aerodynamic derivatives of the pitching moment in dynamic tests on a setup with free oscillations are obtained. The experimental data are compared with numerical predictions.

  6. Impact of fuselage incidence on the supersonic aerodynamics of two fighter configurations

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1984-01-01

    The results of experimental and theoretical investigations into the effect of fuselage upwash on fighter aircraft wing performance are reported. Wind tunnel trials were performed on 4 percent scale models of two supersonic fighters. The trials were run at Mach 1.6-2.0, an Re of 2,000,000 and at angles of attack (AOA) of -4 to 20 deg. Measurements were made of lift, drag and pitching moments. Two linearized theory supersonic aerodynamic prediction codes, PAN AIR and the SDAS lift analysis, were used to predict the same aerodynamic coefficients. The fuselage AOA augmented the lift and pitching moment at 0, 2 and 5 deg. The contribution mainly arose from the fuselage-induced upwash. The PAN AIR code gave superior data for the fuselage aerodynamics and effects, although both codes accurately predicted the overall lift and moment increments due to the fuselage AOA.

  7. Aerodynamic Prediction for Supersonic Canard-Tail Missiles

    NASA Technical Reports Server (NTRS)

    Dillenius, M. F.

    1986-01-01

    LRCDM2 computer program developed to calculate pressure distribution at points on surfaces of complete supersonic missile. Missile comprises up to two finned sections attached to axisymmetric body of circular cross section. Includes effects of vortex shedding due to forebody and forward fins, providing more accurate rolling moments. LRCDM2 written in FORTRAN IV.

  8. Aerodynamic design and analysis of the AST-200 supersonic transport configuration concept

    NASA Technical Reports Server (NTRS)

    Walkley, K. B.; Martin, G. L.

    1979-01-01

    The design and analysis of a supersonic transport configuration was conducted using linear theory methods in conjunction with appropriate constraints. Wing optimization centered on the determination of the required twist and camber and proper integration of the wing and fuselage. Also included in the design are aerodynamic refinements to the baseline wing thickness distribution and nacelle shape. Analysis to the baseline and revised configurations indicated an improvement in lift-to-drag ratio of 0.36 at the Mach 2.7 cruise condition. Validation of the design is planned through supersonic wing tunnel tests.

  9. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations for flutter applications

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general theory for study, oscillatory or fully unsteady potential compressible aerodynamics around complex configurations is presented. Using the finite-element method to discretize the space problem, one obtains a set of differential-delay equations in time relating the potential to its normal derivative which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t or = 0 and of small perturbations around the steady state for time t 0.

  10. The predicted effect of aerodynamic detuning on coupled bending-torsion unstalled supersonic flutter

    NASA Technical Reports Server (NTRS)

    Hoyniak, D.; Fleeter, S.

    1986-01-01

    A mathematical model is developed to predict the enhanced coupled bending-torsion unstalled supersonic flutter stability due to alternate circumferential spacing aerodynamic detuning of a turbomachine rotor. The translational and torsional unsteady aerodynamic coefficients are developed in terms of influence coefficients, with the coupled bending-torsion stability analysis developed by considering the coupled equations of motion together with the unsteady aerodynamic loading. The effect of this aerodynamic detuning on coupled bending-torsion unstalled supersonic flutter as well as the verification of the modeling are then demonstrated by considering an unstable 12 bladed rotor, with Verdon's uniformly spaced Cascade B flow geometry as a baseline. However, with the elastic axis and center of gravity at 60 percent of the chord, this type of aerodynamic detuning has a minimal effect on stability. For both uniform and nonuniform circumferentially space rotors, a single degree of freedom torsion mode analysis was shown to be appropriate for values of the bending-torsion natural frequency ratio lower than 0.6 and higher 1.2. When the elastic axis and center of gravity are not coincident, the effect of detuning on cascade stability was found to be very sensitive to the location of the center of gravity with respect to the elastic axis. In addition, it was determined that when the center of gravity was forward of an elastic axis located at midchord, a single degree of freedom torsion model did not accurately predict cascade stability.

  11. The incorporation of plotting capability into the Unified Subsonic Supersonic Aerodynamic Analysis program, version B

    NASA Technical Reports Server (NTRS)

    Winter, O. A.

    1980-01-01

    The B01 version of the United Subsonic Supersonic Aerodynamic Analysis program is the result of numerous modifications and additions made to the B00 version. These modifications and additions affect the program input, its computational options, the code readability, and the overlay structure. The following are described: (1) the revised input; (2) the plotting overlay programs which were also modified, and their associated subroutines, (3) the auxillary files used by the program, the revised output data; and (4) the program overlay structure.

  12. Genetic Evolution of Shape-Altering Programs for Supersonic Aerodynamics

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Bencze, Daniel P. (Technical Monitor)

    2002-01-01

    Two constrained shape optimization problems relevant to aerodynamics are solved by genetic programming, in which a population of computer programs evolves automatically under pressure of fitness-driven reproduction and genetic crossover. Known optimal solutions are recovered using a small, naive set of elementary operations. Effectiveness is improved through use of automatically defined functions, especially when one of them is capable of a variable number of iterations, even though the test problems lack obvious exploitable regularities. An attempt at evolving new elementary operations was only partially successful.

  13. Aerodynamic characteristics of a fixed arrow-wing supersonic cruise aircraft at Mach numbers of 2.30, 2.70, and 2.95. [Langley Unitary Plan wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Morris, O. A.; Fuller, D. E.; Watson, C. B.

    1978-01-01

    Tests were conducted in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30. 2.70, and 2.95 to determine the performance, static stability, and control characteristics of a model of a fixed-wing supersonic cruise aircraft with a design Mach Number of 2.70 (SCAT 15-F-9898). The configuration had a 74 deg swept warped wing with a reflexed trailing edge and four engine nacelles mounted below the reflexed portion of the wing. A number of variations in the basic configuration were investigated; they included the effect of wing leading edge radius, the effect of various model components, and the effect of model control deflections.

  14. Assessment of CFD-based Response Surface Model for Ares I Supersonic Ascent Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hanke, Jeremy L.

    2011-01-01

    The Ascent Force and Moment Aerodynamic (AFMA) Databases (DBs) for the Ares I Crew Launch Vehicle (CLV) were typically based on wind tunnel (WT) data, with increments provided by computational fluid dynamics (CFD) simulations for aspects of the vehicle that could not be tested in the WT tests. During the Design Analysis Cycle 3 analysis for the outer mold line (OML) geometry designated A106, a major tunnel mishap delayed the WT test for supersonic Mach numbers (M) greater than 1.6 in the Unitary Plan Wind Tunnel at NASA Langley Research Center, and the test delay pushed the final delivery of the A106 AFMA DB back by several months. The aero team developed an interim database based entirely on the already completed CFD simulations to mitigate the impact of the delay. This CFD-based database used a response surface methodology based on radial basis functions to predict the aerodynamic coefficients for M > 1.6 based on only the CFD data from both WT and flight Reynolds number conditions. The aero team used extensive knowledge of the previous AFMA DB for the A103 OML to guide the development of the CFD-based A106 AFMA DB. This report details the development of the CFD-based A106 Supersonic AFMA DB, constructs a prediction of the database uncertainty using data available at the time of development, and assesses the overall quality of the CFD-based DB both qualitatively and quantitatively. This assessment confirms that a reasonable aerodynamic database can be constructed for launch vehicles at supersonic conditions using only CFD data if sufficient knowledge of the physics and expected behavior is available. This report also demonstrates the applicability of non-parametric response surface modeling using radial basis functions for development of aerodynamic databases that exhibit both linear and non-linear behavior throughout a large data space.

  15. Laser velocimetry applied to transonic and supersonic aerodynamics

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.; Bachalo, W. D.; Moddaress, D.

    1976-01-01

    As a further demonstration of the capabilities of laser velocity in compressible aerodynamics, measurements obtained in a Mach 2.9 separated turbulent boundary layer and in the transonic flow past a two-dimensional airfoil section are presented and compared to data realized by conventional techniques. In the separated-flow study, the comparisons were made against pitot-static pressure data. Agreement in mean velocities was realized where the pressure measurements could be considered reliable; however, in regions of instantaneous reverse velocities, the laser results were found to be consistent with the physics of the flow whereas the pressure data were not. The laser data obtained in regions of extremely high turbulence suggest that velocity biasing does not occur if the particle occurrence rate is low relative to the turbulent fluctuation rate. Streamwise turbulence intensities are also presented. In the transonic airfoil study, velocity measurements obtained immediately outside the upper surface boundary layer of a 6-inch chord MACA 64A010 airfoil are compared to edge velocities inferred from surface pressure measurements. For free-stream Mach numbers of 0.6 and 0.8, the agreement in results was very good. Dual scatter optical arrangements in conjunction with a single particle, counter-type signal processor were employed in these investigations. Half-micron-diameter polystyrene spheres and naturally occurring condensed oil vapor acted as light scatterers in the two respective flows. Bragg-cell frequency shifting was utilized in the separated flow study.

  16. Aerodynamic analysis of the aerospaceplane HyPlane in supersonic rarefied flow

    NASA Astrophysics Data System (ADS)

    Zuppardi, Gennaro; Savino, Raffaele; Russo, Gennaro; Spano'Cuomo, Luca; Petrosino, Eliano

    2016-06-01

    HyPlane is the Italian aerospaceplane proposal targeting, at the same time, both the space tourism and point-to-point intercontinental hypersonic flights. Unlike other aerospaceplane projects, relying on boosters or mother airplanes that bring the vehicle to high altitude, HyPlane will take off and land horizontally from common runways. According to the current project, HyPlane will fly sub-orbital trajectories under high-supersonic/low-hypersonic continuum flow regimes. It can go beyond the von Karman line at 100 km altitude for a short time, then starting the descending leg of the trajectory. Its aerodynamic behavior up to 70 km have already been studied and the results published in previous works. In the present paper some aspects of the aerodynamic behavior of HyPlane have been analyzed at 80, 90 and 100 km. Computer tests, calculating the aerodynamic parameters, have been carried out by a Direct Simulation Monte Carlo code. The effects of the Knudsen, Mach and Reynolds numbers have been evaluated in clean configuration. The effects of the aerodynamic surfaces on the rolling, pitching and yawing moments, and therefore on the capability to control attitude, have been analyzed at 100 km altitude. The aerodynamic behavior has been compared also with that of another aerospaceplane at 100 km both in clean and flapped configuration.

  17. Aerodynamic characteristics of aerofoils I

    NASA Technical Reports Server (NTRS)

    1921-01-01

    The object of this report is to bring together the investigations of the various aerodynamic laboratories in this country and Europe upon the subject of aerofoils suitable for use as lifting or control surfaces on aircraft. The data have been so arranged as to be of most use to designing engineers and for the purposes of general reference. The absolute system of coefficients has been used, since it is thought by the National Advisory Committee for Aeronautics that this system is the one most suited for international use, and yet is one for which a desired transformation can be easily made. For this purpose a set of transformation constants is included in this report.

  18. Application of a one-strip integral method to the unsteady supersonic aerodynamics of an inclined flat surface

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.

    1972-01-01

    The method of integral relations is applied in a one-strip approximation to the perturbation equations governing small motions of an inclined, sharp-edged, flat surface about the mean supersonic steady flow. Algebraic expressions for low reduced-frequency aerodynamics are obtained and a set of ordinary differential equations are obtained for general oscillatory motion. Results are presented for low reduced-frequency aerodynamics and for the variation of the unsteady forces with frequency. The method gives accurate results for the aerodynamic forces at low reduced frequency which are in good agreement with available experimental data. However, for cases in which the aerodynamic forces vary rapidly with frequency, the results are qualitatively correct, but of limited accuracy. Calculations indicate that for a range of inclination angles near shock detachment such that the flow in the shock layer is low supersonic, the aerodynamic forces vary rapidly both with inclination angle and with reduced frequency.

  19. Aeroacoustics and aerodynamics of impinging supersonic jets: Analysis of the screech tones

    NASA Astrophysics Data System (ADS)

    Sinibaldi, G.; Lacagnina, G.; Marino, L.; Romano, G. P.

    2013-08-01

    The interaction between acoustics and aerodynamics of a supersonic jet is an actual fundamental topic which has been a matter of discussion in the last decades. The present paper is devoted to the experimental analysis of free and impinging jets with particular attention on the effect of an impinging surface on screech tones. The acoustics is studied using free-field microphones, while Particle Image Velocimetry is used to investigate the velocity field. The analysis of acquired data allowed to verify and explain the coupling between acoustic discrete tones and mean and fluctuating flow velocities.

  20. Aerodynamic characteristics of French consonants

    NASA Astrophysics Data System (ADS)

    Demolin, Didier; Hassid, Sergio; Soquet, Alain

    2001-05-01

    This paper reports some aerodynamic measurements made on French consonants with a group of ten speakers. Speakers were recorded while saying nonsense words in phrases such as papa, dis papa encore. The nonsense words in the study combined each of the French consonants with three vowels /i, a, u/ to from two syllables words with the first syllable being the same as the second. In addition to the audio signal, recordings were made of the oral airflow, the pressure of the air in the pharynx above the vocal folds and the pressure of the air in the trachea just below the vocal folds. The pharyngeal pressure was recorded via a catheter (i.d. 5 mm) passed through the nose so that its open end could be seen in the pharynx below the uvula. The subglottal pressure was recorded via a tracheal puncture between the first and the second rings of the trachea or between the cricoid cartilage and the first tracheal ring. Results compare subglottal presssure, pharyngeal pressure, and airflow values. Comparisons are made between values obtained with male and female subjects and various types of consonants (voiced versus voiceless at the same place of articulation, stops, fricatives, and nasals).

  1. Aerodynamic sensitivities from subsonic, sonic and supersonic unsteady, nonplanar lifting-surface theory

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.

    1987-01-01

    The technique of implicit differentiation has been used in combination with linearized lifting-surface theory to derive analytical expressions for aerodynamic sensitivities (i.e., rates of change of lifting pressures with respect to general changes in aircraft geometry, including planform variations) for steady or oscillating planar or nonplanar lifting surfaces in subsonic, sonic, or supersonic flow. The geometric perturbation is defined in terms of a single variable, and the user need only provide simple expressions or similar means for defining the continuous or discontinuous global or local perturbation of interest. Example expressions are given for perturbations of the sweep, taper, and aspect ratio of a wing with trapezoidal semispan planform. In addition to direct computational use, the analytical method presented here should provide benchmark criteria for assessing the accuracy of aerodynamic sensitivities obtained by approximate methods such as finite geometry perturbation and differencing. The present process appears to be readily adaptable to more general surface-panel methods.

  2. Supersonic airplane design optimization method for aerodynamic performance and low sonic boom

    NASA Technical Reports Server (NTRS)

    Cheung, Samson H.; Edwards, Thomas A.

    1992-01-01

    This paper presents a new methodology for the optimization of supersonic airplane designs to meet the dual design objectives of low sonic boom and high aerodynamic performance. Two sets of design parameters are used on an existing High Speed Civil Transport (HSCT) configuration to maximize the aerodynamic performance and minimize the sonic boom under the flight track. One set of the parameters perturbs the camber line of the wing sections to maximize the lift-over-drag ratio (L/D). A preliminary optimization run yielded a 3.75 percent improvement in L/D over a baseline low-boom configuration. The other set of parameters modifies the fuselage area to achieve a target F-function. Starting from an initial configuration with strong bow, wing, and tail shocks, a modified design with a flat-top signature is obtained. The methods presented can easily incorporate other design variables and objective functions. Extensions to the present capability in progress are described.

  3. Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU

    NASA Astrophysics Data System (ADS)

    Aissa, Mohamed Hasanine; Verstraete, Tom; Vuik, Cornelis

    2016-06-01

    Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20x to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.

  4. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 4: Summary

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.; Wallace, H. W.; Hiley, P. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 4 of 4: Final Report- Summary.

  5. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations, phase 1

    NASA Technical Reports Server (NTRS)

    Mraz, M. R.; Hiley, P. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to present two different test techniques. One was a coventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a subscale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously.

  6. Parametric study of supersonic STOVL flight characteristics

    NASA Technical Reports Server (NTRS)

    Rapp, David C.

    1985-01-01

    A number of different control devices and techniques are evaluated to determine their suitability for increasing the short takeoff performance of a supersonic short-takeoff/vertical landing (STOVL) aircraft. Analysis was based on a rigid-body mathematical model of the General Dynamics E-7, a single engine configuration that utilizes ejectors and thrust deflection for propulsive lift. Alternatives investigated include increased static pitch, the addition of a close-coupled canard, use of boundary layer control to increase the takeoff lift coefficient, and the addition of a vectorable aft fan air nozzle. Other performance studies included the impact of individual E-7 features, the sensitivity to ejector performance, the effect of removing the afterburners, and a determination of optional takeoff and landing transition methods. The results pertain to both the E-7 and other configurations. Several alternatives were not as well suited to the E-7 characteristics as they would be to an alternative configuration, and vice versa. A large amount of supporting data for each analysis is included.

  7. Aerodynamic shape optimization directed toward a supersonic transport using sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1995-01-01

    This investigation was conducted from March 1994 to August 1995, primarily, to extend and implement the previously developed aerodynamic design optimization methodologies for the problems related to a supersonic transport design. These methods had demonstrated promise to improve the designs (more specifically, the shape) of aerodynamic surfaces, by coupling optimization algorithms (OA) with Computational Fluid Dynamics (CFD) algorithms via sensitivity analyses (SA) with surface definition methods from Computer Aided Design (CAD). The present extensions of this method and their supersonic implementations have produced wing section designs, delta wing designs, cranked-delta wing designs, and nacelle designs, all of which have been reported in the open literature. Despite the fact that these configurations were highly simplified to be of any practical or commercial use, they served the algorithmic and proof-of-concept objectives of the study very well. The primary cause for the configurational simplifications, other than the usual simplify-to-study the fundamentals reason, were the premature closing of the project. Only after the first of the originally intended three-year term, both the funds and the computer resources supporting the project were abruptly cut due to their severe shortages at the funding agency. Nonetheless, it was shown that the extended methodologies could be viable options in optimizing the design of not only an isolated single-component configuration, but also a multiple-component configuration in supersonic and viscous flow. This allowed designing with the mutual interference of the components being one of the constraints all along the evolution of the shapes.

  8. Wind-tunnel/flight correlation study of aerodynamic characteristics of a large flexible supersonic cruise airplane (XB-701) 2: Extrapolation of wind-tunnel data to full-scale conditions

    NASA Technical Reports Server (NTRS)

    Peterson, J. B., Jr.; Mann, M. J.; Sorrells, R. B., III; Sawyer, W. C.; Fuller, D. E.

    1980-01-01

    The results of calculations necessary to extrapolate performance data on an XB-70-1 wind tunnel model to full scale at Mach numbers from 0.76 to 2.53 are presented. The extrapolation was part of a joint program to evaluate performance prediction techniques for large flexible supersonic airplanes similar to a supersonic transport. The extrapolation procedure included: interpolation of the wind tunnel data at the specific conditions of the flight test points; determination of the drag increments to be applied to the wind tunnel data, such as spillage drag, boundary layer trip drag, and skin friction increments; and estimates of the drag items not represented on the wind tunnel model, such as bypass doors, roughness, protuberances, and leakage drag. In addition, estimates of the effects of flexibility of the airplane were determined.

  9. General purpose computer program for interacting supersonic configurations. User's manual. [determining unsteady aerodynamic foreces

    NASA Technical Reports Server (NTRS)

    Crill, W.; Dale, B.

    1977-01-01

    The input data required to execute the computer program ISCON are described. The program generates a numerical procedure for the determination of unsteady aerodynamic forces on arbitrarily interacting wings and tails in supersonic flow. A velocity potential gradient method is used. Constant Mach number is assumed throughout the flow field. Lifting surfaces are represented by trapezoidal elements which can be generated automatically by the program. The wake field is represented by rectangular strip elements. The formulation is reviewed as well as input overview and input format. Instruction on how to use ISCON, a sample problem, and the restart feature are discussed. Program size limitations, computer program flow, and error messages are also included along with a description of the SS31 program used to compute the coefficients of surface spline.

  10. Aerodynamic Shape Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony

    1996-01-01

    This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods (13, 12, 44, 38). The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method (19, 20, 21, 23, 39, 25, 40, 41, 42, 43, 9) was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations (39, 25). In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that the basic methodology could be ported to distributed memory parallel computing architectures [241. In this paper, our concem will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.

  11. Aerodynamic Shape Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony

    1996-01-01

    This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations. In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that this basic methodology could be ported to distributed memory parallel computing architectures. In this paper, our concern will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.

  12. Interaction of aerodynamic noise with laminar boundary layers in supersonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Schopper, M. R.

    1984-01-01

    The interaction between incoming aerodynamic noise and the supersonic laminar boundary layer is studied. The noise field is modeled as a Mach wave radiation field consisting of discrete waves emanating from coherent turbulent entities moving downstream within the supersonic turbulent boundary layer. The individual disturbances are likened to miniature sonic booms and the laminar boundary layer is staffed by the waves as the sources move downstream. The mean, autocorrelation, and power spectral density of the field are expressed in terms of the wave shapes and their average arrival rates. Some consideration is given to the possible appreciable thickness of the weak shock fronts. The emphasis in the interaction analysis is on the behavior of the shocklets in the noise field. The shocklets are shown to be focused by the laminar boundary layer in its outer region. Borrowing wave propagation terminology, this region is termed the caustic region. Using scaling laws from sonic boom work, focus factors at the caustic are estimated to vary from 2 to 6 for incoming shocklet strengths of 1 to .01 percent of the free stream pressure level. The situation regarding experimental evidence of the caustic region is reviewed.

  13. Improvement in Capsule Abort Performance Using Supersonic Aerodynamic Interaction by Fences

    NASA Astrophysics Data System (ADS)

    Koyama, Hiroto; Wang, Yunpeng; Ozawa, Hiroshi; Doi, Katsunori; Nakamura, Yoshiaki

    The space transportation system will need advanced abort systems to secure crew against serious accidents. Here this study deals with the capsule-type space transportation systems with a Launch Abort System (LAS). This system is composed of a conic capsule as a Launch Abort Vehicle (LAV) and a cylindrical rocket as a Service Module (SM), and the capsule is moved away from the rocket by supersonic aerodynamic interactions in an emergency. We propose a method to improve the performance of the LAV by installing fences at the edges of surfaces on the rocket and capsule sides. Their effects were investigated by experimental measurements and numerical simulations. Experimental results show that the fences on the rocket and capsule surfaces increase the aerodynamic thrust force on the capsule by 70% in a certain clearance between the capsule and rocket. Computational results show the detailed flow fields where the centripetal flow near the surface on the rocket side is induced by the fence on the rocket side and the centrifugal flow near the surface on the capsule side is blocked by the fence on the capsule side. These results can confirm favorable effects of the fences on the performance of the LAS.

  14. Comparison of Various Supersonic Turbine Tip Designs to Minimize Aerodynamic Loss and Tip Heating

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali

    2012-01-01

    The rotor tips of axial turbines experience high heat flux and are the cause of aerodynamic losses due to tip clearance flows, and in the case of supersonic tips, shocks. As stage loadings increase, the flow in the tip gap approaches and exceeds sonic conditions. This introduces effects such as shock-boundary layer interactions and choked flow that are not observed for subsonic tip flows that have been studied extensively in literature. This work simulates the tip clearance flow for a flat tip, a diverging tip gap and several contoured tips to assess the possibility of minimizing tip heat flux while maintaining a constant massflow from the pressure side to the suction side of the rotor, through the tip clearance. The Computational Fluid Dynamics (CFD) code GlennHT was used for the simulations. Due to the strong favorable pressure gradients the simulations assumed laminar conditions in the tip gap. The nominal tip gap width to height ratio for this study is 6.0. The Reynolds number of the flow is 2.4 x 10(exp 5) based on nominal tip width and exit velocity. A wavy wall design was found to reduce heat flux by 5 percent but suffered from an additional 6 percent in aerodynamic loss coefficient. Conventional tip recesses are found to perform far worse than a flat tip due to severe shock heating. Overall, the baseline flat tip was the second best performer. A diverging converging tip gap with a hole was found to be the best choice. Average tip heat flux was reduced by 37 percent and aerodynamic losses were cut by over 6 percent.

  15. Aerodynamic characteristics of the Scout 133R vehicle determined from wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Abramson, F. B.; Muir, T. G., Jr.; Simmons, H. L.

    1972-01-01

    Bending moments and other associated parameters were measured on a Scout vehicle during a launch through high velocity horizontal winds. Comparison of the measured data with predictions revealed some unexplained discrepancies. Possible sources of error in the experimental data and predictions were considered; one of which is the predicted aerodynamic characteristics. A wind tunnel investigation was initiated, including supersonic force and pressure tests, to better define the aerodynamics. In addition to basic aerodynamic coefficients from the force test, detailed pressure and load distributions along the body were established from the pressure test. Pressure coefficients were integrated to determine normal load distributions, total normal force, and total pitching moment of the body. Comparison of the normal forces from pressure and force tests resulted in agreement within 15%. Comparison of pitching moment data from the two tests resulted in larger differences.

  16. Aerodynamic Characteristics and Glide-Back Performance of Langley Glide-Back Booster

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Covell, Peter F.; Tartabini, Paul V.; Murphy, Kelly J.

    2004-01-01

    NASA-Langley Research Center is conducting system level studies on an-house concept of a small launch vehicle to address NASA's needs for rapid deployment of small payloads to Low Earth Orbit. The vehicle concept is a three-stage system with a reusable first stage and expendable upper stages. The reusable first stage booster, which glides back to launch site after staging around Mach 3 is named the Langley Glide-Back Booster (LGBB). This paper discusses the aerodynamic characteristics of the LGBB from subsonic to supersonic speeds, development of the aerodynamic database and application of this database to evaluate the glide back performance of the LGBB. The aerodynamic database was assembled using a combination of wind tunnel test data and engineering level analysis. The glide back performance of the LGBB was evaluated using a trajectory optimization code and subject to constraints on angle of attack, dynamic pressure and normal acceleration.

  17. Aerodynamic characteristics of an F-8 aircraft configuration with a variable camber wing at Mach numbers from 1.5 to 2.0. [conducted in the Ames 9 by 7 foot supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Boltz, F. W.

    1977-01-01

    A 0.1-scale model of an F-8 aircraft was tested over a range of Mach numbers from 1.5 to 2.0. Reynolds number of 4.12 million was based on wing mean-aerodynamic chord for angles of attack varying from -2 deg to +12 deg. The model was equipped with an advanced-technology-conformal-variable-camber wing (ATCVCW) having simple hinge flaps. Data were also obtained for the model equipped with the basic F-8 wing and conventional flaps. Model variables included aileron and wing trailing edge deflections and horizontal tail incidence. The ATCVCW configuration produced slight improvements in lift-curve slope, drag, and static longitudinal stability over that of the basic F-8 wing configuration. Flap effectiveness was essentially the same for both wings.

  18. Aerodynamic characteristics of popcorn ash particles

    SciTech Connect

    Cherkaduvasala, V.; Murphy, D.W.; Ban, H.; Harrison, K.E.; Monroe, L.S.

    2007-07-01

    Popcorn ash particles are fragments of sintered coal fly ash masses that resemble popcorn in low apparent density. They can travel with the flow in the furnace and settle on key places such as catalyst surfaces. Computational fluid dynamics (CFD) models are often used in the design process to prevent the carryover and settling of these particles on catalysts. Particle size, density, and drag coefficient are the most important aerodynamic parameters needed in CFD modeling of particle flow. The objective of this study was to experimentally determine particle size, shape, apparent density, and drag characteristics for popcorn ash particles from a coal-fired power plant. Particle size and shape were characterized by digital photography in three orthogonal directions and by computer image analysis. Particle apparent density was determined by volume and mass measurements. Particle terminal velocities in three directions were measured in water and each particle was also weighed in air and in water. The experimental data were analyzed and models were developed for equivalent sphere and equivalent ellipsoid with apparent density and drag coefficient distributions. The method developed in this study can be used to characterize the aerodynamic properties of popcorn-like particles.

  19. Test Plan for the Technology Maturation of Supersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Kelly, Jenny R.; Cruz, Juan R.

    2009-01-01

    Supersonic inflatable aerodynamic decelerators (IADs) are drag devices intended to be deployed at high Mach numbers. In the application considered here they assist in the descent and landing of spacecraft on Mars. Although promising, present IAD technology is not yet sufficiently mature for use in the near future. This paper describes a technology maturation plan for tension cone IADs using subscale test articles to reduce development costs. As envisioned, the proposed test plan includes three phases: wind tunnel tests (subsonic), unpowered high-altitude flight tests (transonic), and powered high-altitude tests (supersonic). This test plan is based on a building block approach in which successful completion of each phase adds to the understanding of the behavior of IADs and reduces the risk of the subsequent, more expensive phases. By properly scaling the IADs, test articles of the same size and nearly the same construction can be used for all three phases. The final phase is a dynamically scaled flight test with IAD deployment at the same Mach number as the full-scale vehicle on Mars. Two full-scale example cases are presented: one for a single-stage system (15 m dia. IAD to subsonic retropropulsion), and another for a two-stage system (10.5 m dia. IAD to subsonic parachute). Using scale factors of 0.333 and 0.476 yield subscale test IADs of 5 m dia. The dynamically scaled powered flight test starts at Mach 4 and an altitude of 33.5 km. Existing balloons and rocket motors are shown to be adequate to meet the required test conditions.

  20. Experimental and analytical comparison of aerodynamic characteristics of a forward-control missile

    NASA Technical Reports Server (NTRS)

    Blair, A. B.; Rapp, G. H.

    1980-01-01

    Comparisons of analytical and experimental aerodynamic data for canard controlled missile configurations are presented. Recently, techniques to estimate the longitudinal, directional and lateral aerodynamic characteristics for cruciform missiles have been developed. Nielsen Engineering and Research, Inc. (NEAR, Inc.), supported by various governmental agencies, has been the originator of many of these new computational techniques. Two of these are major computer programs currently being implemented by several research organizations. Predicted data from these two programs are compared with experimental data recently obtained at the NASA Langley Research Center Unitary Plan wind tunnel facility. Comparisons cover the supersonic Mach number regime of 1.60 to 3.50, angles-of-attack from 0 to 20 degrees and roll angles of 0, 26.57 and 45 degrees. Major emphasis is on the roll characteristics due to aileron with limited longitudinal and directional characteristics addressed.

  1. A study of the motion and aerodynamic heating of missiles entering the earth's atmosphere at high supersonic speeds

    NASA Technical Reports Server (NTRS)

    Allen, Julian H; Eggers, A J , Jr

    1957-01-01

    A simplified analysis of the velocity and deceleration history of missiles entering the earth's atmosphere at high supersonic speeds is presented. The results of this motion analysis are employed to indicate means available to the designer for minimizing aerodynamic heating. The heating problem considered involves not only the total heat transferred to a missile by convection, but also the maximum average and local time rates of convective heat transfer.

  2. A study of the motion and aerodynamic heating of ballistic missiles entering the earth's atmosphere at high supersonic speeds

    NASA Technical Reports Server (NTRS)

    Allen, H Julian; Eggers, A J , Jr

    1958-01-01

    A simplified analysis of the velocity and deceleration history of ballistic missiles entering the earth's atmosphere at high supersonic speeds is presented. The results of this motion analysis are employed to indicate means available to the designer for minimizing aerodynamic heating. The heating problem considered involves not only the total heat transferred to a missile by convection, but also the maximum average and local time rates of convective heat transfer.

  3. Aerodynamic characteristics of the Fiat UNO car

    SciTech Connect

    Costelli, A.F.

    1984-01-01

    The purpose of this article is to describe the work conducted in the aerodynamic field throughout the 4-year development and engineering time span required by the project of the UNO car. A description is given of all the parametric studies carried out. Through these studies two types of cars at present in production were defined and the characteristics of a possible future sports version laid down. A movable device, to be fitted in the back window, was also set up and patented. When actuated it reduces soiling of back window. A description is also provided of the measurements made in the car flow field and some considerations are outlined about the method applied. This method is still in development phase but it already permits some considerations and in-depth investigations to be made on the vehicle wake.

  4. Unstructured Grid Euler Method Assessment for Longitudinal and Lateral/Directional Aerodynamic Performance Analysis of the HSR Technology Concept Airplane at Supersonic Cruise Speed

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad

    1999-01-01

    Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a High Speed Civil Transport (HSCT) configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at M (sub infinity) = 2.4 for a range of angles-of-attack and sideslip. Although all the present computations are performed for the complete TCA configuration, appropriate assumptions derived from the fundamental supersonic aerodynamic principles have been made to extract aerodynamic predictions to complement the experimental data obtained from a 1.675%-scaled truncated (aft fuselage/empennage components removed) TCA model. The validity of the computational results, derived from the latter assumptions, are thoroughly addressed and discussed in detail. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex flow structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics for the truncated TCA configuration are shown to correlate very well with the corresponding wind-tunnel data across the examined range of angles-of-attack and sideslip. The complementary computational results for the longitudinal and lateral/directional performance characteristics for the complete TCA configuration are also presented along with the aerodynamic effects due to empennage components. Results are also presented to assess the computational method performance, solution sensitivity to grid refinement, and solution convergence characteristics.

  5. Aerodynamic characteristics of airplanes at high angles of attack

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Grafton, S. B.

    1977-01-01

    An introduction to, and a broad overiew of, the aerodynamic characteristics of airplanes at high angles of attack are provided. Items include: (1) some important fundamental phenomena which determine the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area. Although stalling and spinning are flight dynamic problems of importance to all aircraft, including general aviation aircraft, commercial transports, and military airplanes, emphasis is placed on military configurations and the principle aerodynamic factors which influence the stability and control of such vehicles at high angles of attack.

  6. Aerodynamic Characteristics and Development of the Aerodynamic Database of the X-34 Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Pamadi , Bandu N.; Brauckmann, Gregory J.

    1999-01-01

    An overview of the aerodynamic characteristics and the process of developing the preflight aerodynamic database of the NASA/ Orbital X-34 reusable launch vehicle is presented in this paper. Wind tunnel tests from subsonic to hypersonic Mach numbers including ground effect tests at low subsonic speeds were conducted in various facilities at the NASA Langley Research Center. The APAS (Aerodynamic Preliminary Analysis System) code was used for engineering level analysis and to fill the gaps in the wind tunnel test data. This aerodynamic database covers the range of Mach numbers, angles of attack, sideslip and control surface deflections anticipated in the complete flight envelope.

  7. Study of aerodynamic noise in low supersonic operation of an axial flow compressor

    NASA Technical Reports Server (NTRS)

    Arnoldi, R. A.

    1972-01-01

    A study of compressor noise is presented, based upon supersonic, part-speed operation of a high hub/tip ratio compressor designed for spanwise uniformity of aerodynamic conditions, having straight cylindrical inlet and exit passages for acoustic simplicity. Acoustic spectra taken in the acoustically-treated inlet plenum, are presented for five operating points at each of two speeds, corresponding to relative rotor tip Mach numbers of about 1.01 and 1.12 (60 and 67 percent design speed). These spectra are analyzed for low and high frequency broadband noise, blade passage frequency noise, combination tone noise and "haystack' noise (a very broad peak somewhat below blade passage frequency, which is occasionally observed in engines and fan test rigs). These types of noise are related to diffusion factor, total pressure ratio, and relative rotor tip Mach number. Auxiliary measurements of fluctuating wall static pressures and schlieren photographs of upstream shocks in the inlet are also presented and related to the acoustic and performance data.

  8. Aerodynamic Shape Optimization of a Dual-Stream Supersonic Plug Nozzle

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Gray, Justin S.; Park, Michael A.; Nielsen, Eric J.; Carlson, Jan-Renee

    2015-01-01

    Aerodynamic shape optimization was performed on an isolated axisymmetric plug nozzle sized for a supersonic business jet. The dual-stream concept was tailored to attenuate nearfield pressure disturbances without compromising nozzle performance. Adjoint-based anisotropic mesh refinement was applied to resolve nearfield compression and expansion features in the baseline viscous grid. Deformed versions of the adapted grid were used for subsequent adjoint-driven shape optimization. For design, a nonlinear gradient-based optimizer was coupled to the discrete adjoint formulation of the Reynolds-averaged Navier- Stokes equations. All nozzle surfaces were parameterized using 3rd order B-spline interpolants and perturbed axisymmetrically via free-form deformation. Geometry deformations were performed using 20 design variables shared between the outer cowl, shroud and centerbody nozzle surfaces. Interior volume grid deformation during design was accomplished using linear elastic mesh morphing. The nozzle optimization was performed at a design cruise speed of Mach 1.6, assuming core and bypass pressure ratios of 6.19 and 3.24, respectively. Ambient flight conditions at design were commensurate with 45,000-ft standard day atmosphere.

  9. NASA VCE test bed engine aerodynamic performance characteristics and test results

    NASA Technical Reports Server (NTRS)

    French, M. W.; Allen, C. L.

    1981-01-01

    The Core Driven Fan Stage (CDFS) Variable Cycle Engine (VCE) has been identified as a leading candidate for advanced supersonic cruise aircraft. A scale demonstrator version of this engine has been designed and tested. This testbed engine features a split fan with double bypass capability, variable forward and aft mixers, and a variable area low pressure turbine nozzle to permit exploration and optimization of the cycle in both single and double bypass modes. This paper presents the aerodynamic performance characteristics and experimental results obtained from both the core engine and full engine tests.

  10. Numerical Investigation of Aerodynamics of Canard-Controlled Missile Using Planar and Grid Tail Fins. Part 1. Supersonic Flow

    NASA Astrophysics Data System (ADS)

    DeSpirito, James; Vaughn, Milton E., Jr.; Washington, W. D.

    2002-09-01

    Viscous computational fluid dynamic simulations were used to predict the aerodynamic coefficients and flowfield around a generic canard-controlled missile configuration in supersonic flow. Computations were performed for Mach 1.5 and 3.0, at six angles of attack between 0 and 10, with 0 and 10 canard deflection, and with planar and grid tail fins, for a total of 48 cases. Validation of the computed results was demonstrated by the very good agreement between the computed aerodynamic coefficients and those obtained from wind tunnel measurements. Visualizations of the flowfield showed that the canard trailing vortices and downwash produced a low-pressure region on the starboard side of the missile that in turn produced an adverse side force. The pressure differential on the leeward fin produced by the interaction with the canard trailing vortices is primarily responsible for the adverse roll effect observed when planar fins are used. Grid tail fins improved the roll effectiveness of the canards at low supersonic speed. No adverse rolling moment was observed with no canard deflection, or at the higher supersonic speed for either tail fin type due to the lower intensity of the canard trailing vortices in these cases. Flow visualizations from the simulations performed in this study help in the understanding of the flow physics and can lead to improved canard and tail fin designs for missiles and rockets.

  11. Aerodynamic Characteristics of Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Hull, G F; Dryden, H L

    1925-01-01

    This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.

  12. Study on the characteristics of supersonic Coanda jet

    NASA Astrophysics Data System (ADS)

    Matsuo, Shigeru; Setoguchi, Toshiaki; Kudo, Takemasa; Yu, Shen

    1998-09-01

    Techniques using Coanda effect have been applied to the fluid control devices. In this field, experimental studies were so far performed for the spiral jet obtained by the Coanda jet issuing from a conical cylinder with an annular slit, thrust vectoring of supersonic Coanda jets and so on. It is important from the viewpoints of effective applications to investigate the characteristics of the supersonic Coanda jet in detail. In the present study, the effects of pressure ratios and nozzle configurations on the characteristics of the supersonic Coanda jet have been investigated experimentally by a schlieren optical method and pressure measurements. Furthermore, Navier-Stokes equations were solved numerically using a 2nd-order TVD finite-volume scheme with a 3rd-order three stage Runge-Kutta method for time integration. k - ɛ model was used in the computations. The effects of initial conditions on Coanda flow were investigated numerically. As a result, the simulated flow fields were compared with experimental data in good agreement qualitatively.

  13. The supersonic triplet - A new aerodynamic panel singularity with directional properties. [internal wave elimination

    NASA Technical Reports Server (NTRS)

    Woodward, F. A.; Landrum, E. J.

    1979-01-01

    A new supersonic triplet singularity has been developed which eliminates internal waves generated by panels having supersonic edges. The triplet is a linear combination of source and vortex distributions which provides the desired directional properties in the flow field surrounding the panel. The theoretical development of the triplet is described, together with its application to the calculation of surface pressure on arbitrary body shapes. Examples are presented comparing the results of the new method with other supersonic panel methods and with experimental data.

  14. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 1: Wind tunnel test pressure data report

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.; Devereaux, P. A.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 1 of 2: Wind Tunnel Test Pressure Data Report.

  15. Aeroelastic characteristics of a cascade of mistuned blades in subsonic and supersonic flows. [turbofan engines

    NASA Technical Reports Server (NTRS)

    Kielb, R. E.; Kaza, K. R. V.

    1981-01-01

    The effects of mistuning on flutter and forced response of a cascade in subsonic in subsonic and supersonic flow were investigated. The aerodynamic and structural coupling between the bending and torsional motions and the aerodynamic coupling between the blades were studied. It is shown that frequency mistuning always has a beneficial effect on flutter. For the cascade considered, the potential for raising flutter speed is greater in subsonic than in supersonic flow. Preliminary results for structural damping mistuning show that there are no additional benefits over adding damping mistuning may have either a beneficial or an adverse effect on forced response, depending on the engine order of the excitation and Mach number.

  16. Aerodynamic design and analysis system for supersonic aircraft. Part 3: Computer program description

    NASA Technical Reports Server (NTRS)

    Middleton, W. D.; Lundry, J. L.; Coleman, R. G.

    1975-01-01

    The computer program for the design and analysis of supersonic aircraft configurations is presented. The schematics of the program structure are provided. The individual overlays and subroutines are described. The system is useful in determining surface pressures and supersonic area rule concepts.

  17. Aerodynamic characteristics of scissor-wing geometries

    NASA Technical Reports Server (NTRS)

    Selberg, Bruce P.; Rokhsaz, Kamran; Housh, Clinton S.

    1991-01-01

    A scissor-wing configuration, consisting of two independently sweeping-wing surfaces, is compared with an equivalent fixed-wing geometry baseline over a wide Mach number range. The scissor-wing configuration is shown to have a higher total lift-to-drag ratio than the baseline in the subsonic region primarily due to the slightly higher aspect ratio of the unswept scissor wing. In the transonic region, the scissor wing is shown to have a higher lift-to-drag ratio than the baseline for values of lift coefficient greater than 0.35. It is also shown that, through the use of wing decalage, the lift of the two independent scissor wings can be equalized. In the supersonic regime, the zero lift wave drag of the scissor-wing at maximum sweep is shown to be 50 and 28 percent less than the zero lift wave drag of the baseline at Mach numbers 1.5 and 3.0, respectively. In addition, a pivot-wing configuration is introduced and compared with the scissor wing. The pivot-wing configuration is shown to have a slightly higher total lift-to-drag ratio than the scissor wing in the supersonic region due to the decreased zero lift wave drag of the pivot-wing configuration.

  18. A system for aerodynamic design and analysis of supersonic aircraft. Part 3: Computer program description

    NASA Technical Reports Server (NTRS)

    Middleton, W. D.; Lundry, J. L.; Coleman, R. G.

    1980-01-01

    The computer program documentation for the design and analysis of supersonic configurations is presented. Schematics and block diagrams of the major program structure, together with subroutine descriptions for each module are included.

