Science.gov

Sample records for supersymmetric family non-universal

  1. Identification of Family Non-universal Gauge Bosons in High-energy Electron-positron Collisions

    SciTech Connect

    Bagneid, Ali A.; Althubiti, Numa A.

    2011-10-27

    We examine effects on measurable observables in e{sup +}e{sup -} collisions resulting from the existence of additional neutral gauge bosons originating in extensions of the standard model. In particular, we consider family non-universal neutral gauge bosons occurring in the minimal supersymmetric standard model and in the Sp(6){sub L} x U(1){sub Y} model, as well as other theoretically motivated popular neutral gauge bosons. We show how the proper employment of the generation-dependent couplings of the extra gauge boson, and the appropriate adjustment of the beam polarization, not only improved the identification of the models but also enhanced the discovery potential of the family non-universal extra gauge bosons.

  2. Identification of Family Non-universal Gauge Bosons in High-energy Electron-positron Collisions

    NASA Astrophysics Data System (ADS)

    Bagneid, Ali A.; Althubiti, Numa A.

    2011-10-01

    We examine effects on measurable observables in e+e- collisions resulting from the existence of additional neutral gauge bosons originating in extensions of the standard model. In particular, we consider family non-universal neutral gauge bosons occurring in the minimal supersymmetric standard model and in the Sp(6)L ⊗ U(1)Y model, as well as other theoretically motivated popular neutral gauge bosons. We show how the proper employment of the generation-dependent couplings of the extra gauge boson, and the appropriate adjustment of the beam polarization, not only improved the identification of the models but also enhanced the discovery potential of the family non-universal extra gauge bosons.

  3. Supersymmetric Structure of two Families of Solitons

    NASA Astrophysics Data System (ADS)

    Koller, Andrew; Olshanii, Maxim

    2012-02-01

    Solitons have generated considerable interest in the cold atoms and condensed matter communities. We demonstrate that two families of n-soliton solutions (with n an integer) -- one for the attractive nonlinear Schr"odinger (NLS) equation, and one for the sine-Gordon (sG) equation -- originate from a quantum-mechanical supersymmetric (QM-SUSY) chain connecting a set of reflectionless operators Hn. The families consist of breather-type solitons for NLSootnotetextD. Schrader, IEEE J. Quantum Electron. 31, 2221 (1995). and multi-(anti)kink solitons with specific velocities for sG. The operators Hn, which we refer to as Akulin`s HamiltoniansootnotetextV. M. Akulin, Coherent Dynamics of Complex Quantum Systems (Springer, Heidelberg, 2006)., form reflectionless direct-scattering initial conditions for the inverse scattering method. Such a QM-SUSY chain is analogous to the known connection between QM-SUSY chains of P"oschl-Teller potentials and solitons of the Korteweg-de Vries (KdV) equationootnotetextSukumar, J. Phys. A 19, 2297 (1986). The existence of QM-SUSY chains connecting soliton solutions, now for three different integrable nonlinear equations, sheds light on the underlying mechanisms responsible for soliton generation.

  4. Three-family supersymmetric standardlike models from intersecting brane worlds.

    PubMed

    Cvetic, M; Shiu, G; Uranga, A M

    2001-11-12

    We construct the first three family N = 1 supersymmetric string model with standard model gauge group SU(3)(C) x SU(2)(L) x U(1)(Y) from an orientifold of type IIA theory on T(6)/(Z(2) x Z(2)) and D6-branes intersecting at angles. In addition to the minimal supersymmetric standard model particles, the model contains right-handed neutrinos, a chiral (but anomaly-free) set of exotic multiplets, and extra vectorlike multiplets. We discuss some phenomenological features of this model. PMID:11690462

  5. Pure annihilation type decays in the family non-universal Z‧ model

    NASA Astrophysics Data System (ADS)

    Ying, Li; Dan-Dan, Wang; Cai-Dian, Lü

    2016-01-01

    By assuming that the scalar meson belongs to the first excited states or the lowest lying ground states of qq¯‧, we study the pure annihilation-type decays in the QCD factorization approach. Within the Standard Model, the branching fractions are of the order of 10-8-10-7, which is possible to measure in the ongoing LHCb experiment or forthcoming Belle-II experiment. We also study these decays in the family non-universal Z‧ model. The results show that if mZ‧ ≈ 600 GeV (ζ = 0.02), both the branching fractions and CP asymmetries of could be changed remarkably, which provides us with a place for probing the effect of new physics. These results could be used to constrain the parameters of the Z‧ model. Supported by National Natural Science Foundation of China (11175151, 11575151, 11375208, 11235005) and the Program for New Century Excellent Talents in University (NCET) by Ministry of Education of P. R. China (NCET-13-0991)

  6. Supersymmetric parameter space of family symmetries

    SciTech Connect

    Velasco-Sevilla, L.

    2008-11-23

    In this talk I have emphasized the effects of considering departures from the minimal flavour violation conditions, in the context of CMSSM-like theories, introduced by boundary conditions at GUT scale from Family Symmetries. In [1] we have shown the results of running these conditions down to EW, where constraints from fermion masses and CKM matrix elements have been used. Only when the expansion parameter in the sdown-squark sector is relatively large it is possible to relax the lower limit from b{yields}s{gamma} on the universal gaugino mass. The expansion parameter associated with the slepton sector needs to be smaller than the analogous in the sdown-squark sector in order to satisfy the bound imposed by the decay of {tau}{yields}{mu}{mu}.

  7. Family non-universal U(1)' gauge symmetries and b {r_arrow} s transitions.

    SciTech Connect

    Barger, V.; Everett, L.; Jiang, J.; Langacker, P.; Liu, T.; Wagner, C .E. M.; High Energy Physics; Univ. of Chicago; Univ. of Wisconsin at Madison; Inst. for Advanced Study

    2009-01-01

    We present a correlated analysis for the {Delta}B = 1, 2 processes which occur via b {yields} s transitions within models with a family nonuniversal U(1){prime}. We take a model-independent approach and only require family universal charges for the first and second generations and small fermion mixing angles. The results of our analysis show that within this class of models, the anomalies in B{sub s}-B{sub s}{sup -} mixing and the time-dependent CP asymmetries of the penguin-dominated B{sub d} {yields} ({pi},{psi},{eta}{prime},{rho},{omega},f{sub 0})K{sub S} decays can be accommodated.

  8. Signatures of non-universal gaugino and scalar masses at the Large Hadron Collider (LHC)

    SciTech Connect

    Bhattacharya, Subhaditya

    2008-11-23

    We perform a multichannel analysis in context of the Large Hadron Collider (LHC) for supersymmetric (SUSY) theories with high-scale non-universal gaugino masses arising from different non-singlet representations of SU(5) and SO(10) gauge groups in a SUSY-GUT scenario and non-universal scalar masses in form of squark-slepton non-universality, third family scalar non-universality and that arising due to SO(10) D-terms. We present the numerical predictions over a wide region of parameter space using event generator Pythia. Certain broad features emerge from the study which may be useful to identify these non-universal schemes and distinguish them from the minimal supergravity (mSUGRA) framework.

  9. A comprehensive analysis of hadronic b → s transitions in a family non-universal Z‧ model

    NASA Astrophysics Data System (ADS)

    Chang, Qin; Li, Xin-Qiang; Yang, Ya-Dong

    2014-10-01

    Motivated by the latest improved measurements of B-meson decays, we make a comprehensive analysis of the impact of a family non-universal {{Z}^{\\prime }} boson on {{B}_{s}}-{{\\bar{B}}_{s}} mixing and two-body hadronic B-meson decays, all being characterized by the quark-level b\\to s transition. Explicitly 22 decay modes and the related 52 observables are considered, and some interesting correlations between them are also carefully examined. Firstly, the allowed oases of b-s-{{Z}^{\\prime }} coupling parameters |B_{sb}^{L,R}| and \\phi _{s}^{L,R} are extracted from {{B}_{s}}-{{\\bar{B}}_{s}} mixing. Then, in the ‘SM limit’ (i.e., no new types of {{Z}^{\\prime }}-induced four-quark operators arise compared to the SM case), we study the {{Z}^{\\prime }} effects on B\\to \\pi K, \\pi {{K}^{*}} and \\rho K decays. It is found that a new weak phase \\phi _{s}^{L}\\sim -{{90}^{{}^\\circ }} is crucial for resolving the observed ‘\\pi K CP puzzle’ and the allowed cases of the other {{Z}^{\\prime }} coupling parameters are also strongly restricted. Moreover, the {{Z}^{\\prime }} effects on {{\\bar{B}}_{s}}\\to KK, K{{K}^{*}} and {{\\pi }^{0}}\\phi decays, being induced by the same quark-level b\\to sq\\bar{q}\\;(q=u,d) transitions, are also investigated. In particular, it is found that the decay {{\\bar{B}}_{s}}\\to {{\\pi }^{0}}\\phi , once measured, would play a key role in revealing the observed ‘\\pi K CP puzzle’ and probing possible new physics hints. Finally, to check the non-universality of {{Z}^{\\prime }} couplings to light-quark pairs, we have studied the B\\to \\phi K decays in detail and found that the left-handed s-s-{{Z}^{\\prime }} coupling is different from the d-d-{{Z}^{\\prime }} one, which is due to the large A_{CP}^{dir}({{B}^{-}}\\to \\phi {{K}^{-}}) reported by the BaBar Collaboration.

  10. Family of fish-eye-related models and their supersymmetric partners

    SciTech Connect

    Makowski, Adam J.

    2010-05-15

    A large family of potentials related to the Maxwell fish-eye model is derived with the help of conformal mappings. It is shown that the whole family admits square-integrable E=0 solutions of the Schroedinger equation for discrete values of the coupling constant. A corresponding supersymmetric family of partner potentials to the preceding ones is derived as well. Some applications of the considered potentials are also discussed.

  11. Supersymmetric musings on the predictivity of family symmetries

    SciTech Connect

    Kadota, Kenji; Kersten, Joern; Velasco-Sevilla, Liliana

    2010-10-15

    We discuss the predictivity of family symmetries for the soft supersymmetry breaking parameters in the framework of supergravity. We show that unknown details of the messenger sector and the supersymmetry breaking hidden sector enter into the soft parameters, making it difficult to obtain robust predictions. We find that there are specific choices of messenger fields which can improve the predictivity for the soft parameters.

  12. Family number non-conservation induced by the supersymmetric mixing of scalar leptons

    SciTech Connect

    Levine, M.J.S.

    1987-08-01

    The most egregious aspect of (N = 1) supersymmetric theories is that each particle state is accompanied by a 'super-partner', a state with identical quantum numbers save that it differs in spin by one half unit. For the leptons these are scalars and are called ''sleptons'', or scalar leptons. These consist of the charged sleptons (selectron, smuon, stau) and the scalar neutrinos ('sneutrinos'). We examine a model of supersymmetry with soft breaking terms in the electroweak sector. Explicit mixing among the scalar leptons results in a number of effects, principally non-conservation of lepton family number. Comparison with experiment permits us to place constraints upon the model. 49 refs., 12 figs.

  13. Shifted one-parameter supersymmetric family of quartic asymmetric double-well potentials

    SciTech Connect

    Rosu, Haret C.; Mancas, Stefan C.; Chen, Pisin

    2014-10-15

    Extending our previous work (Rosu, 2014), we define supersymmetric partner potentials through a particular Riccati solution of the form F(x)=(x−c){sup 2}−1, where c is a real shift parameter, and work out the quartic double-well family of one-parameter isospectral potentials obtained by using the corresponding general Riccati solution. For these parametric double well potentials, we study how the localization properties of the two wells depend on the parameter of the potentials for various values of the shifting parameter. We also consider the supersymmetric parametric family of the first double-well potential in the Razavy chain of double well potentials corresponding to F(x)=1/2 sinh2x−2((1+√(2))sinh2x)/((1+√(2))cosh2x+1) , both unshifted and shifted, to test and compare the localization properties. - Highlights: • Quartic one-parameter DWs with an additional shift parameter are introduced. • Anomalous localization feature of their zero modes is confirmed at different shifts. • Razavy one-parameter DWs are also introduced and shown not to have this feature.

  14. Phenomenology of Models with Non-universal Sfermion Masses

    SciTech Connect

    Sakurai, Kazuki

    2008-11-23

    We propose some special type of non-universal sfermion mass spectrum inspired from naturalness of electroweak symmetry breaking and supersymmetric flavor problem. We discuss phenomenology of the models, lepton flavor violation, CP asymmetry of rare B decays, and LHC signature are investigated.

  15. Comments on Dihedral and Supersymmetric Extensions of a Family of Hamiltonians on a Plane

    NASA Astrophysics Data System (ADS)

    Quesne, C.

    For any odd k, a connection is established between the dihedral and supersymmetric extensions of the Tremblay-Turbiner-Winternitz Hamiltonians Hk on a plane. For this purpose, the elements of the dihedral group D2k are realized in terms of two independent pairs of fermionic creation and annihilation operators and some interesting trigonometric identities are demonstrated.

  16. SUSY dark matter and non-universal gaugino masses

    SciTech Connect

    Birkedal-Hansen, Andreas

    2002-04-15

    In this talk the authors investigate the dark matter prospects for supersymmetric models with non-universal gaugino masses. They motivate the use of non-universal gaugino masses from several directions, including problems, with the current favorite scenario, the cMSSM. They then display new corridors of parameter space that allow an acceptable dark matter relic density once gaugino mass universality is relaxed. They finish with a specific string-derived model that allows this universality relaxation and then use the dark matter constraint to make specific statements about the hidden sector of the model.

  17. Supersymmetric Galileons

    SciTech Connect

    Khoury, Justin; Lehners, Jean -Luc

    2011-08-15

    Galileon theories are of considerable interest since they allow for stable violations of the null energy condition. Since such violations could have occurred during a high-energy regime in the history of our universe, we are motivated to study supersymmetric extensions of these theories. This is carried out in this paper, where we construct generic classes of N = 1 supersymmetric Galileon Lagrangians. They are shown to admit non-equivalent stress-energy tensors and, hence, vacua manifesting differing conditions for violating the null energy condition. The temporal and spatial fluctuations of all component fields of the supermultiplet are analyzed and shown to be stable on a large number of such backgrounds. In the process, we uncover a surprising connection between conformal Galileon and ghost condensate theories, allowing for a deeper understanding of both types of theories.

  18. Supersymmetric Galileons

    DOE PAGESBeta

    Khoury, Justin; Lehners, Jean -Luc; Ovrut, Burt A.

    2011-08-15

    Galileon theories are of considerable interest since they allow for stable violations of the null energy condition. Since such violations could have occurred during a high-energy regime in the history of our universe, we are motivated to study supersymmetric extensions of these theories. This is carried out in this paper, where we construct generic classes of N = 1 supersymmetric Galileon Lagrangians. They are shown to admit non-equivalent stress-energy tensors and, hence, vacua manifesting differing conditions for violating the null energy condition. The temporal and spatial fluctuations of all component fields of the supermultiplet are analyzed and shown to bemore » stable on a large number of such backgrounds. In the process, we uncover a surprising connection between conformal Galileon and ghost condensate theories, allowing for a deeper understanding of both types of theories.« less

  19. CP asymmetry of B{yields}K{pi} in SUSY models with non-universal A-terms

    SciTech Connect

    Khalil, Shaaban

    2008-11-23

    We show that the recent results of 5.2{sigma} difference between the CP asymmetries of B{sup 0}{yields}K{sup +}{pi}{sup -} and B{sup +}{yields}K{sup +}{pi}{sup 0} decays can be accommodated in supersymmetric models with non-universal A-terms.

  20. Supersymmetric oscillator in optics

    NASA Technical Reports Server (NTRS)

    Chumakov, Sergey M.; Wolf, Kurt Bernardo

    1995-01-01

    We show that the supersymmetric structure (in the sense of supersymmetric quantum mechanics) appears in Helmholtz optics describing light propagation in waveguides. For the case of elliptical waveguides, with the accuracy of paraxial approximation it admits a simple physical interpretation. The supersymmetry connects light beams of different colors. The difference in light frequencies for the supersymmetric beams is determined by the transverse gradient of the refractive index. These beams have the save wavelength in the propagation direction and can form a stable interference pattern.

  1. Renormalisation group analysis of supersymmetric particle interactions

    NASA Astrophysics Data System (ADS)

    Box, Andrew D.

    In the Minimal Supersymmetric Standard Model (MSSM), there are numerous sources of flavour-violation in addition to the usual Kobayashi-Maskawa mixing matrix of the Standard Model. We reexamine the renormalisation group equations (RGEs) with a view to investigating flavour effects in a supersymmetric theory with an arbitrary flavour structure at some high scale. To incorporate (two-loop sized) threshold effects in the one-loop RGEs, we calculate the beta-functions using a sequence of (non-supersymmetric) effective theories with heavy particles decoupled at the scale of their mass, keeping track of the fact that many couplings (such as gauge and gaugino couplings) which are equal in an exact supersymmetric theory may no longer be equal once the supersymmetry (SUSY) is broken. We find that this splitting, which is ignored in the literature, may be larger than two-loop terms that are included. In addition, gaugino couplings develop flavour structure that is absent without including decoupling effects. A program (to be incorporated into ISAJET) has been developed, which includes flavour-violating couplings of superparticles and solves the two-loop threshold RGEs subject to specified high scale inputs. The weak scale flavour structure derived in this way can be applied to the study of flavour-changing decays of SUSY particles. As an illustration, we revisit the branching ratio of the flavour-violating decay of the top squark. We find that, in the minimal supergravity (mSUGRA) class of models, previous estimates for the width of this decay have been too large by a factor 10 -- 25. However, this decay rate is sensitive to the flavour structure of the high scale boundary conditions. We analyse the consequences of introducing non-universality in the high scale soft SUSY-breaking mass matrices and find that under these conditions the partial width can be altered by a large amount.

  2. Supersymmetric Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Grigore, D. R.

    2005-03-01

    We consider some supersymmetric multiplets in a purely quantum framework. A crucial point is to ensure the positivity of the scalar product in the Hilbert space of the quantum system. For the vector multiplet we obtain some discrepancies with respect to the literature in the expression of the super-propagator and we prove that the model is consistent only for positive mass. The gauge structure is constructed purely deductive and leads to the necessity of introducing scalar ghost superfields, in analogy to the usual gauge theories. Then we consider a supersymmetric extension of quantum gauge theory based on a vector multiplet containing supersymmetric partners of spin 3/2 for the vector fields. As an application we consider the supersymmetric electroweak theory. The resulting self-couplings of the gauge bosons agree with the standard model up to a divergence.

  3. Supersymmetric sigma models

    SciTech Connect

    Bagger, J.A.

    1984-09-01

    We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model.

  4. Spinning supersymmetric Q balls

    SciTech Connect

    Campanelli, L.; Ruggieri, M.

    2009-08-01

    We construct nontopological solitonic solutions in (3+1)-dimensional Minkowski spacetime carrying a conserved global U(1) charge and nonvanishing angular momentum in a supersymmetric extension of the standard model with low-energy, gauge-mediated symmetry breaking.

  5. Supersymmetric k-defects

    NASA Astrophysics Data System (ADS)

    Koehn, Michael; Trodden, Mark

    2016-04-01

    In supersymmetric theories, topological defects can have nontrivial behaviors determined purely by whether or not supersymmetry is restored in the defect core. A well-known example of this is that some supersymmetric cosmic strings are automatically superconducting, leading to important cosmological effects and constraints. We investigate the impact of nontrivial kinetic interactions, present in a number of particle physics models of interest in cosmology, on the relationship between supersymmetry and supercurrents on strings. We find that in some cases it is possible for superconductivity to be disrupted by the extra interactions.

  6. Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, M. H.; Salman, M.; Shalaby, A.; Wiese, U.-J.

    2013-10-01

    We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant.

  7. Supersymmetric DBI inflation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shin; Yamaguchi, Masahide; Yokoyama, Daisuke

    2012-11-01

    We discuss a supersymmetric version of DBI (Dirac-Born-Infeld) inflation, which is a typical inflation model in string cosmology. The supersymmetric DBI action together with a superpotential always leads to correction terms associated with the potential into the kinetic term, which drastically change the dynamics of DBI inflation. We find two significant features of supersymmetric DBI inflation. The first one is that ultra-relativistic motion is prohibited to cause inflation, which leads to order of unity sound velocity squared and hence small non-Gaussianities of primordial curvature perturbations. The second one is that the relation between the tensor-to-scalar ratio and the field variation is modified. Then, significant tensor-to-scalar ratio r≳0.01 is possible because the variation of the canonically normalized inflaton can be beyond the reduced Planck scale. These new features are in sharp contrast with those of the standard non-supersymmetric DBI inflation and hence have a lot of interest implications on upcoming observations of cosmic microwave background (CMB) anisotropies by the Planck satellite as well as direct detection experiments of gravitational waves like DECIGO and BBO.

  8. A composite supersymmetric model of quarks and leptons

    NASA Astrophysics Data System (ADS)

    Barbieri, R.

    1983-01-01

    A supersymmetric model is presented in which quarks and leptons (and perhaps weak vector bosons) are composite of fermions and scalars. It may be considered as the supersymmetric extension of a model previously discussed (by Barbieri, Mohapatra and Masiero, and Casalbuoni and Gatto), based on the weak group SU(2) L × SU(2) R × U(1). A speculative interpretation of the families emerges.

  9. Nearly Supersymmetric Dark Atoms

    DOE PAGESBeta

    Behbahani, Siavosh R.; Jankowiak, Martin; Rube, Tomas; Wacker, Jay G.

    2011-01-01

    Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models, supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed, and several benchmarkmore » models are described. General features of nonrelativistic supersymmetric bound states are emphasized.« less

  10. Nearly Supersymmetric Dark Atoms

    SciTech Connect

    Behbahani, Siavosh R.; Jankowiak, Martin; Rube, Tomas; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2011-08-12

    Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed and several benchmark models are described. General features of non-relativistic supersymmetric bound states are emphasized.

  11. Semiclassical Supersymmetric Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Kiefer, Claus; Lück, Tobias; Vargas Moniz, Paulo

    2008-09-01

    We develop a semiclassical approximation scheme for the constraint equations of supersymmetric canonical quantum gravity. This is achieved by a Born-Oppenheimer type of expansion, in analogy to the case of the usual Wheeler-DeWitt equation. We recover at consecutive orders the Hamilton-Jacobi equation, the functional Schrödinger equation, and quantum gravitational correction terms to this Schrödinger equation. In particular, our work has the following implications: (i) the Hamilton-Jacobi equation and therefore the background spacetime must involve the gravitino, (ii) a (many fingered) local time parameter has to be present on Super Riem Σ (the space of all possible tetrad and gravitino fields), (iii) quantum supersymmetric gravitational corrections affect the evolution of the very early universe.

  12. Supersymmetric biorthogonal quantum systems

    SciTech Connect

    Curtright, Thomas; Mezincescu, Luca; Schuster, David

    2007-09-15

    We discuss supersymmetric biorthogonal systems, with emphasis given to the periodic solutions that occur at spectral singularities of PT symmetric models. For these periodic solutions, the dual functions are associated polynomials that obey inhomogeneous equations. We construct in detail some explicit examples for the supersymmetric pairs of potentials V{sub {+-}}(z)=-U(z){sup 2}{+-}z(d/dz)U(z) where U(z){identical_to}{sigma}{sub k>0}{upsilon}{sub k}z{sup k}. In particular, we consider the cases generated by U(z)=z and z/(1-z). We also briefly consider the effects of magnetic vector potentials on the partition functions of these systems.

  13. Dynamical supersymmetric Dirac Hamiltonians

    SciTech Connect

    Ginocchio, J.N.

    1986-01-01

    Using the language of quantum electrodynamics, the Dirac Hamiltonian of a neutral fermion interacting with a tensor field is examined. A supersymmetry found for a general Dirac Hamiltonian of this type is discussed, followed by consideration of the special case of a harmonic electric potential. The square of the Dirac Hamiltonian of a neutral fermion interacting via an anomalous magnetic moment in an electric potential is shown to be equivalent to a three-dimensional supersymmetric Schroedinger equation. It is found that for a potential that grows as a power of r, the lowest energy of the Hamiltonian equals the rest mass of the fermion, and the Dirac eigenfunction has only an upper component which is normalizable. It is also found that the higher energy states have upper and lower components which form a supersymmetric doublet. 15 refs. (LEW)

  14. Supersymmetric fifth order evolution equations

    SciTech Connect

    Tian, K.; Liu, Q. P.

    2010-03-08

    This paper considers supersymmetric fifth order evolution equations. Within the framework of symmetry approach, we give a list containing six equations, which are (potentially) integrable systems. Among these equations, the most interesting ones include a supersymmetric Sawada-Kotera equation and a novel supersymmetric fifth order KdV equation. For the latter, we supply some properties such as a Hamiltonian structures and a possible recursion operator.

  15. The Supersymmetric Fat Higgs

    SciTech Connect

    Harnik, Roni

    2004-10-27

    Supersymmetric models have traditionally been assumed to be perturbative up to high scales due to the requirement of calculable unification. In this note I review the recently proposed `Fat Higgs' model which relaxes the requirement of perturbativity. In this framework, an NMSSM-like trilinear coupling becomes strong at some intermediate scale. The NMSSM Higgses are meson composites of an asymptotically-free gauge theory. This allows us to raise the mass of the Higgs, thus alleviating the MSSM of its fine tuning problem. Despite the strong coupling at an intermediate scale, the UV completion allows us to maintain gauge coupling unification.

  16. Supersymmetrizing massive gravity

    NASA Astrophysics Data System (ADS)

    Malaeb, O.

    2013-07-01

    When four scalar fields with global Lorentz symmetry are coupled to gravity and take a vacuum expectation value, breaking diffeomorphism invariance spontaneously, the graviton becomes massive. This model is supersymmetrized by considering four N=1 chiral superfields with global Lorentz symmetry. The global supersymmetry is promoted to a local one using the rules of tensor calculus of coupling the N=1 supergravity Lagrangian to the four chiral multiplets. When the scalar components of the chiral multiplets zA acquire a vacuum expectation value, both diffeomorphism invariance and local supersymmetry are broken spontaneously. The global Lorentz index A becomes identified with the space-time Lorentz index, making the scalar fields zA vectors and the chiral spinors ψA spin-3/2 Rarita-Schwinger fields. We show that the spectrum of the model in the broken phase consists of a massive spin-2 field, two massive spin-3/2 fields with different mass and a massive vector.

  17. Supersymmetric string waves

    SciTech Connect

    Bergshoeff, E.A. ); Kallosh, R.; Ortin, T. )

    1993-06-15

    We present plane-wave-type solutions of the lowest-order superstring effective action which have unbroken space-time supersymmetries. They are given by a stringy generalization of the Brinkmann metric, dialton, axion, and gauge fields. Some conspiracy between the metric and the axion field is required. The [alpha][prime] stringy corrections to the effective on-shell action, to the equations of motion (and therefore to the solutions themselves), and to the supersymmetry transformations are shown to vanish for a special class of these solutions that we call supersymmetric string waves (SSW's). In the SSW solutions, there exists a conspiracy not only between the metric and the axion field, but also between the gauge fields and the metric, since the embedding of the spin connection in the gauge group is required.

  18. The Classification of Highly Supersymmetric Supergravity Solutions

    SciTech Connect

    Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.

    2009-02-02

    The spinorial geometry method is an effective method for constructing systematic classifications of supersymmetric supergravity solutions. Recent work on analysing highly supersymmetric solutions in type IIB supergravity using this method is reviewed. It is shown that all supersymmetric solutions of IIB supergravity with more than 28 Killing spinors are locally maximally supersymmetric.

  19. Supersymmetric mode converters

    NASA Astrophysics Data System (ADS)

    Heinrich, Matthias; Miri, Mohammad-Ali; Stützer, Simon; Nolte, Stefan; Szameit, Alexander; Christodoulides, Demetrios N.

    2015-08-01

    In recent years, the ever-increasing demand for high-capacity transmission systems has driven remarkable advances in technologies that encode information on an optical signal. Mode-division multiplexing makes use of individual modes supported by an optical waveguide as mutually orthogonal channels. The key requirement in this approach is the capability to selectively populate and extract specific modes. Optical supersymmetry (SUSY) has recently been proposed as a particularly elegant way to resolve this design challenge in a manner that is inherently scalable, and at the same time maintains compatibility with existing multiplexing strategies. Supersymmetric partners of multimode waveguides are characterized by the fact that they share all of their effective indices with the original waveguide. The crucial exception is the fundamental mode, which is absent from the spectrum of the partner waveguide. Here, we demonstrate experimentally how this global phase-matching property can be exploited for efficient mode conversion. Multimode structures and their superpartners are experimentally realized in coupled networks of femtosecond laser-written waveguides, and the corresponding light dynamics are directly observed by means of fluorescence microscopy. We show that SUSY transformations can readily facilitate the removal of the fundamental mode from multimode optical structures. In turn, hierarchical sequences of such SUSY partners naturally implement the conversion between modes of adjacent order. Our experiments illustrate just one of the many possibilities of how SUSY may serve as a building block for integrated mode-division multiplexing arrangements. Supersymmetric notions may enrich and expand integrated photonics by versatile optical components and desirable, yet previously unattainable, functionalities.

  20. Aspects of supersymmetric BRST cohomology

    NASA Astrophysics Data System (ADS)

    Brandt, Friedemann

    2013-10-01

    The application and extension of well-known BRST cohomological methods to supersymmetric field theories are discussed. The focus is on the emergence and particular features of supersymmetry algebra cohomology in this context. In particular it is discussed and demonstrated that supersymmetry algebra cohomology emerges within the cohomological analysis of standard supersymmetric field theories whether or not the commutator algebra of the symmetry transformations closes off-shell.

  1. Retrofitted supersymmetric models

    NASA Astrophysics Data System (ADS)

    Bose, Manatosh

    This thesis explores several models of metastable dynamic supersymmetry breaking (MDSB) and a supersymmetric model of hybrid inflation. All of these models possess discrete R-symmetries. We specially focus on the retrofitted models for supersymmetry breaking models. At first we construct retrofitted models of gravity mediation. In these models we explore the genericity of the so-called "split supersymmetry." We show that with the simplest models, where the goldstino multiplet is neutral under the discrete R-symmetry, a split spectrum is not generic. However if the goldstino superfield is charged under some symmetry other than the R-symmetry, then a split spectrum is achievable but not generic. We also present a gravity mediated model where the fine tuning of the Z-boson mass is dictated by a discrete choice rather than a continuous tuning. Then we construct retrofitted models of gauge mediated SUSY breaking. We show that, in these models, if the approximate R-symmetry of the theory is spontaneously broken, the messenger scale is fixed; if explicitly broken by retrofitted couplings, a very small dimensionless number is required; if supergravity corrections are responsible for the symmetry breaking, at least two moderately small couplings are required, and that there is a large range of possible messenger scales. Finally we switch our attention to small field hybrid inflation. We construct a model that yields a spectral index ns = 0.96. Here, we also briefly discuss the possibility of relating the scale of inflation with the dynamics responsible for supersymmetry breaking.

  2. Supersymmetric origin of matter

    SciTech Connect

    Balazs, C.; Carena, M.; Menon, A.; Morrissey, D.E.; Wagner, C.E.M.

    2005-04-01

    The minimal supersymmetric extension of the standard model (MSSM) can provide the correct neutralino relic abundance and baryon number asymmetry of the universe. Both may be efficiently generated in the presence of CP violating phases, light charginos and neutralinos, and a light top squark. Because of the coannihilation of the neutralino with the light stop, we find a large region of parameter space in which the neutralino relic density is consistent with WMAP and SDSS data. We perform a detailed study of the additional constraints induced when CP violating phases, consistent with the ones required for baryogenesis, are included. We explore the possible tests of this scenario from present and future electron electric dipole moment (EDM) measurements, direct neutralino detection experiments, collider searches and the b{yields}s{gamma} decay rate. We find that the EDM constraints are quite severe and that electron EDM experiments, together with stop searches at the Tevatron and Higgs searches at the LHC, will provide a definite test of our scenario of electroweak baryogenesis in the next few years.

  3. Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians

    SciTech Connect

    Al-Hashimi, M.H.; Salman, M.; Shalaby, A.; Wiese, U.-J.

    2013-10-15

    We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant. -- Highlights: •Self-adjoint extension theory and contact interactions. •Application of self-adjoint extensions to supersymmetry. •Contact interactions in finite volume with Robin boundary condition.

  4. Massive supersymmetric quantum gauge theory

    NASA Astrophysics Data System (ADS)

    Grigore, D. R.; Gut, M.; Scharf, G.

    2005-08-01

    We continue the study of the supersymmetric vector multiplet in a purely quantum framework. We obtain some new results which make the connection with the standard literature. First we construct the one-particle physical Hilbert space taking into account the (quantum) gauge structure of the model. Then we impose the condition of positivity for the scalar product only on the physical Hilbert space. Finally we obtain a full supersymmetric coupling which is gauge invariant in the supersymmetric sense in the first order of perturbation theory. By integrating out the Grassmann variables we get an interacting Lagrangian for a massive Yang-Mills theory related to ordinary gauge theory; however the number of ghost fields is doubled so we do not obtain the same ghost couplings as in the standard model Lagrangian.

  5. Natural supersymmetric minimal dark matter

    NASA Astrophysics Data System (ADS)

    Fabbrichesi, Marco; Urbano, Alfredo

    2016-03-01

    We show how the Higgs boson mass is protected from the potentially large corrections due to the introduction of minimal dark matter if the new physics sector is made supersymmetric. The fermionic dark matter candidate (a 5-plet of S U (2 )L) is accompanied by a scalar state. The weak gauge sector is made supersymmetric, and the Higgs boson is embedded in a supersymmetric multiplet. The remaining standard model states are nonsupersymmetric. Nonvanishing corrections to the Higgs boson mass only appear at three-loop level, and the model is natural for dark matter masses up to 15 TeV—a value larger than the one required by the cosmological relic density. The construction presented stands as an example of a general approach to naturalness that solves the little hierarchy problem which arises when new physics is added beyond the standard model at an energy scale around 10 TeV.

  6. Supersymmetric standard model spectra from RCFT orientifolds

    NASA Astrophysics Data System (ADS)

    Dijkstra, T. P. T.; Huiszoon, L. R.; Schellekens, A. N.

    2005-03-01

    We present supersymmetric, tadpole-free d=4,N=1 orientifold vacua with a three family chiral fermion spectrum that is identical to that of the standard model. Starting with all simple current orientifolds of all Gepner models we perform a systematic search for such spectra. We consider several variations of the standard four-stack intersecting brane realization of the standard model, with all quarks and leptons realized as bifundamentals and perturbatively exact baryon and lepton number symmetries, and with a U(1 vector boson that does not acquire a mass from Green-Schwarz terms. The number of supersymmetric Higgs pairs H+H is left free. In order to cancel all tadpoles, we allow a "hidden" gauge group, which must be chirally decoupled from the standard model. We also allow for non-chiral mirror-pairs of quarks and leptons, non-chiral exotics and (possibly chiral) hidden, standard model singlet matter, as well as a massless B-L vector boson. All of these less desirable features are absent in some cases, although not simultaneously. In particular, we found cases with massless Chan-Paton gauge bosons generating nothing more than SU(3)×SU(2)×U(1). We obtain almost 180 000 rationally distinct solutions (not counting hidden sector degrees of freedom), and present distributions of various quantities. We analyse the tree level gauge couplings, and find a large range of values, remarkably centered around the unification point.

  7. Split sfermion families, Yukawa unification and muon g - 2

    NASA Astrophysics Data System (ADS)

    Ajaib, M. Adeel; Gogoladze, Ilia; Shafi, Qaisar; Ün, Cem Salih

    2014-05-01

    We consider two distinct classes of Yukawa unified supersymmetric SO(10) models with non-universal and universal soft supersymmetry breaking (SSB) gaugino masses at M GUT. In both cases, we assume that the third family SSB sfermion masses at M GUT are different from the corresponding sfermion masses of the first two families (which are equal). For the SO(10) model with essentially arbitrary (non-universal) gaugino masses at M GUT, it is shown that t- b- τ Yukawa coupling unification is compatible, among other things, with the 125 GeV Higgs boson mass, the WMAP relic dark matter density, and with the resolution of the apparent muon g - 2 anomaly. The colored sparticles in this case all turn out to be quite heavy, of order 5 TeV or more, but the sleptons (smuon and stau) can be very light, of order 200 GeV or so. For the SO(10) model with universal gaugino masses and NUHM2 boundary conditions, the muon g - 2 anomaly cannot be resolved. However, the gluino in this class of models is not too heavy, ≲ 3 TeV, and therefore may be found at the LHC.

  8. Towards Noncommutative Supersymmetric Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Sabido, M.; Guzmán, W.; Socorro, J.

    2010-12-01

    In this work a construction of supersymmetric noncommutative cosmology is presented. We start with a ``noncommutative'' deformation of the minisuperspace variables, and by using the time reparametrization invariance of the noncommutative bosonic model we proceed to construct a super field description of the model.

  9. Supersymmetric Ruijsenaars-Schneider Model

    NASA Astrophysics Data System (ADS)

    Blondeau-Fournier, O.; Desrosiers, P.; Mathieu, P.

    2015-03-01

    An integrable supersymmetric generalization of the trigonometric Ruijsenaars-Schneider model is presented whose symmetry algebra includes the super Poincaré algebra. Moreover, its Hamiltonian is shown to be diagonalized by the recently introduced Macdonald superpolynomials. Somewhat surprisingly, the consistency of the scalar product forces the discreteness of the Hilbert space.

  10. Supersymmetric Higgs Bosons and Beyond

    SciTech Connect

    Carena, Marcela; Kong, Kyoungchul; Ponton, Eduardo; Zurita, Jose; /Fermilab /Buenos Aires U.

    2010-08-26

    We consider supersymmetric models that include particles beyond the Minimal Supersymmetric Standard Model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with respect to both the Standard Model and the MSSM.

  11. Supersymmetric unification requires extra dimensions

    SciTech Connect

    Chen, Mu-Chun; Fallbacher, Maximilian; Ratz, Michael

    2013-05-23

    We discuss settings that predict precision gauge unification in the minimal supersymmetric standard model. We show that, if one requires anomaly freedom and fermion masses while demanding that unification is not an accident, only R symmetries can forbid the supersymmetric Higgs mass term {mu}. We then review the proof that R symmetries are not available in conventional grand unified theories (GUTs) and argue that this prevents natural solutions to the doublet-triplet splitting problem in four dimensions. On the other hand, higher-dimensional GUTs do not suffer from this problem. We briefly comment on an explicit string-derived model in which the {mu} and dimension five proton decay problems are solved by an order four discrete R symmetry, and comment on the higher-dimensional origin of this symmetry.

  12. Hyperbolic supersymmetric quantum Hall effect

    SciTech Connect

    Hasebe, Kazuki

    2008-12-15

    Developing a noncompact version of the supersymmetric Hopf map, we formulate the quantum Hall effect on a superhyperboloid. Based on OSp(1|2) group theoretical methods, we first analyze the one-particle Landau problem, and successively explore the many-body problem where the Laughlin wave function, hard-core pseudopotential Hamiltonian, and topological excitations are derived. It is also shown that the fuzzy superhyperboloid emerges at the lowest Landau level.

  13. A supersymmetric extension of quantum gauge theory

    NASA Astrophysics Data System (ADS)

    Grigore, D. R.; Scharf, G.

    2003-01-01

    We consider a supersymmetric extension of quantum gauge theory based on a vector multiplet containing supersymmetric partners of spin 3/2 for the vector fields. The constructions of the model follows closely the usual construction of gauge models in the Epstein-Glaser framework for perturbative field theory. Accordingly, all the arguments are completely of quantum nature without reference to a classical supersymmetric theory. As an application we consider the supersymmetric electroweak theory. The resulting self-couplings of the gauge bosons agree with the standard model up to a divergence.

  14. Duality in supersymmetric Yang-Mills theory

    SciTech Connect

    Peskin, M.E.

    1997-02-01

    These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N{sub f} < N{sub c}, in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N{sub f} large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs.

  15. Non-supersymmetric microstates of the MSW system

    NASA Astrophysics Data System (ADS)

    Banerjee, Souvik; Chowdhury, Borun D.; Vercnocke, Bert; Virmani, Amitabh

    2014-05-01

    We present an analysis parallel to that of Giusto, Ross, and Saxena (arXiv:0708.3845) and construct a discrete family of non-supersymmetric microstate geometries of the Maldacena-Strominger-Witten system. The supergravity configuration in which we look for the smooth microstates is constructed using SO(4, 4) dualities applied to an appropriate seed solution. The SO(4, 4) approach offers certain technical advantages. Our microstate solutions are smooth in five dimensions, as opposed to all previously known non-supersymmetric microstates with AdS3 cores, which are smooth only in six dimensions. The decoupled geometries for our microstates are related to global AdS3 × S2 by spectral flows.

  16. Supersymmetric quantum spin chains and classical integrable systems

    NASA Astrophysics Data System (ADS)

    Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei

    2015-05-01

    For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y( gl( N| M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.

  17. Higgs Physics in Supersymmetric Models

    NASA Astrophysics Data System (ADS)

    Jaiswal, Prerit

    Standard Model (SM) successfully describes the particle spectrum in nature and the interaction between these particles using gauge symmetries. However, in order to give masses to these particles, the electroweak gauge symmetry must be broken. In the SM, this is achieved through the Higgs mechanism where a scalar Higgs field acquires a vacuum expectation value. It is well known that the presence of a scalar field in the SM leads to a hierarchy problem, and therefore the SM by itself can not be the fundamental theory of nature. A well-motivated extension of the SM which addresses this problem is the Minimal Supersymmetric Standard Model (MSSM). The Higgs sector in the MSSM has a rich phenomenology and its predictions can be tested at colliders. In this thesis, I will describe three examples in supersymmetric models where the Higgs phenomenology is significantly different from that in SM. The first example is the MSSM with large tan β where the Higgs coupling to the bottom quarks receives large radiative supersymmetric QCD corrections. As a consequence, bg bh can be a dominant Higgs production mode in certain parameter spaces of the MSSM. A second example is an extension of the MSSM wherein a fourth generation of chiral fermions and their super-partners are added. I will show that the Higgs boson in such models can be as heavy as ˜ 500 GeV. Finally, as a third example, the MSSM with one of the stops lighter than the top quark is considered. Such a scenario is required to generate sufficient baryon asymmetry in the universe through the process of electroweak baryogenesis. By using the correlations between the Higgs production and decay rates, it will be shown that the electroweak baryogenesis in the MSSM is highly constrained.

  18. Non-supersymmetric string theory

    NASA Astrophysics Data System (ADS)

    Martinec, Emil J.; Robbins, Daniel; Sethi, Savdeep

    2011-10-01

    A class of non-supersymmetric string backgrounds can be constructed using twists that involve space-time fermion parity. We propose a non-perturbative definition of string theory in these backgrounds via gauge theories with supersymmetry softly broken by twisted boundary conditions. The perturbative string spectrum is reproduced, and qualitative effects of the interactions are discussed. Along the way, we find an interesting mechanism for inflation. The end state of closed string tachyon condensation is a highly excited state in the gauge theory which, in all likelihood, does not have a geometric interpretation.

  19. Ultraviolet divergences and supersymmetric theories

    SciTech Connect

    Sagnotti, A.

    1984-09-01

    This article is closely related to the one by Ferrara in these same Proceedings. It deals with what is perhaps the most fascinating property of supersymmetric theories, their improved ultraviolet behavior. My aim here is to present a survey of the state of the art as of August, 1984, and a somewhat more detailed discussion of the breakdown of the superspace power-counting beyond N = 2 superfields. A method is also described for simplifying divergence calculations that uses the locality of subtracted Feynman integrals. 74 references.

  20. Wilson loops in supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Pestun, Vasily

    This thesis is devoted to several exact computations in four-dimensional supersymmetric gauge field theories. In the first part of the thesis we prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the N = 4 supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure N = 2 and the N* = 2 supersymmetric Yang-Mills theory on a four-sphere. Circular supersymmetric Wilson loops in four-dimensional N = 2 superconformal gauge theory are treated similarly. In the second part we consider supersymmetric Wilson loops of arbitrary shape restricted to a two-dimensional sphere in the four-dimensional N = 4 supersymmetric Yang-Mills theory. We show that expectation value for these Wilson loops can be exactly computed using a two-dimensional theory closely related to the topological two-dimensional Higgs-Yang-Mills theory, or two-dimensional Yang-Mills theory for the complexified gauge group.

  1. Spinon bases in supersymmetric CFTs

    NASA Astrophysics Data System (ADS)

    Fokkema, Thessa; Schoutens, Kareljan

    2016-07-01

    We present a novel way to organise the finite size spectra of a class of conformal field theories (CFT) with { N }=2 or (nonlinear) { N }=4 superconformal symmetry. Generalising the spinon basis of the {SU}{(n)}1 WZW theories, we introduce supersymmetric spinons ({φ }-,{φ }+), which form a representation of the supersymmetry algebra. In each case, we show how to construct a multi-spinon basis of the chiral CFT spectra. The multi-spinon states are labelled by a collection \\{{n}j\\} of (discrete) momenta. The state-content for given choice of \\{{n}j\\} is determined through a generalised exclusion principle, similar to Haldane's ‘motif’ rules for the {SU}{(n)}1 theories. In the simplest case, which is the { N }=2 superconformal theory with central charge c = 1, we develop an algebraic framework similar to the Yangian symmetry of the {SU}{(2)}1 theory. It includes an operator H 2, akin to a CFT Haldane–Shastry Hamiltonian, which is diagonalised by multi-spinon states. In all cases studied, we obtain finite partition sums by capping the spinon-momenta to some finite value. For the { N }=2 superconformal CFTs, this finitisation precisely leads to the so-called M k supersymmetric lattice models with characteristic order-k exclusion rules on the lattice. Finitising the c = 2 CFT with nonlinear { N }=4 superconformal symmetry similarly gives lattice model partition sums for spin-full Fermions with on-site and nearest neighbour exclusion.

  2. A Maximally Supersymmetric Kondo Model

    SciTech Connect

    Harrison, Sarah; Kachru, Shamit; Torroba, Gonzalo; /Stanford U., Phys. Dept. /SLAC

    2012-02-17

    We study the maximally supersymmetric Kondo model obtained by adding a fermionic impurity to N = 4 supersymmetric Yang-Mills theory. While the original Kondo problem describes a defect interacting with a free Fermi liquid of itinerant electrons, here the ambient theory is an interacting CFT, and this introduces qualitatively new features into the system. The model arises in string theory by considering the intersection of a stack of M D5-branes with a stack of N D3-branes, at a point in the D3 worldvolume. We analyze the theory holographically, and propose a dictionary between the Kondo problem and antisymmetric Wilson loops in N = 4 SYM. We perform an explicit calculation of the D5 fluctuations in the D3 geometry and determine the spectrum of defect operators. This establishes the stability of the Kondo fixed point together with its basic thermodynamic properties. Known supergravity solutions for Wilson loops allow us to go beyond the probe approximation: the D5s disappear and are replaced by three-form flux piercing a new topologically non-trivial S3 in the corrected geometry. This describes the Kondo model in terms of a geometric transition. A dual matrix model reflects the basic properties of the corrected gravity solution in its eigenvalue distribution.

  3. New Dualities in Supersymmetric Chiral Gauge Theories

    SciTech Connect

    Craig, Nathaniel; Essig, Rouven; Hook, Anson; Torroba, Gonzalo; /Stanford U., Phys. Dept. /SLAC

    2011-08-15

    We analyze the phase structure of supersymmetric chiral gauge theories with gauge group SU(N), an antisymmetric, and F {le} N + 3 flavors, in the presence of a cubic superpotential. When F = N + 3 the theory flows to a superconformal fixed point in the infrared, and new dual descriptions of this theory are uncovered. The theory with odd N admits a self-dual magnetic description. For general N, we find an infinite family of magnetic dual descriptions, characterized by arbitrarily large gauge groups and additional classical global symmetries that are truncated by nonperturbative effects. The infrared dynamics of these theories are analyzed using a-maximization, which supports the claim that all these theories flow to the same superconformal fixed point. A very rich phase structure is found when the number of flavors is reduced below N + 3, including a new self-dual point, transitions from conformal to confining, and a nonperturbative instability for F {le} N. We also give examples of chiral theories with antisymmetrics that have nonchiral duals.

  4. Supersymmetric cubic Galileons have ghosts

    NASA Astrophysics Data System (ADS)

    Koehn, Michael; Lehners, Jean-Luc; Ovrut, Burt A.

    2013-07-01

    Galileons are higher-derivative theories of a real scalar which nevertheless admit second-order equations of motion. They have interesting applications as dark energy models and in early universe cosmology, and have been conjectured to arise as descriptions of brane dynamics in string theory. In the present paper, we study the bosonic sector of globally N=1 supersymmetric extensions of the cubic Galileon Lagrangian in detail. Supersymmetry requires that the Galileon scalar now becomes paired with a second real scalar field. We prove that the presence of this second scalar causes the equations of motion to become higher than second order, thus leading to the appearance of ghosts. We also analyze the energy scales up to which, in an effective field theory description, the ghosts can be tamed.

  5. Inflation in supersymmetric SU(5)

    SciTech Connect

    Khalil, S.; Rehman, M. U.; Shafi, Q.; Zaakouk, E. A.

    2011-03-15

    We analyze the adjoint field inflation in supersymmetric (SUSY) SU(5) model. In minimal SUSY SU(5) hybrid inflation monopoles are produced at the end of inflation. We therefore explore the nonminimal model of inflation based on SUSY SU(5), like shifted hybrid inflation, which provides a natural solution for the monopole problem. We find that the supergravity corrections with nonminimal Kaehler potential are crucial to realize the central value of the scalar spectral index n{sub s{approx_equal}}0.96 consistent with the 7 yr WMAP data. The tensor to scalar ratio r is quite small, taking on values r < or approx. 10{sup -5}. Because of R symmetry massless SU(3) octet and SU(2) triplet supermultiplets are present and could spoil gauge coupling unification. To keep gauge coupling unification intact, light vectorlike particles are added which are expected to be observed at LHC.

  6. Class of supersymmetric solitons with naked singularities

    SciTech Connect

    Cvetic, M.; Youm, D. )

    1995-02-15

    We study vacuum domain walls in a class of four-dimensional [ital N]=1 supergravity theories where along with the matter field, forming the wall, there is more than one dilaton,'' each respecting SU(1,1) symmetry in their subsector. We find [ital supersymmetric] (planar, static) walls, interpolating between a Minkowski vacuum and a new class of supersymmetric vacua which have a naked (planar) singularity. Although such walls correspond to idealized configurations, i.e., they correspond to planar configurations of infinite extent, they provide the first example of supersymmetric classical solitons with naked singularities.

  7. Supersymmetric Higgs Bosons in Weak Boson Fusion

    SciTech Connect

    Hollik, Wolfgang; Plehn, Tilman; Rauch, Michael; Rzehak, Heidi

    2009-03-06

    We compute the complete supersymmetric next-to-leading-order corrections to the production of a light Higgs boson in weak-boson fusion. The size of the electroweak corrections is of similar order as the next-to-leading-order corrections in the standard model. The supersymmetric QCD corrections turn out to be significantly smaller than expected and than their electroweak counterparts. These corrections are an important ingredient to a precision analysis of the (supersymmetric) Higgs sector at the LHC, either as a known correction factor or as a contribution to the theory error.

  8. Displaced vertices in extended supersymmetric models

    NASA Astrophysics Data System (ADS)

    Hesselbach, S.; Franke, F.; Fraas, H.

    2000-10-01

    In extended supersymmetric models with additional singlet Higgs fields displaced vertices could be observed if the decay width of the next-to-lightest supersymmetric particle becomes very small due to a singlino dominated LSP. We study the supersymmetric parameter space where displaced vertices of the second lightest neutralino exist in the NMSSM and an E6 inspired model. For a mass difference between LSP and NLSP of more than 10 GeV the singlet vacuum expectation value has to be at least of the order of /100 TeV in order to obtain a lightest neutralino with a singlino component large enough for displaced vertices.

  9. Supercharges in the hyper-Kaehler with torsion supersymmetric sigma models

    SciTech Connect

    Smilga, A. V.

    2012-12-15

    We construct explicitly classical and quantum supercharges satisfying the standard N=4 supersymmetry algebra in the supersymmetric sigma models describing the motion over hyper-Kaehler with torsion manifolds. One member of the family of superalgebras thus obtained is equivalent to the superalgebra derived and formulated earlier in purely mathematical framework.

  10. Supersymmetric QCD and high energy cosmic rays: Fragmentation functions of supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Corianò, Claudio; Faraggi, Alon E.

    2002-04-01

    The supersymmetric evolution of the fragmentation functions (or timelike evolution) within N=1 QCD is discussed and predictions for the fragmentation functions of the theory (into final protons) are given. We use a backward running of the supersymmetric DGLAP equations, using a method developed in previous works. We start from the usual QCD parametrizations at low energy and run the DGLAP back, up to an intermediate scale-assumed to be supersymmetric-where we switch-on supersymmetry. From there on we assume the applicability of an N=1 supersymmetric evolution (ESAP). We elaborate on the possible application of these results to high energy cosmic rays near the GZK cutoff.

  11. The Minimal Supersymmetric Fat Higgs Model

    SciTech Connect

    Harnik, Roni; Kribs, Graham D.; Larson, Daniel T.; Murayama, Hitoshi

    2003-11-26

    We present a calculable supersymmetric theory of a composite"fat'" Higgs boson. Electroweak symmetry is broken dynamically through a new gauge interaction that becomes strong at an intermediate scale. The Higgs mass can easily be 200-450 GeV along with the superpartner masses, solving the supersymmetric little hierarchy problem. We explicitly verify that the model is consistent with precision electroweak data without fine-tuning. Gauge coupling unification can be maintained despite the inherently strong dynamics involved in electroweak symmetry breaking. Supersymmetrizing the Standard Model therefore does not imply a light Higgs mass, contrary to the lore in the literature. The Higgs sector of the minimal Fat Higgs model has a mass spectrum that is distinctly different from the Minimal Supersymmetric Standard Model.

  12. Patterns of flavor signals in supersymmetric models

    SciTech Connect

    Goto, Toru; Okada, Yasuhiro; Shindou, Tetsuo

    2008-05-01

    Quark and lepton flavor signals are studied in four supersymmetric models, namely, the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos, and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b{yields}s(d) transition observables in B{sub d} and B{sub s} decays, taking the constraint from the B{sub s}-B{sub s} mixing recently observed at the Tevatron into account. We also calculate lepton flavor violating processes {mu}{yields}e{gamma}, {tau}{yields}{mu}{gamma}, and {tau}{yields}e{gamma} for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb, and a future Super B factory.

  13. {\\cal N}=2 supersymmetric extension of the Tremblay-Turbiner-Winternitz Hamiltonians on a plane

    NASA Astrophysics Data System (ADS)

    Quesne, C.

    2010-07-01

    The family of Tremblay-Turbiner-Winternitz Hamiltonians Hk on a plane, corresponding to any positive real value of k, is shown to admit an {\\cal N} = 2 supersymmetric extension of the same kind as that introduced by Freedman and Mende for the Calogero problem and based on an {osp}(2/2, \\mathbb {R}) \\sim {su}(1,1/1) superalgebra. The irreducible representations of the latter are characterized by the quantum number specifying the eigenvalues of the first integral of motion Xk of Hk. Bases for them are explicitly constructed. The ground state of each supersymmetrized Hamiltonian is shown to belong to an atypical lowest-weight state irreducible representation.

  14. Neutral Supersymmetric Higgs Boson Searches

    SciTech Connect

    Robinson, Stephen Luke

    2008-07-01

    In some Supersymmetric extensions of the Standard Model, including the Minimal Supersymmetric Standard Model (MSSM), the coupling of Higgs bosons to b-quarks is enhanced. This enhancement makes the associated production of the Higgs with b-quarks an interesting search channel for the Higgs and Supersymmetry at D0. The identification of b-quarks, both online and offline, is essential to this search effort. This thesis describes the author's involvement in the development of both types of b-tagging and in the application of these techniques to the MSSM Higgs search. Work was carried out on the Level-3 trigger b-tagging algorithms. The impact parameter (IP) b-tagger was retuned and the effects of increased instantaneous luminosity on the tagger were studied. An extension of the IP-tagger to use the z-tracking information was developed. A new b-tagger using secondary vertices was developed and commissioned. A tool was developed to allow the use of large multi-run samples for trigger studies involving b-quarks. Offline, a neural network (NN) b-tagger was trained combining the existing offline lifetime based b-tagging tools. The efficiency and fake rate of the NN b-tagger were measured in data and MC. This b-tagger was internally reviewed and certified by the Collaboration and now provides the official b-tagging for all analyses using the Run IIa dataset at D0. A search was performed for neutral MSSM Higgs bosons decaying to a b{bar b} pair and produced in association with one or more b-quarks. Limits are set on the cross-section times the branching ratio for such a process. The limits were interpreted in various MSSM scenarios. This analysis uses the NN b-tagger and was the first to use this tool. The analysis also relies on triggers using the Level-3 IP b-tagging tool described previously. A likelihood discriminant was used to improve the analysis and a neural network was developed to cross-check this technique. The result of the analysis has been submitted to PRL and

  15. Less minimal supersymmetric standard model

    SciTech Connect

    de Gouvea, Andre; Friedland, Alexander; Murayama, Hitoshi

    1998-03-28

    Most of the phenomenological studies of supersymmetry have been carried out using the so-called minimal supergravity scenario, where one assumes a universal scalar mass, gaugino mass, and trilinear coupling at M{sub GUT}. Even though this is a useful simplifying assumption for phenomenological analyses, it is rather too restrictive to accommodate a large variety of phenomenological possibilities. It predicts, among other things, that the lightest supersymmetric particle (LSP) is an almost pure B-ino, and that the {mu}-parameter is larger than the masses of the SU(2){sub L} and U(1){sub Y} gauginos. We extend the minimal supergravity framework by introducing one extra parameter: the Fayet'Iliopoulos D-term for the hypercharge U(1), D{sub Y}. Allowing for this extra parameter, we find a much more diverse phenomenology, where the LSP is {tilde {nu}}{sub {tau}}, {tilde {tau}} or a neutralino with a large higgsino content. We discuss the relevance of the different possibilities to collider signatures. The same type of extension can be done to models with the gauge mediation of supersymmetry breaking. We argue that it is not wise to impose cosmological constraints on the parameter space.

  16. Bethe Ansatz and supersymmetric vacua

    SciTech Connect

    Nekrasov, Nikita; Shatashvili, Samson

    2009-05-14

    Supersymmetric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted masses down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2)XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T{sup 2}. A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various quiver varieties, such as cotangent bundles to (partial) flag varieties and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. Compactifications of four dimensional N = 2 theories on a two-sphere lead to the instanton-corrected Bethe equations.

  17. The Supersymmetric origin of matter

    SciTech Connect

    Balazs, C.; Carena, M.; Menon, A.; Morrissey, D.E.; Wagner, C.E.M.; /Argonne /Chicago U., EFI

    2004-12-01

    The Minimal Supersymmetric extension of the Standard Model (MSSM) can provide the correct neutralino relic abundance and baryon number asymmetry of the universe. Both may be efficiently generated in the presence of CP violating phases, light charginos and neutralinos, and a light top squark. Due to the coannihilation of the neutralino with the light stop, we find a large region of parameter space in which the neutralino relic density is consistent with WMAP and SDSS data. We perform a detailed study of the additional constraints induced when CP violating phases, consistent with the ones required for baryogenesis, are included. We explore the possible tests of this scenario from present and future electron Electric Dipole Moment (EDM) measurements, direct neutralino detection experiments, collider searches and the b {yields} s{gamma} decay rate. We find that the EDM constraints are quite severe and that electron EDM experiments, together with stop searches at the Tevatron and Higgs searches at the LHC, will provide a definite test of our scenario of electroweak baryogenesis in the next few years.

  18. Holographic, Script N = 1 supersymmetric RG flows on M2 branes

    NASA Astrophysics Data System (ADS)

    Bobev, Nikolay; Halmagyi, Nick; Pilch, Krzysztof; Warner, Nicholas P.

    2009-09-01

    We find a family of holographic Script N = 1 supersymmetric RG flows on M2 branes. These flows are driven by two mass parameters from the maximally (Script N = 8) supersymmetric theory and the infra-red theory is controlled by two fixed points, one with G2 symmetry and the other with SU(3) × U(1) symmetry and Script N = 2 supersymmetry. The generic flow, with unequal mass parameters, is Script N = 1 supersymmetric but goes to the SU(3) × U(1) symmetric, Script N = 2 supersymmetric fixed point, where the masses are equal. The only flow that goes to the G2 symmetric point occurs when one of the mass parameters is set to zero. There is an Script N = 1 supersymmetric flow from the G2 symmetric point to the SU(3) × U(1) symmetric point and supergravity gives a prediction of ±1/61/2 for the anomalous dimensions of the operators that drive this flow. We examine these flows from the field theory perspective but find that one is limited to qualitative results since Script N = 1 supersymmetry in three dimensions is insufficient to protect the form and dimensions of the operators involved in the flow.

  19. Non-tachyonic semi-realistic non-supersymmetric heterotic-string vacua

    NASA Astrophysics Data System (ADS)

    Ashfaque, Johar M.; Athanasopoulos, Panos; Faraggi, Alon E.; Sonmez, Hasan

    2016-04-01

    The heterotic-string models in the free fermionic formulation gave rise to some of the most realistic-string models to date, which possess N=1 spacetime supersymmetry. Lack of evidence for supersymmetry at the LHC instigated recent interest in non-supersymmetric heterotic-string vacua. We explore what may be learned in this context from the quasi-realistic free fermionic models. We show that constructions with a low number of families give rise to proliferation of a priori tachyon producing sectors, compared to the non-realistic examples, which typically may contain only one such sector. The reason being that in the realistic cases the internal six dimensional space is fragmented into smaller units. We present one example of a quasi-realistic, non-supersymmetric, non-tachyonic, heterotic-string vacuum and compare the structure of its massless spectrum to the corresponding supersymmetric vacuum. While in some sectors supersymmetry is broken explicitly, i.e. the bosonic and fermionic sectors produce massless and massive states, other sectors, and in particular those leading to the chiral families, continue to exhibit Fermi-Bose degeneracy. In these sectors the massless spectrum, as compared to the supersymmetric cases, will only differ in some local or global U(1) charges. We discuss the conditions for obtaining n_b=n_f at the massless level in these models. Our example model contains an anomalous U(1) symmetry, which generates a tadpole diagram at one-loop order in string perturbation theory. We speculate that this tadpole diagram may cancel the corresponding diagram generated by the one-loop non-vanishing vacuum energy and that in this respect the supersymmetric and non-supersymmetric vacua should be regarded on an equal footing. Finally we discuss vacua that contain two supersymmetry generating sectors.

  20. Exact supersymmetric massive and massless white holes

    NASA Astrophysics Data System (ADS)

    Kallosh, Renata; Linde, Andrei

    1995-12-01

    We study special points in the moduli space of vacua at which supersymmetric electric solutions of the heterotic string theory become massless. We concentrate on configurations for which the supersymmetric nonrenormalization theorem is valid. These are ten-dimensional supersymmetric string waves and generalized fundamental strings with SO(8) holonomy group. From these we find the four-dimensional spherically symmetric configurations which saturate the BPS bound, in particular, near the points of the vanishing ADM mass. The nontrivial massless supersymmetric states in this class exist only in the presence of non-Abelian vector fields. We also find a new class of supersymmetric massive solutions, closely related to the massless ones. A distinctive property of all these objects, either massless or massive, is the existence of gravitational repulsion. They reflect all particles with nonvanishing mass and/or angular momentum, and therefore they can be called white holes (repulsons), in contrast with black holes which tend to absorb particles of all kinds. If such objects can exist we will have the first realization of the universal gravitational force which repels all particles with the strength proportional to their mass and therefore can be associated with antigravity.

  1. Research in the Non-University Higher Education Sector--Tensions and Dilemmas.

    ERIC Educational Resources Information Center

    Kyvik, Svein; Skodvin, Ole-Jacob

    This article analyzes the increasing emphasis on research in the non-university higher education sector in Norway as an important faculty task in addition to teaching. This development provides an interesting example of the tensions and dilemmas that may emerge when institutions and individual staff members try to imitate the research profile of…

  2. Academic Drift in Dutch Non-University Higher Education Evaluated: A Staff Perspective

    ERIC Educational Resources Information Center

    Griffioen, Didi M. E.; de Jong, Uulkje

    2013-01-01

    In the context of a European knowledge economy, the Dutch non-university institutions systematically develop research activities at a higher frequency than before. With this development, they have been accused of academic drift, of striving to receive a status comparable to traditional universities. This study considers the perceptions of both…

  3. Supersymmetric Higgs singlet effects on FCNC observables

    SciTech Connect

    Hodgkinson, Robert N.

    2008-11-23

    Higgs singlet superflelds, usually present in extensions of the Minimal Supersymmetric Standard Model (MSSM) which address the {mu}-problem, such as the Next-to-Minimal Supersymmetric Standard Model (NMSSM) and the Minimal Nonminimal Supersymmetric Standard Model (mnSSM), can have significant contributions to B-meson flavour-changing neutral current observables for large values of tan{beta} > or approx. 50. Illustrative results are presented including effects on the B{sub s} and on the rare decay B{sub s}{yields}{mu}{sup +}{mu}{sup -}. In particular, we find that in the NMSSM, the branching ratio for B{sub s}{yields}{mu}{sup +}{mu}{sup -} can be enhanced or even suppressed with respect to the Standard Model prediction by more than one order of magnitude.

  4. Supersymmetric leptogenesis with a light hidden sector

    SciTech Connect

    De Simone, Andrea; Garny, Mathias; Ibarra, Alejandro; Weniger, Christoph E-mail: mathias.garny@ph.tum.de E-mail: christoph.weniger@desy.de

    2010-07-01

    Supersymmetric scenarios incorporating thermal leptogenesis as the origin of the observed matter-antimatter asymmetry generically predict abundances of the primordial elements which are in conflict with observations. In this paper we propose a simple way to circumvent this tension and accommodate naturally thermal leptogenesis and primordial nucleosynthesis. We postulate the existence of a light hidden sector, coupled very weakly to the Minimal Supersymmetric Standard Model, which opens up new decay channels for the next-to-lightest supersymmetric particle, thus diluting its abundance during nucleosynthesis. We present a general model-independent analysis of this mechanism as well as two concrete realizations, and describe the relevant cosmological and astrophysical bounds and implications for this dark matter scenario. Possible experimental signatures at colliders and in cosmic-ray observations are also discussed.

  5. Quantum supersymmetric Bianchi IX cosmology

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Spindel, Philippe

    2014-11-01

    We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle

  6. Supersymmetric Kerr-anti-de Sitter solutions

    SciTech Connect

    Cvetic, Mirjam; Gao Peng; Simon, Joan

    2005-07-15

    We prove the existence of one quarter supersymmetric type IIB configurations that arise as nontrivial scaling solutions of the standard five-dimensional Kerr-anti-de Sitter black holes by the explicit construction of its Killing spinors. This neutral, spinning solution is asymptotic to the static anti-de Sitter space-time with cosmological constant -(1/l{sup 2}), it has two finite equal angular momenta J{sub 1}={+-}J{sub 2}, mass M=(1/l)(|J{sub 1}|+|J{sub 2}|) and a naked singularity. We also address the scaling limit associated with one-half supersymmetric solution with only one angular momentum.

  7. Supersymmetric Liouville theory: A statistical mechanical approach

    SciTech Connect

    Barrozo, M.C.; Belvedere, L.V.

    1996-02-01

    The statistical mechanical system associated with the two-dimensional supersymmetric Liouville theory is obtained through an infrared-finite perturbation expansion. Considering the system confined in a finite volume and in the presence of a uniform neutralizing background, we show that the grand-partition function of this system describes a one-component gas, in which the Boltzmann factor is weighted by an integration over the Grassmann variables. This weight function introduces the dimensional reduction phenomenon. After performing the thermodynamic limit, the resulting supersymmetric quantum theory is translationally invariant. {copyright} {ital 1996 The American Physical Society.}

  8. Supersymmetric quantum mechanics and its applications

    SciTech Connect

    Sukumar, C.V.

    2004-12-23

    The Hamiltonian in Supersymmetric Quantum Mechanics is defined in terms of charges that obey the same algebra as that of the generators of supersymmetry in field theory. The consequences of this symmetry for the spectra of the component parts that constitute the supersymmetric system are explored. The implications of supersymmetry for the solutions of the Schroedinger equation, the Dirac equation, the inverse scattering theory and the multi-soliton solutions of the KdV equation are examined. Applications to scattering problems in Nuclear Physics with specific reference to singular potentials which arise from considerations of supersymmetry will be discussed.

  9. Supersymmetric Casimir energy and the anomaly polynomial

    NASA Astrophysics Data System (ADS)

    Bobev, Nikolay; Bullimore, Mathew; Kim, Hee-Cheol

    2015-09-01

    We conjecture that for superconformal field theories in even dimensions, the supersymmetric Casimir energy on a space with topology S 1 × S D-1 is equal to an equivariant integral of the anomaly polynomial. The equivariant integration is defined with respect to the Cartan subalgebra of the global symmetry algebra that commutes with a given supercharge. We test our proposal extensively by computing the supersymmetric Casimir energy for large classes of superconformal field theories, with and without known Lagrangian descriptions, in two, four and six dimensions.

  10. Natural supersymmetric spectrum in mirage mediation

    NASA Astrophysics Data System (ADS)

    Asano, Masaki; Higaki, Tetsutaro

    2012-08-01

    The current results of LHC experiments exclude a large area of the light new particle region, namely, natural parameter space, in supersymmetric extension models. One of the possibilities for achieving the correct electroweak symmetry breaking naturally is the low-scale messenger scenario. Actually, the next-to-minimal supersymmetric standard model with TeV scale mirage mediation realizes the natural electroweak symmetry breaking with various mass spectra. In this paper, we show the possible mass spectrum in the scenario, e.g., the degenerate and/or hierarchical mass spectrum, and discuss these features.

  11. Renormalizability of supersymmetric group field cosmology

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker

    2014-03-01

    In this paper we consider the gauge invariant third quantized model of supersymmetric group field cosmology. The supersymmetric BRST invariance for such theory in non-linear gauge is also analysed. The path integral formulation to the case of a multiverse made up of homogeneous and isotropic spacetimes filled with a perfect fluid is presented. The renormalizability for the scattering of universes in multiverse are established with suitably constructed master equations for connected diagrams and proper vertices. The Slavnov-Taylor identities for this theory hold to all orders of radiative corrections.

  12. Supersymmetric QCD vacua and geometrical engineering

    SciTech Connect

    Tatar, Radu; Wetenhall, Ben

    2008-02-15

    We consider the geometrical engineering constructions for the N=1 supersymmetric QCD vacua recently proposed by Giveon and Kutasov. After 1 T-duality, the geometries with wrapped D5 branes become N=1 brane configurations with NS branes and D4 branes. The field theories encoded by the geometries contain extra massive adjoint fields for the flavor group. After performing a flop, the geometries contain branes, antibranes and branes wrapped on nonholomorphic cycles. The various tachyon condensations between pairs of wrapped D5 branes and anti-D5 branes together with deformations of the cycles give rise to a variety of supersymmetric and metastable nonsupersymmetric vacua.

  13. Supersymmetric asymptotic safety is not guaranteed

    NASA Astrophysics Data System (ADS)

    Intriligator, Kenneth; Sannino, Francesco

    2015-11-01

    It was recently shown that certain perturbatively accessible, non-supersymmetric gauge-Yukawa theories have UV asymptotic safety, without asymptotic freedom: the UV theory is an interacting RG fixed point, and the IR theory is free. We here investigate the possibility of asymptotic safety in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those of an asymptotically free (perhaps magnetic dual) extension.

  14. Supersymmetric instanton calculus (gauge theories with matter)

    SciTech Connect

    Vainshtein, A.I.; Zakharov, V.I.; Novikov, V.A.; Shifman, M.A.

    1985-12-01

    We consider instantons in supersymmetric gauge theories with matter. We show that if the vacuum average of the scalar field is different from zero, the number of collective coordinates necessary for describing the matter superfields associated with an instanton changes. We obtain explicit expressions for these superfields. We introduce the concept of an instanton dimension which is invariant with respect to supertransformations.

  15. Quantum Supersymmetric Models in the Causal Approach

    NASA Astrophysics Data System (ADS)

    Grigore, Dan-Radu

    2007-04-01

    We consider the massless supersymmetric vector multiplet in a purely quantum framework. First order gauge invariance determines uniquely the interaction Lagrangian as in the case of Yang-Mills models. Going to the second order of perturbation theory produces an anomaly which cannot be eliminated. We make the analysis of the model working only with the component fields.

  16. Supersymmetric Model Builing (and Sweet Spot Supersymmetry)

    SciTech Connect

    Ibe, Masahiro; Kitano, Ryuichiro; /Los Alamos

    2008-01-08

    It has been more than twenty years since theorists started discussing supersymmetric model building/phenomenology. We review mechanisms of supersymmetry breaking/mediation and problems in each scenario. We propose a simple model to address those problems and discuss its phenomenology.

  17. Exact Adler Function in Supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Stepanyantz, K.

    2015-02-01

    The Adler function D is found exactly in supersymmetric QCD. Our exact formula relates D (Q2) to the anomalous dimension of the matter superfields γ (αs(Q2)) . En route we prove another theorem: the absence of the so-called singlet contribution to D . While such singlet contributions are present in individual supergraphs, they cancel in the sum.

  18. Challenging the minimal supersymmetric SU(5) model

    SciTech Connect

    Bajc, Borut; Lavignac, Stéphane; Mede, Timon

    2014-06-24

    We review the main constraints on the parameter space of the minimal renormalizable supersymmetric SU(5) grand unified theory. They consist of the Higgs mass, proton decay, electroweak symmetry breaking and fermion masses. Superpartner masses are constrained both from below and from above, giving hope for confirming or definitely ruling out the theory in the future. This contribution is based on Ref. [1].

  19. New supersymmetric localizations from topological gravity

    NASA Astrophysics Data System (ADS)

    Bae, Jinbeom; Imbimbo, Camillo; Rey, Soo-Jong; Rosa, Dario

    2016-03-01

    Supersymmetric field theories can be studied exactly on off-shell "localizing" supergravity backgrounds. We show that these supergravity configurations can be identified with BRST invariant configurations of background topological gravity coupled to background topological gauge multiplets. We apply this topological point of view to two-dimensional {N}=left(2,2right) supersymmetric matter theories to obtain, in a simple and straightforward way, a complete classification of localizing supersymmetric backgrounds in two dimensions. We recover all known localizing backgrounds and (infinitely) many more that have not been explored so far. The newly found localizing backgrounds are characterized by quantized fluxes for both graviphotons of the {N}=left(2,2right) supergravity multiplet. The BRST invariant topological backgrounds are parametrized by both Killing vectors and {{S}}^1 -equivariant cohomology of the two-dimensional spacetime. We completely reconstruct the supergravity backgrounds from the topological data: some of the supergravity fields are twisted versions of the topological backgrounds, but others are composite, in that they are nonlinear functionals of topological fields. Moreover, we show that the supersymmetric Ω-deformation is nothing but the background value of the ghost-for-ghost of topological gravity, a result which holds for higher dimensions too.

  20. SO(10) from supersymmetric E6

    NASA Astrophysics Data System (ADS)

    Buccella, F.; Miele, G.

    1987-04-01

    We show that the only supersymmetric vacuum invariant under the standard gauge group has a larger symmetry given by SO(10), if one takes the Higgs in the 78⊺27⊺27 representations and the superpotential contains a term linear in the three representation.

  1. Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating

    NASA Astrophysics Data System (ADS)

    Vempati, Sesha; Iqbal, Tahir; Afsheen, Sumera

    2015-07-01

    We report on a non-universal behavior of leaky surface plasmon waves on asymmetric (Si/Au/analyte of different height) 1D grating through numerical modelling. The occurrence of the leaky surface wave was maximized (suppressing the Fabry-Perot cavity mode), which can be identified in a reflection spectrum through characteristic minimum. Beyond a specific analyte height (h), new sets of surface waves emerge, each bearing a unique reflection minimum. Furthermore, all of these minima depicted a red-shift before saturating at higher h values. This saturation is found to be non-universal despite the close association with their origin (being leaky surface waves). This behavior is attributed to the fundamental nature and the origin of the each set. Additionally, all of the surface wave modes co-exit at relatively higher h values.

  2. Phases of N=1 Supersymmetric Chiral Gauge Theories

    SciTech Connect

    Craig, Nathaniel; Essig, Rouven; Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2012-02-17

    We analyze the phases of supersymmetric chiral gauge theories with an antisymmetric tensor and (anti)fundamental flavors, in the presence of a classically marginal superpotential deformation. Varying the number of flavors that appear in the superpotential reveals rich infrared chiral dynamics and novel dualities. The dualities are characterized by an infinite family of magnetic duals with arbitrarily large gauge groups describing the same fixed point, correlated with arbitrarily large classical global symmetries that are truncated nonperturbatively. At the origin of moduli space, these theories exhibit a phase with confinement and chiral symmetry breaking, an interacting nonabelian Coulomb phase, and phases where an interacting sector coexists with a sector that either s-confines or is in a free magnetic phase. Properties of these intriguing 'mixed phases' are studied in detail using duality and a-maximization, and the presence of superpotential interactions provides further insights into their formation.

  3. Small numbers in supersymmetric theories of nature

    SciTech Connect

    Graesser, Michael L.

    1999-05-01

    The Standard Model of particle interactions is a successful theory for describing the interactions of quarks, leptons and gauge bosons at microscopic distance scales. Despite these successes, the theory contains many unsatisfactory features. The origin of particle masses is a central mystery that has eluded experimental elucidation. In the Standard Model the known particles obtain their mass from the condensate of the so-called Higgs particle. Quantum corrections to the Higgs mass require an unnatural fine tuning in the Higgs mass of one part in 10{sup {minus}32} to obtain the correct mass scale of electroweak physics. In addition, the origin of the vast hierarchy between the mass scales of the electroweak and quantum gravity physics is not explained in the current theory. Supersymmetric extensions to the Standard Model are not plagued by this fine tuning issue and may therefore be relevant in Nature. In the minimal supersymmetric Standard Model there is also a natural explanation for electroweak symmetry breaking. Supersymmetric Grand Unified Theories also correctly predict a parameter of the Standard Model. This provides non-trivial indirect evidence for these theories. The most general supersymmetric extension to the Standard Model however, is excluded by many physical processes, such as rare flavor changing processes, and the non-observation of the instability of the proton. These processes provide important information about the possible structure such a theory. In particular, certain parameters in this theory must be rather small. A physics explanation for why this is the case would be desirable. It is striking that the gauge couplings of the Standard Model unify if there is supersymmetry close to the weak scale. This suggests that at high energies Nature is described by a supersymmetric Grand Unified Theory. But the mass scale of unification must be introduced into the theory since it does not coincide with the probable mass scale of strong quantum gravity

  4. Supersymmetric solutions to Euclidean Romans supergravity

    NASA Astrophysics Data System (ADS)

    Alday, Luis F.; Fluder, Martin; Gregory, Carolina Matte; Richmond, Paul; Sparks, James

    2016-02-01

    We study Euclidean Romans supergravity in six dimensions with a non-trivial Abelian R-symmetry gauge field. We show that supersymmetric solutions are in one-to-one correspondence with solutions to a set of differential constraints on an SU(2) structure. As an application of our results we (i) show that this structure reduces at a conformal boundary to the five-dimensional rigid supersymmetric geometry previously studied by the authors, (ii) find a general expression for the holographic dual of the VEV of a BPS Wilson loop, matching an exact field theory computation, (iii) construct holographic duals to squashed Sasaki-Einstein backgrounds, again matching to a field theory computation, and (iv) find new analytic solutions.

  5. Phenomenology of the utilitarian supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Fraser, Sean; Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2016-08-01

    We study the 2010 specific version of the 2002 proposed U(1)X extension of the supersymmetric standard model, which has no μ term and conserves baryon number and lepton number separately and automatically. We consider in detail the scalar sector as well as the extra ZX gauge boson, and their interactions with the necessary extra color-triplet particles of this model, which behave as leptoquarks. We show how the diphoton excess at 750 GeV, recently observed at the LHC, may be explained within this context. We identify a new fermion dark-matter candidate and discuss its properties. An important byproduct of this study is the discovery of relaxed supersymmetric constraints on the Higgs boson's mass of 125 GeV.

  6. CP violation versus flavour in supersymmetric theories

    NASA Astrophysics Data System (ADS)

    Abel, S.; Branco, G. C.; Khalil, S.

    2003-09-01

    We show that the quark flavour structure and CP violating phenomena are strongly correlated in supersymmetric theories. For a generic pattern of supersymmetry breaking the two broad categories of Yukawa couplings, democratic and hierarchical textures, have entirely different phenomenological implications. With hierarchical Yukawas, the rephasing invariant phase, arg(VusVcbVcb∗Vcs∗), in the CKM mixing matrix has to be of order unity, while the SUSY CP violating phases are severely constrained by electric dipole moments, giving rise to the so-called SUSY CP problem. With democratic Yukawas, all experimental CP results can be accommodated with small values for the CKM and SUSY CP violating phases (i.e., CP can be considered as an approximate symmetry at the high energy scale). We also show that within this scenario, an entirely real CKM matrix in supersymmetric models is still allowed by the present experimental results.

  7. Softly Broken Supersymmetric Desert from Orbifold Compactification

    SciTech Connect

    Barbieri, Riccardo; Hall, Lawrence J.; Nomura, Yasunori

    2001-06-18

    A new viewpoint for the gauge hierarchy problem is proposed: compactification at a large scale, 1/R, leads to a low energy effective theory with supersymmetry softly broken at a much lower scale, \\alpha/R. The hierarchy is induced by an extremely small angle \\alpha which appears in the orbifold compactification boundary conditions. The same orbifold boundary conditions break Peccei-Quinn symmetry, leading to a new solution to the \\mu problem. Explicit 5d theories are constructed with gauge groups SU(3) \\times SU(2) \\times U(1) and SU(5), with matter in the bulk or on the brane, which lead to the (next-to) minimal supersymmetric standard model below the compactification scale. In all cases the soft supersymmetry-breaking and \\mu parameters originate from bulk kinetic energy terms, and are highly constrained. The supersymmetric flavor and CP problems are solved.

  8. Supersymmetric composite gauge fields with compensators

    NASA Astrophysics Data System (ADS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2016-06-01

    We study supersymmetric composite gauge theory, supplemented with compensator mechanism. As our first example, we give the formulation of N = 1 supersymmetric non-Abelian composite gauge theory without the kinetic term of a non-Abelian gauge field. The important ingredient is the Proca-Stueckelberg-type compensator scalar field that makes the gauge-boson field equation non-singular, i.e., the field equation can be solved for the gauge field algebraically as a perturbative expansion. As our second example, we perform the gauging of chiral-symmetry for N = 1 supersymmetry in four dimensions by a composite gauge field. These results provide supporting evidence for the consistency of the mechanism that combines the composite gauge field formulations and compensator formulations, all unified under supersymmetry.

  9. A constrained supersymmetric left-right model

    NASA Astrophysics Data System (ADS)

    Hirsch, Martin; Krauss, Manuel E.; Opferkuch, Toby; Porod, Werner; Staub, Florian

    2016-03-01

    We present a supersymmetric left-right model which predicts gauge coupling unification close to the string scale and extra vector bosons at the TeV scale. The subtleties in constructing a model which is in agreement with the measured quark masses and mixing for such a low left-right breaking scale are discussed. It is shown that in the constrained version of this model radiative breaking of the gauge symmetries is possible and a SM-like Higgs is obtained. Additional CP-even scalars of a similar mass or even much lighter are possible. The expected mass hierarchies for the supersymmetric states differ clearly from those of the constrained MSSM. In particular, the lightest down-type squark, which is a mixture of the sbottom and extra vector-like states, is always lighter than the stop. We also comment on the model's capability to explain current anomalies observed at the LHC.

  10. Supersymmetric quantum cosmology: a `Socratic' guide

    NASA Astrophysics Data System (ADS)

    Moniz, Paulo Vargas

    2014-01-01

    By adequately adapting a `knowledge by enquire' approach, an appraisal of what supersymmetric quantum cosmology (SQC) entails ( viz., some of the difficulties but also current successes and motivation) is subsequently presented. More concretely, the basics of SQC are briefly reviewed in a pedagogical manner. The purpose is twofold: (i) promote SQC as a promising line where to conduct research work and (ii) provide an introduction to the essential computational framework. Directions still open to be explored are pointed out.

  11. N=1 supersymmetric {beta}-functions

    SciTech Connect

    Jones, D. R. T.

    1997-06-15

    Recent results on three-loop, four-loop and large-N{sub f}{beta}-functions in supersymmetric gauge theories are summarised. It is argued that the O(1/N{sub f})-corrected form of {beta}{sub g} in SQCD is consistent with the existence of the conformal window 3N{sub c}/2

  12. Supersymmetric Q-balls: A numerical study

    SciTech Connect

    Campanelli, L.; Ruggieri, M.

    2008-02-15

    We study numerically a class of nontopological solitons, the Q-balls, arising in a supersymmetric extension of the standard model with low-energy, gauge-mediated symmetry breaking. Taking into account the exact form of the supersymmetric potential giving rise to Q-balls, we find that there is a lower limit on the value of the charge Q in order to make them classically stable: Q > or approx. 5x10{sup 2}Q{sub cr}, where Q{sub cr} is constant depending on the parameters defining the potential and can be in the range 1 < or approx. Q{sub cr} < or approx. 10{sup 8} {sup divide} {sup 16}. If Q is the baryon number, stability with respect to the decay into protons requires Q > or approx. 10{sup 17}Q{sub cr}, while if the gravitino mass is greater then m{sub 3/2} > or approx. 61 MeV, no stable gauge-mediation supersymmetric Q-balls exist. Finally, we find that energy and radius of Q-balls can be parametrized as E{approx}{xi}{sub E}Q{sup 3/4} and R{approx}{xi}{sub R}Q{sup 1/4}, where {xi}{sub E} and {xi}{sub R} are slowly varying functions of the charge.

  13. Low-dimensional supersymmetric lattice models

    SciTech Connect

    Bergner, G. Kaestner, T. Uhlmann, S. Wipf, A.

    2008-04-15

    We study and simulate N=2 supersymmetric Wess-Zumino models in one and two dimensions. For any choice of the lattice derivative, the theories can be made manifestly supersymmetric by adding appropriate improvement terms corresponding to discretizations of surface integrals. In one dimension, our simulations show that a model with the Wilson derivative and the Stratonovich prescription for this discretization leads to far better results at finite lattice spacing than other models with Wilson fermions considered in the literature. In particular, we check that fermionic and bosonic masses coincide and the unbroken Ward identities are fulfilled to high accuracy. Equally good results for the effective masses can be obtained in a model with the SLAC derivative (even without improvement terms). In two dimensions we introduce a non-standard Wilson term in such a way that the discretization errors of the kinetic terms are only of order O(a{sup 2}). Masses extracted from the corresponding manifestly supersymmetric model prove to approach their continuum values much quicker than those from a model containing the standard Wilson term. Again, a comparable enhancement can be achieved in a theory using the SLAC derivative.

  14. Non-Universality of Transverse Momentum Dependent Parton Distributions at Small-x

    SciTech Connect

    Xiao, Bowen; Yuan, Feng

    2010-02-22

    We study the universality of the transverse momentum dependent parton distributions at small-x, by comparing the initial/final state interaction effects in dijet-correlation in pA collisions with that in deep inelastic lepton nucleus scattering. We demonstrate the non-universality by an explicit calculation in a particular model where the multiple gauge boson exchange contributions are summed up to all orders. We furthercomment on the implications of our results on the theoretical interpretation of di-hadron correlation in dA collisions in terms of the saturation phenomena in deep inelastic lepton nucleus scattering.

  15. Supersymmetric Quantum-Hall Effect on a Fuzzy Supersphere

    SciTech Connect

    Hasebe, Kazuki

    2005-05-27

    Supersymmetric quantum-Hall liquids are constructed on a supersphere in a supermonopole background. We derive a supersymmetric generalization of the Laughlin wave function, which is a ground state of a hard-core OSp(1 vertical bar 2) invariant Hamiltonian. We also present excited topological objects, which are fractionally charged deficits made by super Hall currents. Several relations between quantum-Hall systems and their supersymmetric extensions are discussed.

  16. Supersymmetric quantum mechanics and the Korteweg--de Vries hierarchy

    SciTech Connect

    Grant, A.K.; Rosner, J.L. )

    1994-05-01

    The connection between supersymmetric quantum mechanics and the Korteweg--de Vries (KdV) equation is discussed, with particular emphasis on the KdV conservation laws. It is shown that supersymmetric quantum mechanics aids in the derivation of the conservation laws, and gives some insight into the Miura transformation that converts the KdV equation into the modified KdV equation. The construction of the [tau] function by means of supersymmetric quantum mechanics is discussed.

  17. Motivation of university and non-university stakeholders to change medical education in Vietnam

    PubMed Central

    Hoat, Luu Ngoc; Lan Viet, Nguyen; van der Wilt, GJ; Broerse, J; Ruitenberg, EJ; Wright, EP

    2009-01-01

    Background Both university and non-university stakeholders should be involved in the process of curriculum development in medical schools, because all are concerned with the competencies of the graduates. That may be difficult unless appropriate strategies are used to motivate each stakeholder. From 1999 to 2006, eight medical schools in Vietnam worked together to change the curriculum and teaching for general medical students to make it more community oriented. This paper describes the factors that motivated the different stakeholders to participate in curriculum change and teaching in Vietnamese medical schools and the activities to address those factors and have sustainable contributions from all relevant stakeholders. Methods Case study analysis of contributions to the change process, using reports, interviews, focus group discussions and surveys and based on Herzberg's Motivation Theory to analyze involvement of different stakeholders. Results Different stakeholders were motivated by selected activities, such as providing opportunities for non-university stakeholders to share their opinions, organizing interactions among university stakeholders, stimulating both bottom-up and top-down inputs, focusing on learning from each other, and emphasizing self-motivation factors. Conclusion The Herzberg Motivation theory helped to identify suitable approaches to ensure that teaching topics, materials and assessment methods more closely reflected the health care needs of the community. Other medical schools undertaking a reform process may learn from this experience. PMID:19630961

  18. Non-universality of Dark-matter Halos: Cusps, Cores, and the Central Potential

    NASA Astrophysics Data System (ADS)

    Hjorth, Jens; Williams, Liliya L. R.; Wojtak, Radosław; McLaughlin, Michael

    2015-09-01

    Dark-matter halos grown in cosmological simulations appear to have central Navarro–Frenk–White-like density cusps with mean values of d{log}ρ /d{log}r≈ -1, and some dispersion, which is generally parametrized by the varying index α in the Einasto density profile fitting function. Non-universality in profile shapes is also seen in observed galaxy clusters and possibly dwarf galaxies. Here we show that non-universality, at any given mass scale, is an intrinsic property of DARKexp, a theoretically derived model for collisionless self-gravitating systems. We demonstrate that DARKexp—which has only one shape parameter, ϕ0—fits the dispersion in profile shapes of massive simulated halos as well as observed clusters very well. DARKexp also allows for cored dark-matter profiles, such as those found for dwarf spheroidal galaxies. We provide approximate analytical relations between DARKexp ϕ0, Einasto α, or the central logarithmic slope in the Dehnen–Tremaine analytical γ-models. The range in halo parameters reflects a substantial variation in the binding energies per unit mass of dark-matter halos.

  19. Supersymmetric Wilson loops in a type-IIB matrix model

    SciTech Connect

    Hamada, K.

    1997-12-01

    We show that the supersymmetric Wilson loops in a type-IIB matrix model give a transition operator from reduced supersymmetric Yang-Mills theory to supersymmetric space-time theory. In comparison with Green-Schwarz superstring we identify the supersymmetric Wilson loops with the asymptotic states of a type-IIB superstring. It is pointed out that the supersymmetry transformation law of the Wilson loops is the inverse of that for the vertex operators of massless modes in the U(N) open superstring with a Dirichlet boundary condition. {copyright} {ital 1997} {ital The American Physical Society}

  20. Comments on supersymmetric solutions of minimal gauged supergravity in five dimensions

    NASA Astrophysics Data System (ADS)

    Cassani, Davide; Lorenzen, Jakob; Martelli, Dario

    2016-06-01

    We investigate supersymmetric solutions of minimal gauged supergravity in five dimensions, in the timelike class. We propose an ansatz based on a four-dimensional local orthotoric Kähler metric and reduce the problem to a single sixth-order equation for two functions, each of one variable. We find an analytic, asymptotically locally AdS solution comprising five parameters. For a conformally flat boundary, this reduces to a previously known solution with three parameters, representing the most general solution of this type known in the minimal theory. We discuss the possible relevance of certain topological solitons contained in the latter to account for the supersymmetric Casimir energy of dual superconformal field theories on {S}3× {{R}}. Although we obtain a negative response, our analysis clarifies several aspects of these solutions. In particular, we show that there exists a unique regular topological soliton in this family.

  1. The Simplicity of Perfect Atoms: Degeneracies in Supersymmetric Hydrogen

    SciTech Connect

    Rube, Tomas; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2011-08-19

    Supersymmetric QED hydrogen-like bound states are remarkably similar to non-supersymmetric hydrogen, including an accidental degeneracy of the fine structure and which is broken by the Lamb shift. This article classifies the states, calculates the leading order spectrum, and illustrates the results in several limits. The relation to other non-relativistic bound states is explored. Supersymmetric bound states provide a laboratory for studying dynamics in supersymmetric theories. Bound states like hydrogen provide a framework for understanding the qualitative dynamics of QCD mesons, a supersymmetric version of QED can provide a qualitative picture for the symmetries and states of superQCD mesons. Furthermore, recent interest in dark matter as a composite state, leads to asking how supersymmetry acts upon these composite states [4-7]. This article calculates the leading order corrections to a hydrogen-like atoms in an exactly supersymmetric version of QED. Much of the degeneracy is broken by the fine structure and a seminal calculation was performed in [1] for positronium, see [2] for an N = 2 version of positronium. Supersymmetric hydrogen is a similar except for the absence of annihilation diagrams, see [3] for an independent calculation. In the heavy proton mass limit, the supersymmetric interactions of the theory become irrelevant operators, suppressed by powers of the proton mass like the magnetic moment operator in QED and the fine structure is identical to the non-supersymmetric theory. This article finds that fine structure spectrum of supersymmetric spectrum of hydrogen has an accidental degeneracy which is exactly analogous to the accidental degeneracy of the l = 0 and l = 1 levels of the n = 2; j = 1/2 state of hydrogen. The supersymmetric version of the Lamb shift lifts the residual degeneracy and this article computes the logarithmically enhanced breaking.

  2. Non-universal aperture-length scaling of opening mode fractures

    NASA Astrophysics Data System (ADS)

    Mayrhofer, Franziska; Schöpfer, Martin P. J.; Grasemann, Bernhard

    2014-05-01

    Opening-mode fractures, such as joints, veins and dykes, typically exhibit a power-law aperture-length scaling with a power-law exponent of about 0.5. The fracture aperture is hence proportional to the square root of fracture length, a relation which is in fact predicted by linear elastic fracture mechanics (LEFM) for an isolated Mode I fracture subjected to remote tension. The existence of such a 'universal scaling law' is however a highly debated topic. High quality outcrop data illustrate that fracture aperture-length scaling may be 'non-universal' and indicate that below a certain length-scale scaling is super-linear (power-law exponent > 1). We use a numerical model comprised of a square lattice of breakable elastic beams to investigate the aperture-length scaling that emerges in thin plates subjected to remote tension. Strength heterogeneity is introduced in the regular lattice by randomly assigning beam strengths from a Weibull probability distribution. The model fracture system evolution is characterised by two stages which are separated by the strain at which peak-stress occurs. During the pre-peak stress stage fracture aperture-length scaling is universal with a power-law exponent of about 0.5 as expected from LEFM. Shortly after the material has attained its maximum load bearing capacity, aperture-length scaling becomes non-universal, so that the average aperture-length relation plotted on a log-log graph exhibits a distinct kink. Fractures with a length less than this critical length scale exhibit super-linear aperture-length scaling, whereas fractures with a greater length exhibit sub-linear scaling. The models illustrate that the emergence of non-universal aperture-length scaling is a result of fracture clustering, which occurs after peak-stress in the form of a localised fracture zone. Given that fracture clustering is a common phenomenon in natural fracture systems, we argue that a universal scaling law may be the exception rather than the rule.

  3. Status of the minimal supersymmetric SO(10)

    SciTech Connect

    Dorsner, Ilja

    2010-02-10

    We discuss status of the minimal supersymmetric SO(10) in both low and split supersymmetry regime. To demonstrate viability of the model we present a good fit of the fermion masses and their mixings. The solution needs a strongly split supersymmetry with gauginos and higgsinos around 10{sup 2} TeV, sfermions close to 10{sup 14} GeV and a GUT scale of around 6x10{sup 15} GeV. It predicts fast proton decay rates, hierarchical neutrino masses and large leptonic mixing angle sin{theta}{sub 13}{approx_equal}0.1.

  4. The collider phenomenology of supersymmetric models

    NASA Astrophysics Data System (ADS)

    Muller, David J.

    Scope and method of study. The purpose of this study is to investigate the phenomenology of various supersymmetric models. First, the Minimal Supersymmetric Standard Model (MSSM) is investigated. This model contains an extended Higgs sector that includes a charged boson. The effect that this charged Higgs boson has on the signatures for top quark pair production at the Tevatron is investigated. The rest of the work is devoted to the phenomenology of models with gauge mediated supersymmetry breaking (GMSB). In GMSB models, the lighter stau can be the next to lightest supersymmetric particle. The signals at hadronic colliders for GMSB models with minimal visible sector content are explored for this case. A GMSB model with non-minimal visible sector content is also explored. This is the left-right symmetric GMSB model which contains doubly charged bosons and fermions that could be light enough in mass to be produced at Run II of the Tevatron. Findings and conclusions. The presence of a charged Higgs boson that is lighter than the top quark is found to have a significant impact on the expected signatures for top quark pair production at the Tevatron. This is marked by an overall decrease in high pT electrons and muons in the final states. In addition, for tan beta less than about one, the three-body decay H+→bbW leads to final states that are not present in the Standard Model. For GMSB models with the lighter stau as the next to lightest supersymmetric particle, the signature at the Tevatron typically involves two or three tau-jets plus large missing transverse energy. This tau-jet signature can be even more pronounced in left-right symmetric GMSB models due to the production of light doubly charged fermions that may couple preferentially to the third generation of leptons. The left-right models can be distinguished from GMSB models with minimal visible sector content by the distribution in angle between the highest ET tau-jets when they come from same sign tau

  5. Supersymmetric standard model from the heterotic string.

    PubMed

    Buchmüller, Wilfried; Hamaguchi, Koichi; Lebedev, Oleg; Ratz, Michael

    2006-03-31

    We present a [FORMULA: SEE TEXT] orbifold compactification of the E8xE8 heterotic string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), whereas the Higgs fields do not form complete SO(10) multiplets. The model has large vacuum degeneracy. For generic vacua, no exotic states appear at low energies and the model is consistent with gauge coupling unification. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings, whereas the other Yukawa couplings are suppressed. PMID:16605895

  6. Supersymmetric structure of the induced W gravities

    NASA Astrophysics Data System (ADS)

    Ader, Jean-Pierre; Biet, Franck; Noirot, Yves

    1999-03-01

    We derive the supersymmetric structure present in W-gravities which has been already observed in various contexts as Yang-Mills theory, topological field theories, bosonic string and chiral 0264-9381/16/3/029/img2-gravity. This derivation which is made in the geometrical framework of Zucchini, necessitates the introduction of an appropriate new basis of variables which replace the canonical fields and their derivatives. This construction is used, in the 0264-9381/16/3/029/img3-case, to deduce from the Chern-Simons action the Wess-Zumino-Polyakov action.

  7. Supersymmetric Standard Model from the Heterotic String

    SciTech Connect

    Buchmueller, Wilfried; Hamaguchi, Koichi; Lebedev, Oleg; Ratz, Michael

    2006-03-31

    We present a Z{sub 6} orbifold compactification of the E{sub 8}xE{sub 8} heterotic string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), whereas the Higgs fields do not form complete SO(10) multiplets. The model has large vacuum degeneracy. For generic vacua, no exotic states appear at low energies and the model is consistent with gauge coupling unification. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings, whereas the other Yukawa couplings are suppressed.

  8. A realistic renormalizable supersymmetric E₆ model

    SciTech Connect

    Bajc, Borut; Susič, Vasja

    2014-01-01

    A complete realistic model based on the supersymmetric version of E₆ is presented. It consists of three copies of matter 27, and a Higgs sector made of 2×(27+27⁻)+351´+351´⁻ representations. An analytic solution to the equations of motion is found which spontaneously breaks the gauge group into the Standard Model. The light fermion mass matrices are written down explicitly as non-linear functions of three Yukawa matrices. This contribution is based on Ref. [1].

  9. Sneutrino Higgs models explain lepton non-universality in eejj, eνjj excesses

    DOE PAGESBeta

    Berger, Joshua; Dror, Jeff Asaf; Ng, Wee Hao

    2015-09-23

    Recent searches for first-generation leptoquarks and heavy right-handed WR bosons have seen excesses in final states with electrons and jets. A bizarre property of these excesses is that they appear to violate lepton universality. With these results in mind, we study the phenomenology of supersymmetric models in which the Higgs arises as the sneutrino in an electron supermultiplet. Since the electron is singled out in this approach, one can naturally account for the lepton flavor structure of the excesses. In this work, we show that in such a framework, one can significantly alleviate the tension between the Standard Model andmore » the data and yet evade current constraints from other searches. Finally we point out that correlated excesses are expected to be seen in future multilepton searches.« less

  10. Sneutrino Higgs models explain lepton non-universality in eejj, eνjj excesses

    SciTech Connect

    Berger, Joshua; Dror, Jeff Asaf; Ng, Wee Hao

    2015-09-23

    Recent searches for first-generation leptoquarks and heavy right-handed WR bosons have seen excesses in final states with electrons and jets. A bizarre property of these excesses is that they appear to violate lepton universality. With these results in mind, we study the phenomenology of supersymmetric models in which the Higgs arises as the sneutrino in an electron supermultiplet. Since the electron is singled out in this approach, one can naturally account for the lepton flavor structure of the excesses. In this work, we show that in such a framework, one can significantly alleviate the tension between the Standard Model and the data and yet evade current constraints from other searches. Finally we point out that correlated excesses are expected to be seen in future multilepton searches.

  11. Sneutrino Higgs models explain lepton non-universality in eejj, eνjj excesses

    NASA Astrophysics Data System (ADS)

    Berger, Joshua; Dror, Jeff Asaf; Ng, Wee Hao

    2015-09-01

    Recent searches for first-generation leptoquarks and heavy right-handed W R bosons have seen excesses in final states with electrons and jets. A bizarre property of these excesses is that they appear to violate lepton universality. With these results in mind, we study the phenomenology of supersymmetric models in which the Higgs arises as the sneutrino in an electron supermultiplet. Since the electron is singled out in this approach, one can naturally account for the lepton flavor structure of the excesses. In this work, we show that in such a framework, one can significantly alleviate the tension between the Standard Model and the data and yet evade current constraints from other searches. Lastly we point out that correlated excesses are expected to be seen in future multilepton searches.

  12. Topology changing transitions in supersymmetric linear σ-models

    NASA Astrophysics Data System (ADS)

    Ryang, Shijong

    1995-02-01

    We analyze the two-dimensional supersymmetric linear σ-model with U(1) gauge symmetries that includes a Calabi-Yau phase and a possible Landau-Ginzburg phase. We demonstrate the topology changing transitions among the generic vacua of various linear σ-models. In the supersymmetric transition the determinantal contraction naturally arises.

  13. On supermatrix models, Poisson geometry, and noncommutative supersymmetric gauge theories

    SciTech Connect

    Klimčík, Ctirad

    2015-12-15

    We construct a new supermatrix model which represents a manifestly supersymmetric noncommutative regularisation of the UOSp(2|1) supersymmetric Schwinger model on the supersphere. Our construction is much simpler than those already existing in the literature and it was found by using Poisson geometry in a substantial way.