  19. Subsonic, transonic, and supersonic stability and control characteristics of the -147B space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1973-01-01

    Experimental aerodynamic investigations were conducted on 0.015 scale representations of two Space Shuttle Orbiter configurations in a trisonic wind tunnel from June 20, 1973 to June 30, 1973. The primary test objective was to define subsonic, transonic, and supersonic stability and control characteristics of the -147B Orbiter. Six-component aerodynamic force and moment data for the -147B Orbiter were recorded over an angle of attack range of -2 deg to 30 deg at Mach numbers of 0.6, 0.9, 1.2, 2.0, and 3.0. Reynolds numbers of 5.0, 7.0, 8.0, and 9.0 x 100000 6/ft were tested at Mach numbers less than 2.0 while testing at Mach 2.0 and 3.0 was conducted at a Reynolds number of 11.0 x 100000/ft. Eleven deflections of 0 deg, +15 deg, -20, deg and -40 deg; body flap deflections of 0 deg, +13.75 deg and -14.25 deg; and rudder flare angles of 24.92 deg and 54.92 deg were tested on the -147B Orbiter over the entire Mach number range. Testing of the -139B Orbiter was for data verification and configuration comparison purposes only.

  20. Two-dimensional Aerodynamic Characteristics of 34 Miscellaneous Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Loftin, Laurence K , Jr; Smith, Hamilton A

    1949-01-01

    The aerodynamic characteristics of 34 miscellaneous airfoils tested in the Langley two-dimensional low-turbulence tunnels are presented. The data include lift, drag, and in some cases, pitching-moment characteristics, for Reynolds numbers between 3.0 x 10 (exp 6) and 9.0 x 10 (exp 6).

  1. CFD calculations of S809 aerodynamic characteristics

    SciTech Connect

    Wolfe, W.P.; Ochs, S.S.

    1997-01-01

    Steady-state, two-dimensional CFD calculations were made for the S809 laminar-flow, wind-turbine airfoil using the commercial code CFD-ACE. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data from the Delft University 1.8 m x 1.25 m low-turbulence wind tunnel. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to-turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-{epsilon} model, is not appropriate at angles of attack with flow separation.

  2. Upper surface blowing aerodynamic and acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Ryle, D. M., Jr.; Braden, J. A.; Gibson, J. S.

    1977-01-01

    Aerodynamic performance at cruise, and noise effects due to variations in nacelle and wing geometry and mode of operation are studied using small aircraft models that simulate upper surface blowing (USB). At cruise speeds ranging from Mach .50 to Mach .82, the key determinants of drag/thrust penalties are found to be nozzle aspect ratio, boattailing angle, and chordwise position; number of nacelles; and streamlined versus symmetric configuration. Recommendations are made for obtaining favorable cruise configurations. The acoustic studies, which concentrate on the noise created by the jet exhaust flow and its interaction with wing and flap surfaces, isolate several important sources of USB noise, including nozzle shape, exit velocity, and impingement angle; flow pathlength; and flap angle and radius of curvature. Suggestions for lessening noise due to trailing edge flow velocity, flow pathlength, and flow spreading are given, though compromises between some design options may be necessary.

  3. Comparison of Theoretical and Experimental Unsteady Aerodynamics of Linear Oscillating Cascade With Supersonic Leading-Edge Locus

    NASA Technical Reports Server (NTRS)

    Ramsey, John K.; Erwin, Dan

    2004-01-01

    An experimental influence coefficient technique was used to obtain unsteady aerodynamic influence coefficients and, consequently, unsteady pressures for a cascade of symmetric airfoils oscillating in pitch about mid-chord. Stagger angles of 0 deg and 10 deg were investigated for a cascade with a gap-to-chord ratio of 0.417 operating at an axial Mach number of 1.9, resulting in a supersonic leading-edge locus. Reduced frequencies ranged from 0.056 to 0.2. The influence coefficients obtained determine the unsteady pressures for any interblade phase angle. The unsteady pressures were compared with those predicted by several algorithms for interblade phase angles of 0 deg and 180 deg.

  4. Aerodynamic Characteristic of the Active Compliant Trailing Edge Concept

    NASA Astrophysics Data System (ADS)

    Nie, Rui; Qiu, Jinhao; Ji, Hongli; Li, Dawei

    2016-06-01

    This paper introduces a novel Morphing Wing structure known as the Active Compliant Trailing Edge (ACTE). ACTE structures are designed using the concept of “distributed compliance” and wing skins of ACTE are fabricated from high-strength fiberglass composites laminates. Through the relative sliding between upper and lower wing skins which are connected by a linear guide pairs, the wing is able to achieve a large continuous deformation. In order to present an investigation about aerodynamics and noise characteristics of ACTE, a series of 2D airfoil analyses are established. The aerodynamic characteristics between ACTE and conventional deflection airfoil are analyzed and compared, and the impacts of different ACTE structure design parameters on aerodynamic characteristics are discussed. The airfoils mentioned above include two types (NACA0012 and NACA64A005.92). The computing results demonstrate that: compared with the conventional plane flap airfoil, the morphing wing using ACTE structures has the capability to improve aerodynamic characteristic and flow separation characteristic. In order to study the noise level of ACTE, flow field analysis using LES model is done to provide noise source data, and then the FW-H method is used to get the far field noise levels. The simulation results show that: compared with the conventional flap/aileron airfoil, the ACTE configuration is better to suppress the flow separation and lower the overall sound pressure level.

  5. Development and applications of supersonic unsteady consistent aerodynamics for intering parallel wings: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Paine, A. A.

    1972-01-01

    The computer program written in support of the problem to determine aerodynamic influence coefficients on parallel interfering wings is described. The information is geared to the programmer. It is sufficient to describe the program logic and the required peripheral storage.

  6. Influence of Different Diffuser Angle on Sedan's Aerodynamic Characteristics

    NASA Astrophysics Data System (ADS)

    Hu, Xingjun; Zhang, Rui; Ye, Jian; Yan, Xu; Zhao, Zhiming

    The aerodynamic characteristics have a great influence on the fuel economics and the steering stability of a high speed vehicle. The underbody rear diffuser is one of important aerodynamic add-on devices. The parameters of the diffuser, including the diffuser angle, the number and the shape of separators, the shape of the end plate and etc, will affect the underbody flow and the wake. Here, just the influence of the diffuser angle was investigated without separator and the end plate. The method of Computational Fluid Dynamics was adopted to study the aerodynamic characteristics of a simplified sedan with a different diffuser angle respectively. The diffuser angle was set to 0°, 3°, 6°, 9.8° and 12° respectively. The diffuser angle of the original model is 9.8°. The conclusions were drawn that when the diffuser angle increases, the underbody flow and especially the wake change greatly and the pressure change correspondingly; as a result, the total aerodynamic drag coefficients of car first decrease and then increases, while the total aerodynamic lift coefficients decrease.

  7. Experimental transonic flutter characteristics of supersonic cruise configurations

    NASA Technical Reports Server (NTRS)

    Durham, Michael H.; Cole, Stanley R.; Cazier, F. W., Jr.; Keller, Donald F.; Parker, Ellen C.; Wilkie, W. Keats

    1990-01-01

    The flutter characteristics of a generic arrow-wing supersonic transport configuration are studied. The wing configuration has a 3 percent biconvex airfoil and a leading-edge sweep of 73 deg out to a cranked tip with a 60 deg leading-edge sweep. The ground vibration tests and flutter test procedure are described. The effects of flutter on engine nacelles, fuel loading, wing-mounted vertical fin, wing angle-of-attack, and wing tip mass and stiffness distributions are analyzed. The data reveal that engine nacelles reduce the transonic flutter dynamic pressure by 25-30 percent; fuel loadings decrease dynamic pressures by 25 percent; 4-6 deg wing angles-of-attack cause steep transonic boundaries; and 5-10 percent changes in flutter dynamic pressures are the result of the wing-mounted vertical fin and wing-tip mass and stiffness distributions.

  8. Flowfield characteristics of an aerodynamic acoustic levitator

    NASA Astrophysics Data System (ADS)

    Yarin, A. L.; Brenn, G.; Keller, J.; Pfaffenlehner, M.; Ryssel, E.; Tropea, C.

    1997-11-01

    A droplet held in a single-axis ultrasonic levitator will principally sustain a certain external blowing along the levitation axis, which introduces the possibility of investigating heat and/or mass transfer from the droplet under conditions which are not too remote from those in spray systems. The focus of the present work is on the influence of the acoustic field on the external flow. More specifically, an axisymmetric submerged gas jet in an axial standing acoustic wave is examined, both in the absence and presence of a liquid droplet. Flow visualization is first presented to illustrate the global flow effects and the operating windows of jet velocities and acoustic powers which are suitable for further study. An analytic and numeric solution, based on the parabolic boundary layer equations are then given for the case of no levitated droplet, providing quantitative estimates of the acoustic field/flow interaction. Detailed velocity measurements using a laser Doppler anemometer verify the analytic results and extend these to the case of a levitated droplet. Some unresolved discrepancy remains in predicting the maximum velocity attainable before the droplet is blown out of the levitator. Two methods are developed to estimate the sound pressure level in the levitator by comparing flowfield patterns with analytic results. These results and observations are used to estimate to what extent acoustic aerodynamic levitators can be used in the future for investigating transport properties of individual droplets.

  9. Techniques for estimating Space Station aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Thomas, Richard E.

    1993-01-01

    A method was devised and calculations were performed to determine the effects of reflected molecules on the aerodynamic force and moment coefficients for a body in free molecule flow. A procedure was developed for determining the velocity and temperature distributions of molecules reflected from a surface of arbitrary momentum and energy accommodation. A system of equations, based on momentum and energy balances for the surface, incident, and reflected molecules, was solved by a numerical optimization technique. The minimization of a 'cost' function, developed from the set of equations, resulted in the determination of the defining properties of the flow reflected from the arbitrary surface. The properties used to define both the incident and reflected flows were: average temperature of the molecules in the flow, angle of the flow with respect to a vector normal to the surface, and the molecular speed ratio. The properties of the reflected flow were used to calculate the contribution of multiply reflected molecules to the force and moments on a test body in the flow. The test configuration consisted of two flat plates joined along one edge at a right angle to each other. When force and moment coefficients of this 90 deg concave wedge were compared to results that did not include multiple reflections, it was found that multiple reflections could nearly double lift and drag coefficients, with nearly a 50 percent increase in pitching moment for cases with specular or nearly specular accommodation. The cases of diffuse or nearly diffuse accommodation often had minor reductions in axial and normal forces when multiple reflections were included. There were several cases of intermediate accommodation where the addition of multiple reflection effects more than tripled the lift coefficient over the convex technique.

  10. Aerodynamic Characteristics of Telescopic Aerospikes with Multiple-Row-Disk

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroaki; Maru, Yusuke; Sato, Tetsuya

    This paper reports experimental studies on telescopic aerospikes with multiple disks. The telescopic aerospike is useful as an aerodynamic control device; however, changing its length causes a buzz phenomenon, which many researchers have reported. The occurrence of buzzing might be critical to the vehicle because it brings about severe pressure oscillations on the surface. Disks on the shaft produce stable recirculation regions by dividing the single separation flow into several conical cavity flows. The telescopic aerospikes with stabilizer disks are useful without any length constraints. Aerodynamic characteristics of the telescopic aerospikes were investigated through a series of wind tunnel tests. Transition of recirculation/reattachment flow modes of a plain spike causes a large change in the drag coefficient. Because of this hysteresis phenomenon and the buzzing, the plain spike is unsuitable for fine aerodynamic control devices. Adding stabilizer disks is effective for the improved control of aerospikes.

  11. Development of the Orion Crew Module Static Aerodynamic Database. Par 2; Supersonic/Subsonic

    NASA Technical Reports Server (NTRS)

    Bibb, Karen L.; Walker, Eric L.; Brauckmann, Gregory J.; Robinson, Phil

    2011-01-01

    This work describes the process of developing the nominal static aerodynamic coefficients and associated uncertainties for the Orion Crew Module for Mach 8 and below. The database was developed from wind tunnel test data and computational simulations of the smooth Crew Module geometry, with no asymmetries or protuberances. The database covers the full range of Reynolds numbers seen in both entry and ascent abort scenarios. The basic uncertainties were developed as functions of Mach number and total angle of attack from variations in the primary data as well as computations at lower Reynolds numbers, on the baseline geometry, and using different flow solvers. The resulting aerodynamic database represents the Crew Exploration Vehicle Aerosciences Project's best estimate of the nominal aerodynamics for the current Crew Module vehicle.

  12. Aeroacoustic Characteristics of a Rectangular Multi-Element Supersonic Jet Mixer-Ejector Nozzle

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Taghavi, Ray

    1996-01-01

    This paper provides a unique, detailed evaluation of the acoustics and aerodynamics of a rectangular multi-element supersonic jet mixer-ejector noise suppressor. The performance of such mixer-ejectors is important in aircraft engine application for noise suppression and thrust augmentation. In contrast to most prior experimental studies on ejectors that reported either aerodynamic or acoustic data, our work documents both types of data. We present information on the mixing, pumping, ejector wall pressure distribution, thrust augmentation and noise suppression characteristics of four simple, multi-element, jet mixer-ejector configurations. The four configurations included the effect of ejector area ratio (AR = ejector area/primary jet area) and the effect of non-parallel ejector walls. We also studied in detail the configuration that produced the best noise suppression characteristics. Our results show that ejector configurations that produced the maximum maximum pumping (entrained flow per secondary inlet area) also exhibited the lowest wall pressures in the inlet region, and the maximum thrust augmentation. When cases having the same total mass flow were compared, we found that noise suppression trends corresponded with those for pumping. Surprisingly, the mixing (quantified by the peak Mach number, and flow uniformity) at the ejector exit exhibited no relationship to the noise suppression at moderate primary jet fully expanded Mach numbers (Mj is less than 1.4). However, the noise suppression dependence on the mixing was apparent at higher Mj. The above observations are justified by noting that the mixing at the ejector exit is ot a strong factor in determining the radiated noise when noise produced internal to the ejector dominates the noise field outside the ejector.

  13. Integral-equation methods in steady and unsteady subsonic, transonic and supersonic aerodynamics for interdisciplinary design

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.

    1990-01-01

    Progress in the development of computational methods for steady and unsteady aerodynamics has perennially paced advancements in aeroelastic analysis and design capabilities. Since these capabilities are of growing importance in the analysis and design of high-performance aircraft, considerable effort has been directed toward the development of appropriate aerodynamic methodology. The contributions to those efforts from the integral-equations research program at the NASA Langley Research Center is reviewed. Specifically, the current scope, progress, and plans for research and development for inviscid and viscous flows are discussed, and example applications are shown in order to highlight the generality, versatility, and attractive features of this methodology.

  14. Effects of varying podded nacelle-nozzle installations on transonic aeropropulsive characteristics of a supersonic fighter aircraft

    NASA Technical Reports Server (NTRS)

    Capone, F. J.; Reubush, D. E.

    1983-01-01

    The aeropropulsive characteristics of an advanced twin engine fighter designed for supersonic cruise was investigated in the 16 foot Transonic Tunnel. The performance characteristics of advanced nonaxisymmetric nozzles installed in various nacelle locations, the effects of thrust induced forces on overall aircraft aerodynamics, the trim characteristics, and the thrust reverser performance were evaluated. The major model variables included nozzle power setting; nozzle duct aspect ratio; forward, mid, and aft nacelle axial locations; inboard and outboard underwing nacelle locations; and underwing and overwing nacelle locations. Thrust vectoring exhaust nozzle configurations included a wedge nozzle, a two dimensional convergent divergent nozzle, and a single expansion ramp nozzle, each with deflection angles up to 30 deg. In addition to the nonaxisymmetric nozzles, an axisymmetric nozzle installation was also tested. The use of a canard for trim was also assessed.

  15. Program LRCDM2: Improved aerodynamic prediction program for supersonic canard-tail missiles with axisymmetric bodies

    NASA Technical Reports Server (NTRS)

    Dillenius, Marnix F. E.

    1985-01-01

    Program LRCDM2 was developed for supersonic missiles with axisymmetric bodies and up to two finned sections. Predicted are pressure distributions and loads acting on a complete configuration including effects of body separated flow vorticity and fin-edge vortices. The computer program is based on supersonic panelling and line singularity methods coupled with vortex tracking theory. Effects of afterbody shed vorticity on the afterbody and tail-fin pressure distributions can be optionally treated by companion program BDYSHD. Preliminary versions of combined shock expansion/linear theory and Newtonian/linear theory have been implemented as optional pressure calculation methods to extend the Mach number and angle-of-attack ranges of applicability into the nonlinear supersonic flow regime. Comparisons between program results and experimental data are given for a triform tail-finned configuration and for a canard controlled configuration with a long afterbody for Mach numbers up to 2.5. Initial tests of the nonlinear/linear theory approaches show good agreement for pressures acting on a rectangular wing and a delta wing with attached shocks for Mach numbers up to 4.6 and angles of attack up to 20 degrees.

  16. Aerodynamic Characteristics of Tracheostomy Speaking Valves.

    ERIC Educational Resources Information Center

    Fornataro-Clerici, Lisa; Zajac, David J.

    1993-01-01

    Pressure-flow characteristics were determined for four different one-way valves (Kisner, Montgomery, Olympic, and Passy-Muir) used for speech production in tracheotomy patients. Results indicated significant differences in resistance among the valves, with the resistance of one valve substantially greater than that of the normal upper airways.…

  17. Aerodynamic characteristics of a 55 deg clipped-delta-wing orbiter model at Mach numbers from 1.60 to 4.63

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.; Grow, J.

    1973-01-01

    Wind tunnel tests to determine the supersonic aerodynamic characteristics of a delta wing space shuttle orbiter model were conducted. The model was tested at Mach numbers from 1.60 to 4.63, at nominal angles of attack from minus 2 degrees to plus 30 degrees, nominal sideslip angles of minus 4 degrees to plus 10 degrees, and Reynolds numbers from 1.8 to 2.5 times one million per foot.

  18. Complex conservative difference schemes for computing supersonic flows past simple aerodynamic forms

    NASA Astrophysics Data System (ADS)

    Azarova, O. A.

    2015-12-01

    Complex conservative modifications of two-dimensional difference schemes on a minimum stencil are presented for the Euler equations. The schemes are conservative with respect to the basic divergent variables and the divergent variables for spatial derivatives. Approximations of boundary conditions for computing flows around variously shaped bodies (plates, cylinders, wedges, cones, bodies with cavities, and compound bodies) are constructed without violating the conservation properties in the computational domain. Test problems for computing flows with shock waves and contact discontinuities and supersonic flows with external energy sources are described.

  19. General theory of conical flows and its application to supersonic aerodynamics

    NASA Technical Reports Server (NTRS)

    Germain, Paul

    1955-01-01

    Points treated in this report are: homogeneous flows, the general study of conical flows with infinitesimal cone angles, the numerical or analogous methods for the study of flows flattened in one direction, and a certain number of results. A thorough consideration of the applications on conical flows and demonstration of how one may solve within the scope of linear theory, by combinations of conical flows, the general problems of the supersonic wing, taking into account dihedral and sweepback, and also fuselage and control surface effects.

  20. The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Neumann, Richard D.; Freeman, Delma C.

    2011-01-01

    In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.

  1. Bumblebee program, aerodynamic data. Part 2: Flow fields at Mach number 2.0. [supersonic missiles

    NASA Technical Reports Server (NTRS)

    Barnes, G. A.; Cronvich, L. L.

    1979-01-01

    Available flow field data which can be used in validating theoretical procedures for computing flow fields around supersonic missiles are presented. Tabulated test data are given which define the flow field around a conical-nosed cylindrical body in a crossflow plane corresponding to a likely tail location. The data were obtained at a Mach number of 2.0 for an angle of attack of 0 to 23 degrees. The data define the flow field for cases both with and without a forward wing present.

  2. Aerodynamic characteristics of missile configurations based on Soviet design concepts

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1979-01-01

    The aerodynamic characteristics of several missile concepts are examined. The configurations, which are based on some typical Soviet design concepts, include fixed-wing missiles with either forward- or aft-tail controls, and wing-control missiles with fixed aft stabilizing surfaces. The conceptual missions include air-to-air, surface-to-air, air-to-surface, and surface-to-surface. Analytical and experimental results indicate that through the proper shaping and location of components, and through the exploitation of local flow fields, the concepts provide generally good stability characteristics, high control effectiveness, and low control hinge moments. In addition, in the case of some cruise-type missions, there are indications of the application of area ruling as a means of improving the aerodynamic efficiency. In general, a point-design philosophy is indicated whereby a particular configuration is developed for performing a particular mission.

  3. Assured Crew Return Vehicle flowfield and aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. James; Smith, Robert E.; Greene, Francis A.

    1990-01-01

    A lifting body has been proposed as a candidate for the Assured Crew Return Vehicle which will serve as crew rescue vehicle for the Space Station. The focus of this work is on body surface definition, surface and volume grid definition, and the computation of inviscid flowfields about the vehicle at wind-tunnel conditions. Very good agreement is shown between the computed aerodynamic characteristics of the vehicle at a freestream Mach number of 10 and those measured in wind-tunnel tests.

  4. Aerodynamic Characteristics of Two Waverider-Derived Hypersonic Cruise Configurations

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Huebner, Lawrence D.; Finley, Dennis B.

    1996-01-01

    An evaluation was made on the effects of integrating the required aircraft components with hypersonic high-lift configurations known as waveriders to create hypersonic cruise vehicles. Previous studies suggest that waveriders offer advantages in aerodynamic performance and propulsion/airframe integration (PAI) characteristics over conventional non-waverider hypersonic shapes. A wind-tunnel model was developed that integrates vehicle components, including canopies, engine components, and control surfaces, with two pure waverider shapes, both conical-flow-derived waveriders for a design Mach number of 4.0. Experimental data and limited computational fluid dynamics (CFD) solutions were obtained over a Mach number range of 1.6 to 4.63. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is not comparable to that of the pure waverider shapes, but is comparable to previously tested hypersonic models. Both configurations exhibit good lateral-directional stability characteristics.

  5. Method of characteristics for three-dimensional axially symmetrical supersonic flows.

    NASA Technical Reports Server (NTRS)

    Sauer, R

    1947-01-01

    An approximation method for three-dimensional axially symmetrical supersonic flows is developed; it is based on the characteristics theory (represented partly graphically, partly analytically). Thereafter this method is applied to the construction of rotationally symmetrical nozzles. (author)

  6. Shear layer characteristics of supersonic free and impinging jets

    NASA Astrophysics Data System (ADS)

    Davis, T. B.; Kumar, R.

    2015-09-01

    The initial shear layer characteristics of a jet play an important role in the initiation and development of instabilities and hence radiated noise. Particle image velocimetry has been utilized to study the initial shear layer development of supersonic free and impinging jets. Microjet control employed to reduce flow unsteadiness and jet noise appears to affect the development of the shear layer, particularly near the nozzle exit. Velocity field measurements near the nozzle exit show that the initially thin, uncontrolled shear layer develops at a constant rate while microjet control is characterized by a rapid nonlinear thickening that asymptotes downstream. The shear layer linear growth rate with microjet control, in both the free and the impinging jet, is diminished. In addition, the thickened shear layer with control leads to a reduction in azimuthal vorticity for both free and impinging jets. Linear stability theory is used to compute unstable growth rates and convection velocities of the resultant velocity profiles. The results show that while the convection velocity is largely unaffected, the unstable growth rates are significantly reduced over all frequencies with microjet injection. For the case of the impinging jet, microjet control leads to near elimination of the impingement tones and an appreciable reduction in broadband levels. Similarly, for the free jet, significant reduction in overall sound pressure levels in the peak radiation direction is observed.

  7. Supersonic compressor

    DOEpatents

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    2016-04-12

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  8. Comparison of aerodynamic characteristics of pentagonal and hexagonal shaped bridge decks

    NASA Astrophysics Data System (ADS)

    Haque, Md. Naimul; Katsuchi, Hiroshi; Yamada, Hitoshi; Nishio, Mayuko

    2016-07-01

    Aerodynamics of the long-span bridge deck should be well understood for an efficient design of the bridge system. For practical bridges various deck shapes are being recommended and adopted, yet not all of their aerodynamic behaviors are well interpreted. In the present study, a numerical investigation was carried out to explore the aerodynamic characteristics of pentagonal and hexagonal shaped bridge decks. A relative comparison of steady state aerodynamic responses was made and the flow field was critically analyzed for better understanding the aerodynamic responses. It was found that the hexagonal shaped bridge deck has better aerodynamic characteristics as compared to the pentagonal shaped bridge deck.

  9. Hypersonic and Supersonic Static Aerodynamics of Mars Science Laboratory Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dyakonov, Artem A.; Schoenenberger, Mark; Vannorman, John W.

    2012-01-01

    This paper describes the analysis of continuum static aerodynamics of Mars Science Laboratory (MSL) entry vehicle (EV). The method is derived from earlier work for Mars Exploration Rover (MER) and Mars Path Finder (MPF) and the appropriate additions are made in the areas where physics are different from what the prior entry systems would encounter. These additions include the considerations for the high angle of attack of MSL EV, ablation of the heatshield during entry, turbulent boundary layer, and other aspects relevant to the flight performance of MSL. Details of the work, the supporting data and conclusions of the investigation are presented.

  10. Predicting aerodynamic characteristic of typical wind turbine airfoils using CFD

    SciTech Connect

    Wolfe, W.P.; Ochs, S.S.

    1997-09-01

    An investigation was conducted into the capabilities and accuracy of a representative computational fluid dynamics code to predict the flow field and aerodynamic characteristics of typical wind-turbine airfoils. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-e model, is not appropriate at angles of attack with flow separation. 14 refs., 28 figs., 4 tabs.

  11. Aerodynamic characteristics of a propeller powered high lift semispan wing

    NASA Technical Reports Server (NTRS)

    Takallu, M. A.; Gentry, G. L., Jr.

    1992-01-01

    An experimental investigation was conducted on the engine/airframe integration aerodynamics for potential high-lift aircraft configurations. The model consisted of a semispan wing with a double-isolated flap system and a Krueger leading edge device. The advanced propeller and the powered nacelle were tested and aerodynamic characteristics of the combined system are presented. It was found that the lift coefficient of the powered wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Moving the nacelle/propeller closer to the wing in the vertical direction indicated higher lift augmentation than a shift in the longitudinal direction. A pitch-down nacelle inclination enhanced the lift performance of the system much better than vertical and horizontal variation of the nacelle locations and showed that the powered wing can sustain higher angles of attack near maximum lift performance.

  12. Aerodynamic Characteristics of High Speed Trains under Cross Wind Conditions

    NASA Astrophysics Data System (ADS)

    Chen, W.; Wu, S. P.; Zhang, Y.

    2011-09-01

    Numerical simulation for the two models in cross-wind was carried out in this paper. The three-dimensional compressible Reynolds-averaged Navier-Stokes equations(RANS), combined with the standard k-ɛ turbulence model, were solved on multi-block hybrid grids by second order upwind finite volume technique. The impact of fairing on aerodynamic characteristics of the train models was analyzed. It is shown that, the flow separates on the fairing and a strong vortex is generated, the pressure on the upper middle car decreases dramatically, which leads to a large lift force. The fairing changes the basic patterns around the trains. In addition, formulas of the coefficient of aerodynamic force at small yaw angles up to 24° were expressed.

  13. Numerical methods and a computer program for subsonic and supersonic aerodynamic design and analysis of wings with attainable thrust considerations

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Walkley, K. B.

    1984-01-01

    This paper describes methodology and an associated computer program for the design of wing lifting surfaces with attainable thrust taken into consideration. The approach is based on the determination of an optimum combination of a series of candidate surfaces rather than the more commonly used candidate loadings. Special leading-edge surfaces are selected to provide distributed leading-edge thrust forces which compensate for any failure to achieve the full theoretical leading-edge thrust, and a second series of general candidate surfaces is selected to minimize drag subject to constraints on the lift coefficient and, if desired, on the pitching moment coefficient. A primary purpose of the design approach is the introduction of attainable leading-edge thrust considerations so that relatively mild camber surfaces may be employed in the achievement of aerodynamic efficiencies comparable to those attainable if full theoretical leading-edge thrust could be achieved. The program provides an analysis as well as a design capability and is applicable to both subsonic and supersonic flow.

  14. Supersonic Aerodynamic Design Improvements of an Arrow-Wing HSCT Configuration Using Nonlinear Point Design Methods

    NASA Technical Reports Server (NTRS)

    Unger, Eric R.; Hager, James O.; Agrawal, Shreekant

    1999-01-01

    This paper is a discussion of the supersonic nonlinear point design optimization efforts at McDonnell Douglas Aerospace under the High-Speed Research (HSR) program. The baseline for these optimization efforts has been the M2.4-7A configuration which represents an arrow-wing technology for the High-Speed Civil Transport (HSCT). Optimization work on this configuration began in early 1994 and continued into 1996. Initial work focused on optimization of the wing camber and twist on a wing/body configuration and reductions of 3.5 drag counts (Euler) were realized. The next phase of the optimization effort included fuselage camber along with the wing and a drag reduction of 5.0 counts was achieved. Including the effects of the nacelles and diverters into the optimization problem became the next focus where a reduction of 6.6 counts (Euler W/B/N/D) was eventually realized. The final two phases of the effort included a large set of constraints designed to make the final optimized configuration more realistic and they were successful albeit with a loss of performance.

  15. Glow Discharge Characteristics in Transverse Supersonic Air Flow

    NASA Astrophysics Data System (ADS)

    Timerkaev, B. A.; Zalyaliev, B. R.; Saifutdinov, A. I.

    2014-11-01

    A low pressure glow discharge in a transverse supersonic gas flow of air at pressures of the order 1 torr has been experimentally studied for the case where the flow only partially fills the inter electrode gap. It is shown that the space region with supersonic gas flow has a higher concentration of gas particles and, therefore, works as a charged particle generator. The near electrode regions of glow discharge are concentrated specifically in this region. This structure of glow discharge is promising for plasma deposition of coatings under ultralow pressures

  16. Analysis of preflutter and postflutter characteristics with motion-matched aerodynamic forces

    NASA Technical Reports Server (NTRS)

    Cunningham, H. J.

    1978-01-01

    The development of the equations of dynamic equilibrium for a lifting surface from Lagrange's equation is reviewed and restated for general exponential growing and decaying oscillatory motion. Aerodynamic forces for this motion are obtained from the three-dimensional supersonic kernel function that is newly generalized to complex reduced frequencies. Illustrative calculations were made for two flutter models at supersonic Mach numbers. Preflutter and postflutter motion isodecrement curves were obtained. This type of analysis can be used to predict preflutter behavior during flutter testing and to predict postflutter behavior for use in the design of flutter suppression systems.

  17. Integrating aerodynamics and structures in the minimum weight design of a supersonic transport wing

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Wrenn, Gregory A.; Dovi, Augustine R.; Coen, Peter G.; Hall, Laura E.

    1992-01-01

    An approach is presented for determining the minimum weight design of aircraft wing models which takes into consideration aerodynamics-structure coupling when calculating both zeroth order information needed for analysis and first order information needed for optimization. When performing sensitivity analysis, coupling is accounted for by using a generalized sensitivity formulation. The results presented show that the aeroelastic effects are calculated properly and noticeably reduce constraint approximation errors. However, for the particular example selected, the error introduced by ignoring aeroelastic effects are not sufficient to significantly affect the convergence of the optimization process. Trade studies are reported that consider different structural materials, internal spar layouts, and panel buckling lengths. For the formulation, model and materials used in this study, an advanced aluminum material produced the lightest design while satisfying the problem constraints. Also, shorter panel buckling lengths resulted in lower weights by permitting smaller panel thicknesses and generally, by unloading the wing skins and loading the spar caps. Finally, straight spars required slightly lower wing weights than angled spars.

  18. Aerodynamic characteristics of flying fish in gliding flight.

    PubMed

    Park, Hyungmin; Choi, Haecheon

    2010-10-01

    The flying fish (family Exocoetidae) is an exceptional marine flying vertebrate, utilizing the advantages of moving in two different media, i.e. swimming in water and flying in air. Despite some physical limitations by moving in both water and air, the flying fish has evolved to have good aerodynamic designs (such as the hypertrophied fins and cylindrical body with a ventrally flattened surface) for proficient gliding flight. Hence, the morphological and behavioral adaptations of flying fish to aerial locomotion have attracted great interest from various fields including biology and aerodynamics. Several aspects of the flight of flying fish have been determined or conjectured from previous field observations and measurements of morphometric parameters. However, the detailed measurement of wing performance associated with its morphometry for identifying the characteristics of flight in flying fish has not been performed yet. Therefore, in the present study, we directly measure the aerodynamic forces and moment on darkedged-wing flying fish (Cypselurus hiraii) models and correlated them with morphological characteristics of wing (fin). The model configurations considered are: (1) both the pectoral and pelvic fins spread out, (2) only the pectoral fins spread with the pelvic fins folded, and (3) both fins folded. The role of the pelvic fins was found to increase the lift force and lift-to-drag ratio, which is confirmed by the jet-like flow structure existing between the pectoral and pelvic fins. With both the pectoral and pelvic fins spread, the longitudinal static stability is also more enhanced than that with the pelvic fins folded. For cases 1 and 2, the lift-to-drag ratio was maximum at attack angles of around 0 deg, where the attack angle is the angle between the longitudinal body axis and the flying direction. The lift coefficient is largest at attack angles around 30∼35 deg, at which the flying fish is observed to emerge from the sea surface. From glide polar

  19. Aerodynamic design and analysis of the AST-204, AST-205, and AST-206 blended wing-fuse large supersonic transport configuration concepts

    NASA Technical Reports Server (NTRS)

    Martin, G. L.; Walkley, K. B.

    1980-01-01

    The aerodynamic design and analysis of three blended wing-fuselage supersonic cruise configurations providing four, five, and six abreast seating was conducted using a previously designed supersonic cruise configuration as the baseline. The five abreast configuration was optimized for wave drag at a Mach number of 2.7. The four and six abreast configurations were also optimized at Mach 2.7, but with the added constraint that the majority of their structure be common with the five abreast configuration. Analysis of the three configurations indicated an improvement of 6.0, 7.5, and 7.7 percent in cruise lift-to-drag ratio over the baseline configuration for the four, five, and six abreast configurations, respectively.

  20. Theoretical study of aerodynamic characteristics of wings having vortex flow

    NASA Technical Reports Server (NTRS)

    Reddy, C. S.

    1979-01-01

    The aerodynamic characteristics of slender wings having separation induced vortex flows are investigated by employing three different computer codes--free vortex sheet, quasi vortex lattice, and suction analogy methods. Their capabilities and limitations are examined, and modifications are discussed. Flat wings of different configurations: arrow, delta, and diamond shapes, as well as cambered delta wings, are studied. The effect of notch ratio on the load distributions and the longitudinal characteristics of a family of arrow and diamond wings is explored. The sectional lift coefficients and the accumulated span loadings are determined for an arrow wing and are seen to be unusual in comparison with the attached flow results. The theoretically predicted results are compared with the existing experimental values.

  1. Development of a pulsed uniform supersonic gas expansion system based on an aerodynamic chopper for gas phase reaction kinetic studies at ultra-low temperatures.

    PubMed

    Jiménez, E; Ballesteros, B; Canosa, A; Townsend, T M; Maigler, F J; Napal, V; Rowe, B R; Albaladejo, J

    2015-04-01

    A detailed description of a new pulsed supersonic uniform gas expansion system is presented together with the experimental validation of the setup by applying the CRESU (French acronym for Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) technique to the gas-phase reaction of OH radicals with 1-butene at ca. 23 K and 0.63 millibars of helium (carrier gas). The carrier gas flow, containing negligible mixing ratios of OH-precursor and 1-butene, is expanded from a high pressure reservoir (337 millibars) to a low pressure region (0.63 millibars) through a convergent-divergent nozzle (Laval type). The novelty of this experimental setup is that the uniform supersonic flow is pulsed by means of a Teflon-coated aerodynamic chopper provided with two symmetrical apertures. Under these operational conditions, the designed Laval nozzle achieves a temperature of (22.4 ± 1.4) K in the gas jet. The spatial characterization of the temperature and the total gas density within the pulsed uniform supersonic flow has also been performed by both aerodynamical and spectroscopic methods. The gas consumption with this technique is considerably reduced with respect to a continuous CRESU system. The kinetics of the OH+1-butene reaction was investigated by the pulsed laser photolysis/laser induced fluorescence technique. The rotation speed of the disk is temporally synchronized with the exit of the photolysis and the probe lasers. The rate coefficient (k(OH)) for the reaction under investigation was then obtained and compared with the only available data at this temperature. PMID:25933898

  2. Development of a pulsed uniform supersonic gas expansion system based on an aerodynamic chopper for gas phase reaction kinetic studies at ultra-low temperatures

    NASA Astrophysics Data System (ADS)

    Jiménez, E.; Ballesteros, B.; Canosa, A.; Townsend, T. M.; Maigler, F. J.; Napal, V.; Rowe, B. R.; Albaladejo, J.

    2015-04-01

    A detailed description of a new pulsed supersonic uniform gas expansion system is presented together with the experimental validation of the setup by applying the CRESU (French acronym for Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) technique to the gas-phase reaction of OH radicals with 1-butene at ca. 23 K and 0.63 millibars of helium (carrier gas). The carrier gas flow, containing negligible mixing ratios of OH-precursor and 1-butene, is expanded from a high pressure reservoir (337 millibars) to a low pressure region (0.63 millibars) through a convergent-divergent nozzle (Laval type). The novelty of this experimental setup is that the uniform supersonic flow is pulsed by means of a Teflon-coated aerodynamic chopper provided with two symmetrical apertures. Under these operational conditions, the designed Laval nozzle achieves a temperature of (22.4 ± 1.4) K in the gas jet. The spatial characterization of the temperature and the total gas density within the pulsed uniform supersonic flow has also been performed by both aerodynamical and spectroscopic methods. The gas consumption with this technique is considerably reduced with respect to a continuous CRESU system. The kinetics of the OH+1-butene reaction was investigated by the pulsed laser photolysis/laser induced fluorescence technique. The rotation speed of the disk is temporally synchronized with the exit of the photolysis and the probe lasers. The rate coefficient (kOH) for the reaction under investigation was then obtained and compared with the only available data at this temperature.

  3. A general aerodynamic approach to the problem of decaying or growing vibrations of thin, flexible wings with supersonic leading and trailing edges and no side edges

    NASA Technical Reports Server (NTRS)

    Warner, R. W.

    1975-01-01

    Indicial aerodynamic influence coefficients were evaluated from potential theory for a thin, flexible wing with supersonic leading and trailing edges only. The analysis is based on the use of small surface areas in which the downwash is assumed uniform. Within this limitation, the results are exact except for the restriction of linearized theory. The areas are not restricted either to square boxes or Mach boxes. A given area may be any rectangle or square which may or may not be cut by the Mach forecone, and any area can be used anywhere in the forecone without loss of accuracy.

  4. Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics, production version (SOUSSA-P 1.1). Volume 1: Theoretical manual. [Green function

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1980-01-01

    Recent developments of the Green's function method and the computer program SOUSSA (Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics) are reviewed and summarized. Applying the Green's function method to the fully unsteady (transient) potential equation yields an integro-differential-delay equation. With spatial discretization by the finite-element method, this equation is approximated by a set of differential-delay equations in time. Time solution by Laplace transform yields a matrix relating the velocity potential to the normal wash. Premultiplying and postmultiplying by the matrices relating generalized forces to the potential and the normal wash to the generalized coordinates one obtains the matrix of the generalized aerodynamic forces. The frequency and mode-shape dependence of this matrix makes the program SOUSSA useful for multiple frequency and repeated mode-shape evaluations.

  5. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 2: Wind tunnel test force and moment data report

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.

  6. Missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N.

    1988-01-01

    The fundamental aerodynamics of slender bodies is examined in the reprint edition of an introductory textbook originally published in 1960. Chapters are devoted to the formulas commonly used in missile aerodynamics; slender-body theory at supersonic and subsonic speeds; vortices in viscid and inviscid flow; wing-body interference; downwash, sidewash, and the wake; wing-tail interference; aerodynamic controls; pressure foredrag, base drag, and skin friction; and stability derivatives. Diagrams, graphs, tables of terms and formulas are provided.

  7. Prediction of vortex flow characteristics of wings at subsonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.

    1975-01-01

    The leading-edge-suction analogy of Polhamus, which has been successful in the prediction of vortex lift characteristics on wings with pointed tips at subsonic and supersonic speeds, has recently been extended to account for the vortex flow characteristics for wings with side edges. Comparisons of experimental data and other currently used methods with the extended method are made for wings having side edges at subsonic and supersonic speeds. Recent data obtained for a low-aspect-ratio cropped-delta wing with various amounts of asymmetrical tip rake, simulating a roll control device, are also presented.

  8. Aerodynamic characteristics of Lockheed delta-body orbiter and stage-and-one-half launch vehicle

    NASA Technical Reports Server (NTRS)

    Velligan, F. A.; Svendsen, H. O.

    1971-01-01

    An experimental wind tunnel test program was conducted to investigate the subsonic through high supersonic aerodynamic characteristics of the Lockheed delta lifting body orbiter and stage-and-one-half launch vehicle. Analyses and results of these data are presented. A 0.01-scale model of the LS 200-5 system was designed and fabricated for testing in wind tunnels. Orbiter and launch configurations were tested over a speed range of Mach 0.6 to 2.0, whereas only the orbiter was tested over a speed range of Mach 2.3 to 4.6. Six-component force and moment data, base pressures, and schlieren photos were obtained at various angles-of-attack and sideslip. A 0.03-scale model of the orbiter was also designed, fabricated, and tested in a wind tunnel. Six-component force and moment data, base pressure, and a limited amount of tuft flow visualization data were obtained on a variety of configuration combinations.

  9. An analytical procedure for evaluating shuttle abort staging aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Meyer, R.

    1973-01-01

    An engineering analysis and computer code (AERSEP) for predicting Space Shuttle Orbiter - HO Tank longitudinal aerodynamic characteristics during abort separation has been developed. Computed results are applicable at Mach numbers above 2 for angle-of-attack between plus or minus 10 degrees. No practical restrictions on orbiter-tank relative positioning are indicated for tank-under-orbiter configurations. Input data requirements and computer running times are minimal facilitating program use for parametric studies, test planning, and trajectory analysis. In a majority of cases AERSEP Orbiter-Tank interference predictions are as accurate as state-of-the-art estimates for interference-free or isolated-vehicle configurations. AERSEP isolated-orbiter predictions also show excellent correlation with data.

  10. X-31 aerodynamic characteristics determined from flight data

    NASA Technical Reports Server (NTRS)

    Kokolios, Alex

    1993-01-01

    The lateral aerodynamic characteristics of the X-31 were determined at angles of attack ranging from 20 to 45 deg. Estimates of the lateral stability and control parameters were obtained by applying two parameter estimation techniques, linear regression, and the extended Kalman filter to flight test data. An attempt to apply maximum likelihood to extract parameters from the flight data was also made but failed for the reasons presented. An overview of the System Identification process is given. The overview includes a listing of the more important properties of all three estimation techniques that were applied to the data. A comparison is given of results obtained from flight test data and wind tunnel data for four important lateral parameters. Finally, future research to be conducted in this area is discussed.

  11. Aerodynamic characteristics of proposed assured crew return capability (ACRC) configurations

    NASA Astrophysics Data System (ADS)

    Ware, George M.; Spencer, Bernard, Jr.; Micol, John R.

    1989-07-01

    The aerodynamic characteristics of seven reentry configurations suggested as possible candidate vehicles to return crew members from the U.S. Space Station Freedom to earth has been reviewed. The shapes varied from those capable of purely ballistic entry to those capable of gliding entry and fromk parachute landing to conventional landing. Data were obtained from existing (published and unpublished) sources and from recent wind tunnel tests. The lifting concepts are more versatile and satisfy all the mission requirements. Two of the lifting shapes studied appear promising - a lifting body and a deployable wing concept. The choice of an ACRC concept, however, will be made after all factors involving transportation from earth to orbit and back to earth again have been weighed.