  14. High-temperature asymptotics of supersymmetric partition functions

    NASA Astrophysics Data System (ADS)

    Ardehali, Arash Arabi

    2016-07-01

    We study the supersymmetric partition function of 4d supersymmetric gauge theories with a U(1) R-symmetry on Euclidean S 3 × S β 1 , with S 3 the unit-radius squashed three-sphere, and β the circumference of the circle. For superconformal theories, this partition function coincides (up to a Casimir energy factor) with the 4d superconformal index.

  15. Toward precision holography with supersymmetric Wilson loops

    NASA Astrophysics Data System (ADS)

    Faraggi, Alberto; Pando Zayas, Leopoldo A.; Silva, Guillermo A.; Trancanelli, Diego

    2016-04-01

    We consider certain 1/4 BPS Wilson loop operators in SU( N) N=4 supersymmetric Yang-Mills theory, whose expectation value can be computed exactly via supersymmetric localization. Holographically, these operators are mapped to fundamental strings in AdS 5 × S 5. The string on-shell action reproduces the large N and large coupling limit of the gauge theory expectation value and, according to the AdS/CFT correspondence, there should also be a precise match between subleading corrections to these limits. We perform a test of such match at next-to-leading order in string theory, by deriving the spectrum of quantum fluctuations around the classical string solution and by computing the corresponding 1-loop effective action. We discuss in detail the supermultiplet structure of the fluctuations. To remove a possible source of ambiguity in the ghost zero mode measure, we compare the 1/4 BPS configuration with the 1/2 BPS one, dual to a circular Wilson loop. We find a discrepancy between the string theory result and the gauge theory prediction, confirming a previous result in the literature. We are able to track the modes from which this discrepancy originates, as well as the modes that by themselves would give the expected result.

  16. Invisible Decays of Supersymmetric Higgs Bosons

    SciTech Connect

    Aparicio Mendez, M. del R; Guevara, J. E. Barradas; Beltran, O. Felix

    2009-04-20

    We study the detection of the complete spectrum of Higgs bosons of the minimal supersymmetric standard model, through their decays into chargino ({chi}-tilde{sub i}{sup {+-}}) and neutralinos ({chi}-tilde{sub i}{sup o}), for several parametric scenarios. In the minimal supersymmetric model there are two charginos and four neutralinos, and the Higgs boson spectrum contains three neutral scalars, two CP-even (h{sup 0} and H{sup 0} with m{sub H{sup 0}}>m{sub h{sup 0}}) and one CP-odd (A{sup 0}, with m{sub A{sup 0}} as a free parameter); as well as a charged pair (H{sup {+-}}). An interesting signal comes from the decays of the Higgs bosons into invisible SUSY modes (h{sup 0}, H{sup 0},A{sup 0}{yields}{chi}-tilde{sub 1}{sup o}{chi}-tilde{sub 1}{sup o}), which could be detected at present and future high energy machines.

  17. Semiclassical approximation to supersymmetric quantum gravity

    NASA Astrophysics Data System (ADS)

    Kiefer, Claus; Lück, Tobias; Moniz, Paulo

    2005-08-01

    We develop a semiclassical approximation scheme for the constraint equations of supersymmetric canonical quantum gravity. This is achieved by a Born-Oppenheimer type of expansion, in analogy to the case of the usual Wheeler-DeWitt equation. The formalism is only consistent if the states at each order depend on the gravitino field. We recover at consecutive orders the Hamilton-Jacobi equation, the functional Schrödinger equation, and quantum gravitational correction terms to this Schrödinger equation. In particular, the following consequences are found: (i) the Hamilton-Jacobi equation and therefore the background spacetime must involve the gravitino, (ii) a (many-fingered) local time parameter has to be present on super Riem Σ (the space of all possible tetrad and gravitino fields), (iii) quantum supersymmetric gravitational corrections affect the evolution of the very early Universe. The physical meaning of these equations and results, in particular, the similarities to and differences from the pure bosonic case, are discussed.

  18. Supersymmetry with a heavy lightest supersymmetric particle

    NASA Astrophysics Data System (ADS)

    Cheng, Taoli; Li, Jinmian; Li, Tianjun

    2015-06-01

    To escape the current LHC supersymmetry (SUSY) search constraints while preserving the naturalness condition, we propose the heavy lightest supersymmetric particle (LSP) SUSY. According to the different dependencies on the LSP mass, we systematically classify the discriminating variables into three categories. We find that the strong dependence of all current SUSY searches on variables in the first category render weak sensitivity for the heavy LSP SUSY. In particular, all the current LHC SUSY search constraints can be evaded if the LSP mass is around 600 GeV or higher. In the minimal supersymmetric standard model (MSSM), we find that the heavy LSP SUSY does not induce more fine-tuning than the Higgs boson mass. Moreover, the muon anomalous magnetic moment can be satisfied within the 3-σ level. We systematically study the viable parameter space for the heavy LSP SUSY and present four benchmark points that realize our proposal concretely. An improved collider search for those benchmark points, which mainly relies on the variable in the second category, is discussed in detail.

  19. Higgs boson masses in supersymmetric models

    SciTech Connect

    Berger, M.S.

    1991-04-01

    Imposing supersymmetry on a Higgs potential constrains the parameters that define the potential. In supersymmetric extensions to the stranded model containing only Higgs SU(2){sub L} doublets there exist Higgs boson mass sum rules and bounds on the Higgs masses at tree level. The prescription for renormalizing these sum rules is derived. An explicit calculation is performed in the minimal supersymmetric extension to the standard model (MSSM). In this model at tree level the mass sum rule is M{sub H}{sup 2} + M{sub h}{sup 2} = M{sub A}{sup 2} + M{sub Z}{sup 2}. The results indicate that large corrections to the sum rules may arise from heavy matter fields, e.g. a heavy top quark. Squarks significantly heavier than their fermionic partners contribute large contributions when mixing occurs in the squark sector. These large corrections result from squark-Higgs couplings that become large in this limit. Contributions to individual Higgs boson masses that are quadratic in the squark masses cancel in the sum rule. Thus the naturalness constraint on Higgs boson masses is hidden in the combination of Higgs boson masses that comprise the sum rule. 39 refs., 13 figs.

  20. Determining Supersymmetric Parameters With Dark Matter Experiments

    SciTech Connect

    Hooper, Dan; Taylor, Andrew M.; /Oxford U.

    2006-07-01

    In this article, we explore the ability of direct and indirect dark matter experiments to not only detect neutralino dark matter, but to constrain and measure the parameters of supersymmetry. In particular, we explore the relationship between the phenomenological quantities relevant to dark matter experiments, such as the neutralino annihilation and elastic scattering cross sections, and the underlying characteristics of the supersymmetric model, such as the values of {mu} (and the composition of the lightest neutralino), m{sub A} and tan {beta}. We explore a broad range of supersymmetric models and then focus on a smaller set of benchmark models. We find that by combining astrophysical observations with collider measurements, {mu} can often be constrained far more tightly than it can be from LHC data alone. In models in the A-funnel region of parameter space, we find that dark matter experiments can potentially determine m{sub A} to roughly {+-}100 GeV, even when heavy neutral MSSM Higgs bosons (A, H{sub 1}) cannot be observed at the LHC. The information provided by astrophysical experiments is often highly complementary to the information most easily ascertained at colliders.

  1. Supersymmetric configurations in the rotating D1-D5 system andpp-waves

    NASA Astrophysics Data System (ADS)

    Maoz, Liat

    Two families of supersymmetric configurations are considered. One is the 1/4 supersymmetric D1--D5 system with angular momentum, and the other is a family of pp-waves of type IIB string theory with some supersymmetry. In the first part of the thesis some configurations of the D1--D5 system are examined which give conical singularities in AdS 3 as their near horizon limit. It is shown that they can be made non-singular by adding angular momentum to the brane system. The smooth asymptotically flat solutions constructed this way are used to obtain global AdS 3 as the near horizon geometry. Using the relation of the D1--D5 system to the oscillating string, a large family of supergravity solutions is constructed which describe BPS excitations on AdS3 x S 3 with angular momentum on S3. These solutions take into account the full back reaction on the metric, and can be viewed as Kaluza-Klein monopole "supertubes", which are completely non-singular geometries. The different chiral primaries of the dual CFT are identified with these different supergravity solutions. This part is adapted from the papers [1], [2]. In its second part, a general class of supersymmetric pp-wave solutions of type IIB string theory is constructed, such that the superstring worldsheet action in light cone gauge is that of an interacting massive field theory. It is shown that when the light cone Lagrangian has (2.2) supersymmetry, one can find backgrounds that lead to arbitrary superpotentials on the worldsheet. Both flat and curved transverse spaces are considered. In particular, the background giving rise to the N = 2 sine Gordon theory on the worldsheet is analyzed. Massive mirror symmetry relates it to the deformed CP1 model (or sausage model) which seems to elude a purely supergravity target space interpretation. These are results which appeared in the paper [3].

  2. Perturbative stability along the supersymmetric directions of the landscape

    SciTech Connect

    Sousa, Kepa

    2015-02-01

    We consider the perturbative stability of non-supersymmetric configurations in N=1 supergravity models with a spectator sector not involved in supersymmetry breaking. Motivated by the supergravity description of complex structure moduli in Large Volume Compactifications of type IIB-superstrings, we concentrate on models where the interactions are consistent with the supersymmetric truncation of the spectator fields, and we describe their couplings by a random ensemble of generic supergravity theories. We characterise the mass spectrum of the spectator fields in terms of the statistical parameters of the ensemble and the geometry of the scalar manifold. Our results show that the non-generic couplings between the spectator and the supersymmetry breaking sectors can stabilise all the tachyons which typically appear in the spectator sector before including the supersymmetry breaking effects, and we find large regions of the parameter space where the supersymmetric sector remains stable with probability close to one. We discuss these results about the stability of the supersymmetric sector in two physically relevant situations: non-supersymmetric Minkowski vacua, and slow-roll inflation driven by the supersymmetry breaking sector. For the class of models we consider, we have reproduced the regimes in which the KKLT and Large Volume Scenarios stabilise all supersymmetric moduli. We have also identified a new regime in which the supersymmetric sector is stabilised at a very robust type of dS minimum without invoking a large mass hierarchy.

  3. Perturbative stability along the supersymmetric directions of the landscape

    NASA Astrophysics Data System (ADS)

    Sousa, Kepa; Ortiz, Pablo

    2015-02-01

    We consider the perturbative stability of non-supersymmetric configurations in Script N=1 supergravity models with a spectator sector not involved in supersymmetry breaking. Motivated by the supergravity description of complex structure moduli in Large Volume Compactifications of type IIB-superstrings, we concentrate on models where the interactions are consistent with the supersymmetric truncation of the spectator fields, and we describe their couplings by a random ensemble of generic supergravity theories. We characterise the mass spectrum of the spectator fields in terms of the statistical parameters of the ensemble and the geometry of the scalar manifold. Our results show that the non-generic couplings between the spectator and the supersymmetry breaking sectors can stabilise all the tachyons which typically appear in the spectator sector before including the supersymmetry breaking effects, and we find large regions of the parameter space where the supersymmetric sector remains stable with probability close to one. We discuss these results about the stability of the supersymmetric sector in two physically relevant situations: non-supersymmetric Minkowski vacua, and slow-roll inflation driven by the supersymmetry breaking sector. For the class of models we consider, we have reproduced the regimes in which the KKLT and Large Volume Scenarios stabilise all supersymmetric moduli. We have also identified a new regime in which the supersymmetric sector is stabilised at a very robust type of dS minimum without invoking a large mass hierarchy.

  4. Supersymmetric inversion of effective-range expansions

    NASA Astrophysics Data System (ADS)

    Midya, Bikashkali; Evrard, Jérémie; Abramowicz, Sylvain; Ramírez Suárez, O. L.; Sparenberg, Jean-Marc

    2015-05-01

    A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor or Padé expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are extracted in the complex wave-number plane. Third, the interaction potential is constructed with supersymmetric transformations of the radial Schrödinger equation. As an illustration, the method is applied to the experimental phase shifts of the neutron-proton elastic scattering in the 1S0 and 1D2 channels on the [0 -350 ] MeV laboratory energy interval.

  5. Nonperturbative decay of supersymmetric flat directions

    SciTech Connect

    Guemruekcueoglu, A. Emir; Peloso, Marco; Sexton, Matthew; Olive, Keith A.

    2008-09-15

    We compute the nonperturbative decay of supersymmetric flat directions due to their D-term potential. Flat directions can develop large vacuum expectation values during inflation, and, if they are long-lived, this can strongly affect the reheating and thermalization stages after the inflation. We study a generic system of two U(1) or SU(2) flat directions which are cosmologically evolving after inflation. After proper gauge fixing, we show that the excitations of the fields around this background can undergo exponential amplification, at the expense of the energy density of the flat directions. We compute this effect for several values of the masses and the initial vacuum expectation values of the two flat directions, through a combination of analytical methods and extensive numerical simulations.

  6. Lepton flavor violation and supersymmetric Dirac leptogenesis

    SciTech Connect

    Thomas, Brooks; Toharia, Manuel

    2007-01-01

    Dirac leptogenesis (or Dirac neutrinogenesis), in which neutrinos are purely Dirac particles, is an interesting alternative to the standard leptogenesis scenario. In its supersymmetric version, the modified form of the superpotential required for successful baryogenesis contributes new, generically nonflavor-diagonal terms to the slepton and sneutrino mass matrices. In this work, we examine how current experimental bounds on flavor-changing effects in the lepton sector (and particularly the bound on {mu}{yields}e{gamma}) constrain Dirac leptogenesis and we find that it is capable of succeeding with superpartner masses as low as {approx}100 GeV. For such light scalars and electroweakinos, upcoming experiments such as MEG are generically expected to observe signals of lepton flavor violation.

  7. Tsirelson's bound and supersymmetric entangled states

    PubMed Central

    Borsten, L.; Brádler, K.; Duff, M. J.

    2014-01-01

    A superqubit, belonging to a (2|1)-dimensional super-Hilbert space, constitutes the minimal supersymmetric extension of the conventional qubit. In order to see whether superqubits are more non-local than ordinary qubits, we construct a class of two-superqubit entangled states as a non-local resource in the CHSH game. Since super Hilbert space amplitudes are Grassmann numbers, the result depends on how we extract real probabilities and we examine three choices of map: (1) DeWitt (2) Trigonometric and (3) Modified Rogers. In cases (1) and (2), the winning probability reaches the Tsirelson bound pwin=cos2π/8≃0.8536 of standard quantum mechanics. Case (3) crosses Tsirelson's bound with pwin≃0.9265. Although all states used in the game involve probabilities lying between 0 and 1, case (3) permits other changes of basis inducing negative transition probabilities. PMID:25294964

  8. Tsirelson's bound and supersymmetric entangled states.

    PubMed

    Borsten, L; Brádler, K; Duff, M J

    2014-10-01

    A superqubit, belonging to a (2|1)-dimensional super-Hilbert space, constitutes the minimal supersymmetric extension of the conventional qubit. In order to see whether superqubits are more non-local than ordinary qubits, we construct a class of two-superqubit entangled states as a non-local resource in the CHSH game. Since super Hilbert space amplitudes are Grassmann numbers, the result depends on how we extract real probabilities and we examine three choices of map: (1) DeWitt (2) Trigonometric and (3) Modified Rogers. In cases (1) and (2), the winning probability reaches the Tsirelson bound [Formula: see text] of standard quantum mechanics. Case (3) crosses Tsirelson's bound with p win≃0.9265. Although all states used in the game involve probabilities lying between 0 and 1, case (3) permits other changes of basis inducing negative transition probabilities. PMID:25294964

  9. A new perspective on supersymmetric inflation

    SciTech Connect

    Matsuda, Tomohiro

    2009-11-01

    We consider supersymmetric inflation with the hybrid-type potential. In the absence of the symmetry that forbids Hubble-induced mass terms, the inflaton mass will be as large as the Hubble scale during inflation. We consider gravitational decay of the trigger field as the least decay mode and find that the damping caused by the dissipation can dominate the friction of the inflaton when the heavy trigger field is coupled to the inflaton. The dissipative damping provides a solution to the traditional η problem without introducing additional symmetry and interactions. Considering the spatial inhomogeneities of the dissipative coefficient, we find that modulated inflation (modulation of the inflaton velocity) can create significant curvature perturbations.

  10. Supersymmetric backgrounds and generalised special holonomy

    NASA Astrophysics Data System (ADS)

    Coimbra, André; Strickland-Constable, Charles; Waldram, Daniel

    2016-06-01

    We define intrinsic torsion in generalised geometry and use it to introduce a new notion of generalised special holonomy. We then consider generic warped supersymmetric flux compactifications of M theory and Type II of the form {{{R}}}D-{1,1}× M. Using the language of {E}d(d)× {{{R}}}+ generalised geometry, we show that, for D≥slant 4, preserving minimal supersymmetry is equivalent to the manifold M having generalised special holonomy and list the relevant holonomy groups. We conjecture that this result extends to backgrounds preserving any number of supersymmetries. As a prime example, we consider { N }=1 in D = 4. The corresponding generalised special holonomy group is {SU}(7), giving the natural M theory extension to the notion of a G 2 manifold, and, for Type II backgrounds, reformulating the pure spinor {SU}(3)× {SU}(3) conditions as an integrable structure.

  11. Effective action of softly broken supersymmetric theories

    SciTech Connect

    Nibbelink, Stefan Groot; Nyawelo, Tino S.

    2007-02-15

    We study the renormalization of (softly) broken supersymmetric theories at the one loop level in detail. We perform this analysis in a superspace approach in which the supersymmetry breaking interactions are parametrized using spurion insertions. We comment on the uniqueness of this parametrization. We compute the one loop renormalization of such theories by calculating superspace vacuum graphs with multiple spurion insertions. To perform this computation efficiently we develop algebraic properties of spurion operators, that naturally arise because the spurions are often surrounded by superspace projection operators. Our results are general apart from the restrictions that higher super covariant derivative terms and some finite effects due to noncommutativity of superfield dependent mass matrices are ignored. One of the soft potentials induces renormalization of the Kaehler potential.

  12. Supersymmetric dark matter above the W mass

    NASA Technical Reports Server (NTRS)

    Griest, Kim; Kamionkowski, Marc; Turner, Michael S.

    1989-01-01

    The cosmological consequences are studied for the minimal supersymmetric extension of the standard model in the case that the neutralino is heavier than W. The cross section was calculated for annihilation of heavy neutralinos into final states containing gauge and Higgs bosons (XX yields WW, ZZ, HH, HW, HZ), where X is the lightest, nth neutralino and the results are compared with the results with those previously obtained for annihilation into fermions to find the relic cosmological abundance for the most general neutralino. The new channels are particularly important for the Higgsino-like and mixed-state neutralinos, but are sub-dominant (to the fermion-antifermion annihilation channels) in the case that the neutralino is mostly a gaugino. The effect of the top quark mass is also considered. Using these cross sections and the cosmological constraint omega(sub X)h squared is less than or approximately 1, the entire range of cosmologically acceptable supersymmetric parameter space is mapped and a very general bound on the neutralino mass is discovered. For a top quark mass of less than 180 GeV, neutralinos heavier than 3200 GeV are cosmologically inconsistent, and if the top quark mass is less than 120 GeV, the bound is lowered to 2600 GeV. Neutralino states that are mostly gaugino are constrained to be lighter than 550 GeV. It is found that a heavy neutralino that contributes omega(sub X) is approximately 1 arises for a very wide range of model parameters and makes, therefore, a very natural and attractive dark matter candidate.

  13. Supersymmetric QCD: exact results and strong coupling

    NASA Astrophysics Data System (ADS)

    Dine, Michael; Festuccia, Guido; Pack, Lawrence; Park, Chang-Soon; Ubaldi, Lorenzo; Wu, Weitao

    2011-05-01

    We revisit two longstanding puzzles in supersymmetric gauge theories. The first concerns the question of the holomorphy of the coupling, and related to this the possible definition of an exact (NSVZ) beta function. The second concerns instantons in pure gluodynamics, which appear to give sensible, exact results for certain correlation functions, which nonetheless differ from those obtained using systematic weak coupling expansions. For the first question, we extend an earlier proposal of Arkani-Hamed and Murayama, showing that if their regulated action is written suitably, the holomorphy of the couplings is manifest, and it is easy to determine the renormalization scheme for which the NSVZ formula holds. This scheme, however, is seen to be one of an infinite class of schemes, each leading to an exact beta function; the NSVZ scheme, while simple, is not selected by any compelling physical consideration. For the second question, we explain why the instanton computation in the pure supersymmetric gauge theory is not reliable, even at short distances. The semiclassical expansion about the instanton is purely formal; if infrared divergences appear, they spoil arguments based on holomorphy. We demonstrate that infrared divergences do not occur in the perturbation expansion about the instanton, but explain that there is no reason to think this captures all contributions from the sector with unit topological charge. That one expects additional contributions is illustrated by dilute gas corrections. These are infrared divergent, and so difficult to define, but if non-zero give order one, holomorphic, corrections to the leading result. Exploiting an earlier analysis of Davies et al, we demonstrate that in the theory compactified on a circle of radius β, due to infrared effects, finite contributions indeed arise which are not visible in the formal β → ∞ limit.

  14. Reheating in supersymmetric high scale inflation

    SciTech Connect

    Allahverdi, Rouzbeh; Mazumdar, Anupam

    2007-11-15

    Motivated by our earlier work, we analyze how the inflaton decay reheats the Universe within supersymmetry. In a nonsupersymmetric case the inflaton usually decays via preheating unless its couplings to other fields are very small. Naively one would expect that supersymmetry enhances bosonic preheating as it introduces new scalars such as squarks and sleptons. On the contrary, we point out that preheating is unlikely within supersymmetry. The reason is that flat directions in the scalar potential, classified by gauge-invariant combinations of slepton and squark fields, are generically displaced towards a large vacuum expectation value (VEV) in the early Universe. They induce supersymmetry preserving masses to the inflaton decay products through the standard model Yukawa couplings, which kinematically blocks preheating for VEVs>10{sup 13} GeV. The decay will become allowed only after the flat directions start oscillating, and once the flat direction VEV is sufficiently redshifted. For models with weak scale supersymmetry, this generically happens at a Hubble expansion rate: H{approx_equal}(10{sup -3}-10{sup -1}) TeV, at which time the inflaton decays in the perturbative regime. This is to our knowledge the first analysis where the inflaton decay to the standard model particles is treated properly within supersymmetry. There are a number of important consequences: no overproduction of dangerous supersymmetric relics (particularly gravitinos), no resonant excitation of superheavy dark matter, and no nonthermal leptogenesis through nonperturbative creation of the right-handed (s)neutrinos. Finally supersymmetric flat directions can even spoil hybrid inflation altogether by not allowing the auxiliary field to become tachyonic.

  15. Supersymmetry searches in GUT models with non-universal scalar masses

    NASA Astrophysics Data System (ADS)

    Cannoni, M.; Ellis, J.; Gómez, M. E.; Lola, S.; Ruiz de Austri, R.

    2016-03-01

    We study SO(10), SU(5) and flipped SU(5) GUT models with non-universal soft supersymmetry-breaking scalar masses, exploring how they are constrained by LHC supersymmetry searches and cold dark matter experiments, and how they can be probed and distinguished in future experiments. We find characteristic differences between the various GUT scenarios, particularly in the coannihilation region, which is very sensitive to changes of parameters. For example, the flipped SU(5) GUT predicts the possibility of ~t1-χ coannihilation, which is absent in the regions of the SO(10) and SU(5) GUT parameter spaces that we study. We use the relic density predictions in different models to determine upper bounds for the neutralino masses, and we find large differences between different GUT models in the sparticle spectra for the same LSP mass, leading to direct connections of distinctive possible experimental measurements with the structure of the GUT group. We find that future LHC searches for generic missing ET, charginos and stops will be able to constrain the different GUT models in complementary ways, as will the Xenon 1 ton and Darwin dark matter scattering experiments and future FERMI or CTA γ-ray searches.

  16. Non-universal decoding of the leucine codon CUG in several Candida species.

    PubMed Central

    Ohama, T; Suzuki, T; Mori, M; Osawa, S; Ueda, T; Watanabe, K; Nakase, T

    1993-01-01

    It has been reported that CUG, a universal leucine codon, is read as serine in an asporogenic yeast, Candida cylindracea. The distribution of this non-universal genetic code in various yeast species was studied using an in vitro translation assay system with a synthetic messenger RNA containing CUG codons in-frame. It was found that CUG is used as a serine codon in six out of the fourteen species examined, while it is used for leucine in the remaining eight. The tRNA species responsible for the translation of codon CUG as serine was detected in all the six species in which CUG is translated as serine. The grouping according to the CUG codon assignments in these yeast species shows a good correlation with physiological classification by the chain lengths of the isoprenoid moiety of ubiquinone and the cell-wall sugar contained in the yeasts. The six Candida species examined in which CUG is used as serine belong to one distinct group in Hemiascomycetes. PMID:8371978

  17. New supersymmetric index of heterotic compactifications with torsion

    NASA Astrophysics Data System (ADS)

    Israël, Dan; Sarkis, Matthieu

    2015-12-01

    We compute the new supersymmetric index of a large class of N=2 heterotic compactifications with torsion, corresponding to principal two-torus bundles over warped K3 surfaces with H-flux. Starting from a UV description as a (0,2) gauged linear sigma-model with torsion, we use supersymmetric localization techniques to provide an explicit expression of the index as a sum over the Jeffrey-Kirwan residues of the one-loop determinant. We finally propose a geometrical formula that gives the new supersymmetric index in terms of bundle data, regardless of any particular choice of underlying two-dimensional theory.

  18. Particle spectroscopy of supersymmetric SO(10) with nonuniversal gaugino masses

    SciTech Connect

    Okada, Nobuchika; Raza, Shabbar; Shafi, Qaisar

    2011-11-01

    We examine the low scale particle spectroscopy of an SO(10) [or equivalently SU(5)] inspired supersymmetric model with nonuniversal gaugino masses. The model assumes minimal supergravity and contains the same number of fundamental parameters as the constrained minimal supersymmetric standard model. Realistic solutions compatible with dark matter and other applicable experimental constraints are shown to exist for both positive and negative signs of the minimal supersymmetric standard model parameter {mu}. We present several benchmark points which will be tested at the LHC and by the ongoing direct and indirect dark matter detection experiments.

  19. Gauge extensions of supersymmetric models and hidden valleys

    NASA Astrophysics Data System (ADS)

    Luo, Mingxing; Zheng, Sibo

    2009-04-01

    Supersymmetric models with extended group structure beyond the standard model are revisited in the framework of general gauge mediation. Sum rules for sfermion masses are shown to depend genuinely on the group structure, which can serve as important probes for specific models. The left-right model and models with extra U(1) are worked out for illustrations. If the couplings of extra gauge groups are small, supersymmetric hidden valleys of the scale 10-100 GeV can be naturally constructed in companion of a TeV-scale supersymmetric visible sector.

  20. External Quality Assessment of Non-University Study Programmes Which Were Developed and Submitted for Realisation: Experience and Problems

    ERIC Educational Resources Information Center

    Zibeniene, Gintaute

    2004-01-01

    The author analyzes the nature of study programme assessment with regard to the assurance of study quality. The organisation of the assessment process of the non-university study programmes which were developed and submitted for realisation in Lithuania and other countries is also presented and compared. It is being analysed whether it is possible…

  1. Supersymmetric flavor models and the B→φKS anomaly

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Carone, Christopher D.

    2003-08-01

    We consider the flavor structure of supersymmetric theories that can account for the deviation of the observed time-dependent CP asymmetry in B→φKS from the standard model prediction. Assuming simple flavor symmetries and effective field theory, we investigate possible correlations between sizable supersymmetric contributions to b→s transitions and to flavor changing processes that are more tightly constrained. With relatively few assumptions, we determine the properties of minimal Yukawa and soft mass textures that are compatible with the desired supersymmetric flavor-changing effect and constraints. We then present explicit models that are designed (at least approximately) to realize these textures. In particular, we present an Abelian model based on a single U(1) factor and a non-trivial extra-dimensional topography that can explain the CP asymmetry in B→φKS, while suppressing other supersymmetric flavor changing effects through a high degree of squark-quark alignment.

  2. N=2 supersymmetric extension of l-conformal Galilei algebra

    SciTech Connect

    Masterov, Ivan

    2012-07-15

    N=2 supersymmetric extension of the l-conformal Galilei algebra is constructed. A relation between its representations in flat spacetime and in Newton-Hooke spacetime is discussed. An infinite-dimensional generalization of the superalgebra is given.

  3. Supersymmetric signatures at an eγ collider

    NASA Astrophysics Data System (ADS)

    Kiers, Ken; Ng, John N.; Wu, Guohong

    1996-02-01

    High energy electron-photon colliders provide unique opportunities for probing physics beyond the standard model. We have studied the experimental signatures for two supersymmetric scenarios, with the lightest supersymmetric particle (LSP) being either the lightest neutralino or the gravitino. In the “neutralino LSP” scenario favored by the minimal supersymmetric standard model (MSSM), it is found that some basic parameters of the model, μ, tan β, M1 and M2, may be uniquely determined from the outgoing electron energy spectrum without assuming high scale unification of the masses or couplings. In the “gravitino LSP” scenario which occurs naturally in models of low energy dynamical supersymmetry breaking, it is possible to have background-free signatures if the next-to-lightest supersymmetric particle (NLSP) has a long decay length. In cases that the NLSP decays quickly, ways to distinguish among the experimental signatures of the two scenarios and of the standard model (SM) background are discussed.

  4. Signals of supersymmetric lepton flavor violation at the CERN LHC

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Graesser, Michael

    2000-04-01

    In a generic supersymmetric extension of the standard model, there will be lepton flavor violation at a neutral gaugino vertex due to misalignment between the lepton Yukawa couplings and the slepton soft masses. Sleptons produced at the CERN LHC through the cascade decays of squarks and gluinos can give a sizable number of events with 4 leptons. This channel could give a clean signature of supersymmetric lepton flavor violation under conditions which are identified.

  5. Radiative neutralino production in low energy supersymmetric models

    SciTech Connect

    Basu, Rahul; Sharma, Chandradew; Pandita, P. N.

    2008-06-01

    We study the production of the lightest neutralinos in the radiative process e{sup +}e{sup -}{yields}{chi}-tilde{sub 1}{sup 0}{chi}-tilde{sub 1}{sup 0}{gamma} in low energy supersymmetric models for the International Linear Collider energies. This includes the minimal supersymmetric standard model as well as its extension with an additional chiral Higgs singlet superfield, the nonminimal supersymmetric standard model. We compare and contrast the dependence of the signal cross section on the parameters of the neutralino sector of the minimal and nonminimal supersymmetric standard model. We also consider the background to this process coming from the standard model process e{sup +}e{sup -}{yields}{nu}{nu}{gamma}, as well as from the radiative production of the scalar partners of the neutrinos (sneutrinos) e{sup +}e{sup -}{yields}{nu}-tilde{nu}-tilde*{gamma}, which can be a background to the radiative neutralino production when the sneutrinos decay invisibly. In low energy supersymmetric models radiative production of the lightest neutralinos may be the only channel to study supersymmetric partners of the standard model particles at the first stage of a linear collider, since heavier neutralinos, charginos, and sleptons may be too heavy to be pair produced at a e{sup +}e{sup -} machine with {radical}(s)=500 GeV.

  6. A tool box for implementing supersymmetric models

    NASA Astrophysics Data System (ADS)

    Staub, Florian; Ohl, Thorsten; Porod, Werner; Speckner, Christian

    2012-10-01

    We present a framework for performing a comprehensive analysis of a large class of supersymmetric models, including spectrum calculation, dark matter studies and collider phenomenology. To this end, the respective model is defined in an easy and straightforward way using the Mathematica package SARAH. SARAH then generates model files for CalcHep which can be used with micrOMEGAs as well as model files for WHIZARD and O'Mega. In addition, Fortran source code for SPheno is created which facilitates the determination of the particle spectrum using two-loop renormalization group equations and one-loop corrections to the masses. As an additional feature, the generated SPheno code can write out input files suitable for use with HiggsBounds to apply bounds coming from the Higgs searches to the model. Combining all programs provides a closed chain from model building to phenomenology. Program summary Program title: SUSY Phenomenology toolbox. Catalog identifier: AEMN_v1_0. Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMN_v1_0.html. Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html. No. of lines in distributed program, including test data, etc.: 140206. No. of bytes in distributed program, including test data, etc.: 1319681. Distribution format: tar.gz. Programming language: Autoconf, Mathematica. Computer: PC running Linux, Mac. Operating system: Linux, Mac OS. Classification: 11.6. Nature of problem: Comprehensive studies of supersymmetric models beyond the MSSM is considerably complicated by the number of different tasks that have to be accomplished, including the calculation of the mass spectrum and the implementation of the model into tools for performing collider studies, calculating the dark matter density and checking the compatibility with existing collider bounds (in particular, from the Higgs searches). Solution method: The

  7. Neutrino fluxes from constrained minimal supersymmetric standard model lightest supersymmetric particle annihilations in the Sun

    SciTech Connect

    Ellis, John; Olive, Keith A.; Savage, Christopher; Spanos, Vassilis C.

    2010-04-15

    We evaluate the neutrino fluxes to be expected from neutralino lightest supersymmetric particle (LSP) annihilations inside the Sun, within the minimal supersymmetric extension of the standard model with supersymmetry-breaking scalar and gaugino masses constrained to be universal at the grand unified theory scale [the constrained minimal supersymmetric standard model (CMSSM)]. We find that there are large regions of typical CMSSM (m{sub 1/2},m{sub 0}) planes where the LSP density inside the Sun is not in equilibrium, so that the annihilation rate may be far below the capture rate. We show that neutrino fluxes are dependent on the solar model at the 20% level, and adopt the AGSS09 model of Serenelli et al. for our detailed studies. We find that there are large regions of the CMSSM (m{sub 1/2},m{sub 0}) planes where the capture rate is not dominated by spin-dependent LSP-proton scattering, e.g., at large m{sub 1/2} along the CMSSM coannihilation strip. We calculate neutrino fluxes above various threshold energies for points along the coannihilation/rapid-annihilation and focus-point strips where the CMSSM yields the correct cosmological relic density for tan{beta}=10 and 55 for {mu}>0, exploring their sensitivities to uncertainties in the spin-dependent and -independent scattering matrix elements. We also present detailed neutrino spectra for four benchmark models that illustrate generic possibilities within the CMSSM. Scanning the cosmologically favored parts of the parameter space of the CMSSM, we find that the IceCube/DeepCore detector can probe at best only parts of this parameter space, notably the focus-point region and possibly also at the low-mass tip of the coannihilation strip.

  8. The goldstone and goldstino of supersymmetric inflation

    NASA Astrophysics Data System (ADS)

    Kahn, Yonatan; Roberts, Daniel A.; Thaler, Jesse

    2015-10-01

    We construct the minimal effective field theory (EFT) of supersymmetric inflation, whose field content is a real scalar, the goldstone for time-translation breaking, and a Weyl fermion, the goldstino for supersymmetry (SUSY) breaking. The inflating background can be viewed as a single SUSY-breaking sector, and the degrees of freedom can be efficiently parameterized using constrained superfields. Our EFT is comprised of a chiral superfield X NL containing the goldstino and satisfying X NL 2 = 0, and a real superfield B NL containing both the goldstino and the goldstone, satisfying X NL B NL = B NL 3 = 0. We match results from our EFT formalism to existing results for SUSY broken by a fluid background, showing that the goldstino propagates with subluminal velocities. The same effect can also be derived from the unitary gauge gravitino action after embedding our EFT in supergravity. If the gravitino mass is comparable to the Hubble scale during inflation, we identify a new parameter in the EFT related to a time-dependent phase of the gravitino mass parameter. We briefly comment on the leading contributions of goldstino loops to inflationary observables.

  9. Cosmic strings from supersymmetric flat directions

    SciTech Connect

    Cui Yanou; Morrissey, David E.; Martin, Stephen P.; Wells, James D.

    2008-02-15

    Flat directions are a generic feature of the scalar potential in supersymmetric gauge field theories. They can arise, for example, from D-terms associated with an extra Abelian gauge symmetry. Even when supersymmetry is broken softly, there often remain directions in the scalar field space along which the potential is almost flat. Upon breaking a gauge symmetry along one of these almost-flat directions, cosmic strings may form. Relative to the standard cosmic string picture based on the Abelian Higgs model, these flat-direction cosmic strings have the extreme type-I properties of a thin gauge core surrounded by a much wider scalar field profile. We perform a comprehensive study of the microscopic, macroscopic, and observational characteristics of this class of strings. We find many differences from the standard string scenario, including stable higher winding-mode strings, the dynamical formation of higher mode strings from lower ones, and a resultant multitension scaling string network in the early universe. These strings are only moderately constrained by current observations, and their gravitational wave signatures may be detectable at future gravity wave detectors. Furthermore, there is the interesting but speculative prospect that the decays of cosmic string loops in the early universe could be a source of ultrahigh-energy cosmic rays or nonthermal dark matter. We also compare the observational signatures of flat-direction cosmic strings with those of ordinary cosmic strings as well as (p,q) cosmic strings motivated by superstring theory.

  10. The goldstone and goldstino of supersymmetric inflation

    SciTech Connect

    Kahn, Yonatan; Roberts, Daniel A.; Thaler, Jesse

    2015-10-01

    Here, we construct the minimal effective field theory (EFT) of supersymmetric inflation, whose field content is a real scalar, the goldstone for time-translation breaking, and a Weyl fermion, the goldstino for supersymmetry (SUSY) breaking. The inflating background can be viewed as a single SUSY-breaking sector, and the degrees of freedom can be efficiently parameterized using constrained superfields. Our EFT is comprised of a chiral superfield XNL containing the goldstino and satisfying X2NL = 0, and a real superfield BNL containing both the goldstino and the goldstone, satisfying XNL BNL = B3NL = 0. We match results from our EFT formalism to existing results for SUSY broken by a fluid background, showing that the goldstino propagates with subluminal velocities. The same effect can also be derived from the unitary gauge gravitino action after embedding our EFT in supergravity. If the gravitino mass is comparable to the Hubble scale during inflation, we identify a new parameter in the EFT related to a time-dependent phase of the gravitino mass parameter. We briefly comment on the leading contributions of goldstino loops to inflationary observables.

  11. The goldstone and goldstino of supersymmetric inflation

    DOE PAGESBeta

    Kahn, Yonatan; Roberts, Daniel A.; Thaler, Jesse

    2015-10-01

    Here, we construct the minimal effective field theory (EFT) of supersymmetric inflation, whose field content is a real scalar, the goldstone for time-translation breaking, and a Weyl fermion, the goldstino for supersymmetry (SUSY) breaking. The inflating background can be viewed as a single SUSY-breaking sector, and the degrees of freedom can be efficiently parameterized using constrained superfields. Our EFT is comprised of a chiral superfield XNL containing the goldstino and satisfying X2NL = 0, and a real superfield BNL containing both the goldstino and the goldstone, satisfying XNL BNL = B3NL = 0. We match results from our EFT formalismmore » to existing results for SUSY broken by a fluid background, showing that the goldstino propagates with subluminal velocities. The same effect can also be derived from the unitary gauge gravitino action after embedding our EFT in supergravity. If the gravitino mass is comparable to the Hubble scale during inflation, we identify a new parameter in the EFT related to a time-dependent phase of the gravitino mass parameter. We briefly comment on the leading contributions of goldstino loops to inflationary observables.« less

  12. Supersymmetric F-theory GUT models

    NASA Astrophysics Data System (ADS)

    Chung, Yu-Chieh

    F-theory is a twelve-dimensional geometric version of string theory and is believed to be a natural framework for GUT model building. The aim of this dissertation is to study how gauge theories realized by F-theory can accommodate GUT models. In this dissertation, we focus on local and semi-local GUT model building in F-theory. For local GUT models, we build SU(5) GUTs by using abelian U(1) fluxes via theSU6) gauge group. Doing so, we obtain non-minimal spectra of the MSSM with doublet-triplet splitting by switching on abelian U(1)2 fluxes. We also classify all supersymmetric U(1)2 fluxes by requiring an exotic-free bulk spectrum. For semi-local GUT models, we start with an E8 singularity and obtain lower rank gauge groups by unfolding the singularity governed by spectral covers. In this framework, the spectra can be calculated by the intersection numbers of spectral covers and matter curves. In particular, we useSU4) spectral covers and abelian U(1)X fluxes to build flippedSU5) models. We show that three-generation spectra of flippedSU5) models can be achieved by turning on suitable fluxes. To construct E6 GUTs, we consider SU3) spectral covers breaking E8 down to E6. Also three-generation extended MSSM can be obtained by using non-abelian SU2) x U(1)2 fluxes.

  13. Supersymmetric Quantum Mechanics For Atomic Electronic Systems

    NASA Astrophysics Data System (ADS)

    Markovich, Thomas; Biamonte, Mason; Kouri, Don

    2012-02-01

    We employ our new approach to non-relativistic supersymmetric quantum mechanics (SUSY-QM), (J. Phys. Chem. A 114, 8202(2010)) for any number of dimensions and distinguishable particles, to treat the hydrogen atom in full three-dimensional detail. In contrast to the standard one-dimensional radial equation SUSY-QM treatment of the hydrogen atom, where the superpotential is a scalar, in a full three-dimensional treatment, it is a vector which is independent of the angular momentum quantum number. The original scalar Schr"odinger Hamiltonian operator is factored into vector ``charge'' operators: Q and Q^. Using these operators, the first sector Hamiltonian is written as H1= Q^.Q + E0^1. The second sector Hamiltonian is a tensor given by H2= Q Q^ + E0^11 and is isospectral with H1. The second sector ground state, ψ0^(2), can be used to obtain the excited state wave functions of the first sector by application of the adjoint charge operator. We then adapt the aufbau principle to show this approach can be applied to treat the helium atom.

  14. The supersymmetric NUTs and bolts of holography

    NASA Astrophysics Data System (ADS)

    Martelli, Dario; Passias, Achilleas; Sparks, James

    2013-11-01

    We show that a given conformal boundary can have a rich and intricate space of supersymmetric supergravity solutions filling it, focusing on the case where this conformal boundary is a biaxially squashed Lens space. Generically we find that the biaxially squashed Lens space S3/Zp admits Taub-NUT-AdS fillings, with topology R4/Zp, as well as smooth Taub-Bolt-AdS fillings with non-trivial topology. We show that the Taub-NUT-AdS solutions always lift to solutions of M-theory, and correspondingly that the gravitational free energy then agrees with the large N limit of the dual field theory free energy, obtained from the localized partition function of a class of N=2 Chern-Simons-matter theories. However, the solutions of Taub-Bolt-AdS type only lift to M-theory for appropriate classes of internal manifold, meaning that these solutions exist only for corresponding classes of three-dimensional N=2 field theories. This result should be contrasted with the corresponding situation for asymptotically locally Euclidean metrics, where Killing vector fields on the boundary do not necessarily extend inside. The canonical examples are the Gibbons-Hawking multi-centre solutions [29].

  15. Statistical analysis of supersymmetric dark matter in the minimal supersymmetric standard model after WMAP

    SciTech Connect

    Profumo, S.; Yaguna, C.E.

    2004-11-01

    We study supersymmetric dark matter in the general flavor diagonal minimal supersymmetric standard model by means of an extensive random scan of its parameter space. We find that, in contrast with the standard minimal supergravity lore, the large majority of viable models features either a Higgsino or a winolike lightest neutralino, and yields a relic abundance well below the Wilkinson Microwave Anisotropy Probe (WMAP) bound. Among the models with neutralino relic density within the WMAP range, Higgsinolike neutralinos are still dominant, though a sizable fraction of binos is also present. In this latter case, coannihilations are shown to be essential in order to obtain the correct neutralino abundance. We then carry out a statistical analysis and a general discussion of neutralino dark matter direct detection and of indirect neutralino detection at neutrino telescopes and at antimatter search experiments. We point out that current data exclude only a marginal portion of the viable parameter space, and that models whose thermal relic abundance lies in the WMAP range will be significantly probed only at future direct detection experiments. Finally, we emphasize the importance of relic density enhancement mechanisms for indirect detection perspectives, in particular, at future antimatter search experiments.

  16. Instanton-mediated baryon number violation in non-universal gauge extended models

    NASA Astrophysics Data System (ADS)

    Fuentes-Martín, J.; Portolés, J.; Ruiz-Femenía, P.

    2015-01-01

    Instanton solutions of non-abelian Yang-Mills theories generate an effective action that may induce lepton and baryon number violations, namely Δ B = Δ L = n f , being n f the number of families coupled to the gauge group. In this article we study instanton mediated processes in a SU(2) ℓ ⊗SU(2) h ⊗U(1) extension of the Standard Model that breaks universality by singularizing the third family. In the construction of the instanton Green functions we account systematically for the inter-family mixing. This allows us to use the experimental bounds on proton decay in order to constrain the gauge coupling of SU(2) h . Tau lepton non-leptonic and radiative decays with Δ B = Δ L = 1 are also analysed.

  17. Light staus and enhanced Higgs diphoton rate with non-universal gaugino masses and SO(10) Yukawa unification

    NASA Astrophysics Data System (ADS)

    Badziak, Marcin; Olechowski, Marek; Pokorski, Stefan

    2013-10-01

    It is shown that substantially enhanced Higgs to diphoton rate induced by light staus with large left-right mixing in MSSM requires at the GUT scale non-universal gaugino masses with bino and/or wino lighter than gluino. The possibility of such enhancement is investigated in MSSM models with arbitrary gaugino masses at the GUT scale with additional restriction of top-bottom-tau Yukawa unification, as predicted by minimal SO(10) GUTs. Many patterns of gaugino masses leading to enhanced Higgs to diphoton rate and the Yukawa unification are identified. Some of these patterns can be accommodated in a well-motivated scenarios such as mirage mediation or SUSY breaking F -terms being a non- singlet of SO(10). Phenomenological implications of a scenario with non-universal gaugino masses generated by a mixture of the singlet F -term and the F -term in a 24-dimensional representation of SU(5) ⊂ SO(10) are studied in detail. Possible non-universalities of other soft terms generated by such F-terms are discussed. The enhancement of Higgs to diphoton rate up to 30% can be obtained in agreement with all phenomenological constraints, including vacuum metastability bounds. The lightest sbottom and pseudoscalar Higgs are within easy reach of the 14 TeV LHC. The LSP can be either bino-like or wino-like. The thermal relic abundance in the former case may be in agreement with the cosmological data thanks to efficient stau coannihilation.

  18. Supersymmetric dark matter after LHC run 1

    NASA Astrophysics Data System (ADS)

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flächer, H.; Heinemeyer, S.; Isidori, G.; Malik, S.; Martínez Santos, D.; Olive, K. A.; Sakurai, K.; de Vries, K. J.; Weiglein, G.

    2015-10-01

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, tilde{χ }^01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau tilde{τ }1, stop tilde{t}1 or chargino tilde{χ }^± 1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the {tilde{τ }_1} coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for / E_T events and long-lived charged particles, whereas their H / A funnel, focus-point and tilde{χ }^± 1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is tilde{χ }^± 1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.

  19. Supersymmetric Dark Matter after LHC Run 1

    SciTech Connect

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flacher, H.; Heinemeyer, S.; Isidori, G.; Malik, S.; Santos, D. Martinez; Olive, K. A.; Sakurai, K.; de Vries, K. J.; Weiglein, G.

    2015-10-23

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ~01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau τ~1, stop t~1 or chargino χ1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ~1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for /ET events and long-lived charged particles, whereas theirH / A funnel, focus-point and χ1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. Furthermore, we find that the dominant DM mechanism in our pMSSM10 analysis is χ~±1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.

  20. Supersymmetric Dark Matter after LHC Run 1

    DOE PAGESBeta

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flacher, H.; Heinemeyer, S.; Isidori, G.; et al

    2015-10-23

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ~01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau τ~1, stop t~1 or chargino χ~±1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-pointmore » region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ~1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for /ET events and long-lived charged particles, whereas theirH / A funnel, focus-point and χ~±1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. Furthermore, we find that the dominant DM mechanism in our pMSSM10 analysis is χ~±1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.« less

  1. Support Needs of the Most Vulnerable Student Groups in Non-University Higher Education

    ERIC Educational Resources Information Center

    Tamuliene, Rasa

    2014-01-01

    This article presents the research on support needs of the most vulnerable students in nonuniversity higher education. The research results have revealed that older, part-time students who have family and/or work responsibilities focus on academic information and counselling, foreign language training, distance study centre, legal counselling and…

  2. Democracy of internal symmetries in supersymmetrical quantum field theory

    SciTech Connect

    Lopuszanski, J.T.

    1981-12-01

    The freedom of choice of some discrete and internal symmetries in the supersymmetric, massive, interacting quantum field theory is discussed. It is shown that the discrete symmetry consisting of changing the sign of some (not all) scalar fields is incompatible with the supersymmetric structure of the theory. It is further demonstrated that an internal symmetry which transforms only some of the fields of fixed spin leaving the other fields invariant and which acts nontrivially on the supercharges can not be admitted as a symmetry; although it can be a good internal symmetry in absence of supersymmetric covariance. Moreover, in case of a model consisting of scalar, spinor and vector fields even a symmetry which transforms all of the scalar (vector) fields leaving spinor and vector (scalar) fields unaffected is ruled out provided it acts nontrivially on some of the supercharges.

  3. Does the supersymmetric integrability imply the integrability of Bosonic sector

    SciTech Connect

    Popowicz, Ziemowit

    2010-03-08

    The answer is no. This is demonstrated for two equations that belong to the supersymmetric Manin-Radul N = 1 Kadomtsev-Petviashvili (MRSKP) hierarchy. The first one is the N = 1 supersymmetric Sawada-Kotera equation recently considered by Tian and Liu. We define the bi-Hamiltonian structure for this equation which however does not reduce in the bosonic limit to the known bi-Hamiltonian structure. The second equation is obtained from the Lax operator of the fifth order in the supersymmetric derivatives which in the bosonic sector reduces to the system of interacted two KdV equations discovered by Drinfeld and Sokolov in 1981 and later rediscovered by Sakovich and Foursov.

  4. Rigid supersymmetric backgrounds of 3-dimensional Newton-Cartan supergravity

    NASA Astrophysics Data System (ADS)

    Knodel, Gino; Lisbão, Pedro; Liu, James T.

    2016-06-01

    Recently, a non-relativistic off-shell formulation of three dimensional Newton-Cartan supergravity was proposed as the c → ∞ limit of three dimensional mathcal{N} = 2 super-gravity [1]. In the present paper we study supersymmetric backgrounds within this theory. Using integrability constraints for the non-relativistic Killing spinor equations, we explicitly construct all maximally supersymmetric solutions, which admit four supercharges. In addition to these solutions, there are 1/2 -BPS solutions with reduced supersymmetry. We give explicit examples of such backgrounds and derive necessary conditions for backgrounds preserving two supercharges. Finally, we address how supersymmetric backgrounds of mathcal{N} = 2 supergravity are connected to the solutions found here in the c → ∞ limit.

  5. Non-supersymmetric asymmetric orbifolds with vanishing cosmological constant

    NASA Astrophysics Data System (ADS)

    Satoh, Yuji; Sugawara, Yuji; Wada, Taiki

    2016-02-01

    We study type II string vacua defined by torus compactifications accompanied by T-duality twists. We realize the string vacua, specifically, by means of the asymmetric orbifolding associated to the chiral reflections combined with a shift, which are interpreted as describing the compactification on `T-folds'. We discuss possible consistent actions of the chiral reflection on the Ramond-sector of the world-sheet fermions, and explicitly construct non-supersymmetric as well as supersymmetric vacua. Above all, we demonstrate a simple realization of non-supersymmetric vacua with vanishing cosmological constant at one loop. Our orbifold group is generated only by a single element, which results in simpler models than those with such property known previously.

  6. Superconducting cosmic strings and one dimensional extended supersymmetric algebras

    SciTech Connect

    Oikonomou, V.K.

    2014-11-15

    In this article we study in detail the supersymmetric structures that underlie the system of fermionic zero modes around a superconducting cosmic string. Particularly, we extend the analysis existing in the literature on the one dimensional N=2 supersymmetry and we find multiple N=2, d=1 supersymmetries. In addition, compact perturbations of the Witten index of the system are performed and we find to which physical situations these perturbations correspond. More importantly, we demonstrate that there exists a much more rich supersymmetric structure underlying the system of fermions with N{sub f} flavors and these are N-extended supersymmetric structures with non-trivial topological charges, with “N” depending on the fermion flavors.

  7. Rigid supersymmetric backgrounds of 3-dimensional Newton-Cartan supergravity

    NASA Astrophysics Data System (ADS)

    Knodel, Gino; Lisbão, Pedro; Liu, James T.

    2016-06-01

    Recently, a non-relativistic off-shell formulation of three dimensional Newton-Cartan supergravity was proposed as the c → ∞ limit of three dimensional {N} = 2 super-gravity [1]. In the present paper we study supersymmetric backgrounds within this theory. Using integrability constraints for the non-relativistic Killing spinor equations, we explicitly construct all maximally supersymmetric solutions, which admit four supercharges. In addition to these solutions, there are 1/2 -BPS solutions with reduced supersymmetry. We give explicit examples of such backgrounds and derive necessary conditions for backgrounds preserving two supercharges. Finally, we address how supersymmetric backgrounds of {N} = 2 supergravity are connected to the solutions found here in the c → ∞ limit.

  8. A euclidean lattice formulation of D = 5 maximally supersymmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Joseph, Anosh

    2016-06-01

    We construct lattice action for five-dimensional maximally supersymmetric Yang-Mills theory. This supersymmetric lattice formulation can be used to explore the non-perturbative regime of the continuum target theory, which has a known gravitational dual.

  9. Light-Front Holography, Color Confinement, and Supersymmetric Features of QCD

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.

    2016-03-01

    Light-Front Quantization—Dirac's "Front Form"—provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic light-front wavefunctions. One obtains new insights into the hadronic spectrum, light-front wavefunctions, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography—the duality between the front form and AdS5, the space of isometries of the conformal group. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons of the same parity. The mass scale κ underlying confinement and hadron masses can be connected to the parameter {Λ_{overline {MS}}} in the QCD running coupling by matching the nonperturbative dynamics, as described by the effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime. The result is an effective coupling defined at all momenta. This matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q 0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front form vacuum has important consequences for the cosmological constant. I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with the momentum and other sum rules for nuclear parton distribution functions.

  10. Light-Front Holography, Color Confinement, and Supersymmetric Features of QCD

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.

    2016-08-01

    Light-Front Quantization—Dirac's "Front Form"—provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic light-front wavefunctions. One obtains new insights into the hadronic spectrum, light-front wavefunctions, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography—the duality between the front form and AdS5, the space of isometries of the conformal group. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons of the same parity. The mass scale {κ} underlying confinement and hadron masses can be connected to the parameter {Λ_{overline {MS}}} in the QCD running coupling by matching the nonperturbative dynamics, as described by the effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime. The result is an effective coupling defined at all momenta. This matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q 0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front form vacuum has important consequences for the cosmological constant. I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with the momentum and other sum rules for nuclear parton distribution functions.

  11. Extensive ground state entropy in supersymmetric lattice models

    SciTech Connect

    Eerten, Hendrik van

    2005-12-15

    We present the result of calculations of the Witten index for a supersymmetric lattice model on lattices of various type and size. Because the model remains supersymmetric at finite lattice size, the Witten index can be calculated using row-to-row transfer matrices and the calculations are similar to calculations of the partition function at negative activity -1. The Witten index provides a lower bound on the number of ground states. We find strong numerical evidence that the Witten index grows exponentially with the number of sites of the lattice, implying that the model has extensive entropy in the ground state.

  12. Collective field theory of a singular supersymmetric matrix model

    SciTech Connect

    de Mello Koch, R.; Rodrigues, J.P.

    1995-05-15

    The supersymmetric collective field theory with the potential {ital v}{prime}({ital x})={omega}{ital x}{minus}{eta}/{ital x} is studied. Consistency with supersymmetry enforces a two band solution. A supersymmetric classical configuration is found, and interpreted in terms of the density of zeroes of certain Laguerre polynomials. The spectrum of the model is then studied and is seen to correspond to a massless scalar and a Majorana fermion. The {ital x} space eigenfunctions are constructed and expressed in terms of Chebyshev polynomials. Higher order interactions are also discussed.

  13. Production of supersymmetric Higgs bosons at LEP ⊗ LHC

    NASA Astrophysics Data System (ADS)

    Franke, F.; Wöhrmann, T.

    1995-02-01

    Within the Minimal Supersymmetric Standard Model (MSSM), we study the production of the neutral scalar and pseudoscalar as well as the charged Higgs bosons together with fermions or sfermions in deep inelastic ep scattering at s=1.6 TeV. We focus on the parameter space where a Higgs particle is likely to be invisible at LEP2 and LHC. Although we choose gaugino/higgsino mixing scenarios that maximize the corresponding production rates we find only for the production of the scalar Higgs bosons in the non-supersymmetric channels non-negligible cross sections of the order of 10 2 fb.

  14. Sneutrino inflation in supersymmetric B - L with inverse seesaw

    SciTech Connect

    Khalil, Shaaban; Sil, Arunansu

    2012-07-27

    We have shown that inflation in the supersymmetric B - L extension of the Standard Model can be realized where one of the associated right-handed sneutrinos can provide a non-trivial inflationary trajectory at tree level (hence breaking B - L during inflation). As soon as the inflation ends, the right-handed sneutrino falls into the supersymmetric vacuum, with a vanishing vacuum expectation value, so that B - L symmetry is restored. The B - L gauge symmetry will be radiatively broken at a TeV scale and light neutrino masses are generated through the inverse seesaw mechanism.

  15. Non-Supersymmetric Extremal Black Holes in Curvature squared N = 2 Supergravity

    SciTech Connect

    Sahoo, Bindusar

    2007-10-03

    Using the entropy function formalism we compute the entropy of supersymmetric as well as non-supersymmetric black holes in N = 2 Supergravity in 4 dimensions with higher derivative correction. For supersymmetric case we see that there is an exact matching with earlier results derived using a 5 dimensional description of the same system whereas for non-supersymmetric case the results does'nt match and we provide possible explanation for the discrepancy.

  16. Multi-instanton calculus in {ital N}=2 supersymmetric gauge theory

    SciTech Connect

    Dorey, N.; Khoze, V.V.; Mattis, M.P.

    1996-08-01

    The Seiberg-Witten solution of {ital N}=2 supersymmetric SU(2) gauge theory may be viewed as a prediction for the infinite family of constants {l_brace}F{sub {ital n}}{r_brace} measuring the {ital n}-instanton contribution to the prepotential F. Here we examine the instanton physics directly, in particular the contribution of the general self-dual solution of topological charge {ital n} constructed by Atiyah, Drinfeld, Hitchin, and Manin (ADHM). In both the bosonic and supersymmetric cases, we determine both the large- and short-distance behavior of all the fields in this background. This allows us to construct the exact classical interaction between {ital n} ADHM (super)instantons mediated by the adjoint Higgs bosons. We calculate the one- and two-instanton contributions to the low-energy Seiberg-Witten effective action and find precise agreement with their predicted values of F{sub 1} and F{sub 2}. {copyright} {ital 1996 The American Physical Society.}

  17. Type II seesaw supersymmetric neutrino model for θ13≠0

    NASA Astrophysics Data System (ADS)

    Ahl Laamara, R.; Loualidi, M. A.; Saidi, E. H.

    2016-06-01

    Using the type II seesaw approach and properties of discrete flavor symmetry group representations, we build a supersymmetric A4×A3 neutrino model with θ13≠0 . After describing the basis of this model—which is beyond the minimal supersymmetric Standard Model—with a superfield spectrum containing flavons in A4×A3 representations, we first generate the tribimaximal neutrino mixing which is known to be in agreement with the mixing angles θ12 and θ23. Then, we give the scalar potential of the theory where the A3 discrete subsymmetry is used to avoid the so-called sequestering problem. We next study the deviation from the tribimaximal mixing matrix which is produced by perturbing the neutrino mass matrix with a nontrivial A4 singlet. Normal and inverted mass hierarchies are discussed numerically. We also study the breaking of A4 down to Z3 in the charged lepton sector, and use the branching ratio of the decay τ →μ μ e —which is allowed by the residual symmetry Z3—to get estimations on the mass of one of the flavons and the cutoff scale Λ of the model. Key words: Neutrino family symmetry, supersymmetry, deviation from TBM

  18. Stable Non-Supersymmetric Throats in String Theory

    SciTech Connect

    Kachru, Shamit; Simic, Dusan; Trivedi, Sandip P.; /Tata Inst. /Stanford U., ITP /SLAC

    2011-06-28

    We construct a large class of non-supersymmetric AdS-like throat geometries in string theory by taking non-supersymmetric orbifolds of supersymmetric backgrounds. The scale of SUSY breaking is the AdS radius, and the dual field theory has explicitly broken supersymmetry. The large hierarchy of energy scales in these geometries is stable. We establish this by showing that the dual gauge theories do not have any relevant operators which are singlets under the global symmetries. When the geometries are embedded in a compact internal space, a large enough discrete subgroup of the global symmetries can still survive to prevent any singlet relevant operators from arising. We illustrate this by embedding one case in a non-supersymmetric orbifold of a Calabi-Yau manifold. These examples can serve as a starting point for obtaining Randall-Sundrum models in string theory, and more generally for constructing composite Higgs or technicolor-like models where strongly coupled dynamics leads to the breaking of electro-weak symmetry. Towards the end of the paper, we briefly discuss how bulk gauge fields can be incorporated by introducing D7-branes in the bulk, and also show how the strongly coupled dynamics can lead to an emergent weakly coupled gauge theory in the IR with matter fields including scalars.

  19. The simplicity of perfect atoms: Degeneracies in supersymmetric hydrogen

    DOE PAGESBeta

    Rube, Tomas; Wacker, Jay G.

    2011-06-07

    In this study, supersymmetric QED hydrogen-like bound states are remarkably similar to nonsupersymmetric hydrogen, including an accidental degeneracy of the fine structure and is broken by the Lamb shift. This article classifies the states, calculates the leading order spectrum, and illustrates the results in several limits. The relation to other nonrelativistic bound states is explored.

  20. The simplicity of perfect atoms: Degeneracies in supersymmetric hydrogen

    SciTech Connect

    Rube, Tomas; Wacker, Jay G.

    2011-06-15

    Supersymmetric QED hydrogen-like bound states are remarkably similar to nonsupersymmetric hydrogen, including an accidental degeneracy of the fine structure and is broken by the Lamb shift. This article classifies the states, calculates the leading order spectrum, and illustrates the results in several limits. The relation to other nonrelativistic bound states is explored.

  1. Supersymmetric Yang-Mills theory on conformal supergravity backgrounds in ten dimensions

    NASA Astrophysics Data System (ADS)

    de Medeiros, Paul; Figueroa-O'Farrill, José

    2016-03-01

    We consider bosonic supersymmetric backgrounds of ten-dimensional conformal supergravity. Up to local conformal isometry, we classify the maximally supersymmetric backgrounds, determine their conformal symmetry superalgebras and show how they arise as near-horizon geometries of certain half-BPS backgrounds or as a plane-wave limit thereof. We then show how to define Yang-Mills theory with rigid supersymmetry on any supersymmetric conformal supergravity background and, in particular, on the maximally supersymmetric backgrounds. We conclude by commenting on a striking resemblance between the supersymmetric backgrounds of ten-dimensional conformal supergravity and those of eleven-dimensional Poincaré supergravity.

  2. Predictions of SU(9) orbifold family unification

    NASA Astrophysics Data System (ADS)

    Goto, Yuhei; Kawamura, Yoshiharu

    2016-01-01

    We study predictions of orbifold family unification models with SU (9) gauge group on a six-dimensional space-time including the orbifold T2 /Z2, and obtain relations among sfermion masses in the supersymmetric extension of models. The models have an excellent feature that just three families of the standard model fermions exist in a pair of Weyl fermions in the 84 representation as four-dimensional zero modes, without accompanying any mirror particles.

  3. The impact of a non-universal Initial Mass Function on the star formation histories of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Ferré-Mateu, A.; Vazdekis, A.; de la Rosa, I. G.

    2013-05-01

    Recent results on the non-universality of the Initial Mass Function (IMF) have shown strong evidence of IMF variations with galaxy velocity dispersion, with a corresponding impact on other stellar population parameters, line indices and colours. Using a set of stellar population models with varying IMF slopes, we provide additional caveats on the assumption of a universal IMF. This study shows that the derived star formation histories of early-type galaxies vary significantly with the IMF slope. For instance, a steepening in the slope of a single power-law IMF decreases substantially, by a factor of up to 4, the contribution of the old stellar populations to the total light/mass. This trend is milder for a segmented-like IMF shape, where the contribution of the very low mass stars is decreased. It is also shown that, by tuning each IMF slope to its prescribed value according to each galaxy velocity dispersion, a sample of early-type galaxies covering a range of masses yield comparable star formation histories. On the one hand, a small contribution from relatively young stellar populations appears in the star formation histories of most massive elliptical galaxies when adopting a steep IMF. In addition, we find that low-mass early-type galaxies that look like genuinely young objects with a standard IMF (i.e. `baby elliptical galaxies') turn out to be older when a slightly flatter IMF is employed. In summary, the use of a non-universal IMF, tuned according to the velocity dispersion of the galaxy, seems to provide more consistent results.

  4. Supersymmetric formulation of polytropic gas dynamics and its invariant solutions

    SciTech Connect

    Grundland, A. M.; Hariton, A. J.

    2011-04-15

    In this paper, a supersymmetric extension of the polytropic gas dynamics equations is constructed through the use of a superspace involving two independent fermionic variables and two bosonic superfields. A superalgebra of symmetries of the proposed extended model is determined and a systematic classification of the one-dimensional subalgebras of this superalgebra is performed. Through the use of the symmetry reduction method, a number of invariant solutions of the supersymmetric polytropic gas dynamics equations are found. Several types of solutions are obtained including algebraic-type solutions and propagation waves (simple and double waves). Many of the obtained solutions involve arbitrary functions of one or two bosonic or fermionic variables. In the case where the arbitrary functions involve only the independent fermionic variables, the solutions are expressed in terms of Taylor expansions.

  5. GravitinoPack and decays of supersymmetric metastable particles

    NASA Astrophysics Data System (ADS)

    Eberl, Helmut; Spanos, Vassilis C.

    2016-05-01

    We present the package GravitinoPack that calculates the two- and three-body decays of unstable supersymmetric particles involving the gravitino in the final or initial state. In a previous paper, we already showed results for the gravitino decaying into two and three particles. In this paper, we incorporate the processes where an unstable neutralino, stau or stop decays into a gravitino and Standard Model particles. This is the case in gravitino dark matter supersymmetric models, where the gravitino is the lightest SUSY particle. We give instructions for the installation and the use of the package. In the numerical analysis, we discuss various MSSM scenarios. We show that the calculation of all the decay channels and the three-body decay branching ratios is essential for the accurate application of cosmological bounds on these models.

  6. Strong electroweak phase transition from Supersymmetric Custodial Triplets

    NASA Astrophysics Data System (ADS)

    Garcia-Pepin, Mateo; Quiros, Mariano

    2016-05-01

    The Supersymmetric Custodial Triplet Model, a supersymmetric generalization of the Georgi-Machacek model, has proven to be an interesting modification of the MSSM. It extends the MSSM Higgs sector by three extra SU(2) L triplets in such a way that approximate custodial invariance is preserved and ρ-parameter deviations are kept under control. By means of a sizeable triplet contribution to electroweak breaking the model is able to generate a barrier at tree level between the false vacuum and the electroweak one. This will result in a strong first order phase transition for an important region of the parameter space. We also look at the gravitational waves that could be generated as a result of the phase transition and show how future interferometers could be used as a probe of the model.

  7. Five-dimensional null and time-like supersymmetric geometries

    NASA Astrophysics Data System (ADS)

    Pasini, Giulio; Shahbazi, C. S.

    2016-09-01

    We show that there exist supersymmetric solutions of five-dimensional, pure, { N }=1 supergravity such that the norm of the supersymmetric Killing vector, built out of the Killing spinor, is a real not-everywhere analytic function such that all its derivatives vanish at a point where the Killing vector field becomes null. The norm of the Killing vector field then is not an analytic function on a neighborhood around this point. We explicitly construct such solutions by using a multi-center Gibbons–Hawking base. Although many of these solutions have infinite charges, we find explicit examples with finite charges that asymptote to {{AdS}}3× {S}2 and discuss their physical interpretation.

  8. Cluster-like coordinates in supersymmetric quantum field theory

    PubMed Central

    Neitzke, Andrew

    2014-01-01

    Recently it has become apparent that N=2 supersymmetric quantum field theory has something to do with cluster algebras. I review one aspect of the connection: supersymmetric quantum field theories have associated hyperkähler moduli spaces, and these moduli spaces carry a structure that looks like an extension of the notion of cluster variety. In particular, one encounters the usual variables and mutations of the cluster story, along with more exotic extra variables and generalized mutations. I focus on a class of examples where the underlying cluster varieties are moduli spaces of flat connections on surfaces, as considered by Fock and Goncharov [Fock V, Goncharov A (2006) Publ Math Inst Hautes Études Sci 103:1–211]. The work reviewed here is largely joint with Davide Gaiotto and Greg Moore. PMID:24982190

  9. Discrimination of supersymmetric grand unified models in gaugino mediation

    SciTech Connect

    Okada, Nobuchika; Hieu Minh Tran

    2011-03-01

    We consider supersymmetric grand unified theory (GUT) with the gaugino mediated supersymmetry breaking and investigate a possibility to discriminate different GUT models in terms of predicted sparticle mass spectra. Taking two example GUT models, the minimal SU(5) and simple SO(10) models, and imposing a variety of theoretical and experimental constraints, we calculate sparticle masses. Fixing parameters of each model so as to result in the same mass of neutralino as the lightest supersymmetric particle (LSP), giving the observed dark matter relic density, we find sizable mass differences in the left-handed slepton and right-handed down-type squark sectors in two models, which can be a probe to discriminate the GUT models realized at the GUT scale far beyond the reach of collider experiments.

  10. Neutralinos in E 6 inspired supersymmetric U(1)' models

    NASA Astrophysics Data System (ADS)

    Hesselbach, S.; Franke, F.; Fraas, H.

    2002-03-01

    The neutralino sector in E_6 inspired supersymmetric models with extra neutral gauge bosons and singlet Higgs fields contains additional gaugino and singlino states compared to the MSSM. We discuss the neutralino mixing in rank-5 and rank-6 models and analyze the supersymmetric parameter space where the light neutralinos have mainly singlino or MSSM character. The neutralino character, resonance effects of the new gauge bosons and, assuming mSUGRA-type RGEs, different selectron masses lead to significant differences between the MSSM and the extended models in neutralino production at an e^+e^- linear collider. Beam polarization may improve the signatures to distinguish between the models. In an appendix, we present the mass terms of the gauge bosons, charginos and sfermions which show a significant different mass spectrum than in the MSSM and give all relevant neutralino couplings.

  11. Production of singlino dominated neutralinos in extended supersymmetric models

    NASA Astrophysics Data System (ADS)

    Franke, F.; Hesselbach, S.

    2002-02-01

    Neutralinos with a large singlino component may appear in extended supersymmetric models with additional singlet Higgs fields. Since singlinos do not couple to (s)fermions and gauge bosons, the cross sections for the production of singlino dominated neutralinos are generally small. Within the framework of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) and an E6 inspired model we study neutralino production e+e-→χ˜01χ˜02 (χ˜01,2χ˜03) with a singlino dominated χ˜02 (χ˜03). It is shown that neutralinos with a singlino contribution up to 99% can be produced with a cross section larger than 1 fb and may therefore be detected at a high luminosity e+e- linear collider even if they are not the LSP.

  12. Central charge and renormalization in supersymmetric theories with vortices

    SciTech Connect

    Shizuya, K.

    2005-03-15

    Some quantum features of vortices in supersymmetric theories in 1+2 dimensions are studied in a manifestly supersymmetric setting of the superfield formalism. A close examination of the supercurrent that accommodates the central charge and super-Poincare charges in a supermultiplet reveals that there is no genuine quantum anomaly in the supertrace identity and in the supercharge algebra, with the central-charge operator given by the bare Fayet-Iliopoulos term alone. The central charge and the vortex spectrum undergo renormalization on taking the expectation value of the central-charge operator. It is shown that the vortex spectrum is exactly determined at one-loop while the spectrum of the elementary excitations receives higher-order corrections.

  13. Canonical non-Abelian dual transformations in supersymmetric field theories

    SciTech Connect

    Curtright, T.; Zachos, C.

    1995-07-15

    A generating functional {ital F} is found for a canonical non-Abelian dual transformation which maps the supersymmetric chiral O(4) {sigma} model to an equivalent supersymmetric extension of the dual {sigma} model. This {ital F} produces a mapping between the classical phase spaces of the two theories in which the bosonic (coordinate) fields transform nonlocally, the fermions undergo a local tangent space chiral rotation, and all currents (fermionic and bosonic) mix locally. Purely bosonic curvature-free currents of the chiral model become a {ital symphysis} of purely bosonic and fermion bilinear currents of the dual theory. The corresponding transformation functional {ital T} which relates wave functions in the two quantum theories is argued to be {ital exactly} given by {ital T}=exp({ital iF}).

  14. Noncommutative (supersymmetric) electrodynamics in the Yang-Feldman formalism

    SciTech Connect

    Zahn, Jochen

    2010-11-15

    We study quantum electrodynamics on the noncommutative Minkowski space (NCQED) in the Yang-Feldman formalism. Local observables are defined by using covariant coordinates. We compute the two-point function of the interacting field strength to second order and find the infrared divergent terms already known from computations using the so-called modified Feynman rules. It is shown that these lead to nonlocal renormalization ambiguities. Also new nonlocal divergences stemming from the covariant coordinates are found. Furthermore, we study the supersymmetric extension of the model. For this, the supersymmetric generalization of the covariant coordinates is introduced. We find that the nonlocal divergences cancel. At the one-loop level, the only effect of noncommutativity is then a momentum-dependent field strength normalization. We interpret it as an acausal effect and show that its range is independent of the noncommutativity scale.

  15. Supersymmetric black holes with lens-space topology.

    PubMed

    Kunduri, Hari K; Lucietti, James

    2014-11-21

    We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional supergravity. It is regular on and outside an event horizon of lens-space topology L(2,1). It is the first example of an asymptotically flat black hole with lens-space topology. The solution is characterized by a charge, two angular momenta, and a magnetic flux through a noncontractible disk region ending on the horizon, with one constraint relating these. PMID:25479484

  16. Ground states of baryoleptonic Q-balls in supersymmetric models

    SciTech Connect

    Shoemaker, Ian M.; Kusenko, Alexander

    2008-10-01

    In supersymmetric generalizations of the standard model, all stable Q-balls are associated with some flat directions. We show that, if the flat direction has both the baryon number and the lepton number, the scalar field inside the Q-ball can deviate slightly from the flat direction in the ground state. We identify the true ground states of such nontopological solitons, including the electrically neutral and electrically charged Q-balls.

  17. Warped Supersymmetric Unification with Non-Unified Superparticle Spectrum

    SciTech Connect

    Nomura, Yasunori; Tucker-Smith, David; Tweedie, Brock

    2004-03-16

    We present a new supersymmetric extension of the standard model. The model is constructed in warped space, with a unified bulk symmetry broken by boundary conditions on both the Planck and TeV branes. In the supersymmetric limit, the massless spectrum contains exotic colored particles along with the particle content of the minimal supersymmetric standard model (MSSM). Nevertheless, the model still reproduces the MSSM prediction for gauge coupling unification and does not suffer from a proton decay problem. The exotic states acquire masses from supersymmetry breaking, making the model completely viable, but thereis still the possibility that these states will be detected at the LHC. The lightest of these states is most likely A_5^XY, the fifth component of the gauge field associated with the broken unified symmetry. Because supersymmetry is broken on the SU(5)-violating TeV brane, the gaugino masses generated at the TeV scale are completely independent of one another. We explore some of the unusual features that the superparticle spectrum might have as a consequence.

  18. Solving the supersymmetric CP problem with flavor breaking F terms

    NASA Astrophysics Data System (ADS)

    Diaz-Cruz, J. Lorenzo; Ferrandis, Javier

    2005-08-01

    Supersymmetric flavor models for the radiative generation of fermion masses offer an alternative way to solve the SUSY-CP problem. We assume that the supersymmetric theory is flavor and CP conserving. CP violating phases are associated to the vacuum expectation values of flavor violating SUSY-breaking fields. As a consequence, phases appear at tree level only in the soft supersymmetry-breaking matrices. Using a U(2) flavor model as an example we show that it is possible to generate radiatively the first and second generation of quark masses and mixings as well as the Cabibbo-Kobayashi-Maskawa (CKM) CP phase. The one-loop supersymmetric contributions to electric dipole moments are automatically zero since all the relevant parameters in the Lagrangian are flavor conserving and as a consequence real. The size of the flavor and CP mixing in the SUSY-breaking sector is mostly determined by the fermion mass ratios and CKM elements. We calculate the contributions to ɛ, ɛ' and to the CP asymmetries in the B decays to ψKs, ϕKs, η'Ks and Xsγ. We analyze a case study with maximal predictivity in the fermion sector. For this worst case scenario the measurements of ΔmK, ΔmB and ɛ constrain the model requiring extremely heavy squark spectra.

  19. Towards a supersymmetric description of the Fermi Galactic center excess

    SciTech Connect

    Cahill-Rowley, M.; Gainer, J. S.; Hewett, J. L.; Rizzo, T. G.

    2015-02-10

    We attempt to build a model that describes the Fermi galactic gamma-ray excess (FGCE) within a UV-complete Supersymmetric framework; we find this to be highly non-trivial. At the very least a successful Supersymmetric explanation must have several important ingredients in order to fit the data and satisfy other theoretical and experimental constraints. Under the assumption that a single annihilation mediator is responsible for both the observed relic density as well as the FGCE, we show that the requirements are not easily satisfied in many TeV-scale SUSY models, but can be met with some model building effort in the general NMSSM with ~ 10 parameters beyond the MSSM. We find that the data selects a particular region of the parameter space with a mostly singlino lightest Supersymmetric particle and a relatively light CP-odd Higgs boson that acts as the mediator for dark matter annihilation. We study the predictions for various observables within this parameter space, and find that searches for this light CP-odd state at the LHC, as well as searches for the direct detection of dark matter, are likely to be quite challenging. It is possible that a signature could be observed in the flavor sector; however, indirect detection remains the best probe of this scenario.

  20. Towards a supersymmetric description of the Fermi Galactic center excess

    DOE PAGESBeta

    Cahill-Rowley, M.; Gainer, J. S.; Hewett, J. L.; Rizzo, T. G.

    2015-02-10

    We attempt to build a model that describes the Fermi galactic gamma-ray excess (FGCE) within a UV-complete Supersymmetric framework; we find this to be highly non-trivial. At the very least a successful Supersymmetric explanation must have several important ingredients in order to fit the data and satisfy other theoretical and experimental constraints. Under the assumption that a single annihilation mediator is responsible for both the observed relic density as well as the FGCE, we show that the requirements are not easily satisfied in many TeV-scale SUSY models, but can be met with some model building effort in the general NMSSMmore » with ~ 10 parameters beyond the MSSM. We find that the data selects a particular region of the parameter space with a mostly singlino lightest Supersymmetric particle and a relatively light CP-odd Higgs boson that acts as the mediator for dark matter annihilation. We study the predictions for various observables within this parameter space, and find that searches for this light CP-odd state at the LHC, as well as searches for the direct detection of dark matter, are likely to be quite challenging. It is possible that a signature could be observed in the flavor sector; however, indirect detection remains the best probe of this scenario.« less

  1. GUTs and supersymmetric GUTs in the very early universe

    SciTech Connect

    Ellis, J.

    1982-10-01

    This talk is intended as background material for many of the other talks treating the possible applications of GUTs to the very early universe. I start with a review of the present theoretical and phenomenological status of GUTs before going on to raise some new issues for their prospective cosmological applications which arise in supersymmetric (susy) GUTs. The first section is an update on conventional GUTs, which is followed by a reminder of some of the motivations for going supersymmetric. There then follows a simple primer on susy and a discussion of the structure and phenomenology of simple sysy GUTs. Finally we come to the cosmological issues, including problems arising from the degeneracy of susy minima, baryosynthesis and supersymmetric inflation, the possibility that gravity is an essential complication in constructing susy GUTs and discussing their cosmology, and the related question of what mass range is allowed for the gravitino. Several parts of this write-up contain new material which has emerged either during the Workshop or subsequently. They are included here for completeness and the convenience of the prospective reader. Wherever possible, these anachronisms will be flagged so as to keep straight the historical record.

  2. BPS states in supersymmetric chiral models with higher derivative terms

    NASA Astrophysics Data System (ADS)

    Nitta, Muneto; Sasaki, Shin

    2014-11-01

    We study the higher derivative chiral models with four supercharges and Bogomol'nyi-Prasad-Sommerfield (BPS) states in these models. The off-shell Lagrangian generically includes higher powers of the auxiliary fields F , which causes distinct on-shell branches associated with the solutions to the auxiliary fields equation. We point out that the model admits a supersymmetric completion of arbitrary higher derivative bosonic models of a single complex scalar field, and an arbitrary scalar potential can be introduced even without superpotentials. As an example, we present a supersymmetric extension of the Faddeev-Skyrme model without four time derivatives, in contrast to the previously proposed supersymmetric Faddeev-Skyrme-like model containing four time derivatives. In general, higher derivative terms together with a superpotential result in deformed scalar potentials. We find that higher derivative corrections to 1 /2 BPS domain walls and 1 /2 BPS lumps are exactly canceled out, while the 1 /4 BPS lumps (as compact baby Skyrmions) depend on a characteristic feature of the higher derivative models. We also find a new 1 /4 BPS condition for domain wall junctions, which generically receives higher derivative corrections.

  3. The minimum supersymmetric standard model on noncommutative geometry

    NASA Astrophysics Data System (ADS)

    Shimojo, Masafumi; Ishihara, Satoshi; Kataoka, Hironobu; Matsukawa, Atsuko; Sato, Hikaru

    2015-01-01

    We have obtained the supersymmetric extension of a spectral triple that specifies a noncommutative geometry. We assume that the functional space H consists of wave functions of matter fields and their superpartners included in the minimum supersymmetric standard model (MSSM). We introduce the internal fluctuations of the Dirac operator on the finite space as well as on the manifold by elements of the algebra A in the triple. So, we obtain not only the vector supermultiplets that mediate SU(3)⊗ SU(2)⊗ U(1)_Y gauge degrees of freedom but also Higgs supermultiplets that appear in the MSSM from the same standpoint. According to the supersymmetric version of the spectral action principle, we calculate the square of the fluctuated total Dirac operator and verify that the Seeley-DeWitt coefficients give the correct action of the vector and Higgs supermultiplets. We also verify that the relation between the coupling constants of SU(3), SU(2), and U(1)_Y is same as that of SU(5) unification theory.

  4. Electromagnetic mixing laws: A supersymmetric approach

    SciTech Connect

    Niez, J.J.

    2010-02-15

    In this article we address the old problem of finding the effective dielectric constant of materials described either by a local random dielectric constant, or by a set of non-overlapping spherical inclusions randomly dispersed in a host. We use a unified theoretical framework, such that all the most important Electromagnetic Mixing Laws (EML) can be recovered as the first iterative step of a family of results, thus opening the way to future improvements through the refinements of the approximation schemes. When the material is described by a set of immersed inclusions characterized by their spatial correlation functions, we exhibit an EML which, being featured by a minimal approximation scheme, does not come from the multiple scattering paradigm. It is made of a pure Hori-Yonezawa formula, corrected by a power series of the inclusion density. The coefficients of the latter, which are given as sums of standard diagrams, are recast into electromagnetic quantities which calculation is amenable numerically thanks to codes available on the web. The methods used and developed in this work are generic and can be used in a large variety of areas ranging from mechanics to thermodynamics.

  5. Dyonic non-Abelian vortex strings in supersymmetric and non-supersymmetric theories — tensions and higher derivative corrections

    NASA Astrophysics Data System (ADS)

    Eto, Minoru; Murakami, Yoshihide

    2015-03-01

    Dyonic non-Abelian local/semi-global vortex strings are studied in detail in supersymmetric/non-supersymmetric Yang-Mills-Higgs theories. While the BPS tension formula is known to be the same as that for the BPS dyonic instanton, we find that the non-BPS tension formula is approximated very well by the well-known tension formula of the BPS dyon. We show that this mysterious tension formula for the dyonic non-BPS vortex stings can be understood from the perspective of a low energy effective field theory. Furthermore, we propose an efficient method to obtain an effective theory of a single vortex string, which includes not only lower derivative terms but also all order derivative corrections by making use of the tension formula. We also find a novel dyonic vortex string whose internal orientation vectors rotate in time and spiral along the string axis.

  6. NMSDECAY: A Fortran code for supersymmetric particle decays in the Next-to-Minimal Supersymmetric Standard Model

    NASA Astrophysics Data System (ADS)

    Das, Debottam; Ellwanger, Ulrich; Teixeira, Ana M.

    2012-03-01

    The code NMSDECAY allows to compute widths and branching ratios of sparticle decays in the Next-to-Minimal Supersymmetric Standard Model. It is based on a generalization of SDECAY, to include the extended Higgs and neutralino sectors of the NMSSM. Slepton 3-body decays, possibly relevant in the case of a singlino-like lightest supersymmetric particle, have been added. NMSDECAY will be part of the NMSSMTools package, which computes Higgs, sparticle masses and Higgs decays in the NMSSM. Program summaryProgram title: NMSDECAY Catalogue identifier: AELC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 188 177 No. of bytes in distributed program, including test data, etc.: 1 896 478 Distribution format: tar.gz Programming language: FORTRAN77 Computer: All supporting g77, gfortran, ifort Operating system: All supporting g77, gfortran, ifort Classification: 11.1 External routines: Routines in the NMSSMTools package: At least one of the routines in the directory main (e.g. nmhdecay.f), all routines in the directory sources. (All software is included in the distribution package.) Nature of problem: Calculation of all decay widths and decay branching fractions of all particles in the Next-to-Minimal Supersymmetric Standard Model. Solution method: Suitable generalization of the code SDECAY [1] including the extended Higgs and neutralino sector of the Next-to-Minimal Supersymmetric Standard Model, and slepton 3-body decays. Additional comments: NMSDECAY is interfaced with NMSSMTools, available on the web page http://www.th.u-psud.fr/NMHDECAY/nmssmtools.html. Running time: On an Intel Core i7 with 2.8 GHZ: about 2 seconds per point in parameter space, if all flags flagqcd, flagmulti and flagloop are switched on.

  7. Supersymmetric partition functions in the AdS/CFT conjecture

    NASA Astrophysics Data System (ADS)

    Raju, Suvrat

    We study supersymmetric partition functions in several versions of the AdS/CFT correspondence. We present an Index for superconformal field theories in d = 3, 4, 5, 6. This captures all information about the spectrum that is protected, under continuous deformations of the theory, purely by group theory. We compute our Index in N = 4 SYM at weak coupling using gauge theory and at strong coupling using supergravity and find perfect agreement at large N. We also compute this Index for supergravity on AdS4 x S7 and AdS7 x S4 and for the recently constructed Chern Simons matter theories. We count 1/16 BPS states in the free gauge theory and find qualitative agreement with the entropy of big black holes in AdS5. We note that the near horizon geometry of some small supersymmetric black holes is an extremal BTZ black holes fibered on a compact base and propose a possible explanation for this, based on giant gravitons. We also find the partition function of the chiral ring of the N = 4 SYM theory at finite coupling and finite N. Turning to AdS3, we study the low energy 1/4 and 1/2 BPS partition functions by finding all classical supersymmetric probe brane solutions of string theory on this background. If the background BNS field and theta angle vanish, AdS3 x S 3 x T4/K3 supports supersymmetric probes: D1 branes, D5 branes and bound states of D5 and D1 branes. In global AdS, upon quantization, these solutions give rise to states in discrete representations of the SL(2,R) WZW model on AdS 3. We conclude that (a) the 1/4 BPS partition function jumps if we turn on a theta angle or NS-NS field (b) generic 1/2 BPS states are protected. We successfully compare our 1/2 BPS partition function with that of the symmetric product. We also discuss puzzles, and their possible resolutions, in reproducing the elliptic genus of the symmetric product. Finally, we comment on the spectrum of particles in the theory of gravity dual to non-supersymmetric Yang Mills theory on S3 x time.

  8. The tri-Hamiltonian dual system of supersymmetric two boson system

    NASA Astrophysics Data System (ADS)

    Zhang, Mengxia; Tian, Kai; Zhang, Lei

    2016-09-01

    The dual system of the supersymmetric two boson system is constructed through the approach of tri-Hamiltonian duality, and inferred from this duality, its zero-curvature representation is also figured out. Furthermore, the dual system is shown to be equivalent to a N = 2 supersymmetric Camassa-Holm equation, and this relation results in a new linear spectral problem for the N = 2 supersymmetric Camassa-Holm equation.

  9. Stop as a next-to-lightest supersymmetric particle in constrained MSSM

    SciTech Connect

    Huitu, Katri; Leinonen, Lasse; Laamanen, Jari

    2011-10-01

    So far the squarks have not been detected at the LHC indicating that they are heavier than a few hundred GeVs, if they exist. The lighter stop can be considerably lighter than the other squarks. We study the possibility that a supersymmetric partner of the top quark, stop, is the next-to-lightest supersymmetric particle in the constrained supersymmetric standard model. Various constraints, on top of the mass limits, are taken into an account, and the allowed parameter space for this scenario is determined. Observing stop which is the next-to-lightest supersymmetric particle at the LHC may be difficult.

  10. Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops

    NASA Astrophysics Data System (ADS)

    Pestun, Vasily

    2012-07-01

    We prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the {N=4} supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure {N=2} and the {N=2^*} supersymmetric Yang-Mills theory on a four-sphere. A four-dimensional {N=2} superconformal gauge theory is treated similarly.

  11. Scalar mass relations and flavor violations in supersymmetric theories

    SciTech Connect

    Cheng, Hsin-Chia |

    1996-05-09

    Supersymmetry provides the most promising solution to the gauge hierarchy problem. For supersymmetry to stablize the hierarchy, it must be broken at the weak scale. The combination of weak scale supersymmetry and grand unification leads to a successful prediction of the weak mixing angle to within 1{percent} accuracy. If supersymmetry is a symmetry of nature, the mass spectrum and the flavor mixing pattern of the scalar superpartners of all the quarks and leptons will provide important information about a more fundamental theory at higher energies. We studied the scalar mass relations which follow from the assumption that at high energies there is a grand unified theory which leads to a significant prediction of the weak mixing angle; these will serve as important tests of grand unified theories. Two intragenerational mass relations for each of the light generations are derived. A third relation is also found which relates the Higgs masses and the masses of all three generation scalars. In a realistic supersymmetric grand unified theory, nontrivial flavor mixings are expected to exist at all gaugino vertices. This could lead to important contributions to the neutron electric dipole moment, the decay mode p {r_arrow} K{sup 0}{mu}{sup +}, weak scale radiative corrections to the up-type quark masses, and lepton flavor violating signals such as {mu} {r_arrow} e{gamma}. These also provide important probes of physics at high energy scales. Supersymmetric theories involving a spontaneously broken flavor symmetry can provide a solution to the supersymmetric flavor-changing problem and an understanding of the fermion masses and mixings. We studied the possibilities and the general conditions under which some fermion masses and mixings can be obtained radiatively. We also constructed theories of flavor in which the first generation fermion masses arise from radiative corrections while flavor-changing constraints are satisfied. 69 refs., 19 figs., 9 tabs.

  12. Sine-square deformation and supersymmetric quantum mechanics

    NASA Astrophysics Data System (ADS)

    Okunishi, Kouichi; Katsura, Hosho

    2015-11-01

    We investigate the sine-square deformation (SSD) of free fermions in one-dimensional continuous space. On the basis of supersymmetric quantum mechanics, we prove the correspondence between the many-body ground state of the system with SSD and that of the uniform system with periodic boundary conditions. We also discuss the connection between the SSD in the continuous space and its lattice version, where the geometric correction due to the real-space deformation plays an important role in relating the eigenstates of the lattice SSD with those of the continuous SSD.

  13. Electroweak baryogenesis in the exceptional supersymmetric standard model

    SciTech Connect

    Chao, Wei

    2015-08-28

    We study electroweak baryogenesis in the E{sub 6} inspired exceptional supersymmetric standard model (E{sub 6}SSM). The relaxation coefficients driven by singlinos and the new gaugino as well as the transport equation of the Higgs supermultiplet number density in the E{sub 6}SSM are calculated. Our numerical simulation shows that both CP-violating source terms from singlinos and the new gaugino can solely give rise to a correct baryon asymmetry of the Universe via the electroweak baryogenesis mechanism.

  14. Solution of second order supersymmetrical intertwining relations in Minkowski plane

    NASA Astrophysics Data System (ADS)

    Ioffe, M. V.; Kolevatova, E. V.; Nishnianidze, D. N.

    2016-08-01

    Supersymmetrical (SUSY) intertwining relations are generalized to the case of quantum Hamiltonians in Minkowski space. For intertwining operators (supercharges) of second order in derivatives, the intertwined Hamiltonians correspond to completely integrable systems with the symmetry operators of fourth order in momenta. In terms of components, the intertwining relations correspond to the system of nonlinear differential equations which are solvable with the simplest—constant—ansatzes for the "metric" matrix in second order part of the supercharges. The corresponding potentials are built explicitly both for diagonalizable and nondiagonalizable form of "metric" matrices, and their properties are discussed.

  15. Remarks on the string dual to N=1 supersymmetric QCD

    SciTech Connect

    Hoyos, Carlos; Nunez, Carlos; Papadimitriou, Ioannis

    2008-10-15

    We study the string dual to N=1 supersymmetric QCD deformed by a quartic superpotential in the quark superfields. We present a unified view of the previous results in the literature and find new exact solutions and new asymptotic solutions. Then we study the physics encoded in these backgrounds, giving, among other things, a resolution to an old puzzle related to the beta function and a sufficient criteria for screening. We also extend our results to the SO(N{sub c}) case where we present a candidate for the Wilson loop in the spinorial representation. Various aspects of this line of research are critically analyzed.

  16. Baby Skyrme model, near-BPS approximations, and supersymmetric extensions

    NASA Astrophysics Data System (ADS)

    Bolognesi, S.; Zakrzewski, W.

    2015-02-01

    We study the baby Skyrme model as a theory that interpolates between two distinct BPS systems. For this, a near-BPS approximation can be used when there is a small deviation from each of the two BPS limits. We provide analytical explanation and numerical support for the validity of this approximation. We then study the set of all possible supersymmetric extensions of the baby Skyrme model with N =1 and the particular ones with extended N =2 supersymmetries and relate this to the above mentioned almost-BPS approximation.

  17. Top Quark Phenomenology in CP-Violating Supersymmetric Models

    NASA Astrophysics Data System (ADS)

    Moreno Briceno, Alexander

    The Standard Model (SM) of particle physics so far has successfully described all measurements of phenomena at the subatomic level of ordinary matter at very high precision. The theoretical developments and experimental observations during the last 50 years, including the long sought and recently observed SM Higgs-like boson at the Large Hadron Collider (LHC), have provided us with a framework to understand the strong and the electroweak interactions between fermions, gauge bosons and the scalar boson, the Higgs boson, which is called the SM. However, the SM is considered to be incomplete. It does not provide a framework to include gravity and it does not provide an explanation for a number of observations such as the baryon asymmetry of the Universe (BAU), neutrino oscillations and dark matter. One possible extension of the SM is Supersymmetry, which provides for instance a dark matter candidate. No direct or indirect evidence of Supersymmetry has been observed so far. Searches for supersymmetric particles at high energy collider experiments, for instance, have set limits on parameters of the minimal supersymmetric extension of the SM (MSSM). Supersymmetry may also affect the properties of SM particles through their virtual presence in higher order corrections in perturbation theory. Here we study indirect, i.e. virtual effects, of Supersymmetry in the production of top quark pairs at the LHC. In particular, we investigate possible CP violating effects due to one loop corrections to top-quark pair production at the Large Hadron Collider (LHC) in the context of the complex (MSSM) with minimal flavor violation (MFV). We include the complete supersymmetric QCD as well as supersymmetric electroweak contributions to the two main top-quark pair production mechanisms at the LHC, namely quark-antiquark annihilation, qq → tt, and gluon fusion, gg → tt. At the level of the top quarks, we study in detail spin-spin correlating observables that are sensitive to CP

  18. Quantum Hall effect in supersymmetric Chern-Simons theories

    NASA Astrophysics Data System (ADS)

    Tong, David; Turner, Carl

    2015-12-01

    We introduce a supersymmetric Chern-Simons theory whose low energy physics is that of the fractional quantum Hall effect. The supersymmetry allows us to solve the theory analytically. We quantize the vortices and, by relating their dynamics to a matrix model, show that their ground state wave function is in the same universality class as the Laughlin state. We further construct coherent state representations of the excitations of a finite number of vortices. These are quasiholes. By an explicit computation of the Berry phase, without resorting to a plasma analogy, we show that these excitations have fractional charge and spin.

  19. All the supersymmetric configurations of N=4, d=4 supergravity

    NASA Astrophysics Data System (ADS)

    Bellorín, Jorge; Ortín, Tomás

    2005-10-01

    All the supersymmetric configurations of pure, ungauged, N=4, d=4 supergravity are classified in a formalism that keeps manifest the S and T dualities of the theory. We also find simple equations that need to be satisfied by the configurations to be classical solutions of the theory. While the solutions associated to null Killing vectors were essentially classified by Tod (a classification that we refine), we find new configurations and solutions associated to timelike Killing vectors that do not satisfy Tod's rigidity hypothesis (hence, they have a nontrivial U(1) connection) and whose supersymmetry projector is associated to 1-dimensional objects (strings), although they have a trivial axion field.

  20. Bosonic condensates in realistic supersymmetric GUT cosmic strings

    NASA Astrophysics Data System (ADS)

    Allys, Erwan

    2016-04-01

    We study the realistic structure of F-term Nambu-Goto cosmic strings forming in a general supersymmetric Grand Unified Theory implementation, assuming standard hybrid inflation. Examining the symmetry breaking of the unification gauge group down to the Standard Model, we discuss the minimal field content necessary to describe abelian cosmic strings appearing at the end of inflation. We find that several fields will condense in most theories, questioning the plausible occurrence of associated currents (bosonic and fermionic). We perturbatively evaluate the modification of their energy per unit length due to the condensates. We provide a criterion for comparing the usual abelian Higgs approximation used in cosmology to realistic situations.

  1. Applying the Cho-Duam-Ge decomposition to supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Walker, M. L.

    2013-09-01

    We study the chromomonopole component of the gluon, as identified by the Cho-Duam-Ge decomposition, in supersymmetric quantum chromodynamics. It is found to be incapable of representing the supersymmetry algebra, leading to supersymmetry breaking. Furthermore, its field strength squared is invariant under the supersymmetry generators. This makes it immune to the positive-definite energy theorem. The energetic favourability of such a condensate is expected in the case of asymptotic freedom. We identify one component of the gluino as the Goldstone fermion.

  2. Single-Sector Supersymmetry Breaking in Supersymmetric QCD

    SciTech Connect

    Franco, Sebastian; Kachru, Shamit; /Santa Barbara, KITP /UC, Santa Barbara /Stanford U., Phys. Dept. /SLAC

    2010-08-26

    We construct examples of single-sector supersymmetry breaking based on simple deformations of supersymmetric QCD with (weakly) gauged flavor group. These theories are calculable in a weakly coupled Seiberg dual description. In these models, some of the particles in the first two generations of quarks and leptons are composites of the same strong dynamics which leads to dynamical supersymmetry breaking. Such models can explain the hierarchies of Yukawa couplings in the Standard Model, in a way that predictively correlates with the spectrum of SUSY-breaking soft terms.

  3. Lepton-Flavor Violating Signatures in Supersymmetric U(1)' Seesaw

    NASA Astrophysics Data System (ADS)

    Chun, Eung Jin

    In a supersymmetric U(1)' seesaw model, a right-handed sneutrino can be a good thermal dark matter candidate if the extra gaugino tilde{Z}^{prime} is light enough to provide an appropriate annihilation cross-section through a t-channel diagram. We first discuss how right thermal relic density of the right-handed sneutrino dark matter can arise and then explore lepton number and flavor violating signatures followed by cascade production of tilde{Z}^{prime} from the third generation squarks at the LHC.

  4. Heavy-lepton production in the minimal supersymmetric standard model

    SciTech Connect

    Cieza Montalvo, J.E. ); Eboli, O.J.P.; Novaes, S.F. )

    1992-07-01

    We study the production of a charged-heavy-lepton pair considering the minimal supersymmetric standard model. We show that the cross section for the process {ital pp}{r arrow}{ital gg}{r arrow}{ital l}{sup +}{ital l{minus}} is enhanced for large values of the ratio between the two-Higgs-doublet vacuum expectation values, in comparison with the standard model result. The gluon fusion mechansim is the most important contribution to the lepton pair production for {ital M}{sub {ital l}}{gt}50 GeV.

  5. Contraction-based classification of supersymmetric extensions of kinematical lie algebras

    SciTech Connect

    Campoamor-Stursberg, R.; Rausch de Traubenberg, M.

    2010-02-15

    We study supersymmetric extensions of classical kinematical algebras from the point of view of contraction theory. It is shown that contracting the supersymmetric extension of the anti-de Sitter algebra leads to a hierarchy similar in structure to the classical Bacry-Levy-Leblond classification.

  6. Constant curvature surfaces of the supersymmetric ℂP{sup N−1} sigma model

    SciTech Connect

    Delisle, L.; Hussin, V.; Yurduşen, İ.; Zakrzewski, W. J.

    2015-02-15

    Constant curvature surfaces are constructed from the finite action solutions of the supersymmetric ℂP{sup N−1} sigma model. It is shown that there is a unique holomorphic solution which leads to constant curvature surfaces: the generalized Veronese curve. We give a general criterion to construct non-holomorphic solutions of the model. We extend our analysis to general supersymmetric Grassmannian models.

  7. Constant curvature surfaces of the supersymmetric ℂPN-1 sigma model

    NASA Astrophysics Data System (ADS)

    Delisle, L.; Hussin, V.; Yurduşen, I.; Zakrzewski, W. J.

    2015-02-01

    Constant curvature surfaces are constructed from the finite action solutions of the supersymmetric ℂPN-1 sigma model. It is shown that there is a unique holomorphic solution which leads to constant curvature surfaces: the generalized Veronese curve. We give a general criterion to construct non-holomorphic solutions of the model. We extend our analysis to general supersymmetric Grassmannian models.

  8. Novel symmetries in N=2 supersymmetric quantum mechanical models

    SciTech Connect

    Malik, R.P.; Khare, Avinash

    2013-07-15

    We demonstrate the existence of a novel set of discrete symmetries in the context of the N=2 supersymmetric (SUSY) quantum mechanical model with a potential function f(x) that is a generalization of the potential of the 1D SUSY harmonic oscillator. We perform the same exercise for the motion of a charged particle in the X–Y plane under the influence of a magnetic field in the Z-direction. We derive the underlying algebra of the existing continuous symmetry transformations (and corresponding conserved charges) and establish its relevance to the algebraic structures of the de Rham cohomological operators of differential geometry. We show that the discrete symmetry transformations of our present general theories correspond to the Hodge duality operation. Ultimately, we conjecture that any arbitrary N=2 SUSY quantum mechanical system can be shown to be a tractable model for the Hodge theory. -- Highlights: •Discrete symmetries of two completely different kinds of N=2 supersymmetric quantum mechanical models have been discussed. •The discrete symmetries provide physical realizations of Hodge duality. •The continuous symmetries provide the physical realizations of de Rham cohomological operators. •Our work sheds a new light on the meaning of the above abstract operators.

  9. Supersymmetric sigma model of disordered, isotropic, elastic media

    NASA Astrophysics Data System (ADS)

    Photiadis, Douglas

    The supersymmetry method proposed by Efetov in 1983 has been enormously successful at describing a broad range of phenomena involving disorder, providing a framework for understanding and going beyond the successes of random matrix theory and allowing a calculation of the slowing of diffusion as the Anderson transition is approached. The original model described the propagation of a scalar wave in a disordered medium, and subsequent work extended these ideas to classical waves, optical or elastic, with the approximation that the wave propagation can be similarly described by a scalar theory. Such a theory cannot however account correctly for scattering between different polarizations. A direct attempt to derive a supersymmetric model describing elastic waves results in a non-renormalizable field theory, and poses substantial difficulties. We have obtained a supersymmetric sigma model by considering the dual model which describes a generalized superstress field. The model enables one to fully account for the different wave types and polarizations in the medium. We will present our recent results in this area, including model predictions for the obtained diffusion constants, and the effects of renormalization to first order. This research was funded by the Office of Naval Research.