  12. Experimental and theoretical study of aerodynamic characteristics of some lifting bodies at angles of attack from -10 degrees to 53 degrees at Mach numbers from 2.30 to 4.62

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy; Torres, Abel O.

    1994-01-01

    Lifting bodies are of interest for possible use as space transportation vehicles because they have the volume required for significant payloads and the aerodynamic capability to negotiate the transition from high angles of attack to lower angles of attack (for cruise flight) and thus safely reenter the atmosphere and perform conventional horizontal landings. Results are presented for an experimental and theoretical study of the aerodynamic characteristics at supersonic speeds for a series of lifting bodies with 75 deg delta planforms, rounded noses, and various upper and lower surface cambers. The camber shapes varied in thickness and in maximum thickness location, and hence in body volume. The experimental results were obtained in the Langley Unitary Plan Wind Tunnel for both the longitudinal and the lateral aerodynamic characteristics. Selected experimental results are compared with calculated results obtained through the use of the Hypersonic Arbitrary-Body Aerodynamic Computer Program.

  13. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. [Lewis 8 by 6-foot supersonic wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1980-01-01

    Wind tunnel tests were conducted to evaluate the aerodynamic performance of a coannular exhaust nozzle for a proposed variable stream control supersonic propulsion system. Tests were conducted with two simulated configurations differing primarily in the fan duct flowpaths: a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At take off conditions, the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less.

  14. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Hess, J. R.; Bear, R. L.

    1982-01-01

    A viable, single engine, supersonic V/STOL fighter/attack aircraft concept was defined. This vectored thrust, canard wing configuration utilizes an advanced technology separated flow engine with fan stream burning. The aerodynamic characteristics of this configuration were estimated and performance evaluated. Significant aerodynamic and aerodynamic propulsion interaction uncertainties requiring additional investigation were identified. A wind tunnel model concept and test program to resolve these uncertainties and validate the aerodynamic prediction methods were defined.

  15. Measurements of the aerodynamic characteristics of the turbo-jav

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kenta; Nakajima, Tomoya; Itano, Tomoaki; Sugihara-Seki, Masako

    2014-11-01

    The ``turbo-jav'' which is used for the javelic throw in the junior Olympic games has four tail fins. In order to investigate the aerodynamic characteristics of the turbo-jav with an emphasis on the effect of the fins, we performed wind tunnel tests, throwing experiments and numerical simulations of the flight for intact turbo-javs as well as turbo-javs with their fins cut. The wind tunnel tests showed that the drag and lift coefficients for the intact turbo-javs are larger than the corresponding values for the turbo-javs without fins. As the angle of attack increases from 0, the pitching moments for the intact turbo-javs decrease from 0, whereas the moments for the turbo-javs without fins increase. In accord with this property, the throwing experiments showed that intact turbo-javs fly stably with oscillating angle of attack around 0. The flight distance, the orbit and the variation of angle of attack for the intact turbo-javs launched by a launcher agree closely with the numerical simulation performed based on the wind tunnel tests. A comparison of throwing experiments by students and by the launcher suggested significant effects of the rolling motion of the turbo-jav on its flight characteristics.

  16. High-attitude low-speed static aerodynamic characteristics of an F-4D fighter airplane model with leading edge slats

    NASA Technical Reports Server (NTRS)

    Monfort, J. C.; Whitcomb, W. M.

    1975-01-01

    An investigation was conducted to determine the effects of two-position leading edge slats on the low speed aerodynamic characteristics of a swept wing twin-jet supersonic fighter airplane model at high angle of attack and various Reynolds numbers. The investigation was performed at a Mach number of 0.20 over a range of angle of attack from 19 deg to 90 deg and angles of slideslip from -10 deg to 30 deg and Reynolds numbers from 1.97 to 13.12 million per meter.

  17. Mathematical modeling of the aerodynamic characteristics in flight dynamics

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Chapman, G. T.; Schiff, L. B.

    1984-01-01

    Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.

  18. Modeling of aircraft unsteady aerodynamic characteristics. Part 1: Postulated models

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1994-01-01

    A short theoretical study of aircraft aerodynamic model equations with unsteady effects is presented. The aerodynamic forces and moments are expressed in terms of indicial functions or internal state variables. The first representation leads to aircraft integro-differential equations of motion; the second preserves the state-space form of the model equations. The formulations of unsteady aerodynamics is applied in two examples. The first example deals with a one-degree-of-freedom harmonic motion about one of the aircraft body axes. In the second example, the equations for longitudinal short-period motion are developed. In these examples, only linear aerodynamic terms are considered. The indicial functions are postulated as simple exponentials and the internal state variables are governed by linear, time-invariant, first-order differential equations. It is shown that both approaches to the modeling of unsteady aerodynamics lead to identical models.

  19. Aerodynamic Characteristics, Database Development and Flight Simulation of the X-34 Vehicle

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Brauckmann, Gregory J.; Ruth, Michael J.; Fuhrmann, Henri D.

    2000-01-01

    An overview of the aerodynamic characteristics, development of the preflight aerodynamic database and flight simulation of the NASA/Orbital X-34 vehicle is presented in this paper. To develop the aerodynamic database, wind tunnel tests from subsonic to hypersonic Mach numbers including ground effect tests at low subsonic speeds were conducted in various facilities at the NASA Langley Research Center. Where wind tunnel test data was not available, engineering level analysis is used to fill the gaps in the database. Using this aerodynamic data, simulations have been performed for typical design reference missions of the X-34 vehicle.

  20. Wind tunnel investigation of aerodynamic characteristics of scale models of three rectangular shaped cargo containers

    NASA Technical Reports Server (NTRS)

    Laub, G. H.; Kodani, H. M.

    1972-01-01

    Wind tunnel tests were conducted on scale models of three rectangular shaped cargo containers to determine the aerodynamic characteristics of these typical externally-suspended helicopter cargo configurations. Tests were made over a large range of pitch and yaw attitudes at a nominal Reynolds number per unit length of 1.8 x one million. The aerodynamic data obtained from the tests are presented.

  1. Aerodynamic characteristics of wheelchairs. [Langley V/STOL wind tunnel tests for human factors engineering

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.

    1979-01-01

    The overall aerodynamic drag characteristics of a conventional wheelchair were defined and the individual drag contributions of its components were determined. The results show that a fiftieth percentile man sitting in the complete wheelchair would experience an aerodynamic drag coefficient on the order of 1.4.

  2. Characteristics of Pressure Sensitive Paint Intrusiveness Effects on Aerodynamic Data

    NASA Technical Reports Server (NTRS)

    Amer, Tahani R.; Liu, Tianshu; Oglesby, Donald M.

    2001-01-01

    One effect of using pressure sensitive paint (PSP) is the potential intrusiveness to the aerodynamic characteristics of the model. The paint thickness and roughness may affect the pressure distribution, and therefore, the forces and moments on the wind tunnel model. A study of these potential intrusive effects was carried out at NASA Langley Research Center where a series of wind tunnel tests were conducted using the Modem Design of Experiments (MDOE) test approach. The PSP effects on the integrated forces were measured on two different models at different test conditions in both the Low Turbulence Pressure Tunnel (LTPT) and the Unitary Plan Wind Tunnel (UPWT) at Langley. The paint effect was found to be very small over a range of Reynolds numbers, Mach numbers and angles of attack. This is due to the very low surface roughness of the painted surface. The surface roughness, after applying the NASA Langley developed PSP, was lower than that of the clean wing. However, the PSP coating had a localized effects on the pressure taps, which leads to an appreciable decrease in the pressure tap reading.

  3. Some Divergence Characteristics of Low-Aspect-Ratio Wings at Transonic and Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Woolston, Donald S.; Gibson, Frederick W.; Cunningham, Herbert J.

    1960-01-01

    The problem of chordwise, or camber, divergence at transonic and supersonic speeds is treated with primary emphasis on slender delta wings having a cantilever support at the trailing edge. Experimental and analytical results are presented for four wing models having apex half-angles of 5 deg, 10 deg, 15 deg, and 20 deg. A Mach number range from 0.8 to 7.3 is covered. The analytical results include calculations based on small-aspect-ratio theory, lifting-surface theory, and strip theory. A closed-form solution of the equilibrium equation is given, which is based on low-aspect-ratio theory but which applies only to certain stiffness distributions. Also presented is an iterative procedure for use with other aerodynamic theories and with arbitrary stiffness distribution.

  4. An Interactive Method of Characteristics Java Applet to Design and Analyze Supersonic Aircraft Nozzles

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    2014-01-01

    The Method of Characteristics (MOC) is a classic technique for designing supersonic nozzles. An interactive computer program using MOC has been developed to allow engineers to design and analyze supersonic nozzle flow fields. The program calculates the internal flow for many classic designs, such as a supersonic wind tunnel nozzle, an ideal 2D or axisymmetric nozzle, or a variety of plug nozzles. The program also calculates the plume flow produced by the nozzle and the external flow leading to the nozzle exit. The program can be used to assess the interactions between the internal, external and plume flows. By proper design and operation of the nozzle, it may be possible to lessen the strength of the sonic boom produced at the rear of supersonic aircraft. The program can also calculate non-ideal nozzles, such as simple cone flows, to determine flow divergence and nonuniformities at the exit, and its effect on the plume shape. The computer program is written in Java and is provided as free-ware from the NASA Glenn central software server.

  5. Supersonic aerodynamic trade data for a low-profile monoplanar missile concept. [air launched maneuvering missile design

    NASA Technical Reports Server (NTRS)

    Graves, E. B.; Robins, A. W.

    1979-01-01

    A monoplanar missile concept has been studied which shows promise of improving the aerodynamic performance of air-launched missiles. This missile concept has a constant eccentricity elliptical cross-section body. Since current guidance and propulsion technologies influence missile nose and base shapes, an experimental investigation has been conducted at Mach number 2.50 to determine the effects of variations in these shapes on the missile aerodynamics. Results of these tests are presented.

  6. Characteristic and mechanism of pressure fluctuation caused by self-induced oscillation of supersonic impinging jet

    NASA Astrophysics Data System (ADS)

    Yasunobu, Tsuyoshi; Otobe, Yumiko; Kashimura, Hideo

    2013-04-01

    When the underexpanded supersonic jet impinges on the obstacle, it is well known that the self-induced flow oscillation occurs. This oscillation depends on the pressure ratio in the flowfield, the position of an obstacle and is related with the noise problems of aeronautical and other industrial engineering. The characteristic and the mechanism of self-induced flow oscillation, have to be clarified to control various noise problems. But, it seems that the characteristics of the oscillated flowfield and the mechanism of an oscillation have to be more cleared to control the oscillation. This paper aims to clarify the effect of the pressure ratio and the obstacle position and the mechanism of self-induced flow oscillation by numerical analysis and experiment, when the underexpanded supersonic jet impinges on the cylindrical body. From the result of this study, it is clear that occurrence of the self-induced flow oscillation depends on the pressure balance in the flowfield.

  7. Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array

    NASA Astrophysics Data System (ADS)

    Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih

    2011-08-01

    This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.

  8. Aerodynamic characteristics and respiratory deposition of fungal fragments

    NASA Astrophysics Data System (ADS)

    Cho, Seung-Hyun; Seo, Sung-Chul; Schmechel, Detlef; Grinshpun, Sergey A.; Reponen, Tiina

    The purpose of this study was to investigate the aerodynamic characteristics of fungal fragments and to estimate their respiratory deposition. Fragments and spores of three different fungal species ( Aspergillus versicolor, Penicillium melinii, and Stachybotrys chartarum) were aerosolized by the fungal spore source strength tester (FSSST). An electrical low-pressure impactor (ELPI) measured the size distribution in real-time and collected the aerosolized fungal particles simultaneously onto 12 impactor stages in the size range of 0.3-10 μm utilizing water-soluble ZEF-X10 coating of the impaction stages to prevent spore bounce. For S. chartarum, the average concentration of released fungal fragments was 380 particles cm -3, which was about 514 times higher than that of spores. A. versicolor was found to release comparable amount of spores and fragments. Microscopic analysis confirmed that S. chartarum and A. versicolor did not show any significant spore bounce, whereas the size distribution of P. melinii fragments was masked by spore bounce. Respiratory deposition was calculated using a computer-based model, LUDEP 2.07, for an adult male and a 3-month-old infant utilizing the database on the concentration and size distribution of S. chartarum and A. versicolor aerosols measured by the ELPI. Total deposition fractions for fragments and spores were 27-46% and 84-95%, respectively, showing slightly higher values in an infant than in an adult. For S. chartarum, fragments demonstrated 230-250 fold higher respiratory deposition than spores, while the number of deposited fragments and spores of A. versicolor were comparable. It was revealed that the deposition ratio (the number of deposited fragments divided by that of deposited spores) in the lower airways for an infant was 4-5 times higher than that for an adult. As fungal fragments have been shown to contain mycotoxins and antigens, further exposure assessment should include the measurement of fungal fragments for

  9. Comparison of Theoretical and Experimental Unsteady Aerodynamics of Linear Oscillating Cascade With Supersonic Leading-Edge Locus. Video

    NASA Technical Reports Server (NTRS)

    Ramsey, John K.; Erwin, Dan

    2004-01-01

    The movie file contained in the DVD contains footage of the NASA/Ohio State Supersonic Oscillating Cascade Facility wind tunnel run with an oscillating mechanism. Links to view the movie can also be found in figures 4 and 8 in the online PDF version that this record references, CASI ID 20040082334.

  10. Aerodynamics of the Viggen 37 aircraft. Part 1: General characteristics at low speed

    NASA Technical Reports Server (NTRS)

    Karling, K.

    1986-01-01

    A description of the aerodynamics of the Viggen 37 and its performances, especially at low speeds is presented. The aerodynamic requirements for the design of the Viggen 37 aircraft are given, including the basic design, performance requirement, and aerodynamic characteristics, static and dynamic load test results and flight test results. The Viggen 37 aircraft is designed to be used for air attack, surveillance, pursuit, and training applications. It is shown that this aircraft is suitable for short runways, and has good maneuvering, acceleration, and climbing characteristics. The design objectives for this aircraft were met by utilizing the effect produced by the interference between two triangular wings, positioned in tandem.

  11. Aerodynamic characteristics of cruciform missiles at high angles of attack

    NASA Technical Reports Server (NTRS)

    Lesieutre, Daniel J.; Mendenhall, Michael R.; Nazario, Susana M.; Hemsch, Michael J.

    1987-01-01

    An aerodynamic prediction method for missile aerodynamic performance and preliminary design has been developed to utilize a newly available systematic fin data base and an improved equivalent angle of attack methodology. The method predicts total aerodynamic loads and individual fin forces and moments for body-tail (wing-body) and canard-body-tail configurations with cruciform fin arrangements. The data base and the prediction method are valid for angles of attack up to 45 deg, arbitrary roll angles, fin deflection angles between -40 deg and 40 deg, Mach numbers between 0.6 and 4.5, and fin aspect ratios between 0.25 and 4.0. The equivalent angle of attack concept is employed to include the effects of vorticity and geometric scaling.

  12. The impact of emerging technologies on an advanced supersonic transport

    NASA Technical Reports Server (NTRS)

    Driver, C.; Maglieri, D. J.

    1986-01-01

    The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.

  13. Nozzle and wing geometry effects on OTW aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Vonglahn, U.; Groesbeck, D.

    1976-01-01

    The effects of nozzle geometry and wing size on the aerodynamic performance of several 5:1 aspect ratio slot nozzles are presented for over-the-wing (OTW) configurations. Nozzle geometry variables include roof angle, sidewall cutback, and nozzle chordwise location. Wing variables include chord size, and flap deflection. Several external deflectors also were included for comparison. The data indicate that good flow turning may not necessarily provide the best aerodynamic performance. The results suggest that a variable exhaust nozzle geometry offers the best solution for a viable OTW configuration.

  14. On-orbit free molecular flow aerodynamic characteristics of a proposal space operations center configuration

    NASA Astrophysics Data System (ADS)

    Romere, P. O.

    1982-03-01

    A proposed configuration for a Space Operations Center is presented in its eight stages of buildup. The on orbit aerodynamic force and moment characteristics were calculated for each stage based upon free molecular flow theory. Calculation of the aerodynamic characteristics was accomplished through the use of an orbital aerodynamic computer program, and the computation method is described with respect to the free molecular theory used. The aerodynamic characteristics are presented in tabulated form for each buildup stage at angles of attack from 0 to 360 degrees and roll angles from -60 to +60 degrees. The reference altitude is 490 kilometers, however, the data should be applicable for altitudes below 490 kilometers down to approximately 185 kilometers.

  15. On-orbit free molecular flow aerodynamic characteristics of a proposal space operations center configuration

    NASA Technical Reports Server (NTRS)

    Romere, P. O.

    1982-01-01

    A proposed configuration for a Space Operations Center is presented in its eight stages of buildup. The on orbit aerodynamic force and moment characteristics were calculated for each stage based upon free molecular flow theory. Calculation of the aerodynamic characteristics was accomplished through the use of an orbital aerodynamic computer program, and the computation method is described with respect to the free molecular theory used. The aerodynamic characteristics are presented in tabulated form for each buildup stage at angles of attack from 0 to 360 degrees and roll angles from -60 to +60 degrees. The reference altitude is 490 kilometers, however, the data should be applicable for altitudes below 490 kilometers down to approximately 185 kilometers.

  16. Numerical analysis of supersonic gas-dynamic characteristic in laser cutting

    NASA Astrophysics Data System (ADS)

    Guo, Shaogang; Jun, Hu; Lei, Luo; Yao, Zhenqiang

    2009-01-01

    The influence of the processing parameters on the dynamic characteristic of supersonic impinging jet in laser cutting is studied numerically. The numerical modeling of a supersonic jet impinging on a plate with a hole is presented to analyze the gas jet-workpiece interaction. The model is able to make quantitative predictions of the effect of the standoff distance and exit Mach number on the mass flow rate and the axial thrust. The numerical results show that the suitable cutting range is slightly different for different exit Mach number, but the optimal cutting parameter for certain exit total pressure is nearly changeless. So the better cut quality and capacity can be obtained mainly by setting the suitable standoff distance for a certain nozzle pressure.

  17. Transonic aerodynamic characteristics of a proposed wing-body reusable launch vehicle concept

    NASA Technical Reports Server (NTRS)

    Springer, A. M.

    1995-01-01

    A proposed wing-body reusable launch vehicle was tested in the NASA Marshall Space Flight Center's 14 x 14-inch trisonic wind tunnel during the winter of 1994. This test resulted in the vehicle's subsonic and transonic, Mach 0.3 to 1.96, longitudinal and lateral aerodynamic characteristics. The effects of control surface deflections on the basic vehicle's aerodynamics, including a body flap, elevons, ailerons, and tip fins, are presented.

  18. Aerodynamic characteristics of NACA 4412 airfoil sction with flap

    NASA Astrophysics Data System (ADS)

    Ockfen, Alex E.; Matveev, Konstantin I.

    2009-09-01

    Wing-in-Ground vehicles and aerodynamically assisted boats take advantage of increased lift and reduced drag of wing sections in the ground proximity. At relatively low speeds or heavy payloads of these craft, a flap at the wing trailing-ground-effect flow id numerically investigated in this study. The computational method consists of a steady-state, incompressible, finite volume method utilizing the Spalart-Allmaras turbulence model. Grid generation and solution of the Navier-Stokes equations are completed flow with a flap, as well as ground-effect motion without a flap. Aerodynamic forces are plain flap. Changes in the flow introduced with the flap addition are also discussed. Overall, the use of a flap on wings with small attack angles is found to be beneficial for small flap deflections up to 5% of the chord, where the contribution of lift augmentation exceeds the drag increase, yielding an augmented lift-to-drag ratio

  19. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  20. Aerodynamic characteristics of sixteen electric, hybrid, and subcompact vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1979-01-01

    An elementary electric and hybrid vehicle aerodynamic data base was developed using data obtained on sixteen electric, hybrid, and sub-compact production vehicles tested in the Lockheed-Georgia low-speed wind tunnel. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current four-passenger proto-type automobile which was designed with aerodynamics as an integrated parameter. Vehicles were tested at yaw angles up to 40 degrees and a wing weighting analysis is presented which yields a vehicle's effective drag coefficient as a function of wing velocity and driving cycle. Other parameters investigated included the effects of windows open and closed, radiators open and sealed, and pop-up headlights. Complete six-component force and moment data are presented in both tabular and graphical formats. Only limited commentary is offered since, by its very nature, a data base should consist of unrefined reference material. A justification for pursuing efficient aerodynamic design of EHVs is presented.

  1. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q- stability derivatives. Appendix A: A computer program for calculating alpha- and q- stability derivatives and induced drag for thin elastic aeroplanes at subsonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Lan, C.; Mehrotra, S.

    1972-01-01

    The computer program used to determine the rigid and elastic stability derivatives presented in the summary report is listed in this appendix along with instructions for its use, sample input data and answers. This program represents the airplane at subsonic and supersonic speeds as (a) thin surface(s) (without dihedral) composed of discrete panels of constant pressure according to the method of Woodward for the aerodynamic effects and slender beam(s) for the structural effects. Given a set of input data, the computer program calculates an aerodynamic influence coefficient matrix and a structural influence coefficient matrix.

  2. Theoretical and Experimental Unsteady Aerodynamics Compared for a Linear Oscillating Cascade With a Supersonic Leading-Edge Locus

    NASA Technical Reports Server (NTRS)

    Ramsey, John K.; Erwin, Dan

    2005-01-01

    Experimental data were obtained to help validate analytical and computational fluid dynamics (CFD) codes used to compute unsteady cascade aerodynamics in a supersonicaxial- flow regime. Results from two analytical codes and one CFD code were compared with experimental data. One analytical code did not account for airfoil thickness or camber; another, using piston theory (piston code), accounted for thickness and camber upstream of the first shockwave/airfoil impingement locations. The Euler CFD code accounted fully for airfoil shape.

  3. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  4. Supersonic Cruise Research 1979, part 1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Aerodynamics, stability and control, propulsion, and environmental factors of the supersonic cruise aircraft are discussed. Other topics include airframe structures and materials, systems integration, and economics.

  5. Aerodynamic characteristics of missile control fins in nonlinear flow fields

    NASA Technical Reports Server (NTRS)

    Hemsch, M. J.; Nielsen, J. N.

    1983-01-01

    Recent experimental results show that the control effectiveness of a missile fin in supersonic flow at moderate-to-high angles of attack is a strong nonlinear function of free-stream Mach number, body incidence angle, fin bank angle and fin deflection angle. Analysis of the experimental results using an Euler finite-difference computer code with flow separation together with the equivalent angle-of-attack concept indicates that the observed nonlinearities are due to the variation of local dynamic pressure and local Mach number around the missile body alone. The nonlinearities are shown to be a strong source of control cross-coupling for high Mach number, high angle-of-attack combinations. The analysis suggests a relatively simple yet comprehensive approach for accurately accounting for these nonlinear effects.

  6. Parametric experimental studies on mixing characteristics within a low area ratio rectangular supersonic gaseous ejector

    NASA Astrophysics Data System (ADS)

    Karthick, S. K.; Rao, Srisha M. V.; Jagadeesh, G.; Reddy, K. P. J.

    2016-07-01

    We use the rectangular gaseous supersonic ejector as a platform to study the mixing characteristics of a confined supersonic jet. The entrainment ratio (ER) of the ejector, the non-mixed length (LNM), and potential core length (LPC) of the primary supersonic jet are measures to characterize mixing within the supersonic ejector. Experiments are carried out on a low area ratio rectangular supersonic ejector with air as the working fluid in both primary and secondary flows. The design Mach number of the nozzle (MPD = 1.5-3.0) and primary flow stagnation pressure (Pop = 4.89-9.89 bars) are the parameters that are varied during experimentation. Wall static pressure measurements are carried out to understand the performance of the ejector as well as to estimate the LNM (the spatial resolution is limited by the placement of pressure transducers). Well-resolved flow images (with a spatial resolution of 50 μm/pixel and temporal resolution of 1.25 ms) obtained through Planar Laser Mie Scattering (PLMS) show the flow dynamics within the ejector with clarity. The primary flow and secondary flow are seeded separately with acetone that makes the LNM and LPC clearly visible in the flow images. These parameters are extracted from the flow images using in-house image processing routines. A significant development in this work is the definition of new scaling parameters within the ejector. LNM, non-dimensionalized with respect to the fully expanded jet height hJ, is found to be a linear function of the Mach number ratio (Mach number ratio is defined as the ratio of design Mach number (MPD) and fully expanded Mach number (MPJ) of the primary jet). This definition also provides a clear demarcation of under-expanded and over-expanded regimes of operation according to [MPD/MPJ] > 1 and [MPD/MPJ] < 1, respectively. It is observed that the ER increased in over-expanded mode (to 120%) and decreased in under-expanded mode (to 68%). Similarly, LNM decreased (to 21.8%) in over-expanded mode

  7. Aerodynamic characteristics at Mach numbers of 1.5, 1.8, and 2.0 of a blended wing-body configuration with and without integral canards

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Lamb, M.; Miller, D. S.

    1979-01-01

    An exploratory, experimental, and theoretical investigation was made of a cambered, twisted, and blended wing-body concept with and without integral canard surfaces. Theoretical calculations of the static longitudinal and lateral aerodynamic characteristics of the wing-body configurations were compared with the characteristics obtained from tests of a model in the Langley Unitary Plan wind tunnel. Mach numbers of 1.5, 1.8, and 2.0 and a Reynolds number per meter of 6.56 million were used in the calculations and tests. Overall results suggest that planform selection is extremely important and that the supplemental application of new calculation techniques should provide a process for the design of supersonic wings in which spanwise distribution of upwash and leading-edge thrust might be rationally controlled and exploited.

  8. A Simulator Study of Take-Off Characteristics of Proposed Supersonic Transports

    NASA Technical Reports Server (NTRS)

    Jackson, Charles T., Jr.; Snyder, C. Thomas

    1965-01-01

    Fixed-cockpit piloted simulator studies of delta-planform and variable-wing-sweep supersonic transport configurations are being conducted at the Ames Research Center to investigate the handling qualities and certification requirements related to the take-off maneuver. Validation of the simulation was achieved by duplicating the take-off certification program of a subsonic jet transport. Evaluation of the simulator was made by NASA pilots as well as company and FAA pilots involved in the actual certification flights of the airplane. The present paper is limited to a discussion of normal take-off, minimum control speed (ground), rotation characteristics, and initial climbout. Comparisons of the take-off characteristics are made between the supersonic transport and the current class of subsonic jet transports. Results indicate that minimum control speed (ground) characteristics are a function of thrust-weight ratio, the time provided for SST rotation should be at least as long as that for the subsonic jet transports, abused take-offs are more likely to result in tail scrapes, and climbout below the minimum drag speed requires that the pilot carefully monitor airspeed.

  9. Transonic aerodynamic and aeroelastic characteristics of a variable sweep wing

    NASA Technical Reports Server (NTRS)

    Goorjian, P. M.; Guruswamy, G. P.; Ide, H.; Miller, G.

    1985-01-01

    The flow over the B-1 wing is studied computationally, including the aeroelastic response of the wing. Computed results are compared with results from wind tunnel and flight tests for both low-sweep and high-sweep cases, at 25.0 and 67.5 deg., respectively, for selected transonic Mach numbers. The aerodynamic and aeroelastic computations are made by using the transonic unsteady code ATRAN3S. Steady aerodynamic computations compare well with wind tunnel results for the 25.0 deg sweep case and also for small angles of attack at the 67.5 deg sweep case. The aeroelastic response results show that the wing is stable at the low sweep angle for the calculation at the Mach number at which there is a shock wave. In the higher sweep case, for the higher angle of attack at which oscillations were observed in the flight and wind tunnel tests, the calculations do not show any shock waves. Their absence lends support to the hypothesis that the observed oscillations are due to the presence of leading edge separation vortices and are not due to shock wave motion as was previously proposed.

  10. Transonic aerodynamic and aeroelastic characteristics of a variable sweep wing

    NASA Technical Reports Server (NTRS)

    Goorjian, P. M.; Guruswamy, G. P.; Ide, H.; Miller, G.

    1985-01-01

    The flow over the B-1 wing is studied computationally, including the aeroelastic response of the wing. Computed results are compared with results from wind tunnel and flight tests for both low-sweep and high-sweep cases, at 25.0 deg. and 67.5 deg., respectively, for selected transonic Mach numbers. The aerodynamic and aeroelastic computations are made by using the transonic unsteady code ATRAN3S. Steady aerodynamic computations compare well with wind tunnel results for the 25.0 deg. sweep case and also for small angles of attack at the 67.5 deg. sweep case. The aeroelastic response results show that the wing is stable at the low sweep angle for the calculation at the Mach number at which there is a shock wave. In the higher sweep case, for the higher angle of attack at which oscillations were observed in the flight and wind tunnel tests, the calculations do not show any shock waves. Their absence lends support to the hypothesis that the observed oscillations are due to the presence of leading edge separation vortices and are not due to shock wave motion as was previously proposed.

  11. Comparison of the Aerodynamic Characteristics of Similar Models in Two Size Wind Tunnels at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Springer, Anthony M.

    1998-01-01

    The aerodynamic characteristics of two similar models of a lifting body configuration were run in two transonic wind tunnels, one a 16 foot the other a 14-inch and are compared. The 16 foot test used a 2% model while the 14-inch test used a 0.7% scale model. The wind tunnel model configurations varied only in vertical tail size and an aft sting shroud. The results from these two tests compare the effect of tunnel size, Reynolds number, dynamic pressure and blockage on the longitudinal aerodynamic characteristics of the vehicle. The data accuracy and uncertainty are also presented. It was concluded from these tests that the data resultant from a small wind tunnel compares very well to that of a much larger wind tunnel in relation to total vehicle aerodynamic characteristics.

  12. An experimental investigation of the aerodynamic characteristics of slanted base ogive cylinders using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.; Alcorn, C. W.

    1988-01-01

    This paper reports on an experimental investigation of aerodynamic characteristics of slanted base ogive cylinders at zero incidence. The Mach number range is 0.05 to 0.3. In this investigation, magnetically suspending the wind tunnel models eliminates flow disturbances associated with mechanical supports. This paper reports on the drastic changes in lift, pitching moment, and drag for a slight change in base slant angle. Flow visualization with liquid crystals and oil is used to observe base flow patterns responsible for the sudden changes in aerodynamic characteristics. This paper also reports on hysteretic effects that are present and discusses computational results using VSAERO and SANDRAG.

  13. Aerodynamic Characteristics of Two Rotary Wing UAV Designs

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  14. AERODYNAMIC CHARACTERISTICS OF TWO ROTARY WING UAV DESIGNS

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  15. Aerodynamic characteristics of aerofoils II : continuation of report no. 93

    NASA Technical Reports Server (NTRS)

    1923-01-01

    This collection of data on aerofoils has been made from the published reports of a number of the leading aerodynamic laboratories of this country and Europe. The information which was originally expressed according to the different customs of the several laboratories is here presented in a uniform series of charts and tables suitable for the use of designing engineers and for purposes of general reference. The absolute system of coefficients has been used, since it is thought by the National Advisory Committee for Aeronautics that this system is the one most suited for international use, and yet is one for which a desired transformation can be easily made. For this purpose a set of transformation constants is included in this report. The authority for the results here presented is given as the name of the laboratory at which the experiments were conducted, with the size of the model, wind velocity, and date of test.

  16. Experimental Aerodynamic Characteristics of a Joined-wing Research Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Smith, Stephen C.; Stonum, Ronald K.

    1989-01-01

    A wind-tunnel test was conducted at Ames Research Center to measure the aerodynamic characteristics of a joined-wing research aircraft (JWRA). This aircraft was designed to utilize the fuselage and engines of the existing NASA AD-1 aircraft. The JWRA was designed to have removable outer wing panels to represent three different configurations with the interwing joint at different fractions of the wing span. A one-sixth-scale wind-tunnel model of all three configurations of the JWRA was tested in the Ames 12-Foot Pressure Wind Tunnel to measure aerodynamic performance, stability, and control characteristics. The results of these tests are presented. Longitudinal and lateral-directional characteristics were measured over an angle of attack range of -7 to 14 deg and over an angle of sideslip range of -5 to +2.5 deg at a Mach number of 0.35 and a Reynolds number of 2.2x10(6)/ft. Various combinations of deflected control surfaces were tested to measure the effectiveness and impact on stability of several control surface arrangements. In addition, the effects on stall and post-stall aerodynamic characteristics from small leading-edge devices called vortilons were measured. The results of these tests indicate that the JWRA had very good aerodynamic performance and acceptable stability and control throughout its flight envelope. The vortilons produced a profound improvement in the stall and post-stall characteristics with no measurable effects on cruise performance.

  17. Supersonic biplane—A review

    NASA Astrophysics Data System (ADS)

    Kusunose, Kazuhiro; Matsushima, Kisa; Maruyama, Daigo

    2011-01-01

    wave-cancellation concept. We then designed a 2-D supersonic biplane that exhibits both wave-reduction and cancellation effects simultaneously, utilizing an inverse-design method. The designed supersonic biplane not only showed the desired aerodynamic characteristics at its design condition but also outperformed a zero-thickness flat-plate airfoil. (Zero-thickness flat-plate airfoils are known as the most efficient monoplane airfoil at supersonic speeds.) Also discussed in this paper is how to design 2-D biplanes, not only at their design Mach numbers but also at off-design conditions. Supersonic biplanes have unacceptable characteristics at their off-design conditions such as flow choking and its related hysteresis problems. Flow choking causes rapid increase of wave drag and it continues to be kept up to the Mach numbers greater the cruise (design) Mach numbers due to its hysteresis. Some wing devices such as slats and flaps, which could be used at take-off and landing conditions as high-lift devices, were utilized to overcome these off-design problems. Then supersonic-biplane airfoils were extended to 3-D wings. Because that rectangular-shaped 3-D biplane wings showed undesirable aerodynamic characteristics at their wingtips, a tapered-wing planform was chosen for the study. A 3-D biplane wing having a taper ratio and aspect ratio of 0.25 and 5.12, respectively, was designed utilizing the inverse-design method. Aerodynamic characteristics of the designed biplane wing were further improved by using winglets at its wingtips. Flow choking and its hysteresis problems, however, occurred at their off-design conditions. It was shown that these off-design problems could also be resolved by utilizing slats and flaps. Finally, a study on the aerodynamic characteristics of wing-body configurations was conducted using the tapered biplane wing. In this study a body was chosen in order to generate strong shock waves at its nose region. Preliminary parametric studies on the

  18. Solution of non-isoenergetic supersonic flows by method of characteristics, volume 3

    NASA Technical Reports Server (NTRS)

    Prozan, R. J.

    1972-01-01

    The calculation of supersonic flow fields by the method of characteristics. The theoretical approach to the solution of these flow fields and a computer program to implement the numerical solution of the flow equations are discussed. This versatile program has a flexible set of boundary conditions enabling the calculation of nozzles, plumes and many other complex flow fields. A complete derivation of the equations of motion for reacting gas systems is presented. An important consequence of this derivation is that, for the reaction assumptions which were made, the thermochemistry was shown to be uncoupled from the flow solution and as such could be solved separately. The methods of characteristics equations are shown to be formally the same for ideal, frozen, and equilibrium reacting gas mixtures.

  19. Aerodynamic characteristics associated with oesophageal and tracheoesophageal speech of Cantonese.

    PubMed

    Ng, Manwa L

    2011-04-01

    The present study investigated the aerodynamic differences between standard oesophageal (SE) and tracheoesophageal (TE) speech. Airflow and air pressure values below the pharyngoesophageal segment were obtained from 10 SE and 12 TE superior speakers of Cantonese. Airflow data were directly measured from sustained vowels, and sub-pharyngoesophageal segment pressure was estimated from /ip(h)ip(h)i/ syllables produced by the alaryngeal speakers. Results indicated that SE speech was associated with a lower rate of airflow and a higher pressure below the pharyngoesophageal segment than TE speech. SE and TE speakers exhibited an average airflow and sub-pharyngoesophageal segment pressure values of 70.50 mL/s and 134.15 mL/s, and 25.13 cm H(2)O and 22.61 cm H(2)O, respectively. Using the airflow and sub-pharyngoesophageal segment pressure, neoglottal resistance values were derived. The estimated neoglottal resistance was greater in SE speakers than in TE speakers. It is speculated that such difference in neoglottal resistance may be related to the use of different air reservoir mechanisms between SE and TE speakers. Such information will help speech-language pathologists design better speech therapy regimes for SE and TE speakers by understanding more about the difference between SE and TE phonation. PMID:21480810

  20. Aerodynamic characteristics of general aviation at high angle of attack with the propeller slipstream

    NASA Technical Reports Server (NTRS)

    Matsuo, N.; Hirano, S.

    1986-01-01

    The aerodynamic characteristics of the FA-300 business aircraft at high angle of attack with the propeller stream are described. The FA-300 offers two types, FA-300-700 for 340 HP, and -710 for 450 Hp of the engine. The effects of the propeller slipstream on the high angle of the attack are discussed.

  1. Effects of stores on longitudinal aerodynamic characteristics of a fighter at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.; Sangiorgio, G.; Monta, W. J.

    1978-01-01

    Experimental investigations of single and twin stores representative of advanced, elliptical cross section missile concepts were made at Mach numbers from 1.60 to 2.16 to substantiate theoretically predicted results. The stores were mounted on the fuselage of a model representing a fighter configuration. Store base closure effects in the carriage condition were also obtained through tests with and without base closure fairings.

  2. Effect of fuselage upwash on the supersonic longitudinal aerodynamic characteristics of 2 fighter configurations

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1984-01-01

    An experimental and theoretical investigation of fuselage incidence effects on two fighter aircraft models, which differed in wing planform only, has been conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.6, 1.8, and 2.0. Results were obtained on the two models at fuselage incidence angles of 0 deg, 2 deg, and 5 deg. The fuselage geometry included two side-mounted, flow-through, half-axisymmetric inlets and twin vertical tails. The two planforms tested were cranked wings with 70 deg/66 deg and 70 deg/30 deg leading-edge sweep angles. Experimental data showed that fuselage incidence resulted in positive increments in configuration lift and pitching moment; most of the lift increment can be attributed to the fuselage-induced upwash acting on the wing and most of the pitching-moment increment is due to the fuselage. Theoretical analysis indicates that linear-theory methods can adequately predict the overall configuration forces and moments resulting from fuselage upwash, but a higher order surface-panel method (PAN AIR) more accurately predicted the distribution of forces and resulting moments between the components.

  3. Supersonic aerodynamic characteristics of a circular body Earth-to-Orbit vehicle

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Engelund, Walter C.; Macconochie, Ian O.

    1994-01-01

    The circular body configuration is a generic single- or multi-stage reusable Earth-to-orbit transport. A thick clipped-delta wing is the major lifting surface. For directional control, three different vertical fin arrangements were investigated: a conventional aft-mounted center fin, wingtip fins, and a nose-mounted fin. The tests were conducted in the Langley Unitary Plan Wind Tunnel. The configuration is longitudinally stable about the estimated center of gravity of 0.72 body length up to a Mach number of about 3.0. Above Mach 3.0, the model is longitudinally unstable at low angles of attack but has a stable secondary trim point at angles of attack above 30 deg. The model has sufficient pitch control authority with elevator and body flap to produce stable trim over the test range. The model with the center fin is directionally stable at low angles of attack up to a Mach number of 3.90. The rudder-like surfaces on the tip fins and the all-movable nose fin are designed as active controls to produce artificial directional stability and are effective in producing yawing moment. The wing trailing-edge aileron surfaces are effective in producing rolling moment, but they also produce large adverse yawing moment.

  4. Effects of some geometric variations on missile aerodynamic characteristics at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1986-01-01

    A summary of some results from tests of a wing-body general research missile model is presented for a Mach number range up to 4.63. A basic ogive-cylinder body with a length-to-diameter ratio of 10 was used to which was attached a series of wing planforms. The planforms included a family of delta wings and a family of rectangular wings having a constant root chord but varying spans so that wings of constant exposed area could be compared. In addition, a cranked-tip planform was included and a rectangular planform with reduced chord. Some results are presented for wing-body-tail configurations - one utilizing a cranked wing planform and one with wings having a constant root chord and span, but tip chords that were 0, 20, and 40 percent of the root chord.

  5. A preliminary study of the performance and characteristics of a supersonic executive aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1977-01-01

    The impact of advanced supersonic technologies on the performance and characteristics of a supersonic executive aircraft was studied in four configurations with different engine locations and wing/body blending and an advanced nonafterburning turbojet or variable cycle engine. An M 2.2 design Douglas scaled arrow-wing was used with Learjet 35 accommodations. All four configurations with turbojet engines meet the performance goals of 5926 km (3200 n.mi.) range, 1981 meters (6500 feet) takeoff field length, and 77 meters per second (150 knots) approach speed. The noise levels of of turbojet configurations studied are excessive. However, a turbojet with mechanical suppressor was not studied. The variable cycle engine configuration is deficient in range by 555 km (300 n.mi) but nearly meets subsonic noise rules (FAR 36 1977 edition), if coannular noise relief is assumed. All configurations are in the 33566 to 36287 kg (74,000 to 80,000 lbm) takeoff gross weight class when incorporating current titanium manufacturing technology.

  6. Effect of Ground Interference on the Aerodynamic Characteristics of a 42 Degrees Sweptback Wing

    NASA Technical Reports Server (NTRS)

    Furlong, G Chester; Bollech, Thomas V

    1951-01-01

    The effects of ground interference on the aerodynamic characteristics of a 42 degrees sweptback wing have been determined at distances above the ground 0.68 and 0.92 of the mean aerodynamic chord (measured from the 0.25 mean aerodynamic chord). The wing was tested without flaps and with inboard trailing-edge split and outboard leading-edge flaps deflected. The wing had an aspect ratio of 4, a taper ratio of 0.625, and NACA 641-112 airfoil sections perpendicular to the 0.273 chord line. The results are, in general, comparable to those reported for unswept wings. The longitudinal stability at the stall was not materially affected at the ground heights of the present tests.

  7. Development of a morphing flap using shape memory alloy actuators: the aerodynamic characteristics of a morphing flap

    NASA Astrophysics Data System (ADS)

    Ko, Seung-Hee; Bae, Jae-Sung; Rho, Jin-Ho

    2014-07-01

    The discontinuous contour of a wing with conventional flaps diminishes the aerodynamic performance of an aircraft. A wing with a continuous contour does not experience extreme flow stream fluctuations during flight, and consequently has good aerodynamic characteristics. In this study, a morphing flap using shape memory alloy actuators is proposed, designed and fabricated, and its aerodynamic characteristics are investigated using aerodynamic analyses and wind tunnel tests. The ribs of the morphing flap are designed and fabricated with multiple elements joined together in a way that allows relative rotations of adjacent elements and forms a smooth contour of the morphing flap. The aerodynamic analyses of this multiple-element morphing-flap wing are performed using XFLR pro; its aerodynamic performance is compared with that of a mechanical-flap wing, and is measured through wind-tunnel tests.

  8. Some design considerations for supersonic cruise mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Bowditch, D. N.

    1973-01-01

    A mixed compression inlet designed for supersonic cruise has very demanding requirements for high total pressure recovery and low bleed and cowl drag. However, since the optimum inlet for supersonic cruise performance may have other undesirable characteristics, it is necessary to establish trade-offs between inlet performance and other inlet characteristics. Some of these trade-offs between the amount of internal compression, aerodynamic performance and angle-of-attack tolerance are reviewed. Techniques for analysis of boundary layer control and subsonic diffuser flow are discussed.

  9. Space shuttle plume/simulation application: Results and math model supersonic data

    NASA Technical Reports Server (NTRS)

    Boyle, W.; Conine, B.; Bell, G.