  10. Bosonized Supersymmetric Sawada-Kotera Equations: Symmetries and Exact Solutions

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Zeng, Bao-Qing; Liu, Li-Ming

    2015-04-01

    The Bosonized Supersymmetric Sawada-Kotera (BSSK) system is constructed by applying bosonization method to a Supersymmetric Sawada-Kotera system in this paper. The symmetries on the BSSK equations are researched and the calculation shows that the BSSK equations are invariant under the scaling transformations, the space-time translations and Galilean boosts. The one-parameter invariant subgroups and the corresponding invariant solutions are researched for the BSSK equations. Four types of reduction equations and similarity solutions are proposed. Period Cnoidal wave solutions, dark solitary wave solutions and bright solitary wave solutions of the BSSK equations are demonstrated and some evolution curves of the exact solutions are figured out. Supported by the National Natural Science Foundation of China under Grant No. 11305031, the Natural Science Foundation of Guangdong Province under Grant No. S2013010011546, the Science and Technology Project Foundation of Zhongshan under Grant Nos. 2013A3FC0264 and 2013A3FC0334, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205

  11. Update on the direct detection of supersymmetric dark matter

    SciTech Connect

    Ellis, John; Olive, Keith A.; Spanos, Vassilis C.; Santoso, Yudi

    2005-05-01

    We compare updated predictions for the elastic scattering of supersymmetric neutralino dark matter with the improved experimental upper limit recently published by Cryogenic Dark Matter Search (CDMS) II. We take into account the possibility that the {pi}-nucleon {sigma} term may be somewhat larger than was previously considered plausible, as may be supported by the masses of exotic baryons reported recently. We also incorporate the new central value of m{sub t}, which affects indirectly constraints on the supersymmetric parameter space, for example, via calculations of the relic density. Even if a large value of {sigma} is assumed, the CDMS II data currently exclude only small parts of the parameter space in the constrained minimal standard model (CMSSM) with universal soft supersymmetry-breaking Higgs, squark, and slepton masses. None of the previously proposed CMSSM benchmark scenarios is excluded for any value of {sigma}, and the CDMS II data do not impinge on the domains of the CMSSM parameter space favored at the 90% confidence level in a recent likelihood analysis. However, some models with nonuniversal Higgs, squark, and slepton masses and neutralino masses < or approx. 700 GeV are excluded by the CDMS II data.

  12. Fate of supersymmetric flat directions and their role in reheating

    SciTech Connect

    Olive, Keith A.; Peloso, Marco

    2006-11-15

    We consider the role of supersymmetric flat directions in reheating the Universe after inflation. One or more flat directions can develop large vevs during inflation, which can potentially affect reheating by slowing down scattering processes among inflaton decay products or by coming to dominate the energy density of the Universe. Both effects occur only if flat directions are sufficiently long-lived. The computation of their perturbative decay rate, and a simple estimate of their nonperturbative decay have led to the conclusion that this is indeed the case. In contrast, we show that flat directions can decay quickly through nonperturbative channels in realistic models. The mass matrix for minimal supersymmetric standard model (MSSM) excitations around flat directions has nondiagonal entries, which vary with the phase of the (complex) flat directions. The quasiperiodic motion of the flat directions results in a strong parametric resonance, leading to the rapid depletion of the flat direction within its first few rotations. This may preclude any significant role for the flat directions in reheating the Universe after inflation in models in which the inflaton decays perturbatively.

  13. Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Ryttov, Thomas A.

    2016-08-01

    We suggest how to consistently calculate the anomalous dimension γ* of the ψ ¯ ψ operator in finite order perturbation theory at an infrared fixed point for asymptotically free theories. If the n +1 loop beta function and n loop anomalous dimension are known, then γ* can be calculated exactly and fully scheme independently in a Banks-Zaks expansion through O (Δfn) , where Δf=N¯ f-Nf , Nf is the number of flavors, and N¯f is the number of flavors above which asymptotic freedom is lost. For a supersymmetric theory, the calculation preserves supersymmetry order by order in Δf. We then compute γ* through O (Δf2) for supersymmetric QCD in the dimensional reduction scheme and find that it matches the exact known result. We find that γ* is astonishingly well described in perturbation theory already at the few loops level throughout the entire conformal window. We finally compute γ* through O (Δf3) for QCD and a variety of other nonsupersymmetric fermionic gauge theories. Small values of γ* are observed for a large range of flavors.

  14. R -parity conserving supersymmetric extension of the Zee model

    NASA Astrophysics Data System (ADS)

    Kanemura, Shinya; Shindou, Tetsuo; Sugiyama, Hiroaki

    2015-12-01

    We extend the Zee model, where tiny neutrino masses are generated at the one-loop level, to a supersymmetric model with R -parity conservation. It is found that the neutrino mass matrix can be consistent with the neutrino oscillation data thanks to the nonholomorphic Yukawa interaction generated via one-loop diagrams of sleptons. We find a parameter set of the model, where in addition to the neutrino oscillation data, experimental constraints from the lepton flavor violating decays of charged leptons and current LHC data are also satisfied. In the parameter set, an additional C P -even neutral Higgs boson other than the standard-model-like one, a C P -odd neutral Higgs boson, and two charged scalar bosons are light enough to be produced at the LHC and future lepton colliders. If the lightest charged scalar bosons are mainly composed of the SU (2 )L-singlet scalar boson in the model, they would decay into e ν and μ ν with 50% of a branching ratio for each. In such a case, the relation among the masses of the charged scalar bosons and the C P -odd Higgs in the minimal supersymmetric standard model approximately holds with a radiative correction. Our model can be tested by measuring the specific decay patterns of charged scalar bosons and the discriminative mass spectrum of additional scalar bosons.

  15. A review of Higgs mass calculations in supersymmetric models

    NASA Astrophysics Data System (ADS)

    Draper, Patrick; Rzehak, Heidi

    2016-03-01

    The discovery of the Higgs boson is both a milestone achievement for the Standard Model and an exciting probe of new physics beyond the SM. One of the most important properties of the Higgs is its mass, a number that has proven to be highly constraining for models of new physics, particularly those related to the electroweak hierarchy problem. Perhaps the most extensively studied examples are supersymmetric models, which, while capable of producing a 125 GeV Higgs boson with SM-like properties, do so in non-generic parts of their parameter spaces. We review the computation of the Higgs mass in the Minimal Supersymmetric Standard Model, in particular the large radiative corrections required to lift mh to 125 GeV and their calculation via Feynman-diagrammatic and effective field theory techniques. This review is intended as an entry point for readers new to the field, and as a summary of the current status, including the existing analytic calculations and publicly-available computer codes.

  16. Higgs data constraints on the minimal supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Cheung, Kingman; Lee, Jae Sik; Tseng, Po-Yan

    2015-11-01

    We perform global fits to the most recent data (after summer 2014) on Higgs boson signal strengths in the framework of the minimal supersymmetric standard model. We further impose the existing limits on the masses of charginos, staus, stops, and sbottoms together with the current Higgs mass constraint |MH1-125.5 GeV |<6 GeV . The heavy supersymmetric (SUSY) particles such as squarks enter into the loop factors of the H g g and H γ γ vertices, while other SUSY particles such as sleptons and charginos also enter into that of the H γ γ vertex. We also take into account the possibility of other light particles, such as other Higgs bosons and neutralinos, into which the 125.5 GeV Higgs boson can decay. We use the data from the ATLAS, CMS, and the Tevatron, with existing limits on SUSY particles, to constrain on the relevant SUSY parameters. We obtain allowed regions in the SUSY parameter space of squark, slepton and chargino masses, and the μ parameter. We find that |Δ Sγ/SSMγ|≲0.1 at 68% confidence level when Mχ˜1 ±>300 GeV and Mτ˜1>300 GeV , irrespective of the squarks masses. Furthermore, |Δ Sγ/SSMγ|≲0.03 when Mχ˜1 ±,τ˜1>500 GeV and Mt˜1,b˜ 1≳600 GeV .

  17. Intermediate Symmetries in the Spontaneous Breaking of Supersymmetric SO(10)

    NASA Astrophysics Data System (ADS)

    Buccella, F.; Savoy, C. A.

    We study the supersymmetric spontaneous symmetry breaking of SO(10) into SU(3) ⊗ SU(2) ⊗ U(1) for the most physically interesting cases of SU(5) or flipped SU(5) ⊗ U(1) intermediate symmetries. The first case is more easily realized while the second one requires a fine-tuning condition on the parameters of the superpotential. This is because in the case of SU(5) symmetry there is at most one singlet of the residual symmetry in each SO(10) irreducible representation. We also point out on more general grounds in supersymmetric GUTs that some intermediate symmetries can be exactly realized and others can only be approximated by fine-tuning. In the first category, there could occur some tunneling between the vacua with exact and approximate intermediate symmetry. The flipped SU(5) ⊗ U(1) symmetry improves the unification of gauge couplings if (B-L) is broken by ∥(B-L)∥ =1 scalars yielding right-handed neutrino masses below 1014 GeV.

  18. Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD.

    PubMed

    Ryttov, Thomas A

    2016-08-12

    We suggest how to consistently calculate the anomalous dimension γ_{*} of the ψ[over ¯]ψ operator in finite order perturbation theory at an infrared fixed point for asymptotically free theories. If the n+1 loop beta function and n loop anomalous dimension are known, then γ_{*} can be calculated exactly and fully scheme independently in a Banks-Zaks expansion through O(Δ_{f}^{n}), where Δ_{f}=N[over ¯]_{f}-N_{f}, N_{f} is the number of flavors, and N[over ¯]_{f} is the number of flavors above which asymptotic freedom is lost. For a supersymmetric theory, the calculation preserves supersymmetry order by order in Δ_{f}. We then compute γ_{*} through O(Δ_{f}^{2}) for supersymmetric QCD in the dimensional reduction scheme and find that it matches the exact known result. We find that γ_{*} is astonishingly well described in perturbation theory already at the few loops level throughout the entire conformal window. We finally compute γ_{*} through O(Δ_{f}^{3}) for QCD and a variety of other nonsupersymmetric fermionic gauge theories. Small values of γ_{*} are observed for a large range of flavors. PMID:27563948

  19. The universality of the virial halo mass function and models for non-universality of other halo definitions

    NASA Astrophysics Data System (ADS)

    Despali, Giulia; Giocoli, Carlo; Angulo, Raul E.; Tormen, Giuseppe; Sheth, Ravi K.; Baso, Giacomo; Moscardini, Lauro

    2016-03-01

    The abundance of galaxy clusters can constrain both the geometry and growth of structure in our Universe. However, this probe could be significantly complicated by recent claims of non-universality-non-trivial dependences with respect to the cosmological model and redshift. In this work, we analyse the dependence of the mass function on the way haloes are identified and establish if this can cause departures from universality. In order to explore this dependence, we use a set of different N-body cosmological simulations (Le SBARBINE simulations), with the latest cosmological parameters from the Planck collaboration; this first suite of simulations is followed by a lower resolution set, carried out with different cosmological parameters. We identify dark matter haloes using a spherical overdensity algorithm with varying overdensity thresholds (virial, 2000, 1000, 500, 200 ρc and 200 ρb) at all redshifts. We notice that, when expressed in terms of the rescaled variable ν, the mass function for virial haloes is a nearly universal as a function of redshift and cosmology, while this is clearly not the case for the other overdensities we considered. We provide fitting functions for the halo mass function parameters as a function of overdensity, that allow us to predict, to within a few per cent accuracy, the halo mass function for a wide range of halo definitions, redshifts and cosmological models. We then show how the departures from universality associated with other halo definitions can be derived by combining the universality of the virial definition with the expected shape of the density profile of haloes.

  20. Family Preservation & Family Functioning.

    ERIC Educational Resources Information Center

    McCroskey, Jacquelyn; Meezan, William

    This book reports a study of the outcomes of home-based family preservation services for abusive and neglectful families in Los Angeles County. Using the Family Assessment Form, the research project evaluated services provided by two voluntary agencies, and focused on changes in family functioning between the opening and closing of services during…

  1. Quantum supersymmetric cosmology and its hidden Kac-Moody structure

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Spindel, Philippe

    2013-08-01

    We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D = 4 simple supergravity for an SO(3)-homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact sub-algebra of the rank-3 hyperbolic Kac-Moody algebra AE3. Some exponentials of these operators generate a spinorial extension of the Weyl group of AE3 which describe (in the small wavelength limit) the chaotic quantum evolution of the universe near the cosmological singularity.

  2. Deformation of supersymmetric and conformal quantum mechanics through affine transformations

    NASA Technical Reports Server (NTRS)

    Spiridonov, Vyacheslav

    1993-01-01

    Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.

  3. Hadronic uncertainties in the elastic scattering of supersymmetric dark matter

    SciTech Connect

    Ellis, John; Olive, Keith A.; Savage, Christopher

    2008-03-15

    We review the uncertainties in the spin-independent and spin-dependent elastic scattering cross sections of supersymmetric dark matter particles on protons and neutrons. We propagate the uncertainties in quark masses and hadronic matrix elements that are related to the {pi}-nucleon {sigma} term and the spin content of the nucleon. By far the largest single uncertainty is that in spin-independent scattering induced by our ignorance of the matrix elements linked to the {pi}-nucleon {sigma} term, which affects the ratio of cross sections on proton and neutron targets as well as their absolute values. This uncertainty is already impacting the interpretations of experimental searches for cold dark matter. We plead for an experimental campaign to determine better the {pi}-nucleon {sigma} term. Uncertainties in the spin content of the proton affect significantly, but less strongly, the calculation of rates used in indirect searches.

  4. Supersymmetric quantum mechanics and Painlevé equations

    SciTech Connect

    Bermudez, David; Fernández C, David J.

    2014-01-08

    In these lecture notes we shall study first the supersymmetric quantum mechanics (SUSY QM), specially when applied to the harmonic and radial oscillators. In addition, we will define the polynomial Heisenberg algebras (PHA), and we will study the general systems ruled by them: for zero and first order we obtain the harmonic and radial oscillators, respectively; for second and third order the potential is determined by solutions to Painlevé IV (PIV) and Painlevé V (PV) equations. Taking advantage of this connection, later on we will find solutions to PIV and PV equations expressed in terms of confluent hypergeometric functions. Furthermore, we will classify them into several solution hierarchies, according to the specific special functions they are connected with.

  5. BPS pion domain walls in the supersymmetric chiral Lagrangian

    NASA Astrophysics Data System (ADS)

    Gudnason, Sven Bjarke; Nitta, Muneto; Sasaki, Shin

    2016-07-01

    We construct exact solutions of BPS pion domain walls in the four-dimensional N =1 supersymmetric S U (N ) chiral Lagrangian with pion masses introduced via linear and quadratic superpotentials. The model admits N discrete vacua in the center of S U (N ) for the linear superpotential. In addition to the latter, new vacua appear for the quadratic superpotential. We find that the domain wall solutions of pions (Nambu-Goldstone bosons) that interpolate between a pair of (pion) vacua preserve half of supersymmetry. Contrary to our expectations, we have not been able to find domain walls involving the quasi-Nambu-Goldstone bosons present in the theory, which in turn has the consequence that not all vacua of the theory are connected by a BPS domain wall solution.

  6. Instanton calculus and loop operator in supersymmetric gauge theory

    SciTech Connect

    Kanno, Hiroaki; Moriyama, Sanefumi

    2008-06-15

    We compute the one-point function of the glueball loop operator in the maximally confining phase of supersymmetric gauge theory using instanton calculus. In the maximally confining phase the residual symmetry is the diagonal U(1) subgroup and the localization formula implies that the chiral correlation functions are the sum of the contributions from each fixed point labeled by the Young diagram. The summation can be performed exactly by operator formalism of free fermions, which is also featured in the equivariant Gromov-Witten theory of P{sup 1}. By taking the Laplace transformation of the glueball loop operator, we find an exact agreement with the previous results for the generating function (resolvent) of the glueball one-point functions.

  7. Emergent space-time and the supersymmetric index

    NASA Astrophysics Data System (ADS)

    Benjamin, Nathan; Kachru, Shamit; Keller, Christoph A.; Paquette, Natalie M.

    2016-05-01

    It is of interest to find criteria on a 2d CFT which indicate that it gives rise to emergent gravity in a macroscopic 3d AdS space via holography. Symmetric orbifolds in the large N limit have partition functions which are consistent with an emergent space-time string theory with L string ˜ L AdS. For supersymmetric CFTs, the elliptic genus can serve as a sensitive probe of whether the SCFT admits a large radius gravity description with L string ≪ L AdS after one deforms away from the symmetric orbifold point in moduli space. We discuss several classes of constructions whose elliptic genera strongly hint that gravity with L Planck ≪ L string ≪ L AdS can emerge at suitable points in moduli space.

  8. Dynamics of N = 2 Supersymmetric Gauge Theories in Three Dimensions

    SciTech Connect

    de Boer, J.; Hori, K.; Oz, Y.

    1997-03-21

    We study the structure of the moduli spaces of vacua and superpotentials of N = 2 supersymmetric gauge theories in three dimensions. By analyzing the instanton corrections, we compute the exact superpotentials and determine the quantum Coulomb and Higgs branches of the theories in the weak coupling regions. We find candidates for non-trivial N = 2 superconformal field theories at the singularities of the moduli spaces. The analysis is carried out explicitly for gauge groups U(N{sub c}) and SU(N{sub c}) with N{sub f} flavors. We show that the field theory results are in complete agreement with the intersecting branes picture. We also compute the exact superpotentials for arbitrary gauge groups and arbitrary matter content.

  9. Perturbative unification of gauge couplings in supersymmetric E6 models

    NASA Astrophysics Data System (ADS)

    Cho, Gi-Chol; Maru, Nobuhito; Yotsutani, Kaho

    2016-07-01

    We study gauge coupling unification in supersymmetric (SUSY) E6 models where an additional U(1)‧ gauge symmetry is broken near the TeV scale and a number of exotic matter fields from the 27 representations have O(TeV) mass. Solving the two-loop renormalization group equations (RGE) of gauge couplings and a kinetic mixing coupling between the U(1)‧ and U(1)Y gauge fields, we find that the gauge couplings fall into the non-perturbative regime below the grand unified theories (GUT) scale. We examine threshold corrections on the running of gauge couplings from both light and heavy ( ˜ GUT scale) particles and show constraints on the size of corrections to achieve the perturbative unification of gauge couplings.

  10. Distorted mass edges at LHC from supersymmetric leptoquarks

    NASA Astrophysics Data System (ADS)

    Reuter, Jürgen; Wiesler, Daniel

    2011-07-01

    Supersymmetric (SUSY) grand unified theories based on exceptional gauge groups such as E6 have recently triggered a lot of interest. Aside from top-down motivations, they contain phenomenologically interesting states with leptoquark quantum numbers. Their SUSY partners, leptoquarkinos, will appear similar to all R-odd particles in decay cascades, but mass edges in kinematic distributions—originating from the same semiexclusive final states—will however have major differences to the corresponding edges of ordinary squarks. This distortion of standard observables bears the opportunity to detect them at the LHC, but may also pose significant confusion of underlying model assumptions, which should be handled with care and, if interpreted falsely, might even prevent a possible discovery.

  11. Bosonic structure of realistic SO(10) supersymmetric cosmic strings

    NASA Astrophysics Data System (ADS)

    Allys, Erwan

    2016-05-01

    We study the bosonic structure of F -term Nambu-Goto cosmic strings forming in a realistic SO(10) implementation, assuming standard hybrid inflation. We describe the supersymmetric grand unified theory, and its spontaneous symmetry breaking scheme in parallel with the inflationary process. We also write the explicit tensor formulation of its scalar sector, focusing on the subrepresentations singlet under the standard model, which is sufficient to describe the string structure. We then introduce an ansatz for Abelian cosmic strings, discussing in details the hypothesis, and write down the field equations and boundary conditions. Finally, after doing a perturbative study of the model, we present and discuss the results obtained with numerical solutions of the string structure.

  12. A dark matter solution from the supersymmetric axion model

    SciTech Connect

    Chang, Sanghyeon; Kim, Hang Bae

    1996-05-01

    We study the effect of the late decaying saxino (the scalar superpartner of the axion) and find out that there is a possible dark matter solution from a class of supersymmetric extensions of the invisible axion model. In this class of models, the saxino which decays into two axions acts as the late decaying particle which reconciles the cold dark matter model with high values of the Hubble constant. Recent observations of the Hubble constant are converging to H{sub 0} = 70--80 km sec{sup {minus}1} Mpc{sup {minus}1}, which would be inconsistent with the standard mixed dark matter model. This class of models provides a plausible framework for the alternative cold dark matter plus late decaying particle model, with the interesting possibility that both cold dark matter and the extra radiation consist of axion. 15 refs.

  13. Supersymmetric multicritical point in a model of lattice fermions

    NASA Astrophysics Data System (ADS)

    Bauer, Bela; Huijse, Liza; Berg, Erez; Troyer, Matthias; Schoutens, Kareljan

    2013-04-01

    We study a model of spinless fermions with infinite nearest-neighbor repulsion on the square ladder, which has microscopic supersymmetry. It has been conjectured that in the continuum, the model is described by the superconformal minimal model with central charge c=3/2. Thus far, it has not been possible to confirm this conjecture due to strong finite-size corrections in numerical data. We trace the origin of these corrections to the presence of unusual marginal operators that break Lorentz invariance but preserve part of the supersymmetry. By relying mostly on entanglement entropy calculations with the density-matrix renormalization group, we are able to reduce finite-size effects significantly. This allows us to unambiguously determine the continuum theory of the model. We also study perturbations of the model and establish that the supersymmetric model is a multicritical point. Our work underlines the power of entanglement entropy as a probe of the phases of quantum many-body systems.

  14. Supersymmetric Higgs boson pair production at hadron colliders

    SciTech Connect

    Belyaev, A.; Drees, M.; Eboli, O.J.; Novaes, S.F.; Belyaev, A.; Mizukoshi, J.K.

    1999-10-01

    We study the pair production of neutral Higgs bosons through gluon fusion at hadron colliders in the framework of the minimal supersymmetric standard model. We present analytical expressions for the relevant amplitudes, including both quark and squark loop contributions, and allowing for mixing between the superpartners of left- and right-handed quarks. Squark loop contributions can increase the cross section for the production of two CP-even Higgs bosons by more than two orders of magnitude, if the relevant trilinear soft breaking parameter is large and the mass of the lighter squark eigenstate is not too far above its current lower bound. In the region of large tan&hthinsp;{beta}, neutral Higgs boson pair production might even be observable in the 4b final state during the next run of the Fermilab Tevatron collider. {copyright} {ital 1999} {ital The American Physical Society}

  15. Search for supersymmetric particles with R-parity violation in Z decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Sanchez, F.; Teubert, F.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Engelhardt, A.; Forty, R. W.; Frank, M.; Girone, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Martin, E. B.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Oest, T.; Palazzi, P.; Pater, J. R.; Perrodo, P.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Dorris, S. J.; Halley, A. W.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Morton, W. T.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Konstantinidis, N.; Moneta, L.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Raab, J.; Renk, B.; Sander, H.-G.; Wanke, R.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Thulasidas, M.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Mir, Ll. M.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Beddall, A.; Booth, C. N.; Boswell, R.; Cartwright, S.; Combley, F.; Dawson, I.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Bosisio, L.; Della Marina, R.; Ganis, G.; Giannini, G.; Gobbo, B.; Pitis, L.; Ragusa, F.; Kim, H. Y.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1995-02-01

    Searches for supersymmetric particles produced in e +e - interactions at the Z peak have been performed under the assumptions that R-parity is not conserved, that the dominant R-parity violating coupling involves only leptonic fields, and that the lifetime of the lightest supersymmetric particle can be neglected. In a data sample collected by the ALEPH detector at LEP up to 1993, and corresponding to almost two million hadronic Z decays, no signal was observed. As a result, supersymmetric particle masses and couplings are at least as well constrained as under the usual assumption of R-parity conservation.

  16. Regularization by higher derivatives and quantum correction for N = 1 supersymmetric theories

    NASA Astrophysics Data System (ADS)

    Pimenov, A. B.; Soloshenko, A. A.; Stepanyantz, K. V.; Shevtsova, E. S.

    2008-05-01

    Some results of regularization by higher covariant derivatives used for investigation of the structure of quantum corrections in N = 1 supersymmetric theories are summarized in the present work. In particular, it is demonstrated that all integrals determining the Hell-Mann-Low functions in supersymmetric theories are integrals of total derivatives. As a consequence, in the N = 1 supersymmetric theories there exists an identity for the Green’s functions which follows from none of the symmetry theories known thus far. The problem of obtaining the exact β-function by the methods of perturbation theory is discussed.

  17. Generalized symmetries of an 𝓝 = 1 supersymmetric Boiti-Leon-Manna-Pempinelli system

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Yong; Tang, Xiao-Yan; Liang, Zu-Feng; Lou, Sen-Yue

    2015-05-01

    The formal series symmetry approach (FSSA), a quite powerful and straightforward method to establish infinitely many generalized symmetries of classical integrable systems, has been successfully extended in the supersymmetric framework to explore series of infinitely many generalized symmetries for supersymmetric systems. Taking the 𝒩 = 1 supersymmetric Boiti-Leon-Manna-Pempinelli system as a concrete example, it is shown that the application of the extended FSSA to this supersymmetric system leads to a set of infinitely many generalized symmetries with an arbitrary function f (t). Some interesting special cases of symmetry algebras are presented, including a limit case f (t) = 1 related to the commutativity of higher order generalized symmetries. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275123, 11175092, 11475052, and 11435005), the Shanghai Knowledge Service Platform for Trustworthy Internet of Things, China (Grant No. ZF1213), and the Talent Fund and K CWong Magna Fund in Ningbo University, China.

  18. Quantum spectral curve of the N=6 supersymmetric Chern-Simons theory.

    PubMed

    Cavaglià, Andrea; Fioravanti, Davide; Gromov, Nikolay; Tateo, Roberto

    2014-07-11

    Recently, it was shown that the spectrum of anomalous dimensions and other important observables in planar N=4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to the N=6 supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This may be an important step towards the exact determination of the interpolating function h(λ) characterizing the integrability of this model. We also discuss a surprising relation between the quantum spectral curves for the N=4 supersymmetric Yang-Mills theory and the N=6 supersymmetric Chern-Simons theory considered here. PMID:25062163

  19. Quantum Spectral Curve of the N =6 Supersymmetric Chern-Simons Theory

    NASA Astrophysics Data System (ADS)

    Cavaglià, Andrea; Fioravanti, Davide; Gromov, Nikolay; Tateo, Roberto

    2014-07-01

    Recently, it was shown that the spectrum of anomalous dimensions and other important observables in planar N=4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to the N =6 supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This may be an important step towards the exact determination of the interpolating function h(λ) characterizing the integrability of this model. We also discuss a surprising relation between the quantum spectral curves for the N=4 supersymmetric Yang-Mills theory and the N=6 supersymmetric Chern-Simons theory considered here.

  20. Integrability properties of a coupled KdV system and its supersymmetric extension

    NASA Astrophysics Data System (ADS)

    Sotomayor, Adrián; Restuccia, Alvaro

    2016-05-01

    We discuss several integrability properties of a coupled KdV system. We obtain a new generalization of the already known static solutions for the system. We then consider the supersymmetric extension of the coupled KdV system, it is a new integrable system. We show that for particular Grassmann algebras the system is the limit of a Clifford algebra valued system with nice stability properties. We briefly discuss the hamiltonian structures of this supersymmetric integrable system.

  1. Neutralino mass bounds in the Next-To-Minimal Supersymmetric Standard Model

    NASA Astrophysics Data System (ADS)

    Franke, F.; Fraas, H.; Bartl, A.

    1994-09-01

    We analyze the experimental data from the search for new particles at LEP 100 and obtain mass bounds for the neutralinos of the Next-To-Minimal Supersymmetric Standard Model (NMSSM). We find that for tan β ≳ 5.5 a massless neutralino is still possible, while the lower mass bound for the second lightest neutralino corresponds approximately to that for the lightest neutralino in the Minimal Supersymmetric Standard Model (MSSM).

  2. Quantum cosmology: From hidden symmetries towards a new (supersymmetric) perspective

    NASA Astrophysics Data System (ADS)

    Jalalzadeh, S.; Rostami, T.; Moniz, P. V.

    2016-02-01

    P. V. Moniz, Phys. Rev. D 92 (2015) 023526, arXiv:gr-qc/1507.04212]. We envisage that we could extend this framework towards a class of shape invariant potentials, which could include well known analytically solvable cosmological cases. Provided, we identify integrability in terms of the shape invariance conditions, we could eventually consider to import features of supersymmetric quantum mechanics towards quantum cosmology [P. V. Moniz, Quantum Cosmology-the Supersymmetric Perspective-Vol. 1: Fundamentals, Lecture Notes in Physics, Vol. 803 (Springer-Verlag, Berlin, 2010), P. V. Moniz, Quantum Cosmology-the Supersymmetric Perspective-Vol. 2: Advanced Topics, Lecture Notes in Physics, Vol. 804 (Springer, New York, 2010)], which we will also discuss in this review. Another point to emphasize is that by means of a hidden symmetry and then an algebra of Dirac observables, boundary conditions are extracted (and not ad hoc formulated) within a framework intrinsic to each model dynamics. Therefore, meeting DeWitt’s conjecture [B. S. DeWitt, Phys. Rev. 160 (1967) 1113] that “the constraints are everything” and nothing else but the constraints should be needed.

  3. Cosmological scenario of the stop as the next lightest supersymmetric particle with the gravitino as the lightest supersymmetric particle, and the cosmic lithium problem

    SciTech Connect

    Kohri, Kazunori; Santoso, Yudi

    2009-02-15

    The discrepancy on {sup 7}Li and {sup 6}Li abundances between the observational data and the standard big-bang nucleosynthesis theory prediction has been a nagging problem in astrophysics and cosmology, given the highly attractive and successful big-bang paradigm. One possible solution of this lithium problem is through hadronic decays of a massive metastable particle which alter the primordial element abundances. We explore this possibility using a gravitino dark matter framework in which the next lightest supersymmetric particle is typically long-lived. We found that the stop as the next lightest supersymmetric particle may provide an attractive solution to the lithium problem.

  4. Calabi-Yau compactifications of non-supersymmetric heterotic string theory

    NASA Astrophysics Data System (ADS)

    Blaszczyk, Michael; Nibbelink, Stefan Groot; Loukas, Orestis; Ruehle, Fabian

    2015-10-01

    Phenomenological explorations of heterotic strings have conventionally focused primarily on the E8×E8 theory. We consider smooth compactifications of all three ten-dimensional heterotic theories to exhibit the many similarities between the non-supersymmetric SO(16)×SO(16) theory and the related supersymmetric E8×E8 and SO(32) theories. In particular, we exploit these similarities to determine the bosonic and fermionic spectra of Calabi-Yau compactifications with line bundles of the non-supersymmetric string. We use elements of four-dimensional supersymmetric effective field theory to characterize the non-supersymmetric action at leading order and determine the Green-Schwarz induced axion couplings. Using these methods we construct a non-supersymmetric Standard Model(SM)-like theory. In addition, we show that it is possible to obtain SM-like models from the standard embedding using at least an order four Wilson line. Finally, we make a proposal of the states that live on five-branes in the SO(16)×SO(16) theory and find under certain assumptions the surprising result that anomaly factorization only admits at most a single brane solution.

  5. CALL FOR PAPERS: Progress in Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    2003-12-01

    This is a call for contributions to a special issue of Journal of Physics A: Mathematical and General dedicated to the subject of Supersymmetric Quantum Mechanics as featured in the International Conference in Supersymmetric Quantum Mechanics (PSQM03), 15--19 July 2003, University of Valladolid, Spain (http://metodos.fam.cie.uva.es/~susy_qm_03/). Participants at that meeting, as well as other researchers working in this area or in related fields, are invited to submit a research paper to this issue. The Editorial Board has invited Irina Areféva, David J Fernández, Véronique Hussin, Javier Negro, Luis M Nieto and Boris F Samsonov to act as Guest Editors for the special issue. Their criteria for acceptance of contributions are as follows: bullet The subject of the paper should be in the general area covered by the PSQM03 conference. bullet Contributions will be refereed and processed according to the usual mechanisms of the journal. bullet Papers should present substantial new results (they should not be simply reviews of authors' own work that is already published elsewhere). The guidelines for the preparation of contributions are as follows: bullet DEADLINE for submission of contributions is 15 January 2004. This deadline will allow the special issue to appear in approximately September 2004. bullet There is a page limit of 15 pages per research contribution. Further advice on publishing your work in Journal of Physics A: Mathematical and General may be found at www.iop.org/Journals/jphysa. bullet Contributions to the special issue should if possible be submitted electronically at www.iop.org/Journals/jphysa or by e-mail to jphysa@iop.org, quoting `JPhysA special issue --- PSQM03'. Submissions should ideally be in either standard LaTeX form or Microsoft Word. Please see the web site for further information on electronic submissions. bullet Authors unable to submit by email may send hard copy contributions to: Journal of Physics A, Institute of Physics Publishing

  6. Target space pseudoduality in supersymmetric sigma models on symmetric spaces

    NASA Astrophysics Data System (ADS)

    Sarisaman, Mustafa

    We discuss the target space pseudoduality in supersymmetric sigma models on symmetric spaces. We first consider the case where sigma models based on real compact connected Lie groups of the same dimensionality and give examples using three dimensional models on target spaces. We show explicit construction of nonlocal conserved currents on the pseudodual manifold. We then switch the Lie group valued pseudoduality equations to Lie algebra valued ones, which leads to an infinite number of pseudoduality equations. We obtain an infinite number of conserved currents on the tangent bundle of the pseudo-dual manifold. Since pseudoduality imposes the condition that sigma models pseudodual to each other are based on symmetric spaces with opposite curvatures (i.e. dual symmetric spaces), we investigate pseudoduality transformation on the symmetric space sigma models in the third chapter. We see that there can be mixing of decomposed spaces with each other, which leads to mixings of the following expressions. We obtain the pseudodual conserved currents which are viewed as the orthonormal frame on the pullback bundle of the tangent space of G˜ which is the Lie group on which the pseudodual model based. Hence we obtain the mixing forms of curvature relations and one loop renormalization group beta function by means of these currents. In chapter four, we generalize the classical construction of pseudoduality transformation to supersymmetric case. We perform this both by component expansion method on manifold M and by orthonormal coframe method on manifold SO( M). The component method produces the result that pseudoduality transformation is not invertible at all points and occurs from all points on one manifold to only one point where riemann normal coordinates valid on the second manifold. Torsion of the sigma model on M must vanish while it is nonvanishing on M˜, and curvatures of the manifolds must be constant and the same because of anticommuting grassmann numbers. We obtain

  7. WKB Approxiation of the Dirac Equation with a Supersymmetric Extension

    NASA Astrophysics Data System (ADS)

    Markov, Yu. A.; Markova, M. A.

    2015-12-01

    A general scheme of the self-consistent construction of a semiclassical approximation for the Dirac equation in an external gauge field in which the standard Dirac operator is replaced by the Dirac operator with a supersymmetric extension is presented. It is shown that in contrast to the usual WKB method, here the expansion must be carried out over half-integer powers of the Planck constant ħ. The first four terms of the semiclassical expansion of the wave function are obtained in explicit form. It is shown that generalization of the initial Dirac operator leads to the appearance of new additional terms in the semiclassical equation of motion for the spin of a particle in an external field, which thus requires a modification of the Lagrangian of the spinning particle. The result so obtained is used to construct mappings between two Lagrangian descriptions of a classical color-charged spinning particle, one of which possesses local supersymmetry, and the other not. It is shown that in order for the mappings to be one-to-one it is necessary to add new additional terms to the Lagrangian without supersymmetry, obtained within the framework of the semiclassical approximation of the Dirac operator with supersymmetry.

  8. Pseudospin symmetry in nuclear structure and its supersymmetric representation

    NASA Astrophysics Data System (ADS)

    Liang, H. Z.

    2016-08-01

    The quasi-degeneracy between the single-particle states (n,l,j=l+1/2) and (n-1,l+2,j=l+3/2) indicates a special and hidden symmetry in atomic nuclei—the so-called pseudospin symmetry (PSS)—which is an important concept in both spherical and deformed nuclei. A number of phenomena in nuclear structure have been successfully interpreted directly or implicitly by this symmetry, including nuclear superdeformed configurations, identical bands, quantized alignment, pseudospin partner bands, and so on. Since the PSS was recognized as a relativistic symmetry in 1990s, there have been comprehensive efforts to understand its properties in various systems and potentials. In this review, we mainly focus on the latest progress on the supersymmetric (SUSY) representation of PSS, and one of the key targets is to understand its symmetry-breaking mechanism in realistic nuclei in a quantitative and perturbative way. The SUSY quantum mechanics and its applications to the SU(2) and U(3) symmetries of the Dirac Hamiltonian are discussed in detail. It is shown that the origin of PSS and its symmetry-breaking mechanism, which are deeply hidden in the origin Hamiltonian, can be traced by its SUSY partner Hamiltonian. Essential open questions, such as the SUSY representation of PSS in the deformed system, are pointed out.

  9. Prospects for detecting supersymmetric dark matter in the Galactic halo.

    PubMed

    Springel, V; White, S D M; Frenk, C S; Navarro, J F; Jenkins, A; Vogelsberger, M; Wang, J; Ludlow, A; Helmi, A

    2008-11-01

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at a level that may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth), which would be most easily detected where they cluster together in the dark matter haloes of dwarf satellite galaxies. Here we report that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and probably most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the cold dark matter model. PMID:18987737

  10. Supersymmetric giant graviton solutions in AdS{sub 3}

    SciTech Connect

    Mandal, Gautam; Raju, Suvrat; Smedbaeck, Mikael

    2008-02-15

    We parametrize all classical probe brane configurations that preserve four supersymmetries in (a) the extremal D1-D5 geometry, (b) the extremal D1-D5-P geometry, (c) the smooth D1-D5 solutions proposed by Lunin and Mathur, and (d) global AdS{sub 3}xS{sub 3}xT{sup 4}/K3. These configurations consist of D1 branes, D5 branes, and bound states of D5 and D1 branes with the property that a particular Killing vector is tangent to the brane world volume at each point. We show that the supersymmetric sector of the D5-brane world volume theory may be analyzed in an effective 1+1 dimensional framework that places it on the same footing as D1 branes. In global AdS and the corresponding Lunin-Mathur solution, the solutions we describe are ''bound'' to the center of AdS for generic parameters and cannot escape to infinity. We show that these probes only exist on the submanifold of moduli space where the background B{sub NS} field and theta angle vanish. We quantize these probes in the near-horizon region of the extremal D1-D5 geometry and obtain the theory of long strings discussed by Seiberg and Witten.

  11. A Search for Neutral Supersymmetric Higgs Bosons at DØ

    SciTech Connect

    Osman, Nicolas Ahmed

    2010-09-01

    A search for Higgs bosons in multijet data from the DØ detector is reported in this thesis. The Higgs boson is the only remaining undiscovered particle in the Standard Model of particle physics, and plays an integral role in this model. It is known that this model is not a complete description of fundamental physics (it does not describe gravity, for example), and so searches for physics beyond the Standard Model are an important part of particle physics. One extension of the Standard Model, the Minimal Supersymmetric Standard Model (MSSM), predicts the existence of five Higgs bosons, two of which can show an enhanced coupling to bottom quarks. For this reason, a search in the bbb (multijet) channel is a sensitive test of Higgs boson physics. The analysis described in this thesis was conducted over 6.6 fb-1 of data. At the time of writing, the best limits on tan β (a key parameter of the MSSM) in the multijet channel were set by DØ. The new analysis described in this thesis included more data than the previous analysis in the channel, and made use of a new trigger and event-based analysis method. An improved Multivariate Analysis technique was used to separate signal and background events and produce a final discriminant for the limit setting process. These changes increased the expected sensitivity of this measurement by roughly 50% more than would be expected from the increase in the size of data sample alone.

  12. Supersymmetric giant graviton solutions in AdS3

    NASA Astrophysics Data System (ADS)

    Mandal, Gautam; Raju, Suvrat; Smedbäck, Mikael

    2008-02-01

    We parametrize all classical probe brane configurations that preserve four supersymmetries in (a) the extremal D1-D5 geometry, (b) the extremal D1-D5-P geometry, (c) the smooth D1-D5 solutions proposed by Lunin and Mathur, and (d) global AdS3×S3×T4/K3. These configurations consist of D1 branes, D5 branes, and bound states of D5 and D1 branes with the property that a particular Killing vector is tangent to the brane world volume at each point. We show that the supersymmetric sector of the D5-brane world volume theory may be analyzed in an effective 1+1 dimensional framework that places it on the same footing as D1 branes. In global AdS and the corresponding Lunin-Mathur solution, the solutions we describe are “bound” to the center of AdS for generic parameters and cannot escape to infinity. We show that these probes only exist on the submanifold of moduli space where the background BNS field and theta angle vanish. We quantize these probes in the near-horizon region of the extremal D1-D5 geometry and obtain the theory of long strings discussed by Seiberg and Witten.

  13. A new class of optical structures: Supersymmetric mode converters

    NASA Astrophysics Data System (ADS)

    Stützer, Simon; Heinrich, Matthias; Miri, Mohammad-Ali; El-Ganainy, Ramy; Nolte, Stefan; Christodoulides, Demetrios N.; Szameit, Alexander

    2014-05-01

    Originally developed in the area of quantum field theory, the concept of supersymmetry (SUSY) can be exploited to systematically design a new class of mode converters. In our work, we show for the first time how supersymmetric optical structures can be utilized to control the flow of light for mode division multiplexing applications. Optical potentials and their superpartner configurations are experimentally realized in coupled waveguide arrays using the direct laser-writing technology. This key method allows a flexible and precise tuning of coupling and propagation constants in our optical network. Fluorescence microscopy is used for a direct observation of light dynamics in such systems. In our experiments we show that the fundamental mode of a multimode optical structure can be removed, while establishing global phase matching conditions for the remaining set of modes. SUSY may serve as a promising platform for a new generation of versatile optical components with novel properties and functionalities or even synthesize artificial optical structures that exhibit properties not found in nature.

  14. The Higgs mass and natural supersymmetric spectrum from the landscape

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Barger, Vernon; Savoy, Michael; Serce, Hasan

    2016-07-01

    In supersymmetric models where the superpotential μ term is generated with μ ≪msoft (e.g. from radiative Peccei-Quinn symmetry breaking or compactified string models with sequestration and stabilized moduli), and where the string landscape 1. favors soft supersymmetry (SUSY) breaking terms as large as possible and 2. where the anthropic condition that electroweak symmetry is properly broken with a weak scale m W , Z , h ∼ 100 GeV (i.e. not too weak of weak interactions), then these combined landscape/anthropic requirements act as an attractor pulling the soft SUSY breaking terms towards values required by models with radiatively-driven naturalness: near the line of criticality where electroweak symmetry is barely broken and the Higgs mass is ∼ 125 GeV. The pull on the soft terms serves to ameliorate the SUSY flavor and CP problems. The resulting sparticle mass spectrum may barely be accessible at high-luminosity LHC while the required light higgsinos should be visible at a linear e+e- collider with √{ s} > 2 m (higgsino).

  15. Supersymmetric B – L inflation near the conformal coupling

    DOE PAGESBeta

    Arai, Masato; Kawai, Shinsuke; Okada, Nobuchika

    2014-06-01

    We investigate a novel scenario of cosmological inflation in a gauged B-L extended minimal supersymmetric Standard Model with R-symmetry. We use a noncanonical Kähler potential and a superpotential, both preserving the R-symmetry to construct a model of slow-roll inflation. The model is controlled by two real parameters: the nonminimal coupling ξ that originates from the Kähler potential, and the breaking scale v of the U(1)B-L symmetry. We compute the spectrum of the cosmological microwave background radiation and show that the prediction of the model fits well the recent Planck satellite observation for a wide range of the parameter space. Wemore » also find that the typical reheating temperature of the model is low enough to avoid the gravitino problem but nevertheless allows sufficient production of the baryon asymmetry if we take into account the effect of resonance enhancement. The model is free from cosmic strings that impose stringent constraints on generic U(1)B-L based scenarios, as in our scenario the U(1)B-L symmetry is broken from the onset.« less

  16. Gravitational waves from the fragmentation of a supersymmetric condensate

    SciTech Connect

    Kusenko, Alexander; Mazumdar, Anupam; Multamaeki, Tuomas

    2009-06-15

    We discuss the production of gravity waves from the fragmentation of a supersymmetric condensate in the early Universe. Supersymmetry predicts the existence of flat directions in the potential. At the end of inflation, the scalar fields develop large time-dependent vacuum expectation values along these flat directions. Under some general conditions, the scalar condensates undergo a fragmentation into nontopological solitons, Q-balls. We study this process numerically and confirm the recent analytical calculations showing that it can produce gravity waves observable by the Advanced Laser Interferometer Gravitational Wave Observatory, Laser Interferometer Space Antenna, and Big Bang Observer. The fragmentation can generate gravity waves with an amplitude as large as {omega}{sub GW}h{sup 2}{approx}10{sup -11} and with a peak frequency ranging from 1 mHz to 10 Hz, depending on the parameters. The discovery of such a relic gravitational background radiation can open a new window on the physics at the high scales, even if supersymmetry is broken well above the electroweak scale.

  17. Domain walls in supersymmetric QCD: The taming of the zoo

    SciTech Connect

    Binosi, Daniele; ter Veldhuis, Tonnis

    2001-04-15

    We provide a unified picture of the domain wall spectrum in supersymmetric QCD with N{sub c} colors and N{sub f} flavors of quarks in the (anti) fundamental representation. Within the framework of the Veneziano-Yankielowicz-Taylor effective Lagrangian, we consider domain walls connecting chiral symmetry breaking vacua, and we take the quark masses to be degenerate. For N{sub f}/N{sub c}<1/2, there is one BPS saturated domain wall for any value of the quark mass m. For 1/2{<=}N{sub f}/N{sub c}<1 there are two critical masses m{sub *} and m{sub **} which depend on the number of colors and flavors only through the ratio N{sub f}/N{sub c}. If mm{sub **}, there is no domain wall. We numerically determine m{sub *} and m{sub **} as a function of N{sub f}/N{sub c}, and we find that m{sub **} approaches a constant value in the limit that this ratio goes to 1.

  18. Making supersymmetric connected N =(0 ,2 ) sigma models

    NASA Astrophysics Data System (ADS)

    Shifman, Mikhail; Vainshtein, Arkady; Yung, Alexei

    2015-02-01

    We construct "connected" (0, 2) sigma models starting from n copies of (2, 2) CP (N -1 ) models. General aspects of models of this type (known as T +O deformations) had been previously studied in the context of heterotic string theories. Our construction presents a natural generalization of the nonminimally deformed (2, 2) model with an extra (0, 2) fermion superfield on tangent bundle T [CP (N -1 )×C1] . We had thoroughly analyzed the latter model previously and found the exact β function and a spontaneous breaking of supersymmetry. In contrast, in certain connected sigma models the spontaneous breaking of supersymmetry disappears. We study the connected sigma models in the large-N limit finding supersymmetric vacua and determining the particle spectrum. While the Witten index vanishes in all the models under consideration, in these special cases of connected models, one can use a permutation symmetry to define a modification of the Witten index which does not vanish. This eliminates the spontaneous breaking of supersymmetry. We then examine the exact β functions of our connected (0, 2) sigma models.

  19. Phenomenology of nonuniversal gaugino masses in supersymmetric grand unified theories

    SciTech Connect

    Huitu, Katri; Laamanen, Jari; Pandita, Pran N.; Roy, Sourov

    2005-09-01

    Grand unified theories can lead to nonuniversal boundary conditions for the gaugino masses at the unification scale. We consider the implications of such nonuniversal boundary conditions for the composition of the lightest neutralino as well as for the upper bound on its mass in the simplest supersymmetric grand unified theory based on the SU(5) gauge group. We derive sum rules for neutralino and chargino masses in different representations of SU(5) which lead to different nonuniversal boundary conditions for the gaugino masses at the unification scale. We also consider the phenomenological implications of the nonuniversal gaugino masses arising from a grand unified theory in the context of large hadron collider. In particular we investigate the detection of heavy neutral Higgs bosons H{sup 0}, A{sup 0}from H{sup 0}, A{sup 0}{yields}{chi}-tilde{sub 2}{sup 0}{chi}-tilde{sub 2}{sup 0}{yields}4l and study the possibilities of detecting the neutral Higgs bosons in cascade decays, including the decays {chi}-tilde{sub 2}{sup 0}{yields}h{sup 0}(H{sup 0},A{sup 0}){chi}-tilde{sub 1}{sup 0}{yields}bb{chi}-tilde{sub 1}{sup 0}.

  20. Textures and semi-local strings in supersymmetric hybrid inflation

    SciTech Connect

    Battye, Richard A; Garbrecht, Bjoern; Pilaftsis, Apostolos E-mail: bjorn@hep.man.ac.uk

    2008-09-15

    Global topological defects may account for the large cold spot observed in the cosmic microwave background. We explore possibilities for constructing models of supersymmetric F-term hybrid inflation, where the waterfall fields are globally SU(2)-symmetric. In contrast to the case where SU(2) is gauged, there arise Goldstone bosons and additional moduli, which are lifted only by masses of soft supersymmetry breaking scale. The model predicts the existence of global textures, which can become semi-local strings if the waterfall fields are gauged under U(1){sub X}. Gravitino overproduction can be avoided if reheating proceeds via the light SU(2)-modes or right-handed sneutrinos. For values of the inflaton-waterfall coupling {approx}>10{sup -4}, the symmetry breaking scale imposed by normalization of the power spectrum generated from inflation coincides with the energy scale required to explain the most prominent of the cold spots. In this case, the spectrum of density fluctuations is close to scale invariant, which can be reconciled with measurements of the power spectrum by the inclusion of the sub-dominant component due to the topological defects.

  1. Supersymmetric rotating black hole spacetime tested by geodesics

    NASA Astrophysics Data System (ADS)

    Diemer, Valeria; Kunz, Jutta

    2014-04-01

    We present the complete analytical solution of the geodesics equations in the supersymmetric [Breckenridge-Myers-Peet-Vafa (BMPV)] spacetime J. C. Breckenridge et al. Phys. Lett. B 391, 93 (1997). We study systematically the properties of massive and massless test particle motion. We analyze the trajectories with analytical methods based on the theory of elliptic functions. Since the nature of the effective potential depends strongly on the rotation parameter ω, one has to distinguish between the under-rotating case, the critical case, and the over-rotating case, as discussed by Gibbons and Herdeiro in their pioneering study G. W. Gibbons and C. A. R. Herdeiro, Classical Quantum Gravity 16, 3619 (1999). We discuss various properties that distinguish this spacetime from the classical relativistic spacetimes like Schwarzschild, Reissner-Nordström, Kerr, or Myers-Perry. The over-rotating BMPV spacetime allows, for instance, for planetary bound orbits for massive and massless particles. We also address causality violation, as analyzed in G. W. Gibbons and C. A. R. Herdeiro, Classical Quantum Gravity 16, 3619 (1999).

  2. Lepton flavor violation in predictive supersymmetric GUT models

    SciTech Connect

    Albright, Carl H.; Chen, M.-C.

    2008-06-01

    There have been many theoretical models constructed that aim to explain the neutrino masses and mixing patterns. While many of the models will be eliminated once more accurate determinations of the mixing parameters, especially sin{sup 2}2{theta}{sub 13}, are obtained, charged lepton flavor violation experiments are able to differentiate even further among the models. In this paper, we investigate various rare lepton flavor violation processes, such as l{sub i}{yields}l{sub j}+{gamma} and {mu}-e conversion, in five predictive supersymmetric (SUSY) SO(10) models and their allowed soft-SUSY breaking parameter space in the constrained minimal SUSY standard model. Utilizing the Wilkinson Microwave Anisotropy Probe dark matter constraints, we obtain lower bounds on the branching ratios of these rare processes and find that at least three of the five models we consider give rise to predictions for {mu}{yields}e+{gamma} that will be tested by the MEG Collaboration at PSI. In addition, the next generation {mu}-e conversion experiment has sensitivity to the predictions of all five models, making it an even more robust way to test these models. While generic studies have emphasized the dependence of the branching ratios of these rare processes on the reactor neutrino angle {theta}{sub 13} and the mass of the heaviest right-handed neutrino M{sub 3} we find very massive M{sub 3} is more significant than large {theta}{sub 13} in leading to branching ratios near to the present upper limits.

  3. Mixed axion/neutralino cold dark matter in supersymmetric models

    SciTech Connect

    Baer, Howard; Lessa, Andre; Rajagopalan, Shibi; Sreethawong, Warintorn E-mail: lessa@nhn.ou.edu E-mail: wstan@nhn.ou.edu

    2011-06-01

    We consider supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/axino supermultiplet. We examine R-parity conserving models where the neutralino is the lightest SUSY particle, so that a mixture of neutralinos and axions serve as cold dark matter (a Z-tilde {sub 1} CDM). The mixed a Z-tilde {sub 1} CDM scenario can match the measured dark matter abundance for SUSY models which typically give too low a value of the usual thermal neutralino abundance, such as models with wino-like or higgsino-like dark matter. The usual thermal neutralino abundance can be greatly enhanced by the decay of thermally-produced axinos (ã) to neutralinos, followed by neutralino re-annihilation at temperatures much lower than freeze-out. In this case, the relic density is usually neutralino dominated, and goes as ∼ (f{sub a}/N)/m{sub ã}{sup 3/2}. If axino decay occurs before neutralino freeze-out, then instead the neutralino abundance can be augmented by relic axions to match the measured abundance. Entropy production from late-time axino decays can diminish the axion abundance, but ultimately not the neutralino abundance. In a Z-tilde {sub 1} CDM models, it may be possible to detect both a WIMP and an axion as dark matter relics. We also discuss possible modifications of our results due to production and decay of saxions. In the appendices, we present expressions for the Hubble expansion rate and the axion and neutralino relic densities in radiation, matter and decaying-particle dominated universes.

  4. Semisimple group unification in the supersymmetric brane world

    NASA Astrophysics Data System (ADS)

    Imamura, Y.; Watari, T.; Yanagida, T.

    2001-09-01

    The conventional supersymmetric grand unified theories suffer from two serious problems: the large mass splitting between doublet and triplet Higgs multiplets, and the too long lifetime of the proton. A unification model based on a semisimple group SU(5)GUT×U(3)H has been proposed to solve both of the problems simultaneously. Although the proposed model is perfectly consistent with observations, there are various mysteries. In this paper we show that such mysterious features in the original model are naturally explained by embedding the model into the brane world in a higher-dimensional space-time. In particular, the relatively small gauge coupling constant of the SU(5)GUT at the unification energy scale is a consequence of a relatively large volume of extra dimensions. Here, we put the SU(5)GUT gauge multiplet in a six-dimensional bulk and assume all fields in the U(3)H sector to reside on a three-dimensional brane located in the bulk. On the other hand, all chiral multiplets of quarks, leptons, and Higgs bosons are assumed to reside on a 3-brane at a T2/Z4 orbifold fixed point. The quasi-N=2 supersymmetry in the hypercolor U(3)H sector is understood as a low-energy remnant of the N=4 supersymmetry in a six-dimensional space-time. We further extend the six-dimensional model to a ten-dimensional theory. Possible frameworks of string theories are also investigated to accommodate the present brane-world model. We find that the type-IIB string theory with a D3-D7 brane structure is an interesting candidate.

  5. Supersymmetric large extra dimensions and the cosmological constant: an update

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.

    2004-10-01

    This article critically reviews the proposal for addressing the cosmological constant problem within the framework of supersymmetric large extra dimensions (SLED), as recently proposed in hep-th/0304256. After a brief restatement of the cosmological constant problem, a short summary of the proposed mechanism is given. The emphasis is on the perspective of the low-energy effective theory in order to see how it addresses the problem of why low-energy particles like the electron do not contribute too large a vacuum energy. This is followed by a discussion of the main objections, which are grouped into the following five topics: (1) Weinberg's No-Go Theorem. (2) Are hidden tunings of the theory required, and are these stable under renormalization? (3) Why should the mechanism apply only now and not rule out possible earlier epochs of inflationary dynamics? (4) How big are quantum effects, and which are the most dangerous? and (5) Even if successful, can the mechanism be consistent with cosmological or current observational constraints? It is argued that there are plausible reasons why the mechanism can thread the potential objections, but that a definitive proof that it does depends on addressing well-defined technical points. These points include identifying what fixes the size of the extra dimensions, checking how topological obstructions renormalize and performing specific calculations of quantum corrections. More detailed studies of these issues, which are well within reach of our present understanding of extra-dimensional theories, are currently underway. As such, the jury remains out concerning the proposal, although the prospects for acquittal still seem good. (An abridged version of this article appears in the proceedings of SUSY 2003.)

  6. Higgs boson spectra in supersymmetric left-right models

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; Patra, Ayon

    2016-03-01

    We present a comprehensive analysis of the Higgs boson spectra in several versions of the supersymmetric left-right model based on the gauge symmetry S U (3 )c×S U (2 )L×S U (2 )R×U (1 )B-L. A variety of symmetry breaking sectors are studied, with a focus on the constraints placed on model parameters by the lightest neutral C P even Higgs boson mass Mh. The breaking of S U (2 )R symmetry is achieved by Higgs fields transforming either as triplets or doublets, and the electroweak symmetry breaking is triggered by either bi-doublets or doublets. The Higgs potential is analyzed with or without a gauge singlet Higgs field present. Seesaw models of Type I and Type II, inverse seesaw models, universal seesaw models and an E6 inspired alternate left-right model are included in our analysis. Several of these models lead to the tree-level relation Mh≤√{2 }mW (rather than Mh≤mZ that arises in the MSSM), realized when the S U (2 )R symmetry breaking scale is of order TeV. With such an enhanced upper limit, it becomes possible to accommodate a Higgs boson of mass 126 GeV with relatively light stops that mix negligibly. In models with Higgs triplets, a doubly charged scalar remains light below a TeV with its mass arising entirely from radiative corrections. We carry out the complete one-loop calculation for its mass induced by the Majorana Yukawa couplings and show the consistency of the framework. We argue that these models prefer a low S U (2 )R breaking scale. Other theoretical and phenomenological implications of these models are briefly discussed.

  7. Supersymmetric Janus solutions in four-dimensional N =3 gauged supergravity

    NASA Astrophysics Data System (ADS)

    Karndumri, Parinya

    2016-06-01

    We construct supersymmetric Janus solutions using four-dimensional N =3 gauged supergravity with S O (3 )×S U (3 ) gauge group. The N =3 supersymmetric AdS4 vacuum with unbroken S O (3 )×S U (3 ), identified with the compactification of eleven-dimensional supergravity on AdS4×N010 , provides a gravity dual of supersymmetric N =3 Chern-Simons-Matter theory in three dimensions with S U (3 ) flavor symmetry. The Janus solutions accordingly describe supersymmetric conformal interfaces within this Chern-Simons-Matter theory via the AdS /CFT holography. We find two classes of Janus solutions preserving respectively (2,1) and (0,1) supersymmetry on the (1 +1 )-dimensional conformal defects. The solution with (2,1) supersymmetry preserves S O (2 )×S O (2 )×S O (2 )⊂S O (3 )×S U (3 ) symmetry while the (0,1) supersymmetric solution is invariant under a larger S O (2 )×S U (2 )×S O (2 ) symmetry.

  8. IceCube, DeepCore, PINGU and the indirect search for supersymmetric dark matter

    SciTech Connect

    Bergeron, Paul; Profumo, Stefano E-mail: profumo@ucsc.edu

    2014-01-01

    The discovery of a particle that could be the lightest CP-even Higgs of the minimal supersymmetric extension of the Standard Model (MSSM) and the lack of evidence so far for supersymmetry at the LHC have many profound implications, including for the phenomenology of supersymmetric dark matter. In this study, we re-evaluate and give an update on the prospects for detecting supersymmetric neutralinos with neutrino telescopes, focussing in particular on the IceCube/DeepCore Telescope as well as on its proposed extension, PINGU. Searches for high-energy neutrinos from the Sun with IceCube probe MSSM neutralino dark matter models with the correct Higgs mass in a significant way. This is especially the case for neutralino dark matter models producing hard neutrino spectra, across a wide range of masses, while PINGU is anticipated to improve the detector sensitivity especially for models in the low neutralino mass range.

  9. Renormalization group improvement and dynamical breaking of symmetry in a supersymmetric Chern-Simons-matter model

    NASA Astrophysics Data System (ADS)

    Quinto, A. G.; Ferrari, A. F.; Lehum, A. C.

    2016-06-01

    In this work, we investigate the consequences of the Renormalization Group Equation (RGE) in the determination of the effective superpotential and the study of Dynamical Symmetry Breaking (DSB) in an N = 1 supersymmetric theory including an Abelian Chern-Simons superfield coupled to N scalar superfields in (2 + 1) dimensional spacetime. The classical Lagrangian presents scale invariance, which is broken by radiative corrections to the effective superpotential. We calculate the effective superpotential up to two-loops by using the RGE and the beta functions and anomalous dimensions known in the literature. We then show how the RGE can be used to improve this calculation, by summing up properly defined series of leading logs (LL), next-to-leading logs (NLL) contributions, and so on... We conclude that even if the RGE improvement procedure can indeed be applied in a supersymmetric model, the effects of the consideration of the RGE are not so dramatic as it happens in the non-supersymmetric case.

  10. Exact results for N = 2 supersymmetric gauge theories on compact toric manifolds and equivariant Donaldson invariants

    NASA Astrophysics Data System (ADS)

    Bershtein, Mikhail; Bonelli, Giulio; Ronzani, Massimiliano; Tanzini, Alessandro

    2016-07-01

    We provide a contour integral formula for the exact partition function of N = 2 supersymmetric U( N) gauge theories on compact toric four-manifolds by means of supersymmetric localisation. We perform the explicit evaluation of the contour integral for U(2) N = 2∗ theory on {P}^2 for all instanton numbers. In the zero mass case, corresponding to the N = 4 supersymmetric gauge theory, we obtain the generating function of the Euler characteristics of instanton moduli spaces in terms of mock-modular forms. In the decoupling limit of infinite mass we find that the generating function of local and surface observables computes equivariant Donaldson invariants, thus proving in this case a longstanding conjecture by N. Nekrasov. In the case of vanishing first Chern class the resulting equivariant Donaldson polynomials are new.

  11. Production and decays of supersymmetric Higgs bosons in spontaneously broken R parity

    SciTech Connect

    Hirsch, M.; Valle, J.W.F.; Villanova del Moral, A.

    2006-03-01

    We study the mass spectra, production, and decay properties of the lightest supersymmetric CP-even and CP-odd Higgs bosons in models with spontaneously broken R parity. We compare the resulting mass spectra with expectations of the minimal supersymmetric standard model (MSSM), stressing that the model obeys the upper bound on the lightest CP-even Higgs boson mass. We discuss how the presence of the additional scalar singlet states affects the Higgs production cross sections, both for the Bjorken process and the ''associated production.'' The main phenomenological novelty with respect to the MSSM comes from the fact that the spontaneous breaking of lepton number leads to the existence of the majoron, denoted J, which opens new decay channels for supersymmetric Higgs bosons. We find that the invisible decays of CP-even Higgses can be dominant, while those of the CP-odd bosons may also be sizable.

  12. Multidimensional supersymmetric quantum mechanics: spurious states for the tensor sector two Hamiltonian.

    PubMed

    Chou, Chia-Chun; Kouri, Donald J

    2013-04-25

    We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom. PMID:23531015

  13. Natural gauge mediation with a Bino next-to-lightest supersymmetric particle at the LHC.

    PubMed

    Barnard, James; Farmer, Benjamin; Gherghetta, Tony; White, Martin

    2012-12-14

    Natural models of supersymmetry with a gravitino lightest supersymmetric particle provide distinctive signatures at the LHC. For a neutralino next-to-lightest supersymmetric particle, sparticles can decay to two high energy photons plus missing energy. We use the ATLAS diphoton search with 4.8 b(-1) of data to place limits in both the top-squark-gluino and neutralino-chargino mass planes for this scenario. If the neutralino is heavier than 50 GeV, the lightest top squark must be heavier than 580 GeV, the gluino must be heavier than 1100 GeV, and charginos must be heavier than approximately 300-470 GeV. This provides the first nontrivial constraints in natural gauge mediation models with a neutralino next-to-lightest supersymmetric particle decaying to photons and implies a fine-tuning of at least a few percent in such models. PMID:23368306

  14. Determination of Supersymmetric Particle Masses and Attributes with Genetic Divisors

    SciTech Connect

    DAI,YANG; BORISOV,ALEXEY B.; BOYER,KEITH; RHODES,CHARLES K.

    2001-06-01

    Arithmetic conditions relating particle masses can be defined on the basis of (1) the supersymmetric conservation of congruence and (2) the observed characteristics of particle reactions and stabilities. Stated in the form of common divisors, these relations can be interpreted as expressions of genetic elements that represent specific particle characteristics. In order to illustrate this concept, it is shown that the pion triplet ({pi}{sup {+-}}, {pi}{sup 0}) can be associated with the existence of a greatest common divisor d{sub 0{+-}} in a way that can account for both the highly similar physical properties of these particles and the observed {pi}{sup {+-}}/{pi}{sup 0} mass splitting. These results support the conclusion that a corresponding statement holds generally for all particle multiplets. Classification of the respective physical states is achieved by assignment of the common divisors to residue classes in a finite field F{sub P{sub {alpha}}} and the existence of the multiplicative group of units F{sub P{sub {alpha}}} enables the corresponding mass parameters to be associated with a rich subgroup structure. The existence of inverse states in F{sub P{sub {alpha}}} allows relationships connecting particle mass values to be conveniently expressed in a form in which the genetic divisor structure is prominent. An example is given in which the masses of two neutral mesons (K{degree} {r_arrow} {pi}{degree}) are related to the properties of the electron (e), a charged lepton. Physically, since this relationship reflects the cascade decay K{degree} {r_arrow} {pi}{degree} + {pi}{degree}/{pi}{degree} {r_arrow} e{sup +} + e{sup {minus}}, in which a neutral kaon is converted into four charged leptons, it enables the genetic divisor concept, through the intrinsic algebraic structure of the field, to provide a theoretical basis for the conservation of both electric charge and lepton number. It is further shown that the fundamental source of supersymmetry can be expressed

  15. New supersymmetric quartet of nuclei: {sup 192,193}Os-{sup 193,194}Ir

    SciTech Connect

    Bijker, R.; Frank, A.; Barea, J.; Graw, G.; Wirth, H.-F.; Hertenberger, R.; Jolie, J.

    2009-01-28

    We present evidence for the existence of a new supersymmetric quartet of nuclei in the A{approx}190 mass region. The analysis is based on new experimental information on the odd-odd nucleus {sup 194}Ir from transfer and neutron capture reactions. The new data allow the identification of a new supersymmetric quartet, consisting of the {sup 192,193}Os and {sup 193,194}Ir nuclei. We make explicit predictions for {sup 193}Os, and suggest that its spectroscopic properties be measured in dedicated experiments. Finally, we study correlations between different transfer reactions.

  16. New supersymmetric quartet of nuclei in the A{approx}190 mass region

    SciTech Connect

    Barea, J.; Bijker, R.; Frank, A.; Graw, G.; Hertenberger, R.; Wirth, H.-F.; Christen, S.; Jolie, J.; Tonev, D.; Balodis, M.; Berzins, J.; Kramere, N.; Egidy, T. von

    2009-03-15

    We present evidence for a new supersymmetric quartet in the A{approx}190 region of the nuclear mass table. New experimental information on transfer and neutron capture reactions to the odd-odd nucleus {sup 194}Ir strongly suggests the existence of a new supersymmetric quartet, consisting of the {sup 192,193}Os and {sup 193,194}Ir nuclei. We make explicit predictions for the odd-neutron nucleus {sup 193}Os and suggest that its spectroscopic properties be measured in dedicated experiments.

  17. Predictions for m{sub t} and M{sub W} in minimal supersymmetric models

    SciTech Connect

    Buchmueller, O.; Cavanaugh, R.; De Roeck, A.; Ellis, J. R.; Flaecher, H.; Heinemeyer, S.; Isidori, G.; Olive, Keith A.; Ronga, F. J.; Weiglein, G.

    2010-02-01

    Using a frequentist analysis of experimental constraints within two versions of the minimal supersymmetric extension of the standard model, we derive the predictions for the top quark mass, m{sub t}, and the W boson mass, M{sub W}. We find that the supersymmetric predictions for both m{sub t} and M{sub W}, obtained by incorporating all the relevant experimental information and state-of-the-art theoretical predictions, are highly compatible with the experimental values with small remaining uncertainties, yielding an improvement compared to the case of the standard model.

  18. The minimal and the new minimal supersymmetric Grand Unified Theories on noncommutative space-time

    NASA Astrophysics Data System (ADS)

    Martín, C. P.

    2013-08-01

    We construct noncommutative versions of both the minimal and the new minimal supersymmetric Grand Unified Theories (GUTs). The enveloping-algebra formalism is used to carry out such constructions. The beautiful formulation of the Higgs sector of these noncommutative theories is a consequence of the fact that, in the GUTs at hand, the ordinary Higgs fields can be realized as elements of the Clifford algebra {C}{l}_{10}( {C}). In the noncommutative supersymmetric GUTs we formulate, supersymmetry is linearly realized by the noncommutative fields; but it is not realized by the ordinary fields that define those noncommutative fields via the Seiberg-Witten map.

  19. Matching next-to-leading order predictions to parton showers in supersymmetric QCD

    DOE PAGESBeta

    Degrande, Céline; Fuks, Benjamin; Hirschi, Valentin; Proudom, Josselin; Shao, Hua-Sheng

    2016-02-03

    We present a fully automated framework based on the FeynRules and MadGraph5_aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.

  20. Neutralinos and Higgs Bosons in the Next-To-Minimal Supersymmetric Standard Model

    NASA Astrophysics Data System (ADS)

    Franke, F.

    The purpose of this paper is to present a complete and consistent list of the Feynman rules for the vertices of neutralinos and Higgs bosons in the Next-To-Minimal Supersymmetric Standard Model (NMSSM), which does not yet exist in the literature. The Feynman rules are derived from the full expression for the Lagrangian and the mass matrices of the neutralinos and Higgs bosons in the NMSSM. Some crucial differences between the vertex functions of the NMSSM and the Minimal Supersymmetric Standard Model (MSSM) are discussed.

  1. More on non-supersymmetric asymmetric orbifolds with vanishing cosmological constant

    NASA Astrophysics Data System (ADS)

    Sugawara, Yuji; Wada, Taiki

    2016-08-01

    We explore various non-supersymmetric type II string vacua constructed based on asymmetric orbifolds of tori with vanishing cosmological constant at the one loop. The string vacua we present are modifications of the models studied in [14], of which orbifold group is just generated by a single element. We especially focus on two types of modifications: (i) the orbifold twists include different types of chiral reflections not necessarily removing massless Rarita-Schwinger fields in the 4-dimensional space-time, (ii) the orbifold twists do not include the shift operator. We further discuss the unitarity and stability of constructed non-supersymmetric string vacua, with emphasizing the common features of them.

  2. Multifield dynamics of supersymmetric Higgs inflation in S U (5 ) GUT

    NASA Astrophysics Data System (ADS)

    Kawai, Shinsuke; Kim, Jinsu

    2016-03-01

    We study the Higgs inflation model realized in the supersymmetric S U (5 ) grand unified theory (GUT), focusing on its multifield dynamics and prediction of cosmological observables. The requirement for GUT symmetry breaking during inflation imposes tight constraints on the model parameters. We find, nevertheless, that with an appropriately chosen noncanonical Kähler potential the model is in excellent agreement with the present cosmological observations. The effects from multifield dynamics are found to be minor and thus, unlike other similar supersymmetric implementations of nonminimally coupled Higgs inflation, the prediction of this model is robust against multifield ambiguities.

  3. Examining the identity of Yukawa with gauge couplings in supersymmetric QCD at LHC

    SciTech Connect

    Freitas, Ayres; Skands, Peter Z.; Spira, M.; Zerwas, P.M.; /DESY

    2007-03-01

    The identity of the quark-squark-gluino Yukawa coupling with the corresponding quark-quark-gluon QCD coupling in supersymmetric theories can be examined experimentally at the Large Hadron Collider (LHC). Extending earlier investigations of like-sign di-lepton final states, we include jets in the analysis of the minimal supersymmetric standard model, adding squark-gluino and gluino-pair production to squark-pair production. Moreover we expand the method towards model-independent analyses which cover more general scenarios. In all cases, squark decays to light charginos and neutralinos persist to play a dominant role.

  4. Family Meals

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Family Meals KidsHealth > For Parents > Family Meals Print A ... even more important as kids get older. Making Family Meals Happen It can be a big challenge ...

  5. Family History

    MedlinePlus

    Your family history includes health information about you and your close relatives. Families have many factors in common, including their genes, ... as heart disease, stroke, and cancer. Having a family member with a disease raises your risk, but ...

  6. Family Arguments

    MedlinePlus

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Life Listen Español Text Size Email Print Share Family Arguments Page Content Article Body We seem to ...

  7. Family History

    MedlinePlus

    ... CDC Cancel Submit Search The CDC Family Health History Note: Javascript is disabled or is not supported ... visit this page: About CDC.gov . Family Health History The Basics Family Health History & Chronic Disease Planning ...

  8. Family Folklore

    ERIC Educational Resources Information Center

    Kotkin, Amy J.; Baker, Holly C.

    1977-01-01

    Discusses the Family Folklore Program of the Smithsonian Institution's annual Festival of American Folklife, in which the whole family can be involved in tracing family history through story telling, photographs, etc. (MS)

  9. Dark Matter and Baryon Asymmetry production from out-of-equilibrium decays of Supersymmetric states

    NASA Astrophysics Data System (ADS)

    Arcadi, Giorgio

    2016-02-01

    We will review the main aspects of a mechanism for the contemporary generation of the baryon and Dark Matter abundances from the out-of-equilibrium decay of a WIMP-like mother particle and briefly discuss a concrete realization in a Supersymmetric scenario.

  10. Lepton flavour violation in the supersymmetric type-II seesaw mechanism

    SciTech Connect

    Joaquim, F. R.

    2008-11-23

    We summarize the predictions for the radiative decays l{sub j}{yields}l{sub i}{gamma} within the context of the supersymmetric type II seesaw mechanism considering universal boundary conditions for the soft SUSY breaking terms. The dependence on the low-energy neutrino parameters is discussed and the deviations from the analytical results for large tan{beta} analyzed.

  11. Supercharges, quantum states and angular momentum for N=4 supersymmetric monopoles

    NASA Astrophysics Data System (ADS)

    de Vries, Erik Jan; Schroers, Bernd J.

    2010-11-01

    We revisit the moduli space approximation to the quantum mechanics of monopoles in N=4 supersymmetric Yang-Mills-Higgs theory with maximal symmetry breaking. Starting with the observation that the set of fermionic zero-modes in N=4 supersymmetric Yang-Mills-Higgs theory can be viewed as two copies of the set of fermionic zero-modes in the N=2 version, we build a model to describe the quantum mechanics of N=4 supersymmetric monopoles, based on our previous paper (de Vries and Schroers, 2009) [1] on the N=2 case, in which this doubling of fermionic zero-modes is manifest throughout. Our final picture extends the familiar result that quantum states are described by differential forms on the moduli space and that the Hamiltonian operator is the Laplacian acting on forms. In particular, we derive a general expression for the total angular momentum operator on the moduli space which differs from the naive candidate by the adjoint action of the complex structures. We also express all the supercharges in terms of (twisted) Dolbeault operators and illustrate our results by discussing, in some detail, the N=4 supersymmetric quantum dynamics of monopoles in a theory with gauge group SU(3) broken to U(1)×U(1).

  12. Supersymmetric structure of the bosonic string theory in the Beltrami parametrization

    NASA Astrophysics Data System (ADS)

    de Oliveira, M. Werneck; Schweda, M.; Sorella, S. P.

    1993-09-01

    We show that the bosonic string theory quantized in the Beltrami parametrization possesses a supersymmetric structure like the vector-supersymmetry already observed in topological field theories. Supported in part by the ``Fonds zur Förderung der Wissenschaftlichen Forschung'', M008-Lise Meitner Fellowship.

  13. Supersymmetric versions of the Fokas–Gel’fand formula for immersion

    NASA Astrophysics Data System (ADS)

    Bertrand, S.; Grundland, A. M.

    2016-07-01

    In this paper, we construct and investigate two supersymmetric versions of the Fokas–Gel’fand formula for the immersion of 2D surfaces associated with a supersymmetric integrable system. The first version involves an infinitesimal deformation of the zero-curvature condition and the linear spectral problem associated with this system. This deformation leads the surfaces to be represented in terms of a bosonic supermatrix immersed in a Lie superalgebra. The second supersymmetric version is obtained by using a fermionic parameter deformation to construct surfaces expressed in terms of a fermionic supermatrix immersed in a Lie superalgebra. For both extensions, we provide a geometrical characterization of deformed surfaces using the super Killing form as an inner product and a super moving frame formalism. The theoretical results are applied to the supersymmetric sine-Gordon equation in order to construct super soliton surfaces associated with five different symmetries. We find integrated forms of these surfaces which represent constant Gaussian curvature surfaces and nonlinear Weingarten-type surfaces.

  14. One-loop Einstein-Hilbert term in minimally supersymmetric type IIB orientifolds

    NASA Astrophysics Data System (ADS)

    Haack, Michael; Kang, Jin U.

    2016-02-01

    We evaluate string one-loop contributions to the Einstein-Hilbert term in toroidal minimally supersymmetric type IIB orientifolds with D-branes. These have potential applications to the determination of quantum corrections to the moduli Kähler metric in these models.

  15. Cosmology and low energy particle physics of nonlinear supersymmetric general relativity

    SciTech Connect

    Shima, Kazunari; Tsuda, Motomu

    2009-04-17

    The basic idea and some physical implications of nonlinear supersymmetric general relativity(NLSUSY GR) are discussed, which give new insights into the origin of mass and the mysterious relations between the cosmology and the low energy particle physics, e.g., the spontaneous SUSY breaking scale, the cosmological constant, the (dark) energy density of the universe and the neutrino mass.

  16. S{sup 1}xS{sup 2} Gowdy supersymmetric constraint

    SciTech Connect

    Maceda, Marco; Macias, Alfredo

    2011-02-15

    We obtain the supersymmetric constraint for S{sup 1}xS{sup 2} Gowdy spacetime in the N=1 supergravity formalism of quantum cosmology in four dimensions. The physical states of the model for both polarized and unpolarized cases are presented.

  17. Supersymmetric soliton solution in a dimensionally reduced Schroedinger-Chern-Simons model

    SciTech Connect

    Sourrouille, Lucas

    2011-02-15

    We obtain, by dimensional reduction, a (1+1) supersymmetric system introduced in the description of ultracold quantum gases. The correct supercharges are identified and their algebra is constructed. Finally, novel solitonic equations emerge and their solution is constructed for the bosonic case.

  18. Toward proving a new identity for Green's functions in N = 1 supersymmetric electrodynamics

    SciTech Connect

    Stepanyantz, K. V.

    2009-01-15

    A method that may underlie an attempt at proving the previously proposed new identity for Green's functions is described for N = 1 supersymmetric massless electrodynamics regularized by higher derivatives. With the aid of this method, it is shown that some contributions to the identity in question do indeed vanish.

  19. Supersymmetric type-III seesaw mechanism: Lepton flavor violating decays and dark matter

    SciTech Connect

    Esteves, J. N.; Romao, J. C.; Hirsch, M.

    2011-01-01

    We study a supersymmetric version of the seesaw mechanism type III. The model consists of the minimal supersymmetric extension of the standard model particle content plus three copies of 24 superfields. The fermionic part of the SU(2) triplet contained in the 24 is responsible for the type-III seesaw, which is used to explain the observed neutrino masses and mixings. Complete copies of 24 are introduced to maintain gauge coupling unification. These additional states change the beta functions of the gauge couplings above the seesaw scale. Using minimal Supergravity boundary conditions, we calculate the resulting supersymmetric mass spectra at the electroweak scale using full 2-loop renormalization group equations. We show that the resulting spectrum can be quite different compared to the usual minimal Supergravity spectrum. We discuss how this might be used to obtain information on the seesaw scale from mass measurements. Constraints on the model space due to limits on lepton flavour violating decays are discussed. The main constraints come from the bounds on {mu}{yields}e{gamma} but there are also regions where the decay {tau}{yields}{mu}{gamma} gives stronger constraints. We also calculate the regions allowed by the dark matter constraint. For the sake of completeness, we compare our results with those for the supersymmetric seesaw type II and, to some extent, with type I.

  20. Large loop effects of extra supersymmetric Higgs doublets to CP violation in B{sup 0} mixing

    SciTech Connect

    Kubo, Jisuke; Lenz, Alexander

    2010-10-01

    We consider more than one pair of SU(2){sub L} doublet Higgs supermultiplets in a generic supersymmetric extension of the standard model, and calculate their one-loop contributions to the soft mass insertions {delta}{sub LL} etc. We find that, if large supersymmetry breaking in this sector is realized, the loop effects can give rise to large contributions to the soft mass insertions, meaning that they can generate large flavor-changing neutral currents and CP violations. We apply our result to a recently proposed model based on the discrete Q{sub 6} family group, and calculate the nondiagonal matrix element M{sub 12} of the neutral meson systems. We focus our attention on the extra phases {phi}{sub d,s}{sup {Delta}}in B{sub d,s} mixing and flavor-specific CP asymmetries a{sub sl}{sup d,s} in neutral B decays and obtain values that can be about 1 order of magnitude larger than the standard model predictions. Our final results are comparable with the recent experimental observations at D0 and CDF, but they are still about a factor of 5 smaller than the recently measured dimuon asymmetry from D0.

  1. Family Privilege

    ERIC Educational Resources Information Center

    Seita, John R.

    2014-01-01

    Family privilege is defined as "strengths and supports gained through primary caring relationships." A generation ago, the typical family included two parents and a bevy of kids living under one roof. Now, every variation of blended caregiving qualifies as family. But over the long arc of human history, a real family was a…

  2. Cancer, Families, and Family Counselors.

    ERIC Educational Resources Information Center

    Duffy, Maureen; Gillig, Scott

    2003-01-01

    Examines the role of the family counselor in working with cancer patients and their families. Suggests ways in which the family counselor can work proactively with families in the area of cancer prevention and helping them cope more effectively with its impact on their lives. Uses a clinical case example to illustrate intervention with cancer…

  3. Family therapy by family doctors

    PubMed Central

    Neighbour, R.

    1982-01-01

    The experiences of a group of general practitioners learning and attempting family therapy are described. Three principles for working with whole families — facilitation, formulation and focussing — are illustrated by case histories. Family therapy in general practice can be effective for patients and worthwhile for family doctors. PMID:7153974

  4. Drell-Yan production of multi Z '-bosons at the LHC within Non-Universal ED and 4D Composite Higgs Models

    NASA Astrophysics Data System (ADS)

    Accomando, Elena; Barducci, Daniele; De Curtis, Stefania; Fiaschi, Juri; Moretti, Stefano; Shepherd-Themistocleous, C. H.

    2016-07-01

    The Drell-Yan di-lepton production at hadron colliders is by far the preferred channel to search for new heavy spin-1 particles. Traditionally, such searches have exploited the Narrow Width Approximation (NWA) for the signal, thereby neglecting the effect of the interference between the additional Z '-bosons and the Standard Model Z and γ. Recently, it has been established that both finite width and interference effects can be dealt with in experimental searches while still retaining the model independent approach ensured by the NWA. This assessment has been made for the case of popular single Z '-boson models currently probed at the CERN Large Hadron Collider (LHC). In this paper, we test the scope of the CERN machine in relation to the above issues for some benchmark multi Z '-boson models. In particular, we consider Non-Universal Extra Dimensional (NUED) scenarios and the 4-Dimensional Composite Higgs Model (4DCHM), both predicting a multi- Z ' peaking structure. We conclude that in a variety of cases, specifically those in which the leptonic decays modes of one or more of the heavy neutral gauge bosons are suppressed and/or significant interference effects exist between these or with the background, especially present when their decay widths are significant, traditional search approaches based on the assumption of rather narrow and isolated objects might require suitable modifications to extract the underlying dynamics.

  5. Multiple mutagenesis of non-universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris.

    PubMed Central

    Lee, Guan-Chiun; Lee, Li-Chiun; Sava, Vasyl; Shaw, Jei-Fu

    2002-01-01

    The 17 non-universal serine codons (CTG) in the Candida rugosa LIP2 gene have been converted into universal serine codons (TCT) by overlap extension PCR-based multiple site-directed mutagenesis. An active recombinant LIP2 lipase was overexpressed in Pichia pastoris and secreted into the culture medium. The recombinant LIP2 showed distinguishing catalytic activities when compared with recombinant LIP4 and commercial C. rugosa lipase. The purified enzyme showed optimum activity at pH 7 and a broad temperature optimum in the range 30-50 degrees C. The enzyme retained 80% of residual activity after being heated at 70 degrees C for 10 min. Recombinant LIP2 demonstrated high esterase activity towards long-chain (C12-C16) p-nitrophenyl esters. Tributyrin was the preferred substrate among all triacylglycerols tested for lipolysis. Among cholesteryl esters, LIP2 showed highest lipolytic activity towards cholesteryl laurate. The esterification of myristic acid with alcohols of various chain lengths showed that the long-chain n-octadecanol (C18) was the preferred substrate. In contrast, the esterification of n-propanol with fatty acids of various chain lengths showed that the short-chain butyric acid was the best substrate. From comparative modelling analysis, it appears that several amino acid substitutions resulting in greater hydrophobicity in the substrate-binding site might play an important role in the substrate specificity of LIP2. PMID:12020350

  6. FAMILIAL SUICIDE

    PubMed Central

    Unni, K.E. Sadanaandan

    1996-01-01

    Seven completed suicides in a family of lower socioeconomic status and suburban domicile in Pondicherry are reported. The presence of bipolar affective disorder in the family members and the absence of exogenous factors are illustrated by utilising both family history method and family study method. The details collected formed the basis for the terminology ‘familial suicide’. The management of the index case, one of the only three surviving male members of the family, who presented with suicidal ruminations and depressive features, is described. PMID:21584122

  7. Higgs boson decays into γ γ and Z γ in the MSSM and the B -L supersymmetric SM

    NASA Astrophysics Data System (ADS)

    Hammad, A.; Khalil, S.; Moretti, S.

    2015-11-01

    We calculate Higgs decay rates into γ γ and Z γ in the minimal supersymmetric Standard Model and (B -L ) supersymmetric Standard Model by allowing for contributions from light staus (τ ˜ s ) and charginos (χ˜ ±s ). We show that sizable departures are possible from the Standard Model predictions for the 125 GeV state and that they are testable during Run 2 at the Large Hadron Collider. Furthermore, we illustrate how a second light scalar Higgs signal in either or both of these decay modes can be accessed at the CERN machine rather promptly within the (B -L ) supersymmetric Standard Model, a possibility instead precluded to the minimal supersymmetric Standard Model, owing to the much larger mass of its heavy scalar state.

  8. Nonlocal charge of the CP/sup n/-1 model and its supersymmetric extension to all orders

    SciTech Connect

    Abdalla, E.; Abdalla, M.C.B.; Gomes, M.

    1983-02-15

    We prove that the conservation of quantum nonlocal charge of the CP/sup n/-1 model is spoiled by an anomaly calculable to all orders in the 1/n expansion, while for its supersymmetric extension it is restored.

  9. Extra matters decree the relatively heavy Higgs of mass about 125 GeV in the supersymmetric model

    NASA Astrophysics Data System (ADS)

    Moroi, Takeo; Sato, Ryosuke; Yanagida, Tsutomu T.

    2012-03-01

    We show that the Higgs mass about 125 GeV is easily realized in supersymmetric model with extra matters, simultaneously explaining the anomaly in the muon anomalous magnetic moment and the dark matter density.

  10. Poisson structure and stability analysis of a coupled system arising from the supersymmetric breaking of Super KdV

    NASA Astrophysics Data System (ADS)

    Sotomayor, Adrián; Restuccia, Alvaro

    2013-11-01

    The Poisson structure of a coupled system arising from a supersymmetric breaking of N=1 Super KdV equations is obtained. The supersymmetric breaking is implemented by introducing a Clifford algebra instead of a Grassmann algebra. The Poisson structure follows from the Dirac brackets obtained by the constraint analysis of the hamiltonian of the system. The coupled system has multisolitonic solutions. We show that the one soliton solutions are Liapunov stable.

  11. Quark and lepton masses at the GUT scale including supersymmetric threshold corrections

    SciTech Connect

    Antusch, S.; Spinrath, M.

    2008-10-01

    We investigate the effect of supersymmetric (SUSY) threshold corrections on the values of the running quark and charged lepton masses at the grand unified theory (GUT) scale within the large tan{beta} regime of the minimal supersymmetric standard model. In addition to the typically dominant SUSY QCD contributions for the quarks, we also include the electroweak contributions for quarks and leptons and show that they can have significant effects. We provide the GUT scale ranges of quark and charged lepton Yukawa couplings as well as of the ratios m{sub {mu}}/m{sub s}, m{sub e}/m{sub d}, y{sub {tau}}/y{sub b} and y{sub t}/y{sub b} for three example ranges of SUSY parameters. We discuss how the enlarged ranges due to threshold effects might open up new possibilities for constructing GUT models of fermion masses and mixings.

  12. Signatures of multi-TeV scale particles in supersymmetric theories

    SciTech Connect

    Cheng, H.; Feng, J.L.; Polonsky, N.

    1998-01-01

    Supersymmetric particles at the multi-TeV scale will escape direct detection at planned future colliders. However, such particles induce non-decoupling corrections in processes involving the accessible superparticles through violations of the supersymmetric equivalence between gauge boson and gaugino couplings. In a previous study, we parametrized these violations in terms of super-oblique parameters and found significant deviations in well-motivated models. Here, we systematically classify the possible experimental probes of such deviations, and present detailed investigations of representative observables available at a future linear collider. In some scenarios, the e{sup {minus}}e{sup {minus}} option and adjustable beam energy are exploited to achieve high precision. It is shown that precision measurements are possible for each of the three coupling relations, leading to significant bounds on the masses and properties of heavy superparticles and possible exotic sectors. {copyright} {ital 1997} {ital The American Physical Society}

  13. Supersymmetric Rényi entropy and Weyl anomalies in six-dimensional (2,0) theories

    NASA Astrophysics Data System (ADS)

    Zhou, Yang

    2016-06-01

    We propose a closed formula of the universal part of supersymmetric Rényi entropy S q for (2 , 0) superconformal theories in six-dimensions. We show that S q across a spherical entangling surface is a cubic polynomial of γ := 1 /q, with all coefficients expressed in terms of the newly discovered Weyl anomalies a and c. This is equivalent to a similar statement of the supersymmetric free energy on conic (or squashed) six-sphere. We first obtain the closed formula by promoting the free tensor multiplet result and then provide an independent derivation by assuming that S q can be written as a linear combination of 't Hooft anomaly coefficients. We discuss a possible lower bound a/cge 3/7 implied by our result.

  14. Remarkable virtual supersymmetric effects in W{sup {+-}} production at high energy hadron colliders

    SciTech Connect

    Gounaris, G. J.; Layssac, J.; Renard, F. M.

    2008-01-01

    We present a complete 1-loop study of the electroweak corrections to the process ug{yields}dW{sup +} in the minimal supersymmetric standard model and the standard model. The occurrence of a number of remarkable properties in the behavior of the helicity amplitudes at high energies is stressed, and the crucial role of the virtual supersymmetric (SUSY) contributions in establishing them is emphasized. The approach to asymptopia of these amplitudes is discussed, comparing the effects of the logarithmic and constant contributions to the mass-suppressed ones, which are relevant at lower energies. Applying crossing to ug{yields}dW{sup +}, we obtain all subprocesses needed for the 1-loop electroweak corrections to W{sup {+-}}-production at LHC. The SUSY model dependence of such a production is then studied, and illustrations are given for the transverse W{sup {+-}} momentum distribution, as well as the angular distribution in the subprocess center of mass.

  15. On the Potentials of Supersymmetric Theories with Gauge-Field Mixing Terms

    NASA Astrophysics Data System (ADS)

    Nunes Ferreira, Cristine

    2004-12-01

    In this letter, we reconsider the delicate issue of symmetry and supersymmetry breakings for gauge theories with gauge-field mixings. The purpose is to study generalyzed potentials in the presence of more than a single gauge potential. In this work, following a stream of investigation on supersymmetric gauge theories without flat directions, we contemplate the possibility of building up D- and F-term potentials by means of a gauge-field mixing in connection with a U(1)×U(1)' -symmetry. We investigate a generalized potential including an N=1 supersymmetric extension of the Maxwell-Chern-Simons model focusing on the study of cosmic string configurations. This analysis sheds some light on the formation of cosmic strings for model with violation of Lorentz symmetry.

  16. On Quadratic Divergences in Supergravity, Vacuum Energy and theSupersymmetric Flavor Problem

    SciTech Connect

    Gaillard, Mary K.; Nelson, Brent D.

    2005-11-18

    We examine the phenomenological consequences ofquadratically divergent contributions to the scalar potential insupergravity effective Lagrangians. We focus specifically on the effectof these corrections on the vacuum configurationof scalar fields insoftly-broken supersymmetric theory is and the role these correctionsplay in generating non-diagonal soft scalar masses. Both effects can onlybe properly studied when the divergences are regulated in a manifestlysupersymmetric manner -- something which has ths far been neglected inpast treatments. We show how a supersymmetric regularization can impactpast conclusions about both types of phenomena and discuss what types ofhigh-energy theories are likely to be safe from unwanted flavor-changingneutral current interactions in the context of supergravity theoriesderived from heterotic string compactifications.

  17. Production and decay of neutralinos in the Next-to-Minimal Supersymmetric Standard Model

    NASA Astrophysics Data System (ADS)

    Franke, F.; Fraas, H.

    1996-06-01

    Within the framework of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) we study neutralino productione^ + e^ - to tilde χ _i^0 tilde χ _j^0 (i,j=1, …, 5) at center-of-mass energies between 100 and 600 GeV and the decays of the heavier neutralinos into the LSP plus a fermion pair, a photon or a Higgs boson. For representative gaugino/higgsino mixing scenarios, where the light neutralinos have significant singlet components, we find some striking differences between the NMSSM and the minimal supersymmetric model. Since in the NMSSM neutralino and Higgs sector are strongly correlated, the decay of the second lightest neutralino into a Higgs boson and the LSP often is kinematically possible and even dominant in a large parameter region of typical NMSSM scenarios. Also, the decay rates into final states with a photon may be enhanced.

  18. Supersymmetric backgrounds and black holes in {N}=(1,1) cosmological new massive supergravity

    NASA Astrophysics Data System (ADS)

    Alkaç, Gökhan; Basanisi, Luca; Bergshoeff, Eric A.; Devecioğlu, Deniz Olgu; Ozkan, Mehmet

    2015-10-01

    Using an off-shell Killing spinor analysis we perform a systematic investigation of the supersymmetric background and black hole solutions of the N=(1,1) Cosmological New Massive Gravity model. The solutions with a null Killing vector are the same pp-wave solutions that one finds in the N=1 model but we find new solutions with a time-like Killing vector that are absent in the N=1 case. An example of such a solution is a Lifshitz spacetime. We also consider the supersymmetry properties of the so-called rotating hairy BTZ black holes and logarithmic black holes in an AdS 3 background. Furthermore, we show that under certain assumptions there is no supersymmetric Lifshitz black hole solution.

  19. Family Support.

    ERIC Educational Resources Information Center

    Wieck, Colleen, Ed.; McBride, Marijo, Ed.

    1990-01-01

    This "Feature Issue" of the quarterly journal "Impact" presents 19 brief articles on family support systems in the United States for persons with developmental disabilities and their families. Emphasis is on provisions of Public Law 99-457. Articles include: "Family Support in the United States: Setting a Course for the 1990s" (James Knoll);…

  20. Family Matters.

    ERIC Educational Resources Information Center

    Mainor, Peggy

    2001-01-01

    Describes a Kellogg Family Collaborative project that involves the University of Montana and four tribal colleges in a family-strengths approach to improving student retention and achievement. States that the project is grounded in social work theory and research that recognize and reinforce family and student resilience through promotion of…

  1. Rural Families.

    ERIC Educational Resources Information Center

    Goetz, Kathy, Ed.

    1992-01-01

    This "special focus" journal issue consists of 13 individual articles on the theme of rural family programs relating to school, health services, church, and other institutions. It includes: (1) "Towards a Rural Family Policy" (Judith K. Chynoweth and Michael D. Campbell); (2) "Montana: Council for Families Collaborates for Prevention (Jean…

  2. Impacts of supersymmetric higher derivative terms on inflation models in supergravity

    SciTech Connect

    Aoki, Shuntaro; Yamada, Yusuke

    2015-07-14

    We show the effects of supersymmetric higher derivative terms on inflation models in supergravity. The results show that such terms generically modify the effective kinetic coefficient of the inflaton during inflation if the cut off scale of the higher derivative operators is sufficiently small. In such a case, the η-problem in supergravity does not occur, and we find that the effective potential of the inflaton generically becomes a power type potential with a power smaller than two.

  3. B-tagging and the search for neutral supersymmetric Higgs bosons at D0

    SciTech Connect

    Scanlon, Tim; /Imperial Coll., London

    2006-10-01

    A search for neutral supersymmetric Higgs bosons and work relating to the improvement of the b-tagging and trigger capabilities at the D0 detector during Run II of the Fermilab Tevatron collider is presented. The search for evidence of the Higgs sector in the Standard Model (SM) and supersymmetric extensions of the SM are a high priority for the D0 collaboration, and b-tagging and good triggers are a vital component of these searches. The development and commissioning of the first triggers at D0 which use b-tagging is outlined, along with the development of a new secondary vertex b-tagging tool for use in the Level 3 trigger. Upgrades to the Level 3 trigger hit finding code, which have led to significant improvements in the quality and efficiency of the tracking code, and by extension the b-tagging tools, are also presented. An offline Neural Network (NN) b-tagging tool was developed, trained on Monte Carlo and extensively tested and measured on data. The new b-tagging tool significantly improves the b-tagging performance at D0, for a fixed fake rate relative improvements in signal efficiency range from {approx} 40% to {approx} 15%. Fake rates, for a fixed signal efficiency, are typically reduced to between a quarter and a third of their value. Finally, three versions of the search for neutral supersymmetric Higgs bosons are presented. The latest version of the analysis makes use of almost 1 fb{sup -1} of data, the new NN b-tagger and the new b-tagging triggers, and has set one of the world's best limits on the supersymmetric parameter tan{beta} in the mass range 90 to 150 GeV.

  4. Number of gauge singlets in supersymmetric Yang-Mills quantum mechanics

    SciTech Connect

    Trzetrzelewski, Maciej

    2007-10-15

    We calculate generating functions for a number of U(N) (SU(N)) singlets in Fock space in several space dimensions. The motivation to find the explicit form of the functions is from the numerical approach applied to supersymmetric Yang-Mills quantum mechanics, based on Fock space. Incidentally the functions give many important insights into the quantum mechanical models based on U(N)(SU(N)) gauge group.

  5. Density of states for Gaussian unitary ensemble, Gaussian orthogonal ensemble, and interpolating ensembles through supersymmetric approach

    SciTech Connect

    Shamis, Mira

    2013-11-15

    We use the supersymmetric formalism to derive an integral formula for the density of states of the Gaussian Orthogonal Ensemble, and then apply saddle-point analysis to give a new derivation of the 1/N-correction to Wigner's law. This extends the work of Disertori on the Gaussian Unitary Ensemble. We also apply our method to the interpolating ensembles of Mehta–Pandey.

  6. Two-loop level rainbowlike supersymmetric contribution to the fermion electric dipole moment

    NASA Astrophysics Data System (ADS)

    Yamanaka, Nodoka

    2013-01-01

    We calculate the two-loop level electric and chromoelectric dipole moments of the fermion involving the fermion-sfermion inner loop, gaugino, and Higgsino in the minimal supersymmetric standard model, and analyze the chromoelectric dipole moment with the top-stop inner loop. It is found that this contribution is comparable with, and even dominates, in some situations over the Barr-Zee type diagram generated from the CP violation of the top squark sector in TeV scale supersymmetry breaking.

  7. Mass and mixing angle patterns in the Standard Model and its material Supersymmetric Extension

    SciTech Connect

    Ramond, P.

    1992-01-01

    Using renormalization group techniques, we examine several interesting relations among masses and mixing angles of quarks and lepton in the Standard Model of Elementary Particle Interactions as a functionof scale. We extend the analysis to the minimal Supersymmetric Extension to determine its effect on these mass relations. For a heavy to quark, and minimal supersymmetry, most of these relations, can be made to agree at one unification scale.

  8. Instanton calculus and nonperturbative relations in N=2 supersymmetric gauge theories

    SciTech Connect

    Fucito, F.; Travaglini, G.

    1997-01-01

    Using instanton calculus we check, in the weak coupling region, the nonperturbative relation {l_angle}Tr{phi}{sup 2}{r_angle}=i{pi}[ F{minus}(a/2){partial_derivative}{partial_derivative}a] obtained for a N=2 globally supersymmetric gauge theory. Our computations are performed for instantons of winding number k, up to k=2, and turn out to agree with previous nonperturbative results. {copyright} {ital 1997} {ital The American Physical Society}

  9. Same-sign trileptons as a signal of sneutrino lightest supersymmetric particle

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arindam; Chakrabarty, Nabarun; Mukhopadhyaya, Biswarup

    2016-03-01

    Contrary to common expectation, a left-sneutrino can occasionally be the lightest supersymmetric particle. This has important implications in both collider and dark matter studies. We show that same-sign tri-lepton (SS3L) events at the Large Hadron Collider, with any lepton having opposite sign vetoed, distinguish such scenarios, up to gluino masses exceeding 2 TeV. The jets + MET signal rate is somewhat suppressed in this case, thus enhancing the scope of leptonic signals.

  10. The HIGGS Boson Mass at 2 Loops in the Finely Tuned Split Supersymmetric Standard Model

    SciTech Connect

    Binger, M

    2004-09-08

    The mass of the Higgs boson in the finely tuned Split Supersymmetric Standard Model is calculated. All 1 loop threshold effects are included, in addition to the full RG running of the Higgs quartic coupling through 2 loops. The 2 loop corrections are very small, typically less than 1GeV. The 1 loop threshold corrections to the top yukawa coupling and the Higgs mass generally push the Higgs mass down a few GeV.

  11. Natural realization of a large extra dimension in 5D supersymmetric theory

    NASA Astrophysics Data System (ADS)

    Sakamura, Yutaka; Yamada, Yusuke

    2014-09-01

    An exponentially large extra dimension can be naturally realized by the Casimir energy and the gaugino condensation in 5D supersymmetric theory. The model does not require any hierarchies among the 5D parameters. The key ingredient is an additional modulus other than the radion, which generically exists in 5D supergravity. SUSY is broken at the vacuum, which can be regarded as the Scherk-Schwarz SUSY breaking. We also analyze the mass spectrum and discuss some phenomenological aspects.

  12. A connection between supersymmetric quantum mechanics and Painlevé V equation

    NASA Astrophysics Data System (ADS)

    Bermudez, D.; Fernández C, David J.

    2015-06-01

    In this article we introduce the relation between supersymmetric quantum mechanics (SUSY QM) and a second-order non-linear differential equation known as Painleve V (PV) equation. To that end, we will first make a swift examination on the SUSY QM treatment of the radial oscillator and we will revisit its relation with the polynomial Heisenberg algebras (PHA). After that, we will formulate a theorem that connects SUSY QM to a set of solutions of the PV equation through specific PHA.