    1979-01-01

    The analysis of pressure and gage wind tunnel data from space shuttle wind tunnel test IA138 was performed to define the aerodynamic influence of the main propulsion system and solid rocket booster plumes on the total vehicles, elements, and components of the space shuttle vehicle during the supersonic portion of ascent flight. A math model of the plume induced aerodynamic characteristics was developed for a range of Mach numbers to match the forebody aerodynamic math model. The base aerodynamic characteristics are presented in terms of forces and moments versus attitude. Total vehicle base and forebody aerodynamic characteristics are presented in terms of aerodynamic coefficients for Mach numbers from 1.55 to 2.5.

  10. Experimental and analytical investigations to improve low-speed performance and stability and control characteristics of supersonic cruise fighter vehicles

    NASA Technical Reports Server (NTRS)

    Graham, A. B.

    1977-01-01

    Small- and large-scale models of supersonic cruise fighter vehicles were used to determine the effectiveness of airframe/propulsion integration concepts for improved low-speed performance and stability and control characteristics. Computer programs were used for engine/airframe sizing studies to yield optimum vehicle performance.

  11. Noise and economic characteristics of an advanced blended supersonic transport concept

    NASA Technical Reports Server (NTRS)

    Molloy, J. K.; Grantham, W. D.; Neubauer, M. J., Jr.

    1982-01-01

    Noise and economic characteristics were obtained for an advanced supersonic transport concept that utilized wing body blending, a double bypass variable cycle engine, superplastically formed and diffusion bonded titanium in both the primary and secondary structures, and an alternative interior arrangement that provides increased seating capacity. The configuration has a cruise Mach number of 2.62, provisions for 290 passengers, a mission range of 8.19 Mm (4423 n.mi.), and an average operating cruise lift drag ratio of 9.23. Advanced operating procedures, which have the potential to reduce airport community noise, were explored by using a simulator. Traded jet noise levels of 105.7 and 103.4 EPNdB were obtained by using standard and advanced takeoff operational procedures, respectively. A new method for predicting lateral attenuation was utilized in obtaining these jet noise levels.

  12. The effect of torsional flexibility on the rolling characteristics at supersonic speeds of tapered unswept wings

    NASA Technical Reports Server (NTRS)

    Tucker, Warren A; Nelson, Robert L

    1950-01-01

    An analysis is presented of the effect of torsional flexibility on the rolling characteristics at supersonic speeds of tapered unswept wings with partial-span constant-percent-chord ailerons extending inboard from the wing tip. The geometric variables considered are aspect ratio, taper ratio, aileron span, and aileron chord. The shape of the wing-torsional-stiffness curve is assumed and the twisting moment is considered to result solely from the pressure distribution caused by aileron deflection, so that the necessity of using a successive-approximation method is avoided. Because of the complexity of the equations resulting from the analysis, numerical calculations from the equations are presented in a series of figures. A computational form is provided to be used in conjunction with these figures so that calculations can be made without reference to the analysis.

  13. Comparison of Theoretical and Experimental Heat-Transfer Characteristics of Bodies of Revolution at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Scherrer, Richard

    1951-01-01

    An investigation of the three important factors that determine convective heat-transfer characteristics at supersonic speeds, location boundary-layer transition, recovery factor, and heat-transfer parameter has been performed at Mach numbers from 1.49 to 1.18. The bodies of revolution that were tested had, in most cases, laminar boundary layers, and the test results have been compared with available theory. Boundary-layer transition was found to be affected by heat transfer. Adding heat to a laminar boundary layer caused transition to move forward on the test body, while removing heat caused transition to move rearward. These experimental results and the implications of boundary-layer-stability theory are in qualitative agreement.

  14. Operation Characteristics of Dielectric Barrier Discharge for Ignition Enhancement in Supersonic Flow

    NASA Astrophysics Data System (ADS)

    Matsubara, Yoshinori; Okazaki, Megumu; Yamamoto, Takamasa; Takita, Kenichi

    The authors developed a method to produce nonequilibrium plasma by dielectric barrier discharge (DBD) in supersonic flow and investigated the possibility for using it as an ignition enhancement technique in a high speed engine, such as a scramjet engine. The discharge characteristics were investigated by varying applied voltage and the flow Mach number. It was revealed from direct photographs that the discharges got stronger and the volume got larger as flow Mach number increased. Estimated discharge power indicated that nonequilibrium plasma could be generated by considerably small energy in comparison with thermal plasma such as a plasma jet torch, which is a typical thermal plasma. The emissions from several excited molecules and atoms were confirmed by spectroscopic measurement of the plasma. Ignition delay analysis revealed that the effect of ozone (O3) addition to shorten the ignition delay time of mixture is almost equal to those of O or H radicals.

  15. Aerodynamic Characteristics of Missile Configurations with Wings of Low Aspect Ratio for Various Combinations of Forebodies, Afterbodies, and Nose Shapes for Combined Angles of Attack and Sideslip at a Mach Number of 2.01

    NASA Technical Reports Server (NTRS)

    Robinson, Ross B

    1957-01-01

    An investigation has been made in the Langley 4-by-4-foot supersonic pressure tunnel to determine the aerodynamic characteristics of a series of missile configurations having low-aspect-ratio wings at a Mach number of 2.01. The effects of wing plan form and size, length-diameter ratio, forebody and afterbody length, boattailed and flared afterbodies, and component force and moment data are presented for combined angles of attack and sideslip to about 28 degrees. No analysis of the data was made in this report.

  16. Effects of reaction control system jet flow field interactions on the aerodynamic characteristics of a 0.010-scale space shuttle orbiter model in the Langley Research Center 31 inch CFHT (OA85)

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.; Marroquin, J.

    1974-01-01

    An experimental investigation was conducted to obtain detailed effects on supersonic vehicle hypersonic aerodynamic and stability and control characteristics of reaction control system jet flow field interactions with the local vehicle flow field. A 0.010-scale model was used. Six-component force data and wing, elevon, and body flap surface pressure data were obtained through an angle-of-attack range of -10 to +35 degrees with 0 deg angle of sideslip. The test was conducted with yaw, pitch and roll jet simulation at a free-stream Mach number of 10.3 and reaction control system plume simulation of flight dynamic pressures of 5, 10 and 20 PSF.

  17. Unsteady Aerodynamic Effects on the Flight Characteristics of an F-16XL Configuration

    NASA Technical Reports Server (NTRS)

    Wang, Zhongjun; Lan, C. Edward; Brandon, Jay M.

    2000-01-01

    Unsteady aerodynamic models based on windtunnel forced oscillation test data and analyzed with a fuzzy logic algorithm arc incorporated into an F-16XL flight simulation code. The reduced frequency needed in the unsteady models is numerically calculated by using a limited prior time history of state variables in a least-square sense. Numerical examples arc presented to show the accuracy of the calculated reduced frequency. Oscillatory control inputs are employed to demonstrate the differences in the flight characteristics based on unsteady and quasi-steady aerodynamic models. Application of the unsteady aerodynamic models is also presented and the results are compared with one set of F16XIL longitudinal maneuver flight data. It is shown that the main differences in dynamic response are in the lateral-directional characteristics, with the quasi-steady model being more stable than the flight vehicle, while the unsteady model being more unstable. Similar conclusions can also be made in a simulated rapid sideslipping roll. To improve unsteady aerodynamic modeling, it is recommended to acquire test data with coupled motions in pitch, roll and yaw.

  18. Aerodynamic characteristics of the National Launch System (NLS) 1 1/2 stage launch vehicle

    NASA Technical Reports Server (NTRS)

    Springer, A. M.; Pokora, D. C.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) is studying ways of assuring more reliable and cost effective means to space. One launch system studied was the NLS which included the l l/2 stage vehicle. This document encompasses the aerodynamic characteristics of the 1 l/2 stage vehicle. To support the detailed configuration definition two wind tunnel tests were conducted in the NASA Marshall Space Flight Center's 14x14-Inch Trisonic Wind Tunnel during 1992. The tests were a static stability and a pressure test, each utilizing 0.004 scale models. The static stability test resulted in the forces and moments acting on the vehicle. The aerodynamics for the reference configuration with and without feedlines and an evaluation of three proposed engine shroud configurations were also determined. The pressure test resulted in pressure distributions over the reference vehicle with and without feedlines including the reference engine shrouds. These pressure distributions were integrated and balanced to the static stability coefficients resulting in distributed aerodynamic loads on the vehicle. The wind tunnel tests covered a Mach range of 0.60 to 4.96. These ascent flight aerodynamic characteristics provide the basis for trajectory and performance analysis, loads determination, and guidance and control evaluation.

  19. Experimental study on the effects of nose geometry on drag over axisymmetric bodies in supersonic flow

    NASA Astrophysics Data System (ADS)

    Brooker, B. Tyler

    A new nose shape that was determined using the penetration mechanics to have the least penetration drag has been tested in the supersonic wind tunnel of the University of Alabama to determine the aerodynamic characteristics of this nose shape. The aerodynamic drag measured on the new nose shape and on four additional nose shapes are compared to each other. The results show that the new nose shape has the least aerodynamic drag. The measurements were made at Mach numbers ranging from 1.85 to 3.1. This study also required the maintenance of several components of the University of Alabama's 6-inch by 6-inch supersonic wind tunnel and modification of the existing data acquisition programs. These repairs and modifications included the repair and recalibration of the supersonic wind tunnel, repair of the four component force balance, and the modification of the tunnel's control program.

  20. Effects of fuel cracking on combustion characteristics of a supersonic model combustor

    NASA Astrophysics Data System (ADS)

    Zhong, Zhan; Wang, Zhenguo; Sun, Mingbo

    2015-05-01

    The compositions of endothermic hydrocarbon fuels in cooling channels of regenerative cooled scramjet engines change along with fuel cracking. To investigate the effect of fuel compositions variation resulting from cracking on the combustion characteristics of supersonic combustors, a series of combustion tests with a wide range of equivalence ratios were conducted in a direct-connected test rig under the inflow conditions of Ma=3.46 and Tt=1430 K. The combustion characteristics of room temperature ethylene and vaporized China no. 3 aviation kerosene (RP-3) with negligible cracking were analyzed and compared based on the measured static pressure distributions along the combustor wall, fuel specific impulses, flame luminosity images and the one-dimensional average flow parameter distributions calculated by a quasi-one-dimensional data analysis method. The experimental results showed that the differences between the combustion characteristics of vaporized RP-3 and ethylene were sensitive to equivalence ratio. Under low equivalence ratios, vaporized RP-3 and ethylene had remarkably different combustion characteristics. Ethylene had an obvious higher static pressure level, specific impulse and combustion efficiency than vaporized RP-3 for its higher activity. The difference of combustion performance between vaporized RP-3 and ethylene was narrowed with the increase of equivalence ratio and the corresponding combustion condition improvement. When the equivalence ratio increased to 1.09, vaporized RP-3 and ethylene had tiny difference in combustion performance.

  1. Overview of Selected Measurement Techniques for Aerodynamics Testing in the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2000-01-01

    An overview is given of selected measurement techniques used in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the aerodynamic characteristics of aerospace vehicles operating at supersonic speeds. A broad definition of a measurement technique is adopted in this paper and is any qualitative or quantitative experimental approach that provides information leading to the improved understanding of the supersonic aerodynamic characteristics. On surface and off-surface measurement techniques used to obtain discrete (point) and global (field) measurements and planar and global flow visualizations are described, and examples of all methods are included. The discussion is limited to recent experiences in the UPWT and is. therefore, not an exhaustive review of existing experimental techniques. The diversity and high quality of the measurement techniques and the resultant data illustrate the capabilities of a around-based experimental facility and the key role that it plays in the advancement of our understanding, prediction, and control of supersonic aerodynamics.

  2. Numerical and experimental study on flame structure characteristics in a supersonic combustor with dual-cavity

    NASA Astrophysics Data System (ADS)

    Yang, Yixin; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo; Li, Li

    2015-12-01

    Combined numerical and experimental approaches have been implemented to investigate the quasi-steady flame characteristics of supersonic combustion in tandem and parallel dual-cavity. In simulation, a hybrid Large Eddy Simulation (LES)/assumed sub-grid Probability Density Function (PDF) closure model was carried out. Comparison of calculation and experiment as well as comparison of the two configurations are qualitatively and quantitatively performed regarding the flame structure and other flowfield features. Simulation shows a good level of agreement with experimental observation and measurement in terms of instantaneous and time-averaged results. Given the same fuel equivalence ratio, the parallel dual-cavity with the two opposite injections gathers the major combustion around the cavities, thus leading to the concentrated heat release, the greatly extended recirculation zones and the converging-diverging core flow path. Only intermittent stray flame packets can be found in the downstream region. Flame in the combustor with tandem dual-cavity appears to be stabilized by the upstream cavity shear layer and grows gradually to the second cavity, peaking its most intensity in the middle section between the two cavities. For both dual-cavity configurations, the strongest reaction takes place in near chemistry stoichiometric region around the flame edge, and is mainly confined in the supersonic region supported by the inner subsonic combustion. The coexistence of three parts plays a vital role in flame stabilization in the parallel and tandem dual-cavity: a reacting reservoir transferring hot products and activated radicals within the cavity recirculation zone, the hydrogen-rich premixed flame in the jet mixing region, and the downstream diffusion flames supported by the upstream premixed combustion region. In addition, for the parallel dual-cavity under the given condition, significant reaction are present near jet exit upstream the cavity leading edge.

  3. Aerodynamic characteristics of a series of airbreathing missile configurations

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1981-01-01

    The results of an experimental program conducted in order to compile a data base useful in the application of airbreathing propulsion to missiles are presented. The configurations investigated used two-dimensional or axisymmetric twin inlets located at three alternative circumferential positions: 90, 115 and 135 deg to the vertical centerline. The effects of a wing located above the inlets and of various tail configurations were investigated, with a view to longitudinal stability/control and lateral-directional stability characteristics. It is noted that of the three tail configurations tested, the 'X' tail showed (1) the most linear pitch-moment curve, (2) control effectiveness, and (3) positive lateral-directional stability.

  4. Supersonic gas jets

    NASA Astrophysics Data System (ADS)

    Dulov, V. G.

    The papers presented in this volume provide an overview of the current state of research in the gas dynamics of jet flows. In particular, attention is given to free supersonic jets and to the interaction of supersonic jets with one another and with obstacles under stationary and nonstationary flow conditions. Papers are presented on a method for calculating a weakly anisotropic supersonic turbulent jet in a subsonic slipstream; composite supersonic jets; the principal gas-dynamic characteristics of the processes occurring in gas-jet-driven shock-wave generators; and the construction of models for supersonic jet flows. For individual items see A84-16902 to A84-16918

  5. The Aerodynamic Characteristics of Airfoils as Affected by Surface Roughness

    NASA Technical Reports Server (NTRS)

    HOCKER RAY W

    1933-01-01

    The effect on airfoil characteristics of surface roughness of varying degrees and types at different locations on an airfoil was investigated at high values of the Reynolds number in a variable density wind tunnel. Tests were made on a number of National Advisory Committee for Aeronautics (NACA) 0012 airfoil models on which the nature of the surface was varied from a rough to a very smooth finish. The effect on the airfoil characteristics of varying the location of a rough area in the region of the leading edge was also investigated. Airfoils with surfaces simulating lap joints were also tested. Measurable adverse effects were found to be caused by small irregularities in airfoil surfaces which might ordinarily be overlooked. The flow is sensitive to small irregularities of approximately 0.0002c in depth near the leading edge. The tests made on the surfaces simulating lap joints indicated that such surfaces cause small adverse effects. Additional data from earlier tests of another symmetrical airfoil are also included to indicate the variation of the maximum lift coefficient with the Reynolds number for an airfoil with a polished surface and with a very rough one.

  6. A preliminary design study of supersonic through-flow fan inlets

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1988-01-01

    From Mach 3.20 cruise propulsion systems, preliminary design studies for two supersonic through-flow fan primary inlets and a single core inlet were undertaken. Method of characteristics and one dimensional performance techniques were applied to assess the potential improvements supersonic through-flow fan technology has over more conventional systems. A fixed geometry supersonic through-flow fan primary inlet was found to have better performance than a conventional inlet design on the basis of total pressure recovery, air flow, aerodynamic drag and size and weight.

  7. A preliminary design study of supersonic through-flow fan inlets

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1988-01-01

    From Mach 3.20 cruise propulsion systems, preliminary design studies for two supersonic through-flow fan primary inlets and a single core inlet were undertaken. Method of characteristics and one-dimensional performance techniques were applied to assess the potential improvements supersonic through-flow fan technology has over more conventional systems. A fixed geometry supersonic through-flow fan primary inlet was found to have better performance than a conventional inlet design on the basis of total pressure recovery, air flow, aerodynamic drag and size and weight.

  8. The Aerodynamic Characteristics of a Slotted Clark Y Wing as Affected by the Auxiliary Airfoil Position

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J; Shortal, Joseph A

    1932-01-01

    Aerodynamic force tests on a slotted Clark Y wing were conducted in a vertical wind tunnel to determine the best position for a given auxiliary airfoil with respect to the main wing. A systematic series of 100 changes in location of the auxiliary airfoil were made to cover all the probable useful ranges of slot gap, slot width, and slot depth. The results of the investigation may be applied to the design of automatic or controlled slots on wings with geometric characteristics similar to the wing tested. The best positions of the auxiliary airfoil were covered by the range of the tests, and the position for desired aerodynamic characteristics may easily be obtained from charts prepared especially for the purpose.

  9. Subsonic aerodynamic and flutter characteristics of several wings calculated by the SOUSSA P1.1 panel method

    NASA Technical Reports Server (NTRS)

    Yates, E. C., Jr.; Cunningham, H. J.; Desmarais, R. N.; Silva, W. A.; Drobenko, B.

    1982-01-01

    The SOUSSA (steady, oscillatory, and unsteady subsonic and supersonic aerodynamics) program is the computational implementation of a general potential flow analysis (by the Green's function method) that can generate pressure distributions on complete aircraft having arbitrary shapes, motions and deformations. Some applications of the initial release version of this program to several wings in steady and oscillatory motion, including flutter are presented. The results are validated by comparisons with other calculations and experiments. Experiences in using the program as well as some recent improvements are described.

  10. Prediction of static aerodynamic characteristics for slender bodies alone and with lifting surfaces to very high angles of attack

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1977-01-01

    An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The angles of attack extend from 0 deg to 180 deg for M = 2.9 from 0 deg to 60 deg for M = 0.6 to 2.0. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 deg to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. Vapor-screen and oil-flow pictures are shown for many body, body-wing and body-wing-tail configurations. When spearation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).

  11. Prediction of static aerodynamic characteristics for slender bodies alone and with lifting surfaces to very high angles of attack

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1976-01-01

    An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. However, with a decrease in Mach number to 0.6, the agreement for C sub N rapidly deteriorates, although the normal-force centers remain in close agreement. Vapor-screen and oil-flow pictures are shown for many body, body-wing, and body-wing-tail configurations. When separation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).

  12. Subsonic aerodynamic and flutter characteristics of several wings calculated by the SOUSSA P1.1 panel method

    NASA Technical Reports Server (NTRS)

    Yates, E. C., Jr.; Cunningham, H. J.; Desmarais, R. N.; Silva, W. A.; Drobenko, B.

    1982-01-01

    Several applications of the steady, oscillatory, and unsteady subsonic and supersonic aerodynamics (SOUSSA) computer program to wings with steady and oscillatory motion, including flutter, are discussed. The program employs a generalized Green's function to the full, time-dependent potential-flow equation to obtain an integral equation for the velocity potential at any point in a flow, even points on a body or whole bodies in a flow. Aerodynamic calculations are provided for two rectangular wings, a clipped-tip delta wing, and two swept wings with and without a fuselage. The number and distribution of the finite element panels are varied in order to demonstrate the convergence of the results. The results are shown to be close to those of lifting-surface theory, and further applications with bodies having deformities, arbitrary shapes, motions, and deformations are indicated.

  13. Effects of Elevator Nose Shape, Gap, Balance, and Tabs on the Aerodynamic Characteristics of a Horizontal Tail Surface

    NASA Technical Reports Server (NTRS)

    Goett, Harry J; Reeder, J P

    1939-01-01

    Results are presented showing the effects of gap, elevator, nose shape, balance, cut-out, and tabs on the aerodynamic characteristics of a horizontal tail surface tested in the NACA full-scale tunnel.

  14. Study of aerodynamic technology for VSTOL fighter/attack aircraft: Horizontal attitude concept

    NASA Technical Reports Server (NTRS)

    Brown, S. H.

    1978-01-01

    A horizontal attitude VSTOL (HAVSTOL) supersonic fighter attack aircraft powered by RALS turbofan propulsion system is analyzed. Reaction control for subaerodynamic flight is obtained in pitch and yaw from the RALS and roll from wingtip jets powered by bleed air from the RALS duct. Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel program is shown to resolve some of the uncertainties. Aerodynamic data developed are static characteristics about all axes, control effectiveness, drag, propulsion induced effects and reaction control characteristics.

  15. An experimental study on aerodynamic characteristics of standard model HB-2 in high enthalpy shock tunnel HIEST

    NASA Astrophysics Data System (ADS)

    Sato, K.; Komuro, T.; Tanno, H.; Ueda, S.; Itoh, K.; Kuchiishi, S.; Watanabe, S.

    Force measurement of a standard model HB-2 was performed in high enthalpy shock tunnel HIEST to study its aerodynamic characteristics. The force measurement results were compared with that obtained in conventional 1.27m hypersonic wind tunnel HWT1. The comparison showed that HIEST results agreed well with that of HWT1 in case of low enthalpy condition. The real gas effect on aerodynamic characteristics was also studied in case of high enthalpy condition.

  16. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  17. Aerodynamic characteristics of some lifting reentry concepts applicable to transatmospheric vehicle design studies

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1984-01-01

    The aerodynamic characteristics of some lifting reentry concepts are examined with a view to the applicability of such concepts to the design of possible transatmospheric vehicles (TAV). A considerable amount of research has been done in past years with vehicle concepts suitable for manned atmospheric-entry, atmospheric flight, and landing. Some of the features of these concepts that permit flight in or out of the atmosphere with maneuver capability should be useful in the mission requirements of TAV's. The concepts illustrated include some hypersonic-body shapes with and without variable geometry surfaces, and a blunt lifting-body configuration. The merits of these concepts relative to the aerodynamic behavior of a TAV are discussed.

  18. The method of characteristics for the determination of supersonic flow over bodies of revolution at small angles of attack

    NASA Technical Reports Server (NTRS)

    Ferri, Antonio

    1951-01-01

    The method of characteristics has been applied for the determination of the supersonic-flow properties around bodies of revolution at a small angle of attack. The system developed considers the effect of the variation of entropy due to the curved shock and determines a flow that exactly satisfies the boundary conditions in the limits of the simplifications assumed. Two practical methods for numerical calculations are given. (author)

  19. Mixing characteristics of a moderate aspect ratio screeching supersonic rectangular jet

    NASA Astrophysics Data System (ADS)

    Valentich, Griffin; Upadhyay, Puja; Kumar, Rajan

    2016-05-01

    Flow field characteristics of a moderate aspect ratio supersonic rectangular jet were examined at two overexpanded, a perfectly expanded, and an underexpanded jet conditions. The underexpanded and one overexpanded operating condition were of maximum screech, while the second overexpanded condition was of minimum screech intensity. Streamwise particle image velocimetry was performed along both major and minor axes of the jet and the measurements were made up to 30 nozzle heights, h, where h is the small dimension of the nozzle. Select cross planes were examined using stereoscopic particle image velocimetry to investigate the jet development and the role streamwise vortices play in jet spreading at each operating condition. The results show that streamwise vortices present at the nozzle corners along with vortices excited by screech tones play a major role in the jet evolution. All cases except for the perfectly expanded operating condition exhibited axis switching at streamwise locations ranging from 11 to 16 nozzle heights downstream of the exit. The overexpanded condition of maximum screech showed the most upstream switch over, while the underexpanded case showed the farthest downstream. Both of the maximum screeching cases developed into a diamond cross-sectional profile far downstream of the exit, while the ideally expanded case maintained a rectangular shape. The overexpanded minimum screeching case eventually decayed into an oblong profile.

  20. Infrared radiation and stealth characteristics prediction for supersonic aircraft with uncertainty

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoying; Wang, Xiaojun; Wang, Ruixing; Wang, Lei

    2015-11-01

    The infrared radiation (IR) intensity is generally used to embody the stealth characteristics of a supersonic aircraft, which directly affects its survivability in warfare. Under such circumstances, the research on IR signature as an important branch of stealth technology is significant to overcome this threat for survivability enhancement. Considering the existence of uncertainties in material and environment, the IR intensity is indeed a range rather than a specific value. In this paper, subjected to the properties of the IR, an analytic process containing the uncertainty propagation and the reliability evaluation is investigated when taking into account that the temperature of object, the atmospheric transmittance and the spectral emissivity of materials are all regarded as uncertain parameters. For one thing, the vertex method is used to analyze and estimate the dispersion of IR intensity; for another, the safety assessment of the stealth performance for aircraft is conducted by non-probabilistic reliability analysis. For the purpose of the comparison and verification, the Monte Carlo simulation is discussed as well. The validity, usage, and efficiency of the developed methodology are demonstrated by two application examples eventually.

  1. Ignition delay and characteristic reaction length in shock induced supersonic combustion

    SciTech Connect

    Yip, T.G.

    1989-01-01

    An analytical study of the supersonic combustion of H2-air behind an oblique was performed to determine the effects of the shock angle and Mach number on the induction time and a characteristic reaction length. The governing equations for the chemical nonequilibrium flow in a constant cross-sectional streamtube were solved numerically. The induction time and reaction length were det6ermined from the numerical results. An expression for estimating the induction time of hydrogen-air was obtained by curve fitting the results to an equation proposed in earlier theoretical studies. Based on comparisons with the results of previous experimental and analytical studies, the expression provides acceptable estimations of the induction time for post-shock temperatures between 1000 K and 2500 K, and pressures below 2 atm. For oblique shock angles between 20 and 40 degrees in a hypersonic stream at Mach numbers between 6 and 14, and 40 degree-Mach 10 combination was predicted to yield the shortest reaction length. 25 refs.

  2. Coannular nozzle noise characteristics and application to advanced supersonic transport engines

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.

    1976-01-01

    Recent programs in the field of jet noise, sponsored by the NASA Lewis Research Center, have indicated that the variable stream control engines (VSCE) which are being considered for advanced supersonic cruise aircraft have inherent jet noise advantages over earlier engines. This characteristic is associated with the exit velocity profile produced by such an engine. The high velocity fan stream, on the outer periphery, is acoustically dominant while the primary stream is held to a low velocity and therefore contributes little to the overall noise. Scale model tests have indicated low noise levels. Operation under static conditions, as well as in a relative velocity field (simulating take-off speeds) has indicated large reductions are available from the coannular nozzle and the VSCE. The inherently low levels of jet noise prompted changes in the cycle, which allowed an increase in the amount of augmentation incorporated in the fan stream, without exceeding the suggested noise guidelines, thereby allowing the use of a considerably smaller engine, with obvious vehicle advantages.

  3. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Mark, L.

    1982-01-01

    Conceptual designs and analyses were conducted on two V/STOL supersonic fighter/attack aircraft. These aircraft feature low footprint temperature and pressure thrust augmenting ejectors in the wings for vertical lift, combined with a low wing loading, low wave drag airframe for outstanding cruise and supersonic performance. Aerodynamic, propulsion, performance, and mass properties were determined and are presented for each aircraft. Aerodynamic and Aero/Propulsion characteristics having the most significant effect on the success of the up and away flight mode were identified, and the certainty with which they could be predicted was defined. A wind tunnel model and test program are recommended to resolve the identified uncertainties.

  4. Non-waisted fuselage design for supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Hager, James O. (Inventor); Agrawal, Shreekant (Inventor); Antani, Dhamanshu L. (Inventor)

    1999-01-01

    A method for designing a non-waisted fuselage for supersonic wing/fuselage configurations that increases the fuselage volume and improves the supersonic aerodynamic performance compared to a conventional waisted-fuselage configuration. The method entails removing the waisted region of an existing waisted-fuselage configuration by linearly reconstructing cross-sections between the endpoints representing the waisted cross-sectional area portion to create a modified fuselage configuration without waisting. This configuration will have increased fuselage volume and improved supersonic aerodynamic performance. The fuselage camber can then be optimized using non-linear aerodynamic methods to further increase the supersonic aerodynamic performance.

  5. Measured and Computed Hypersonic Aerodynamic/Aeroheating Characteristics for an Elliptically Blunted Flared Cylinder

    NASA Technical Reports Server (NTRS)

    Greene, Francis A.; Buck, Gregory M.; Wood, William A.

    2001-01-01

    Computational and experimental hypersonic aerodynamic forces and moments and aeroheating levels for Kistler Aerospace Corporation's baseline orbiter vehicle at incidence are presented. Experimental data were measured in ground-based facilities at the Langley Research Center and predictions were performed using the Langley Aerothermodynamic Upwind Relaxation Algorithm code. The test parameters were incidence (-4 to 24 degrees), freestream Mach number (6 to 10),freestream ratio o specific heats (1.2 to 1.4), and freestream Reynolds number (0.5 to 8.0 million per foot). The effects of these parameters on aerodynamic characteristics, as well as the effects of Reynolds number on measured heating levels are discussed. Good agreement between computational and experimental aerodynamic and aeroheating values were observed over the wide range of test parameters examined. Reynolds number and ratio of specific heats were observed to significantly alter the trim L/D value. At Mach 6, laminar flow was observed along the entire windward centerline tip to the flare for all angles and Reynolds numbers tested. Flow over the flare transitioned from laminar to transitional/turbulent between 4 and 8 million per foot at 8 and 12 degrees angle of attack, and near 4 million per foot at 16 degrees angle of attack.

  6. Theoretical study on two-dimensional aerodynamic characteristics of unsteady wings.

    PubMed

    Azuma, Akira; Okamoto, Masato

    2005-05-01

    A simple computing method based on a potential theory is developed for two-dimensional steady and unsteady deflected wings. This method of theoretical analysis is essentially related to thin and angular airfoils. Thus, the method is very simple but is effective to forecast aerodynamic forces for deflected or angular airfoils with a small camber operating in high Reynolds number flow, specifically in unsteady motion. The suction force acting on the leading edge of steady airfoils is theoretically obtained by using the Blasius formula. By Polhamus's leading edge suction analogy, the suction force is considered to be directed upward in partially separated flow for real thin airfoil with sharp leading edge. The theory can also be applied to obtain the aerodynamic characteristics of thin airfoils operating on low Reynolds number flow under some degree of approximation. This is very useful for the unsteady aerodynamic analysis because the Navier-Stokes equation can be solved by neither analytical nor numerical method for the thin and angular airfoils, which are common in the insect wing. PMID:15721036

  7. A program to compute three-dimensional subsonic unsteady aerodynamic characteristics using the doublet lattice method, L216 (DUBFLEX). Volume 2: Supplemental system design and maintenance document

    NASA Technical Reports Server (NTRS)

    Harrison, B. A.; Richard, M.

    1979-01-01

    The information necessary for execution of the digital computer program L216 on the CDC 6600 is described. L216 characteristics are based on the doublet lattice method. Arbitrary aerodynamic configurations may be represented with combinations of nonplanar lifting surfaces composed of finite constant pressure panel elements, and axially summetric slender bodies composed of constant pressure line elements. Program input consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic field (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.

  8. Index for aerodynamic data from the Bumblebee program

    NASA Technical Reports Server (NTRS)

    Cronvich, L. L.; Barnes, G. A.

    1978-01-01

    The Bumblebee program, was designed to provide a supersonic guided missile. The aerodynamics program included a fundamental research effort in supersonic aerodynamics as well as a design task in developing both test vehicles and prototypes of tactical missiles. An index of aerodynamic missile data developed in this program is presented.

  9. Effects of upper-surface nacelles on longitudinal aerodynamic characteristics of high-wing transport configuration

    NASA Technical Reports Server (NTRS)

    Putnam, L. E.

    1986-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of installing and streamline contouring upper-surface nacelles on the longitudinal aerodynamic characteristics of a high-wing transport configuration. Also investigated were the effects of adding a fairing under the nacelle. The investigation was conducted at free-stream Mach numbers from 0.60 to 0.83 at angles fo attack from -2 deg to 4 deg. Flow-through nacelles were used. Streamline contouring the nacelles substantially reduced the interference drag due to installing the nacelles.

  10. The characteristics of the ground vortex and its effect on the aerodynamics of the STOL configuration

    NASA Technical Reports Server (NTRS)

    Stewart, Vearle R.

    1988-01-01

    The interaction of the free stream velocity on the wall jet formed by the impingement of deflected engine thrust results in a rolled up vortex which exerts sizable forces on a short takeoff (STOL) airplane configuration. Some data suggest that the boundary layer under the free stream ahead of the configuration may be important in determining the extent of the travel of the wall jet into the oncoming stream. Here, early studies of the ground vortex are examined, and those results are compared to some later data obtained with moving a model over a fixed ground board. The effect of the ground vortex on the aerodynamic characteristics are discussed.

  11. Aerodynamic characteristics of a monoplanar missile concept with bodies of circular and elliptical cross sections

    NASA Technical Reports Server (NTRS)

    Graves, E. B.

    1977-01-01

    Experimental aerodynamic characteristics of a low-drag missile concept with a body of circular cross section were compared to one with a body of 3:1 elliptical cross section, the bodies having identical cross section area distributions. The concepts were of monowing design with constant wing span. Tail surfaces were located flush at the body base with plus or minus 30 deg dihedral. Wind tunnel tests were performed at Mach numbers from 0.5 to 4.63 and at angles of attack from about -5 deg to 28 deg.

  12. Aerodynamic characteristics, including effect of body shape, of a Mach 6 aircraft concept

    NASA Technical Reports Server (NTRS)

    Riebe, G. D.

    1983-01-01

    Longitudinal aerodynamic characteristics for a hydrogen-fueled hypersonic transport concept at Mach 6 are presented. The model components consist of four bodies with identical longitudinal area distributions but different cross-sectional shapes and widths, a wing, horizontal and vertical tails, and a set of wing-mounted nacelles simulated by slid bodies on the wing upper surface. Lift-drag ratios were found to be only sightly affected by fuselage planform width or cross sectional shape. Relative distribution of fuselage volume above and below the wing was found to have an effect on the lift-drag ratio, with a higher lift drag ratio produced by the higher wing position.

  13. Low-subsonic aerodynamic characteristics of a shuttle-orbiter configuration designed for reduced length

    NASA Technical Reports Server (NTRS)

    Ware, G. M.; Spencer, B., Jr.

    1973-01-01

    An investigation has been made in a low-turbulence pressure tunnel to determine the low-subsonic aerodynamic characteristics of a 0.01875-scale model of a potential shuttle orbiter. The design has the rocket engines mounted in fairings on either side of the body on top of the wing. The wing had a leading-edge sweep of 50 and a trailing-edge sweep of minus 4. configurations investigated included engine-mounted twin dorsal tails at various rollout angles, a body-mounted center-line vertical tail, cylindrical and boattailed afterbody, and elevon and rudder at several deflections.

  14. Subsonic aerodynamic characteristics of a circular body earth-to-orbit transport

    NASA Technical Reports Server (NTRS)

    Lepsch, R. A., Jr.; Macconochie, I. O.

    1986-01-01

    To reduce the weight and improve the performance of future earth-to-orbit transports, the use of circular cross sections in the fuselage bodies of these vehicles is being considered at the Langley Research Center. Structurally, circular cross sections are stronger and lighter than other shapes. A study has been made applying the circular body concept to a vertical-takeoff, delta-winged, single-stage-to-orbit transport. A 52 in., 0.022-scale model of the circular body vehicle was tested at a Mach number of 0.3 in the 7 x 10 ft High Speed Wind Tunnel at the Langley Research Center to obtain aerodynamic forces and moments. Oil-flow photographs were taken at several angles of attack to aid in the aerodynamic analysis. Model control surfaces included elevons and ailerons for the evaluation of pitch and roll characteristics and either wing-tip fins, a nose mounted dorsal fin, or a conventional vertical tail for the evaluation of yaw characteristics. Other deflecting surfaces included speedbrakes and body flaps. Basic data on longitudinal flight characteristics are shown, including lift, drag, and pitching moments. Comparisons of the directional stability and control effectiveness of the three directional control devices are also shown.

  15. Low-speed longitudinal aerodynamic characteristics through poststall for 21 novel planform shapes

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.; Mcgrath, Brian E.

    1995-01-01

    To identify planform characteristics which have promise for a highly maneuverable vehicle, an investigation was conducted in the Langley Subsonic Basic Research Tunnel to determine the low-speed longitudinal aerodynamics of 21 planform geometries. Concepts studied included twin bodies, double wings, cutout wings, and serrated forebodies. The planform models tested were all 1/4-in.-thick flat plates with beveled edges on the lower surface to ensure uniform flow separation at angle of attack. A 1.0-in.-diameter cylindrical metric body with a hemispherical nose was used to house the six-component strain gauge balance for each configuration. Aerodynamic force and moment data were obtained across an angle-of-attack range of 0 to 70 deg with zero sideslip at a free-stream dynamic pressure of 30 psf. Surface flow visualization studies were also conducted on selected configurations using fluorescent minitufts. Results from the investigation indicate that a cutout wing planform can improve lift characteristics; however, cutout size, shape, and position and wing leading-edge sweep will all influence the effectiveness of the cutout configuration. Tests of serrated forebodies identified this concept as an extremely effective means of improving configuration lift characteristics; increases of up to 25 percent in the value of maximum lift coefficient were obtained.

  16. Large-scale aerodynamic characteristics of airfoils as tested in the variable density wind tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Anderson, Raymond F

    1931-01-01

    In order to give the large-scale characteristics of a variety of airfoils in a form which will be of maximum value, both for airplane design and for the study of airfoil characteristics, a collection has been made of the results of airfoil tests made at full-scale values of the reynolds number in the variable density wind tunnel of the National Advisory Committee for Aeronautics. They have been corrected for tunnel wall interference and are presented not only in the conventional form but also in a form which facilitates the comparison of airfoils and from which corrections may be easily made to any aspect ratio. An example showing the method of correcting the results to a desired aspect ratio has been given for the convenience of designers. In addition, the data have been analyzed with a view to finding the variation of the aerodynamic characteristics of airfoils with their thickness and camber.

  17. Tactical missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)

    1986-01-01

    The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.

  18. Numerical and Experimental Study on Aerodynamic Characteristics of Basic Airfoils at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Hirata, Katsuya; Kawakita, Masatoshi; Iijima, Takayoshi; Koga, Mitsuhiro; Kihira, Mitsuhiko; Funaki, Jiro

    The aerodynamic characteristics of airfoils have been researched in higher Reynolds-number ranges more than 106, in a historic context closely related with the developments of airplanes and fluid machineries in the last century. However, our knowledge is not enough at low and middle Reynolds-number ranges. So, in the present study, we investigate such basic airfoils as a NACA0015, a flat plate and the flat plates with modified fore-face and after-face geometries at Reynolds number Re < 1.0×105, using two- and three-dimensional computations together with wind-tunnel and water-tank experiments. As a result, we have revealed the effect of the Reynolds number Re upon the minimum drag coefficient CDmin. Besides, we have shown the effects of attack angle α upon various aerodynamic characteristics such as the lift coefficient CL, the drag coefficient CD and the lift-to-drag ratio CL/CD at Re = 1.0×102, discussing those effects on the basis of both near-flow-field information and surface-pressure profiles. Such results suggest the importance of sharp leading edges, which implies the possibility of an inversed NACA0015. Furthermore, concerning the flat-plate airfoil, we investigate the influences of fore-face and after-face geometries upon such effects.

  19. Calculation of static longitudinal aerodynamic characteristics of STOL aircraft with upper surface blown flaps

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Perkin, S. C., Jr.; Goodwin, F. K.; Spangler, S. B.

    1975-01-01

    An existing prediction method developed for EBF aircraft configurations was applied to USB configurations to determine its potential utility in predicting USB aerodynamic characteristics. An existing wing-flap vortex-lattice computer program was modified to handle multiple spanwise flap segments at different flap angles. A potential flow turbofan wake model developed for circular cross-section jets was used to model a rectangular cross-section jet wake by placing a number of circular jets side by side. The calculation procedure was evaluated by comparison of measured and predicted aerodynamic characteristics on a variety of USB configurations. The method is limited to the case where the flow and geometry of the configuration are symmetric about a vertical plane containing the wing root chord. Comparison of predicted and measured lift and pitching moment coefficients were made on swept wings with one and two engines per wing panel, various flap deflection angles, and a range of thrust coefficients. The results indicate satisfactory prediction of lift for flap deflections up to 55 and thrust coefficients less than 2. The applicability of the prediction procedure to USB configurations is evaluated, and specific recommendations for improvements are discussed.

  20. Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2015-01-01

    This paper lays out a comprehensive methodology for computing a low-speed, high-lift polar, without requiring additional details about the aircraft design beyond what is typically available at the conceptual design stage. Introducing low-order, physics-based aerodynamic analyses allows the methodology to be more applicable to unconventional aircraft concepts than traditional, fully-empirical methods. The methodology uses empirical relationships for flap lift effectiveness, chord extension, drag-coefficient increment and maximum lift coefficient of various types of flap systems as a function of flap deflection, and combines these increments with the characteristics of the unflapped airfoils. Once the aerodynamic characteristics of the flapped sections are known, a vortex-lattice analysis calculates the three-dimensional lift, drag and moment coefficients of the whole aircraft configuration. This paper details the results of two validation cases: a supercritical airfoil model with several types of flaps; and a 12-foot, full-span aircraft model with slats and double-slotted flaps.

  1. Aerodynamic characteristics and pressure distributions for an executive-jet baseline airfoil section

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Mineck, Raymond E.

    1993-01-01

    A wind tunnel test of an executive-jet baseline airfoil model was conducted in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. The primary goal of the test was to measure airfoil aerodynamic characteristics over a wide range of flow conditions that encompass two design points. The two design Mach numbers were 0.654 and 0.735 with corresponding Reynolds numbers of 4.5 x 10(exp 6) and 8.9 x 10(exp 6) based on chord, respectively, and normal-force coefficients of 0.98 and 0.51, respectively. The tests were conducted over a Mach number range from 0.250 to 0.780 and a chord Reynolds number range from 3 x 10(exp 6) to 18 x 10(exp 6). The angle of attack was varied from -2 deg to a maximum below 10 deg with one exception in which the maximum was 14 deg for a Mach number of 0.250 at a chord Reynolds number of 4.5 x 10(exp 6). Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The adaptive-wall test section had flexible top and bottom walls and rigid sidewalls. Wall interference was minimized by the movement of the adaptive walls, and the airfoil aerodynamic characteristics were corrected for any residual top and bottom wall interference.

  2. Effect of symmetrical vortex shedding on the longitudinal aerodynamic characteristics of wing-body-tail combinations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Nielsen, J. N.

    1975-01-01

    An engineering prediction method for determining the longitudinal aerodynamic characteristics of wing-body-tail combinations is developed. The method includes the effects of nonlinear aerodynamics of components and the interference between components. Nonlinearities associated with symmetrical vortex shedding from the nose of the body are considered as well as the nonlinearities associated with the separation vortices from the leading edges and side edges of the lifting surfaces. The wing and tail characteristics are calculated using lifting surface theories which include effects of incidence, camber, twist, and induced velocities from external sources of disturbance such as bodies and vortices. The lifting surface theories calculate the distribution of leading edge and side edge suction which is converted to vortex lift using the Polhamus suction analogy. Correlation curves are developed to determine the fraction of the theoretical suction force which is converted into vortex lift. The prediction method is compared with experimental data on a variety of aircraft configurations to assess the accuracy and limitations of the method.