  13. Integrability and maximally helicity violating diagrams in n=4 supersymmetric yang-mills theory.

    PubMed

    Brandhuber, Andreas; Penante, Brenda; Travaglini, Gabriele; Young, Donovan

    2015-02-20

    We apply maximally helicity violating (MHV) diagrams to the derivation of the one-loop dilatation operator of N=4 supersymmetric Yang-Mills theory in the SO(6) sector. We find that in this approach the calculation reduces to the evaluation of a single MHV diagram in dimensional regularization. This provides the first application of MHV diagrams to an off-shell quantity. We also discuss other applications of the method and future directions. PMID:25763951

  14. A parametric approach to supersymmetric quantum mechanics in the solution of Schrödinger equation

    SciTech Connect

    Tezcan, Cevdet; Sever, Ramazan

    2014-03-15

    We study exact solutions of the Schrödinger equation for some potentials. We introduce a parametric approach to supersymmetric quantum mechanics to calculate energy eigenvalues and corresponding wave functions exactly. As an application we solve Schrödinger equation for the generalized Morse potential, modified Hulthen potential, deformed Rosen-Morse potential and Poschl-Teller potential. The method is simple and effective to get the results.

  15. Rényi entropy of a free (2, 0) tensor multiplet and its supersymmetric counterpart

    NASA Astrophysics Data System (ADS)

    Nian, Jun; Zhou, Yang

    2016-06-01

    We compute the Rényi entropy and the supersymmetric Rényi entropy for the six-dimensional free (2, 0) tensor multiplet. We make various checks on our results, and they are consistent with the previous results about the (2, 0) tensor multiplet. As a by-product, we have established a canonical way to compute the Rényi entropy for p -form fields in d -dimensions.

  16. Supersymmetric gauge theory on a class of cocalibrated G2-structures

    NASA Astrophysics Data System (ADS)

    Lischewski, Andree

    2015-06-01

    Given a seven-dimensional cocalibrated G2-structure that satisfies an additional trace condition, we construct a supersymmetric Yang-Mills-Lagrangian on it, with the supersymmetry parameters being a distinguished generalized Killing spinor of the G2-structure. The construction is based on a reinterpretation of certain generalized Killing spinors as parallel spinors in an ambient space. The results generalize previous attempts for flat G2-structures and those admitting geometric Killing spinors.

  17. Dark Matter in Supersymmetric U(1){sub B-L} Model

    SciTech Connect

    Khalil, S.; Okada, H.

    2009-04-17

    We analyze the dark matter problem in the context of supersymmetric, U(1){sub B-L} model. In this model, the lightest neutalino can be B-L gaugino Z-tilde{sub B-L} or Higgsinos {chi}-tilde{sub 1,2} dominated. We examine the thermal relic abundance of these particles and discuss the prospects for their direct detection if they form part of our galactic halo.

  18. Ground state and excitations of the supersymmetric extended Hubbard model with long-range interaction

    SciTech Connect

    Wang, D.F.; Liu, J.T.

    1996-07-01

    We examine the ground state and excitations of the one-dimensional supersymmetric extended Hubbard model with long-range interaction. The ground state wave-function and low lying excitations are given explicitly in the form of a Jastrow product of two-body terms. This result motivates an asymptotic Bethe ansatz solution for the model. We present evidence that this solution is in fact exact and spans the complete spectrum of states. {copyright} {ital 1996 The American Physical Society.}

  19. Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider

    SciTech Connect

    Campos, F. de; Eboli, O. J. P.; Hirsch, M.; Valle, J. W. F.; Porod, W.

    2010-10-01

    The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.

  20. Simulation of supersymmetric quantum mechanics in a Cooper-pair box shunted by a Josephson rhombus

    NASA Astrophysics Data System (ADS)

    Ulrich, Jascha; Otten, Daniel; Hassler, Fabian

    2015-12-01

    Supersymmetries in quantum mechanics offer a way to obtain degeneracies in the excitation spectrum which do not originate from selection rules. The mechanism behind the degeneracies is the same as the one that leads to the miraculous cancellations of divergences in supersymmetric field theories found in the high energy physics context. There is up to now no realistic proposal of nonintegrable systems that show level degeneracies due to a supersymmetric structure. Here, we propose an implementation of a quantum-mechanical supersymmetry in a Cooper-pair box shunted by a Josephson junction rhombus which is effectively π periodic in the superconducting phase difference. For a characteristic ratio between the strength of the 2 π - and the π -periodic junction, we find a twofold degeneracy of all the energy levels all the way from the weak junction/charge qubit limit to the strong junction/transmon regime. We provide explicit experimental values for the parameters of the system and show that tuning in and out of the supersymmetric point is easily achieved by varying an external gate voltage. We furthermore discuss a microwave experiment to detect the supersymmetry and conclude that it can indeed be implemented with currently existing Josephson junction technology.

  1. Supersymmetrization of horizontality condition: nilpotent symmetries for a free spinning relativistic particle

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Krishna, S.; Malik, R. P.

    2012-10-01

    We clearly and consistently supersymmetrize the celebrated horizontality condition to derive the off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the supersymmetric system of a free spinning relativistic particle within the framework of superfield approach to BRST formalism. For the precise determination of the proper (anti-)BRST symmetry transformations for all the bosonic and fermionic dynamical variables of our system, we consider the present theory on a (1,2)-dimensional supermanifold parameterized by an even (bosonic) variable ( τ) and a pair of odd (fermionic) variables θ and bar{θ} (with θ2 = bar{θ}2 = 0, θbar{θ}+ bar{θ}θ= 0) of the Grassmann algebra. One of the most important and novel features of our present investigation is the derivation of (anti-)BRST invariant Curci-Ferrari type restriction which turns out to be responsible for the absolute anticommutativity of the (anti-)BRST transformations and existence of the coupled (but equivalent) Lagrangians for the present theory of a supersymmetric system. These observations are completely new results for this model.

  2. Holographic description of non-supersymmetric orbifolded D1-D5-P solutions

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Bidisha; Turton, David; Virmani, Amitabh

    2015-11-01

    Non-supersymmetric black hole microstates are of great interest in the context of the black hole information paradox. We identify the holographic description of the general class of non-supersymmetric orbifolded D1-D5-P supergravity solutions found by Jejjala, Madden, Ross and Titchener. This class includes both completely smooth solutions and solutions with conical defects, and in the near-decoupling limit these solutions describe degrees of freedom in the cap region. The CFT description involves a general class of states obtained by fractional spectral flow in both left-moving and right-moving sectors, generalizing previous work which studied special cases in this class. We compute the massless scalar emission spectrum and emission rates in both gravity and CFT and find perfect agreement, thereby providing strong evidence for our proposed identification. We also investigate the physics of ergoregion emission as pair creation for these orbifolded solutions. Our results represent the largest class of non-supersymmetric black hole microstate geometries with identified CFT duals presently known.

  3. Upper bound on the gluino mass in supersymmetric models with extra matters

    NASA Astrophysics Data System (ADS)

    Moroi, Takeo; Yanagida, Tsutomu T.; Yokozaki, Norimi

    2016-09-01

    We discuss the upper bound on the gluino mass in supersymmetric models with vector-like extra matters. In order to realize the observed Higgs mass of 125 GeV, the gluino mass is bounded from above in supersymmetric models. With the existence of the vector-like extra matters at around TeV, we show that such an upper bound on the gluino mass is significantly reduced compared to the case of minimal supersymmetric standard model. This is due to the fact that radiatively generated stop masses as well the stop trilinear coupling are enhanced in the presence of the vector-like multiplets. In a wide range of parameter space of the model with extra matters, particularly with sizable tan ⁡ β (which is the ratio of the vacuum expectation values of the two Higgs bosons), the gluino is required to be lighter than ∼ 3 TeV, which is likely to be within the reach of forthcoming LHC experiment.

  4. Supersymmetric quantum mechanics and solitons of the sine-Gordon and nonlinear Schroedinger equations

    SciTech Connect

    Koller, Andrew; Olshanii, Maxim

    2011-12-15

    We present a case demonstrating the connection between supersymmetric quantum mechanics (SUSYQM), reflectionless scattering, and soliton solutions of integrable partial differential equations. We show that the members of a class of reflectionless Hamiltonians, namely, Akulin's Hamiltonians, are connected via supersymmetric chains to a potential-free Hamiltonian, explaining their reflectionless nature. While the reflectionless property in question has been mentioned in the literature for over two decades, the enabling algebraic mechanism was previously unknown. Our results indicate that the multisoliton solutions of the sine-Gordon and nonlinear Schroedinger equations can be systematically generated via the supersymmetric chains connecting Akulin's Hamiltonians. Our findings also explain a well-known but little-understood effect in laser physics: when a two-level atom, initially in the ground state, is subjected to a laser pulse of the form V(t)=(n({h_bar}/2{pi})/{tau})/cosh(t/{tau}), with n being an integer and {tau} being the pulse duration, it remains in the ground state after the pulse has been applied, for any choice of the laser detuning.

  5. Indirect detection of light neutralino dark matter in the next-to-minimal supersymmetric standard model

    SciTech Connect

    Ferrer, Francesc; Krauss, Lawrence M.; Profumo, Stefano

    2006-12-01

    We explore the prospects for indirect detection of neutralino dark matter in supersymmetric models with an extended Higgs sector (next-to-minimal supersymmetric standard model, or NMSSM). We compute, for the first time, one-loop amplitudes for NMSSM neutralino pair annihilation into two photons and two gluons, and point out that extra diagrams (with respect to the minimal supersymmetric standard model, or MSSM), featuring a potentially light CP-odd Higgs boson exchange, can strongly enhance these radiative modes. Expected signals in neutrino telescopes due to the annihilation of relic neutralinos in the Sun and in the Earth are evaluated, as well as the prospects of detection of a neutralino annihilation signal in space-based gamma-ray, antiproton and positron search experiments, and at low-energy antideuteron searches. We find that in the low mass regime the signals from capture in the Earth are enhanced compared to the MSSM, and that NMSSM neutralinos have a remote possibility of affecting solar dynamics. Also, antimatter experiments are an excellent probe of galactic NMSSM dark matter. We also find enhanced two-photon decay modes that make the possibility of the detection of a monochromatic gamma-ray line within the NMSSM more promising than in the MSSM, although likely below the sensitivity of next generation gamma-ray telescopes.

  6. Towards a consistent noncommutative supersymmetric Yang-Mills theory: Superfield covariant analysis

    SciTech Connect

    Ferrari, A.F.; Girotti, H.O.; Ribeiro, A.A.; Gomes, M.; Rivelles, V.O.; Silva, A.J. da; Petrov, A.Yu.

    2004-10-15

    Commutative four dimensional supersymmetric Yang-Mills (SYM) theory is known to be renormalizable for N=1,2, and finite for N=4. However, in the noncommutative version of the model the UV/IR mechanism gives rise to infrared divergences which may spoil the perturbative expansion. In this work we pursue the study of the consistency of the N=1,2,4 noncommutative supersymmetric Yang-Mills theory with gauge group U(N) (NCSYM). We employ the covariant superfield framework to compute the one-loop corrections to the two- and three-point functions of the gauge superfield V. It is found that the cancellation of the harmful UV/IR infrared divergences only takes place in the fundamental representation of the gauge group. We argue that this is in agreement with the low energy limit of the open superstring in the presence of an external magnetic field. As expected, the planar sector of the two-point function of the V superfield exhibits UV divergences. They are found to cancel, in the Feynman gauge, for the maximally extended N=4 supersymmetric theory. This gives support to the belief that the N=4 NCSYM theory is UV finite.

  7. A discussion on supersymmetric cosmic strings with gauge-field mixing

    NASA Astrophysics Data System (ADS)

    Ferreira, C. N.; Godinho, C. F.; Helayel-Neto, J. A.

    2004-06-01

    Following a stream of investigation on supersymmetric gauge theories with cosmic-string solutions, we contemplate the possibility of building up a D and F term cosmic string by means of a gauge-field mixing in connection with a U(1)×U(1)' symmetry. The spontaneous break of both gauge symmetry and supersymmetry are thoroughly analysed and the fermion zero modes are worked out. The role of the gauge-field mixing parameter is elucidated in connection with the string configuration that comes out. As an application of the model presented here, we propose the possibility that the supersymmetric cosmic-string yields the production of fermionic charge carriers that may eject, at their late stages, particles that subsequently decay to produce cosmic rays of ultra-high energy. In our work, it turns out that massive supersymmetric fermionic partners may be produced for a SUSY breaking scale in the range 1011 1013 GeV, which is compatible with the phenomenology of a gravitino mass at the TeV scale. We also determine the range of the gauge-field mixing parameter, agr, in connection with the mass scales of the present model.

  8. Higher order corrections and unification in the minimal supersymmetric standard model: SOFTSUSY3.5

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Bednyakov, A.; Ruiz de Austri, R.

    2015-04-01

    We explore the effects of three-loop minimal supersymmetric standard model renormalisation group equation terms and some leading two-loop threshold corrections on gauge and Yukawa unification: each being one loop higher order than current public spectrum calculators. We also explore the effect of the higher order terms (often 2-3 GeV) on the lightest CP even Higgs mass prediction. We illustrate our results in the constrained minimal supersymmetric standard model. Neglecting threshold corrections at the grand unified scale, the discrepancy between the unification scale αs and the other two unified gauge couplings changes by 0.1% due to the higher order corrections and the difference between unification scale bottom-tau Yukawa couplings neglecting unification scale threshold corrections changes by up to 1%. The difference between unification scale bottom and top Yukawa couplings changes by a few percent. Differences due to the higher order corrections also give an estimate of the size of theoretical uncertainties in the minimal supersymmetric standard model spectrum. We use these to provide estimates of theoretical uncertainties in predictions of the dark matter relic density (which can be of order one due to its strong dependence on sparticle masses) and the LHC sparticle production cross-section (often around 30%). The additional higher order corrections have been incorporated into SOFTSUSY, and we provide details on how to compile and use the program. We also provide a summary of the approximations used in the higher order corrections.

  9. The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions

    NASA Astrophysics Data System (ADS)

    Grozin, Andrey G.; Henn, Johannes M.; Korchemsky, Gregory P.; Marquard, Peter

    2016-01-01

    We present the details of the analytic calculation of the three-loop angle-dependent cusp anomalous dimension in QCD and its supersymmetric extensions, including the maximally supersymmetric N=4 super Yang-Mills theory. The three-loop result in the latter theory is new and confirms a conjecture made in our previous paper. We study various physical limits of the cusp anomalous dimension and discuss its relation to the quark-antiquark potential including the effects of broken conformal symmetry in QCD. We find that the cusp anomalous dimension viewed as a function of the cusp angle and the new effective coupling given by light-like cusp anomalous dimension reveals a remarkable universality property — it takes the same form in QCD and its supersymmetric extensions, to three loops at least. We exploit this universality property and make use of the known result for the three-loop quark-antiquark potential to predict the special class of nonplanar corrections to the cusp anomalous dimensions at four loops. Finally, we also discuss in detail the computation of all necessary Wilson line integrals up to three loops using the method of leading singularities and differential equations.

  10. The Non-universality of the Low-mass End of the IMF is Robust against the Choice of SSP Model

    NASA Astrophysics Data System (ADS)

    Spiniello, C.; Trager, S. C.; Koopmans, L. V. E.

    2015-04-01

    We perform a direct comparison of two state-of-the art single stellar population (SSP) models that have been used to demonstrate the non-universality of the low-mass end of the initial mass function (IMF) slope. The two public versions of the SSP models are restricted to either solar abundance patterns or solar metallicity, too restrictive if one aims to disentangle elemental enhancements, metallicity changes, and IMF variations in massive early-type galaxies (ETGs) with star formation histories different from those in the solar neighborhood. We define response functions (to metallicity and α-abundance) to extend the parameter space for each set of models. We compare these extended models with a sample of Sloan Digital Sky Survey (SDSS) ETG spectra with varying velocity dispersions. We measure equivalent widths of optical IMF-sensitive stellar features to examine the effect of the underlying model assumptions and ingredients, such as stellar libraries or isochrones, on the inference of the IMF slope down to ∼0.1 M⊙. We demonstrate that the steepening of the low-mass end of the IMF based on a non-degenerate set of spectroscopic optical indicators is robust against the choice of the stellar population model. Although the models agree in a relative sense (i.e., both imply more bottom-heavy IMFs for more massive systems), we find non-negligible differences in the absolute values of the IMF slope inferred at each velocity dispersion by using the two different models. In particular, we find large inconsistencies in the quantitative predictions of the IMF slope variations and abundance patterns when sodium lines are used. We investigate the possible reasons for these inconsistencies.

  11. A minimal non-supersymmetric S O(10) model: Gauge coupling unification, proton decay and fermion masses

    NASA Astrophysics Data System (ADS)

    Khan, Saki

    2016-06-01

    We present a minimal renormalizable non-supersymmetric S O(10) grand unified model with a symmetry breaking sector consisting of Higgs fields in the 54H + 126H + 10H representations. This model admits a single intermediate scale associated with Pati-Salam symmetry along with a discrete parity. Spontaneous symmetry breaking, the unification of gauge couplings and proton lifetime estimates are studied in detail in this framework. Including threshold corrections self-consistently, obtained from a full analysis of the Higgs potential, we show that the model is compatible with the current experimental bound on proton lifetime. The model generally predicts an upper bound of few times 1035 yrs for proton lifetime, which is not too far from the present Super-Kamiokande limit of τp ≳ 1.29 × 1034 yrs. With the help of a Pecci-Quinn symmetry and the resulting axion, the model provides a suitable dark matter candidate while also solving the strong CP problem. The intermediate scale, MI ≈ (1013 - 1014) GeV which is also the B - L scale, is of the right order for the right-handed neutrino mass which enables a successful description of light neutrino masses and oscillations. The Yukawa sector of the model consists of only two matrices in family space and leads to a predictive scenario for quark and lepton masses and mixings. The branching ratios for proton decay are calculable with the leading modes being p → e+π0 and p →v ¯π+ . Even though the model predicts no new physics within the reach of LHC, the next generation proton decay detectors and axion search experiments have the capability to pass verdict on this minimal scenario.

  12. Masses of third family vectorlike quarks and leptons in Yukawa-unified E6

    NASA Astrophysics Data System (ADS)

    Hebbar, Aditya; Leontaris, George K.; Shafi, Qaisar

    2016-06-01

    In supersymmetric E6 the masses of the third family quarks and charged lepton, t -b -τ , as well as the masses of the vectorlike quarks and leptons, D -D ¯ and L -L ¯, may arise from the coupling 2 73×2 73×2 7H, where 2 73 and 2 7H denote the third family matter and Higgs multiplets, respectively. We assume that the SO(10) singlet component in 2 7H acquires a TeV-scale vacuum expectation value that spontaneously breaks U (1 )ψ and provides masses to the vectorlike particles in 2 73, while the Minimal Supersymmetric Standard Model doublets in 2 7H provide masses to t , b , and τ . Imposing Yukawa coupling unification ht=hb=hτ=hD=hL at MGUT and employing the ATLAS and CMS constraints on the Zψ' boson mass, we estimate the lower bounds on the third family vectorlike particles D -D ¯ and L -L ¯ masses to be around 5.85 TeV and 2.9 TeV, respectively. These bounds apply in the supersymmetric limit.

  13. FAMILY LYGISTORRHINIDAE.

    PubMed

    Oliveira, Sarah Siqueira; Amorim, Dalton De Souza

    2016-01-01

    The Lygistorrhinidae are a family belonging to the suborder Bibionomorpha, with no previous record from Colombia. This paper refers for the first time to the occurrence of the family in the country, an undetermined species of the genus Lygistorrhina (Probolaeus) Williston. PMID:27395260

  14. Family Potyviridae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The International Committee on the Taxonomy of Viruses potyvirus study group has revised the description of the family Potyviridae for inclusion in the ICTV 9th report. Characteristic features of each genus within the family is presented. Revised criteria for demarcation and nomenclature of viral sp...

  15. Family Life.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Focuses on various aspects of mammal family life ranging from ways different species are born to how different mammals are raised. Learning activities include making butter from cream, creating birth announcements for mammals, and playing a password game on family life. (ML)

  16. Family Empowerment.

    ERIC Educational Resources Information Center

    Sinclair, Mary F., Ed.; And Others

    1992-01-01

    This feature issue of IMPACT focuses on the empowerment of families with a member who has a developmental disability. It presents strategies and models for a collaborative, respectful approach to service provision, and presents the experiences of families in seeking support and assistance. Feature articles include "Two Generations of Disability: A…

  17. Family Workshops

    ERIC Educational Resources Information Center

    Bennett, Dave; Rees-Jones, Tanny

    1978-01-01

    A Family Workshop is an informal, multidisciplined educational program for adults and children, organized by a team of teachers. This article discusses the Lavender Hill Family Workshop, one of many, which attempts to provide education in various subject areas for adults and for children while also integrating both objectives in order to educate…

  18. A search for supersymmetric electrons with the Mark II detector at PEP (Positron Electron Project)

    SciTech Connect

    LeClaire, B.W.

    1987-10-01

    An experimental search for selectrons, the supersymmetric partner of the electron, has been performed at the PEP storage ring at SLAC using the Mark II detector. The experimental search done was based upon hypothetical reaction in e/sup +/e/sup -/ interactions at PEP center of mass energies of 29 GeV. In this reaction the selectrons, e-tilde, are assumed produced by the interaction of one of initial state electrons with a photon radiated from the other initial state electron. This latter electron is assumed to continue down the beam pipe undetected. The photon and electron then produce a selectron and a photino, ..gamma..-tilde, in the supersymmetric analog of Compton scattering. The photino is assumed to be the lightest supersymmetric particle, and as such, does not interact in the detector, thereby escaping detection very much like a neutrino. The selectron is assumed to immediately decay into an electron and photino. This electron is produced with large p perpendicular with respect to the beam pipe, since it must balance the transverse momentum carried off by the photinos. Thus, the experimental signature of the process is a single electron in the detector with a large unbalanced tranverse momentum. No events of this type were observed in the original search of 123 pb/sup -1/ of data, resulting in a cross section limit of less than 2.4 x 10/sup -2/ pb (at the 95% CL) within the detector acceptance. This cross section upper limit applies to any process which produces anomalous single electron events with missing transverse momentum. When interpreted as a supersymmetry search it results in a lower selectron mass limit of 22.2 GeV/c/sup 2/ for the case of massless photinos. Limits for non-zero mass photinos have been calculated. 87 refs., 67 figs., 17 tabs.

  19. Supersymmetric dark-matter Q-balls and their interactions in matter

    SciTech Connect

    Kusenko, Alexander; Loveridge, Lee C.; Shaposhnikov, Mikhail

    2005-07-15

    Supersymmetric extensions of the Standard Model contain nontopological solitons, Q-balls, which can be stable and can be a form of cosmological dark matter. Understanding the interaction of SUSY Q-balls with matter fermions is important for both astrophysical limits and laboratory searches for these dark-matter candidates. We show that a baryon scattering off a baryonic SUSY Q-ball can convert into its antiparticle with a high probability, while the baryon number of the Q-ball is increased by two units. For a SUSY Q-ball interacting with matter, this process dominates over those previously discussed in the literature.

  20. Solution to the fermion doubling problem for supersymmetric theories on the transverse lattice

    SciTech Connect

    Harada, Motomichi; Pinsky, Stephen

    2004-10-15

    Species doubling is a problem that infects most numerical methods that use a spatial lattice. An understanding of species doubling can be found in the Nielsen-Ninomiya theorem which gives a set of conditions that require species doubling. The transverse lattice approach to solving field theories, which has at least one spatial lattice, fails one of the conditions of the Nielsen-Ninomiya theorem nevertheless one still finds species doubling for the standard Lagrangian formulation of the transverse lattice. We will show that the Supersymmetric Discrete Light Cone Quantization (SDLCQ) formulation of the transverse lattice does not have species doubling.

  1. Supersymmetric 3-3-1 model with right-handed neutrinos

    SciTech Connect

    Montero, J. C.; Pleitez, V.; Rodriguez, M.C.

    2004-10-01

    We consider the supersymmetric extension of the 3-3-1 model with right-handed neutrinos. We study the mass spectra in the scalar and pseudoscalar sectors, and for a given set of the input parameters, we find that the lightest scalar in the model has a mass of 130 GeV and the lightest pseudoscalar has mass of 5 GeV. However, this pseudoscalar decouples from the Z{sup 0} at high energy scales since it is almost a singlet under SU(2){sub L}xU(1){sub Y}.

  2. Bi-HKT and bi-Kähler supersymmetric sigma models

    NASA Astrophysics Data System (ADS)

    Fedoruk, Sergey; Smilga, Andrei

    2016-04-01

    We study Clifford Kähler with torsion (or bi-HKT) N = 4 supersymmetric quantum mechanical sigma models. They are characterized by the usual and the mirror sectors displaying each HKT geometry. When the metric involves isometries, a Hamiltonian reduction is possible. The most natural such reduction with respect to a half of bosonic target space coordinates produces an N = 4 model, related to the twisted Kähler model due to Gates, Hull and Rocek, but including certain extra F-terms in the superfield action.

  3. Enhancing Gauge Symmetries of Non-Abelian Supersymmetric Chern-Simons Model

    NASA Astrophysics Data System (ADS)

    Gharavi, Kh. Bahalke; Monemzadeh, M.; Nejad, S. Abarghouei

    2016-07-01

    In this article, we study gauge symmetries of the Non-Abelian Supersymmetric Chern-Simons model (SCS) of SU(2) group at (2+1)-dimensions in the framework of the formalism of constrained systems. Since, broken gauge symmetries in this physical system lead to the presence of nonphysical degrees of freedom, the Non-Abelian SCS model is strictly constrained to second-class constraints. Hence, by introducing some auxiliary fields and using finite order BFT method, we obtain a gauge symmetric model by converting second-class constraint to first-class ones. Ultimately, the partition function of the model is obtained in the extended phase space.

  4. Two-loop Higgs mass calculations in supersymmetric models beyond the MSSM with SARAH and SPheno

    NASA Astrophysics Data System (ADS)

    Goodsell, Mark D.; Nickel, Kilian; Staub, Florian

    2015-01-01

    We present an extension to the Mathematica package SARAH which allows for Higgs mass calculations at the two-loop level in a wide range of supersymmetric (SUSY) models beyond the MSSM. These calculations are based on the effective potential approach and include all two-loop corrections which are independent of electroweak gauge couplings. For the numerical evaluation Fortran code for SPheno is generated by SARAH. This allows the prediction of the Higgs mass in more complicated SUSY models with the same precision that most state-of-the-art spectrum generators provide for the MSSM.

  5. Metric-independent measures for supersymmetric extended object theories on curved backgrounds

    NASA Astrophysics Data System (ADS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2014-09-01

    For Green-Schwarz superstring σ-model on curved backgrounds, we introduce a non-metric measure Φ≡ɛɛ(∂iφI)(∂jφJ) with two scalars φI (I=1,2) used in ‘Two-Measure Theory’ (TMT). As in the flat-background case, the string tension T=(2 emerges as an integration constant for the Ai-field equation. This mechanism is further generalized to supermembrane theory, and to super-p-brane theory, both on general curved backgrounds. This shows the universal applications of dynamical measure of TMT to general supersymmetric extended objects on general curved backgrounds.

  6. Bent waveguides for matter-waves: supersymmetric potentials and reflectionless geometries

    PubMed Central

    Campo, Adolfo del; Boshier, Malcolm G.; Saxena, Avadh

    2014-01-01

    Non-zero curvature in a waveguide leads to the appearance of an attractive quantum potential which crucially affects the dynamics in matter-wave circuits. Using methods of supersymmetric quantum mechanics, pairs of bent waveguides are found whose geometry-induced potentials share the same scattering properties. As a result, reflectionless waveguides, dual to the straight waveguide, are identified. Strictly isospectral waveguides are also found by modulating the depth of the trapping potential. Numerical simulations are used to demonstrate the efficiency of these approaches in tailoring and controlling curvature-induced quantum-mechanical effects. PMID:24919423

  7. Supersymmetric dark matter search via spin-dependent interaction with 3He

    NASA Astrophysics Data System (ADS)

    Moulin, E.; Mayet, F.; Santos, D.

    2005-05-01

    The potentialities of MIMAC-He3, a MIcro-tpc MAtrix of Chambers of Helium-3, for supersymmetric dark matter search are discussed within the framework of effective MSSM models without gaugino mass unification at the GUT scale. A phenomenological study has been done to investigate the sensitivity of the MIMAC-He3 detector to neutralinos (M≳6GeV/c) via spin-dependent interaction with 3He as well as its complementarity to direct and indirect detection experiments. Comparison with other direct dark matter searches will be presented in a WIMP model-independent framework.

  8. Particle localization in a double-well potential by pseudo-supersymmetric fields

    SciTech Connect

    Bagrov, V. G. Samsonov, B. F.; Shamshutdinova, V. V.

    2011-06-15

    We study properties of a particle moving in a double-well potential in the two-level approximation placed in an additional external time-dependent field. Using previously established property (J. Phys. A 41, 244023 (2008)) that any two-level system possesses a pseudo-supersymmetry we introduce the notion of pseudo-supersymmetric field. It is shown that these fields, even if their time dependence is not periodical, may produce the effect of localization of the particle in one of the wells of the double-well potential.

  9. Gravitational waves from domain walls in the next-to-minimal supersymmetric standard model

    SciTech Connect

    Kadota, Kenji; Kawasaki, Masahiro; Saikawa, Ken’ichi

    2015-10-16

    The next-to-minimal supersymmetric standard model predicts the formation of domain walls due to the spontaneous breaking of the discrete Z{sub 3}-symmetry at the electroweak phase transition, and they collapse before the epoch of big bang nucleosynthesis if there exists a small bias term in the potential which explicitly breaks the discrete symmetry. Signatures of gravitational waves produced from these unstable domain walls are estimated and their parameter dependence is investigated. It is shown that the amplitude of gravitational waves becomes generically large in the decoupling limit, and that their frequency is low enough to be probed in future pulsar timing observations.

  10. Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature.

    PubMed

    Anagnostopoulos, Konstantinos N; Hanada, Masanori; Nishimura, Jun; Takeuchi, Shingo

    2008-01-18

    We present the first Monte Carlo results for supersymmetric matrix quantum mechanics with 16 supercharges at finite temperature. The recently proposed nonlattice simulation enables us to include the effects of fermionic matrices in a transparent and reliable manner. The internal energy nicely interpolates the weak coupling behavior obtained by the high temperature expansion, and the strong coupling behavior predicted from the dual black-hole geometry. The Polyakov line asymptotes at low temperature to a characteristic behavior for a deconfined theory, suggesting the absence of a phase transition. These results provide highly nontrivial evidence for the gauge-gravity duality. PMID:18232852

  11. Aspects of CPT-even Lorentz-symmetry violating physics in a supersymmetric scenario

    NASA Astrophysics Data System (ADS)

    Belich, H.; Bernald, L. D.; Gaete, Patricio; Helayël-Neto, J. A.; Leal, F. J. L.

    2015-06-01

    Background fermion condensates in a landscape dominated by global supersymmetry are reassessed in connection with a scenario where Lorentz symmetry is violated in the bosonic sector (actually, the photon sector) by a CPT-even term. An effective photonic action is discussed that originates from the supersymmetric background fermion condensates. Also, the photino mass emerges in terms of a particular condensate contrary to what happens in the case of -violation. Finally, the interparticle potential induced by the effective photonic action is investigated and a confining profile is identified.

  12. Model building on asymmetric Z3 orbifolds: Non-supersymmetric models

    NASA Astrophysics Data System (ADS)

    Taylor, T. R.

    1988-07-01

    Four-dimensional string models arising in the asymmetric Z3 orbifold compactifications of the heterotic string are studied. A mechanism for supersymmetry breaking that gives rise to chiral models in four dimensions is presented, and some typical models are discussed. A formalism for calculating one-loop partition functions in Z3 models is developed. One partition function is constructed that may correspond to a non-supersymmetric, tachyon-free theory, with a vanishing cosmological constant as a consequence of Atkin-Lehner symmetry. The negative result of a search for the model corresponding to this partition function is reported.

  13. Family Health and Family Planning.

    ERIC Educational Resources Information Center

    World Health Organization, Copenhagen (Denmark). Regional Office for Europe.

    This document is made up of a selection of some of the papers distributed to participants in courses on "Family Health and Family Planning" which have been organized each year since 1973 by the International Children's Center and the World Health Organization Regional Office for Europe. Six courses, held between 1973 and 1978, brought together a…

  14. A Singlet Extension of the Minimal Supersymmetric Standard Model: Towards a More Natural Solution to the Little Hierarchy Problem

    SciTech Connect

    de la Puente, Alejandro

    2012-05-01

    In this work, I present a generalization of the Next-to-Minimal Supersymmetric Standard Model (NMSSM), with an explicit μ-term and a supersymmetric mass for the singlet superfield, as a route to alleviating the little hierarchy problem of the Minimal Supersymmetric Standard Model (MSSM). I analyze two limiting cases of the model, characterized by the size of the supersymmetric mass for the singlet superfield. The small and large limits of this mass parameter are studied, and I find that I can generate masses for the lightest neutral Higgs boson up to 140 GeV with top squarks below the TeV scale, all couplings perturbative up to the gauge unification scale, and with no need to fine tune parameters in the scalar potential. This model, which I call the S-MSSM is also embedded in a gauge-mediated supersymmetry breaking scheme. I find that even with a minimal embedding of the S-MSSM into a gauge mediated scheme, the mass for the lightest Higgs boson can easily be above 114 GeV, while keeping the top squarks below the TeV scale. Furthermore, I also study the forward-backward asymmetry in the t¯t system within the framework of the S-MSSM. For this purpose, non-renormalizable couplings between the first and third generation of quarks to scalars are introduced. The two limiting cases of the S-MSSM, characterized by the size of the supersymmetric mass for the singlet superfield is analyzed, and I find that in the region of small singlet supersymmetric mass a large asymmetry can be obtained while being consistent with constraints arising from flavor physics, quark masses and top quark decays.

  15. Shell-model study on event rates of lightest supersymmetric particles scattering off 83Kr and 125Te

    NASA Astrophysics Data System (ADS)

    Pirinen, P.; Srivastava, P. C.; Suhonen, J.; Kortelainen, M.

    2016-05-01

    We investigate the elastic and inelastic scattering of lightest supersymmetric particle (LSP) dark matter off two possible target nuclei, 83Kr and 125Te. For the nuclear-structure calculations, we employ the nuclear shell model using recently generated realistic interactions. We have condensed the nuclear-physics contribution to a set of nuclear-structure factors that are independent of the adopted supersymmetric (SUSY) model. Total event rates are then easily calculated by combining the nuclear-structure factors with SUSY parameters of choice. In particular, 125Te shows promise as a detector material with both the elastic and inelastic channels yielding an appreciable nuclear response.

  16. Unusual families.

    PubMed

    Golombok, Susan

    2005-03-01

    The introduction of assisted reproduction has led to unusual forms of procreation. This article describes the social consequences of lesbian motherhood and of families headed by single heterosexual mothers. PMID:15819999

  17. FAMILY RHAGIONIDAE.

    PubMed

    Santos, Charles Morphy D; Carmo, Daniel D D

    2016-01-01

    The family Rhagionidae is one of the oldest Brachyeran lineages. Its monophyly is still uncertain. There are four rhagionid genera distributed in Neotropical Region but only three species of Chrysopilus are found in Colombia. PMID:27395270

  18. FAMILY BIBIONIDAE.

    PubMed

    Falaschi, Rafaela Lopes; Oliveira, Sarah Siqueira; Amorim, Dalton De Souza

    2016-01-01

    The Bibionidae are a family belonging to the suborder Bibionomorpha with four genera and 17 species known from Colombia. This work expands the distribution of these species to other localities in the country. PMID:27395253

  19. Tomorrow's Family

    ERIC Educational Resources Information Center

    Pickett, Robert S.

    1977-01-01

    Author states that "...the traditional form of family which has been the norm in recent times in the West will persist, but will be forced to "move over" to accommodate other forms of domestic life." (Author)

  20. Family Issues

    MedlinePlus

    ... not mean that everyone gets along all the time. Conflicts are a part of family life. Many things can lead to conflict, such as illness, disability, addiction, job loss, school problems, and marital issues. Listening to ...

  1. Family Limitation

    PubMed Central

    Smith, Robert

    1966-01-01

    Dr Robert Smith surveys the history of birth control and sounds a warning for the future of mankind, if the population explosion is allowed to continue unchecked. He stresses the importance of the role of the general practitioner in the limitation of births. Sir Theodore Fox describes the work of the Family Planning Association and stresses that, increasingly, this is a specialist service covering all aspects of fertility. He also feels that the general practitioner has a role in family planning. PMID:5954261

  2. Supersymmetric quantum mechanics: Engineered hierarchies of integrable potentials and related orthogonal polynomials

    SciTech Connect

    Balondo Iyela, Daddy; Govaerts, Jan; Hounkonnou, M. Norbert

    2013-09-15

    Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N= 1 and N= 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N⩾ 3 also exist in the literature, which should be relevant to a complete study of the N⩾ 3 general periodic hierarchies.

  3. Axions and saxions from the primordial supersymmetric plasma and extra radiation signatures

    SciTech Connect

    Graf, Peter; Steffen, Frank Daniel E-mail: steffen@mpp.mpg.de

    2013-02-01

    We calculate the rate for thermal production of axions and saxions via scattering of quarks, gluons, squarks, and gluinos in the primordial supersymmetric plasma. Systematic field theoretical methods such as hard thermal loop resummation are applied to obtain a finite result in a gauge-invariant way that is consistent to leading order in the strong gauge coupling. We calculate the thermally produced yield and the decoupling temperature for both axions and saxions. For the generic case in which saxion decays into axions are possible, the emitted axions can constitute extra radiation already prior to big bang nucleosynthesis and well thereafter. We update associated limits imposed by recent studies of the primordial helium-4 abundance and by precision cosmology of the cosmic microwave background and large scale structure. We show that the trend towards extra radiation seen in those studies can be explained by late decays of thermal saxions into axions and that upcoming Planck results will probe supersymmetric axion models with unprecedented sensitivity.

  4. Dark radiation and dark matter in supersymmetric axion models with high reheating temperature

    SciTech Connect

    Graf, Peter; Steffen, Frank Daniel E-mail: steffen@mpp.mpg.de

    2013-12-01

    Recent studies of the cosmic microwave background, large scale structure, and big bang nucleosynthesis (BBN) show trends towards extra radiation. Within the framework of supersymmetric hadronic axion models, we explore two high-reheating-temperature scenarios that can explain consistently extra radiation and cold dark matter (CDM), with the latter residing either in gravitinos or in axions. In the gravitino CDM case, axions from decays of thermal saxions provide extra radiation already prior to BBN and decays of axinos with a cosmologically required TeV-scale mass can produce extra entropy. In the axion CDM case, cosmological constraints are respected with light eV-scale axinos and weak-scale gravitinos that decay into axions and axinos. These decays lead to late extra radiation which can coexist with the early contributions from saxion decays. Recent results of the Planck satellite probe extra radiation at late times and thereby both scenarios. Further tests are the searches for axions at ADMX and for supersymmetric particles at the LHC.

  5. Consequences of the complex character of the internal symmetry in supersymmetric theories

    NASA Astrophysics Data System (ADS)

    Gatto, R.; Sartori, G.

    1987-06-01

    The consequences of the invariance of the superpotential under the complexification G c of the internal symmetry group on the determination of the possible patterns of symmetry and supersymmetry breaking are established in a globally supersymmetric theory. In particular, in the case of global internal symmetry we show that a vacuum associaated to a point z, where G {z/c}≠ G {z/c} is always degenerate with a vacuum associated to a point z', where G {z'/c}= G {z'/c}; all the other degeneracies of the minimum of the potential on an orbit of G c are also determined and shown to be completely removed when the internal symmetry is gauged. The zeroes of the D-term of a supersymmetric gauge theory are characterized as the points of the closed orbits of G c which are at minimum distance from the origin; at these points G {z/c}= G {z/c}. It is rigorously proved that the minimum of the potential is zero if the gradient of the superpotential vanishes somewhere. It is also shown that the D-term necessarily vanishes at the minimum of the potential if the direction of spontaneous supersymmetry breaking is invariant by G.

  6. N=2, 4 supersymmetric gauge field theory in two-time physics

    SciTech Connect

    Bars, Itzhak; Kuo, Y.-C.

    2009-01-15

    In the context of two-time physics in 4+2 dimensions we construct the most general N=2, 4 supersymmetric Yang-Mills gauge theories for any gauge group G. This builds on our previous work for N=1 supersymmetry (SUSY). The action, the conserved SUSY currents, and the SU(N) covariant SUSY transformation laws are presented for both N=2 and N=4. When the equations of motion are used the SUSY transformations close to the supergroup SU(2,2|N) with N=1, 2, 4. The SU(2,2)=SO(4,2) subsymmetry is realized linearly on 4+2 dimensional flat spacetime. All fields, including vectors and spinors, are in 4+2 dimensions. The extra gauge symmetries in 2T field theory, together with the kinematic constraints that follow from the action, remove all the ghosts to give a unitary theory. By choosing gauges and solving the kinematic equations, the 2T field theory in 4+2 flat spacetime can be reduced to various shadows in various 3+1 dimensional (generally curved) spacetimes. These shadows are related to each other by dualities. The conformal shadows of our theories in flat 3+1 dimensions coincide with the well known counterpart N=1, 2, 4 supersymmetric massless renormalizable field theories in 3+1 dimensions. It is expected that our more symmetric new structures in 4+2 spacetime may be useful for nonperturbative or exact solutions of these theories.

  7. Non-supersymmetric F-theory compactifications on Spin(7) manifolds

    NASA Astrophysics Data System (ADS)

    Bonetti, Federico; Grimm, Thomas W.; Pugh, Tom G.

    2014-01-01

    We propose a novel approach to obtain four-dimensional effective actions coupled to supersymmetry-breaking boundaries by considering F-theory on manifolds with special holonomy Spin(7). To perform such studies we suggest that a duality relating M-theory on a certain class of Spin(7) manifolds with F-theory on the same manifolds times an interval exists. The Spin(7) geometries under consideration are constructed as quotients of elliptically fibered Calabi-Yau fourfolds by an anti-holomorphic and isometric involution. The three-dimensional minimally supersymmetric effective action of M-theory on a general Spin(7) manifold with fluxes is determined and specialized to the aforementioned geometries. This effective theory is compared with an interval Kaluza-Klein reduction of a non-supersymmetric four-dimensional theory with definite boundary conditions for all fields. Using this strategy a minimal set of couplings of the four-dimensional low-energy effective actions is obtained in terms of the Spin(7) geometric data. We also discuss briefly the string interpretation in the Type IIB weak coupling limit.

  8. Iteration of Planar Amplitudes inMaximally Supersymmetric Yang-Mills Theoryat Three Loops

    SciTech Connect

    Bern, Zvi; Dixon, Lance J.; Smirnov, Vladimir A.; /Moscow State U.

    2005-05-27

    We compute the leading-color (planar) three-loop four-point amplitude of N = 4 supersymmetric Yang-Mills theory in 4 - 2{epsilon} dimensions, as a Laurent expansion about {epsilon} = 0 including the finite terms. The amplitude was constructed previously via the unitarity method, in terms of two Feynman loop integrals, one of which has been evaluated already. Here we use the Mellin-Barnes integration technique to evaluate the Laurent expansion of the second integral. Strikingly, the amplitude is expressible, through the finite terms, in terms of the corresponding one- and two-loop amplitudes, which provides strong evidence for a previous conjecture that higher-loop planar N = 4 amplitudes have an iterative structure. The infrared singularities of the amplitude agree with the predictions of Sterman and Tejeda-Yeomans based on resummation. Based on the four-point result and the exponentiation of infrared singularities, we give an exponentiated ansatz for the maximally helicity-violating n-point amplitudes to all loop orders. The 1/{epsilon}{sup 2} pole in the four-point amplitude determines the soft, or cusp, anomalous dimension at three loops in N = 4 supersymmetric Yang-Mills theory. The result confirms a prediction by Kotikov, Lipatov, Onishchenko and Velizhanin, which utilizes the leading-twist anomalous dimensions in QCD computed by Moch, Vermaseren and Vogt. Following similar logic, we are able to predict a term in the three-loop quark and gluon form factors in QCD.

  9. Deformed Matrix Models, Supersymmetric Lattice Twists and N=1/4 Supersymmetry

    SciTech Connect

    Unsal, Mithat

    2008-09-24

    A manifestly supersymmetric nonperturbative matrix regularization for a twisted version of N = (8, 8) theory on a curved background (a two-sphere) is constructed. Both continuum and the matrix regularization respect four exact scalar supersymmetries under a twisted version of the supersymmetry algebra. We then discuss a succinct Q = 1 deformed matrix model regularization of N = 4 SYM in d = 4, which is equivalent to a non-commutative A*{sub 4} orbifold lattice formulation. Motivated by recent progress in supersymmetric lattices, we also propose a N = 1/4 supersymmetry preserving deformation of N = 4 SYM theory on R{sup 4}. In this class of N = 1/4 theories, both the regularized and continuum theory respect the same set of (scalar) supersymmetry. By using the equivalence of the deformed matrix models with the lattice formulations, we give a very simple physical argument on why the exact lattice supersymmetry must be a subset of scalar subalgebra. This argument disagrees with the recent claims of the link approach, for which we give a new interpretation.

  10. Light supersymmetric axion in an anomalous Abelian extension of the standard model

    SciTech Connect

    Coriano, Claudio; Guzzi, Marco; Mariano, Antonio; Morelli, Simone

    2009-08-01

    We present a supersymmetric extension of the standard model (USSM-A) with an anomalous U(1) and Stueckelberg axions for anomaly cancellation, generalizing similar nonsupersymmetric constructions. The model, built by a bottom-up approach, is expected to capture the low-energy supersymmetric description of axionic symmetries in theories with gauged anomalous Abelian interactions, previously explored in the nonsupersymmetric case for scenarios with intersecting branes. The choice of a USSM-like superpotential, with one extra singlet superfield and an extra Abelian symmetry, allows a physical axionlike particle in the spectrum. We describe some general features of this construction and, in particular, the modification of the dark-matter sector which involves both the axion and several neutralinos with an axino component. The axion is expected to be very light in the absence of phases in the superpotential but could acquire a mass which can also be in the few GeV range or larger. In particular, the gauging of the anomalous symmetry allows independent mass/coupling interaction to the gauge fields of this particle, a feature which is absent in traditional (invisible) axion models. We comment on the general implications of our study for the signature of moduli from string theory due to the presence of these anomalous symmetries.

  11. All supersymmetric solutions of 3D U(1)3 gauged supergravity.

    NASA Astrophysics Data System (ADS)

    Colgáin, Eoin Ó.

    2015-11-01

    D3-branes wrapping constant curvature Riemann surfaces give rise to 2D N=(0,2) SCFTs, where the superconformal fixed-points are mapped to vacua of 3D N=2 U(1)3 gauged supergravity. In this work we determine the fermionic supersymmetry variations of the theory and present all supersymmetric solutions. For spacetimes with a timelike Killing vector, we identify new timelike warped AdS3 (Gödel) and timelike warped dS3 fixed-points. We outline the construction of numerical solutions interpolating between fixed-points, demonstrate that these flows are driven by an irrelevant scalar operator in the SCFT and identify the inverse of the superpotential as a candidate c-function. We further classify all spacetimes with a null Killing vector, in the process producing loci in parameter space where null-warped AdS3 vacua with Schrödinger z = 2 symmetry exist. We construct non-supersymmetric spacelike warped AdS3 geometries based on D3-branes.

  12. Family welfare.

    PubMed

    Sinha, N K

    1992-01-01

    Between 1901-1921, India gained 12.9 million people because mortality remained high. The death rate fell between 1921-1951, but birth rates remained the same. Therefore 110 million people were added--2 times the population increase between 1891-1921. Between 1951-1981, the population increased to 324 million. Socioeconomic development was responsible for most of the downward trend in the birth rate during the 20th century. Even though large families were the norm in early India, religious leaders encouraged small family size. The 1st government family planning clinics in the world opened in Mysore and Bangalore in 1930. Right before Independence, the Bhore Committee made recommendations to reduce population growth such as increasing the age of marriage for girls. Since 1951 there has been a change in measures and policies geared towards population growth with each of the 7 5-Year Plans because policy makers applied what they learned from each previous plan. The 1st 5-Year Plan emphasized the need to understand what factors contribute to population growth. It also integrated family planning services into health services of hospitals and health centers. The government was over zealous in its implementation of the sterilization program (2nd 5-Year Plan, 1956-1961), however, which hurt family planning programs for many years. As of early 1992, sterilization, especially tubectomy, remained the most popular family planning method, however. The 7th 5-Year Plan changed its target of reaching a Net Reproductive Rate of 1 by 2001 to 2006-2011. It set a goal of 100% immunization coverage by 1990 but it did not occur. In 1986, the Ministry of Health and Family Welfare planned to make free contraceptives available in urban and rural areas and to involve voluntary organizations. The government needs to instill measures to increase women's status, women's literacy, and age of marriage as well as to eliminate poverty, ensure old age security, and ensure child survival and

  13. Two-parameter double-oscillator model of Mathews-Lakshmanan type: Series solutions and supersymmetric partners

    SciTech Connect

    Schulze-Halberg, Axel E-mail: xbataxel@gmail.com; Wang, Jie

    2015-07-15

    We obtain series solutions, the discrete spectrum, and supersymmetric partners for a quantum double-oscillator system. Its potential features a superposition of the one-parameter Mathews-Lakshmanan interaction and a one-parameter harmonic or inverse harmonic oscillator contribution. Furthermore, our results are transferred to a generalized Pöschl-Teller model that is isospectral to the double-oscillator system.

  14. Reconstruction of the left-chiral tau sneutrino in supersymmetry with a right sneutrino as the lightest supersymmetric particle

    SciTech Connect

    Biswas, Sanjoy

    2010-10-01

    We have considered a supersymmetric scenario in which the minimal supersymmetric standard model is augmented with a right-chiral neutrino superfield for each generation. Such a scenario can have a lightest supersymmetric particle (LSP) dominated by the right-chiral sneutrino state and the lighter stau as the next-to-lightest supersymmetric particle (NLSP). This can easily be motivated by assuming a high-scale framework of supersymmetry breaking like minimal supergravity (mSUGRA). Because of the extremely small neutrino Yukawa coupling, the decay of the NLSP to the LSP is suppressed and, consequently, the NLSP - here the lighter stau mass eigenstate -becomes stable at the length scale of the detector. The collider signal in this case consists of charged tracks of massive stable particles in the muon chamber. Following up on our earlier studies on neutralino and chargino reconstruction in such a scenario, we have shown that the kinematical information obtained from these charged tracks allows us to reconstruct the left-chiral tau sneutrino as well over a significant region of the mSUGRA parameter space. Two methods for reconstruction are suggested and their relative merits are discussed.

  15. Familial Hypercholesterolemia.

    PubMed

    Bouhairie, Victoria Enchia; Goldberg, Anne Carol

    2016-03-01

    Familial hypercholesterolemia is a common, inherited disorder of cholesterol metabolism that leads to early cardiovascular morbidity and mortality. It is underdiagnosed and undertreated. Statins, ezetimibe, bile acid sequestrants, niacin, lomitapide, mipomersen, and low-density lipoprotein (LDL) apheresis are treatments that can lower LDL cholesterol levels. Early treatment can lead to substantial reduction of cardiovascular events and death in patients with familial hypercholesterolemia. It is important to increase awareness of this disorder in physicians and patients to reduce the burden of this disorder. PMID:26892994

  16. FAMILY STRATIOMYIDAE.

    PubMed

    Fachin, Diego Aguilar; De Assis-Pujol, Cristiane Vieira

    2016-01-01

    The family Stratiomyidae has more than 2,800 described species, of which 1001 species belongs to the Neotropics. This catalog for Colombia presents 87 species distributed in 32 genera, and ten subfamilies. Merosargus gracilis and the genus Microchrysa, with a single species M. bicolor are recorded for the first time to Colombia. The fauna is very expressive but still poorly known, representing nearly one tenth of the Neotropical diversity of the family in numbers of species, and one fifth of generic diversity. PMID:27395274

  17. Family-Centered Child Care. Families Matter.

    ERIC Educational Resources Information Center

    Lopez, M. Elena; Dorros, Sybilla

    The Families Matter series of papers from the Harvard Family Research Project advances the concept of family-centered child care, advocating an approach to early childhood education that addresses the development of the child and family together. Grounded in family support principles, which build on family strengths and work from a community's…

  18. Impact of the recent results by the CMS and ATLAS collaborations at the CERN Large Hadron Collider on an effective minimal supersymmetric extension of the standard model

    SciTech Connect

    Scopel, S.; Choi, Suyong; Fornengo, N.; Bottino, A.