  3. Effect of the Surface Condition of a Wing on the Aerodynamic Characteristics of an Airplane

    NASA Technical Reports Server (NTRS)

    Defrance, S J

    1934-01-01

    In order to determine the effect of the surface conditions of a wing on the aerodynamic characteristics of an airplane, tests were conducted in the N.A.C.A. full-scale wind tunnel on the Fairchild F-22 airplane first with normal commercial finish of wing surface and later with the same wing polished. Comparison of the characteristics of the airplane with the two surface conditions shows that the polish caused a negligible change in the lift curve, but reduced the minimum drag coefficient by 0.001. This reduction in drag if applied to an airplane with a given speed of 200 miles per hour and a minimum drag coefficient of 0.025 would increase the speed only 2.9 miles per hour, but if the speed remained the same, the power would be reduced 4 percent.

  4. Low-Disturbance Flow Characteristics of the NASA-Ames Laminar Flow Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; Davis, Sanford S. (Technical Monitor)

    1994-01-01

    A unique, low-disturbance (quiet) supersonic wind tunnel has been commissioned at the NASA-Ames Fluid Mechanics Laboratory (FML) to support Supersonic Laminar Flow Control (SLFC) research. Known as the Laminar Flow Supersonic Wind Tunnel (LFSWT), this tunnel is designed to operate at potential cruise Mach numbers and unit Reynolds numbers (Re) of the High Speed Civil Transport (HSCT). The need to better understand the receptivity of the transition phenomena on swept (HSCT) wings to attachment-line contamination and cross-flows has provided the impetus for building the LFSWT. Low-disturbance or "quiet" wind tunnels are known to be an essential part of any meaningful boundary layer transition research. In particular, the receptivity of supersonic boundary layers to wind tunnel disturbances can significantly alter the transition phenomena under investigation on a test model. Consequently, considerable effort has gone into the design of the LFSWT to provide quiet flow. The paper describes efforts to quantify the low-disturbance flows in the LFSWT operating at Mach 1.6, as a precursor to transition research on wing models. The research includes: (1) Flow measurements in both the test section and settling chamber of the LFSWT, using a full range of measurement techniques; (2) Study of the state of the test section boundary layer so far by using a single hot-wire mounted above the floor centerline, with and without boundary layer trips fitted at the test section entrance; (3) The effect of flow quality of unsteady supersonic diffuser flow, joint steps and gaps, and wall vibration.

  5. Steady-state and transitional aerodynamic characteristics of a wing in simulated heavy rain

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Bezos, Gaudy M.

    1989-01-01

    The steady-state and transient effects of simulated heavy rain on the subsonic aerodynamic characteristics of a wing model were determined in the Langley 14- by 22-Foot Subsonic Tunnel. The 1.29 foot chord wing was comprised of a NACA 23015 airfoil and had an aspect ratio of 6.10. Data were obtained while test variables of liquid water content, angle of attack, and trailing edge flap angle were parametrically varied at dynamic pressures of 10, 30, and 50 psf (i.e., Reynolds numbers of .76x10(6), 1.31x10(6), and 1.69x10(6)). The experimental results showed reductions in lift and increases in drag when in the simulated rain environment. Accompanying this was a reduction of the stall angle of attack by approximately 4 deg. The transient aerodynamic performance during transition from dry to wet steady-state conditions varied between a linear and a nonlinear transition.

  6. Experimental and theoretical aerodynamic characteristics of a high-lift semispan wing model

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Gentry, Garl L., Jr.

    1990-01-01

    Experimental and theoretical aerodynamic characteristics were compared for a high-lift, semispan wing configuration that incorporated a slightly modified version of the NASA Advanced Laminar Flow Control airfoil section. The experimental investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel at chord Reynolds numbers of 2.36 and 3.33 million. A two-dimensional airfoil code and a three-dimensional panel code were used to obtain aerodynamic predictions. Two-dimensional data were corrected for three-dimensional effects. Comparisons between predicted and measured values were made for the cruise configuration and for various high-lift configurations. Both codes predicted lift and pitching moment coefficients that agreed well with experiment for the cruise configuration. These parameters were overpredicted for all high-lift configurations. Drag coefficient was underpredicted for all cases. Corrected two-dimensional pressure distributions typically agreed well with experiment, while the panel code overpredicted the leading-edge suction peak on the wing. One important feature missing from both of these codes was a capability for separated flow analysis. The major cause of disparity between the measured data and predictions presented herein was attributed to separated flow conditions.

  7. Wind Tunnel Aerodynamic Characteristics of a Transport-type Airfoil in a Simulated Heavy Rain Environment

    NASA Technical Reports Server (NTRS)

    Bezos, Gaudy M.; Dunham, R. Earl, Jr.; Gentry, Garl L., Jr.; Melson, W. Edward, Jr.

    1992-01-01

    The effects of simulated heavy rain on the aerodynamic characteristics of an NACA 64-210 airfoil section equipped with leading-and trailing-edge high-lift devices were investigated in the Langley 14- by 22-Foot Subsonic Tunnel. The model had a chord of 2.5 ft, a span of 8 ft, and was mounted on the tunnel centerline between two large endplates. Aerodynamic measurements in and out of the simulated rain environment were obtained for dynamic pressures of 30 and 50 psf and an angle-of-attack range of 0 to 20 degrees for the cruise configuration. The rain intensity was varied to produce liquid water contents ranging from 16 to 46 gm/cu m. The results obtained for various rain intensity levels and tunnel speeds showed significant losses in maximum lift capability and increases in drag for a given lift as the liquid water content was increased. The results obtained on the landing configuration also indicate a progressive decrease in the angle of attack at which maximum lift occurred and an increase in the slope of the pitching-moment curve as the liquid water content was increased. The sensitivity of test results to the effects of the water surface tension was also investigated. A chemical was introduced into the rain environment that reduced the surface tension of water by a factor of 2. The reduction in the surface tension of water did not significantly alter the level of performance losses for the landing configuration.

  8. Aerodynamic preliminary analysis system 2. Part 1: Theory

    NASA Technical Reports Server (NTRS)

    Bonner, E.; Clever, W.; Dunn, K.

    1991-01-01

    An aerodynamic analysis system based on potential theory at subsonic and/or supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations having multiple nonplanar surfaces of arbitrary planform and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral directional characteristics may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. The program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.

  9. Effects at Mach Numbers of 1.61 and 2.01 of Camber and Twist on the Aerodynamic Characteristics of Three Swept Wings Having the Same Planform

    NASA Technical Reports Server (NTRS)

    Landrum, Emma Jean; Czarnecki, K. R.

    1961-01-01

    An investigation has been made at Mach numbers of 1.61 and 2.01 to determine the aerodynamic characteristics of three wings having a sweepback of 50 deg at the quarter-chord line, a taper ratio of 0.20, an NACA 65A005 thickness distribution, and an aspect ratio of 3.5. One wing was flat, one had at each spanwise station an a = 0 mean line modified to have a maximum height of 4-percent chord, and one had a linear variation of twist with 6 deg of washout at the tip. Tests were made with natural and fixed transition at Reynolds numbers ranging from 1.2 x 10(exp 6) to 3.6 x 10(exp 6) through an angle-of-attack range of -20 deg to 20 deg. When compared with the flat wing, the effect of the linear variation of twist with 6 deg of washout at the tip was to increase the lift-drag ratio when the leading edge was subsonic; but little increase in lift-drag ratio was obtained when the leading edge was supersonic. Pitching moment was increased and gave a positive trim point without greatly affecting the rate of change of pitching moment with lift coefficient. For the cambered wing the high minimum drag resulted in comparatively low lift-drag ratios. In addition, the pitching moments were decreased so that a negative trim point was obtained.

  10. Flow characteristic of in-flight particles in supersonic plasma spraying process

    NASA Astrophysics Data System (ADS)

    Wei, Pei; Wei, Zhengying; Zhao, Guangxi; Du, Jun; Bai, Y.

    2015-10-01

    In this paper, a computational model based on supersonic plasma spraying (SAPS) is developed to describe the plasma jet coupled with the injection of carrier gas and particles for SAPS. Based on a high-efficiency supersonic spraying gun, the 3D computational model of spraying gun was built to study the features of plasma jet and its interactions with the sprayed particles. Further the velocity and temperature of in-flight particles were measured by Spray Watch 2i, the shape of in-flight particles was observed by scanning electron microscope. Numerical results were compared with the experimental measurements and a good agreement has been achieved. The flight process of particles in plasma jet consists of three stages: accelerated stage, constant speed stage and decelerated stage. Numerical and experimental indicates that the H2 volume fraction in mixture gas of Ar + H2 should keep in the range of 23-26 %, and the distance of 100 mm is the optimal spraying distance in Supersonic atmosphere plasma spraying. Particles were melted and broken into small child particles by plasma jet and the diameters of most child particles were less than 30 μm. In general, increasing the particles impacting velocity and surface temperature can decrease the coating porosity.

  11. Aerodynamic characteristics of a powered, externally blown flap STOL transport model with two engine simulator sizes

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.

    1975-01-01

    The low-speed aerodynamic characteristics are investigated of a general research model - a swept-wing, jet-powered STOL transport with externally blown flaps. The model was tested with four-engine simulators mounted on pylons under the 9.3-percent-thick supercritical airfoil wing. Two sets of air ejectors were used to provide data with large and small engines. Tests were conducted in the Langley V/STOL tunnel over an angle-of-attack range of -4 deg to 22 deg and a thrust-coefficient range from 0 to approximately 4. The effects are described of power, wing leading-edge slat configuration, T-tail and low horizontal-tail positions, and double-slotted flap deflection. Additional untrimmed and trimmed engine-out data and tail-body data are included.

  12. Aerodynamic characteristics of the ventilated design for flapping wing micro air vehicle.

    PubMed

    Zhang, G Q; Yu, S C M

    2014-01-01

    Inspired by superior flight performance of natural flight masters like birds and insects and based on the ventilating flaps that can be opened and closed by the changing air pressure around the wing, a new flapping wing type has been proposed. It is known that the net lift force generated by a solid wing in a flapping cycle is nearly zero. However, for the case of the ventilated wing, results for the net lift force are positive which is due to the effect created by the "ventilation" in reducing negative lift force during the upstroke. The presence of moving flaps can serve as the variable in which, through careful control of the areas, a correlation with the decrease in negative lift can be generated. The corresponding aerodynamic characteristics have been investigated numerically by using different flapping frequencies and forward flight speeds. PMID:24683339

  13. Aerodynamic stability and control characteristics of TBC shuttle booster AR-11981-3

    NASA Technical Reports Server (NTRS)

    Phelps, E. R.; Watts, L. L.; Ainsworth, R. W.

    1972-01-01

    A scale model of the Boeing Company space shuttle booster configuration 3 was tested in the MSFC 14-inch trisonic wind tunnel. This test was proposed to fill-in the original test run schedule as well as to investigate the aerodynamic stability and control characteristics of the booster with three wing configurations not previously tested. The configurations tested included: (1) a cylindrical booster body with an axisymmetric nose, (2) clipped delta canards that had variable incidence from 0 deg to -60 deg, (3) different aft body mounted wing configurations, (4) two vertical fin configurations, and (5) a Grumman G-3 orbiter configuration. Tests were conducted over a Mach range from 0.6 to 5.0.

  14. Hypersonic aerodynamic characteristics of a family of power-law, wing body configurations

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1973-01-01

    The configurations analyzed are half-axisymmetric, power-law bodies surmounted by thin, flat wings. The wing planform matches the body shock-wave shape. Analytic solutions of the hypersonic small disturbance equations form a basis for calculating the longitudinal aerodynamic characteristics. Boundary-layer displacement effects on the body and the wing upper surface are approximated. Skin friction is estimated by using compressible, laminar boundary-layer solutions. Good agreement was obtained with available experimental data for which the basic theoretical assumptions were satisfied. The method is used to estimate the effects of power-law, fineness ratio, and Mach number variations at full-scale conditions. The computer program is included.

  15. Calculation of the longitudinal aerodynamic characteristics of upper-surface-blown wing-flap configurations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1979-01-01

    An investigation has been carried out to develop an engineering method for predicting the longitudinal aerodynamic characteristics of wing-flap configurations with upper surface blown (USB) high lift devices. Potential flow models of the lifting surfaces and the jet wakes are combined to calculate the induced interference of the engine wakes on the wing and flaps. The wing may have an arbitrary planform with camber and twist and multiple trailing edge flaps. The jet wake model has a rectangular cross section over its entire length and it is positioned such that the wake is tangent to the upper surfaces of the wing and flaps. Comparisons of measured and predicted pressure distributions, spanload distributions, and total lift and pitching-moment coefficients on swept and unswept USB configurations are presented for a wide range of thrust coefficients and flap deflection angles.

  16. Prediction of longitudinal aerodynamic characteristics of STOL configurations with externally blown high lift devices

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1976-01-01

    A theoretical method has been developed to predict the longitudinal aerodynamic characteristics of engine-wing-flap combinations with externally blown flaps (EBF) and upper surface blowing (USB) high lift devices. Potential flow models of the lifting surfaces and the jet wake are combined to calculate the induced interference of the engine wakes on the lifting surfaces. The engine wakes may be circular, elliptic, or rectangular cross-sectional jets, and the lifting surfaces are comprised of a wing with multiple-slotted trailing-edge flaps or a deflected trailing-edge Coanda surface. Results are presented showing comparisons of measured and predicted forces, pitching moments, span-load distributions, and flow fields.

  17. Subsonic longitudinal and lateral aerodynamic characteristics for a systematic series of strake-wing configurations

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1979-01-01

    A systematic wind tunnel study was conducted in the Langley 7 by 10 foot high speed tunnel to help establish a parametric data base of the longitudinal and lateral aerodynamic characteristics for configurations incorporating strake-wing geometries indicative of current and proposed maneuvering aircraft. The configurations employed combinations of strakes with reflexed planforms having exposed spans of 10%, 20%, and 30% of the reference wing span and wings with trapezoidal planforms having leading edge sweep angles of approximately 30, 40, 44, 50, and 60 deg. Tests were conducted at Mach numbers ranging from 0.3 to 0.8 and at angles of attack from approximately -4 to 48 deg at zero sideslip.

  18. Aerodynamic Characteristics of the Ventilated Design for Flapping Wing Micro Air Vehicle

    PubMed Central

    Zhang, G. Q.; Yu, S. C. M.

    2014-01-01

    Inspired by superior flight performance of natural flight masters like birds and insects and based on the ventilating flaps that can be opened and closed by the changing air pressure around the wing, a new flapping wing type has been proposed. It is known that the net lift force generated by a solid wing in a flapping cycle is nearly zero. However, for the case of the ventilated wing, results for the net lift force are positive which is due to the effect created by the “ventilation” in reducing negative lift force during the upstroke. The presence of moving flaps can serve as the variable in which, through careful control of the areas, a correlation with the decrease in negative lift can be generated. The corresponding aerodynamic characteristics have been investigated numerically by using different flapping frequencies and forward flight speeds. PMID:24683339

  19. An experimental investigation of the aerodynamic characteristics of slanted base ogive cylinders using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Alcorn, Charles W.; Britcher, Colin

    1988-01-01

    An experimental investigation is reported on slanted base ogive cylinders at zero incidence. The Mach number range is 0.05 to 0.3. All flow disturbances associated with wind tunnel supports are eliminated in this investigation by magnetically suspending the wind tunnel models. The sudden and drastic changes in the lift, pitching moment, and drag for a slight change in base slant angle are reported. Flow visualization with liquid crystals and oil is used to observe base flow patterns, which are responsible for the sudden changes in aerodynamic characteristics. Hysteretic effects in base flow pattern changes are present in this investigation and are reported. The effect of a wire support attachment on the 0 deg slanted base model is studied. Computational drag and transition location results using VSAERO and SANDRAG are presented and compared with experimental results. Base pressure measurements over the slanted bases are made with an onboard pressure transducer using remote data telemetry.

  20. Low-speed longitudinal and lateral-directional aerodynamic characteristics of the X-31 configuration

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Gatlin, Gregory M.; Paulson, John W., Jr.

    1992-01-01

    An experimental investigation of a 19 pct. scale model of the X-31 configuration was completed in the Langley 14 x 22 Foot Subsonic Tunnel. This study was performed to determine the static low speed aerodynamic characteristics of the basic configuration over a large range of angle of attack and sideslip and to study the effects of strakes, leading-edge extensions (wing-body strakes), nose booms, speed-brake deployment, and inlet configurations. The ultimate purpose was to optimize the configuration for high angle of attack and maneuvering-flight conditions. The model was tested at angles of attack from -5 to 67 deg and at sideslip angles from -16 to 16 deg for speeds up to 190 knots (dynamic pressure of 120 psf).

  1. Aerodynamic characteristics of a large aircraft to transport space shuttle orbiter or other external payloads

    NASA Technical Reports Server (NTRS)

    Paulson, J. W., Jr.

    1975-01-01

    Wind tunnel tests were conducted in the Langley V/STOL tunnel to determine the aerodynamic characteristics of a large transport aircraft designed to carry the space shuttle orbiter or orbiter booster tank. Results indicate that the transport, with or without payloads, is statically stable, the longitudinal static margins being rather excessive. Elevator power is sufficient to trim the transport up to stall except when the orbiter is mounted close to the wing. Maximum lift-drag ratios at wind tunnel Reynolds numbers vary from 12 to 14 depending on model configuration. Tests were conducted at Reynolds numbers from 1.21 x 1 million to 1.49 x 1 million with angle of attack from -2 deg to 20 deg and angle of sideslip from -5 deg to 5 deg.

  2. Low speed aerodynamic characteristics of a 17 percent thick airfoil section designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1973-01-01

    Wind-tunnel tests have been conducted to determine the low-speed two-dimensional aerodynamic characteristics of a 17-percent-thick airfoil designed for general aviation applications (GA(W)-1). The results were compared with predictions based on a theoretical method for calculating the viscous flow about the airfoil. The tests were conducted over a Mach number range from 0.10 to 0.28. Reynolds numbers based on airfoil chord varied from 2.0 million to 20.0 million. Maximum section lift coefficients greater than 2.0 were obtained and section lift-drag ratio at a lift coefficient of 1.0 (climb condition) varied from about 65 to 85 as the Reynolds number increased from about 2.0 million to 6.0 million.

  3. Investigations on the Aerodynamic Characteristics and Blade Excitations of the Radial Turbine with Pulsating Inlet Flow

    NASA Astrophysics Data System (ADS)

    Liu, Yixiong; Yang, Ce; Yang, Dengfeng; Zhang, Rui

    2016-04-01

    The aerodynamic performance, detailed unsteady flow and time-based excitations acting on blade surfaces of a radial flow turbine have been investigated with pulsation flow condition. The results show that the turbine instantaneous performance under pulsation flow condition deviates from the quasi-steady value significantly and forms obvious hysteretic loops around the quasi-steady conditions. The detailed analysis of unsteady flow shows that the characteristic of pulsation flow field in radial turbine is highly influenced by the pulsation inlet condition. The blade torque, power and loading fluctuate with the inlet pulsation wave in a pulse period. For the blade excitations, the maximum and the minimum blade excitations conform to the wave crest and wave trough of the inlet pulsation, respectively, in time-based scale. And toward blade chord direction, the maximum loading distributes along the blade leading edge until 20% chord position and decreases from the leading to trailing edge.

  4. Convergence characteristics of nonlinear vortex-lattice methods for configuration aerodynamics

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Rusak, Z.; Wasserstrom, E.

    1983-01-01

    Nonlinear panel methods have no proof for the existence and uniqueness of their solutions. The convergence characteristics of an iterative, nonlinear vortex-lattice method are, therefore, carefully investigated. The effects of several parameters, including (1) the surface-paneling method, (2) an integration method of the trajectories of the wake vortices, (3) vortex-grid refinement, and (4) the initial conditions for the first iteration on the computed aerodynamic coefficients and on the flow-field details are presented. The convergence of the iterative-solution procedure is usually rapid. The solution converges with grid refinement to a constant value, but the final value is not unique and varies with the wing surface-paneling and wake-discretization methods within some range in the vicinity of the experimental result.

  5. Comparisons of two-dimensional shock-expansion theory with experimental aerodynamic data for delta-planform wings at high supersonic speeds

    NASA Technical Reports Server (NTRS)

    Jernell, L. S.

    1974-01-01

    An investigation has been conducted to explore the potential for optimizing airfoil shape at high supersonic speeds by utilizing the two-dimensional shock-expansion method. Theoretical and experimental force and moment coefficients are compared for four delta-planform semispan wings having a leading-edge sweep angle of 65 deg and incorporating modified diamond airfoils with a thickness-chord ratio of 0.06. The wings differ only in airfoil maximum-thickness position and camber. The experimental data are obtained at Mach numbers of 3.95 and 4.63 and at a Reynolds number of 9.84 million per meter. A relatively simple method is developed for predicting, in terms of lift-drag ratio, the optimum modified diamond airfoil at high supersonic and hypersonic speeds.

  6. Application of an aerodynamic analysis method including attainable thrust estimates to low speed leading-edge flap design for supersonic cruise vehicles

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.

    1982-01-01

    A study of low speed leading-edge flap design for supersonic cruise vehicle was conducted. Wings with flaps were analyzed with the aid of a newly developed subsonic wing program which provides estimates of attainable leading-edge thrust. Results indicate that the thrust actually attainable can have a significant influence on the design and that the resultant flaps can be smaller and simpler than those resulting from more conventional approaches.

  7. Effect of Length-Beam Ratio on the Aerodynamic Characteristics of Flying-Boat Hulls without Wing Interference

    NASA Technical Reports Server (NTRS)

    Lowry, John G.; Riebe, John M.

    1948-01-01

    Contains experimental results of an investigation of the aerodynamic characteristics of a family of flying boat hulls of length beam ratios 6, 9, 12, and 15 without wing interference. The results are compared with those taken on the same family of hulls in the presence of a wing.

  8. Experimental Aerodynamic Characteristics of the Pegasus Air-Launched Booster and Comparisons with Predicted and Flight Results

    NASA Technical Reports Server (NTRS)

    Rhode, M. N.; Engelund, Walter C.; Mendenhall, Michael R.

    1995-01-01

    Experimental longitudinal and lateral-directional aerodynamic characteristics were obtained for the Pegasus and Pegasus XL configurations over a Mach number range from 1.6 to 6 and angles of attack from -4 to +24 degrees. Angle of sideslip was varied from -6 to +6 degrees, and control surfaces were deflected to obtain elevon, aileron, and rudder effectiveness. Experimental data for the Pegasus configuration are compared with engineering code predictions performed by Nielsen Engineering & Research, Inc. (NEAR) in the aerodynamic design of the Pegasus vehicle, and with results from the Aerodynamic Preliminary Analysis System (APAS) code. Comparisons of experimental results are also made with longitudinal flight data from Flight #2 of the Pegasus vehicle. Results show that the longitudinal aerodynamic characteristics of the Pegasus and Pegasus XL configurations are similar, having the same lift-curve slope and drag levels across the Mach number range. Both configurations are longitudinally stable, with stability decreasing towards neutral levels as Mach number increases. Directional stability is negative at moderate to high angles of attack due to separated flow over the vertical tail. Dihedral effect is positive for both configurations, but is reduced 30-50 percent for the Pegasus XL configuration because of the horizontal tail anhedral. Predicted longitudinal characteristics and both longitudinal and lateral-directional control effectiveness are generally in good agreement with experiment. Due to the complex leeside flowfield, lateral-directional characteristics are not as well predicted by the engineering codes. Experiment and flight data are in good agreement across the Mach number range.

  9. Aerodynamic Characteristics of a Revised Target Drone Vehicle at Mach Numbers from 1.60 to 2.86

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.; Babb, C. Donald

    1968-01-01

    An investigation has been conducted in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a revised target drone vehicle through a Mach number range from 1.60 to 2.86. The vehicle had canard surfaces and a swept clipped-delta wing with twin tip-mounted vertical tails.

  10. Aerodynamic characteristics of a wing with Fowler flaps including flap loads, downwash, and calculated effect on take-off

    NASA Technical Reports Server (NTRS)

    Platt, Robert C

    1936-01-01

    This report presents the results of wind tunnel tests of a wing in combination with each of three sizes of Fowler flap. The purpose of the investigation was to determine the aerodynamic characteristics as affected by flap chord and position, the air loads on the flaps, and the effect of flaps on the downwash.

  11. Method and apparatus for starting supersonic compressors

    DOEpatents

    Lawlor, Shawn P.

    2012-04-10

    A supersonic gas compressor. The compressor includes aerodynamic duct(s) situated on a rotor journaled in a casing. The aerodynamic duct(s) generate a plurality of oblique shock waves for efficiently compressing a gas at supersonic conditions. The convergent inlet is adjacent to a bleed air collector, and during acceleration of the rotor, bypass gas is removed from the convergent inlet via a collector to enable supersonic shock stabilization. Once the oblique shocks are stabilized at a selected inlet relative Mach number and pressure ratio, the bleed of bypass gas from the convergent inlet via the bypass gas collectors is eliminated.

  12. Characteristics of heat exchange in the region of injection into a supersonic high-temperature flow

    NASA Technical Reports Server (NTRS)

    Bakirov, F. G.; Shaykhutdinov, Z. G.

    1985-01-01

    An experimental investigation of the local heat transfer coefficient distribution during gas injection into the supersonic-flow portion of a Laval nozzle is discussed. The controlling dimensionless parameters of the investigated process are presented in terms of a generalized relation for the maximum value of the heat transfer coefficient in the nozzle cross section behind the injection hole. Data on the heat transfer coefficient variation along the nozzle length as a function of gas injection rate are also presented, along with the heat transfer coefficient distribution over a cross section of the nozzle.

  13. Aerodynamic characteristics of a distinct wing-body configuration at Mach 6: Experiment, theory, and the hypersonic isolation principle

    NASA Technical Reports Server (NTRS)

    Penland, J. A.; Pittman, J. L.

    1985-01-01

    An experimental investigation has been conducted to determine the effect of wing leading edge sweep and wing translation on the aerodynamic characteristics of a wing body configuration at a free stream Mach number of about 6 and Reynolds number (based on body length) of 17.9 x 10 to the 6th power. Seven wings with leading edge sweep angles from -20 deg to 60 deg were tested on a common body over an angle of attack range from -12 deg to 10 deg. All wings had a common span, aspect ratio, taper ratio, planform area, and thickness ratio. Wings were translated longitudinally on the body to make tests possible with the total and exposed mean aerodynamic chords located at a fixed body station. Aerodynamic forces were found to be independent of wing sweep and translation, and pitching moments were constant when the exposed wing mean aerodynamic chord was located at a fixed body station. Thus, the Hypersonic Isolation Principle was verified. Theory applied with tangent wedge pressures on the wing and tangent cone pressures on the body provided excellent predictions of aerodynamic force coefficients but poor estimates of moment coefficients.

  14. Advanced structures technology applied to a supersonic cruise arrow-wing configuration

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1976-01-01

    The application of advanced technology to a promising aerodynamic configuration was explored to investigate the improved payload range characteristics over the configuration postulated during the National SST Program. The results of an analytical study performed to determine the best structural approach for design of a Mach number 2.7 arrow-wing supersonic cruise aircraft are highlighted. The data conducted under the auspices of the Structures Directorate of the National Aeronautics and Space Administration, Langley Research Center, established firm technical bases from which further trend studies were conducted to quantitatively assess the benefits and feasibility of using advanced structures technology to arrive at a viable advanced supersonic cruise aircraft.

  15. Prediction of vortex shedding from circular and noncircular bodies in supersonic flow

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Perkins, S. C., Jr.

    1984-01-01

    An engineering prediction method and associated computer code NOZVTX to predict nose vortex shedding from circular and noncircular bodies in supersonic flow at angles of attack and roll are presented. The body is represented by either a supersonic panel method for noncircular cross sections or line sources and doublets for circular cross sections, and the lee side vortex wake is modeled by discrete vortices in crossflow planes. The three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics is presented for bodies with circular and noncircular cross-sectional shapes.

  16. Flowfield characteristics of a transverse jet into supersonic flow with pseudo-shock wave

    NASA Astrophysics Data System (ADS)

    Yamauchi, H.; Choi, B.; Takae, K.; Kouchi, T.; Masuya, G.

    2012-11-01

    We performed an experimental investigation of the flowfield of a transverse jet into supersonic flow with a pseudo-shock wave (PSW). In this study, we injected compressed air as the injectant, simulating hydrocarbon fuel. A back pressure control valve generated PSW into Mach 2.5 supersonic flow and controlled its position. The positions of PSW were set at nondimensional distance from the injector by the duct height ( x/ H) of -1.0, -2.5, and -4.0. Particle image velocimetry (PIV) gave us the velocity of the flowfield. Mie scattering of oil mist only with the jet was used to measure the spread of the injectant. Furthermore, gas sampling measurements at the exit of the test section were carried out to determine the injectant mole fraction distributions. Gas sampling data qualitatively matched the intensity of Mie scattering. PIV measurements indicated that far-upstream PSW decelerated the flow speed of the main stream and developed the boundary layer on the wall of the test section. The flow speed deceleration at the corner of the test section was remarkable. The PSW produced nonuniformity in the main stream and reduced the momentum flux of the main stream in front of the injector. The blowing ratio, defined as the square root of the momentum flux ratio, of the jet and the main stream considering the effect of the boundary layer thickness was shown to be a useful parameter to explain the jet behavior.

  17. Prediction of dynamic and aerodynamic characteristics of the centrifugal fan with forward curved blades

    NASA Astrophysics Data System (ADS)

    Polanský, Jiří; Kalmár, László; Gášpár, Roman

    2013-12-01

    The main aim of this paper is determine the centrifugal fan with forward curved blades aerodynamic characteristics based on numerical modeling. Three variants of geometry were investigated. The first, basic "A" variant contains 12 blades. The geometry of second "B" variant contains 12 blades and 12 semi-blades with optimal length [1]. The third, control variant "C" contains 24 blades without semi-blades. Numerical calculations were performed by CFD Ansys. Another aim of this paper is to compare results of the numerical simulation with results of approximate numerical procedure. Applied approximate numerical procedure [2] is designated to determine characteristics of the turbulent flow in the bladed space of a centrifugal-flow fan impeller. This numerical method is an extension of the hydro-dynamical cascade theory for incompressible and inviscid fluid flow. Paper also partially compares results from the numerical simulation and results from the experimental investigation. Acoustic phenomena observed during experiment, during numerical simulation manifested as deterioration of the calculation stability, residuals oscillation and thus also as a flow field oscillation. Pressure pulsations are evaluated by using frequency analysis for each variant and working condition.

  18. Supersonic laser propulsion.

    PubMed

    Rezunkov, Yurii; Schmidt, Alexander

    2014-11-01

    To produce supersonic laser propulsion, a new technique based on the interaction of a laser-ablated jet with supersonic gas flow in a nozzle is proposed. It is shown that such parameters of the jet, such as gas-plasma pressure and temperature in the ablation region as well as the mass consumption rate of the ablated solid propellant, are characteristic in this respect. The results of numerical simulations of the supersonic laser propulsion are presented for two types of nozzle configuration. The feasibility to achieve the momentum coupling coefficient of C(m)∼10(-3) N/W is shown. PMID:25402938

  19. Study of aerodynamic technology for VSTOL fighter attack aircraft

    NASA Technical Reports Server (NTRS)

    Burhans, W., Jr.; Crafta, V. J., Jr.; Dannenhoffer, N.; Dellamura, F. A.; Krepski, R. E.

    1978-01-01

    Vertical short takeoff aircraft capability, supersonic dash capability, and transonic agility were investigated for the development of Fighter/attack aircraft to be accommodated on ships smaller than present aircraft carriers. Topics covered include: (1) description of viable V/STOL fighter/attack configuration (a high wing, close-coupled canard, twin-engine, control configured aircraft) which meets or exceeds specified levels of vehicle performance; (2) estimates of vehicle aerodynamic characteristics and the methodology utilized to generate them; (3) description of propulsion system characteristics and vehicle mass properties; (4) identification of areas of aerodynamic uncertainty; and (5) a test program to investigate the areas of aerodynamic uncertainty in the conventional flight mode.

  20. Study of aerodynamic technology for VSTOL fighter/attack aircraft: Vertical attitude concept

    NASA Technical Reports Server (NTRS)

    Gerhardt, H. A.; Chen, W. S.

    1978-01-01

    The aerodynamic technology for a vertical attitude VSTOL (VATOL) supersonic fighter/attack aircraft was studied. The selected configuration features a tailless clipped delta wing with leading-edge extension (LEX), maneuvering flaps, top-side inlet, twin dry engines and vectoring nozzles. A relaxed static stability is employed in conjunction with the maneuvering flaps to optimize transonic performance and minimize supersonic trim drag. Control for subaerodynamic flight is obtained by gimballing the nozzles in combination with wing tip jets. Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel test program is proposed to resolve these uncertainties and ascertain the feasibility of the conceptual design. Ship interface, flight control integration, crew station concepts, advanced weapons, avionics, and materials are discussed.

  1. Multifidelity Analysis and Optimization for Supersonic Design

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Willcox, Karen; March, Andrew; Haas, Alex; Rajnarayan, Dev; Kays, Cory

    2010-01-01

    Supersonic aircraft design is a computationally expensive optimization problem and multifidelity approaches over a significant opportunity to reduce design time and computational cost. This report presents tools developed to improve supersonic aircraft design capabilities including: aerodynamic tools for supersonic aircraft configurations; a systematic way to manage model uncertainty; and multifidelity model management concepts that incorporate uncertainty. The aerodynamic analysis tools developed are appropriate for use in a multifidelity optimization framework, and include four analysis routines to estimate the lift and drag of a supersonic airfoil, a multifidelity supersonic drag code that estimates the drag of aircraft configurations with three different methods: an area rule method, a panel method, and an Euler solver. In addition, five multifidelity optimization methods are developed, which include local and global methods as well as gradient-based and gradient-free techniques.

  2. Aerodynamic characteristics of nebulized terbutaline sulphate using the Next Generation Impactor (NGI) and CEN method.

    PubMed

    Abdelrahim, Mohamed E; Chrystyn, Henry

    2009-03-01

    Characterization of the aerosolized dose emitted from a nebulized system can be determined using CEN (prEN13544-1) methodology and more recently with a Next Generation Impactor (NGI), but evaporative effects can influence the results. We have investigated these characteristics using different flows and cooling with the NGI and compared the results to the standard CEN method using two different nebulizer systems. The NGI was operated using flows of 15 and 30 L min(-1) at room (ROOM) temperature and immediately after cooling at 5 degrees C for 90 min (COLD). Two nebulizer systems, the Sidestream jet nebulizer (SIDE) and the Aeroneb Pro (AERO), were used to nebulize terbutaline sulphate respiratory solution. The CEN method was also used to provide the aerodynamic characteristics of the aerosolized dose from these two nebulizer systems. The mean (SD) mass median aerodynamic diameter (MMAD) using 15COLD, 15ROOM, 30COLD, 30ROOM, and CEN for AERO was 5.0(0.1), 4.1(0.3), 4.4(0.2), 2.0(0.3), and 3.0(1.1) microm, respectively, and 4.2(0.4), 2.6(0.4), 3.5(0.1), 1.7(0.1), and 3.2(0.3) microm for SIDE. The fine particle fraction (FPF), using the NGI, followed the expected trend associated with the corresponding MMAD values, ranging from 48.1 to 70.5% from AERO and 57.3 to 87.8% for SIDE. The mean FPF for AERO and SIDE using the CEN methodology was 72.5 and 63.6%. Overall there was a highly significant difference (p < 0.001) between the different operating conditions for the FPF and MMAD of both nebulizer systems. All methods revealed a significant difference between AERO and SIDE except CEN. Both nebulizer systems were prone to evaporation effects during in vitro testing. Cooling and using a slow flow minimizes evaporation effects with the NGI and should be adopted as the recommended compendial method. The CEN method provides different values to those of the NGI operating conditions and could not differentiate between the two nebulizers. PMID:19392586

  3. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  4. Low-speed longitudinal aerodynamic characteristics of a flat-plate planform model of an advanced fighter configuration

    NASA Technical Reports Server (NTRS)

    Mcgrath, Brian E.; Neuhart, Dan H.; Gatlin, Gregory M.; Oneil, Pat

    1994-01-01

    A flat-plate wind tunnel model of an advanced fighter configuration was tested in the NASA LaRC Subsonic Basic Research Tunnel and the 16- by 24-inch Water Tunnel. The test objectives were to obtain and evaluate the low-speed longitudinal aerodynamic characteristics of a candidate configuration for the integration of several new innovative wing designs. The flat plate test allowed for the initial evaluation of the candidate planform and was designated as the baseline planform for the innovative wing design study. Low-speed longitudinal aerodynamic data were obtained over a range of freestream dynamic pressures from 7.5 psf to 30 psf (M = 0.07 to M = 0.14) and angles-of-attack from 0 to 40 deg. The aerodynamic data are presented in coefficient form for the lift, induced drag, and pitching moment. Flow-visualization results obtained were photographs of the flow pattern over the flat plate model in the water tunnel for angles-of-attack from 10 to 40 deg. The force and moment coefficients and the flow-visualization photographs showed the linear and nonlinear aerodynamic characteristics due to attached flow and vortical flow over the flat plate model. Comparison between experiment and linear theory showed good agreement for the lift and induced drag; however, the agreement was poor for the pitching moment.

  5. Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications

    NASA Technical Reports Server (NTRS)

    Barbi, E.; Mahan, J. R.; O'Brien, W. F.; Wagner, T. C.

    1989-01-01

    The residence time of the combustible mixture in the combustion chamber of a scramjet engine is much less than the time normally required for complete combustion. Hydrogen and hydrocarbon fuels require an ignition source under conditions typically found in a scramjet combustor. Analytical studies indicate that the presence of hydrogen atoms should greatly reduce the ignition delay in this environment. Because hydrogen plasmas are prolific sources of hydrogen atoms, a low-power, uncooled hydrogen plasma torch has been built and tested to evaluate its potential as a possible flame holder for supersonic combustion. The torch was found to be unstable when operated on pure hydrogen; however, stable operation could be obtained by using argon as a body gas and mixing in the desired amount of hydrogen. The stability limits of the torch are delineated and its electrical and thermal behavior documented. An average torch thermal efficiency of around 88 percent is demonstrated.

  6. Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications

    SciTech Connect

    Barbi, E.; Mahan, J.R.; O'brien, W.F.; Wagner, T.C.

    1989-04-01

    The residence time of the combustible mixture in the combustion chamber of a scramjet engine is much less than the time normally required for complete combustion. Hydrogen and hydrocarbon fuels require an ignition source under conditions typically found in a scramjet combustor. Analytical studies indicate that the presence of hydrogen atoms should greatly reduce the ignition delay in this environment. Because hydrogen plasmas are prolific sources of hydrogen atoms, a low-power, uncooled hydrogen plasma torch has been built and tested to evaluate its potential as a possible flame holder for supersonic combustion. The torch was found to be unstable when operated on pure hydrogen; however, stable operation could be obtained by using argon as a body gas and mixing in the desired amount of hydrogen. The stability limits of the torch are delineated and its electrical and thermal behavior documented. An average torch thermal efficiency of around 88 percent is demonstrated. 10 references.

  7. Effect of Ground Interference on the Aerodynamic and Flow Characteristics of a 42 Degree Sweptback Wing at Reynolds Numbers up to 6.8 x 10(6)

    NASA Technical Reports Server (NTRS)

    Furlong, G Chester; Bollech, Thomas V

    1955-01-01

    Report presents the results of an investigation of the effects of ground interference on the aerodynamic characteristics of a 42 degree sweptback wing at distances 0.68 and 0.92 of the mean aerodynamic chord from the simulated ground to the 0.25-chord point of the mean aerodynamic chord. Survey data behind the wing, both with and without the simulated ground, are presented in the form of contour charts of downwash, sidewash, and dynamic-pressure ratio at longitudinal stations of 2.0 and 2.8 mean aerodynamic chords behind the wing.

  8. Experimental Evaluation of the Effect of Angle-of-attack on the External Aerodynamics and Mass Capture of a Symmetric Three-engine Air-breathing Launch Vehicle Configuration at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Frate, Franco C.

    2001-01-01

    A subscale aerodynamic model of the GTX air-breathing launch vehicle was tested at NASA Glenn Research Center's 10- by 10-Foot Supersonic Wind Tunnel from Mach 2.0 to 3.5 at various angles-of-attack. The objective of the test was to investigate the effect of angle-of-attack on inlet mass capture, inlet diverter effectiveness, and the flowfield at the cowl lip plane. The flow-through inlets were tested with and without boundary-layer diverters. Quantitative measurements such as inlet mass flow rates and pitot-pressure distributions in the cowl lip plane are presented. At a 3deg angle-of-attack, the flow rates for the top and side inlets were within 8 percent of the zero angle-of-attack value, and little distortion was evident at the cowl lip plane. Surface oil flow patterns showing the shock/boundary-layer interaction caused by the inlet spikes are shown. In addition to inlet data, vehicle forebody static pressure distributions, boundary-layer profiles, and temperature-sensitive paint images to evaluate the boundary-layer transition are presented. Three-dimensional parabolized Navier-Stokes computational fluid dynamics calculations of the forebody flowfield are presented and show good agreement with the experimental static pressure distributions and boundary-layer profiles. With the boundary-layer diverters installed, no adverse aerodynamic phenomena were found that would prevent the inlets from operating at the required angles-of-attack. We recommend that phase 2 of the test program be initiated, where inlet contraction ratio and diverter geometry variations will be tested.

  9. Numerical Simulations of the Steady and Unsteady Aerodynamic Characteristics of a Circulation Control Wing Airfoil

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Sankar, Lakshmi N.; Englar, Robert J.; Ahuja, Krishan K.

    2003-01-01

    The aerodynamic characteristics of a Circulation Control Wing (CCW) airfoil have been numerically investigated, and comparisons with experimental data have been made. The configuration chosen was a supercritical airfoil with a 30 degree dual-radius CCW flap. Steady and pulsed jet calculations were performed. It was found that the use of steady jets, even at very small mass flow rates, yielded a lift coefficient that is comparable or superior to conventional high-lift systems. The attached flow over the flap also gave rise to lower drag coefficients, and high L/D ratios. Pulsed jets with a 50% duty cycle were also studied. It was found that they were effective in generating lift at lower reduced mass flow rates compared to a steady jet, provided the pulse frequency was sufficiently high. This benefit was attributable to the fact that the momentum coefficient of the pulsed jet, during the portions of the cycle when the jet was on, was typically twice as much as that of a steady jet.

  10. An experimental study of the aerodynamic characteristics of planar and non-planar outboard wing planforms

    NASA Technical Reports Server (NTRS)

    Naik, D. A.; Ostowari, C.

    1987-01-01

    A series of wind tunnel experiments have been conducted to investigate the aerodynamic characteristics of several planar and nonplanar wingtip planforms. Seven different configurations: base-line rectangular, elliptical, swept and tapered, swept and tapered with dihedral, swept and tapered with anhedral, rising arc, and drooping arc, were investigated for two different spans. The data are available in terms of coefficient plots of force data, flow visualization photographs, and velocity and pressure flowfield surveys. All planforms, particularly the nonplanar, have some advantages over the baseline rectangular planform. Span efficiencies up to 20-percent greater than baseline are a possibility. However, it is suggested that the span efficiency concept might need refinement for nonplanar wings. Flow survey data show the change in effective span with vortex roll-up. The flow visualization shows the occurrence of mushroom-cell-separation flow patterns at angles of attack corresponding to stall. These grow with an increase in post-stall angle of attack. For the larger aspect ratios, the cells are observed to split into sub-cells at the higher angles of attack. For all angles of attack, some amount of secondary vortex flow is observed for the planar and nonplanar out-board planforms with sweep and taper.

  11. High angle-of-attack aerodynamic characteristics of crescent and elliptic wings

    NASA Technical Reports Server (NTRS)

    Vandam, C. P.