    2011-05-01

    We discuss the impact for light neutralinos in an effective minimal supersymmetric extension of the standard model of the recent results presented by the CMS and ATLAS Collaborations at the CERN Large Hadron Collider for a search of supersymmetry in proton-proton collisions at a center-of-mass energy of 7 TeV with an integrated luminosity of 35 pb{sup -1}. We find that, in the specific case of light neutralinos, efficiencies for the specific signature searched by ATLAS (jets+ missing transverse energy and an isolated lepton) imply a lower sensitivity compared to CMS (which searches for jets+ missing transverse energy). Focusing on the CMS bound, if squark soft masses of the three families are assumed to be degenerate, the combination of the ensuing constraint on squark and gluino masses with the experimental limit on the b{yields}s+{gamma} decay imply a lower bound on the neutralino mass m{sub {chi}} that can reach the value of 11.9 GeV, depending on the gluino mass. On the other hand, when the universality condition among squark soft parameters is relaxed, the lower bound on m{sub {chi}} is not constrained by the CMS measurement and then remains at the value 7.5 GeV derived in previous papers.

  19. Income and Family Events: Family Income, Family Size, and Consumption

    ERIC Educational Resources Information Center

    Cutright, Phillips

    1971-01-01

    This paper considers the structure of family income, examines some factors affecting family size, reviews alternative definitions of an adequate income for families with varying numbers, and presents data on actual consumption, according to family income and family size. A model depicting the causal relations among factors affecting consumption is…

  20. Familial hyperaldosteronism.

    PubMed

    Stowasser, M; Gordon, R D

    2001-09-01

    Primary aldosteronism (PAL) may be as much as ten times more common than has been traditionally thought, with most patients normokalemic. The study of familial varieties has facilitated a fuller appreciation of the nature and diversity of its clinical, biochemical, morphological and molecular aspects. In familial hyperaldosteronism type I (FH-I), glucocorticoid-remediable PAL is caused by inheritance of an ACTH-regulated, hybrid CYP11B1/CYP11B2 gene. Genetic testing has greatly facilitated diagnosis. Hypertension severity varies widely, demonstrating relationships with gender, affected parent's gender, urinary kallikrein level, degree of biochemical disturbance and hybrid gene crossover point position. Analyses of aldosterone/PRA/cortisol 'day-curves' have revealed that (1) the hybrid gene dominates over wild type CYP11B2 in terms of aldosterone regulation and (2) correction of hypertension in FH-I requires only partial suppression of ACTH, and much smaller glucocorticoid doses than those previously recommended. Familial hyperaldosteronism type II is not glucocorticoid-remediable, and is clinically, biochemically and morphologically indistinguishable from apparently sporadic PAL. In one informative family available for linkage analysis, FH-II does not segregate with either the CYP11B2, AT1 or MEN1 genes, but a genome-wide search has revealed linkage with a locus in chromosome 7. As has already occurred in FH-I, elucidation of causative mutations is likely to facilitate earlier detection of PAL and other curable or specifically treatable forms of hypertension. PMID:11595502

  1. FAMILY SCIARIDAE.

    PubMed

    Carvalho-Fernandes, Sheila Patrícia

    2016-01-01

    Sciaridae are a widely distributed family with high number of species. They are known as black fungus gnats due to their dark color and feeding activity. This catalogue presents 17 species from Colombia distributed in eight genera, and for each species the geographical distribution is provided. PMID:27395255

  2. FAMILY CECIDOMYIIDAE.

    PubMed

    Maia, Valéria Cid

    2016-01-01

    This large family is poorly known in Colombia, where only 44 species have been recorded in 20 genera. All of them are included in Cecidomyiinae, which is the most diverse subfamily of gall midges in number of species and feeding habits, including phytophagous, predaceous and fungivorous species. Most of them are galler. The other subfamilies have never been recorded in this country. PMID:27395254

  3. Familial hyperamylasemia.

    PubMed

    Koda, Yu Kar Ling; Vidolin, Eliana

    2002-01-01

    A 7-year-old white boy was referred to us with a history of 3 attacks of hypogastric pain over the previous 2 years and persistently elevated serum amylase concentrations. At physical examination, he was well with no evidence of clinical abnormalities. His weight and height were normal. Laboratory diagnostic investigations were all normal except for the presence of Ascaris lumbricoides in the feces and persistently elevated serum amylase levels. Serum amylase determinations in the family members were normal in his father and maternal grandmother but elevated in his mother, sister, maternal aunt, and uncle, all of whom asymptomatic. Macroamylasemia was excluded in the child and in the mother. The finding of persistently elevated amylasemia in the child and in the other family members spanning 3 generations, and the exclusion of diseases that lead to hyperamilasemia are consistent with the diagnosis of familial hyperamylasemia. Until now, only 1 similar case has been reported. Familial hyperamylasemia must be considered in the differential diagnosis of hyperamylasemias in childhood. PMID:11981589

  4. Family Violence.

    ERIC Educational Resources Information Center

    Sorgen, Carol, Ed.

    1979-01-01

    This quarterly publication, issued by the National Institute on Alcohol Abuse and Alcoholism (NIAAA), contains articles dealing with family violence and alcohol abuse, children of alcoholic parents, training programs for counselors, and confidentiality of client records. The three articles on alcohol abuse suggest that: (1) there is a clear…

  5. Family Hypnotherapy.

    ERIC Educational Resources Information Center

    Araoz, Daniel L.; Negley-Parker, Esther

    1985-01-01

    A therapeutic model to help families activate experiential and right hemispheric functioning through hypnosis is presented in detail, together with a clinical illustration. Different situations in which this model is effective are mentioned and one such set of circumstances is described. (Author)

  6. FAMILY TYMOVIRIDAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article provides a brief review of the taxonomic structure, virion properties, genome organization and replication strategy, antigenic properties, and biological properties of viruses in the family Tymoviridae. Criteria for demarcation of genus and species are provided. A brief review of each...

  7. FAMILY ASILIDAE.

    PubMed

    Wolff, Marta; Lamas, Carlos José Einicker

    2016-01-01

    Asilidae is one of the largest Diptera families with more than 7,000 recognized species worldwide. All their species are predators on arthropods, mainly insects. This catalogue presents 71 species distributed in 26 genera, ten tribes or generic groups and four subfamilies. For each species we present the available geographical information and relevant references. PMID:27395278

  8. Serving Families.

    ERIC Educational Resources Information Center

    Link, Geoffrey; Beggs, Marjorie; Seiderman, Ethel

    Parent Services Project (PSP), the first comprehensive program of resources and mental health activities for parents offered at child care centers in the San Francisco Bay Area (California), has expanded to centers in six states, serving over 19,000 families. This report describes the program's history, aims, and achievements, along with specific…

  9. Family Disruptions

    MedlinePlus

    ... and Returns Do you or your spouse frequently travel on business? These can be disruptive times for your child and for the family as ... these out-of-town trips. Spend as much time as it takes to explain where you are ... before and during your travels. You need to acknowledge and accept her feelings: " ...

  10. Supersymmetric and Kaluza-Klein Particles Multiple Scattering in the Earth

    SciTech Connect

    Albuquerque, Ivone; Klein, Spencer

    2009-05-19

    Neutrino telescopes with cubic kilometer volume have the potential to discover new particles. Among them are next to lightest supersymmetric (NLSPs) and next to lightest Kaluza-Klein (NLKPs) particles. Two NLSPs or NLKPs will transverse the detector simultaneously producing parallel charged tracks. The track separation inside the detector can be a few hundred meters. As these particles might propagate a few thousand kilometers before reaching the detector, multiple scattering could enhance the pair separation at the detector. We find that the multiple scattering will alter the separation distribution enough to increase the number of NLKP pairs separated by more than 100 meters (a reasonable experimental cut) by up to 46% depending on the NLKP mass. Vertical upcoming NLSPs will have their separation increased by 24% due to multiple scattering.

  11. Solutions to the Painlevé V equation through supersymmetric quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bermudez, David; Fernández C, David J.; Negro, Javier

    2016-08-01

    In this paper we shall use the algebraic method known as supersymmetric quantum mechanics (SUSY QM) to obtain solutions to the Painlevé V (PV) equation, a second-order nonlinear ordinary differential equation. For this purpose, we will apply first the SUSY QM treatment to the radial oscillator. In addition, we will revisit the polynomial Heisenberg algebras (PHAs) and we will study the general systems ruled by them: for first-order PHAs we obtain the radial oscillator while for third-order PHAs the potential will be determined by solutions to the PV equation. This connection allows us to introduce a simple technique for generating solutions of the PV equation expressed in terms of confluent hypergeometric functions. Finally, we will classify them into several solution hierarchies.

  12. Charged-Higgs-boson production at the LHC: Next-to-leading-order supersymmetric QCD corrections

    SciTech Connect

    Dittmaier, Stefan; Kraemer, Michael; Spira, Michael; Walser, Manuel

    2011-03-01

    The dominant production process for heavy charged-Higgs bosons at the LHC is the associated production with heavy quarks. We have calculated the next-to-leading-order supersymmetric QCD corrections to charged-Higgs production through the parton processes qq,gg{yields}tbH{sup {+-}} and present results for total cross sections and differential distributions. The QCD corrections reduce the renormalization and factorization scale dependence and thus stabilize the theoretical predictions. We present a comparison of the next-to-leading-order results for the inclusive cross section with a calculation based on bottom-gluon fusion gb{yields}tH{sup {+-}} and discuss the impact of the next-to-leading-order corrections on charged-Higgs searches at the LHC.

  13. Higgs inflation, reheating and gravitino production in no-scale Supersymmetric GUTs

    NASA Astrophysics Data System (ADS)

    Ellis, John; He, Hong-Jian; Xianyu, Zhong-Zhi

    2016-08-01

    We extend our previous study of supersymmetric Higgs inflation in the context of no-scale supergravity and grand unification, to include models based on the flipped SU(5) and the Pati-Salam group. Like the previous SU(5) GUT model, these yield a class of inflation models whose inflation predictions interpolate between those of the quadratic chaotic inflation and Starobinsky-like inflation, while avoiding tension with proton decay limits. We further analyse the reheating process in these models, and derive the number of e-folds, which is independent of the reheating temperature. We derive the corresponding predictions for the scalar tilt and the tensor-to-scalar ratio in cosmic microwave background perturbations, as well as discussing the gravitino production following inflation.

  14. Supersymmetric D-brane bound states with B field and higher dimensional instantons on noncommutative geometry

    SciTech Connect

    Ohta, Kazutoshi

    2001-08-15

    We classify supersymmetric D0-Dp bound states with a nonzero B field by considering T dualities of intersecting branes at angles. Especially we find that the D0-D8 system with the B-field preserves 1/16, 1/8, and 3/16 of supercharges if the B field satisfies the '(anti-)self-dual' condition in dimension 8. The D0-branes in this system are described by eight-dimensional instantons on noncommutative R{sup 8}. We also discuss the extended ADHM construction of the eight-dimensional instantons and its deformation by the B-field. The modified ADHM equations admit a sort of the 'fuzzy sphere' [embeddings of SU(2)] solution.

  15. SuperLFV: An SLHA tool for lepton flavor violating observables in supersymmetric models

    NASA Astrophysics Data System (ADS)

    Murakami, Brandon

    2014-02-01

    We introduce SuperLFV, a numerical tool for calculating low-energy observables that exhibit charged lepton flavor violation (LFV) in the context of the minimal supersymmetric standard model (MSSM). As the Large Hadron Collider and MEG, a dedicated μ+→e+γ experiment, are presently acquiring data, there is need for tools that provide rapid discrimination of models that exhibit LFV. SuperLFV accepts a spectrum file compliant with the SUSY Les Houches Accord (SLHA), containing the MSSM couplings and masses with complex phases at the supersymmetry breaking scale. In this manner, SuperLFV is compatible with but divorced from existing SLHA spectrum calculators that provide the low energy spectrum. Hence, input spectra are not confined to the LFV sources provided by established SLHA spectrum calculators. Input spectra may be generated by personal code or by hand, allowing for arbitrary models not supported by existing spectrum calculators.

  16. An object oriented code for simulating supersymmetric Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Catterall, Simon; Joseph, Anosh

    2012-06-01

    We present SUSY_LATTICE - a C++ program that can be used to simulate certain classes of supersymmetric Yang-Mills (SYM) theories, including the well known N=4 SYM in four dimensions, on a flat Euclidean space-time lattice. Discretization of SYM theories is an old problem in lattice field theory. It has resisted solution until recently when new ideas drawn from orbifold constructions and topological field theories have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theories in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local, free of doublers and also possess exact gauge-invariance. In principle they form the basis for a truly non-perturbative definition of the continuum SYM theories. In the continuum limit they reproduce versions of the SYM theories formulated in terms of twisted fields, which on a flat space-time is just a change of the field variables. In this paper, we briefly review these ideas and then go on to provide the details of the C++ code. We sketch the design of the code, with particular emphasis being placed on SYM theories with N=(2,2) in two dimensions and N=4 in three and four dimensions, making one-to-one comparisons between the essential components of the SYM theories and their corresponding counterparts appearing in the simulation code. The code may be used to compute several quantities associated with the SYM theories such as the Polyakov loop, mean energy, and the width of the scalar eigenvalue distributions. Program summaryProgram title: SUSY_LATTICE Catalogue identifier: AELS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9315 No. of bytes in distributed program

  17. Black hole microstates in AdS4 from supersymmetric localization

    NASA Astrophysics Data System (ADS)

    Benini, Francesco; Hristov, Kiril; Zaffaroni, Alberto

    2016-05-01

    This paper addresses a long standing problem, the counting of the microstates of supersymmetric asymptotically AdS black holes in terms of a holographically dual field theory. We focus on a class of asymptotically AdS4 static black holes preserving two real supercharges which are dual to a topologically twisted deformation of the ABJM theory. We evaluate in the large N limit the topologically twisted index of the ABJM theory and we show that it correctly reproduces the entropy of the AdS4 black holes. An extremization of the index with respect to a set of chemical potentials is required. We interpret it as the selection of the exact R-symmetry of the superconformal quantum mechanics describing the horizon of the black hole.

  18. TeV scale mirage mediation and natural little supersymmetric hierarchy

    SciTech Connect

    Choi, Kiwoon; Jeong, Kwang Sik; Kobayashi, Tatsuo; Okumura, Ken-ichi

    2007-05-01

    TeV scale mirage mediation has been proposed as a supersymmetry-breaking scheme reducing the fine-tuning for electroweak symmetry breaking in the minimal supersymmetric extension of the standard model. We discuss a moduli stabilization setup for TeV scale mirage mediation which allows an extradimensional interpretation for the origin of supersymmetry breaking and naturally gives a weak-scale size of the Higgs B parameter. The setup utilizes the holomorphic gauge kinetic functions depending on both the heavy dilaton and the light volume modulus whose axion partners are assumed to be periodic fields. We also examine the low-energy phenomenology of TeV scale mirage mediation, particularly the constraints from electroweak symmetry breaking and flavor changing neutral current processes.

  19. Gravity waves from the nonperturbative decay of condensates along supersymmetric flat directions.

    PubMed

    Dufaux, Jean-François

    2009-07-24

    Nonperturbative effects may lead to an explosive decay of flat direction condensates in supersymmetric theories. We confirm the efficiency of this process with lattice simulations: After only one to five rotations of the condensates in their complex plane, most of their energy is converted into inhomogeneous fluctuations. This generates a gravitational wave background, which depends on the inflaton sector and falls in the hertz-kilohertz frequency range today. These gravity waves can be observable by upcoming experiments such as Advanced LIGO and depend crucially on (i) the initial vacuum expectation value of flat directions when they start to oscillate, (ii) their soft supersymmetry-breaking mass, and (iii) the reheat temperature of the Universe. This signal could open a new observational window on inflation and low-energy supersymmetry. PMID:19659339

  20. Subtleties in the beta-function calculation of N=1 supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Cherchiglia, A. L.; Sampaio, Marcos; Hiller, B.; Scarpelli, A. P. Baêta

    2016-02-01

    We investigate some peculiarities in the calculation of the two-loop beta function of N=1 supersymmetric models which are intimately related to the so-called "anomaly puzzle". There is an apparent paradox when the computation is performed in the framework of the covariant derivative background field method. In this formalism, there is obtained a finite two-loop effective action, although a non-null coefficient for the beta function is achieved by means of the renormalized two-point function in the background field. We show that if the standard background field method is used, this two-point function has a divergent part which allows for the calculation of the beta function via the renormalization constants, as usual. Therefore, we conjecture that this paradox has its origin in the covariant supergraph formalism itself, possibly being an artifact of the rescaling anomaly.

  1. Exact spectrum of anomalous dimensions of planar N = 4 supersymmetric Yang-Mills theory.

    PubMed

    Gromov, Nikolay; Kazakov, Vladimir; Vieira, Pedro

    2009-09-25

    We present a set of functional equations defining the anomalous dimensions of arbitrary local single trace operators in planar N = 4 supersymmetric Yang-Mills theory. It takes the form of a Y system based on the integrability of the dual superstring sigma model on the five-dimensional anti-de Sitter space (AdS_{5} x S;{5}) background. This Y system passes some very important tests: it incorporates the full asymptotic Bethe ansatz at large length of operator L, including the dressing factor, and it confirms all recently found wrapping corrections. The recently proposed AdS_{4}/three-dimensional conformal field theory duality is also treated in a similar fashion. PMID:19905502

  2. Exact Spectrum of Anomalous Dimensions of Planar N=4 Supersymmetric Yang-Mills Theory

    SciTech Connect

    Gromov, Nikolay; Kazakov, Vladimir; Vieira, Pedro

    2009-09-25

    We present a set of functional equations defining the anomalous dimensions of arbitrary local single trace operators in planar N=4 supersymmetric Yang-Mills theory. It takes the form of a Y system based on the integrability of the dual superstring sigma model on the five-dimensional anti-de Sitter space (AdS{sub 5}xS{sup 5}) background. This Y system passes some very important tests: it incorporates the full asymptotic Bethe ansatz at large length of operator L, including the dressing factor, and it confirms all recently found wrapping corrections. The recently proposed AdS{sub 4}/three-dimensional conformal field theory duality is also treated in a similar fashion.

  3. On {N} = 2 supersymmetric gauge theories on S 2 × S 2

    NASA Astrophysics Data System (ADS)

    Sinamuli, Musema

    2016-05-01

    We construct a supergeometry based on S 2× S 2 on which four dimensional {N} = 2 gauge theories can be placed supersymmetrically while preserving all supersymmetries. By embedding the supergeometry in four dimensional {N} = 2 supergravity we are able to construct an arbitrary {N} = 2 gauge theory on S 2 × S 2. We show that {N} = 2 gauge theories are invariant under the exceptional superalgebra D(2 , 1 , α), where α is the ratio of the radii of the two S 2's. We solve the supersymmetry fixed points equations for a choice of supercharge in D(2 , 1 , α). The solution of these BPS equations, which we find, would serve as the exact saddle point configurations of a localization computation of the partition function of {N} = 2 gauge theories on S 2 × S 2.

  4. A search for the lightest supersymmetric partner of the top quark at DØ

    SciTech Connect

    Mackin Jr, Dennis S.

    2010-08-01

    We report the result of a search for the pair production of the lightest supersymmetric partner of the top quark ($\\tilde{t}$1) in 5.4 ± 0.3 fb-1 of data from the D0 detector at a p$\\bar{p}$ center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The scalar top quarks are assumed to decay into a b quark, a charged lepton and a scalar neutrino ($\\tilde{v}$), and the search is performed in the electron plus muon final state. No significant excess of events above the standard model prediction is detected and new exclusion limits at the 95% C.L. are set for a portion of the (m$\\tilde{t}$1, m $\\tilde{v}$) mass plane.

  5. Enhancement of Br (Bd→μ+μ- )/Br (Bs→μ+μ-) in supersymmetric unified models

    NASA Astrophysics Data System (ADS)

    Dutta, Bhaskar; Mimura, Yukihiro

    2015-05-01

    We explain the 2.3 σ deviation in the recent measurements of the neutral B meson decays into muon pairs from the standard model prediction in the framework of supersymmetric grand unified models using antisymmetric coupling as a new source of flavor violation. We show a correlation between the Bd→μ+μ- decay and the C P phase in the Bd→J /ψ K decay and that their deviations from the standard model predictions can be explained after satisfying constraints arising from various hadronic and leptonic rare decay processes, B -B ¯ , K -K ¯ oscillation data, and electric dipole moments of electron and neutron. The allowed parameter space is typically represented by pseudoscalar Higgs mass mA≤1 TeV and tan βH(≡vu/vd)≲20 for squark and gluino masses around 2 TeV.

  6. Search for lepton flavor violation in supersymmetric models via meson decays

    NASA Astrophysics Data System (ADS)

    Sun, Ke-Sheng; Feng, Tai-Fu; Gao, Tie-Jun; Zhao, Shu-Min

    2012-12-01

    Considering the constraints from the experimental data on μ→eγ, μ→3e, μ-e conversion, etc., we analyze the lepton flavor violating decays ϕ(J/Ψ,ϒ(1S))→e+μ-(μ+τ-) in the scenarios of the minimal supersymmetric extensions of Standard Model with seesaw mechanism. Numerically, there is parameter space that the LFV processes of J/Ψ(ϒ)→μ+τ- can reach the upper experimental bounds, meanwhile the theoretical predictions on μ→eγ, μ→3e, μ-e conversion satisfy the present experimental bounds. For searching of new physics, lepton flavor violating processes J/Ψ(ϒ)→μ+τ- may be more promising and effective channels.

  7. Supersymmetric Explanation of CP Violation in K→ππ Decays.

    PubMed

    Kitahara, Teppei; Nierste, Ulrich; Tremper, Paul

    2016-08-26

    Recent progress in the determination of hadronic matrix elements has revealed a tension between the measured value of ε_{K}^{'}/ε_{K}, which quantifies direct CP violation in K→ππ decays, and the standard-model prediction. The well-understood indirect CP violation encoded in the quantity ε_{K} typically precludes large new-physics contributions to ε_{K}^{'}/ε_{K} and challenges such an explanation of the discrepancy. We show that it is possible to cure the ε_{K}^{'}/ε_{K} anomaly in the minimal supersymmetric standard model with squark masses above 3 TeV without overshooting ε_{K}. This solution exploits two features of supersymmetry: the possibility of large isospin-breaking contributions (enhancing ε_{K}^{'}) and the Majorana nature of gluinos (permitting a suppression of ε_{K}). Our solution involves no fine-tuning of CP phases or other parameters. PMID:27610846

  8. Conversion of baryonic fermions into squarks in neutron stars from supersymmetric dark matter Q-balls

    SciTech Connect

    Shoemaker, Ian M.

    2009-08-01

    The gauge-mediated model of supersymmetry breaking implies that stable nontopological solitons, Q-balls, could form in the early Universe and comprise the dark matter. It is shown that the inclusion of the effects from gravity-mediation set an upper limit on the size of Q-balls. When in a dense baryonic environment Q-balls grow until reaching this limiting size at which point they fragment into two equal-sized Q-balls. This Q-splitting process will rapidly destroy a neutron star that absorbs even one Q-ball. The new limits on Q-ball dark matter require an ultralight gravitino m{sub 3/2} < or approx. keV, naturally avoiding the gravitino overclosure problem, and providing the minimal supersymmetric standard model with a dark matter candidate where gravitino dark matter is not viable.

  9. Mass bounds for the neutral Higgs bosons in the Next-To-Minimal Supersymmetric Standard Model

    NASA Astrophysics Data System (ADS)

    Franke, F.; Fraas, H.

    1995-02-01

    In the Next-To-Minimal Supersymmetric Standard Model (NMSSM), the Higgs and neutralino/chargino sectors are strongly correlated by four common parameters at tree level. Therefore we analyze the experimental data from both the search for Higgs bosons as well as for neutralinos and charginos at LEP 100 in order to constrain the parameter space and the masses of the neutral Higgs particles in the NMSSM. We find that small singlet vacuum expectation values are ruled out, but a massless neutral Higgs scalar and pseudoscalar is not excluded for most of the parameter space of the NMSSM. Improved limits from the neutralino/chargino search at LEP 200, however, may lead to nonvanishing lower Higgs mass bounds.

  10. Realizing the supersymmetric inverse seesaw model in the framework of R-parity violation

    NASA Astrophysics Data System (ADS)

    de S. Pires, C. A.; Rodrigues, J. G.; Rodrigues da Silva, P. S.

    2016-08-01

    If, on one hand, the inverse seesaw is the paradigm of TeV scale seesaw mechanism, on the other it is a challenge to find scenarios capable of realizing it. In this work we propose a scenario, based on the framework of R-parity violation, that realizes minimally the supersymmetric inverse seesaw mechanism. In it the energy scale parameters involved in the mechanism are recognized as the vacuum expectation values of the scalars that compose the singlet superfields NˆC and S ˆ . We develop also the scalar sector of the model and show that the Higgs mass receives a new tree-level contribution that, when combined with the standard contribution plus loop correction, is capable of attaining 125 GeV without resort to heavy stops.

  11. New supersymmetric black holes in four-dimensional N = 2 supergravity

    NASA Astrophysics Data System (ADS)

    Mandal, Taniya; Tripathy, Prasanta K.

    2016-05-01

    In this paper, we consider the four-dimensional N = 2 supergravity theory arising from the compactification of type IIA string theory on a Calabi-Yau manifold. We analyze the supersymmetric flow equations for static, spherically symmetric, single-centered black holes. These flow equations are solved by a set of algebraic equations involving the holomorphic sections and harmonic functions. We examine black hole configurations with D0-D4-D6 charge for which the most general solution of these algebraic equations are considered. Though the black hole solution is unique for a given value of the charges, we find new phases of the black hole solutions upon varying them.

  12. The photino sector and a confining potential in a supersymmetric Lorentz-symmetry-violating model

    NASA Astrophysics Data System (ADS)

    Belich, H.; Bernald, L. D.; Gaete, Patricio; Helayël-Neto, J. A.

    2013-11-01

    We study the spectrum of the minimal supersymmetric extension of the Carroll-Field-Jackiw model for Electrodynamics with a topological Chern-Simons-like Lorentz-symmetry violating term. We identify a number of independent background fermion condensates, work out the gaugino dispersion relation and propose a photonic effective action to consider aspects of confinement induced by the SUSY background fermion condensates, which also appear to signal Lorentz-symmetry violation in the photino sector of the action. Our calculations of the static potential are carried out within the framework of the gauge-invariant but path-dependent variables formalism which are alternative to the Wilson loop approach. Our results show that the interaction energy contains a linear term leading to the confinement of static probe charges.

  13. Supersymmetric Wilson loops in N=4 super Chern-Simons-matter theory

    NASA Astrophysics Data System (ADS)

    Ouyang, Hao; Wu, Jun-Bao; Zhang, Jia-ju

    2015-11-01

    We investigate the supersymmetric Wilson loops in d = 3 N=4 super Chern-Simons-matter theory obtained from non-chiral orbifold of ABJM theory. We work in both Minkowski spacetime and Euclidean space, and we construct 1/4 and 1/2 BPS Wilson loops. We also provide a complete proof that the difference between 1/4 and 1/2 Wilson loops is Q-exact with Q being some supercharge that is preserved by both the 1/4 and 1/2 Wilson loops. This plays an important role in applying the localization techniques to compute the vacuum expectation values of Wilson loops. We also study the M-theory dual of the 1/2 BPS circular Wilson loop.

  14. Diphoton resonances in a U (1 )B -L extension of the minimal supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Lazarides, G.; Shafi, Q.

    2016-06-01

    Inspired by the 750 GeV diphoton state recently reported by ATLAS and CMS, we propose a U (1 )B-L extension of the MSSM which predicts the existence of four spin zero resonance states that are degenerate in mass in the supersymmetric limit. Vectorlike fields, a gauge singlet field, as well as the MSSM Higgsinos are prevented from acquiring arbitrary large masses by a U (1 ) R symmetry. Indeed, these masses can be considerably lighter than the Z' gauge boson mass. Depending on kinematics, the resonance states could decay into right-handed neutrinos and sneutrinos, and/or MSSM Higgs fields and Higgsinos with total decay widths in the multi-GeV range.

  15. Impact of future lepton flavor violation measurements in the minimal supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Ellis, Sebastian A. R.; Pierce, Aaron

    2016-07-01

    Working within the context of the minimal supersymmetric standard model, we compare current bounds from quark flavor changing processes with current and upcoming bounds on lepton flavor violation. We assume supersymmetry breaking approximately respects C P invariance. Under the further assumption that flavor violating insertions in the quark and lepton scalar masses are comparable, we explore when lepton flavor violation provides the strongest probe of new physics. We quote results both for spectra with all superpartners near the TeV scale and where scalars are multi-TeV. Constraints from quark flavor changing neutral currents are in many cases already stronger than those expected from future lepton flavor violation bounds, but large regions of parameter space remain where the latter could provide a discovery mode for supersymmetry.

  16. Non-renormalization of the V c bar c-vertices in N = 1 supersymmetric theories

    NASA Astrophysics Data System (ADS)

    Stepanyantz, K. V.

    2016-08-01

    Using the Slavnov-Taylor identities we prove that the three-point ghost vertices with a single line of the quantum gauge superfield are not renormalized in all loops in N = 1 supersymmetric gauge theories. This statement is verified by the explicit one-loop calculation made by the help of the BRST invariant version of the higher covariant derivative regularization. Using the restrictions to the renormalization constants which are imposed by the non-renormalization of the considered vertices we express the exact NSVZ β-function in terms of the anomalous dimensions of the Faddeev-Popov ghosts and of the quantum gauge superfield. In the expression for the NSVZ β-function obtained in this way the contributions of the Faddeev-Popov ghosts and of the matter superfields have the same structure.

  17. Chiral and real N=2 supersymmetric ℓ-conformal Galilei algebras

    SciTech Connect

    Aizawa, N.; Kuznetsova, Z.; Toppan, F.

    2013-09-15

    Inequivalent N=2 supersymmetrizations of the ℓ-conformal Galilei algebra in d-spatial dimensions are constructed from the chiral (2, 2) and the real (1, 2, 1) basic supermultiplets of the N=2 supersymmetry. For non-negative integer and half-integer ℓ, both superalgebras admit a consistent truncation with a (different) finite number of generators. The real N=2 case coincides with the superalgebra introduced by Masterov, while the chiral N=2 case is a new superalgebra. We present D-module representations of both superalgebras. Then we investigate the new superalgebra derived from the chiral supermultiplet. It is shown that it admits two types of central extensions, one is found for any d and half-integer ℓ, and the other only for d= 2 and integer ℓ. For each central extension, the centrally extended ℓ-superconformal Galilei algebra is realized in terms of its super-Heisenberg subalgebra generators.

  18. Filtering out signals of gauge-mediated supersymmetry breaking: Can we always eliminate conventional supersymmetric effects?

    NASA Astrophysics Data System (ADS)

    Mukhopadhyaya, Biswarup; Roy, Sourov

    1998-06-01

    We investigate the signal γγ+E/ in a high-energy linear e+e- collider, with a view to differentiating between gauge-mediated supersymmetry breaking and the conventional supersymmetric models. Prima facie, there is considerable chance of confusion between the two scenarios if the assumption of gaugino mass unification is relaxed. We show that the use of polarized electron beams enables one to distinguish between the two schemes in most cases. There are some regions in the parameter space where this idea does not work, and we suggest some additional methods of distinction. We also perform an analysis of some signals in the gauge-mediated model, coming from the pair production of the second-lightest neutralino.

  19. N=4 supersymmetric Yang-Mills theory in soft-collinear effective theory

    SciTech Connect

    Chay, Junegone; Lee, Jae Yong

    2011-01-01

    We formulate N=4 supersymmetric Yang-Mills theory in terms of soft-collinear effective theory. The effective Lagrangian in soft-collinear effective theory is developed according to the power counting by a small parameter {eta}{approx}p{sub perpendicular}/Q. All the particles in this theory are in the adjoint representation of the SU(N) gauge group, and we derive the collinear gauge-invariant Lagrangian in the adjoint and fundamental representations, respectively. We consider collinear and ultrasoft Wilson lines in this theory, and show the ultrasoft factorization of the collinear Lagrangian by redefining the collinear fields with the use of the ultrasoft Wilson lines. The vertex correction for a vector fermion current at one loop is explicitly presented as an example to illustrate how the computation is performed in the effective theory.

  20. Supersymmetric SO(10)-inspired leptogenesis and a new N2-dominated scenario

    NASA Astrophysics Data System (ADS)

    Di Bari, Pasquale; Re Fiorentin, Michele

    2016-03-01

    We study the supersymmetric extension of SO(10)-inspired thermal leptogenesis showing the constraints on neutrino parameters and on the reheat temperature TRH that derive from the condition of successful leptogenesis from next-to-lightest right handed (RH) neutrinos (N2) decays and the more stringent ones when independence of the initial conditions (strong thermal leptogenesis) is superimposed. In the latter case, the increase of the lightest right-handed neutrino (N1) decay parameters helps the wash-out of a pre-existing asymmetry and constraints relax compared to the non-supersymmetric case. We find significant changes especially in the case of large tanβ values (gtrsim 15). In particular, for normal ordering, the atmospheric mixing angle can now be also maximal. The lightest left-handed neutrino mass is still constrained within the range 010 lesssim m1/meV lesssim 3 (corresponding to 075lesssim ∑i mi/meV lesssim 12). Inverted ordering is still disfavoured, but an allowed region satisfying strong thermal leptogenesis opens up at large tanβ values. We also study in detail the lower bound on TRH finding TRHgtrsim 1 × 1010 GeV independently of the initial N2 abundance. Finally, we propose a new N2-dominated scenario where the N1 mass is lower than the sphaleron freeze-out temperature. In this case there is no N1 wash-out and we find TRH gtrsim 1× 109 GeV . These results indicate that SO(10)-inspired thermal leptogenesis can be made compatible with the upper bound from the gravitino problem, an important result in light of the role often played by supersymmetry in the quest of a realistic model of fermion masses.

  1. Supersymmetry breaking and the supersymmetric flavor problem: An analysis of decoupling the first two generation scalars

    NASA Astrophysics Data System (ADS)

    Agashe, K.; Graesser, M.

    1999-01-01

    The supersymmetric contributions to the flavor changing neutral current processes may be suppressed by decoupling the scalars of the first and second generations. It is known, however, that the heavy scalars drive the top squark mass squareds negative through the two-loop renormalization group evolution. This tension is studied in detail. Two new items are included in this analysis: the effect of the top quark Yukawa coupling and the QCD corrections to the supersymmetric contributions to ΔmK. Even with Cabibbo-like degeneracy between the squarks of the first two generations, these squarks must be heavier than ~40 TeV to suppress ΔmK. This implies, in the case of a high scale of supersymmetry breaking, that the boundary value of the top squark mass has to be greater than ~7 TeV to keep the top squark mass squared positive at the weak scale. Low-energy supersymmetry breaking at a scale that is of the same order as the mass of the heavy scalars is also considered. In this case the finite parts of the two-loop diagrams are computed to estimate the contribution of the heavy scalar masses to the top squark mass squared. It is found that for Cabibbo-like mixing between the squarks, the top squark mass at the boundary needs to be larger than ~2 TeV. Thus, for both cases, the large boundary value of the top squark masses leads to an unnatural amount of fine tuning to obtain the correct Z mass.

  2. Inflationary scenario in the supersymmetric economical 3-3-1 model

    SciTech Connect

    Huong, D. T. Long, H. N.

    2010-05-15

    We construct the supersymmetric economical 3-3-1 model which contains inflationary scenario and avoids the monopole puzzle. Based on the spontaneous symmetry breaking pattern (with three steps), the F-term inflation is derived. The slow-roll parameters element of and {eta} are calculated. By imposing as experimental five-year WMAP data on the spectral index n, we have derived a constraint on the number of e-folding N{sub Q} to be in the range from 25 to 50. The scenario for large-scale structure formation implied by the model is a mixed scenario for inflation and cosmic string, and the contribution to the CMBR temperature anisotropy depends on the ratio M{sub X}/M{sub Pl}. From the COBE data, we have obtained the constraint on the M{sub X} to be M{sub X} element of [1.22 x 10{sup 16}, 0.98 x 10{sup 17}] GeV. The upper value M{sub X} {approx_equal} 10{sup 17} GeV is a result of the analysis in which the inflationary contribution to the temperature fluctuations measured by the COBE is 90%. The coupling {alpha} varies in the range: 10{sup -7}-10{sup -1}. This value is not so small, and it is a common characteristics of the supersymmetric unified models with the inflationary scenario. The spectral index n is a little bit smaller than 0.98. The SUGRA corrections are slightly different from the previous consideration. When {xi} << 1 and {alpha} lies in the above range, the spectral index gets the value consistent with the experimental five-year WMAP data. Comparing with string theory, one gets {xi} < 10{sup -8}. Numerical analysis shows that {alpha} {approx} 10{sup -6}. To get inflation contribution to the CMBR temperature anisotropy {approx}90%, the mass scale M{sub X} < 3.5 x 10{sup 14} GeV.

  3. Family Structure and Family Processes in Mexican American Families

    PubMed Central

    Zeiders, Katharine H.; Roosa, Mark W.; Tein, Jenn-Yun

    2010-01-01

    Despite increases in single-parent families among Mexican Americans (MA), few studies have examined the association of family structure and family adjustment. Utilizing a diverse sample of 738 Mexican American families (21.7% single parent), the current study examined differences across family structure on early adolescent outcomes, family functioning, and parent-child relationship variables. Results revealed that early adolescents in single parent families reported greater school misconduct, CD/ODD and MDD symptoms, and greater parent-child conflict than their counterparts in two parent families. Single parent mothers reported greater economic hardship, depression and family stress. Family stress and parent-child conflict emerged as significant mediators of the association between family structure and early adolescent outcomes, suggesting important processes linking MA single parent families and adolescent adjustment. PMID:21361925

  4. Family Therapy and Disturbed Families.

    ERIC Educational Resources Information Center

    Zuk, Gerald H., Ed.; Boszormenyi-Nagy, Ivan, Ed.

    Presented at a conference at which authors represented major theoretical positions in the field, most of the papers use family therapy as an important source of observations or ideas, or as a means to pinpoint methodological problems. Papers are grouped in sections as follows: four which introduce the reader to the field of specialization, provide…

  5. FAMILY BOMBYLIIDAE.

    PubMed

    Lamas, Carlos José Einicker; Evenhuis, Neal L

    2016-01-01

    Bombyliidae is one of the largest Diptera families with more than 4,500 recognized species worldwide. Their species vary from robust to thin, and may be small to large (2-20mm) and looks like bees or wasps. They also present great variation in color. Adults can often be seen either resting and sunning themselves on trails, rocks or twigs or feeding on flowering plants as they are nectar feeders. All reared bee flies are predators or parasitoids of arthropods. The Colombian fauna of bombyliids comprises at the moment 22 species, and 12 genera, of which, six are endemic species. Nonetheless, this number may be much higher, as Colombia is a megadiverse country and there are not many specimens of this family deposited in collections all over the world. PMID:27395279

  6. Familial Hypercholesterolemia

    PubMed Central

    Pejic, Rade N.

    2014-01-01

    Background Familial hypercholesterolemia (FH) is an autosomal dominant-inherited genetic disorder that leads to elevated blood cholesterol levels. FH may present as severely elevated total cholesterol and low density lipoprotein (LDL) cholesterol levels or as premature coronary heart disease (CHD). Methods This review presents information on the disease and on the effects of drug treatment and lifestyle changes. Results Routine lipid testing should identify most patients with FH. Once an index case is identified, testing should be offered to family members. Early diagnosis and aggressive treatment with therapeutic lifestyle changes and statins can prevent premature CHD and other atherosclerotic sequelae in patients with FH. Conclusion Emerging therapies such as LDL apheresis and novel therapeutic agents may be useful in patients with homozygous FH or treatment-resistant FH. Liver transplantation is the only effective therapy for severe cases of homozygous FH. PMID:25598733

  7. Familial Hypercholesterolemia

    PubMed Central

    Bouhairie, Victoria Enchia; Goldberg, Anne Carol

    2015-01-01

    Familial hypercholesterolemia is a common, inherited disorder of cholesterol metabolism that leads to early cardiovascular morbidity and mortality. It is underdiagnosed and undertreated. Statins, ezetimibe, bile acid sequestrants, niacin, lomitapide, mipomersen and LDL apheresis are treatments that can lower LDL cholesterol levels. Early treatment can lead to substantial reduction of cardiovascular events and death in patients with FH. It is important to increase awareness of this disorder in physicians and patients in order to reduce the burden of this disorder. PMID:25939291

  8. Familial hypercholesterolemia

    PubMed Central

    Turgeon, Ricky D.; Barry, Arden R.; Pearson, Glen J.

    2016-01-01

    Objective To summarize the pathophysiology, epidemiology, screening, diagnosis, and treatment of familial hypercholesterolemia (FH). Quality of evidence A PubMed search was conducted (inception to July 2014) for articles on pathophysiology, screening, diagnosis, and management of FH, supplemented with hand searches of bibliographies of guidelines and reviews. A supporting level of evidence for each recommendation was categorized as level I (randomized controlled trial or systematic review of randomized controlled trials), level II (observational study), or level III (expert opinion). The best available evidence is mostly level II or III. Main message Familial hypercholesterolemia affects 1 in 500 Canadians. Risk of a coronary event is high in these patients and is underestimated by risk calculators (eg, Framingham). Clinicians should screen patients according to guidelines and suspect FH in any patient with a premature cardiovascular event, physical stigmata of hypercholesterolemia, or an elevated plasma lipid level. Physicians should diagnose FH using either the Simon Broome or Dutch Lipid Network criteria. Management of heterozygous FH includes reducing low-density lipoprotein levels by 50% or more from baseline with high-dose statins and other lipid-lowering agents. Clinicians should refer any patient with homozygous FH to a specialized centre. Conclusion Familial hypercholesterolemia represents an important cause of premature cardiovascular disease in Canadians. Early identification and aggressive treatment of individuals with FH reduces cardiovascular morbidity and mortality. PMID:26796832

  9. Family affairs.

    PubMed

    Dupont, M

    1994-06-01

    It's no secret that your job is stressful, forcing you to deal with tragedy and death on a regular basis. You've become good at what you do because you pay attention to details and care about people. Most of the EMS providers I've known dedicate untold hours to their work, usually in addition to the regular jobs they hold. Their communities need them to be ready at a moment's notice when the pager sounds. Someone is in crisis. A life may hang in the balance-a life they may save. But what about the family that's left behind as you run out the door-yet again? How do your spouse/significant other and kids cope with whatever emotional state you're in when you return home? While your stress may be evident, their distress may be overlooked. What price do they pay to live with you? These questions were addressed during several workshops my colleagues and I conducted for EMS providers and their families. Many of the problems and frustrations identified in this article were shared by EMTs' family members who attended. PMID:10134394

  10. FAMILY MYCETOPHILIDAE.

    PubMed

    Oliveira, Sarah Siqueira; Amorim, Dalton De Souza

    2016-01-01

    The Mycetophilidae include small fungus-gnats which life cycle is associated with fungi, especially of the larvae. The known diversity of the family in the Neotropical region is 1,145 species, but only some very few papers have been published on the Colombian species of Mycetophilidae, with records for the genera Docosia Winnertz, Paraleia Tonnoir, and Dziedzickia Johannsen. This catalogue gathers the information available on mycetophilids from Colombia, including genera and some species that for the first time are mentioned to occur in the country-as Leiella unicincta Edwards and Leiella zonalis Edwards. PMID:27395261

  11. FAMILY ANISOPODIDAE.

    PubMed

    Amorim, Dalton De Souza; Falaschi, Rafaela Lopes; Oliveira, Sarah Siqueira

    2016-01-01

    This considerably small family is poorly known in Colombia, with only two species reported for the genus Sylvicola Harris (1776) so far. We synonymize Neomesochria Amorim & Tozoni (1994) to Mycetobia Meigen (1818), hence transferring the Dominican amber species Neomesochria antillea (Grimaldi 1991) and N. cryptambra (Grimaldi 1991), and the recent Neotropical species N. limanda (Stone 1966) and N. stonei (Lane & d'Andretta 1958) back to the genus Mycetobia. This paper provides new records for Mycetobia and Olbiogaster Osten-Sacken (1886) for Colombia. PMID:27395252

  12. FAMILY SCIOMYZIDAE.

    PubMed

    Marinoni, Luciane; Murphy, William L

    2016-01-01

    The Sciomyzidae are a family of acalyptrate flies of worldwide distribution, with 543 extant species and 14 described subspecies in 63 genera. Although 274 species in 37 genera are found in the Western Hemisphere, the sciomyzid fauna of Central and South America remains relatively unknown, comprising 103 species in 25 genera, with only seven species in five genera having been recorded from Colombia: Dictya bergi Valley, Perilimnia albifacies Becker, Pherbellia guttata (Coquillett), Sepedomerus bipuncticeps (Malloch), S. macropus (Walker), Sepedonea guianica (Steyskal), and S. isthmi (Steyskal). PMID:27395301

  13. Supersymmetric QCD one-loop effects in (un)polarized top-pair production at hadron colliders

    SciTech Connect

    Berge, Stefan; Hollik, Wolfgang; Mosle, Wolf M.; Wackeroth, Doreen

    2007-08-01

    We study the effects of O({alpha}{sub s}) supersymmetric QCD (SQCD) corrections on the total production rate and kinematic distributions of polarized and unpolarized top-pair production in pp and pp collisions. At the Fermilab Tevatron pp collider, top-quark pairs are mainly produced via quark-antiquark annihilation, qq{yields}tt, while at the CERN LHC pp collider gluon-gluon scattering, gg{yields}tt, dominates. We compute the complete set of O({alpha}{sub s}) SQCD corrections to both production channels and study their dependence on the parameters of the minimal supersymmetric standard model. In particular, we discuss the prospects for observing strong, loop-induced SUSY effects in top-pair production at the Tevatron run II and the LHC.

  14. Source of the Kerr-Newman solution as a supersymmetric domain-wall bubble: 50 years of the problem

    NASA Astrophysics Data System (ADS)

    Burinskii, Alexander

    2016-03-01

    We consider the chiral field model of the source of the Kerr-Newman (KN) solution and obtain that it represents a supersymmetric spinning soliton, bounded by the chiral domain wall (DW) of the ellipsoidal form. The known method for transformation of the planar DW to Bogomolnyi form we generalize to the curved DW-bubble adapted to the Kerr coordinate system and obtain the supersymmetric BPS-saturated source of the KN solution, having some remarkable features, in particular, the quantum angular momentum. The main new result is that the source forms a breather, i.e. the DW-antiDW combination. Taking into account that the KN solution describes the spinning particles with gyromagnetic ratio g = 2, as that of the Dirac electron, we touch the problem of the compatibility of the spinning particles with gravity.

  15. Emerging geometry from maximally super-symmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Vazquez, Samuel Enrique

    In this thesis, we explore the emergence of space-time geometry, and string theory physics from N = 4 supersymmetric Yang-Mills (SYM) theory with gauge group U(N). This is done in the context of the anti-de-Sitter/conformal field theory correspondence (AdS/CFT). The main results of this thesis are the following. First, we study single trace perturbations around generic 1/2 BPS states of the theory. We do this in the large N limit, and at one-loop in the 't-Hooft coupling. We show how these states can be mapped to dynamical lattices with boson statistics and periodic boundary conditions. By dynamical, we mean that the total boson occupation number is not conserved in general. Then, we show how to derive an effective sigma model for these systems which coincides with the Polyakov action of a probe string on a 1/2 BPS geometry (in the fast string limit). Secondly, we study non-supersymmetric perturbations of the vacuum which give rise to bosonic lattices with open boundary conditions. We also do this in the large N limit, and at one-loop in the 't-Hooft coupling. We show that these states are dual to open strings on D3-branes known as "Giant Gravitons". These lattice systems are also dynamical, but in some special cases, we show that we get an integrable spin chain with open boundary conditions. Next, we study single trace perturbations at strong coupling. We do this by taking a "dilute gas" approximation. We derive an all-loop result for the dispersion relation of the "magnons" which coincides with previous conjectures in the literature. What is more, we derive the geometrical picture of the so-called "giant magnon" string solution of Hofman and Maldacena, directly from the field theory. Finally, we explore the question of classical integrability of open strings on D-branes. In particular, we study the case of the giant gravitons, and compare the integrable structures on both sides of the AdS/CFT correspondence.

  16. Single- and coupled-channel radial inverse scattering with supersymmetric transformations

    NASA Astrophysics Data System (ADS)

    Baye, Daniel; Sparenberg, Jean-Marc; Pupasov-Maksimov, Andrey M.; Samsonov, Boris F.

    2014-06-01

    The present status of the three-dimensional inverse-scattering method with supersymmetric transformations is reviewed for the coupled-channel case. We first revisit in a pedagogical way the single-channel case, where the supersymmetric approach is shown to provide a complete, efficient and elegant solution to the inverse-scattering problem for the radial Schrödinger equation with short-range interactions. A special emphasis is put on the differences between conservative and non-conservative transformations, i.e. transformations that do or do not conserve the behaviour of solutions of the radial Schrödinger equation at the origin. In particular, we show that for the zero initial potential, a non-conservative transformation is always equivalent to a pair of conservative transformations. These single-channel results are illustrated on the inversion of the neutron-proton triplet eigenphase shifts for the S- and D-waves. We then summarize and extend our previous works on the coupled-channel case, i.e. on systems of coupled radial Schrödinger equations, and stress remaining difficulties and open questions of this problem by putting it in perspective with the single-channel case. We mostly concentrate on two-channel examples to illustrate general principles while keeping mathematics as simple as possible. In particular, we discuss the important difference between the equal-threshold and different-threshold problems. For equal thresholds, conservative transformations can provide non-diagonal Jost and scattering matrices. Iterations of such transformations in the two-channel case are studied and shown to lead to practical algorithms for inversion. A convenient particular technique where the mixing parameter can be fitted without modifying the eigenphases is developed with iterations of pairs of conjugate transformations. This technique is applied to the neutron-proton triplet S-D scattering matrix, for which exactly-solvable matrix potential models are constructed. For

  17. The Hamiltonian structure of a coupled system derived from a supersymmetric breaking of super Korteweg-de Vries equations

    NASA Astrophysics Data System (ADS)

    Restuccia, A.; Sotomayor, A.

    2013-11-01

    A supersymmetric breaking procedure for N = 1 super Korteweg-de Vries (KdV), using a Clifford algebra, is implemented. Dirac's method for the determination of constraints is used to obtain the Hamiltonian structure, via a Lagrangian, for the resulting solitonic system of coupled KdV type system. It is shown that the Hamiltonian obtained by this procedure is bounded from below and in that sense represents a model which is physically admissible.

  18. The Hamiltonian structure of a coupled system derived from a supersymmetric breaking of super Korteweg-de Vries equations

    SciTech Connect

    Restuccia, A.; Sotomayor, A.

    2013-11-15

    A supersymmetric breaking procedure for N= 1 super Korteweg-de Vries (KdV), using a Clifford algebra, is implemented. Dirac's method for the determination of constraints is used to obtain the Hamiltonian structure, via a Lagrangian, for the resulting solitonic system of coupled KdV type system. It is shown that the Hamiltonian obtained by this procedure is bounded from below and in that sense represents a model which is physically admissible.

  19. General solutions of the supersymmetric ℂP2 sigma model and its generalisation to ℂPN-1

    NASA Astrophysics Data System (ADS)

    Delisle, L.; Hussin, V.; Zakrzewski, W. J.

    2016-02-01

    A new approach for the construction of finite action solutions of the supersymmetric ℂPN-1 sigma model is presented. We show that this approach produces more non-holomorphic solutions than those obtained in previous approaches. We study the ℂP2 model in detail and present its solutions in an explicit form. We also show how to generalise this construction to N > 3.

  20. High density preheating effects on Q-ball decays and inflation in the minimal supersymmetric standard model.

    PubMed

    Berkooz, Micha; Chung, Daniel J H; Volansky, Tomer

    2006-01-27

    Nonperturbative preheating decay of postinflationary condensates often results in a high density, low momenta, nonthermal gas. In the case where the nonperturbative classical evolution also leads to Q balls, this effect shields them from instant dissociation, and may radically change the thermal history of the Universe. For example, in a large class of inflationary scenarios, motivated by the minimal supersymmetric standard model and its embedding in string theory, the reheat temperature changes by a multiplicative factor of 10(12). PMID:16486682