    1989-01-01

    Static longitudinal and lateral-directional forces and moments were measured for elliptic- and crescent-wing models at high angles-of-attack in the NASA Langley 14 by 22-Ft Subsonic Tunnel. The forces and moments were obtained for an angle-of-attack range including stall and post-stall conditions at a Reynolds number based on the average wing chord of about 1.8 million. Flow-visualization photographs using a mixture of oil and titanium-dioxide were also taken for several incidence angles. The force and moment data and the flow-visualization results indicated that the crescent wing model with its highly swept tips produced much better high angle-of-attack aerodynamic characteristics than the elliptic model. Leading-edge separation-induced vortex flow over the highly swept tips of the crescent wing is thought to produce this improved behavior at high angles-of-attack. The unique planform design could result in safer and more efficient low-speed airplanes.

  12. Calculation of the longitudinal aerodynamic characteristics of upper-surface-blown wing-flap configurations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1978-01-01

    An engineering method for predicting the longitudinal aerodynamic characteristics of wing-flap configurations with upper surface blowing (USB) was developed. Potential flow models were incorporated into the prediction method: a wing and flap lifting surface model and a jet wake model. The wing-flap model used a vortex-lattice to represent the wing and flaps. The wing had an arbitrary planform and camber and twist, and the flap system was made up of a Coanda flap and other flap segments of arbitrary size. The jet wake model consisted of a series of closely spaced rectangular vortex rings. The wake was positioned such that it was tangent to the upper surface of the wing and flap between the exhaust nozzle and the flap trailing edge. It was specified such that the mass, momentum, and spreading rates were similar to actual USB jet wakes. Comparisons of measured and predicted pressure distributions, span load distributions, and total lift and pitching-moment coefficients on swept and unswept USB configurations are included. A wide range of thrust coefficients and flap deflection angles were considered at angles of attack up to the onset of stall.

  13. Analysis of some aerodynamic characteristics due to wing-jet interaction

    NASA Technical Reports Server (NTRS)

    Fillman, G. L.; Lan, C. E.

    1979-01-01

    The results of two separate theoretical investigations are presented. A program was used which is capable of predicting the aerodynamic characteristics of both upper-surface blowing (USB) and over-wing blowing (OWB) configurations. A theoretical analysis of the effects of over-wing blowing jets on the induced drag of a 50 deg sweep back wing was developed. Experiments showed net drag reductions associated with the well known lift enhancement due to over-wing blowing. The mechanisms through which this drag reduction is brought about are presented. Both jet entrainment and the so called wing-jet interaction play important roles in this process. The effects of a rectangular upper-surface blowing jet were examined for a wide variety of planforms. The isolated effects of wing taper, sweep, and aspect ratio variations on the incremental lift due to blowing are presented. The effects of wing taper ratio and sweep angle were found to be especially important parameters when considering the relative levels of incremental lift produced by an upper-surface blowing configuration.

  14. Aerodynamic characteristics of a propeller-powered high-lift semispan wing

    NASA Technical Reports Server (NTRS)

    Gentry, Garl L., Jr.; Takallu, M. A.; Applin, Zachary T.

    1994-01-01

    A small-scale semispan high-lift wing-flap system equipped under the wing with a turboprop engine assembly was tested in the LaRC 14- by 22-Foot Subsonic Tunnel. Experimental data were obtained for various propeller rotational speeds, nacelle locations, and nacelle inclinations. To isolate the effects of the high lift system, data were obtained with and without the flaps and leading-edge device. The effects of the propeller slipstream on the overall longitudinal aerodynamic characteristics of the wing-propeller assembly were examined. Test results indicated that the lift coefficient of the wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Decreasing the nacelle inclination (increased pitch down) enhanced the lift performance of the system much more than varying the vertical or horizontal location of the nacelle. Furthermore, decreasing the nacelle inclination led to higher lift curve slope values, which indicated that the powered wing could sustain higher angles of attack near maximum lift performance. Any lift augmentation was accompanied by a drag penalty due to the increased wing lift.

  15. Program VSAERO theory document: A computer program for calculating nonlinear aerodynamic characteristics of arbitrary configurations

    NASA Technical Reports Server (NTRS)

    Maskew, Brian

    1987-01-01

    The VSAERO low order panel method formulation is described for the calculation of subsonic aerodynamic characteristics of general configurations. The method is based on piecewise constant doublet and source singularities. Two forms of the internal Dirichlet boundary condition are discussed and the source distribution is determined by the external Neumann boundary condition. A number of basic test cases are examined. Calculations are compared with higher order solutions for a number of cases. It is demonstrated that for comparable density of control points where the boundary conditions are satisfied, the low order method gives comparable accuracy to the higher order solutions. It is also shown that problems associated with some earlier low order panel methods, e.g., leakage in internal flows and junctions and also poor trailing edge solutions, do not appear for the present method. Further, the application of the Kutta conditions is extremely simple; no extra equation or trailing edge velocity point is required. The method has very low computing costs and this has made it practical for application to nonlinear problems requiring iterative solutions for wake shape and surface boundary layer effects.

  16. The aerodynamic characteristics of vortex ingestion for the F/A-18 inlet duct

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.

    1991-01-01

    A Reduced Navier-Stokes (RNS) solution technique was successfully combined with the concept of partitioned geometry and mesh generation to form a very efficient 3D RNS code aimed at the analysis-design engineering environment. Partitioned geometry and mesh generation is a pre-processor to augment existing geometry and grid generation programs which allows the solver to (1) recluster an existing gridlife mesh lattice, and (2) perturb an existing gridfile definition to alter the cross-sectional shape and inlet duct centerline distribution without returning to the external geometry and grid generator. The present results provide a quantitative validation of the initial value space marching 3D RNS procedure and demonstrates accurate predictions of the engine face flow field, with a separation present in the inlet duct as well as when vortex generators are installed to supress flow separation. The present results also demonstrate the ability of the 3D RNS procedure to analyze the flow physics associated with vortex ingestion in general geometry ducts such as the F/A-18 inlet. At the conditions investigated, these interactions are basically inviscid like, i.e., the dominant aerodynamic characteristics have their origin in inviscid flow theory.

  17. Aerodynamic characteristics of a large-scale hybrid upper surface blown flap model having four engines

    NASA Technical Reports Server (NTRS)

    Carros, R. J.; Boissevain, A. G.; Aoyagi, K.

    1975-01-01

    Data are presented from an investigation of the aerodynamic characteristics of large-scale wind tunnel aircraft model that utilized a hybrid-upper surface blown flap to augment lift. The hybrid concept of this investigation used a portion of the turbofan exhaust air for blowing over the trailing edge flap to provide boundary layer control. The model, tested in the Ames 40- by 80-foot Wind Tunnel, had a 27.5 deg swept wing of aspect ratio 8 and 4 turbofan engines mounted on the upper surface of the wing. The lift of the model was augmented by turbofan exhaust impingement on the wind upper-surface and flap system. Results were obtained for three flap deflections, for some variation of engine nozzle configuration and for jet thrust coefficients from 0 to 3.0. Six-component longitudinal and lateral data are presented with four engine operation and with the critical engine out. In addition, a limited number of cross-plots of the data are presented. All of the tests were made with a downwash rake installed instead of a horizontal tail. Some of these downwash data are also presented.

  18. Investigation of Aerodynamic and Icing Characteristics of a Flush Alternate Inlet Induction System Air Scoop

    NASA Technical Reports Server (NTRS)

    Lewis, James P.

    1953-01-01

    An investigation has been made in the NACA Lewis icing research tunnel to determine the aerodynamic and icing characteristics of a full-scale induction-system air-scoop assembly incorporating a flush alternate inlet. The flush inlet was located immediately downstream of the offset ram inlet and included a 180 deg reversal and a 90 deg elbow in the ducting between inlet and carburetor top deck. The model also had a preheat-air inlet. The investigation was made over a range of mass-air- flow ratios of 0 to 0.8, angles of attack of 0 and 4 deg airspeeds of 150 to 270 miles per hour, air temperatures of 0 and 25 F various liquid-water contents, and droplet sizes. The ram inlet gave good pressure recovery in both clear air and icing but rapid blockage of the top-deck screen occurred during icing. The flush alternate inlet had poor pressure recovery in both clear air and icing. The greatest decreases in the alternate-inlet pressure recovery were obtained at icing conditions of low air temperature and high liquid-water content. No serious screen icing was observed with the alternate inlet. Pressure and temperature distributions on the carburetor top deck were determined using the preheat-air supply with the preheat- and alternate-inlet doors in various positions. No screen icing occurred when the preheat-air system was operated in combination with alternate-inlet air flow.

  19. Aerodynamic characteristics of several current helicopter tail boom cross sections including the effect of spoilers

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Kelley, H. L.

    1986-01-01

    Aerodynamic characteristics were determined of three cylindrical shapes representative of tail boom cross sections of the U.S. Army AH-64, UH-60, and UH-1H helicopters. Forces and pressures were measured in a wind-tunnel investigation at the Langley Research Center. Data were obtained for a flow incidence range from -45 to 90 deg and a dynamic pressure range from 1.5 to 50 psf. These ranges provided data representative of full-scale Reynolds numbers and the full range of flow incidence to which these helicopter tail boom shapes would be subjected at low flight speeds. The effects of protuberances such as tail rotor drive-shaft covers and spoilers were evaluated. The data indicate that significant side loads on tail booms of helicopters can be generated and that the addition of spoilers can beneficially alter the side loads. Although an increase in vertical drag occurs, the net effect through reduction of tail rotor thrust required can be an improvement in helicopter performance.

  20. Two-dimensional aerodynamic characteristics of the OLS/TAAT airfoil

    NASA Technical Reports Server (NTRS)

    Watts, Michael E.; Cross, Jeffrey L.; Noonan, Kevin W.

    1988-01-01

    Two flight tests have been conducted that obtained extension pressure data on a modified AH-1G rotor system. These two tests, the Operational Loads Survey (OLS) and the Tip Aerodynamics and Acoustics Test (TAAT) used the same rotor set. In the analysis of these data bases, accurate 2-D airfoil data is invaluable, for not only does it allow comparison studies between 2- and 3-D flow, but also provides accurate tables of the airfoil characteristics for use in comprehensive rotorcraft analysis codes. To provide this 2-D data base, a model of the OLS/TAAT airfoil was tested over a Reynolds number range from 3 x 10 to the 6th to 7 x 10 to the 7th and between Mach numbers of 0.34 to 0.88 in the NASA Langley Research Center's 6- by 28-Inch Transonic Tunnel. The 2-D airfoil data is presented as chordwise pressure coefficient plots, as well as lift, drag, and pitching moment coefficient plots and tables.

  1. Low-speed, high-lift aerodynamic characteristics of slender, hypersonic accelerator-type configurations

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.

    1989-01-01

    Two investigations were conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the low-speed aerodynamic characteristics of a generic hypersonic accelerator-type configuration. The model was a delta wing configuration incorporating a conical forebody, a simulated wrap-around engine package, and a truncated conical aftbody. Six-component force and moment data were obtained over a range of attack from -4 to 30 degrees and for a sideslip range of + or - 20 degrees. In addition to tests of the basic configuration, component build-up tests were conducted; and the effects of power, forebody nose geometry, canard surfaces, fuselage strakes, and engines on the lower surface alone were also determined. Control power available from deflections of wing flaps and aftbody flaps was also investigated and found to be significantly increased during power-on conditions. Large yawing moments resulted from asymmetric flow fields exhibited by the forebody as revealed by both surface pressure data and flow visualization. Increasing nose bluntness reduced the yawing-moment asymmetry, and the addition of a canard eliminated the yawing-moment asymmetry.

  2. Investigation of Aerodynamic and Icing Characteristics of Recessed Fuel-Vent Configurations

    NASA Technical Reports Server (NTRS)

    Ruggeri, Robert S.; VonGlahn, Uwe H.; Rollins, Vern G.

    1949-01-01

    An investigation has been conducted in the NACA Cleveland icing research tunnel to determine the aerodynamic and icing characteristics of several recessed fuel-vent configurations. The vents were investigated aerodynamically to obtain vent-tube pressures and pressure distributions on the ramp surface as functions of tunnel-air velocity and angle of attack. Icing investigations were made to determine the vent-tube pressure losses for several icing conditions at tunnel-air velocities ranging from 220 to 440 feet per second. In general, under nonicing conditions, the configurations with diverging ramp walls maintained, vent-tube pressures greater than the required marginal value of 2 inches of water positive pressure differential between the fuel cell and the compartment containing the fuel cell for a range of angles of attack from 0 to 14deg at a tunnel-air velocity of approximately 240 feet per second. A configuration haying divergIng ramp sldewalls, a 7deg ramp angle; and vent tubes manifold,ed to a common plenum chamber opening through a slot In the ramp floor gave the greatest vent-tube pressures for all the configurations investigated. The use of the plenum chamber resulted in uniform pressures in all vent tubes. In a cloud-icing condition, roughness caused by ice formations on the airfoil surface ahead of the vent ramp, rather than icing of the vent configuration, caused a rapid loss in vent-tube pressures during the first few minutes of an icing period. Only the configuration having diverging ramp sidewalls, a 7 ramp angle, and a common plenum chamber maintained the required vent-tube pressures throughout a 60-minute icing period, although the ice formations on this configuration were more severe than those observed for the other configurations. No complete closure of vent-tube openings occurred for the configurations investigated. A simulated freezing-rain condition caused a greater and more rapid vent-tube pressure loss than was observed for a cloud

  3. Experimental Investigation of the Low-Speed Aerodynamic Characteristics of a 5.8-Percent Scale Hybrid Wing Body Configuration

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.; Vicroy, Dan D.; Carter, Melissa B.

    2012-01-01

    A low-speed experimental investigation has been conducted on a 5.8-percent scale Hybrid Wing Body configuration in the NASA Langley 14- by 22-Foot Subsonic Tunnel. This Hybrid Wing Body (HWB) configuration was designed with specific intention to support the NASA Environmentally Responsible Aviation (ERA) Project goals of reduced noise, emissions, and fuel burn. This HWB configuration incorporates twin, podded nacelles mounted on the vehicle upper surface between twin vertical tails. Low-speed aerodynamic characteristics were assessed through the acquisition of force and moment, surface pressure, and flow visualization data. Longitudinal and lateral-directional characteristics were investigated on this multi-component model. The effects of a drooped leading edge, longitudinal flow-through nacelle location, vertical tail shape and position, elevon deflection, and rudder deflection have been studied. The basic configuration aerodynamics, as well as the effects of these configuration variations, are presented in this paper.

  4. Jet exhaust and support interference effects on the transonic aerodynamic characteristics of a fighter model with two widely spaced engines

    NASA Technical Reports Server (NTRS)

    Compton, W. B., III

    1976-01-01

    Jet exhaust, nozzle installation, and model support interference effects on the longitudinal aerodynamic characteristics of a twin-engine fighter model were determined. Realistic jet exhaust nozzle configurations and a reference configuration with a simulated vertical-tail support were tested. Free-stream Mach number was varied from 0.6 to 1.2, and model angle of attack from 0 deg to 9 deg. The jet exhaust affected drag more than it affected lift and pitching moment. The largest effects occurred at a Mach number of 0.9 and for the afterburning mode of exhaust nozzle operation. The combined differences between the aerodynamic characteristics of the realistic and reference configurations (which were due to afterbody and nozzle contours, jet operation, and simulated reference support interference) were considerably different from those for the jet interference alone.

  5. Algorithm for determining the aerodynamic characteristics of a freely flying object from discrete data of ballistic experiment. Part 2

    NASA Astrophysics Data System (ADS)

    Bobashev, S. V.; Mende, N. P.; Popov, P. A.; Sakharov, V. A.; Berdnikov, V. A.; Viktorov, V. A.; Oseeva, S. I.; Sadchikov, G. D.

    2009-04-01

    In part 1 of this paper, an algorithm for numerically solving the inverse problem of motion of a solid through the atmosphere is described that constitutes the basis for identifying the aerodynamic characteristics of an object from trajectory data and the respective identification procedure is presented. In part 2, methods evaluating the significance of desired parameters and adequacy of a mathematical model of motion, approaches to metrological certification of experimental equipment, and results of testing the algorithm are discussed.

  6. Effects of thickness on the aerodynamic characteristics of an initial low-speed family of airfoils for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1976-01-01

    Wind tunnel tests were conducted to determine the effects of airfoil thickness-ratio on the low speed aerodynamic characteristics of an initial family of airfoils. The results were compared with theoretical predictions obtained from a subsonic viscous method. The tests were conducted over a Mach number range from 0.10 to 0.28. Chord Reynolds numbers varied from about 2.0 x 1 million to 9.0 x 1 million.

  7. Characteristics of the NASA-Ames Laminar Flow Supersonic Wind Tunnel for Unique Mach 1.6 Transition Studies

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.

    1997-01-01

    Flow quality measurements have been performed in the unique Laminar Flow Supersonic Wind Tunnel (LFSWT) to examine both mean and dynamic characteristics. The intent was to provide the necessary flow information about this ground test facility, to support meaningful transition research at Mach 1.6 and flight unit Reynolds numbers. This paper is intended to assist other experimentalists with similar goals of characterizing low-supersonic test environments. An array of instrumentation has been used to highlight the importance of proper selection of pressure instruments and data acquisition procedures. We conclude that the test section is low-disturbance (based on classical standards of pressure disturbances less than 0.1% with no specified data bandwidth), and has uniform flow. This is confirmation that the quiet design features of the LFSWT are effective. However, characterization of the test section flow over a 0.25k-5Ok bandwidth shows that the disturbance levels can be greater than classical standards particularly for stagnation pressures less than 9.5 psia (0.65 bar) with low stagnation temperatures. Variability of the flow disturbances in the settling chamber and test section is contained in a narrow frequency bandwidth below 5k Hz, which is associated with resonant frequencies from the pressure reduction system. So far, these disturbances have not impacted transition along the tunnel walls or a 10 degrees cone. However, continual vigilance is required to maintain a known low-disturbance environment for transition research in the LFSWT. Furthermore, the formation of standards for flow quality measurements is strongly recommended, so that transition research can be better isolated from tunnel disturbances.

  8. Advanced Supersonic Technology concept AST-100 characteristics developed in a baseline-update study

    NASA Technical Reports Server (NTRS)

    Baber, H. T., Jr.; Swanson, E. E.

    1976-01-01

    The advanced supersonic technology configuration, AST-100, is described. The combination of wing thickness reduction, nacelle recontouring for minimum drag at cruise, and the use of the horizontal tail to produce lift during climb and cruise resulted in an increase in maximum lift-to-drag ratio. Lighter engines and lower fuel weight associated with this resizing result in a six percent reduction in takeoff gross weight. The AST-100 takeoff maximum effective perceived noise at the runway centerline and sideline measurement stations was 114.4 decibels. Since 1.5-decibels tradeoff is available from the approach noise, the required engine noise supression is 4.9 decibels. The AST-100 largest maximum overpressure would occur during transonic climb acceleration when the aircraft was at relatively low altitude. Calculated standard +8 C day range of the AST-100, with a 292 passenger payload, is 7348 km (3968 n.mi). Fuel price is the largest contributor to direct operating cost. However, if the AST-100 were flown subsonically (M = 0.9), direct operating costs would increase approximately 50 percent because of time related costs.

  9. Subsonic Longitudinal Aerodynamic Characteristics of Disks with Elliptic Cross Sections and Thickness-Diameter Ratios from 0.225 to 0.425

    NASA Technical Reports Server (NTRS)

    Demele, Fred A.; Brownson, Jack J.

    1961-01-01

    General interest in manned space flight has provided a stimulus for the investigation of shapes which appear to be attractive for application to re-entry vehicles. Such vehicles can be classed as either nonlifting or lifting. Nonlifting types, such as used in Project Mercury, have certain advantages which include structural simplicity, no requirement for an elaborate flight-control system, ease of mating with the booster, and short exposure times to high heating rates during entry. Advantages of lifting types, by comparison, include lower peak heating rates and decelerations, the possibility for a conventional horizontal landing, and the ability to maneuver, thus providing control over longitudinal and lateral range and a wider entry corridor on return from planetary or lunar missions. A lifting shape which appears attractive in terms of the considerations is a thick disk. At high attitudes, the weight to drag ratio is low and the radius of curvature of the surface exposed to the airstream is large, a combination of parameters which results in reduced convective heating rates. The low-speed lift-drag ratios associated with this type of shape appear sufficiently high to permit a conventional horizontal landing. The investigation reported herein was undertaken to assess the effects of thickness on the aerodynamic characteristics of disk shapes suitable for lifting re-entry into the earth's atmosphere and potentially capable of conventional horizontal landing. The models had elliptic cross sections which varied in thickness from 0.225 to 0.425 diameter. The tests were conducted in the Ames 12-Foot Pressure Wind Tunnel over a Mach number range from 0.25 to 0.90 at a Reynolds number of 3.3x10 (exp 6) and at Reynolds numbers to 16x10 (exp 6) at a Mach number of 0.25. Tests on similar shapes have been conducted at subsonic, transonic, and supersonic speeds and the results have been presented.

  10. Effect of tail-fin span on stability and control characteristics of a Canard-controlled missile at supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.; Allen, J. M.; Hernandez, G.

    1983-01-01

    An experimental wind-tunnel investigation was conducted at Mach numbers from 1.60 to 3.50 to obtain the longitudinal and lateral-directional aerodynamic characteristics of a circular, cruciform, canard-controlled missile with variations in tail-fin span. In addition, comparisons were made with the experimental aerodynamic characteristics using three missile aeroprediction programs: MISSILE1, MISSILE2, and NSWCDM. The results of the investigation indicate that for the test Mach number range, canard roll control at low angles of attack is feasible on tail-fin configurations with tail-to-canard span ratios of less than or equal to 0.75. The conards are effective pitch and yaw control devices on each tail-fin span configuration tested. Programs MISSILE1 and MISSILE2 provide very good predictions of longitudinal aerodynamic characteristics and fair predictions of lateral-directional aerodynamic characteristics at low angles of attack, with MISSILE2 predictions generally in better agreement with test data. Program NSWCDM provides good longitudinal and lateral-directional aerodynamic predictions that improve with increases in tail-tin span.

  11. Steady and Oscillatory, Subsonic and Supersonic, Aerodynamic Pressure and Generalized Forces for Complex Aircraft Configurations and Applications to Flutter. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, L. T.

    1975-01-01

    A general method for analyzing aerodynamic flows around complex configurations is presented. By applying the Green function method, a linear integral equation relating the unknown, small perturbation potential on the surface of the body, to the known downwash is obtained. The surfaces of the aircraft, wake and diaphragm (if necessary) are divided into small quadrilateral elements which are approximated with hyperboloidal surfaces. The potential and its normal derivative are assumed to be constant within each element. This yields a set of linear algebraic equations and the coefficients are evaluated analytically. By using Gaussian elimination method, equations are solved for the potentials at the centroids of elements. The pressure coefficient is evaluated by the finite different method; the lift and moment coefficients are evaluated by numerical integration. Numerical results are presented, and applications to flutter are also included.

  12. Test data from solid propellant plume aerodynamics test program in Ames 6 x 6 foot supersonic wind tunnel (shuttle test FA7) (Ames test 033-66)

    NASA Technical Reports Server (NTRS)

    Hair, L. M.

    1975-01-01

    The aerodynamic effects of plumes from hot combustion gases in the presence of a transonic external flow field were measured to advance plumes simulation technology, extend a previously acquired data base, and provide data to compare with the effects observed using cold gas plumes. A variety of underexpanded plumes issuing from the base of a strut-mounted ogive-cylinder body were produced by combusting solid propellant gas generators. The gas generator fired in a short-duration mode (200 to 300 msec). Propellants containing 16 percent and 2 percent A1 were used, with chamber pressures from 400 to 1800 psia. Conical nozzles of 15 deg half-angle were tested with area ratios of 4 and 8. Pressures were measured in the gas generator combustion chamber, along the nozzle wall, on the base, and along the body rear exterior. Schlieren photographs were taken for all tests. Test data are presented along with a description of the test setup and procedures.

  13. Wind-tunnel studies of the effects of stimulated damage on the aerodynamic characteristics of airplanes and missiles

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1982-01-01

    As an aid in assessing the aerodynamic effects of battle damage that might be sustained by military airplanes or missiles, several wind tunnel investigations were performed at the Langley Research Center in which damage was simulated with models by the removal of all or parts of the wing and tails. Results of the investigations indicate that the loss of a major part of the vertical tail will probably result in the loss of an airplane in any speed range. The loss of major parts of the horizontal tail generally results in catastrophic instability in the subsonic range but, at low supersonic speeds, and for some planform configurations at subsonic speeds, may allow stable flight to the extent that the airplane might return to friendly territory before the pilot must eject. The results further indicate that major damage to the wing, up to the point of the complete removal of one wing panel, and major damage to the horizontal tail may be sustained without necessarily causing the loss of the airplane or pilot.

  14. Analysis of wind tunnel test results for a 9.39-per cent scale model of a VSTOL fighter/attack aircraft. Volume 1: Study overview. [aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Lummus, J. R.; Joyce, G. T.; Omalley, C. D.

    1980-01-01

    The ability of current methodologies to accurately predict the aerodynamic characteristics identified as uncertainties was evaluated for two aircraft configurations. The two wind tunnel models studied horizontal altitude takeoff and landing V/STOL fighter aircraft derivatives.

  15. Investigation of Aerodynamic and Icing Characteristics of Water-Inertia-Separation Inlets for Turbojet Engines

    NASA Technical Reports Server (NTRS)

    VonGlahn, Uwe; Blatz, R. E.

    1950-01-01

    The results of an investigation of several internal water-inertia-separation inlets consisting of a main duct and an alternate duct designed to prevent automatically the entrance of large quantities of water into a turbojet engine in icing conditions are presented. Total-pressure losses and icing characteristics for a direct-ram inlet and the inertia-separation inlets are compared at similar aerodynamic and simulated icing conditions. Complete ice protection for inlet guide vanes could not be achieved with the inertia-separation inlets investigated. Approximately 8 percent of the volume of water entering the nacelles remained. In the air passing into the compressor inlet. Heavy alternate-duct-elbow ice formations caused by secondary inertia separation resulted in rapid total-pressure losses and decreases in mass flow. The duration in an icing condition for an inertia-separation- inlet, without local surface heating, was increased approximately four times above that for a direct-ram inlet with a compressor-inlet screen. For normal nonicing operation, the inertia-separation- inlet total-pressure losses were comparable to a direct-ram installation. The pressure losses and the circumferential uniformity of the mass flow in all the inlets were relatively independent of angle of attack. Use of an inertia-separation inlet would in most cases require a larger diameter nacelle than a direct-ram inlet in order to obtain an alternate duct sufficiently large to pass the required engine air flow at duct Mach numbers below 1.0 at the minimum area.

  16. In vitro measurements of aerodynamic characteristics of an improved tracheostoma valve for laryngectomees.

    PubMed

    Geertsema, A A; de Vries, M P; Schutte, H K; Lubbers, J; Verkerke, G J

    1998-01-01

    Tracheostoma valves are often required in the rehabilitation process of speech after total laryngectomy. Patients are thus able to speak without using their hands to close the tracheostoma. The improved Groningen tracheostoma valve consists of a "cough" valve with an integrated ("speech") valve, which closes for phonation. The cough valve opens as the result of pressure produced by the lungs during a cough. The speech valve closes by the airflow produced by the lungs, thus directing air from the lungs into the esophagus at a deliberately chosen moment. An experimental setup with a computer-based acquisition program was developed to measure the pressure at which the cough valve opened and the flow at which the speech valve closed. In addition, the airflow resistance coefficient of the tracheostoma valve was defined and measured with an open speech valve. Both dry air from a cylinder and humid expired air were used. Results showed a pressure range of 1-7 kPa to open the cough valve and a flow range of 1.2-2.7 l/s to close the speech valve. These values were readily attained during speech, while the flow range occurred above values reached in quiet breathing. The device appeared to function well in physiological ranges and was optimally adjustable to an individual setting. No significant differences were measured between air from a cylinder and humid expired air. Findings showed that methods used to obtain results could be employed as a reference method for comparing aerodynamic characteristics of tracheostoma valves. PMID:9638466

  17. Experimental Aerodynamic Characteristics of an Oblique Wing for the F-8 OWRA

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Carmichael, Ralph L.; Smith, Stephen C.; Strong, James M.; Kroo, Ilan M.

    1999-01-01

    An experimental investigation was conducted during June-July 1987 in the NASA Ames 11-Foot Transonic Wind Tunnel to study the aerodynamic performance and stability and control characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing. This effort was part of the Oblique Wing Research Aircraft (OWRA) program performed in conjunction with Rockwell International. The Ames-designed, aspect ratio 10.47, tapered wing used specially designed supercritical airfoils with 0.14 thickness/chord ratio at the root and 0.12 at the 85% span location. The wing was tested at two different mounting heights above the fuselage. Performance and longitudinal stability data were obtained at sweep angles of 0deg, 30deg, 45deg, 60deg, and 65deg at Mach numbers ranging from 0.30 to 1.40. Reynolds number varied from 3.1 x 10(exp 6)to 5.2 x 10(exp 6), based on the reference chord length. Angle of attack was varied from -5deg to 18deg. The performance of this wing is compared with that of another oblique wing, designed by Rockwell International, which was tested as part of the same development program. Lateral-directional stability data were obtained for a limited combination of sweep angles and Mach numbers. Sideslip angle was varied from -5deg to +5deg. Landing flap performance was studied, as were the effects of cruise flap deflections to achieve roll trim and tailor wing camber for various flight conditions. Roll-control authority of the flaps and ailerons was measured. A novel, deflected wing tip was evaluated for roll-control authority at high sweep angles.

  18. Interaction of multiple supersonic jets with a transonic flow field

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Manela, J.

    1983-01-01

    The influence of multiple high pressure, supersonic, radial or tangential jets, that are injected from the circumference of the base plane of an axisymmetric body, on its longitudinal aerodynamic coefficients in transonic flow is studied experimentally. The interaction of the jets with the body flow field increases the pressures on the forebody, thus altering its lift and static stability characteristics. It is shown that, within the range of parameters studied. This interaction has a stabilizing effect on the body. The contribution to lift and stability is significant at small angles of attack and decreases nonlinearly at higher angles when the crossflow mechanism becomes dominant.

  19. Supersonic second order analysis and optimization program user's manual

    NASA Technical Reports Server (NTRS)

    Clever, W. C.

    1984-01-01

    Approximate nonlinear inviscid theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at supersonic and moderate hypersonic speeds were developed. Emphasis was placed on approaches that would be responsive to conceptual configuration design level of effort. Second order small disturbance theory was utilized to meet this objective. Numerical codes were developed for analysis and design of relatively general three dimensional geometries. Results from the computations indicate good agreement with experimental results for a variety of wing, body, and wing-body shapes. Case computational time of one minute on a CDC 176 are typical for practical aircraft arrangement.

  20. Minimum energy, liquid hydrogen supersonic cruise vehicle study

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential was examined of hydrogen-fueled supersonic vehicles designed for cruise at Mach 2.7 and at Mach 2.2. The aerodynamic, weight, and propulsion characteristics of a previously established design of a LH2 fueled, Mach 2.7 supersonic cruise vehicle (SCV) were critically reviewed and updated. The design of a Mach 2.2 SCV was established on a corresponding basis. These baseline designs were then studied to determine the potential of minimizing energy expenditure in performing their design mission, and to explore the effect of fuel price and noise restriction on their design and operating performance. The baseline designs of LH2 fueled aircraft were than compared with equivalent designs of jet A (conventional hydrocarbon) fueled SCV's. Use of liquid hydrogen for fuel for the subject aircraft provides significant advantages in performance, cost, noise, pollution, sonic boom, and energy utilization.

  1. Off-Design Reynolds Number Effects for a Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Wahls, Richard A.; Rivers, S. Melissa

    2005-01-01

    A high Reynolds number wind tunnel test was conducted to assess Reynolds number effects on the aerodynamic performance characteristics of a realistic, second-generation supersonic transport concept. The tests included longitudinal studies at transonic and low-speed, high-lift conditions across a range of chord Reynolds numbers (8 million to 120 million). Results presented focus on Reynolds number and static aeroelastic sensitivities at Mach 0.30 and 0.90 for a configuration without a tail. Static aeroelastic effects, which mask Reynolds number effects, were observed. Reynolds number effects were generally small and the drag data followed established trends of skin friction as a function of Reynolds number. A more nose-down pitching moment was produced as Reynolds number increased because of an outward movement of the inboard leading-edge separation at constant angles of attack. This study extends the existing Reynolds number database for supersonic transports operating at off-design conditions.

  2. Low-speed aerodynamic characteristics of a twin-engine general aviation configuration with aft-fuselage-mounted pusher propellers

    NASA Technical Reports Server (NTRS)

    Dunham, Dana Morris; Gentry, Garl L., Jr.; Manuel, Gregory S.; Applin, Zachary T.; Quinto, P. Frank

    1987-01-01

    An investigation was conducted to determine the aerodynamic characteristics of an advanced turboprop aircraft model with aft-pylon-mounted pusher propellers. Tests were conducted through an angle-of-attack range of -8 to 28 degrees, and an angle-of-sideslip range of -20 to 20 degrees at free-stream conditions corresponding to Reynolds numbers of 0.55 to 2.14 x 10 to the 6th power based on mean aerodynamic chord. Test results show that for the unpowered configurations the maximum lift coefficients for the cruise, takeoff, and landing configurations are 1.45, 1.90, and 2.10, respectively. Nacelle installation results in a drag coefficient increase of 0.01. Increasing propeller thrust results in a significant increase in lift for angles of attack above stall and improves the longitudinal stability. The cruise configuration remains longitudinally stable to an angle of attack 5 degrees beyond the stall angle, the takeoff configuration is stable 4 degrees beyond stall angle, and the landing configuration is stable 3 degrees beyond stall angle. The predominant effect of symmetric thrust on the lateral-directional aerodynamic characteristics is in the post-stall region, where additional rudder control is available with power on.

  3. Aerodynamic characteristics of a canard-controlled missile at Mach numbers of 1.5 and 2.0.

    NASA Technical Reports Server (NTRS)

    Kassner, D. L.; Wettlaufer, B.

    1977-01-01

    A typical missile model with nose mounted canards and cruciform tail surfaces was tested in the Ames 6- by 6-Foot Wind Tunnel to determine the contributions of the component aerodynamic surfaces to the static aerodynamic characteristics at Mach numbers of 1.5 and 2.0 and Reynolds number of 1 million based on body diameter. Data were obtained at angles of attack ranging from -3 deg to 12 deg for various stages of model build-up (i.e., with and without canard and/or tail surfaces). Results were obtained both with the model unrolled and rolled 45 deg. For the canard and tail arrangements investigated, the model was trimmable at angles of attack up to about 10 deg with canard deflections of 9 deg. Also, the tail arrangements studied provided ample pitch stability. there were no appreciable effects of model roll orientation.

  4. Comparison of theoretically predicted lateral-directional aerodynamic characteristics with full-scale wind tunnel data on the ATLIT airplane

    NASA Technical Reports Server (NTRS)

    Griswold, M.; Roskam, J.

    1980-01-01

    An analytical method is presented for predicting lateral-directional aerodynamic characteristics of light twin engine propeller-driven airplanes. This method is applied to the Advanced Technology Light Twin Engine airplane. The calculated characteristics are correlated against full-scale wind tunnel data. The method predicts the sideslip derivatives fairly well, although angle of attack variations are not well predicted. Spoiler performance was predicted somewhat high but was still reasonable. The rudder derivatives were not well predicted, in particular the effect of angle of attack. The predicted dynamic derivatives could not be correlated due to lack of experimental data.

  5. Experimental Hypersonic Aerodynamic Characteristics of the 2001 Mars Surveyor Precision Lander with Flap

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; OConnell, Tod F.; Cheatwood, F. McNeil; Prabhu, Ramadas K.; Alter, Stephen J.

    2002-01-01

    Aerodynamic wind-tunnel screening tests were conducted on a 0.029 scale model of a proposed Mars Surveyor 2001 Precision Lander (70 deg half angle spherically blunted cone with a conical afterbody). The primary experimental objective was to determine the effectiveness of a single flap to trim the vehicle at incidence during a lifting hypersonic planetary entry. The laminar force and moment data, presented in the form of coefficients, and shock patterns from schlieren photography were obtained in the NASA Langley Aerothermodynamic Laboratory for post-normal shock Reynolds numbers (based on forebody diameter) ranging from 2,637 to 92,350, angles of attack ranging from 0 tip to 23 degrees at 0 and 2 degree sideslip, and normal-shock density ratios of 5 and 12. Based upon the proposed entry trajectory of the 2001 Lander, the blunt body heavy gas tests in CF, simulate a Mach number of approximately 12 based upon a normal shock density ratio of 12 in flight at Mars. The results from this experimental study suggest that when traditional means of providing aerodynamic trim for this class of planetary entry vehicle are not possible (e.g. offset c.g.), a single flap can provide similar aerodynamic performance. An assessment of blunt body aerodynamic effects attributed to a real gas were obtained by synergistic testing in Mach 6 ideal-air at a comparable Reynolds number. From an aerodynamic perspective, an appropriately sized flap was found to provide sufficient trim capability at the desired L/D for precision landing. Inviscid hypersonic flow computations using an unstructured grid were made to provide a quick assessment of the Lander aerodynamics. Navier-Stokes computational predictions were found to be in very good agreement with experimental measurement.

  6. Research on a two-dimensional inlet for a supersonic V/STOL propulsion system. Appendix A

    NASA Technical Reports Server (NTRS)

    Mark, J. L.; Mcgarry, M. A.; Reagan, P. V.

    1984-01-01

    The inlet system performance requirements associated with supersonic V/STOL aircraft place extreme demands on the inlet designer. The present effort makes maximum use of flow improvement techniques, proven for high subsonic maneuvering flight and adapts them to the critical static and low speed/high angle-of-attack flight regime of the supersonic V/STOL aircraft. A description of the aerodynamic design, model characteristics, data analysis, discussion, and conclusions concerning the most promising inlet design approaches are contained. The appendix contains the reduced wind tunnel data plots and pressure distribution.

  7. Wind Tunnel Investigation of the Effects of Surface Porosity and Vertical Tail Placement on Slender Wing Vortex Flow Aerodynamics at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2007-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity and vertical tail placement on vortex flow development and interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used that featured pressure sensitive paint (PSP), laser vapor screen (LVS), and schlieren, These techniques were combined with conventional electronically-scanned pressure (ESP) and six-component force and moment measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading edge extension (LEX) and the placement of centerline and twin vertical tails on the vortex-dominated flow field of a 65 cropped delta wing model. Test results were obtained at free-stream Mach numbers of 1.6, 1.8, and 2.1 and a Reynolds number per foot of 2.0 million. LEX porosity promoted a wing vortex-dominated flow field as a result of a diffusion and weakening of the LEX vortex. The redistribution of the vortex-induced suction pressures contributed to large nose-down pitching moment increments but did not significantly affect the vortex-induced lift. The trends associated with LEX porosity were unaffected by vertical tail placement. The centerline tail configuration generally provided more stable rolling moments and yawing moments compared to the twin wing-mounted vertical tails. The strength of a complex system of shock waves between the twin tails was reduced by LEX porosity.

  8. Supersonic combustion engine testbed, heat lightning

    NASA Technical Reports Server (NTRS)

    Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.

    1990-01-01

    The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.

  9. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Lee, H. Y.; Hong, J. H.; Jang, J. H.; Park, J. S.; Choe, Wonho; Hahn, S. H.; Bak, J. G.; Lee, J. H.; Ko, W. H.; Lee, K. D.; Lee, S. H.; Lee, H. H.; Juhn, J.-W.; Kim, H. S.; Yoon, S. W.; Han, H.; Ghim, Y.-C.

    2015-12-15

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the D{sub α} amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.

  10. Fueling characteristics of supersonic gas puffing applied to large high-temperature plasmas in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Murakami, A.; Miyazawa, J.; Suzuki, C.; Yamada, I.; Morisaki, T.; Sakamoto, R.; Yamada, H.; Group LHD Experiment

    2012-05-01

    Supersonic gas puffing (SSGP), where a high-pressure gas is ejected through a fast solenoid valve equipped with a Laval nozzle, has been applied to large high-temperature plasmas and its fueling characteristics have been investigated in the Large Helical Device. The fueling efficiency of SSGP depends on the target plasma density and decreases as the density increases. This is due to the fueling mechanism of SSGP, where the fuel particles are supplied to the plasma edge region and then transported to the core region by diffusion. SSGP locally supplies a large number of particles to the edge region within a short time on the order of milliseconds. A fueling efficiency of ˜20% can be achieved by SSGP at a low initial density of ˜1.5 × 1019 m-3, which is more than twice as high as that of ordinary gas puffing at a similar density. Furthermore, this property leads to the additional effect of edge cooling to SSGP that will be beneficial for divertor heat load reduction.

  11. Supersonic aerodynamic damping and oscillatory stability in pitch and yaw fro a model of a variable-sweep fighter airplane with twin vertical tails

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Adcock, J. B.

    1972-01-01

    Wind-tunnel measurements of the aerodynamic damping and oscillatory in pitch and yaw for a 1/22-scale model of a proposed carrier-based variable-sweep fighter airplane have been made by using a small-amplitude forced-oscillation technique. Tests were made with a wing leading-edge sweep angle of 68 deg at angles of attack from about -1.5 deg to 15.6 deg at a Mach number of 1.60 and at angles of attack from about -3 deg to 21 deg at Mach numbers of 2.02 and 2.36. The results of the investigation indicate that the basic configuration has positive damping and positive oscillatory stability in pitch for all test conditions. In yaw, the damping is generally positive except near an angle of attack of 0 deg at a Mach number of 1.60. The oscillatory stability in yaw is positive except at angles of attack above 16 deg at Mach numbers of 2.02 and 2.36. The addition of external stores generally causes increases in both pitch and yaw damping. The oscillatory stability in pitch is reduced throughout the angle-of-attack range by the addition of the external stores. The effect of adding stores on the oscillatory stability in yaw is a function of angle of attack and Mach number. The effect of changing horizontal-tail incidence on the pitch parameters is also very dependent on angle of attack and Mach number.

  12. Supersonic Transport Analysis on the IBM Parallel System SP2

    NASA Technical Reports Server (NTRS)

    Jameson, Antony; Cliff, Susan; Thomas, Scott; Baker, Timothy; Cheng, Wu-Sun

    1995-01-01

    Several studies of supersonic transport (SST) configurations have been undertaken by members of the High Speed Aerodynamics branch at NASA Ames. These computational investigations involved the analysis of shapes to study the sonic boom signatures, aerodynamic performance characteristics, as well as studies of nacelle/airframe integration. A variety of different computer codes were employed including both structured and unstructured codes. The AIRPLANE code has been used extensively in these investigations. This computer code solves the Euler equations for inviscid flow by exploiting an explicit finite volume method on a mesh of tetrahedral cells. AIRPLANE is capable of handling complete aircraft configurations including nacelles and diverters. An example of a generic SST configuration is shown and a comparison of computed and experimental force coefficients is presented. Most of the computations in support of the SST investigations have been run on the YMP and C-90 computers currently installed at NASA Ames. Additional information is contained in the original extended abstract.

  13. Supersonic compressor

    DOEpatents

    Lawlor, Shawn P.; Novaresi, Mark A.; Cornelius, Charles C.

    2008-02-26

    A gas compressor based on the use of a driven rotor having an axially oriented compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which forms a supersonic shockwave axially, between adjacent strakes. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the gas compression ramp on a strake, the shock capture lip on the adjacent strake, and captures the resultant pressure within the stationary external housing while providing a diffuser downstream of the compression ramp.

  14. Applied computational aerodynamics

    SciTech Connect

    Henne, P.A.

    1990-01-01

    The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.

  15. Supersonic LFC: Challenges and opportunities

    NASA Technical Reports Server (NTRS)

    Powell, Arthur G.

    1992-01-01

    The discussion and viewgraphs on supersonic laminar control are provided. The high fuel fractions required for long range supersonic airplanes give significant leverage to technologies for cruise drag reduction such as laminar flow control (LFC). Fuel burn benefits are further enhanced when sizing effects are considered. These effects may even be powerful enough to reduce airplane production cost over a turbulent baseline. This is an important goal for LFC technology development. The results of aerodynamics studies on the application of LFC technology to the highly swept wings of supersonic airplanes are presented. Important questions of applicability, realistic benefit, and critical application issues, addressed in a NASA-sponsored study conducted by McDonnell Douglas Corporation in 1987-88 are reviewed. Efforts aimed at establishing the feasibility of demonstrating extensive laminarization on the F-16XL-2 airplane are summarized.

  16. Aerodynamic characteristics of a series of single-inlet air-breathing missile configurations

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configured with either a single axisymmetric or a two dimensional inlet located at the bottom of the body. Two tail configurations were investigated: a tri-tail and an X-tail. The tail surfaces could be deflected to provide pitch control. A wing could be located above the inlet on the center line of the model. Tests were made at supersonic Mach numbers with the inlet open and internal flow, and at subsonic-transonic Mach numbers with the internal duct closed and no internal flow.

  17. Comparison Between Theory and Experiment for Wings at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Vincenti, Walter G

    1951-01-01

    This paper presents a critical comparison made between experimental and theoretical results for the aerodynamic characteristics of wings at supersonic flight speeds. As a preliminary, a brief, nonmathematical review is given of the basic assumptions and general findings of supersonic wing theory in two and three dimensions. Published data from two-dimensional pressure-distribution tests are then used to illustrate the effects of fluid viscosity and to assess the accuracy of linear theory as compared with the more exact theories which are available in the two-dimensional case. Finally, an account is presented of an NACA study of the over-all force characteristics of three-dimensional wings at supersonic speed. In this study, the lift, pitching moment, and drag characteristics of several families of wings of varying plan form and section were measured in the wind tunnel and compared with values predicted by the three-dimensional linear theory. The regions of agreement and disagreement between experiment and theory are noted and discussed.

  18. The Edge supersonic transport

    NASA Technical Reports Server (NTRS)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  19. Effect of wing aspect ratio and flap span on aerodynamic characteristics of an externally blown jet-flap STOL model

    NASA Technical Reports Server (NTRS)

    Smith, C. C., Jr.

    1973-01-01

    An investigation has been conducted to determine the effects of flap span and wing aspect ratio on the static longitudinal aerodynamic characteristics and chordwise and spanwise pressure distributions on the wing and trailing-edge flap of a straight-wing STOL model having an externally blown jet flap without vertical and horizontal tail surfaces. The force tests were made over an angle-of-attack range for several thrust coefficients and two flap deflections. The pressure data are presented as tabulated and plotted chordwise pressure-distribution coefficients for angles of attack of 1 and 16. Pressure-distribution measurements were made at several spanwise stations.

  20. Aerodynamic Characteristics of a Slender Cone-cylinder Body of Revolution at a Mach Number of 3.85

    NASA Technical Reports Server (NTRS)

    Jack, John R

    1951-01-01

    An experimental investigation of the aerodynamics of a slender cone-cylinder body of revolution was conducted at a Mach number of 3.85 for angles of attack of 0 degree to 10 degrees and a Reynolds number of 3.85x10(exp 6). Boundary-layer measurements at zero angle of attack are compared with the compressible-flow formulations for predicting laminar boundary-layer characteristics. Comparison of experimental pressure and force values with theoretical values showed relatively good agreement for small angles of attack. The measured mean skin-friction coefficients agreed well with theoretical values obtained for laminar flow over cones.

  1. Longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration at subsonic speeds. [Langley V/STOL tunnel tests

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.

    1979-01-01

    The Langley V/STOL tunnel was used to determine the effects of vectoring exhaust flow on the longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration. Vectoring was accomplished by blowing from over-wing-mounted engines over a variable trailing-edge flap. Effects of varying canard geometry and wing leading-edge geometry were investigated. Wind-tunnel data were obtained at a Mach number of 0.186 for an angle-of-attack range from -20 deg to 24 deg and engine nozzle pressure ratios from 1.0 (jet off) to approximately 3.75.

  2. Supersonic transport vis-a-vis energy savings

    NASA Technical Reports Server (NTRS)

    Cormery, G.

    1979-01-01

    The energy and economic saving modifications in supersonic transportation are studied. Modifications in the propulsion systems and in the aerodynamic configurations of the Concorde aircraft to reduce noise generation and increase fuel efficiency are discussed. The conversion of supersonic aircraft from fuel oils to synthetic fuels is examined.

  3. A study of the effects of aeroelastic divergence on the wing structure of an oblique-wing supersonic transport configuration

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The aerodynamic characteristics of transport aircraft with oblique wing flying at supersonic speeds are discussed. Aeroelastic divergence of the forward swept portion of the wing is analyzed. The effect of aspect ratio as a method for avoiding aeroelastic divergence is examined. A relatively low aspect ratio appears necessary for an oblique wing when constructed of conventional aluminum alloy materials. The aspect ratio may be increased by increasing the wing thickness ratio and by utilizing materials with higher moduli of elasticity and rigidity.

  4. Flow fields and aerodynamic characteristics for hypersonic missiles with mid-fuselage inlets

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Johnston, P. J.; Riebe, G. D.

    1983-01-01

    A study was made to quantify forebody flow fields and to evaluate aerodynamic performance trends on a matrix of fuselage shapes for the mid-inlet/bolt-on-engine class of hypersonic airbreathing missiles for the Navy's vertical box launcher. The study indicated that inlet mass flow and pressure recovery can be increased by cambering the nose and increasing the width of the fuselage at both Mach 4 acceleration and Mach 6 cruise conditions. Aerodynamic trim predictions show that the drag at zero lift at Mach 4 decreases while the L/D max at Mach 6 increases with the nose camber, although these tendencies reverse with increasing width of maximum fuselage cross section.

  5. Aerodynamic Characteristics of an Aerospace Vehicle During a Subsonic Pitch-Over Maneuver

    NASA Technical Reports Server (NTRS)

    Kleb, William L.

    1996-01-01

    Time-dependent CFD has been used to predict aerospace vehicle aerodynamics during a subsonic rotation maneuver. The inviscid 3D3U code is employed to solve the 3-D unsteady flow field using an unstructured grid of tetrahedra. As this application represents a challenge to time-dependent CFD, observations concerning spatial and temporal resolution are included. It is shown that even for a benign rotation rate, unsteady aerodynamic effects are significant during the maneuver. Possibly more significant, however, the rotation maneuver creates ow asymmetries leading to yawing moment, rolling moment, and side force which are not present in the quasi-steady case. A series of steady solutions at discrete points in the maneuver are also computed for comparison with wind tunnel measurements and as a means of quantifying unsteady effects.

  6. Modeling of aircraft unsteady aerodynamic characteristics. Part 2: Parameters estimated from wind tunnel data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1995-01-01

    Aerodynamic equations with unsteady effects were formulated for an aircraft in one-degree-of-freedom, small-amplitude, harmonic motion. These equations were used as a model for aerodynamic parameter estimation from wind tunnel oscillatory data. The estimation algorithm was based on nonlinear least squares and was applied in three examples to the oscillatory data in pitch and roll of 70 deg triangular wing and an X-31 model, and in-sideslip oscillatory data of the High Incidence Research Model 2 (HIRM 2). All three examples indicated that a model using a simple indicial function can explain unsteady effects observed in measured data. The accuracy of the estimated parameters and model verification were strongly influenced by the number of data points with respect to the number of unknown parameters.

  7. X-43A Flight-Test-Determined Aerodynamic Force and Moment Characteristics at Mach 7.0

    NASA Technical Reports Server (NTRS)

    Davis, Mark C.; White, J. Terry

    2008-01-01

    The second flight of the Hyper-X program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe-integrated scramjet-powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets, frequency sweeps, and pushover-pullup maneuvers performed throughout the X-43A cowl-closed descent. Maneuvers were conducted at Mach numbers of 6.80-0.95 and at altitudes from 92,000 ft mean sea level to sea level. The dynamic pressure varied from 1300 to 400 psf with the angle of attack ranging from 0 to 14 deg. The flight-extracted aerodynamics were compared with preflight predictions based on wind-tunnel test data. The X-43A flight-derived axial force was found to be 10-15%higher than prediction. Underpredictions of similar magnitude were observed for the normal force. For Mach numbers above 4.0, the flight-derived stability and control characteristics resulted in larger-than-predicted static margins, with the largest discrepancy approximately 5 in. forward along the x-axis center of gravity at Mach 6.0. This condition would result in less static margin in pitch. The predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle of sideslip.

  8. Flight Test Determined Aerodynamics Force and Moment Characteristics of the X-43A Research Vehicle at Mach 7.0

    NASA Technical Reports Server (NTRS)

    Davis, Mark C.; White, J. Terry

    2006-01-01

    The second flight of the HYPER-X Program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe integrated scramjet powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets, frequency sweeps, and pull-up/push-over maneuvers performed throughout the X-43A cowl-closed descent phase. The subject flight research maneuvers were conducted in a Mach number range of 6.8 to 0.95 at altitudes from 92,000 ft to sea level. In this flight regime, the dynamic pressure varied from 1300 psf to 400 psf with angle-of-attack ranging from 0 deg to 14 deg. The flight-extracted aerodynamics were compared with pre-flight predictions based on wind tunnel test data. The X-43A flight-derived axial force was found to be 10 to 15 percent higher than prediction. Under-predictions of similar magnitude were observed for the normal force. For Mach numbers greater than 4, the X-43A flight-derived stability and control characteristics resulted in larger than predicted static margins, with the largest discrepancy approximately 5-inches forward along the X(CG) at Mach 6. This would result in less static margin in pitch. The X-43A predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle-of-sideslip.

  9. Flight-Test-Determined Aerodynamic Force and Moment Characteristics of the X-43A at Mach 7.0

    NASA Technical Reports Server (NTRS)

    Davis. Marl C.; White, J. Terry

    2006-01-01

    The second flight of the Hyper-X program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe-integrated scramjet-powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets; frequency sweeps; and pushover-pullup maneuvers performed throughout the X-43A cowl-closed descent. Maneuvers were conducted at Mach numbers of 6.80 to 0.95 and altitudes from 92,000 ft msl to sea level. The dynamic pressure varied from 1300 psf to 400 psf with the angle of attack ranging from 0 deg to 14 deg. The flight-extracted aerodynamics were compared with preflight predictions based on wind-tunnel-test data. The X-43A flight-derived axial force was found to be 10 percent to 15 percent higher than prediction. Under-predictions of similar magnitude were observed for the normal force. For Mach numbers above 4.0, the flight-derived stability and control characteristics resulted in larger-than-predicted static margins, with the largest discrepancy approximately 5 in. forward along the x-axis center of gravity at Mach 6.0. This condition would result in less static margin in pitch. The predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle of sideslip.

  10. Effects of vortex flaps on the low-speed aerodynamic characteristics of an arrow wing

    NASA Technical Reports Server (NTRS)

    Yip, L. P.; Murri, D. G.

    1981-01-01

    Tests were conducted in the Langley 12-foot low-speed wind-tunnel to determine the longitudinal and lateral-directional aerodynamic effects of plain and tabbed vortex flaps on a flat-plate, highly swept arrow-wing model. Flow-visualization studies were made using a helium-bubble technique. Static forces and moments were measured over an angle-of-attack range from 0 deg to 50deg for sideslip angles of 0 deg and + or - 4 deg.

  11. The influence of vehicle aerodynamic and control response characteristics on driver-vehicle performance

    NASA Technical Reports Server (NTRS)

    Alexandridis, A. A.; Repa, B. S.; Wierwille, W. W.

    1978-01-01

    The effects of changes in understeer, control sensitivity, and location of the lateral aerodynamic center of pressure (c.p.) of a typical passenger car on the driver's opinion and on the performance of the driver-vehicle system were studied in a moving-base driving simulator. Twelve subjects with no prior experience on the simulator and no special driving skills performed regulation tasks in the presence of both random and step wind gusts.

  12. Experimental Hypersonic Aerodynamic Characteristics of the Space Shuttle Orbiter for a Range of Damage Scenarios

    NASA Technical Reports Server (NTRS)

    Brauckman, Gregory J.; Scallion, William I.

    2003-01-01

    Aerodynamic tests in support of the Columbia accident investigation were conducted in two hypersonic wind tunnels at the NASA Langley Research Center, the 20-Inch Mach 6 Air Tunnel and the 20-Inch Mach 6 CF4 Tunnel. The primary purpose of these tests was to measure the forces and moments generated by a variety of outer mold line alterations (damage scenarios) using 0.0075-scale models of the Space Shuttle Orbiter (approximately 10 inches in length). Simultaneously acquired global heat transfer mappings were obtained for a majority of the configurations tested. Test parameters include angles of attack from 38 to 42 deg, unit Reynolds numbers from 0.26 to 3.0 x10^6 per foot, and normal shock density ratios of 5 (Mach 6 air) and 12 (Mach 6 CF4). The damage scenarios evaluated included asymmetric boundary layer transition, gouges in the windward surface acreage thermal protection system tiles, wing leading edge damage (partially and fully missing reinforced carbon-carbon (RCC) panels), holes through the wing from the windward surface to the leeside, deformation of the wing windward surface, and main landing gear door and/or gear deployment. The aerodynamic data were compared to the magnitudes and directions observed in flight, and the heating images were evaluated in terms of the location of the generated disturbances and how these disturbance might relate to the response of discrete gages on the Columbia Orbiter vehicle during entry. The measured aerodynamic increments were generally small in magnitude, as were the flight-derived values during most of the entry. Asymmetric boundary layer transition (ABLT) results were consistent with the flight-derived Shuttle ABLT model, but not with the observed flight trends for STS-107. The partially missing leading edge panel results best matched both the early aerodynamic and heating trends observed in flight. A progressive damage scenario is presented that qualitatively matches the flight observations for the full entry.

  13. Supersonic airplane study and design

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1993-01-01

    A supersonic airplane creates shocks which coalesce and form a classical N-wave on the ground, forming a double bang noise termed sonic boom. A recent supersonic commercial transport (the Concorde) has a loud sonic boom (over 100 PLdB) and low aerodynamic performance (cruise lift-drag ratio 7). To enhance the U.S. market share in supersonic transport, an airframer's market risk for a low-boom airplane has to be reduced. Computational fluid dynamics (CFD) is used to design airplanes to meet the dual constraints of low sonic boom and high aerodynamic performance. During the past year, a research effort was focused on three main topics. The first was to use the existing design tools, developed in past years, to design one of the low-boom wind-tunnel configurations (Ames Model 3) for testing at Ames Research Center in April 1993. The second was to use a Navier-Stokes code (Overflow) to support the Oblique-All-Wing (OAW) study at Ames. The third was to study an optimization technique applied on a Haack-Adams body to reduce aerodynamic drag.

  14. Reynolds Number Effects on the Stability and Control Characteristics of a Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Owens, L. R.; Wahls, R. A.; Elzey, M. B.; Hamner, M. P.

    2002-01-01

    A High Speed Civil Transport (HSCT) configuration was tested in the National Transonic Facility at the NASA Langley Research Center as part of NASA's High Speed Research Program. A series of tests included longitudinal and lateral/directional studies at transonic and low speed, high-lift conditions across a range of Reynolds numbers from that available in conventional wind tunnels to near flight conditions. Results presented focus on Reynolds number sensitivities of the stability and control characteristics at Mach 0.30 and 0.95 for a complete HSCT aircraft configuration including empennage. The angle of attack where the pitching-moment departure occurred increased with higher Reynolds numbers for both the landing and transonic configurations. The stabilizer effectiveness increased with Reynolds number for both configurations. The directional stability also increased with Reynolds number for both configurations. The landing configuration without forebody chines exhibited a large yawing-moment departure at high angles of attack and zero sideslip that varied with increasing Reynolds numbers. This departure characteristic nearly disappeared when forebody chines were added. The landing configuration's rudder effectiveness also exhibited sensitivities to changes in Reynolds number.

  15. Combustion Characteristics of Liquid Normal Alkane Fuels in a Model Combustor of Supersonic Combustion Ramjet Engine

    NASA Astrophysics Data System (ADS)

    今村, 宰; 石川, 雄太; 鈴木, 俊介; 福本, 皓士郎; 西田, 俊介; 氏家, 康成; 津江, 光洋

    Effect of kinds of one-component n-alkane liquid fuels on combustion characteristics was investigated experimentally using a model combustor of scramjet engine. The inlet condition of a model combustor is 2.0 of Mach number, up to 2400K of total temperature, and 0.38MPa of total pressure. Five kinds of n-alkane are tested, of which carbon numbers are 7, 8, 10, 13, and 16. They are more chemically active and less volatile with an increase of alkane carbon number. Fuels are injected to the combustor in the upstream of cavity with barbotage nitrogen gas and self-ignition performance was investigated. The result shows that self-ignition occurs with less equivalence ratio when alkane carbon number is smaller. This indicates that physical characteristic of fuel, namely volatile of fuel, is dominant for self-ignition behavior. Effect on flame-holding performance is also examined with adding pilot hydrogen and combustion is kept after cutting off pilot hydrogen with the least equivalence ratio where alkane carbon number is from 8 to 10. These points are discussed qualitatively from the conflict effect of chemical and physical properties on alkane carbon number.

  16. An experimental and theoretical analysis of the aerodynamic characteristics of a biplane-winglet configuration. M.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gall, P. D.

    1984-01-01

    Improving the aerodynamic characteristics of an airplane with respect to maximizing lift and minimizing induced and parasite drag are of primary importance in designing lighter, faster, and more efficient aircraft. Previous research has shown that a properly designed biplane wing system can perform superiorly to an equivalent monoplane system with regard to maximizing the lift-to-drag ratio and efficiency factor. Biplanes offer several potential advantages over equivalent monoplanes, such as a 60-percent reduction in weight, greater structural integrity, and increased roll response. The purpose of this research is to examine, both theoretically and experimentally, the possibility of further improving the aerodynamic characteristics of the biplanes configuration by adding winglets. Theoretical predictions were carried out utilizing vortex-lattice theory, which is a numerical method based on potential flow theory. Experimental data were obtained by testing a model in the Pennsylvania State University's subsonic wind tunnel at a Reynolds number of 510,000. The results showed that the addition of winglets improved the performance of the biplane with respect to increasing the lift-curve slope, increasing the maximum lift coefficient, increasing the efficiency factor, and decreasing the induced drag. A listing of the program is included in the Appendix.

  17. The linearized characteristics method and its application to practical nonlinear supersonic problems

    NASA Technical Reports Server (NTRS)

    Ferri, Antonio

    1952-01-01

    The methods of characteristics has been linearized by assuming that the flow field can be represented as a basic flow field determined by nonlinearized methods and a linearized superposed flow field that accounts for small changes of boundary conditions. The method has been applied to two-dimensional rotational flow where the basic flow is potential flow and to axially symmetric problems where conical flows have been used as the basic flows. In both cases the method allows the determination of the flow field to be simplified and the numerical work to be reduced to a few calculations. The calculations of axially symmetric flow can be simplified if tabulated values of some coefficients of the conical flow are obtained. The method has also been applied to slender bodies without symmetry and to some three-dimensional wing problems where two-dimensional flow can be used as the basic flow. Both problems were unsolved before in the approximation of nonlinear flow.

  18. Mechanical characteristics of stability-bleed valves for a supersonic inlet. [for the YF-12 aircraft

    NASA Technical Reports Server (NTRS)

    Neiner, G. H.; Dustin, M. O.; Cole, G. L.

    1977-01-01

    Mechanical characteristics of a set of direct-operated relief valves used in a throat-bypass stability-bleed system designed for the YF-12 aircraft inlet are described. A comparison of data taken before and after the windtunnel tests (at room temperature) showed that both the effective spring rate and the piston friction had decreased during the wind tunnel tests. In neither the effective spring rate nor the piston friction was the magnitude of change great enough to cause significant impairment of overall system effectiveness. No major valve mechanical problems were encountered in any of the tests. During high temperature bench tests, piston frictional drag increased. The friction returned to its initial room temperature value when the stability-bleed valve was disassembled and reassembled. The problem might be solved by using a different material for the piston sleeve bearing and the piston rings.

  19. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  20. Numerical investigation of the aerodynamic and structural characteristics of a corrugated wing

    NASA Astrophysics Data System (ADS)

    Hord, Kyle

    Previous experimental studies on static, bio-inspired corrugated wings have shown that they produce favorable aerodynamic properties such as delayed stall compared to streamlined wings and flat plates at high Reynolds numbers (Re ≥ 4x104). The majority of studies have been carried out with scaled models of dragonfly forewings from the Aeshna Cyanea in either wind tunnels or water channels. In this thesis, the aerodynamics of a corrugated airfoil was studied using computational fluid dynamics methods at a low Reynolds number of 1000. Structural analysis was also performed using the commercial software SolidWorks 2009. The flow field is described by solving the incompressible Navier-Stokes equations on an overlapping grid using the pressure-Poisson method. The equations are discretized in space with second-order accurate central differences. Time integration is achieved through the second-order Crank-Nicolson implicit method. The complex vortex structures that form in the corrugated airfoil valleys and around the corrugated airfoil are studied in detail. Comparisons are made with experimental measurements from corrugated wings and also with simulations of a flat plate. Contrary to the studies at high Reynolds numbers, our study shows that at low Reynolds numbers the wing corrugation does not provide any aerodynamic benefit compared to a smoothed flat plate. Instead, the corrugated profile generates more pressure drag which is only partially offset by the reduction of friction drag, leading to more total drag than the flat plate. Structural analysis shows that the wing corrugation can increase the resistance to bending moments on the wing structure. A smoothed structure has to be three times thicker to provide the same stiffness. It was concluded the corrugated wing has the structural benefit to provide the same resistance to bending moments with a much reduced weight.

  1. Aerodynamic preliminary analysis system 2. Part 2: User's manual

    NASA Technical Reports Server (NTRS)

    Sova, G.; Divan, P.; Spacht, L.

    1991-01-01

    An aerodynamic analysis system based on potential theory at subsonic and/or supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations have multiple nonplanar surfaces of arbitrary planforms and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral-directional characteristics may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis. Computation times on an IBM 3081 are typically less than one minute of CPU/Mach number at subsonic, supersonic, or hypersonic speeds. This is a user manual for the computer programming.

  2. Aerodynamic characteristics of airfoils V : continuation of reports nos. 93, 124, 182, and 244

    NASA Technical Reports Server (NTRS)

    1929-01-01

    This collection of data on airfoils has been made from published reports of a number of the leading aerodynamic laboratories of this country and Europe. The information which was originally expressed according to the different customs of the several laboratories is here presented in a uniform series of charts and tables suitable for the use of designing engineers and for purposes of general reference. The authority for the results here presented is given as the name of the laboratory at which the experiments were conducted, with the size of the model, wind velocity, and year of tests.

  3. Aerodynamic characteristics of airfoils VI : continuation of reports nos. 93, 124, 182, 244, and 286

    NASA Technical Reports Server (NTRS)

    1930-01-01

    This collection of data on airfoils has been made from the published reports of a number of the leading aerodynamic laboratories of this country and Europe. The information which was originally expressed according to the different customs of the several laboratories is here presented in a uniform series of charts and tables suitable for use of designing engineers and for purposes of general reference. The authority for the results here presented is given as the name of the laboratory at which the experiments were conducted, with the size of the model, wind velocity, and year of test.

  4. On the nonlinear aerodynamic and stability characteristics of a generic chine-forebody slender-wing fighter configuration

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Brandon, Jay M.

    1987-01-01

    An exploratory investigation was conducted of the nonlinear aerodynamic and stability characteristics of a tailless generic fighter configuration featuring a chine-shaped forebody coupled to a slender cropped delta wing in the NASA Langley Research Center's 12-Foot Low-Speed Wind Tunnel. Forebody and wing vortex flow mechanisms were identified through off-body flow visualizations to explain the trends in the longitudinal and lateral-directional characteristics at extreme attitudes (angles of attack and sideslip). The interactions of the vortical motions with centerline and wing-mounted vertical tail surfaces were studied and the flow phenomena were correlated with the configuration forces and moments. Single degree of freedom, free-to-roll tests were used to study the wing rock susceptibility of the generic fighter model. Modifications to the nose region of the chine forebody were examined and fluid mechanisms were established to account for their ineffectiveness in modulating the highly interactive forebody and wing vortex systems.

  5. Low-speed aerodynamic characteristics of a 13 percent thick medium speed airfoil designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1979-01-01

    Wind tunnel tests were conducted to determine the low speed, two dimensional aerodynamic characteristics of a 13percent thick medium speed airfoil designed for general aviation applications. The results were compared with data for the 13 percent thick low speed airfoil. The tests were conducted over a Mach number range from 0.10 to 0.32, a chord Reynolds number range from 2.0 x 10 to the 6th power to 12.0 x 10 to the 6th power, and an angle of attack frange from about -8 deg to 10 deg. The objective of retaining good high-lift low speed characteristics for an airfoil designed to have good medium speed cruise performance was achieved.

  6. Longitudinal aerodynamic characteristics of a generic fighter model with a wing designed for sustained transonic maneuver conditions

    NASA Technical Reports Server (NTRS)

    Ferris, J. C.

    1986-01-01

    A wind-tunnel investigation was made to determine the longitudinal aerodynamic characteristics of a fixed-wing generic fighter model with a wing designed for sustained transonic maneuver conditions. The airfoil sections on the wing were designed with a two-dimensional nonlinear computer code, and the root and tip section were modified with a three-dimensional code. The wing geometric characteristics were as follows: a leading-edge sweep of 45 degrees, a taper ratio of 0.2141, an aspect ratio of 3.30, and a thickness ratio of 0.044. The model was investigated at Mach numbers from 0.600 to 1.200, at Reynolds numbers, based on the model reference length, from 2,560,000 to 3,970,000, and through a model angle-of-attack range from -5 to +18 degrees.

  7. Experimental study of the effects of Reynolds number on high angle of attack aerodynamic characteristics of forebodies during rotary motion

    NASA Technical Reports Server (NTRS)

    Pauley, H.; Ralston, J.; Dickes, E.

    1995-01-01

    The National Aeronautics and Space Administration and the Defense Research Agency (United Kingdom) have ongoing experimental research programs in rotary-flow aerodynamics. A cooperative effort between the two agencies is currently underway to collect an extensive database for the development of high angle of attack computational methods to predict the effects of Reynolds number on the forebody flowfield at dynamic conditions, as well as to study the use of low Reynolds number data for the evaluation of high Reynolds number characteristics. Rotary balance experiments, including force and moment and surface pressure measurements, were conducted on circular and rectangular aftbodies with hemispherical and ogive noses at the Bedford and Farnborough wind tunnel facilities in the United Kingdom. The bodies were tested at 60 and 90 deg angle of attack for a wide range of Reynolds numbers in order to observe the effects of laminar, transitional, and turbulent flow separation on the forebody characteristics when rolling about the velocity vector.

  8. Predicting aerodynamic characteristics of vortical flows on three-dimensional configurations using a surface-singularity panel method

    NASA Technical Reports Server (NTRS)

    Maskew, B.

    1983-01-01

    A general low-order surface-singularity panel method is used to predict the aerodynamic characteristics of a problem where a wing-tip vortex from one wing closely interacts with an aft mounted wing in a low Reynolds Number flow; i.e., 125,000. Nonlinear effects due to wake roll-up and the influence of the wings on the vortex path are included in the calculation by using a coupled iterative wake relaxation scheme. The interaction also affects the wing pressures and boundary layer characteristics: these effects are also considered using coupled integral boundary layer codes and preliminary calculations using free vortex sheet separation modelling are included. Calculated results are compared with water tunnel experimental data with generally remarkably good agreement.

  9. Low-speed aerodynamic characteristics of a 17-percent-thick medium speed airfoil designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beaseley, W. D.

    1980-01-01

    Wind tunnel tests were conducted to determine the low speed two dimensional aerodynamic characteristics of a 17 percent thick medium speed airfoil (MS(1)-0317) designed for general aviation applications. The results were compared with data for the 17 percent thick low speed airfoil (LS(1)-0417) and the 13 percent thick medium speed airfoil (MS(1)-0313). Theoretical predictions of the drag rise characteristics of this airfoil are also provided. The tests were conducted in the Langley low turbulence pressure tunnel over a Mach number range from 0.10 to 0.32, a chord Reynolds number range from 2 million to 12 million, and an angle of attack range from about -8 to 20 deg.

  10. Static Aerodynamics of the Mars Exploration Rover Entry Capsule

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Cheatwood, F. McNeil; Desai, Prasun

    2005-01-01

    The static aerodynamics for the Mars Exploration Rover (MER) aeroshell are presented. This aerodynamic database was an integral part of the end-to-end simulation used in pre- entry analysis for determining the MER entry design requirements for development of the MER entry system, as well as targeting the MER landing sites. The database was constructed using the same approach used for Mars Pathfinder (MPF). However, the MER aerodynamic database is of much higher fidelity and tailored to the MER entry trajectories. This set of data includes direct simulation Monte Carlo calculations covering the transitional regime of the entry trajectory and computational fluid dynamics calculations describing the aerodynamics in the hypersonic and supersonic continuum regimes. An overview of the methodology used to generate the data is given along with comparisons to important features in the MPF aerodynamics and related heritage data. The MER and MPF comparison indicates that trajectory specific data is required to properly model the flight characteristics of a.blunt entry capsule at Mars.

  11. Error Estimate of the Ares I Vehicle Longitudinal Aerodynamic Characteristics Based on Turbulent Navier-Stokes Analysis

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Ghaffari, Farhad

    2011-01-01

    Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on the unstructured grid, Reynolds-averaged Navier-Stokes flow solver USM3D, with an assumption that the flow is fully turbulent over the entire vehicle. This effort was designed to complement the prior computational activities conducted over the past five years in support of the Ares I Project with the emphasis on the vehicle s last design cycle designated as the A106 configuration. Due to a lack of flight data for this particular design s outer mold line, the initial vehicle s aerodynamic predictions and the associated error estimates were first assessed and validated against the available experimental data at representative wind tunnel flow conditions pertinent to the ascent phase of the trajectory without including any propulsion effects. Subsequently, the established procedures were then applied to obtain the longitudinal aerodynamic predictions at the selected flight flow conditions. Sample computed results and the correlations with the experimental measurements are presented. In addition, the present analysis includes the relevant data to highlight the balance between the prediction accuracy against the grid size and, thus, the corresponding computer resource requirements for the computations at both wind tunnel and flight flow conditions. NOTE: Some details have been removed from selected plots and figures in compliance with the sensitive but unclassified (SBU) restrictions. However, the content still conveys the merits of the technical approach and the relevant results.

  12. Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Ernst, Benedikt; Schmitt, Henning; Seume, Jörg R.

    2014-12-01

    Offshore wind turbines operate in a complex unsteady flow environment which causes unsteady aerodynamic loads. The unsteady flow environment is characterized by a high degree of uncertainty. In addition, geometry variations and material imperfections also cause uncertainties in the design process. Probabilistic design methods consider these uncertainties in order to reach acceptable reliability and safety levels for offshore wind turbines. Variations of the rotor blade geometry influence the aerodynamic loads which also affect the reliability of other wind turbine components. Therefore, the present paper is dealing with geometric uncertainties of the rotor blades. These can arise from manufacturing tolerances and operational wear of the blades. First, the effect of geometry variations of wind turbine airfoils on the lift and drag coefficients are investigated using a Latin hypercube sampling. Then, the resulting effects on the performance and the blade loads of an offshore wind turbine are analyzed. The variations of the airfoil geometry lead to a significant scatter of the lift and drag coefficients which also affects the damage-equivalent flapwise bending moments. In contrast to that, the effects on the power and the annual energy production are almost negligible with regard to the assumptions made.

  13. Experimental Hypersonic Aerodynamic Characteristics of the Space Shuttle Orbiter for a Range of Damage Scenarios

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.; Scallion, William I.

    2004-01-01

    Aerodynamic tests in support of the Columbia accident investigation were conducted in two hypersonic wind tunnels at the NASA Langley Research Center, the 20-Inch Mach 6 Air Tunnel and the 20-Inch CF4 Tunnel. The primary purpose of these tests was to measure the forces and moments generated by a variety of outer mold line alterations (damage scenarios) using 0.0075-scale models of the Space Shuttle Orbiter. Simultaneously acquired global heat transfer mappings were obtained for a majority of the configurations tested. Test parametrics included angles of attack from 38 to 42 deg, unit Reynolds numbers from 0.3 x 10(exp 6) to 3.0 x 10(exp 6) per foot, and normal shock density ratios of 5 (Mach 6 air) and 12 (CF4). The damage scenarios evaluated included asymmetric boundary layer transition, gouges in the windward surface thermal protection system tiles, wing leading edge damage (partially and fully missing reinforced carbon-carbon (RCC) panels), deformation of the wing windward surface, and main landing gear and/or door deployment. The measured aerodynamic increments for the damage scenarios examined were generally small in magnitude, as were the flight-derived values during most of the entry prior to loss of communication. A progressive damage scenario is presented that qualitatively matches the flight observations for the STS-107 entry.

  14. Transonic and Low-Supersonic Aeroelastic Analysis of a Two-Degree Airfoil with a Freeplay Non-Linearity

    NASA Astrophysics Data System (ADS)

    KIM, DONG-HYUN; LEE, IN

    2000-07-01

    A two-degree-of-freedom airfoil with a freeplay non-linearity in the pitch and plunge directions has been analyzed in the transonic and low-supersonic flow region, where aerodynamic non-linearities also exist. The primary purpose of this study is to show aeroelastic characteristics due to freeplay structural non-linearity in the transonic and low-supersonic regions. The unsteady aerodynamic forces on the airfoil were evaluated using two-dimensional unsteady Euler code, and the resulting aeroelastic equations are numerically integrated to obtain the aeroelastic time responses of the airfoil motions and to investigate the dynamic instability. The present model has been considered as a simple aeroelastic model, which is equivalent to the folding fin of an advanced generic missile. From the results of the present study, characteristics of important vibration responses and aeroelastic instabilities can be observed in the transonic and supersonic regions, especially considering the effect of structural non-linearity in the pitch and plunge directions. The regions of limit-cycle oscillation are shown at much lower velocities, especially in the supersonic flow region, than the divergent flutter velocities of the linear structure model. It is also shown that even small freeplay angles can lead to severe dynamic instabilities and dangerous fatigue conditions for the flight vehicle wings and control fins.

  15. Aerodynamics for the Mars Phoenix Entry Capsule

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Desai, Prasun N.; Schoenenberger, Mark

    2008-01-01

    Pre-flight aerodynamics data for the Mars Phoenix entry capsule are presented. The aerodynamic coefficients were generated as a function of total angle-of-attack and either Knudsen number, velocity, or Mach number, depending on the flight regime. The database was constructed using continuum flowfield computations and data from the Mars Exploration Rover and Viking programs. Hypersonic and supersonic static coefficients were derived from Navier-Stokes solutions on a pre-flight design trajectory. High-altitude data (free-molecular and transitional regimes) and dynamic pitch damping characteristics were taken from Mars Exploration Rover analysis and testing. Transonic static coefficients from Viking wind tunnel tests were used for capsule aerodynamics under the parachute. Static instabilities were predicted at two points along the reference trajectory and were verified by reconstructed flight data. During the hypersonic instability, the capsule was predicted to trim at angles as high as 2.5 deg with an on-axis center-of-gravity. Trim angles were predicted for off-nominal pitching moment (4.2 deg peak) and a 5 mm off-axis center-ofgravity (4.8 deg peak). Finally, hypersonic static coefficient sensitivities to atmospheric density were predicted to be within uncertainty bounds.

  16. Nonconical Relaxation for Supersonic Potential Flow

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.

    1986-01-01

    Nonlinear, three-dimensional effects computed from full potentialflow equation. Nonconical Relaxation program, NCOREL, employs new computational technique for prediction of inviscid, nonlinear supersonic aerodynamics. Unlike conventional linear potential equations, NCOREL utilizes full potential flow equation to predict formation of supercritical crossflow regions, embedded shocks, and bow shocks. NCOREL written in FORTRAN IV for batch execution.

  17. F-15B on ramp showing closeup of the Supersonic Natural Laminar Flow (SS-NLF) experiment attached ve

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A close up of the Supersonic Natural Laminar Flow (SS-NLF) experiment on the F-15B. The wing shape - designed by the Reno Aeronautical Corp. - had only minimal sweep and a short span. The low sweep angle gave this airfoil better take off and landing characteristics, as well as better subsonic cruise efficiency, than wings with a greater sweep angle. Engineers had reason to believe that improvements in aerodynamic efficiency from supersonic natural laminar flow might actually render a supersonic aircraft more economical to operate than slower, subsonic designs. To gather substantiate data, the SS-NLF experiment used an advanced, non-intrusive collection technique. Rather than instrumentation built into the wing, a high resolution infrared camera mounted on the F-15B fuselage recorded the data, a system with possible applications for future research aircraft.

  18. Effects of forebody strakes and Mach number on overall aerodynamic characteristics of configuration with 55 deg cropped delta wing

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Rogers, Lawrence W.

    1992-01-01

    A wind tunnel data base was established for the effects of chine-like forebody strakes and Mach number on the longitudinal and lateral-directional characteristics of a generalized 55 degree cropped delta wing-fuselage-centerline vertical tail configuration. The testing was conducted in the 7- by 10-Foot Transonic Tunnel at the David Taylor Research Center at free-stream Mach numbers of 0.40 to 1.10 and Reynolds numbers based on the wing mean aerodynamic chord of 1.60 x 10(exp 6) to 2.59 x 10(exp 6). The best matrix included angles of attack from 0 degree to a maximum of 28 degree, angles of sidesip of 0, +5, and -5 degrees, and wing leading-edge flat deflection angles of 0 and 30 degrees. Key flow phenomena at subsonic and transonic conditions were identified by measuring off-body flow visualization with a laser screen technique. These phenomena included coexisting and interacting vortex flows and shock waves, vortex breakdown, vortex flow interactions with the vertical tail, and vortices induced by flow separation from the hinge line of the deflected wing flap. The flow mechanisms were correlated with the longitudinal and lateral-directional aerodynamic data trends.

  19. Aerodynamic Characteristics of a Feathered Dinosaur Measured Using Physical Models. Effects of Form on Static Stability and Control Effectiveness

    PubMed Central

    Evangelista, Dennis; Cardona, Griselda; Guenther-Gleason, Eric; Huynh, Tony; Kwong, Austin; Marks, Dylan; Ray, Neil; Tisbe, Adrian; Tse, Kyle; Koehl, Mimi

    2014-01-01

    We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While M. gui lived after Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver. PMID:24454820

  20. A Method for Obtaining the Nonlinear Aerodynamic Stability Characteristics of Bodies of Revolution from Free-Flight Tests

    NASA Technical Reports Server (NTRS)

    Kirk, Donn B.

    1961-01-01

    A method is presented for obtaining the nonlinear aerodynamic stability characteristics of bodies of revolution from free-flight test.s The necessary conditions for the application of this method are: (1) that the roll rate and damping encountered in a single cycle of oscillation be small, and (2) that the resulting motion be reasonably planar. Four approximations to the nonlinear restoring moment are considered and solutions are obtained in closed form: 1. A single-term polynomial in an arbitrary power of the angle of attack. 2. A two-term polynomial having linear and cubic terms. 3. A three-term polynomial having linear, quadratic, and cubic terms. 4. A three-term polynomial having linear, quadratic, and cubic terms. An iteration procedure is formulated to allow the use of each of these approximations for obtaining the aerodynamic coefficients of bodies of revolution from free-flight test data. It is found that although the equations that are solved pertain strictly to planar motion, the solutions are applicable to motions that deviate to a fairly large degree from planar motion.

  1. Predicted Aerodynamic Characteristics of a NACA 0015 Airfoil Having a 25% Integral-Type Trailing Edge Flap

    NASA Technical Reports Server (NTRS)

    Hassan, Ahmed

    1999-01-01

    Using the two-dimensional ARC2D Navier-Stokes flow solver analyses were conducted to predict the sectional aerodynamic characteristics of the flapped NACA-0015 airfoil section. To facilitate the analyses and the generation of the computational grids, the airfoil with the deflected trailing edge flap was treated as a single element airfoil with no allowance for a gap between the flap's leading edge and the base of the forward portion of the airfoil. Generation of the O-type computational grids was accomplished using the HYGRID hyperbolic grid generation program. Results were obtained for a wide range of Mach numbers, angles of attack and flap deflections. The predicted sectional lift, drag and pitching moment values for the airfoil were then cast in tabular format (C81) to be used in lifting-line helicopter rotor aerodynamic performance calculations. Similar were also generated for the flap. Mathematical expressions providing the variation of the sectional lift and pitching moment coefficients for the airfoil and for the flap as a function of flap chord length and flap deflection angle were derived within the context of thin airfoil theory. The airfoil's sectional drag coefficient were derived using the ARC2D drag predictions for equivalent two dimensional flow conditions.

  2. A Semigraphical Method of Applying Impact Theory to an Arbitrary Body to Obtain the Hypersonic Aerodynamic Characteristics at Angle of Attack and Sideslip

    NASA Technical Reports Server (NTRS)

    Jackson, Charlie M., Jr.

    1961-01-01

    A simple semigraphical method of applying impact theory to obtain the aerodynamic characteristics of an arbitrary body at combined angle of attack and sideslip is presented. The necessary equations are derived, a general procedure for application is outlined, and the effects of graphical errors and areas of application are discussed. One of the features of the present method is the requirement of only one graphical construction for any combination of angle of attack and sideslip. As an example application the present method is applied to a blunted elliptical cone in order to obtain the longitudinal aerodynamic characteristics at an angle of attack of 40 degrees and an angle of sideslip of 0 degrees.

  3. Method and apparatus for starting supersonic compressors

    DOEpatents

    Lawlor, Shawn P

    2013-08-06

    A supersonic gas compressor with bleed gas collectors, and a method of starting the compressor. The compressor includes aerodynamic duct(s) situated for rotary movement in a casing. The aerodynamic duct(s) generate a plurality of oblique shock waves for efficiently compressing a gas at supersonic conditions. A convergent inlet is provided adjacent to a bleed gas collector, and during startup of the compressor, bypass gas is removed from the convergent inlet via the bleed gas collector, to enable supersonic shock stabilization. Once the oblique shocks are stabilized at a selected inlet relative Mach number and pressure ratio, the bleed of bypass gas from the convergent inlet via the bypass gas collectors is effectively eliminated.

  4. Compressible unsteady potential aerodynamic flow around lifting bodies having arbitrary shapes and motions

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1975-01-01

    The program SUSSA ACTS, steady and unsteady subsonic and supersonic aerodynamics for aerospace complex transportation system, is presented. Fully unsteady aerodynamics is discussed first, followed by developments on normal wash, pressure distribution, generalized forces, supersonic formulation, numerical results, geometry preprocessor, the user manual, control surfaces, and first order formulation. The ILSWAR program was also discussed.

  5. The role of unsteady aerodynamics in aeroacoustics

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul

    1988-01-01

    The role of acoustics and unsteady aerodynamics research in understanding the fundamental physics of time-dependent fluid phenomena is reviewed. The key issues are illustrated by considering the sound radiation of turbulent jets and the aeroacoustics of rotating bodies such as helicopter rotors. The importance of computational methods as a link between aerodynamics and acoustics is also discussed. It is noted that where acoustic analogy techniques are sufficiently accurate, unsteady aerodynamics can be used for acoustic prediction. In supersonic problems where acoustics and aerodynamics are coupled, an integrated nonlinear analysis can provide an accurate problem solution.

  6. Aerodynamic characteristics of airfoils III : continuation of reports nos. 93 and 124

    NASA Technical Reports Server (NTRS)

    1924-01-01

    This collection of data on airfoils has been made from the published reports of a number of the leading aerodynamic laboratories of this country and Europe. The information which was originally expressed according to the different customs of the several laboratories is here presented in a uniform series of charts and tables suitable for the use of designing engineers and for purposes of general reference. The absolute system of coefficients has been used, since it is thought by the National Advisory Committee for Aeronautics that this is the one most suited for international use and yet is one for which a desired transformation can be easily made. The authority for the results here presented is given as the name of the laboratory at which the experiments were conducted, with the size of the model, wind velocity, and date of test.

  7. The Aerodynamic Characteristics of Four Full-Scale Propellers Having Different Plan Forms

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P; Biermann, David

    1938-01-01

    Tests were made of four propellers, with diameters of 10 feet, having different blade plan forms. One propeller (Navy design no. 5868-r6) was of the usual present-day type and was used as a basis of comparison for the other three, which had unusual plan forms distinguished by the inward (toward the hub) location of the sections having the greatest blade width. It was found that propellers with points of maximum blade width occurring closer to the hub than on the present-day type of blade had higher peak efficiencies but lower take-off efficiencies. This results was found true for a "clean" liquid-cooled engine installation. It appears that some modification could be made to present plan forms which would produce propellers having more satisfactory aerodynamic qualities. The propellers with the inward location of the points of maximum blade width had lower thrust and power coefficients and stalled earlier than the present-day type.

  8. Transonic aerodynamic characteristics of a wing/body combination incorporating jet flaps

    NASA Technical Reports Server (NTRS)

    Holmberg, J. L.

    1975-01-01

    A 0.25-scale semispan wing/body model with two types of jet flaps was tested in the Ames 11- by 11-Foot Transonic Wind Tunnel. The objective of that testing was to measure the static aerodynamic forces and moments and wing pressure distributions on six configurations differentiated by wing camber, jet flap type, and jet flap angle. Maximum thrust coefficients were limited to 0.12. Angle of attack was varied from -4 deg to 15 deg for Mach numbers between 0.6 and 0.95 at a constant unit Reynolds number of 18.0 million/m (5.5 million/ft). More refined designs and considerably more testing will be required to establish the practicability of the total-exhausting jet flap concept.

  9. Space shuttle: Aerodynamic characteristics of a 162-inch diameter solid rocket booster with and without strakes

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Radford, W. D.; Rampy, J. M.

    1973-01-01

    Tests conducted at NASA-Langley have shown that a small flap or strake can generate a significant amount of lift on a circular cylinder with large cross flow. If strakes are placed on the opposite sides and ends on a circular body, a moment will be produced about the center of mass of the body. The purpose of this test was to determine the static-aerodynamic forces and moments of a 162-inch diameter SRB (PRR) with and without strakes. The total angle-of-attack range of the SRB test was from -10 to 190 degrees. Model roll angles were 0, 45, 90, and 135 degrees with some intermediate angles. The Mach range was from 0.6 to 3.48. The 0.00494 scale model was designated as MSFC No. 449.

  10. A computer-assisted process for supersonic aircraft conceptual design

    NASA Technical Reports Server (NTRS)

    Johnson, V. S.

    1985-01-01

    Design methodology was developed and existing major computer codes were selected to carry out the conceptual design of supersonic aircraft. A computer-assisted design process resulted from linking the codes together in a logical manner to implement the design methodology. The process does not perform the conceptual design of a supersonic aircraft but it does provide the designer with increased flexibility, especially in geometry generation and manipulation. Use of the computer-assisted process for the conceptual design of an advanced technology Mach 3.5 interceptor showed the principal benefit of the process to be the ability to use a computerized geometry generator and then directly convert the geometry between formats used in the geometry code and the aerodynamics codes. Results from the interceptor study showed that a Mach 3.5 standoff interceptor with a 1000 nautical-mile mission radius and a payload of eight Phoenix missiles appears to be feasible with the advanced technologies considered. A sensitivity study showed that technologies affecting the empty weight and propulsion system would be critical in the final configuration characteristics with aerodynamics having a lesser effect for small perturbations around the baseline.

  11. Wind-Tunnel Investigation at a Mach Number of 2.01 of the Aerodynamic Characteristics in Combined Angles of Attack and Sideslip of Several Hypersonic Missile Configurations with Various Canard Controls

    NASA Technical Reports Server (NTRS)

    Robinson, R. B.

    1958-01-01

    An investigation of the aerodynamic characteristics of several hypersonic missile configurations with various canard controls for an angle-of-attack range from 0 deg to about 28 deg at sideslip angles of about 0 deg and 4 deg at a Mach number of 2.01 has been made in the Langley 4- by 4-foot supersonic pressure tunnel. The configurations tested we re a body alone which had a ratio of length to diameter of 10, the b ody with a 10 deg flare, the body with cruciform fins of 5 deg or 15 deg apex angle, and a flare-stabilized rocket model with a modified Von Karman nose. Various canard surfaces for pitch control only were te sted on the body with the 10 deg flare and on the body with both sets of fins. The results indicated that the addition of a flared afterbody or cruciform fins produced configurations which were longitudinally and directionally stable. The body with 5 deg fins should be capable of producing higher normal accelerations than the flared body. A l l of the canard surfaces were effective longitudinal controls which produced net positive increments of normal force and pitching moments which progressively decreased with increasing angle of attack.

  12. Effect of tail size reductions on longitudinal aerodynamic characteristics of a three surface F-15 model with nonaxisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Frassinelli, Mark C.; Carson, George T., Jr.

    1990-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of horizontal and vertical tail size reductions on the longitudinal aerodynamic characteristics of a modified F-15 model with canards and 2-D convergent-divergent nozzles. Quantifying the drag decrease at low angles of attack produced by tail size reductions was the primary focus. The model was tested at Mach numbers of 0.40, 0.90, and 1.20 over an angle of attack of -2 degree to 10 degree. The nozzle exhaust flow was simulated using high pressure air at nozzle pressure ratios varying from 1.0 (jet off) to 7.5. Data were obtained on the baseline configuration with and without tails as well as with reduced horizontal and/or vertical tail sizes that were 75, 50, and 25 percent of the baseline tail areas.

  13. The equivalent angle-of-attack method for estimating the nonlinear aerodynamic characteristics of missile wings and control surfaces

    NASA Technical Reports Server (NTRS)

    Hemsch, M. J.; Nielsen, J. N.

    1982-01-01

    A method has been developed for estimating the nonlinear aerodynamic characteristics of missile wing and control surfaces. The method is based on the following assumption: if a fin on a body has the same normal-force coefficient as a wing alone composed of two of the same fins joined together at their root chords, then the other force and moment coefficients of the fin and the wing alone are the same including the nonlinearities. The method can be used for deflected fins at arbitrary bank angles and at high angles of attack. In the paper, a full derivation of the method is given, its accuracy demonstrated and its use in extending missile data bases is shown.

  14. A computer program for calculating aerodynamic characteristics of low aspect-ratio wings with partial leading-edge separation

    NASA Technical Reports Server (NTRS)

    Mehrotra, S. C.; Lan, C. E.

    1978-01-01

    The necessary information for using a computer program to predict distributed and total aerodynamic characteristics for low aspect ratio wings with partial leading-edge separation is presented. The flow is assumed to be steady and inviscid. The wing boundary condition is formulated by the Quasi-Vortex-Lattice method. The leading edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at midpoints to satisfy the force free condition. The wake behind the trailing edge is also force free. The flow tangency boundary condition is satisfied on the wing, including the leading and trailing edges. The program is restricted to delta wings with zero thickness and no camber. It is written in FORTRAN language and runs on CDC 6600 computer.

  15. Aerodynamic characteristics at low Reynolds numbers of several heat-exchanger configurations for wind-tunnel use

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.; Igoe, W. B.

    1979-01-01

    In response to design requirements of the National Transonic Facility, aerodynamic tests were conducted to determine the pressure-drop, flow-uniformity, and turbulence characteristics of various heat-exchanger configurations as a function of Reynolds number. Data were obtained in air with an indraft flow apparatus operated at ambient temperature and pressure. The unit Reynolds number of the tests varied from about 0.06 x 10 to 6th power to about 1.3 x 10 to 6th power per meter. The test models were designed to represent segments of full-scale tube bundles and included bundles of round tubes with plate fins in both staggered and inline tube arrays, round tubes with spiral fins, elliptical tubes with plate fins, and an inline grouping of tubes with segmented fins.

  16. Aerodynamic characteristics of a large-scale model with a swept wing and a jet flap having an expandable duct

    NASA Technical Reports Server (NTRS)

    Aiken, T. N.; Aoyagi, K.; Falarski, M. D.

    1973-01-01

    The data from an investigation of the aerodynamic characteristics of the expandable duct-jet flap concept are presented. The investigation was made using a large-scale model in the Ames 40- by 80-foot Wind Tunnel. The expandable duct-jet flap concept uses a lower surface, split flap and an upper surface, Fowler flap to form an internal, variable area cavity for the blowing air. Small amounts of blowing are used on the knee of the upper surface flap and the knee of a short-chord, trailing edge control flap. The bulk of the blowing is at the trailing edge. The flap could extend the full span of the model wing or over the inboard part only, with blown ailerons outboard. Primary configurations tested were two flap angles, typical of takeoff and landing; symmetric control flap deflections, primarily for improved landing performance; and asymmetric aileron and control flap deflections, for lateral control.

  17. PROGRAM VSAERO: A computer program for calculating the non-linear aerodynamic characteristics of arbitrary configurations: User's manual

    NASA Technical Reports Server (NTRS)

    Maskew, B.

    1982-01-01

    VSAERO is a computer program used to predict the nonlinear aerodynamic characteristics of arbitrary three-dimensional configurations in subsonic flow. Nonlinear effects of vortex separation and vortex surface interaction are treated in an iterative wake-shape calculation procedure, while the effects of viscosity are treated in an iterative loop coupling potential-flow and integral boundary-layer calculations. The program employs a surface singularity panel method using quadrilateral panels on which doublet and source singularities are distributed in a piecewise constant form. This user's manual provides a brief overview of the mathematical model, instructions for configuration modeling and a description of the input and output data. A listing of a sample case is included.

  18. Aerodynamic characteristics at Mach 6 of a hypersonic research airplane concept having a 70 deg swept delta wing

    NASA Technical Reports Server (NTRS)

    Clark, L. E.; Richie, C. B.

    1977-01-01

    The hypersonic aerodynamic characteristics of an air-launched, delta-wing research aircraft concept were investigated at Mach 6. The effect of various components such as nose shape, wing camber, wing location, center vertical tail, wing tip fins, forward delta wing, engine nacelle, and speed brakes was also studied. Tests were conducted with a 0.021 scale model at a Reynolds number, based on model length, of 10.5 million and over an angel of attack range from -4 deg to 20 deg. Results show that most configurations with a center vertical tail have static longitudinal stability at trim, static directional stability at angles of attack up to 12 deg, and static lateral stability throughout the angle of attack range. Configurations with wing tip fins generally have static longitudinal stability at trim, have lateral stability at angles of attack above 8 deg, and are directionally unstable over the angle of attack range.

  19. Longitudinal aerodynamic characteristics of a wing-winglet model designed at M = 0.8, C sub L = 0.4 using linear aerodynamic theory

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1983-01-01

    Wind tunnel test results have been presented herein for a subsonic transport type wing fitted with winglets. Wind planform was chosen to be representative of wings used on current jet transport aircraft, while wing and winglet camber surfaces were designed using two different linear aerodynamic design methods. The purpose of the wind tunnel investigation was to determine the effectiveness of these linear aerodynamic design computer codes in designing a non-planar transport configuration which would cruise efficiently. The design lift coefficient was chosen to be 0.4, at a design Mach number of 0.8. Force and limited pressure data were obtained for the basic wing, and for the wing fitted with the two different winglet designs, at Mach numbers of 0.60, 0.70, 0.75 and 0.80 over an angle of attack range of -2 to +6 degrees, at zero sideslip. The data have been presented without analysis to expedite publication.

  20. On the structure, interaction, and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Schreiner, John A.; Rogers, Lawrence W.

    1989-01-01

    Slender wing vortex flows at subsonic, transonic, and supersonic speeds were investigated in a 6 x 6 ft wind tunnel. Test data obtained include off-body and surface flow visualizations, wing upper surface static pressure distributions, and six-component forces and moments. The results reveal the transition from the low-speed classical vortex regime to the transonic regime, beginning at a freestream Mach number of 0.60, where vortices coexist with shock waves. It is shown that the onset of core breakdown and the progression of core breakdown with the angle of attack were sensitive to the Mach number, and that the shock effects at transonic speeds were reduced by the interaction of the wing and the lead-edge extension (LEX) vortices. The vortex strengths and direct interaction of the wing and LEX cores (cores wrapping around each other) were found to diminish at transonic and supersonic speeds.

  1. HYSHOT-2 Aerodynamics

    NASA Astrophysics Data System (ADS)

    Cain, T.; Owen, R.; Walton, C.

    2005-02-01

    The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.

  2. Longitudinal aerodynamic characteristics of light, twin-engine, propeller-driven airplanes

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1972-01-01

    Representative state-of-the-art analytical procedures and design data for predicting the longitudinal static and dynamic stability and control characteristics of light, propeller-driven airplanes are presented. Procedures for predicting drag characteristics are also included. The procedures are applied to a twin-engine, propeller-driven airplane in the clean configuration from zero lift to stall conditions. The calculated characteristics are compared with wind-tunnel and flight data. Included in the comparisons are level-flight trim characteristics, period and damping of the short-period oscillatory mode, and windup-turn characteristics. All calculations are documented.

  3. Aerodynamic characteristics of wings designed with a combined-theory method to cruise at a Mach number of 4.5

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1988-01-01

    A wind-tunnel study was conducted to determine the capability of a method combining linear theory and shock-expansion theory to design optimum camber surfaces for wings that will fly at high-supersonic/low-hypersonic speeds. Three force models (a flat-plate reference wing and two cambered and twisted wings) were used to obtain aerodynamic lift, drag, and pitching-moment data. A fourth pressure-orifice model was used to obtain surface-pressure data. All four wing models had the same planform, airfoil section, and centerbody area distribution. The design Mach number was 4.5, but data were also obtained at Mach numbers of 3.5 and 4.0. Results of these tests indicated that the use of airfoil thickness as a theoretical optimum, camber-surface design constraint did not improve the aerodynamic efficiency or performance of a wing as compared with a wing that was designed with a zero-thickness airfoil (linear-theory) constraint.

  4. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  5. Applicability of commercial CFD tools for assessment of heavy vehicle aerodynamic characteristics.

    SciTech Connect

    Pointer, W. D.; Sofu, T.; Chang, J.; Weber, D.; Nuclear Engineering Division

    2008-12-01

    In preliminary validation studies, computational predictions from the commercial CFD codes Star-CD were compared with detailed velocity, pressure and force balance data from experiments completed in the 7 ft. by 10 ft. wind tunnel at NASA Ames using a Generic Conventional Model (GCM) that is representative of typical current-generation tractor-trailer geometries. Lessons learned from this validation study were then applied to the prediction of aerodynamic drag impacts associated with various changes to the GCM geometry, including the addition of trailer based drag reduction devices and modifications to the radiator and hood configuration. Add-on device studies have focused on ogive boat tails, with initial results indicating that a seven percent reduction in drag coefficient is easily achievable. Radiator and hood reconfiguration studies have focused on changing only the size of the radiator and angle of the hood components without changes to radii of curvature between the radiator grill and hood components. Initial results indicate that such changes lead to only modest changes in drag coefficient.

  6. Aerodynamics Characteristics of Multi-Element Airfoils at -90 Degrees Incidence

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.; Schmitz, Fredric H. (Technical Monitor)

    1994-01-01

    A developed method has been applied to calculate accurately the viscous flow about airfoils normal to the free-stream flow. This method has special application to the analysis of tilt rotor aircraft in the evaluation of download. In particular, the flow about an XV-15 airfoil with and without deflected leading and trailing edge flaps at -90 degrees incidence is evaluated. The multi-element aspect of the method provides for the evaluation of slotted flap configurations which may lead to decreased drag. The method solves for turbulent flow at flight Reynolds numbers. The flow about the XV-15 airfoil with and without flap deflections has been calculated and compared with experimental data at a Reynolds number of one million. The comparison between the calculated and measured pressure distributions are very good, thereby, verifying the method. The aerodynamic evaluation of multielement airfoils will be conducted to determine airfoil/flap configurations for reduced airfoil drag. Comparisons between the calculated lift, drag and pitching moment on the airfoil and the airfoil surface pressure will also be presented.

  7. Wind tunnel investigation of the aerodynamic characteristics of symmetrically deflected ailerons of the F-8C airplane. [conducted in the Langley 8-foot transonic pressure tunnel

    NASA Technical Reports Server (NTRS)

    Gera, J.

    1977-01-01

    A .042-scale model of the F-8C airplane was investigated in a transonic wind tunnel at high subsonic Mach numbers and a range of angles of attack between-3 and 20 degrees. The effect of symmetrically deflected ailerons on the longitudinal aerodynamic characteristics was measured. Some data were also obtained on the lateral control effectiveness of asymmetrically deflected horizontal tail surfaces.

  8. Space shuttle orbiter trimmed center-of-gravity extension study. Volume 5: Effects of configuration modifications on the aerodynamic characteristics of the 140A/B orbiter at Mach numbers of 2.5, 3.95 and 4.6

    NASA Technical Reports Server (NTRS)

    Phillips, W. P.; Fournier, R. H.

    1979-01-01

    Supersonic aerodynamic characteristics are presented for the 140A/B space shuttle orbiter configuration (0.010 scale) and for the configuration modified to incorporate geometry changes in the wing planform fillet region. The modifications designed to extend the orbiter's longitudinal trim capability to more forward center-of-gravity locations, included reshaping of the baseline wing planform fillet and adding canards. The investigation was made in the high Mach number test section of the Langley Unitary Plan Wind Tunnel at a Reynolds number of approximately 2.2 million based on fuselage reference length. The angle-of-attack range for the investigation extended from -1 deg to 31 deg. Data were obtained with the elevators and body flap deflected at appropriate negative and positive conditions to assess the trim limits.

  9. Unsteady aerodynamic analysis of space shuttle vehicles. Part 1: Summary report

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1973-01-01

    An analysis of the unsteady aerodynamics of space shuttle vehicles was performed. The results show that slender wing theory can be modified to give the potential flow static and dynamic characteristics over a large Mach number range from M = 0 to M 1. A semi-empirical analytic approximation is derived for the loads induced by the leading edge vortex; and it is shown that the developed analytic technique gives good prediction of experimentally determined steady and unsteady delta wing aerodynamics, including the effects of leading edge roundness. At supersonic speeds, attached leading edge flow is established and shock-induced flow separation effects become of concern. Analysis of experimental results for a variety of boost configurations led to a definition of the main features of the flow interference effects between orbiter (delta wing) and booster. The effects of control deflection on the unsteady aerodynamics of the delta-wing orbiter were also evaluated.

  10. Aerodynamic Characteristics of Four Republic Airfoil Sections from Tests in Langley Two-Dimensional Low-Turbulence Tunnels

    NASA Technical Reports Server (NTRS)

    Klein, Milton M.

    1945-01-01

    Four airfoils sections, designed by the Republic Aviation Corporation for the root and tip sections of the XF-12 airplane, were tested in the Langley two-dimensional low-turbulence tunnels to obtain their aerodynamic characteristics. Lift characteristics were obtained at Reynolds numbers of 3,000,000, 6,000,000, 9,000,000, and 14,000,000, whereas drag characteristics were obtained at Reynolds numbers of 3,000,000, 6,000,000, and 9,000,000. Pressure distributions were obtained for one of the root sections for several angles of attack at a Reynolds number of 2,600,000. Comparison of the root section that appeared best from the tests with the corresponding NACA 65-series section shows the Republic section has a higher maximum lift and higher calculated critical speeds, but a higher minimum drag. In addition, with standard roughness applied to the leading edge, the maximum lift of the Republic airfoil is lower than that of the NACA airfoil. Comparison of the Republic tip section with the corresponding NACA 65-series section shows the Republic airfoil has a lower maximum lift and a higher minimum drag than the NACA airfoil. The calculated critical speeds of the Republic section are slightly higher than those of the NACA section.

  11. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 3: Graphical data book 1

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1981-01-01

    A graphical presentation of the aerodynamic data acquired during coannular nozzle performance wind tunnel tests is given. The graphical data consist of plots of nozzle gross thrust coefficient, fan nozzle discharge coefficient, and primary nozzle discharge coefficient. Normalized model component static pressure distributions are presented as a function of primary total pressure, fan total pressure, and ambient static pressure for selected operating conditions. In addition, the supersonic cruise configuration data include plots of nozzle efficiency and secondary-to-fan total pressure pumping characteristics. Supersonic and subsonic cruise data are given.

  12. Tesseract supersonic business transport

    NASA Technical Reports Server (NTRS)

    Reshotko, Eli; Garbinski, Gary; Fellenstein, James; Botting, Mary; Hooper, Joan; Ryan, Michael; Struk, Peter; Taggart, Ben; Taillon, Maggie; Warzynski, Gary

    1992-01-01

    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range was chosen for the aircraft. A Mach number of 2.2 was chosen, too, because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2,500 lbs. was assumed corresponding to a complement of nine passengers and crew, plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft, while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and mid-chord length of 61.0 ft. A SNECMA MCV 99 variable-cycle engine design was chosen for this aircraft.

  13. Tesseract: Supersonic business transport

    NASA Technical Reports Server (NTRS)

    Reshotko, Eli; Garbinski, Gary

    1992-01-01

    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range has been chosen for the aircraft. A Mach number of 2.2 was chosen too because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2500 lbs. has been assumed corresponding to a complement of nine (passengers and crew) plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft. while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and midcord length of 61.0 ft. A SNEMCA MCV 99 variable-cycle engine design was chosen for this aircraft.

  14. Study of the supersonic propeller

    NASA Technical Reports Server (NTRS)

    Fabri, Jean; Siestrunck, Raymond

    1953-01-01

    In this paper a propeller having all sections operating at supersonic speeds is designated a supersonic propeller regardless of flight speed. Analyses assume subsonic flight speeds but very high rotational speeds. A very elementary analysis of the efficiency of a jet-propeller system is presented. A propeller analysis based on conventional vortex blade element theory is presented and reduced to a single point method which leads to an expression for optimum advance ratio in terms of hub-tip diameter ratio and airfoil fineness ratio. An expression for propeller efficiency in terms of advance ratio, hub-tip diameter ratio, and airfoil thickness ratio is also presented. Use is made of theoretical airfoil characteristics at supersonic speeds. A study of blade section interference, blade shock and expansion fields, at supersonic section speeds is presented. An example taken indicates that an efficiency of seventy percent can be obtained with a propeller having a tip Mach number of 2.3.

  15. Aerodynamic characteristics of a feathered dinosaur measured using physical models. Effects of form on static stability and control effectiveness.

    PubMed

    Evangelista, Dennis; Cardona, Griselda; Guenther-Gleason, Eric; Huynh, Tony; Kwong, Austin; Marks, Dylan; Ray, Neil; Tisbe, Adrian; Tse, Kyle; Koehl, Mimi

    2014-01-01

    We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, [Formula: see text]Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While [Formula: see text]M. gui lived after [Formula: see text]Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver. PMID:24454820

  16. Aerodynamic Characteristics at High Speeds of Full-Scale Propellers having Different Shank Designs

    NASA Technical Reports Server (NTRS)

    Maynard, Julian D.

    1947-01-01

    Tests of two 10-foot-diameter two-blade propellers which differed only in shank design have been made in the Langley 16-foot high-speed tunnel. The propellers are designated by their blade design numbers, NACA 10-(5)(08)-03, which had aerodynamically efficient airfoil shank sections, and NACA l0-(5)(08)-03R which had thick cylindrical shank sections typical of conventiona1 blades, The propellers mere tested on a 2000-horsepower dynamometer through a range of blade-angles from 20deg to 55deg at various rotational speeds and at airspeeds up to 496 miles per hour. The resultant tip speeds obtained simulate actual flight conditions, and the variation of air-stream Mach number with advance ratio is within the range of full-scale constant-speed propeller operation. Both propellers were very efficient, the maximum envelope efficiency being approximately 0,95 for the NACA 10-(5)(08)-03 propeller and about 5 percent less for the NACA 10-(5)(08)-03R propeller. Based on constant power and rotational speed, the efficiency of the NACA 10-(05)(08)-03 propeller was from 2.8 to 12 percent higher than that of the NACA 10-(5)(08)-03R propeller over a range of airspeeds from 225 to 450 miles per hour. The loss in maximum efficiency at the design blade angle for the NACA 10-(5)(08)-03 and 10-(5)(08)-03R propellers vas about 22 and 25 percent, respectively, for an increase in helical tip Mach number from 0.70 to 1.14.

  17. Transonic Aerodynamic Characteristics of Two Wedge Airfoil Sections Including Unsteady Flow Studies

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick J.

    1959-01-01

    A two-dimensional wind-tunnel investigation has been conducted on a 20-percent-thick single-wedge airfoil section. Steady-state forces and moments were determined from pressure measurements at Mach numbers from 0.70 to about 1.25. Additional information on the flows about the single wedge is provided by means of instantaneous pressure measurements at Mach numbers up to unity. Pressure distributions were also obtained on a symmetrical double-wedge or diamond-shaped profile which had the same leading-edge included angle as the single-wedge airfoil. A comparison of the data on the two profiles to provide information on the effects of the afterbody showed that with the exception of drag, the single-wedge profile proved to be aerodynamically superior to the diamond profile in all respects. The lift effectiveness of the single-wedge airfoil section far exceeded that of conventional thin airfoil sections over the speed range of the investigation. Pitching-moment irregularities, caused by negative loadings near the trailing edge, generally associated with conventional airfoils of equivalent thicknesses were not exhibited by the single-wedge profile. Moderately high pulsating pressures existing over the base of the single-wedge airfoil section were significantly reduced as the Mach number was increased beyond 0.92 and the boundaries of the dead airspace at the base of the model converged to eliminate the vortex street in the wake. Increasing the leading-edge radius from 0 to 1 percent of the chord had a minor effect on the steady-state forces and generally raised the level of pressure pulsations over the forward part of the single-wedge profile.

  18. Reynolds Number Effects on a Supersonic Transport at Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Wahls, R. N.; Owens, L. R.; Rivers, S. M. B.

    2001-01-01

    A High Speed Civil Transport configuration was tested in the National Transonic Facility at the NASA Langley Research Center as part of NASA's High Speed Research Program. The primary purposes of the tests were to assess Reynolds number scale effects and the high Reynolds number aerodynamic characteristics of a realistic, second generation supersonic transport while providing data for the assessment of computational methods. The tests included longitudinal and lateral/directional studies at low speed high-lift and transonic conditions across a range of Reynolds numbers from that available in conventional wind tunnels to near flight conditions. Results are presented which focus on both the Reynolds number and static aeroelastic sensitivities of longitudinal characteristics at Mach 0.90 for a configuration without an empennage.

  19. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    NASA Technical Reports Server (NTRS)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  20. The aerodynamic characteristics of eight very thick airfoils from tests in the variable density wind tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N

    1932-01-01

    Report presents the results of wind tunnel tests on a group of eight very thick airfoils having sections of the same thickness as those used near the roots of tapered airfoils. The tests were made to study certain discontinuities in the characteristic curves that have been obtained from previous tests of these airfoils, and to compare the characteristics of the different sections at values of the Reynolds number comparable with those attained in flight. The discontinuities were found to disappear as the Reynolds number was increased. The results obtained from the large-scale airfoil, a symmetrical airfoil having a thickness ratio of 21 per cent, has the best general characteristics.

  1. Low-speed aerodynamic characteristics of a 16-percent-thick variable-geometry airfoil designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.; Noonan, K. W.; Mcghee, R. J.

    1978-01-01

    Tests were conducted in the Langley low-turbulence pressure tunnel to determine the aerodynamic characteristics of climb, cruise, and landing configurations. These tests were conducted over a Mach number range from 0.10 to 0.35, a chord Reynolds number range from 2.0 x 1 million to 20.0 x 1 million, and an angle-of-attack range from -8 deg to 20 deg. Results show that the maximum section lift coefficients increased in the Reynolds number range from 2.0 x 1 million to 9.0 x 1 million and reached values of approximately 2.1, 1.8, and 1.5 for the landing, climb, and cruise configurations, respectively. Stall characteristics, although of the trailing-edge type, were abrupt. The section lift-drag ratio of the climb configuration with fixed transition near the leading edge was about 78 at a lift coefficient of 0.9, a Mach number of 0.15, and a Reynolds number of 4.0 x 1 million. Design lift coefficients of 0.9 and 0.4 for the climb and cruise configurations were obtained at the same angle of attack, about 6 deg, as intended. Good agreement was obtained between experimental results and the predictions of a viscous, attached-flow theoretical method.

  2. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation

    NASA Astrophysics Data System (ADS)

    Sun, Quan; Cheng, Bangqin; Li, Yinghong; Cui, Wei; Jin, Di; Li, Jun

    2013-11-01

    An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation.

  3. Numerical Simulation of Laser-driven In-Tube Accelerator on Supersonic Condition

    SciTech Connect

    Kim, Sukyum; Jeung, In-Seuck; Choi, Jeong-Yeol

    2004-03-30

    Recently, several laser propulsion vehicles have been launched successfully. But these vehicles remained in a very low subsonic flight. Laser-driven In-Tube Accelerator (LITA) is developed as unique laser propulsion system at Tohoku University. In this paper, flow characteristics and momentum coupling coefficients are studied numerically in the supersonic condition with the same configuration of LITA. Because of the aerodynamic drag, the coupling coefficient could not get correctly especially at the low energy input. In this study, the coupling coefficient was calculated using the concept of the effective impulse.

  4. Numerical Simulation of Laser-driven In-Tube Accelerator on Supersonic Condition

    NASA Astrophysics Data System (ADS)

    Kim, Sukyum; Jeung, In-Seuck; Choi, Jeong-Yeol

    2004-03-01

    Recently, several laser propulsion vehicles have been launched successfully. But these vehicles remained in a very low subsonic flight. Laser-driven In-Tube Accelerator (LITA) is developed as unique laser propulsion system at Tohoku University. In this paper, flow characteristics and momentum coupling coefficients are studied numerically in the supersonic condition with the same configuration of LITA. Because of the aerodynamic drag, the coupling coefficient could not get correctly especially at the low energy input. In this study, the coupling coefficient was calculated using the concept of the effective impulse.

  5. Investigation of the radiation brightness of gases around a burning model moving at supersonic velocity

    NASA Astrophysics Data System (ADS)

    Baulin, N. N.; Kuvalkin, D. G.; Piliugin, N. N.; Taganov, O. K.; Tikhomirov, S. G.

    1987-01-01

    Experimental results are presented on the ablation and shape change of burning models made of a pyrotechnic composition moving in air at supersonic velocity. A radiometer was used to measure the radiation brightness at a wavelength of 0.63 micron in the shock layer and wake of the burning models. The glow characteristics are determined as a function of the initial air pressure in the path of motion; and a theoretical model for the motion and ablation of burning bodies flying at supersonic velocity is developed which satisfactorily describes the experimental results. The present study is of interest in connection with the aerodynamic heating of vehicles flying at hypersonic velocity in planetary atmospheres.

  6. A Survey of Supersonic Retropropulsion Technology for Mars Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Korzun, Ashley M.; Cruz, Juan R.; Braun, Robert D.

    2007-01-01

    This paper presents a literature survey on supersonic retropropulsion technology as it applies to Mars entry, descent, and landing (EDL). The relevance of this technology to the feasibility of Mars EDL is shown to increase with ballistic coefficient to the point that it is likely required for human Mars exploration. The use of retropropulsion to decelerate an entry vehicle from hypersonic or supersonic conditions to a subsonic velocity is the primary focus of this review. Discussed are systems-level studies, general flowfield characteristics, static aerodynamics, vehicle and flowfield stability considerations, and aerothermodynamics. The experimental and computational approaches used to develop retropropulsion technology are also reviewed. Finally, the applicability and limitations of the existing literature and current state-of-the-art computational tools to future missions are discussed in the context of human and robotic Mars exploration.

  7. Lateral-directional aerodynamic characteristics of light, twin-engine, propeller driven airplanes

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1972-01-01

    Analytical procedures and design data for predicting the lateral-directional static and dynamic stability and control characteristics of light, twin engine, propeller driven airplanes for propeller-off and power-on conditions are reported. Although the consideration of power effects is limited to twin engine airplanes, the propeller-off considerations are applicable to single engine airplanes as well. The procedures are applied to a twin engine, propeller driven, semi-low-wing airplane in the clean configuration through the linear lift range. The calculated derivative characteristics are compared with wind tunnel and flight data. Included in the calculated characteristics are the spiral mode, roll mode, and Dutch roll mode over the speed range of the airplane.

  8. Aerodynamic characteristics of a large scale model with a swept wing and augmented jet flap

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Koenig, D. G.

    1971-01-01

    Data of tests of a large-scale swept augmentor wing model in the 40- by 80-foot wind tunnel are presented. The data includes longitudinal characteristics with and without a horizontal tail as well as results of preliminary investigation of lateral-directional characteristics. The augmentor flap deflection was varied from 0 deg to 70.6 deg at isentropic jet thrust coefficients of 0 to 1.47. The tests were made at a Reynolds number from 2.43 to 4.1 times one million.

  9. An Investigation of the Aerodynamic Characteristics of an Airplane Equipped with Several Different Sets of Wings

    NASA Technical Reports Server (NTRS)

    Crowley, J W , Jr; Green, M W

    1929-01-01

    This investigation was conducted by the National Advisory Committee for Aeronautics at Langley Field, Va., at the request of the Army Air Corps, for the purpose of comparing the full scale lift and drag characteristics of an airplane equipped with several sets of wings of commonly used airfoil sections. A Sperry Messenger Airplane with wings of R.A.F.-15, U.S.A.-5, U.S.A.-27, and Gottingen 387 airfoil sections was flown and the lift and drag characteristics of the airplane with each set of wings were determined by means of glide tests. The results are presented in tabular and curve form. (author)

  10. Aerodynamic characteristics of two single-stage-to-orbit vehicles at Mach 20.3

    NASA Technical Reports Server (NTRS)

    Bernot, P. T.

    1977-01-01

    The hypersonic stability, control, and performance characteristics of two configurations have been determined. Each configuration had a 50 deg swept delta wing, a vertical tail, and a body flap. One model represented a control configured vehicle with a reduced level of longitudinal static stability; the other model was designed for a conventional level of stability. Data were obtained over an angle of attack range of 0 deg to 50 deg and included effects of component buildup. In addition, the effects of the vertical tail on the lateral directional characteristics were obtained.

  11. Aerodynamic Characteristics of NACA 23012 and 23021 Airfoils with 20-Percent-chord External-Airfoil Flaps of NACA 23012 Section

    NASA Technical Reports Server (NTRS)

    Platt, Robert C; Abbott, Ira H

    1937-01-01

    Report presents the results of an investigation of the general aerodynamic characteristics of the NACA 23012 and 23021 airfoils, each equipped with a 0.20c external flap of NACA 23012 section. The tests were made in the NACA 7 by 10-foot and variable-density wind tunnels and covered a range of Reynolds numbers that included values corresponding to those for landing conditions of a wide range of airplanes. Besides a determination of the variation of lift and drag characteristics with position of the flap relative to the main airfoil, complete aerodynamic characteristics of the airfoil-flap combination with a flap hinge axis selected to give small hinge moments were measured in the two tunnels. Some measurements of air loads on the flap itself in the presence of the wing were made in the 7 by 10-foot wind tunnel.

  12. Space shuttle: Aerodynamic characteristics of various MDAC space shuttle ascent configurations with parallel burn pressure-fed and SRM boosters. Volume 1: Tanks T1 and T2 ascent configurations

    NASA Technical Reports Server (NTRS)

    Jarrett, T. W.

    1972-01-01

    Various space shuttle ascent configurations were tested in a trisonic wind tunnel to determine the aerodynamic characteristics. The ascent configuration consisted of a NASA/MSC 040 orbiter in combination with various HO centerline tank and booster geometries. The aerodynamic interference between components of the space shuttle and the effect on the orbiter aerodynamics was determined. The various aerodynamic configurations tested were: (1) centerline HO tanks T1 and T2, (2) centerline HO tank T3, and (3) centerline HO tank H4.

  13. Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines

    SciTech Connect

    Sheldahl, R E; Klimas, P C

    1981-03-01

    When work began on the Darrieus vertical axis wind turbine (VAWT) program at Sandia National Laboratories, it was recognized that there was a paucity of symmetrical airfoil data needed to describe the aerodynamics of turbine blades. Curved-bladed Darrieus turbines operate at local Reynolds numbers (Re) and angles of attack (..cap alpha..) seldom encountered in aeronautical applications. This report describes (1) a wind tunnel test series conducted at moderate values of Re in which 0 less than or equal to ..cap alpha.. less than or equal to 180/sup 0/ force and moment data were obtained for four symmetrical blade-candidate airfoil sections (NACA-0009, -0012, -0012H, and -0015), and (2) how an airfoil property synthesizer code can be used to extend the measured properties to arbitrary values of Re (10/sup 4/ less than or equal to Re less than or equal to 10/sup 7/) and to certain other section profiles (NACA-0018, -0021, -0025).

  14. Gas turbine engine with supersonic compressor

    SciTech Connect

    Roberts, II, William Byron; Lawlor, Shawn P.

    2015-10-20

    A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  15. Status review of a supersonically-biased fighter wing-design study

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.; Hahne, D. E.; Niedling, L. G.; Klein, J. R.

    1983-01-01

    Results from an ongoing supersonically-biased fighter wing-design study are summarized. The study has been conducted to explore the effects of supersonic aerodynamic performance, transonic maneuvering, low-speed/high angle-of-attack characteristics, and airframe system integration requirements on fighter aircraft wing design. The approach adopted involves the theoretical and experimental investigation of four advanced aircraft configurations which differ only in wing geometry. Supersonic and low-speed/high angle-of-attack wind tunnel results have been obtained for 20 deg trapezoidal, 65 deg delta, 70/30-deg advanced cranked, and 70/66-deg advanced cranked wing configurations. The supersonic data show that the advanced cranked wings outperform the trapezoidal and delta wings at cruise and moderate lift conditions. Low-speed/high angle-of-attack results show that all wings have significant stability problems above an angle of attack of 20 deg. Aircraft sizing analysis results show that the advanced cranked-wing configurations are significantly lighter, based upon take-off gross weight, than either the trapezoidal or the delta wings.

  16. Aerodynamic Characteristics of a Number of Modified NACA Four-Digit-Series Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Loftin, Laurence K., Jr.; Cohen, Kenneth G.

    1947-01-01

    Theoretical pressure distributions and measured lift, drag, and pitching moment characteristics at three values of Reynolds number are presented for a group of NACA four-digit-series airfoil sections modified for high-speed applications. The effectiveness of flaps applied to these airfoils and the effect of standard leading-edge roughness were also investigated at one value of Reynolds number. Results are also presented of tests of three conventional NACA four-digit-series airfoil sections.

  17. Aerodynamic and propeller performance characteristics of a propfan-powered, semispan model

    NASA Technical Reports Server (NTRS)

    Levin, Alan D.; Smith, Ronald C.; Wood, Richard D.

    1985-01-01

    A semispan wing/body model with a powered propeller was tested to provide data on a total powerplant installation drag penalty of advanced propfan-powered aircraft. The test objectives were to determine the total power plant installation drag penalty on a representative propfan aircraft; to study the effect of configuration modifications on the installed powerplant drag; and to determine performance characteristics of an advanced design propeller which was mounted on a representative nacelle in the presence of a wing.

  18. Aerodynamic Characteristics of a 0.04956-Scale Model of the Convair F-102A Airplane at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Tempelmeyer, Kenneth E.; Osborne, Robert S.

    1955-01-01

    Tests have been conducted in the Langley 8-foot transonic tunnel on a 0.04956-scale model of the Convair F-102A airplane which employed an indented and extended fuselage, cambered wing leading edges, and deflected wing tips. Force and moment characteristics were obtained for Mach numbers from 0.60 to 1.135 at angles of attack up to 20 . In addition, tests were made over a limited angle-of-attack range to determine the effects of the cambered leading edges, deflected tips, and a nose section with a smooth area distribution. Fuselage modifications employed on the F-102A were responsible for a 25.percent reduction in the minimum drag-coefficient rise between the Mach numbers of 0.85 and 1.075 when compared with that for the earlier versions of the F-102. Although the wing modifications increased the F-102A subsonic minimum drag-coefficient level approximately 0.0020, they produced large decreases in drag at lifting conditions over that for the original (plane-wing) F-102. The F-102A had 15 to 25 percent higher maximum lift-drag ratios than did the original F-102. The F-102A had about 15 percent lower maximum lift-drag ratios at Mach numbers below 0.95 and slightly higher maximum lift-drag ratios at supersonic speeds when compared with those ratios for sn earlier modified-wing version of the F-102. Chordwise wing fences which provided suitable longitudinal stability for the original F-102 were not adequate for the cambered-wing F-102A The pitching-moment curves indicated a region of near neutral stability with possible pitch-up tendencies for the F-102A at high subsonic Mach numbers for lift coefficients between about 0.4 and 0.5.

  19. Assessment of the aerodynamic characteristics of thick airfoils in high Reynolds and moderate Ma numbers using CFD modeling

    NASA Astrophysics Data System (ADS)

    Prospathopoulos, John M.; Papadakis, Giorgos; Sieros, Giorgos; Voutsinas, Spyros G.; Chaviaropoulos, Takis K.; Diakakis, Kostas

    2014-06-01

    The aerodynamic characteristics of thick airfoils in high Reynolds number is assessed using two different CFD RANS solvers: the compressible MaPFlow and the incompressible CRES-flowNS-2D both equipped with the k-ω SST turbulence model. Validation is carried out by comparing simulations against existing high Reynolds experimental data for the NACA 63-018 airfoil in the range of -10° to 20°. The use of two different solvers aims on one hand at increasing the credibility in the results and on the other at quantifying the compressibility effects. Convergence of steady simulations is achieved within a mean range of -10° to 14° which refers to attached or light stall conditions. Over this range the simulations from the two codes are in good agreement. As stall gets deeper, steady convergence ceases and the simulations must switch to unsteady. Lift and drag oscillations are produced which increase in amplitude as the angle of attack increases. Finally in post stall, the average CL is found to decrease up to ~24° or 32° for the FFA or the NACA 63-018 airfoils respectively, and then recover to higher values indicating a change in the unsteady features of the flow.

  20. Effect of Horizontal-Tail Span and Vertical Location on the Aerodynamic Characteristics of an Unswept Tail Assembly in Sideslip

    NASA Technical Reports Server (NTRS)

    Riley, Donald R

    1954-01-01

    An investigation has been conducted in the Langley stability tunnel on a vertical-tail model with a stub fuselage in combination with various horizontal tails to determine the effect of horizontal-tail span and vertical location of the horizontal tail relative to the vertical tail on the aerodynamic characteristics of an unswept tail assembly in sideslip. The results of the investigation indicated that the induced loading carried by the horizontal tail produced a rolling moment about the point of attachment to the vertical tail which was strongly influenced by horizontal-tail span and vertical locations. The greatest effect of horizontal-tail span on the rolling-moment derivative of the complete tail assembly was obtained for horizontal-tail locations near the top of the vertical tail. Span loadings which were reduced to the static-stability derivatives were calculated for each configuration tested by applying the well-known finite-step method used for wings to the intersecting surfaces of the vertical and horizontal tails. The finite-step method provides a simple and effective means of investigating the span loadings of intersecting surfaces.